Q 21 :    

The temperature T(t) of a body at time t = 0 is 160º F and it decreases continuously as per the differential equation dTdt = - K (T - 80), where K is positive constant. If T(15) = 120º F, then T(45) is equal to          [2024]

  • 80º F

     

  • 90º F

     

  • 85º F

     

  • 95º F

     

(2)

Given differential equation is

dTdt = - K (T - 80)

Now, dTT - 80 = - K dt

On integrating, we get

dTT - 80 = - Kdt

   log |T - 80| = - Kt + C                  ... (i)

When t = 0, T = 160º F  

   log |160 -80| = - K × 0 + C

   C = log (80)

From (i),

log |T – 80| = – Kt + log (80)                ...(ii)

Now, when t = 15, T = 120º F

   From (ii),

log (120 - 80) = -K × 15 + log (80)

   15K = log (8040) = log (2)                               k = log (2)15

When t = 45, then from (ii),

log (T - 80) = - log (2)15 × 45 + log (80)

   log (T - 80) = -3 log (2) + log (80) = log (808) = log (10)

   log (T - 80) = 1      T -80 = 101

   T = 90° F



Q 22 :    

Let the solution y = y(x) of the differential equation dydxy=1+4 sin x satisfy y(π) = 1. Then y(π2)+10 is equal to __________.          [2024]



(7)

Given, dydxy=1+4 sin x, which is a linear differential equation.

  Integrating factor = =edx=ex

Hence, solution is yex=(1+4 sin x)exdx

=ex+2ex(sin xcos x)+C          ... (i)

y(π) = 1 i.e., at x = π, y = 1

  From (i), we get

(1)eπ=eπ+2eπ(sin πcos π)+C

 eπ=eπ+2eπ+C  C=0

Hence, y(x) = –1 – 2(sin x + cos x)

Now, y(π2)+10=12(sinπ2+cosπ2)+10

                             = –1 – 2(1) + 10 = 7.



Q 23 :    

Let y = y(x) be the solution of the differential equation (x+y+2)2dx=dy, y(0) = –2. Let the maximum and minimum values of the function y = y(x) in [0,π3] be α and β, respectively. If (3α+π)2+β2=γ+δ3, γ, δZ, then γ+δ equals __________.          [2024]



(31)

We have, dydx=(x+y+2)2          ... (i)

Put x + y + 2 = t

 1+dydx=dtdx

  From (i) dtdx1=t2  dt1+t2=dx tan1t=x+C

 x+y+2=tan(x+C)  y=tan(x+C)x2

  y(0)=2  2=tan C02

 tan C=0  C=0  y=tan xx2

 dydx=sec2x10

 y(x) is increasing if x(0,π3)  α=y(π3), β=y(0)

 α=tanπ3π32=π3-2+3

and β = tan 0 – 0 – 2 = –2

Hence, (3α+π)2+β2=(π6+33+π)2+(2)2

=(6+33)2+4=36+27363+4

=67363=y+δ3          [Given]

On comparing, we get

γ = 67 and δ = –36

Hence, γ+δ=6736=31.



Q 24 :    

Let f be a differentiable function in the interval (0, ) such that f(1) =1 and limtxt2f(x)x2f(t)tx=1 for each x > 0. Then 2f(2) + 3f(3) is equal to __________.          [2024]



(24)

We Have lttxt2f(x)x2f(t)tx=1          (00 form)

 lttx2tf(x)x2f'(t)1=1          [L'Hospital Rule]

 2xf(x)x2f'(x)=1  f'(x)2xf(x)=1x2

IF=e2xdx=e2 ln x=1x2

  f(x)1x2=1x2·1x2dx+C  f(x)1x2=13x3+C

Now, f(1) = 1

 23=C  f(x)=13x+2x23

Now, 2f(2)+3f(3)=2[16+83]+3[19+183]

=13+163+13+18=6+18=24.



Q 25 :    

Let y = y(x) be the solution of the differential equation dydx+2x(1+x2)2y=xe1(1+x2); y(0) = 0. Then the area enclosed by the curve f(x)=y(x)e1(1+x2) and the line yx = 4 is __________.          [2024]



(18)

We have, dydx+2x(1+x2)2y=xe1(1+x2)

IF=e2x(1+x2)2dx=e11+x2

  General solution of given differential equation is,

y·e11+x2=xe11+x2·e11+x2dx

 ye11+x2=x22+c

Since y(0) = 0

 0=0+c

 c=0

  y(x)=x22e11+x2

 f(x)=x22

So, intersection of curve y=f(x)=x22 and y = x + 4 is given by x22=x+4

 x22x8=0  (x4)(x+2)=0

 x=4, 2  y=8, 2

  Required area = 24((x+4)x22)dx

[x22+4xx36]24=[8+163232+886]

= 30 – 12 = 18.



