Q 21 :    

The temperature T(t) of a body at time t = 0 is 160º F and it decreases continuously as per the differential equation dTdt = - K (T - 80), where K is positive constant. If T(15) = 120º F, then T(45) is equal to          [2024]

  • 80º F

     

  • 90º F

     

  • 85º F

     

  • 95º F

     

(2)

Given differential equation is

dTdt = - K (T - 80)

Now, dTT - 80 = - K dt

On integrating, we get

dTT - 80 = - Kdt

   log |T - 80| = - Kt + C                  ... (i)

When t = 0, T = 160º F  

   log |160 -80| = - K × 0 + C

   C = log (80)

From (i),

log |T – 80| = – Kt + log (80)                ...(ii)

Now, when t = 15, T = 120º F

   From (ii),

log (120 - 80) = -K × 15 + log (80)

   15K = log (8040) = log (2)                               k = log (2)15

When t = 45, then from (ii),

log (T - 80) = - log (2)15 × 45 + log (80)

   log (T - 80) = -3 log (2) + log (80) = log (808) = log (10)

   log (T - 80) = 1      T -80 = 101

   T = 90° F