Q 1 :    

Let α, β ∈ R. Let the mean and the variance of 6 observations -3, 4, 7, -6, α, β be 2 and 23, respectively. The mean deviation about the mean of these 6 observations is        [2024]

  • 16/3

     

  • 13/3

     

  • 11/3

     

  • 14/3

     

(2)

Mean=-3+4+7+(-6)+α+β6=2

α+β=10                           ...(i)

Variance=xi2n-(xin)2=23

xi2=27×6                            (x¯=xin=2)

9+16+49+36+α2+β2=162

α2+β2=52                            ...(ii)

Solving (i) and (ii), we get α=4 and β=6

So, mean deviation about mean =|-3-2|+|4-2|+|7-2|+|-6-2|+|4-2|+|6-2|6

=5+2+5+8+2+46=133



Q 2 :    

The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation by mistake was taken as 8 instead of 12. The correct standard deviation is                        [2024]

  • 1.8

     

  • 1.94

     

  • 3.86

     

  • 3.96

     

(4)

Incorrect mean, x¯=10

Incorrect xi20=10

Incorrect sum, xi=200

Correct sum=200-8+12=204

Correct mean=20420=10.2

Incorrect S.D. = 2

Incorrect variance = 4

xi220-(xi20)2=4xi220-100=4

xi2=2080

Incorrect xi2=2080

Correct xi2=2080-82+122=2160

Correct Variance =216020-(10.2)2=108-104.04=3.96

Correct S.D. = 3.96



Q 3 :    

The frequency distribution of the age of students in a class of 40 students is given below.                     [2024]

Age 15 16 17 18 19 20
No. of students 5 8 5 12 x y

 

If the mean deviation about the median is 1.25, then 4x + 5y is equal to:

  • 43

     

  • 44

     

  • 46

     

  • 47

     

(2)

Age           No. of Students           C.F.
   15                         5             5
   16                         8             13
   17                         5             18
   18                       12             30
   19                        x        30+x
   20                        y     30+x+y

 

30+x+y=40            (Given)

x+y=10                  ...(i)

Median of the given data = 18

Mean deviation about median=fi|xi-18|fi

fi|xi-18|=5×3+8×2+5×1+12×0+x×1+y×2

=15+16+5+x+2y=36+x+2y

36+x+2y40=1.25                    (Given)

x+2y=14           ...(ii)

On solving (i) and (ii), we get

x=6,  y=4

Now,

4x+5y=4×6+5×4=24+20=44



Q 4 :    

If the variance of the frequency distribution 

     x     c     2c      3c      4c     5c      6c
     y     2      1       1      1      1       1

 

is 160, then the value of cN is                                                                        [2024]

  • 6

     

  • 8

     

  • 5

     

  • 7

     

(4)

We have,  x¯=2c+2c+3c+4c+5c+6c2+1+1+1+1+1=22c7

Var(X)=c2(2+22+32+42+52+62)7-(22c7)2

=92c27-484c249=(644-484)c249=160c249

160=160c249

c2=49

c=7                                          [ cN]

 



Q 5 :    

Let the median and the mean deviation about the median of 7 observations 170, 125, 230, 190, 210, a, b be 170 and 2057 respectively. Then the mean deviation about the mean of these 7 observations is:                      [2024]

  • 32

     

  • 30

     

  • 28

     

  • 31

     

(2)

The ascending order of 7 observations are 125, a, b, 170, 190, 210, 230

M.D. (Med)=17i=17|xi-Med|=2057

|125-170|+|a-170|+|b-170|+|170-170|+|190-170|+|210-170|+|230-170|=205

[∵ Median= 170]

a+b=300                    ...(i)

Mean=125+300+170+190+210+2307=12257=175                 (By (i))

M.D. (Mean)=17i=17|xi-Mean|=17(50+350-300+5+15+35+55)

=2107=30



Q 6 :    

Consider 10 observations x1,x2, ..., x10 such that i=110(xi-α)=2 and i=110(xi-β)2=40, where α,β are positive integers. Let the mean and the variance of the observations be 65 and 8425 respectively. Then βα is equal to :                            [2024]

  • 2

     

  • 1

     

  • 52

     

  • 32

     

(1)

We have, i=110xin=65i=110xi=12                       [n=10]

Also, i=110(xi-α)=2i=110xi-10α=2α=1

Now, i=110xi2n-(x¯)2=8425i=110xi210=8425+3625=12025

i=110xi2=48

Also, i=110(xi-β)2=40i=110xi2+10β2-2βi=110xi=40

48+10β2-24β=405β2-12β+4=0

(5β-2)(β-2)=0β=25 or β=2

If β=2, then βα=2

If β=25, then βα=25



Q 7 :    

Let a1,a2, , a10 be 10 observations such that k=110ak=50 and k<jak·aj=1100. Then the standard deviation of a1,a2, , a10 is equal to               [2024]

  • 5

     

  • 115

     

  • 5

     

  • 10

     

(3)

Given, k=110ak=50 and k<jak·aj=1100

σ2=ak210-(Mean)2=ak210-(ak10)2=ak210-(5010)2

=ak210-25                         ...(i)

Also, (ak)2=ak2+2k<jakaj

2500=ak2+2(1100)ak2=2500-2200=300

From (i), we get

σ2=30010-25=30-25=5σ=5



Q 8 :    

If the mean and variance of five observations are 245 and 19425 respectively and the mean of the first four observations is 72, then the variance of the first four observations is equal to:                            [2024]

  • 7712

     

  • 1054

     

  • 54

     

  • 45

     

(3)

Let a, b, c, d and e be the five observations.

 Mean of 5 observations, x¯=245

a+b+c+d+e=24      ...(i)

Mean of four observations, x¯1=72

a+b+c+d=14                ...(ii)

From (i) and (ii), we have e=10

Now, variance of 5 observations =19425

xi25-(x¯)2=19425 

a2+b2+c2+d2+e2=5(19425+57625)=154

a2+b2+c2+d2=154-100  (e=10)

a2+b2+c2+d2=54

Variance of 4 observations=a2+b2+c2+d24-(x¯1)2

      =544-494=54

 



Q 9 :    

Let the mean and the variance of 6 observations a,b, 68, 44, 48, 60 be 55 and 194, respectively. If a > b, then a + 3b is:                 [2024]

  • 210

     

  • 190

     

  • 200

     

  • 180

     

(4)

Given, mean (x¯)=55

   a+b+68+44+48+606=55a+b=110    ...(i)

Given, variance (σ2)=194

   a2+b2+(68)2+(44)2+(48)2+(60)26-(55)2=194

a2+b2=6850             ...(ii)

From (i) and (ii), we get

a=75 and b=35

a+3b=75+3(35)=180



Q 10 :    

If the mean and variance of the data 65, 68, 58, 44, 48, 45, 60, α,β, 60 where α>β, are 56 and 66.2 respectively, then α2+β2 is equal to _____ .      [2024]



(6344)

Mean = 56

Variance=1ni=1nxi2-(x¯)2

66.2=110[(65)2+(68)2+(58)2+(44)2+(48)2+(45)2+(60)2+α2+β2+(60)2]-(56)2

3202.2×10=4225+4624+3364+1936+2304+2025+3600+α2+β2+3600

α2+β2=6344