Q 1 :    

If the area of the region {(x,y):ax2y1x,1x2,0<a<1} is (loge2)-17 then the value of 7a-3 is equal to :               [2024]

  • 2

     

  • - 1

     

  • 1

     

  • 0

     

(2)

Area of region  {(x,y):ax2y1x,1x2,0<a<1}=12(1x-ax2)dx

(ln2)-17=[lnx+ax]12=ln2+a2-(ln(1+a))

=ln2-a2a2=17a=27

So,7a-3=27×7-3=-1

 



Q 2 :    

The area (in square units) of the region enclosed by the ellipse x2+3y2=18 in the first quadrant below the line y=x is                [2024]

  • 3π

     

  • 3π+34

     

  • 3π-34

     

  • 3π+1

     

(1)

We have, x2+3y2=18

x218+y26=1

x2(32)2+y2(6)2=1

 For point of intersection of ellipse and line y=x, we have, x2+3x2=18

x2=184x2=92x=±32

Required area =03/2xdx+3/23218-x23dx

=[x22]03/2+13[x218-x2+9sin-1x32]3/232

=94+13[9sin-1(1)-322·332-9sin-1(12)]

=94+13[9π2-934-9π6]=133π=3π

 



Q 3 :    

Three points O(0,0),P(a,a2),Q(-b,b2),a>0,b>0, are on the parabola y=x2. Let S1 be the area of the region bounded by the line PQ and the parabola, and S2 be the area of the triangle OPQ. If the minimum value of S1S2 is mn,gcd(m,n)=1, then m+n is equal to _______ .                  [2024]



(7)

Equation of line PQ is, y-a2=b2-a2-b-a(x-a)

y=x(a-b)+ab

S1=-ba(x(a-b)+ab-x2)dx

           =[(a-b)x22+abx-x33]-ba

=(a-b)(a2-b2)2+ab(a+b)-(a3+b3)3

S1=16(a+b)3                                                      ...(i)

Also, S2=12|001aa21-bb21|=12ab(a+b)

Now,S1S2=(a+b)3/6ab(a+b)/2=13(a+b)2ab

=a2+b2+2ab3ab=a3b+b3a+23=13(ab+ba+2)

Now,ab+1a/b2

Minimum value of S1S2=43

So, m+n=4+3=7

 



Q 4 :    

The sum of squares of all possible values of k, for which area of the region bounded by the parabolas 2y2=kx and ky2=2(y-x) is maximum, is equal to _______ .         [2024]



(8)

ky2=2(y-x) and 2y2=kx

Point of intersection

y(ky-2(1-2yk))=0

 ky2-2(y-2y2k)=0

y=0 and ky=2(1-2yk)ky+4yk=2

y=2k+4k=2kk2+4        A=02kk2+4((y-ky22)-(2y2k))·dy

=[y22-(k2+2k)·y33]02kk2+4

=(2kk2+4)2[12-k2+42k×13×2kk2+4]=16×4×(1k+4k)2

A.M.G.M.(k+4k2)2k+4k4

So, area is maximum when k=4kk=2,-2

Sum of squares of all possible values of k

=22+(-2)2=8



Q 5 :    

One of the points of intersection of the curves y=1+3x-2x2 and y=1x is (12,2). Let the area of the region enclosed by these curves be 124(l5+m)-nloge(1+5), where l,m,nN. Then l+m+n is equal to                     [2024]

  • 32

     

  • 30

     

  • 29

     

  • 31

     

(2)

[IMAGE 29]--------------------------------

Given curves are y=1+3x-2x2 and y=1x

On solving, 2x3-3x2-x+1=0

(2x-1)(x2-x-1)=0x=12,  x=1±52

Required Area = 121+52(1+3x-2x2-1x)dx

=[x+3x22-2x33-lnx]121+52

=[5+12+38(5+1)2-112(5+1)3-ln(5+12)]-(12+38-112-ln12)

=124[12(5+1)+9(5+1)2-2(5+1)3-12-9+2]-(ln5+12+ln2)

=124[12(5+1)+9(6+25)-2(55+1+35(5+1)-19)]-ln(5+12×2)

=124[145+15]-ln(5+1)

=124(l5+m)-nloge(1+5)                                   [Given]

 l=14, m=15 and n=1

Hence, l+m+n=30

 



Q 6 :    

The area (in sq. units) of the region described by {(x,y):y22x,and y4x-1} is                      [2024]

  • 1112

     

  • 1132

     

  • 932  

     

  • 89

     

(3)

Required Area=-121(y+14-y22)dy

[IMAGE 30]------------------------------------------------

=[y28+y4-y36]-121

=(18+14-16)-(132-18+148)=932



Q 7 :    

The area enclosed between the curves y=x|x| and y=x-|x| is:               [2024]

  • 83    

     

  • 23    

     

  • 43    

     

  • 1

     

(3)

[IMAGE 31]

y=x|x|={x2,x0-x2,x<0

y=x-|x|={0,x02x,x<0

 Required Area=-20(-x2-2x)dx

=[-x33-x2]-20

=-83+4=43



Q 8 :    

Let the area of the region enclosed by the curves y=3x, 2y=27-3x and y=3x-xx be A. Then 10A is equal to               [2024]

  • 162

     

  • 184

     

  • 154

     

  • 172

     

(1)

[IMAGE 32]----------------------------

Required area, 

A=03(3x-(3x-xx))dx+3927-3x2-(3x-xx)dx

=03x3/2dx+39272-9x2+x3/2dx

=25[x5/2]03+272[x]39-94[x2]39+25[x5/2]39

=2535/2+272×6-94×72+25[95/2-35/2]

=81-162+25·35=815

So, 10A=10×815=162



Q 9 :    

The area of the region in the first quadrant inside the circle x2+y2=8 and outside the parabola y2=2x is equal to:               [2024]

  • π2-23    

     

  • π2-13    

     

  • π-13    

     

  • π-23

     

(4)

We have, x2+y2=8 and y2=2x

[IMAGE 33]----------------------------------

Required area = area of the shaded region

=02y22dy+2228-y2dy

=16[y3]02+[y28-y2+4sin-1(y22)]222

=43+[2π-2-π]=π-23



Q 10 :    

The parabola y2=4x divides the area of the circle x2+y2=5 in two parts. The area of the smaller part is equal to :                 [2024]

  •  13+5sin-1(25)

     

  • 23+5sin-1(25)

     

  •  23+5sin-1(25)

     

  • 13+5sin-1(25)

     

(3)

[IMAGE 34]-------------------------------------

The points of intersection of y2=4x and x2+y2=5 are (1, 2) and (1, -2).

  Required Area=2{Area of OACO+Area of CABC}

=2[012xdx+155-x2dx]

=2[|43x32|01+(12x5-x2+52sin-1x5)]15

=2[(43-0)+(0+5π4)-(1+52sin-115)]

=2[13+5π4-52sin-115]=23+5[π2-sin-115]

=23+5cos-1(15)                     [ sin-1x+cos-1x=π2]

=23+5sin-1(25)