Q 31 :    

If the solution curve, of the differential equation dydx=x+y2xy passing through the point (2, 1) is tan1(y1x1)1β loge(α+(y1x1)2)=loge|x1|, then 5β+α is equal to __________.          [2024]



(11)

We have, dydx=x+y2xy

Substitute x = X + h and y = Y + k

 dYdX=X+Y+h+k2XY+hk

Put h + k – 2 = 0 and hk = 0

h = 1 and k = 1

  dYdX=X+YXY

Now, put Y = vX  dYdX=v+XdvdX

  v+XdvdX=X+vXXvX=1+v1v

 XdvdX=1+v1vv=1+vv+v21v=1+v21v

 1v1+v2dv=dXX  11+v2dvv1+v2dv=dXX

 tan1v12loge|1+v2|=log|X|+c

 tan1(y1x1)12loge|1+(y1x1)2|=log|x1|+c          ... (i)

Equation (i) passing through (2, 1), then

tan1(1121)12loge|1+(1121)2|=loge(21)+c

 loge1+c=0  c=0

  tan1(y1x1)12loge|1+(y1x1)2|=loge|x1|

By comparing with

tan1(y1x1)1βloge|α+(y1x1)2|=loge|x1|

β=2, α=1

  5β+α=5×2+1=11.



Q 32 :    

If the solution curve y = y(x) of the differential equation (1+y2)(1+loge x)dx+xdy=0, x > 0 passes through the point (1, 1) and y(e)=αtan(32)β+tan(32) then α+2β is __________.          [2024]



(3)

We have, (1+y2)(1+loge x)dx+xdy=0

 dy1+y2=(1+loge x)dxx

Integrating both sides, we get

tan1y=12(1+loge x)2+C                        ...(i)

At (1, 1), π4=12+C  C=π4+12

 y=tan{π4+12[1(1+loge x)2]}

 y(e)=tan(π4+122)

=tan[π432]=tanπ4tan321+tanπ4tan32=1tan321+tan32

So, α = 1 and β = 1

 α+2β=3.



Q 33 :    

Let f(x)=limrx{2r2[(f(r))2f(x)f(r)]r2x2r3ef(r)r} be differentiable in (,0)(0,) and f(1) = 1. Then the value of ea, such that f(a) = 0, is equal to __________.          [2024]



(2)

f(x)=limrx{2r2((f(r))2f(x)f(r))r2x2r3ef(r)/r}

Using L'Hospital rule, we have

f(x)=limrx{2r2[2f(r)·f'(r)f(x)·f'(r)]+[f(r)2f(x)·f(r)]·4r2rr3ef(r)r}

=2x2[2f(x)·f'(x)f(x)·f'(x)]+02xx3ef(x)x

 f(x)=xf(x)·f'(x)x3·ef(x)x

Let yf(x)

y2=xy·dydxx3eyx  dydx=y2+x3ey/xxy

Put y=vx  dydx=v+xdvdx

 v2x2+x3evxxx·vx=v+xdvdx  v2+xevvv=xdvdx

 evv=dvdx  dx=vevdv

 dx=v·evdv  x+c=ev(v+1)

 x+c=ey/x(yx+1)          ... (i)

 y(1)=1

 1+c=e1(2)

 c=12e          ... (ii)

Now, f(a) = 0

 a+c=e0/a(0a+1)          [Using (i)]

a + c = –1

a=1c=1+1+2e=2e          [Using (ii)]

ea = 2.



Q 34 :    

Let y = y(x) be the solution of the differential equation (1x2)dy=[xy+(x3+2)3(1x2)]dx, –1 < x < 1, y(0) = 0. If y(12)=mn, m and n are co-prime numbers, then m + n is equal to __________.          [2024]



(97)

We have, (1x2)dy=[xy+(x3+2)3(1x2)]dx

 dydx=x(1x2)y+(x3+2)33x2(1x2)

 dydxx1x2y=(x3+2)33x21x2

I.F.=ex1x2dx

Put 1x2=t  xdx=dt2

 I.F. = edt2t=e12ln t=e12ln(1x2)

=eln(1x2)12=(1x2)12=1x2

 y(1x2)=(x3+2)3(1x2)(1x2)1x2dx

 y1x2=3(x3+2)dx

 y1x2=3[x44+2x]+c

Since, y(0) = 0, so 0=c  y=31x2(x44+2x)

Now, y(12)=3114((12)44+2×12)=2(164+1)

=2(6564)=6532=mn

m = 65, n = 32 m + n = 65 +32 = 97.



Q 35 :    

Let Y = Y(X) be a curve lying in the first quadrant such that the area enclosed by the line Yy = Y'(x)(Xx) and the co-ordinate axes, where (x, y) is any point on the curve, is always y22Y'(x)+1, Y'(X 0. If Y(1) = 1, then 12Y(2) equals __________.          [2024]



(20)

We have, curve : Y = y(x)

Line : Yy = Y'(x)(Xx)

Area = 12(xyY'(x))(yxY'(x))

 1y22Y'(x)=(xY'(x)y)(yxY'(x))2Y'(x)

 2Y'(x)y22Y'(x)=(xY'(x)y)(yxY'(x))2Y'(x)

 2Y'(x)y2=xy Y'(x)x2[Y'(x)]2y2+xy Y'(x)

 x2[Y'(x)]2+Y'(x)[2xyxy]=0

 Y'(x)[x2Y'(x)+22xy]=0

 x2Y'(x)+22xy=0  or  Y'(x)=2xy2x2

 dydx=(2x)y2x2  dydx(2x)y=2x2

I.F.=e2xdx=e2 log x=1x2

Solution is

y·1x2=2x2×1x2dx=21x4dx  or  yx2=23x3+c

y=23x+cx2          ... (i)

1=23+c  c=13

At x = 2,

 y=23×2+13×4=13+43=53  12y=20.



