Q 1 :    

If the system of equations 

 

x+(2sinα)y+(2cosα)z=0

 

x+(cosα)y+(sinα)z=0

 

x+(sinα)y-(cosα)z=0

 

has a non-trivial solution, then α(0,π2) is equal to             [2024]

  • 7π24  

     

  • 3π4

     

  • 11π24

     

  • 5π24

     

(D)

Given, x+(2sinα)y+(2cosα)z=0

x+(cosα)y+(sinα)z=0

x+(sinα)y-(cosα)z=0

For non-trivial solution,

|12sinα2cosα1cosαsinα1sinα-cosα|=0

1[-cos2α-sin2α]-1[-2sinα cosα-2sinα cosα]+1[2sin2α-2cos2α]=0

-1+22sinα cosα+2(sin2α-cos2α)=0

2sin2α-2cos2α=1

sin(2α-π4)=sinπ62α-π4=nπ+(-1)nπ6

for n=0α=5π24

 



Q 2 :    

If the system of equations

 

11x+y+λz=-5

 

2x+3y+5z=3

 

8x-19y-39z=μ

 

has infinitely many solutions, then λ4-μ is equal to:               [2024]

  • 49

     

  • 51

     

  • 47

     

  • 45

     

(C)

We have, 11x+y+λz=-5

                   2x+3y+5z=3

                    8x-19y-39z=μ

has infinitely many solutions

                Δ=|111λ2358-19-39|=0

11(-22)-1(-118)+λ(-62)=0

-124-62λ=0

λ=-2

Also, Δ3=|111-52338-19μ|=0

11(3μ+57)-1(2μ-24)-5(-38-24)

31μ+961=0μ=-31

So, λ4-μ=(-2)4+31=16+31=47



Q 3 :    

The values of m,n for which the system of equationsx+y+z=4, 2x+5y+5z=17, x+2y+mz=n has infinitely many solutions, satisfy the equation:               [2024]

  • m2+n2+mn=68

     

  • m2+n2-m-n=46

     

  • m2+n2-mn=39

     

  • m2+n2+m+n=64

     

(C)

Since the system of equations has infinitely many solutions

    Δ=0 and Δ3=0

|11125512m|=0 and |114251712n|=0

(5m-10)-(2m-5)+(-1)=0 and (5n-34)-(2n-17)+4(-1)=0

3m-6=0 and 3n-21=0

m=2 and n=7

Clearly m2+n2-mn=4+49-14=39

 



Q 4 :    

If the system of equations x+4y-z=λ,7x+9y+μz=-3,5x+y+2z=-1 has infinitely many solutions, then (2μ+3λ) is equal to:               [2024]

  • -2

     

  • 3

     

  • -3

     

  • 2

     

(C)

We have, x+4y-z=λ

7x+9y+μz=-3;  5x+y+2z=-1

[14-179μ512][xyz]=[λ-3-1]

A=[14-179μ512],  B=[λ-3-1]

AX=BX=A-1B=adj A|A|B

Since, the system has infinitely many solutions,

   |A|=0 and (adj A)·B=0.

Now, |A|=018-μ- 4(14-5μ)-1(7-45)= 0

18-μ-56+20μ+38=0 

19μ=0μ=0

Also, adj A=[18-99-147-7-3819-19]

         (adj A·B)=0

[18-99-147-7-3819-19][λ-3-1]=[000]

      18λ+27-9=018λ=-18λ=-1

Hence, 2μ+3λ=2(0)+3(-1)=-3

 



Q 5 :    

Let λ,μR. If the system of equations

 

3x+5y+λz=3

 

7x+11y-9z=2

 

97x+155y-189z=μ

 

has infinitely many solutions, then μ+2λ is equal to:              [2024]

  • 24

     

  • 27

     

  • 25

     

  • 22

     

(C)

3x+5y+λz=3

7x+11y-9z=2

97x+155y-189z=μ

[35λ711-997155-189][xyz]=[32μ]

AX=B

For infinitely many solutions,

|A|=0 and (adj A)B=0

|35λ711-997155-189|=0

-2052+2250+18λ=0

λ=-11

adj A=[-684-76076450500-501820-2]

