Q 1 :    

Let A={θ(0,2π):1+2isinθ1-isinθis purely imaginary}. Then the sum of the elements in A is             [2023]

  • 2π

     

  • 4π

     

  • π

     

  • 3π

     

(2)

Given, 1+2isinθ1-isinθ is purely imaginary, then its real part must be zero.

1+2isinθ1-isinθ×1+isinθ1+isinθ =(1+isinθ+2isinθ-2sin2θ)1+sin2θ

=1-2sin2θ1+sin2θ+3sinθ1+sin2θi

Since real part is 0 1-2sin2θ1+sin2θ=0 2sin2θ=1

sinθ=±12θ=π4,3π4,5π4,7π4

Since, θ(0,2π)

Then sum of the elements in A is,

π4+3π4+5π4+7π4=16π4=4π



Q 2 :    

If the set R={(a,b):a+5b=42,a,bN} has m elements and n=1m(1-in!)=x+iy, where i=-1, then the value of m+x+y is                       [2024]

  • 8

     

  • 5

     

  • 4

     

  • 12

     

(4)

    Given R={(a,b):a+5b=42,a,bN}

    So, a=42-5b

    (a,b)={(37,1),(32,2),(27,3),(22,4),(17,5),(12,6),(7,7),(2,8)}

    |R|=8m=8

     Now, n=1m(1-in!)=x+iy

    Clearly for  n=4,in!=i4!=((i)4)6=(1)6=1

       in!=1 for n4

      n=18(1-in!)=(1-i)+(1-i2!)+(1-i3!)

    =1-i+1+1+1+1=5-i  x=5 and y=-1.

    So, m+x+y=8+5-1=12



Q 3 :    

Let z be a complex number such that the real part of z-2iz+2i is zero. Then, the maximum value of |z-(6+8i)| is equal to              [2024]

  • 12

     

  •  

  • 8

     

  • 10

     

(1)

   Let z=x+iy,x,yR

   Consider z-2iz+2i=x+iy-2ix+iy+2i=x+(y-2)ix+(y+2)i×x-(y+2)ix-(y+2)i

   =x2+x(y+2)i+x(y-2)i+(y2-4)x2+(y+2)2

   x2+y2-4x2+(y+2)2=0  x2+y2=4

   |z|2=4  |z|=2

   Now, |z-(6+8i)||z|+|-6-8i|2+10=12

   |z-(6+8i)|max=12

 



Q 4 :    

If z is a complex number, then the number of common roots of the equations z1985+z100+1=0 and z3+2z2+2z+1=0, is equal to                               [2024]

  • 2

     

  • 3

     

  • 1

     

  • 0

     

(1)

   Given equation, z1985+z100+1=0                ...(i)

   and z3+2z2+2z+1=0                                  ...(ii)

   From (ii), we have (z+1)(z2+z+1)=0

   z=-1,z=ω,ω2

   Clearly, z=-1 does not satisfy equation (i).

    If z=ω, then (ω)1985+(ω)100+1=ω2+ω+1=0

   Also, z=ω2, then (ω2)1985+(ω2)100+1=ω2+ω+1=0

     Number of roots = 2



Q 5 :    

Among the statements

(S1) : The set {zC{i} : |z|=1 and ziz+i is purely real} contains exactly two elements, and

(S2) : The set {zC{1} : |z|=1 and z1z+1 is purely imaginary} contains infinitely many elements.          [2025]

  • only (S2) is correct

     

  • both are incorrect

     

  • only (S1) is correct

     

  • both are correct

     

(1)

(S1) : ziz+i=z+iz-i          [  Purely real]

 zziziz-1=zz+zi+iz1

 z+z=0

 2x=0           [  Purely real]

 x=0

Also, |z| = 1

  z=i           (  zi is given)

(S1) is incorrect.

(S2) : z1z+1+z1z+1=0          [  Purely imaginary]

 zzz+z1+zzz+z1=0  zz=1  |z|=1,

which represents a circle with radius 1 and centre (0, 0).

(S2) is correct.



Q 6 :    

Let ab be two non-zero real numbers. Then the number of elements in the set X={z:Re(az2+bz)=a and Re(bz2+az)=b} is equal to      [2023]

  • 2

     

  • 0

     

  • 3

     

  • 1

     

(2)

We have, Re(az2+bz)=a

Re(a(x2-y2+2ixy)+b(x+iy))=a

a(x2-y2)+bx=a  ...(i)

Also, Re(bz2+az)=b

b(x2-y2)+ax=b  ...(ii)

From (i) and (ii), we get (a-b)(x2-y2)-(a-b)x=a-b

x2-y2-x=1  ...(iii)

Also, adding (i) and (ii), we get (a+b)(x2-y2)+(a+b)x=a+b  

Case 1: If a+b0, then x2-y2+x=1      ...(iv)

From (iii) and (iv), we get x=0,y2=-1, which is not possible.

Case 2: If a+b=0, then infinite number of solutions exist.

So, set X has infinite number of elements.

So, number of elements in the set X is 0.



Q 7 :    

For two non-zero complex numbers z1 and z2, if Re(z1z2)=0 and Re(z1+z2)=0, then which of the following are possible?

(A) Im(z1)>0 and Im(z2)>0
(B) Im(z1)<0 and Im(z2)>0
(C) Im(z1)>0 and Im(z2)<0
(D) Im(z1)<0 and Im(z2)<0

Choose the correct answer from the options given below:             [2023]

  • A and B

     

  • B and C

     

  • B and D

     

  • A and C

     

(2)

Let z1=x1+iy1z2=x2+iy2

Re(z1z2)x1x2-y1y2=0  ...(i)

Re(z1+z2)x1+x2=0  ...(ii)

x12+y1y2=0y1y2=-x12

So, Im(z1) and Im(z2) are opposite in sign

So, the correct statements are B and C.



Q 8 :    

Let S={z-{i,2i}: z2+8iz-15z2-3iz-2}.

If α-1311iS, α-{0},  then 242α2 is equal to __________.           [2023]



(1680)

We have, z2+8iz-15z2-3iz-2=z2-3iz-2+11iz-13z2-3iz-2

=1+(11iz-13z2-3iz-2)=1+11i(z+13i11)z2-3iz-2R

Put z=α-13i11

Thus, z2-3iz-2 is imaginary.

Put z=x+iy

(x+iy)2-3i(x+iy)-2 is imaginary.

x2-y2+2xyi-3ix+3y-2 is imaginary.

Re(x2-y2+3y-2+(2xy-3x)i)=0

x2-y2+3y-2=0x2=y2-3y+2

x2=(y-1)(y-2)

Put x=α and y=-1311, we get α2=(-1311-1)(-1311-2)

=(-13-1111)(-13-2211)=(-2411)(-3511)=24×35121

 242α2=24×35×242121=1680