Q 11 :    

limxπ2(x3(π/2)3(sin(2t1/3)+cos(t1/3))dt(x-π2)2) is equal to            [2024]

  • 11π210  

     

  • 3π22  

     

  • 5π29  

     

  • 9π28

     

(4)

Let L=limxπ/2[x3(π/2)3(sin(2t1/3)+cos(t1/3))dt(x-π2)2] 00 form, so by L'Hospital rule

=limxπ2ddxx3(π/2)3(sin(2t1/3)+cos(t1/3))dt2(x-π2) sin(2×π2)·ddx(π2)3-sin(2x)·ddxx3

=limxπ/2+(cosπ2ddx(π2)3-cosx·ddxx3)2(x-π2)    (By Leibnitz rule of integration)

=limxπ/2-3x2sin2x-3x2cosx2(x-π2)  (00 form)

=limxπ/2-6xsin2x-6x2cos2x-6xcosx+3x2sinx2

=6π24+3π242=9π28



Q 12 :    

The integral 1434cos(2cot-11-x1+x)dx is equal to          [2024]

  • 14  

     

  • -14

     

  • -12

     

  • 12

     

(2)

I=1/43/4cos(2cot-11-x1+x)dx

=1/43/4cos(2tan-11+x1-x)dx

=1/43/41-tan2(tan-11+x1-x)1+tan2(tan-11+x1-x)dx

=1/43/41-1+x1-x1+1+x1-xdx

=1/43/4-2x2dx=(-x22)1/43/4=-932+132=-832=-14

 



Q 13 :    

The value of the integral 0π/4xdxsin4(2x)+cos4(2x) equals:          [2024]

  • 2π216  

     

  • 2π28

     

  • 2π264

     

  • 2π232

     

(4)

Let I=0π/4xdxsin4(2x)+cos4(2x)

Put 2x=t

2dx=dtdx=dt2       I=0π/2t/2·dt/2sin4t+cos4t

I=140π/2tdtsin4t+cos4t                                                 ...(i)

I=140π/2(π2-t)dtsin4t+cos4t                                                 ...(ii)

Adding (i) and (ii), we get

2I=π80π/2dtsin4t+cos4t2I=π80π/2sec4tdttan4t+1

Let tant=ysec2tdt=dy

  2I=π80(1+y2)dy1+y4

2I=π80(1y2+1)dyy2+1y2-2+2=π80(1y2+1)dy(y-1y)2+2

Let y-1y=u(1+1y2)dy=du, we get 2I=π8-duu2+2

2I=π8[12tan-1(u2)]-

2I=π8[12tan-1()-12tan-1(-)]

I=π162(π2+π2)=π2162=2π232

 



Q 14 :    

If 0π3cos4xdx=aπ+b3, where a and b are rational numbers, Then 9a+8b is equal to:         [2024]

  • 2

     

  • 1

     

  • 3

     

  • 32

     

(1)

Let  I=0π/3cos4xdx=0π/3(1+cos2x2)2dx

=140π/3(1+cos22x+2cos2x)dx

=140π/3(1+2cos2x+(1+cos4x2))dx

=140π/3(32+2cos2x+cos4x2)dx

=14[32x+sin2x+sin4x8]0π/3

=14[π2+32-316]=π8+7364a=18,b=764

  9a+8b=98+78=2



Q 15 :    

The value of 01(2x3-3x2-x+1)13dx is equal to :               [2024]

  • - 1

     

  • 2

     

  • 0

     

  • 1

     

(3)

Let I=01(2x3-3x2-x+1)1/3dx

I=01[2(1-x)3-3(1-x)2-(1-x)+1]1/3dx

I=01(-2x3+3x2+x-1)dx

I=01-(2x3-3x2-x+1)dx

I=-I2I=0I=0

 



Q 16 :    

If 0113+x+1+xdx=a+b2+c3, where a,b,c are rational numbers, then 2a+3b-4c is equal to:        [2024]

  • 10

     

  • 7

     

  • 4

     

  • 8

     

