Q 1 :    

The differential equation of the family of circles passing through the origin and having centre at the line y = x is              [2024]

  • (x2+y2+2xy)dx=(x2+y2-2xy)dy

     

  • (x2-y2+2xy)dx=(x2-y2-2xy)dy

     

  • (x2+y2-2xy)dx=(x2+y2+2xy)dy

     

  • (x2-y2+2xy)dx=(x2-y2+2xy)dy

     

(2) 

Let (k, k) be the centre of circle, so equation of circle with radius r is given by

(x-k)2+(y-k)2=r2

Now, circle is passing through origin

  r2=2k2

So, equation of circle becomes

x2+y2-2kx-2ky=0         ... (i)

On differentiating (i) w.r.t. x, we get

2x + 2yy' – 2k – 2ky' = 0

  k=x+yy'(1+y')

Substituting the value of k in (i) we get

x2+y2-2x(x+yy'1+y')-2y(x+yy'1+y')=0

  (x2+y2)(1+y')-2x2-2xyy'-2xy-2y2y'=0

  -x2+y2+x2y'-y2y'-2xyy'-2xy=0

  (x2-y2-2xy)y' =x2-y2+2xy

  (x2-y2-2xy)dy= (x2-y2+2xy)dx

is the required differential equation.



Q 2 :    

Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0 is e-a + 4a2 + a - 1. Then the differential equation, whose general solution is y = c1f(x) + c2, where c1 and c2 are arbitrary constants, is            [2024]

  • (8ex-1) d2ydx2+dydx=0

     

  • (8ex+1) d2ydx2-dydx=0

     

  • (8ex+1) d2ydx2+dydx=0

     

  • (8ex-1) d2ydx2-dydx=0

     

(3)

Given 0af(x)dx = e-a+4a2+a-1

On differentiating both sides, we get f(a) = -e-a+ 8a + 1

i.e., f(x) = -e-x+ 8x + 1

Now, y = c1f(x) + c2

  y' = c1f'(x) = c1(8 + e-x)       ... (i)

Again, on differentiating, we get c1 = - exy''    ... (ii)

From (i) and (ii), we get

y' = y''ex(-8 - e-x)  (8ex + 1)y'' +y' =0

 



Q 3 :    

Let y=f(x)=sin3(π3(cos(π32(-4x3+5x2+1)32))). Then, at x=1,                [2023]

  • 2y'+3π2y=0

     

  • 2y'-3π2y=0

     

  • 2y'+3π2y=0

     

  • y'+3π2y=0

     

(3)

Let -4x3+5x2+1=t, then

y=sin3(π3(cos(π32t3/2)))

dtdx=-12x2+10x

  dydx=3sin2(π3(cos(π32t3/2)))·cos(π3cos(π32t3/2))·π3(-sin(π32t3/2))

        π32·32t1/2·dtdx

dydx=-3sin2(π3(cos(π32(-4x3+5x2+1)3/2))·cos(π3cos(π32(-4x3+5x2+1)3/2))·π3sin(π32(-4x3+5x2+1)3/2)·π22(-4x3+5x2+1)1/2(-12x2+10x)

At x=1, t=-4+5+1=2

dydx(x=1)=-3sin2(π3cos(π3223/2))·cos(π3cos(π3223/2))·π3sin(π3223/2)·π2221/2·(-2)

=π2sin2(π3(cos2π3))·cos(π3cos2π3)·sin(2π3)

=π2sin2(-π3·12)·cos(-π3·12)32

=32π2·14·32=316π2

at x=1, y=sin3(π3(cosπ32(2)3/2))=sin3(π3(cos2π3))

=sin3(-π3×12)=-18

 2y'+3π2y=2×316π2+3π2×(-18)=0



Q 4 :    

Let a curve y=f(x),x(0,) pass through the points P(1,32) and Q(a,12). 

If the tangent at any point R(b,f(b)) to the given curve cuts the y-axis at the point S(0,c) such that bc=3,then (PQ)2 is equal to ______.   [2023]



(5)

Equation of tangent at R(b,f(b)) is   

y-f(b)=f'(b)(x-b)

Now, it passes through S(0,c)

  c-f(b)=f'(b)(0-b)

3b-f(b)=-bf'(b)    bf'(b)-f(b)=-3b

bf'(b)-f(b)b2=-3b3       d(f(b)b)=-3b3

  f(b)b=32b2+M

Now, the curve passes through P(1,32).

  32=32+M  So, f(b)=32b

Also, it passes through Q(a,12)

12=32a  a=3  Q(3,12)

   (PQ)2=22+12=5