Q 36 :    

Let y = y(x) be the solution of the differential equation sec2xdx+(e2ytan2x+tan x)dy=00<x<π2, y(π4)=0. If y(π6)=α, then e8α is equal to __________.          [2024]



(9)

We have, sec2xdx+(e2ytan2x+tan x)dy=0

Put tanx=t

 sec2xdxdy=dtdy

Now, sec2xdxdy+(e2ytan2x+tan x)=0

 dtdy+e2yt2+t=0  dtdy+t=t2e2y

1t2dtdy+1t=e2y

Again put 1t=u  1t2dtdy=dudy

 dudy+u=e2y  dudyu=e2y

 I.F.=edy=ey

 uey=eye2ydy

 uey=eydy  1tey=ey+c

 1tan xey=ey+c          ... (i)

When, x=π4, y = 0

 1tan(π4)e0=e0+c  1=1+c  c=0 

Also, when x=π6, y=α

  From (i), we have

1tanπ6eα=eα+0  3=e2α  (e2α)4=(3)4

 e8α=9.



Q 37 :    

Let f:[1,)[2,) be a differentiable function. If 101xf(t)dt=5xf(x)x59 for all x1, then the value of f(3) is :          [2025]

  • 32

     

  • 18

     

  • 22

     

  • 26

     

(1)

We have, 101xf(t)dt=5xf(x)x59

On differentiating both sides, we get

     10f(x)=5f(x)+5xf'(x)5x4

 5f(x)=5xf'(x)5x4

 f(x)=xf'(x)x4

 f'(x)1xf(x)=x3

 dydxyx=x3          [Taking y = f(x)]

This is a linear differential equation

  I.F.=e1xdx=elnx=1x

Solution is yx=x3xdx+c

 yx=x33+c 

 y=x43+cx

 f(x)=x43+cx        ... (i)

Now, using original equation, we have

101xf(t)dt=5xf(x)x59

Put x = 1, we get 0 = 5f(1) – 10  f(1) = 2

Substituting this value in equation (i), we get

 2=13+c  c=53         f(x)=x43+53x

 f(3)=27+5=32



Q 38 :    

Let g be differentiable function such that 0xg(t)dt=x0xtg(t)dt, x0 and let y = y(x) satisfy the differential equation dydxy tan x=2(x+1) sec xg(x), x[0,π2). If y(0) = 0, then y(π3) is equal to          [2025]

  • 2π33

     

  • 2π3

     

  • 4π33

     

  • 4π3

     

(4)

we have, 0xg(t)dt=x0xtg(t)dt          ... (i)

On differentiating equation (i), we get g(x) = 1 – xg(x)

 g(x)=11+x

Now, dydxy tan x=2(x+1) sec xg(x)

 dydxy tan x=2 sec x

  I.F.=etan xdx=elogecos x=cos x

Solution of D.E. is given by

y cos x=2 cos x·sec xdx+C

 y cos x=2x+C  y(0)=0  C=0

  y=2xcos x

 y=2x sec x  y(π3)=2·π3·2=4π3



Q 39 :    

Let y = y(x) be the solution of the differential equation dydx+3(tan2x)y+3y=sec2x, y(0)=13+e3. Then y(π4) is equal to         [2025]

  • 43+e3

     

  • 43

     

  • 23

     

  • 23+e3

     

(2)

Given, dydx+3(tan2x)y+3y=sec2x

 dydx+3(sec2x)y=sec2x

I.F.=e3sec2xdx=e3 tan x

  Solution is given by e3 tan xy=e3 tan xsec2xdx

 e3 tan xy=e3 tan x3+C          ... (i)

  y(0)=13+e3  C=e3

Using equation (i), we get

e3 tan xy=e3 tan x3+e3

  y(π4)=e33+e3e3=43



Q 40 :    

If a curve y = y(x) passes through the point (1,π2) and satisfies the differential equation (7x4cot yexcosec y)dxdy=x5, x1, then at x = 2, the value of cos y is:          [2025]

  • 2e2+e128

     

  • 2e2e128

     

  • 2e2e64

     

  • 2e2+e64

     

(2)

We have, (7x4cot yexcosec y)dxdy=x5

 dydx=7x4cot yx5excosec yx5

 dydx-7xcot y=exx5cosec y

 sin y·dydxcos y(7x)=exx5

If cos y=t  sin y·dydx=dtdx

 dtdx+t(7x)=exx5

Here, I.F.=x7

 t·x7=x2·exdx  cos y·x7=x2ex2xexdx

 cos y·x7=x2ex2xex+2ex+c

at point (1,π2), we get c = –e

Thus, the value of cos y at x = 2 is

cos y=2e2e128