Q 31 :    

If the solution curve, of the differential equation dydx=x+y2xy passing through the point (2, 1) is tan1(y1x1)1β loge(α+(y1x1)2)=loge|x1|, then 5β+α is equal to __________.          [2024]



(11)

We have, dydx=x+y2xy

Substitute x = X + h and y = Y + k

 dYdX=X+Y+h+k2XY+hk

Put h + k – 2 = 0 and hk = 0

h = 1 and k = 1

  dYdX=X+YXY

Now, put Y = vX  dYdX=v+XdvdX

  v+XdvdX=X+vXXvX=1+v1v

 XdvdX=1+v1vv=1+vv+v21v=1+v21v

 1v1+v2dv=dXX  11+v2dvv1+v2dv=dXX

 tan1v12loge|1+v2|=log|X|+c

 tan1(y1x1)12loge|1+(y1x1)2|=log|x1|+c          ... (i)

Equation (i) passing through (2, 1), then

tan1(1121)12loge|1+(1121)2|=loge(21)+c

 loge1+c=0  c=0

  tan1(y1x1)12loge|1+(y1x1)2|=loge|x1|

By comparing with

tan1(y1x1)1βloge|α+(y1x1)2|=loge|x1|

β=2, α=1

  5β+α=5×2+1=11.



Q 32 :    

If the solution curve y = y(x) of the differential equation (1+y2)(1+loge x)dx+xdy=0, x > 0 passes through the point (1, 1) and y(e)=αtan(32)β+tan(32) then α+2β is __________.          [2024]



(3)

We have, (1+y2)(1+loge x)dx+xdy=0

 dy1+y2=(1+loge x)dxx

Integrating both sides, we get

tan1y=12(1+loge x)2+C                        ...(i)

At (1, 1), π4=12+C  C=π4+12

 y=tan{π4+12[1(1+loge x)2]}

 y(e)=tan(π4+122)

=tan[π432]=tanπ4tan321+tanπ4tan32=1tan321+tan32

So, α = 1 and β = 1

 α+2β=3.



Q 33 :    

Let f(x)=limrx{2r2[(f(r))2f(x)f(r)]r2x2r3ef(r)r} be differentiable in (,0)(0,) and f(1) = 1. Then the value of ea, such that f(a) = 0, is equal to __________.          [2024]



(2)

f(x)=limrx{2r2((f(r))2f(x)f(r))r2x2r3ef(r)/r}

Using L'Hospital rule, we have

f(x)=limrx{2r2[2f(r)·f'(r)f(x)·f'(r)]+[f(r)2f(x)·f(r)]·4r2rr3ef(r)r}

=2x2[2f(x)·f'(x)f(x)·f'(x)]+02xx3ef(x)x

 f(x)=xf(x)·f'(x)x3·ef(x)x

Let yf(x)

y2=xy·dydxx3eyx  dydx=y2+x3ey/xxy

Put y=vx  dydx=v+xdvdx

 v2x2+x3evxxx·vx=v+xdvdx  v2+xevvv=xdvdx

 evv=dvdx  dx=vevdv

 dx=v·evdv  x+c=ev(v+1)

 x+c=ey/x(yx+1)          ... (i)

 y(1)=1

 1+c=e1(2)

 c=12e          ... (ii)

Now, f(a) = 0

 a+c=e0/a(0a+1)          [Using (i)]

a + c = –1

a=1c=1+1+2e=2e          [Using (ii)]

ea = 2.



Q 34 :    

Let y = y(x) be the solution of the differential equation (1x2)dy=[xy+(x3+2)3(1x2)]dx, –1 < x < 1, y(0) = 0. If y(12)=mn, m and n are co-prime numbers, then m + n is equal to __________.          [2024]



(97)

We have, (1x2)dy=[xy+(x3+2)3(1x2)]dx

 dydx=x(1x2)y+(x3+2)33x2(1x2)

 dydxx1x2y=(x3+2)33x21x2

I.F.=ex1x2dx

Put 1x2=t  xdx=dt2

 I.F. = edt2t=e12ln t=e12ln(1x2)

=eln(1x2)12=(1x2)12=1x2

 y(1x2)=(x3+2)3(1x2)(1x2)1x2dx

 y1x2=3(x3+2)dx

 y1x2=3[x44+2x]+c

Since, y(0) = 0, so 0=c  y=31x2(x44+2x)

Now, y(12)=3114((12)44+2×12)=2(164+1)

=2(6564)=6532=mn

m = 65, n = 32 m + n = 65 +32 = 97.



Q 35 :    

Let Y = Y(X) be a curve lying in the first quadrant such that the area enclosed by the line Yy = Y'(x)(Xx) and the co-ordinate axes, where (x, y) is any point on the curve, is always y22Y'(x)+1, Y'(X 0. If Y(1) = 1, then 12Y(2) equals __________.          [2024]



(20)

We have, curve : Y = y(x)

Line : Yy = Y'(x)(Xx)

Area = 12(xyY'(x))(yxY'(x))

 1y22Y'(x)=(xY'(x)y)(yxY'(x))2Y'(x)

 2Y'(x)y22Y'(x)=(xY'(x)y)(yxY'(x))2Y'(x)

 2Y'(x)y2=xy Y'(x)x2[Y'(x)]2y2+xy Y'(x)

 x2[Y'(x)]2+Y'(x)[2xyxy]=0

 Y'(x)[x2Y'(x)+22xy]=0

 x2Y'(x)+22xy=0  or  Y'(x)=2xy2x2

 dydx=(2x)y2x2  dydx(2x)y=2x2

I.F.=e2xdx=e2 log x=1x2

Solution is

y·1x2=2x2×1x2dx=21x4dx  or  yx2=23x3+c

y=23x+cx2          ... (i)

1=23+c  c=13

At x = 2,

 y=23×2+13×4=13+43=53  12y=20.



Q 36 :    

Let y = y(x) be the solution of the differential equation sec2xdx+(e2ytan2x+tan x)dy=00<x<π2, y(π4)=0. If y(π6)=α, then e8α is equal to __________.          [2024]



(9)

We have, sec2xdx+(e2ytan2x+tan x)dy=0

Put tanx=t

 sec2xdxdy=dtdy

Now, sec2xdxdy+(e2ytan2x+tan x)=0

 dtdy+e2yt2+t=0  dtdy+t=t2e2y

1t2dtdy+1t=e2y

Again put 1t=u  1t2dtdy=dudy

 dudy+u=e2y  dudyu=e2y

 I.F.=edy=ey

 uey=eye2ydy

 uey=eydy  1tey=ey+c

 1tan xey=ey+c          ... (i)

When, x=π4, y = 0

 1tan(π4)e0=e0+c  1=1+c  c=0 

Also, when x=π6, y=α

  From (i), we have

1tanπ6eα=eα+0  3=e2α  (e2α)4=(3)4

 e8α=9.