Q 1 :    

If two positive integers p and q can be expressed as p=ab2 and q=a3b; a,b being prime numbers, then LCM (p, q) is

  • ab

     

  • a2b2

     

  • a3b2

     

  • a3b3

     

(3)    a3b2

 



Q 2 :    

Assertion (A): 6n never ends with the digit zero, where n is natural number.

Reason (R): Any number ends with digit zero, if its prime factor is of the form 2m×5n, where m, n are natural numbers.

  • Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

     

  • Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

     

  • Assertion (A) is true but Reason (R) is false.

     

  • Assertion (A) is false but Reason (R) is true.

     

(1)

Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

6n=(2×3)n=2n×3n , Its prime factors do not contain 5 i.e., of the form 2m×5n,

where m, n are natural numbers. Hence, 6n never ends with the digit zero.

 



Q 3 :    

Let a and b be two positive integers such that a=p3q4 and b=p2q3, where p and q are prime numbers. If HCF(a,b)=pmqn and LCM(a,b)=prqs, then (m+n)(r+s)=

  • 15

     

  • 30

     

  • 35

     

  • 72

     

(3)

a=p3q4 and b=p2q3

          HCF(a,b)=p2q3           ...(i)

and   LCM(a,b)=p3q4            ...(ii)

But gives: HCF(a,b)=pmqn and LCM(a,b)=prqs

From eq. (i), pmqn=p2q3

So, m=2 and n=3

From eq. (ii), prqs=p3q4

So, r=3 and s=4

 (m+n)(r+s)=(2+3)(3+4)=35.



Q 4 :    

If two positive integers p and q can be expressed as p=18a2b4 and q=20a3b2, where a and b are prime numbers, then LCM (p, q) is :

  • 2a2b2  

     

  • 180a2b2  

     

  • 12a2b2  

     

  • 180a3b4

     

(4)

Given, p=18a2b4 and q=20a3b2

LCM(p,q)=LCM(18a2b4,20a3b2)=180a3b4

 



Q 5 :    

Assertion (A): If product of two numbers is 5780 and their HCF is 17, then their LCM is 340

Reason (R) : HCF is always a factor of LCM

  • Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)

     

  • Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)

     

  • Assertion (A) is true but reason (R) is false.

     

  • Assertion (A) is false but reason (R) is true.

     

(2)

Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)

 



Q 6 :    

Two positive integers m and n are expressed as m=p5q2 and n=p3q4 , where p and q are prime numbers. The LCM of m and n is :

  • p8q6

     

  • p3q2

     

  • p5q4

     

  • p5q2+p3q4

     

(3)     p5q4

 



Q 7 :    

If the HCF(2520, 6600) = 40 and LCM(2520, 6600) = 252 × k, then the value of k is

  • 1650

     

  • 1600

     

  • 165

     

  • 1625

     

(1)

Given, HCF = 40 and LCM = 252 × k

We know that, LCM × HCF = Product of two number

40×252×k=2520×6600

k=2520×660040×252

k=1650

 



Q 8 :    

If the prime factorisation of 2520 is 23 × 3a × 𝑏 × 7, then the value of a + 2b is:

  • 12

     

  • 10

     

  • 9

     

  • 7

     

(1)

2520 = 2 × 2 × 2 × 3 × 3 × 5 × 7 
= 2³ × 3² × 5 × 7
Comparing with 2520 = 2³ × 3 × b × 7
We get, a = 2, b = 5  a + 2b = 2 + 2 × 5 = 2 + 10 = 12

 



Q 9 :    

The LCM of the smallest prime number and the smallest odd composite number is:

  • 10

     

  • 6

     

  • 9

     

  • 18

     

(4)

We have, the smallest prime number = 2

and the smallest odd composite number = 9

∴ LCM of the smallest prime number and the smallest odd composite number

= LCM (2, 9) = 18



Q 10 :    

If a = 2² × 3ˣ, b = 2² × 3 × 5, c = 2² × 3 × 7 and LCM (a, b, c) = 3780, then x is equal to:

  • 1

     

  • 2

     

  • 3

     

  • 0

     

(3)

If LCM (a,b,c) = 3780
By prime factorisation of 3780

3780=22×33×5×7      LCM (a,b,c)=22×33×5×7                 (i)a=22×3x;b=22×3×5; c=22×3×7LCM (a,b,c)=22×3x×5×7                 (ii)Comparing (i) and (ii), we get  𝑥 = 3