Q 11 :    

Let αβγ=45; α,β,γR. If x(α,1,2)+y(1,β,2)+z(2,3,γ)=(0,0,0) for some x,y,zR,xyz0, then 6α+4β+γ is equal to _______.            [2024]



(55)

We have, x(α,1,2)+y(1,β,2)+z(2,3,γ)=(0,0,0)

αx+y+2z=0; x+βy+3z=0; 2x+2y+γz=0

Since, xyz0 so the system of equations has non-trivial solution.

Now, |α121β322γ|=0

α(βγ-6)-1(γ-6)+2(2-2β)=0

αβγ-6α-γ+6+4-4β=0

45+10-6α-γ-4β=06α+4β+γ=55



Q 12 :    

If the system of equations, 2x+7y+λz=3,3x+2y+5z=4,x+μy+32z=-1 has infinitely many solutions, then (λ-μ) is equal to _______.           [2024]



(38)

Given, 2x+7y+λz=3

             3x+2y+5z=4

             x+μy+32z=-1 has infinitely many solutions.

Δ=0,Δ1=0,Δ2=0 and Δ3=0

Δ2=|2λ3354132-1|=0 and Δ3=|2733241μ-1|=0

-266+λ(7)+273=0 and -4-8μ+49+9μ-6=0

7λ+7=0 and μ+39=0

λ=-1 and μ=-39

So, λ-μ=-1+39=38

 



Q 13 :    

If the system of Linear equations

3x+y+βz=3

2x+αyz=3

x+2y+z=4

has infinitely many solutions, then the value of 22β-9α is :          [2025]

  • 31

     

  • 49

     

  • 37

     

  • 43

     

(1)

Since, the given system of equations has infinitely many solutions, =1=2=3=0

=|31β2α1121|=0

 3α+4βαβ+3=0                      ...(i)

3=|3132α3124|=0

 9α+19=0  α=199

From (i), we get

β=611

  22β9α=22×6119×199=12+19=31.



Q 14 :    

If the system of equations

2x+λy+3z=5

3x+2yz=7

4x+5y+μz=9

has infinitely many solutions, then (λ2+μ2) is equal to:          [2025]

  • 22

     

  • 18

     

  • 26

     

  • 30

     

(3)

For infinitely man solutions, we have =1=2=3=0

Now, =|2λ332145μ|=0

 2(2μ+5)λ(3μ+4)+3(158)=0

 4μ+103λμ4λ+21=0

 4μ4λ3λμ+31=0           ... (i)

Now, 2=|25337149μ|=0

 2(7μ+9)5(3μ+4)+3(2728)

 14μ+1815μ203=0

 μ+1823=0  μ=5

Substituting the value of μ in (i), we get

   204λ+15λ+31=0

 11λ+11=0  λ=1

  λ2+μ2=(1)2+(5)2=26.



Q 15 :    

Let the system of equations :

2x+3y+5z=9

7x+3y2z=8

12x+3y(4+λ)z=16μ

have infinitely many solutions. Then the radius of the circle centred at (λ, μ) and touching the line 4x = 3y is          [2025]

  • 175

     

  • 75

     

  • 215

     

  • 7

     

(2)

Since, the given system of equation has infinitely many solutions.

=1=2=3=0

=|235732123(λ+4)|=0

 12(21)3(39)(λ+4)(15)=0

 252+117+15(λ+4)=0

 15λ75=0   λ=5

1=|93583216μ39|=0

 9(21)3(402μ)+5(24+3μ)=0

 μ=9

So, centre of circle (5, 9)

Also, radius = length of  from centre (5, 9) to 4x = 3y

  r=|4(5)3(9)(4)2+(3)2|=|20275|=75.



Q 16 :    

Let the system of equations

x+5yz=1

4x+3y3z=7

24x+y+λz=μ

λ,μR, have infinitely many solutions. Then the number of the solutions of this system, if x, y, z are integers and satisfy 7x+y+z77, is :          [2025]

  • 3

     

  • 5

     

  • 6

     

  • 4

     

(1)

For infinitely many solutions, we have D = 0

 |151433241λ|=0

 1(3λ+3)5(4λ+72)1(472)=0

 17λ=289   λ=17          ... (i)

Now, D1=0

 |151733μ117|=0

 1(51+3)5(119+3μ)1(73μ)=0

 48+59515μ7+3μ=0

 12μ=540

  μ=45          ... (ii)

Using (i) and (ii), we get

x + 5yz = 1, 4x + 3y – 3z =7, 24x + y –17z = 45

 z=x+5y1

  4x+3y3x15y+3=7

 x12y=4

 x=4+12y and z=4+12y+5y1=3+17y

  (x,y,z)=(4+12k,k,3+17k)          ( Assume y = k)

Also, 77+30k77

 030k<70

 0k2.3

 k = 0, 1, 2

Thus, there are three possible solutions.



Q 17 :    

If the system of linear equations:

x + y + 2z = 6

2x + 3y + az = a + 1

x – 3y + bz = 2b

where a,bR, has infinitely many solutions, then 7a+3b is equal to :          [2025]

  • 16

     

  • 22

     

  • 9

     

  • 12

     

(1)

For infinitely many solutions, we have

=|11223a13b|=0  2a+b6=0                  ...(i)

Also, 3=|11623a+1132b|=0  a+b8=0          ... (ii)

Solving (i) and (ii), we get a = –2, b = 10

  7a + 3b = 7(–2) + 3(10) =16.



Q 18 :    

If the system of equations

(λ1)x+(λ4)y+λz=5

λx+(λ1)y+(λ4)z=7

(λ+1)x+(λ+2)y(λ+2)z=9

has infinitely many solutions, then λ2+λ is equal to          [2025]

  • 20

     

  • 12

     

  • 6

     

  • 10

     

(2)

For infinitely many solutions,

D=|(λ1)(λ4)λλ(λ1)(λ4)(λ+1)(λ+2)(λ+2)|=0          ... (i)

On solving (i) along column (1), we get

2λ25λ3=0

 (2λ+1)(λ3)=0

 λ=3 or 12          ... (ii)

D2=0 |(λ1)5λλ7(λ4)(λ+1)9(λ+2)|=0

 2λ213λ+21=0

 (2λ7)(λ3)=0

 λ=7/2 or λ=3          ... (iii)

Thus, λ=3          (From (ii) and (iii))

  λ2+λ=(3)2+3=9+3=12.



Q 19 :    

The system of equations

x + y + z = 6

x + 2y + 5x = 9

x+5y+λz=μ

has no solution if           [2025]

  • λ=15, μ17

     

  • λ17, μ18

     

  • λ=17, μ=18

     

  • λ=17, μ18

     

(4)

Let A=[11112515λ]    |A|=|11112515λ|=0

 1(2λ25)(λ5)+1(52)=0  λ=17

Dz=|11612915μ|0          [ If |A|=0 then atleast one Dx,Dy,Dzis non zero for inconsistent system]

 μ18.



Q 20 :    

If the system of equations

2xy + z = 4

5x+λy+3z=12

100x47y+μz=212

has infinitely many solutions, then μ2λ is equal to          [2025]

  • 55

     

  • 59

     

  • 56

     

  • 57

     

(4)

As the given system of equations has infinitely many solutions, then

=1=2=3=0

2=|2415123100212μ|=0

 2(12μ636)4(5μ300)+1(10601200)=0

 4μ212=0

 μ=53

3=|2145λ1210047212|=0

 2(212λ+564)+1(10601200)+4(235100λ)=0

 24λ+48=0  λ=2

  μ2λ=532(2)=57.