Q 11 :    

Let αβγ=45; α,β,γR. If x(α,1,2)+y(1,β,2)+z(2,3,γ)=(0,0,0) for some x,y,zR,xyz0, then 6α+4β+γ is equal to _______.            [2024]



(55)

We have, x(α,1,2)+y(1,β,2)+z(2,3,γ)=(0,0,0)

αx+y+2z=0; x+βy+3z=0; 2x+2y+γz=0

Since, xyz0 so the system of equations has non-trivial solution.

Now, |α121β322γ|=0

α(βγ-6)-1(γ-6)+2(2-2β)=0

αβγ-6α-γ+6+4-4β=0

45+10-6α-γ-4β=06α+4β+γ=55



Q 12 :    

If the system of equations, 2x+7y+λz=3,3x+2y+5z=4,x+μy+32z=-1 has infinitely many solutions, then (λ-μ) is equal to _______.           [2024]



(38)

Given, 2x+7y+λz=3

             3x+2y+5z=4

             x+μy+32z=-1 has infinitely many solutions.

Δ=0,Δ1=0,Δ2=0 and Δ3=0

Δ2=|2λ3354132-1|=0 and Δ3=|2733241μ-1|=0

-266+λ(7)+273=0 and -4-8μ+49+9μ-6=0

7λ+7=0 and μ+39=0

λ=-1 and μ=-39

So, λ-μ=-1+39=38