Q 1 :    

The differential equation of the family of circles passing through the origin and having centre at the line y = x is              [2024]

  • (x2 + y2 + 2xy)dx = (x2 + y2 - 2xy)dy

     

  • (x2 - y2 + 2xy)dx = (x2 - y2 - 2xy)dy

     

  • (x2 + y2 - 2xy)dx = (x2 + y2 + 2xy)dy

     

  • (x2 - y2 + 2xy)dx = (x2 - y2 + 2xy)dy

     

(2)

Let (k, k) be the centre of circle, so equation of circle with radius r is given by

(x - k)2 + (y - k)2 = r2

Now, circle is passing through origin

  r2 = 2k2

So, equation of circle becomes

x2 + y2 -2kx - 2ky = 0         ... (i)

On differentiating (i) w.r.t. x, we get

2x + 2yy' – 2k – 2ky' = 0

  k = x + yy'(1 + y')

Substituting the value of k in (i) we get

x2 + y2 - 2x(x + yy'1 + y') - 2y(x + yy'1 + y') = 0

  (x2 + y2)(1 + y') - 2x2 - 2xyy' - 2xy - 2y2y' = 0

  -x2 + y2 + x2y' - y2y' - 2xyy' - 2xy = 0

  (x2 - y2 - 2xy)y' =x2 - y2 + 2xy

  (x2 - y2 - 2xy)dy = (x2 - y2 + 2xy)dx

is the required differential equation.

 



Q 2 :    

Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0 is e-a + 4a2 + a - 1. Then the differential equation, whose general solution is y = c1f(x) + c2, where c1 and c2 are arbitrary constants, is            [2024]

  • (8ex - 1) d2ydx2 + dydx = 0

     

  • (8ex + 1) d2ydx2 - dydx = 0

     

  • (8ex + 1) d2ydx2 + dydx = 0

     

  • (8ex - 1) d2ydx2 - dydx = 0

     

(3)

Given 0af(x)dx = e-a+4a2+a-1

On differentiating both sides, we get f(a) = -e-a+ 8a + 1

i.e., f(x) = -e-x+ 8x + 1

Now, y = c1f(x) + c2

  y' = c1f'(x) = c1(8 + e-x)       ... (i)

Again, on differentiating, we get c1 = - exy''    ... (ii)

From (i) and (ii), we get

y' = y''ex(-8 - e-x)  (8ex + 1)y'' +y' =0