Q 26 :    

If the solution y(x) of the given differential equation (ey+1) cos xdx+ey sin xdy = 0 passes through the point (π2,0), then the value of ey(π6) is equal to _________.          [2024]



(3)

Givem, (ey+1) cos xdx+ey sin xdy = 0

 d(ey sin x)+ cos xdx=0  ey sin x +sin x=C

The curve passes through (π2,0)

 C=2  ey sin x+ sin x=2

 (ey(π6)12+12)=2  ey(π6)+1=4  ey(π6)=3.



Q 27 :    

Let α|x|=|y|exyβ, α, βN be the solution of the differential equation xdyydx + xy (xdy + ydx) = 0, y(1) = 2. Then α + β is equal to __________.          [2024]



(4)

We have, α|x|=|y|exyβ

and xdyydxy2+xy(xdy+ydx)y2=0

 d(xy)+xyd(xy)=0  d(xy)=d(xy)x/y

 xy=ln|xy|+ln c  xy=ln(|xy|·c)          ... (i)

  y(1) = 2, i.e., x = 1, y = 2

  From (i), 2=ln(|12|c)  c=2e2

  xy=ln(|xy|·2e2)

 exy=|x||y|·2e2  2|x|=|y|exy2

Also, solution of equation is α|x|=|y|exyβ          (Given)

On comparing, α = 2, β = 2. Hence, α + β = 4.



Q 28 :    

If x = x(t) is the solution of the differential equation (t+1)dx=(2x+(t+1)4)dt, x(0) = 2, then x(1) equals __________.           [2024]



(14)

We have, (t+1)dx=(2x+(t+1)4)dt

 dxdt=2xt+1+(t+1)3; P=2t+1, Q=(t+1)3

So, I.F. =ePdt=e2t+1dt=e2 log (t+1)=(t+1)2

The Solution of given differential equation is given by x(I.F.)=Q·(I.F.)dt+C

 x(t+1)2=(t+1)3(t+1)2dt+C

 x(t+1)2=(t+1)dt+C  x=(t+1)2[t22+t+C]

Putting x(0) = 2, we get

2=(1)2(0+0+C)  C=2

   x=(t+1)2(t22+t+2)

At t=1, x = (2)2(12+1+2)=4(72)=14.



Q 29 :    

If dxdy=1+xy2y, x(1) = 1, then 5x(2) is equal to __________.          [2024]



(5)

We have, dxdy=1+xy2y  dxdyxy=1y2y

Now, I.F.=e1ydy=e log y=1y

So, solution is given by,

xy=1y2y2dy+C  xy=1yy+C

 x=1y2+Cy

  x(1)=1  1=11+C  C=3

 x=1y2+3y

  5x(2) = 5(–1 – 4 + 6) = 5.



Q 30 :    

If the solution of the differential equation (2x + 3y – 2)dx + (4x + 6y – 7)dy = 0, y(0) = 3, is αx+βy+3 loge |2x+3yγ|=6, then α+2β+3γ is equal to __________.          [2024]



(29)

(2x + 3y – 2)dx + (4x + 6y – 7)dy = 0

dydx=(2x+3y2)(4x+6y7          ... (i)

Let 2x + 3y = t

 2+3dydx=dtdx  dydx=13[dtdx2]

Putting in (i), we get

13[dtdx]23=(t2)2t7

 13[dtdx]=23t22t7=4t143t+63(2t7)

 dtdx=t82t7  dx=2t7t8dt

 dx+c=2dt+9dtt8

 x+c=2t+9 ln |t8|

 2(2x+3y)+9 ln |2x+3y8|=x+c

which is the solution of given differential equation.

Now, y(0)=3  2(9)+9 ln |1|=c  c=18

Putting the value of c in (i), we get

4x+6y+9 ln |2x+3y8|=x+18

 3x+6y+9 ln |2x+3y8|=18

 x+2y+3 ln |2x+3y8|=6

 α=1. β=2, γ=8

Therefore, α+2β+3γ=1+2(2)+3(8)=1+4+24=29.