Q 1 :

If two positive integers p and q can be expressed as p=ab2 and q=a3b; a,b being prime numbers, then LCM (p, q) is

  • ab

     

  • a2b2

     

  • a3b2

     

  • a3b3

     

(3)    a3b2

 



Q 2 :

Let a and b be two positive integers such that a=p3q4 and b=p2q3, where p and q are prime numbers. If HCF(a,b)=pmqn and LCM(a,b)=prqs, then (m+n)(r+s)=

  • 15

     

  • 30

     

  • 35

     

  • 72

     

(3)

a=p3q4 and b=p2q3

          HCF(a,b)=p2q3           ...(i)

and   LCM(a,b)=p3q4            ...(ii)

But gives: HCF(a,b)=pmqn and LCM(a,b)=prqs

From eq. (i), pmqn=p2q3

So, m=2 and n=3

From eq. (ii), prqs=p3q4

So, r=3 and s=4

 (m+n)(r+s)=(2+3)(3+4)=35.



Q 3 :

If two positive integers p and q can be expressed as p=18a2b4 and q=20a3b2, where a and b are prime numbers, then LCM (p, q) is :

  • 2a2b2  

     

  • 180a2b2  

     

  • 12a2b2  

     

  • 180a3b4

     

(4)

Given, p=18a2b4 and q=20a3b2

LCM(p,q)=LCM(18a2b4,20a3b2)=180a3b4

 



Q 4 :

Two positive integers m and n are expressed as m=p5q2 and n=p3q4 , where p and q are prime numbers. The LCM of m and n is :

  • p8q6

     

  • p3q2

     

  • p5q4

     

  • p5q2+p3q4

     

(3)     p5q4

 



Q 5 :

If the HCF(2520, 6600) = 40 and LCM(2520, 6600) = 252 × k, then the value of k is

  • 1650

     

  • 1600

     

  • 165

     

  • 1625

     

(1)

Given, HCF = 40 and LCM = 252 × k

We know that, LCM × HCF = Product of two number

40×252×k=2520×6600

k=2520×660040×252

k=1650

 



Q 6 :

If the prime factorisation of 2520 is 23 × 3a × 𝑏 × 7, then the value of a + 2b is:

  • 12

     

  • 10

     

  • 9

     

  • 7

     

(1)

2520 = 2 × 2 × 2 × 3 × 3 × 5 × 7 
= 2³ × 3² × 5 × 7
Comparing with 2520 = 2³ × 3 × b × 7
We get, a = 2, b = 5  a + 2b = 2 + 2 × 5 = 2 + 10 = 12

 



Q 7 :

The LCM of the smallest prime number and the smallest odd composite number is:

  • 10

     

  • 6

     

  • 9

     

  • 18

     

(4)

We have, the smallest prime number = 2

and the smallest odd composite number = 9

∴ LCM of the smallest prime number and the smallest odd composite number

= LCM (2, 9) = 18



Q 8 :

If a = 2² × 3ˣ, b = 2² × 3 × 5, c = 2² × 3 × 7 and LCM (a, b, c) = 3780, then x is equal to:

  • 1

     

  • 2

     

  • 3

     

  • 0

     

(3)

If LCM (a,b,c) = 3780
By prime factorisation of 3780

3780=22×33×5×7      LCM (a,b,c)=22×33×5×7                 (i)a=22×3x;b=22×3×5; c=22×3×7LCM (a,b,c)=22×3x×5×7                 (ii)Comparing (i) and (ii), we get  𝑥 = 3



Q 9 :

The LCM of smallest 2-digit number and smallest composite number is:

  • 12

     

  • 4

     

  • 20

     

  • 40

     

(3)

Smallest 2-digit number = 10 and smallest composite number = 4
LCM of 10 and 4 = 20

 



Q 10 :

The total number of factors of a prime number is:

  • 1

     

  • 0

     

  • 2

     

  • 3

     

(3)

A prime number has only 2 factors, i.e. the number itself and 1.