(4)

0113+x+1+xdx

=0113+x+1+x×3+x-1+x3+x-1+xdx        [ Rationalising the denominator]

=013+x-1+x(3+x)-(1+x)dx=1201(3+x-1+x)dx

=12[2(3+x)3/23|01-23(1+x)3/2|01]

=3-223-3=a+b2+c3a=3,b=-23,c=-1

 2a+3b-4c=2×3+3×(-23)-4(-1)=8



Q 17 :    

For 0<a<1, the value of the integral 0πdx1-2acosx+a2 is       [2024]

  • π1-a2

     

  • π1+a2

     

  • π2π+a2

     

  • π2π-a2

     

(1)

Let I=0πdx1+a2-2acosx

=0πdx1+a2-2a(1-tan2x21+tan2x2)

=0πsec2x2dx(1+a2)(1+tan2x2)-2a(1-tan2x2)

Let tanx2=t  sec2x2dx=2dt

I=20dt(1+a2)(1+t2)-2a+2at2

=20dt1+a2+t2+a2t2-2a+2at2

=20dt(1+a2-2a)+(t2+a2t2+2at2)

I=20dt(1-a)2+(t+at)2

Let t+at=u  dt+adt=du

I=2a+10du(1-a)2+u2=2(a+1)×11-a×[tan-1(u1-a)]0

=21-a2×π2=π1-a2



Q 18 :    

If the value of the integral -π/2π/2(x2cosx1+πx+1+sin2x1+esinx2023)dx=π4(π+a)-2, then the value of a is             [2024]

  • 2

     

  • -32

     

  • 3

     

  • 32

     

(3)

Let I=-π/2π/2(x2cosx1+πx+1+sin2x1+e(sinx)2023)dx                  ...(i)

I=-π/2π/2x2cosx1+π-x+1+sin2x1+e-sinx2023dx                 ...(ii)

Adding (i) and (ii), we get

2I=-π/2π/2(x2cosx+1+sin2x)dx

I=0π/2(x2cosx+1+sin2x)dx

=0π/2x2cosxdx+0π/2(1+sin2x)dx                     ...(iii)

Let I1=0π/2x2cosxdx=[x2(sinx)-2xsinxdx]0π/2

           =[x2sinx+2xcosx-2sinx]0π/2

I1=(π2)2sinπ2+2π2cosπ2-2sinπ2-0=π24-2

And I2=0π/2(1+sin2x)dx=0π/2[1+(1-cos2x2)]dx

=[32x-14sin2x]0π/2=32×π2-14sin2×π2=3π4

From (iii), I=π24-2+3π4=π4(π+3)-2

Comparing with π4(π+a)-2, we get a=3



Q 19 :    

limxπ2(1(x-π2)2x3(π2)3cos(t1/3)dt) is equal to            [2024]

  •  3π24

     

  • 3π28

     

  • 3π8

     

  • 3π4

     

(2)

Let I=limxπ2(1(x-π2)2x3(π2)3cos(t1/3)dt) (00form)

By Leibnitz theorem,

ddxh(x)g(x)f(t)dt=f(g(x))×g'(x)-f(h(x))×h'(x)

    By applying L'Hospital rule, we get

I=limxπ2(-cosx(3x2)2(x-π2))

=limxπ2(3x2sinx-6xcosx2)  (Applying L'Hospital rule)

=3π28



Q 20 :    

Let f:[-π2,π2]R be a differentiable function such that f(0)=12. If the limx0x0xf(t)dtex2-1=α, then 8α2 is equal to          [2024]

  • 2

     

  • 4

     

  • 1

     

  • 16

     

(1)

We have, limx0x0xf(t)ex2-1dt=α

Using L'Hospital's rule, we get limx0xf(x)+0xf(t)dt2xex2=α

Again applying L'Hospital's rule, we get

       limx0f(x)+xf'(x)+f(x)2ex2+4x2ex2=α  α=2f(0)2=f(0)

α=12        [∵ f(0)=12]

  8α2=8×14=2