(adj A)B=[-684-76076450500-501820-2][32μ]=[000]

54+40-2μ=0

2μ=94 μ=47

Hence, μ+2λ=25

 



Q 6 :    

If the system of equations 2x+3y-z=5,x+αy+3z=-4,3x-y+βz=7 has infinitely many solutions, then 13αβ is equal to _____ .                 [2024]

  • 1210

     

  • 1110

     

  • 1220

     

  • 1120

     

(D)

Given, system of equations can be written as AX=B,

where A=[23-11α33-1β], B=[5-47] and X=[xyz]

Using Cramer's rule for infinite solutions,

D=D1=D2=D3=0

D3=|2351α-43-17|=2(7α-4)-3(7+12)+5(-1-3α)=0

α=-70

Similarly,

D2=|25-11-4337β|=2(-4β-21)-5(β-9)-1(7+12)=0

β=-1613

     13αβ=13×(-70)×(-1613)=1120



Q 7 :    

Let the system of equations x+2y+3z=5,2x+3y+z=9,4x+3y+λz=μ have infinite number of solutions. Then λ+2μ is equal to:                   [2024]

  • 22

     

  • 17

     

  • 15

     

  • 28

     

(B)

Given system of equations can be written as, AX=B

Where A=[12323143λ], X=[xyz], and B=[59μ]

For infinitely many solutions, D=0|12323143λ|=0

λ=-13

Also, D1=0|523931μ3-13|=0μ=15

So, λ+2μ=-13+30=17

 



Q 8 :    

Consider the system of linear equations x+y+z=4μ,x+2y+2λz=10μ,x+3y+4λ2z=μ2+15, where λ,μR. Which one of the following statements is NOT correct?                     [2024]

  • The system is inconsistent if λ=12 and μ1

     

  • The system has unique solution if λ12 and μ1,15

     

  • The system has infinite number of solutions if λ=12 and μ=15

     

  • The system is consistent if λ12

     

(A)

We have, [111122λ134λ2][xyz]=[4μ10μμ2+15]

For λ=12 and μ=15, we get [111121131][xyz]=[60150240]

System is consistent but does not have unique solution as matrix have zero determinant because two columns are same.

Also, let λ12 and λ=μ=1, then we have

[111122134][xyz]=[41016]

x+y+z=4; x+2y+2z=10; x+3y+4z=16

On solving these equations, we get (-2,6,0) as unique solution.

Clearly, for λ=12 and μ1 i.e., μ=15 the system is consistent and have infinite solution.

So, statement (a) is not correct.

 



Q 9 :    

Consider the system of linear equations x+y+z=5,x+2y+λ2z=9,x+3y+λz=μ, where λ,μR. Then which of the following statement is NOT correct?                [2024]

  • System has unique solution if λ1 and μ13.

     

  • System is inconsistent if λ=1 and μ13.

     

  • System is consistent if λ1 and μ=13.

     

  • System has infinite number of solutions if λ=1 and μ=13.

     

(A)

|11112λ213λ|=02λ2-λ-1=0

λ=1,-12 and |1152λ293λμ|=0μ=13

For infinite solution, λ=1 and μ=13

For unique solution λ1

For no solution,λ=1 and μ13

If λ1 and μ13

Considering the case when λ=-12 and μ13 this will generate no solution case.

 



Q 10 :    

If the system of linear equations x-2y+z=-4,2x+αy+3z=5,3x-y+βz=3 has infinitely many solutions, then 12α+13β is equal to               [2024]

  • 54

     

  • 64

     

  • 58

     

  • 60

     

(C)

Given, x-2y+z=-4

2x+αy+3z=5, 3x-y+βz=3

      Δ=|1-212α33-1β|=0

αβ-18-2-3α+3+4β=0=αβ-3α+4β-17=0

       Δy=|1-4125333β|=0

Δy=1(5β-9)+4(2β-9)+1(6-15)

        =5β-9+8β-36+6-15

13β-54=013β=54β=5413

       Δz=|1-2-42α53-13|=0

       Δz=1(3α+5)+2(6-15)-4(-2-3α)

3α+5+12-30+8+12α

15α-5=015α=5α=515=13

So,12α+13β=12×13+544+54=58