Q 1 :    

If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of (24+134)n is 6:1, then the third term from the beginning is      [2023]

  • 302

     

  • 603

     

  • 602

     

  • 303

     

(2)

 



Q 2 :    

If the coefficients of x7 in (ax2+12bx)11 and x-7 in (ax-13bx2)11 are equal, then                 [2023]

  • 64ab = 243

     

  • 729ab = 32

     

  • 32ab = 729 

     

  • 243ab = 64

     

(2)

We have, rth term in (ax2+12bx)11 is,

Tr+1=Cr11(ax2)11-r(12bx)r =Cr11a11-r(2b)r·x22-3r

For coefficient of x7, we have 22-3r=7r=5

   T6=C511a625b5x7  ...(i)

Similarly, rth term in the second expansion is, Tr+1=Cr11(ax)11-r(-13bx2)r =Cr11a11-r(-3b)r·x11-3r

For coefficient of x-7, we have 11-3r=-7r=6

    T7=C611a536·b6x-7  ...(ii)

Now,  C511a625b5=C611a536b636ab=25729ab=32



Q 3 :    

If the coefficients of three consecutive terms in the expansion of (1+x)n are in the ratio 1:5:20, then the coefficient of the fourth term is          [2023]

  • 1827   

     

  • 5481     

     

  • 2436 

     

  • 3654

     

(4)

Given, coefficients of three consecutive terms are in the ratio 1 : 5 : 20

i.e., Cr-1n:Crn:Cr+1n=1:5:20

Now, Cr-1nCrn=15n=6r-1  ...(i)

Also, CrnCr+1n=520n=5r+4  ...(ii)

From (i) and (ii), we get

      6r-1=5r+4r=5n=25+4=29

   The coefficient of 4th term=C329=3654



Q 4 :    

The absolute difference of the coefficients of x10 and x7 in the expansion of (2x2+12x)11 is equal to             [2023]

  • 103-10

     

  • 123-12

     

  • 133-13

     

  • 113-11

     

(2)

We have, Tr+1=Cr11(2x2)11-r(12x)r =Cr11211-2r·x22-3r

For x1022-3r=10r=4

    Coefficient of x10=C411 211-8=330×23=2640

Now, for x722-3r=7r=5

 Coefficient of x7=C511·211-10=462×2=924

So, absolute difference of the coefficients of x10 and x7 is

2640-924=1716=123-12



Q 5 :    

If the coefficient of x7 in (ax-1bx2)13 and the coefficient of x-5 in (ax+1bx2)13 are equal, then a4b4 is equal to         [2023]

  • 11

     

  • 44

     

  • 22   

     

  • 33

     

(3)

In the first expansion,  
Tr+1=Cr13(ax)13-r(-1bx2)r=Cr13a13-r(-1b)rx13-3r

Now, 13-3r=7r=2

    Coefficient of x7=C213a11b2

Also, in the second expansion,  
Tr+1=Cr13(ax)13-r(1bx2)r=Cr13a13-rbrx13-3r

As, 13-3r=-5r=6

   Coefficient of x-5=C613a7b6

Now, C213a11b2=C613a7b6a4b4=C613C213=22



Q 6 :    

If the coefficients of x and  x2 in (1+x)p(1-x)q are 4 and -5 respectively, then 2p+3q is equal to        [2023]

  • 66

     

  • 60 

     

  • 63 

     

  • 69

     

(3)

(1+x)p(1-x)q=[1+px+p(p-1)2x2+][1-qx+q(q-1)2x2+]

   Coefficient of x=p-q=4  ...(i)

Coefficient of x2 =  q(q-1)2-pq+p(p-1)2=-5

(p-q)2-(p+q)=-10p+q=26  ...(ii)

So, from (i) and (ii),  

p=15,  q=11      2p+3q=30+33=63



Q 7 :    

The sum of the coefficients of three consecutive terms in the binomial expansion of (1+x)n+2, which are in the ratio 1:3:5, is equal to       [2023]

  • 41

     

  • 92

     

  • 25

     

  • 63

     

(4)

Given Cr-1n+2:Crn+2:Cr+1n+2=1:3:5

   Cr-1n+2Crn+2=13n=4r-3  ...(i)

Also, Crn+2Cr+1n+2=358r-1=3n  ...(ii)

From (i) and (ii), we get

4r-3=8r-134r=8r=2 and n=5

Required sum=C17+C27+C37=7+21+35=63



Q 8 :    

The coefficient of x5 in the expansion of (2x3-13x2)5 is                 [2023]

  • 263

     

  •  

  • 8

     

  • 809

     

(4)

(2x3-13x2)5

Tr+1=Cr5(2x3)5-r(-13x2)r=Cr5·25-r·(-13)r·x15-3r-2r

As, 15-5r=5r=2

Coefficient of x5=C2523×(-13)2=809



Q 9 :    

If ar is the coefficient of x10-r in the Binomial expansion of (1+x)10, then r=110r3(arar-1)2 is equal to            [2023]

  • 3025

     

  • 1210

     

  • 5445

     

  • 4895

     

(2)

 



Q 10 :    

Let K be the sum of the coefficients of the odd powers of x in the expansion of (1+x)99. Let a be the middle term in the expansion of (2+12)200

If C99K200a=2lmn, where m and n are odd numbers, then the ordered pair (l,n) is equal to              [2023]

  • (50, 101)

     

  • (51, 101) 

     

  • (51, 99) 

     

  • (50, 51)

     

(1)

Sum of the coefficients of odd powers of x in the expansion (1+x)99 be K.

If a be the middle term in expansion of (2+12)200.

In the expansion of (1+x)99=C0+C1x+C2x2++C99x99

If a=middle term of (2+12)200

=T(2002+1)=C100200(2)100(12)100T101=C100200·250

K=298;  T101=C100200·250=a

So, C99200×298C100200×250=100101×248 25101×250=mn2l

  m,n are odd, so (l,n) becomes (50,101)