Q 11 :    

The area enclosed by the curves xy+4y=16 and x+y=6 is equal to:               [2024]

  • 28-30loge2    

     

  • 32-30loge2    

     

  • 30-28loge2    

     

  • 30-32loge2

     

(4)

We have, y=16x+4 and x+y=6y=6-x

For intersecting points:

6-x=16x+4(6-x)(x+4)=16

x2-2x-8=0x2-4x+2x-8=0

x(x-4)+2(x-4)=0

(x+2)(x-4)=0x=-2, 4

  y=8,whenx=-2 and y=2,whenx=4

[IMAGE 35]------------------------------------------

So, Area=-24((6-x)-16x+4)dx=[6x-x22-16loge(x+4)]-24

=24-8-16loge8+12+2+16loge2=30-16loge(82)

=30-16loge22=30-32loge2



Q 12 :    

The area (in square units) of the region bounded by the parabola y2=4(x-2) and the line y=2x-8, is                               [2024]

  • 9

     

  • 7

     

  • 8

     

  • 6

     

(1)

[IMAGE 36]

Parabola : y2=4(x-2)                    ...(i)

and line : y=2x-8                           ...(ii)

4(x-4)2=4(x-2)                       

x2-9x+18=0

x=3,6

From (ii), we get

y=-2,4

Points of intersection of (i) and (ii) are (3,-2) and (6,4)

∴ Required Area=-24[(y+82)-(y24+2)]dy

=[y24-y312+2y]-24

=9 sq. units

 



Q 13 :    

The area of the region

{(x,y):y24x, x<4, xy(x-1)(x-2)(x-3)(x-4)>0, x3} is                                   [2024]

  • 323

     

  • 163

     

  • 83

     

  • 643

     

(1)

The area of region xy(x-1)(x-2)(x-3)(x-4), y2-4x0

yx(x-1)(x-2)(x-3)(x-4)<0

[IMAGE 37]----------------------------------------

Case 1: y>0

So, x(x-1)(x-2)(x-3)(x-4)<0

[IMAGE 38]--------------------------------------------

x(0,1)(2,3)

Case 2: y<0

So, x(x-1)(x-2)(x-3)(x-4)>0x(1,2)(3,4)

Area=042xdx=23×16=323



Q 14 :    

The area of the region enclosed by the parabolas y=4x-x2 and 3y=(x-4)2 is equal to                            [2024]

  • 6

     

  • 4

     

  • 143

     

  • 329

     

(1)

[IMAGE 39]-------------------------------------------

Given, y=4x-x2                              ...(i)

3y=(x-4)2                                      ...(ii)

From (i),

3y=3(4x-x2)=12x-3x2

From (ii),

(x-4)2=12x-3x2

x2-8x+16=12x-3x2x2-5x+4=0

(x-1)(x-4)=0x=1,4

Points of intersection are (1,3) and (4,0)

Required area = 14[(4x-x2)-(x-4)23]dx

=[2x2-x33-13(x-4)33]14

=[(32-643-13(0))-(2-13-13(-273))]

=30-643+13-3=27-21=6 sq. units



Q 15 :    

The area of the region enclosed by the parabolas y=x2-5x and y=7x-x2 is ___________                   [2024]



(72)

Given, y=x2-5x and y=7x-x2

[IMAGE 40]--------------------------------------------------

Both curves passes through the origin

For the points of intersection, we have x2-5x=7x-x2

2x2=12x

2x(x-6)=0

x=0,6

  Area bounded by the curves =06[(7x-x2)-(x2-5x)]dx

=06(7x-x2-x2+5x)dx=06(12x-2x2)dx

=12(622)-23(6)3

=72 sq. units



Q 16 :    

Let the area of the region enclosed by the curve y=min{sinx,cosx} and the x-axis between x=-π to x=π be A. Then A2 is equal to ______ .          [2024]



(16)

[IMAGE 41]

Required area, A=-π-3π4-cosxdx+-3π40-sinxdx+0π4sinxdx+π4π2cosxdx+π2π-cosxdx

=[-sinx]-π-3π4+[cosx]-3π40-[cosx]0π4+[sinx]π4π2-[sinx]π2π

=12+1+12-12+1+1-12+1=4

   A2=16



Q 17 :    

Let the area of the region {(x,y):x-2y+40, x+2y20, x+4y28, y0} be mn, where m and n are coprime numbers. Then m+n is equal to _____ .      [2024]



(119)

Given, x-2y+4=0                  ...(i)

x+2y2=0                                    ...(ii)

x+4y2=8                                    ...(iii)

The point intersection of (i) and (iii) are (-1,1.5) and (-8,-2).

The point of intersection of (i) and (ii) are (-2,1) and (-8,-2).

[IMAGE 42]--------------------------------------

  Required area

01 [(8-4y2)-(-2y2)]dy+13/2[(8-4y2)-(2y-4)]dy

= [8y- 2y33]01+[12y-y2-43y3]13/2

=(8-23)+(12(32)-(32)2-43(32)3)-(12-1-43)

=223+18-94-92-293=10712=mn

  m+n=119



Q 18 :    

If the area of the region {(x,y):0ymin{2x,6x-x2}} is A, then 12A is equal to ____________.               [2024]             



(304)

[IMAGE 43]

Region {(x,y):0ymin(2x,6x-x2)}

 Let A be the area of the required region.

A=204xdx+46(6x-x2)dx

=[x2]04+[3x2-x33]46

=16+3(36-16)-13(216-64)

=16+60-1523=228-1523=763A=763 sq. units

  12A=12×763=4×76=304



Q 19 :    

The area (in sq. units) of the part of the circle x2+y2=169 which is below the line 5x-y=13 is πα2β-652+αβsin-1(1213), where α,β are coprime numbers. Then α+β is equal to _______ .                [2024]



(171)

[IMAGE 44]--------------------------------------

Required Area=-1312(169-y2-y+135)dy

=[12y169-y2+1692sin-1y13]-1312-[y210+135y]-1312

=[12×12×5+1692sin-11213]-[0+1692(-π2)]-[14410+135×12]+[16910-1695]

=1692(π2)+1692sin-1(1213)-652

  α=169 and β=2

Thus, α+β=169+2=171



Q 20 :    

Let the area of the region {(x,y):0x3,0ymin{x2+2,2x+2}} be A. Then 12A is equal to ___________ .         [2024]



(164)

[IMAGE 45]------------------------

Required area, A=02(x2+2)dx+23(2x+2)dx

=[x33+2x]02+[2x22+2x]23

A=83+4+(9+6-4-4)=413

   12A=164 sq. units