Q 1 :    

If 1a2sin2x+b2cos2xdx=112tan-1(3tanx)+constant, then the maximum value of asinx+bcosx is:           [2024]

  • 41  

     

  • 42  

     

  • 40  

     

  • 39  

     

(3)

We have, 1a2sin2x+b2cos2xdx=112tan-1(3tanx)+c

Let I=1a2sin2x+b2cos2xdx=sec2xa2tan2x+b2dx

Let      tanx=tsec2xdx=dt

     I=dt(at)2+b2

=1batan-1(atb)+c=1batan-1(abtanx)+c

ab=12 and ab=3

a2=36 and b2=4

Now, -a2+b2asinx+bcosxa2+b2

Required maximum value =36+4=40



Q 2 :    

Let I(x)=6sin2x(1-cotx)2dx. If I(0)=3, then I(π12) is equal to      [2024]

  • 63  

     

  • 33  

     

  • 3  

     

  • 23  

     

(2)

I(x)=6sin2x(1-cotx)2dx=6cosec2x(1-cotx)2dx

Put 1-cotx=tcosec2xdx=dt

I=6dtt2=-6t+C  I=-61-cotx+C

Now, I(0)=33=C

I(x)=3-61-cotxI(π12)=3-61-cotπ12

=3-61-(2+3)=-3-33-6-1-3=-9-33-1-3

=(9+33)(1-3)-2=9-93+33-9-2=33



Q 3 :    

Let 2-tanx3+tanxdx=12(αx+loge|βsinx+γcosx|)+C, where C is the constant of integration. Then α+γβ is equal to:              [2024]

  • 7

     

  • 3

     

  • 1

     

  • 4

     

(4)

Let I=2-tanx3+tanxdx=2cosx-sinx3cosx+sinxdx

Write Numerator=λ(Differentiation of Denominator)+μ(Denominator)

2cosx-sinx=λ(-3sinx+cosx)+μ(3cosx+sinx)

λ+3μ=2                 (i)

and -3λ+μ=-1                   (ii)

From equations (i) and (ii), λ=μ=12

I=12-3sinx+cosx3cosx+sinxdx+123cosx+sinx3cosx+sinxdx

=12dtt+12dx  [Putting 3cosx+sinx=t in first integral (-3sinx+cosx)dx=dt]

=12ln(t)+12x+C

=12ln|3cosx+sinx|+12x+C

=12(αx+loge|βsinx+γcosx|)+C  (∵Given)

α=1,β=1,γ=3

Now, α+γβ=1+31=4

 



Q 4 :    

The integral (x8-x2)dx(x12+3x6+1)tan-1(x3+1x3) is equal to:         [2024]

  • loge(|tan-1(x3+1x3)|)+C

     

  • loge(|tan-1(x3+1x3)|)3+C

     

  • loge(|tan-1(x3+1x3)|)13+C

     

  • loge(|tan-1(x3+1x3)|)12+C

     

(3)

Let I=(x8-x2)dx(x12+3x6+1)tan-1(x3+1x3)

Put tan-1(x3+1x3)=u

11+(x3+1x3)2·3(x2-1x4)dx=du

(x6x12+3x6+1×x6-1x4)dx=du3

I=13duu=ln|u|3=ln(|tan-1(x3+1x3)|)13+C

 



Q 5 :    

For x(-π2,π2), if y(x)=cosecx+sinxcosecxsecx+tanxsin2xdx, and limx(π2)-y(x)=0, then y(π4) is equal to                  [2024]

  • -12tan-1(12)

     

  • tan-1(12)

     

  • 12tan-1(12)

     

  • 12tan-1(-12)

     

(4)

Let I=y(x)=cosecx+sinxcosecxsecx+tanxsin2xdx

=1sinx+sinx1sinx·1cosx+sinxcosx·sin2xdx=(1+sin2x)cosx(1+sin4x)dx

Let sinx=tcosxdx=dt

  I=1+t21+t4dt=(1+1t2)(t2+1t2)dt

Put t-1t=u(1+1t2)dt=du and t2+1t2=u2+2

 I=duu2+2=12tan-1(u2)+C=12tan-112(t-1t)+C

y(x)=12tan-112(sinx-cosecx)+C

limx(π2)-y(x)=limh0[12tan-112{sin(π2-h)-cosec(π2-h)}+c]

12tan-112(0)+c=0c=0

   y(π4)=12tan-1{12(sinπ4-cosecπ4)}

                     =12tan-1{12(12-2)}=12tan-1(-12)



Q 6 :    

If sin32x+cos32xsin3xcos3xsin(x-θ)dx=Acosθtanx-sinθ+Bcosθ-sinθcotx+C, where C is the integration constant, then AB is equal to                       [2024]

  • 4cosec(2θ)

     

  • 2secθ  

     

  • 4secθ  

     

  • 8cosec(2θ)

     

(4)

Let I=sin3/2x+cos3/2xsin3x·cos3x·sin(x-θ)dx

=dxcos3x·sin(x-θ)+dxsin3x·sin(x-θ)

=dxcos2xsinxcosθ-cosxsinθcosx+dxsin2xsinxcosθ-cosxsinθsinx

=sec2xtanxcosθ-sinθdx+cosec2xcosθ-cotxsinθdx

I=I1+I2  (Let)                                    ...(i)

Now, I1=sec2xdxtanxcosθ-sinθ

Put tanx cosθ-sinθ=tcosθ·sec2xdx=dt

  I1=dtcosθ·tI1=2t1/2cosθ

I1=2(tanx cosθ-sinθ)1/2cosθ

And, I2=cosec2xcosθ-cotx sinθdx

Put cosθ-cotxsinθ=vsinθ cosec2xdx=dv

  I2=dvsinθv=2vsinθI2=2cosθ-cotxsinθsinθ

From (i),

I=2tanxcosθ-sinθcosθ+2cosθ-cotxsinθsinθ+C and

I=Acosθtanx-sinθ+Bcosθ-sinθcotx+C

So, A=2cosθ,  B=2sinθ

  AB=4·22sinθcosθ=8cosec2θ



Q 7 :    

If cosec5xdx=αcotxcosecx(cosec2x+32)+βloge|tanx2|+C, where α,βR and C is the constant of integration, then the value of 8(α+β) equals _______ .           [2024]



(1)

In=cosecnxdx

Using reduction formula, we get

In=-cosecn-2xcotxn-1+n-2n-1In-2

     I5=cosec5xdx

=-cosec3xcotx4+34I3+C

=-cosec3xcotx4+34[-cosecxcotx2+12cosecxdx]+C

=-14cosec3xcotx-38cosecxcotx+38loge|tanx2|+C

=-14cosecx cotx[cosec2x+32]+38loge|tanx2|+C

=αcotxcosecx[cosec2x+32]+βloge|tanx2|+C  ( Given)

On comparing, we get α=-14 and  β=38

Hence, 8(α+β)=8(-14+38)=8×18=1



Q 8 :    

If 1(x-1)4(x+3)65dx=A(αx-1βx+3)B+C, where C is the constant of integration, then the value of α+β+20AB is ____ .           [2024]



(7)

I=1(x-1)4(x+3)65dx

Putting x+3x-1=t  x=(3+tt-1)  dx=-4(t-1)2dt

  (x-1)4(x+3)6=(x-1)5(x+3)5(x+3x-1)

   I=-4(t-1)2dtt1/5(3+tt-1-1)(3+tt-1+3)

         I=-4dtt1/5(16t)=-14dtt6/5=-14(t-1/5-1/5)+C

On comparing, we get

           A=54,  B=15,  α=1,  β=1

Hence, α+β+20AB=1+1+20×54×15=7