Q 1 :    

The sum of all rational terms in the expansion of (215+513)15 is equal to              [2024]

  • 3133

     

  • 633

     

  • 931

     

  • 6131

     

(A)

We have, (21/5+51/3)15

     Tr+1=Cr15(21/5)15-r(51/3)r=Cr155r/32(3-r5)

For rational terms, r3 and r5 must be an integer

    3 and 5 divide r15 divides rr=0 and r=15

Hence, C0155023+C15155520

      Required sum = 8 + 3125 = 3133

 



Q 2 :    

If the constant term in the expansion of (35x+2x53)12,x0, is α×28×35, then 25α is equal to:               [2024]

  • 639

     

  • 742

     

  • 724

     

  • 693

     

(D)

Tr+1=Cr12(31/5x)12-r(2x51/3)r

=Cr12(312-r55r/3)·2r·x2r-12

For constant term, 2r-12=0

r=6

      Constant term = C6·1236/5·2652

=924×3131/5·2625=11×9×7×28×31/525

α=11×9×72525α=11×9×7=693

 



Q 3 :    

If the term independent of x in the expansion of (ax2+12x3)10 is 105, then a2 is equal to :             [2024]

  • 2

     

  • 6

     

  • 4

     

  • 9

     

(C)

We have, (ax2+12x3)10

Tr+1=Cr10(ax2)10-r(12x3)r

=Cr10(a)10-r(12)rx20-2r-3r

For the term to be independent of x, we have 20-2r-3r=0

r=4

    Required term =T5=C410(a)6(12)4=105  (given)

21016a3=105a3=8a=2

Hence, a2=4

 



Q 4 :    

The sum of the coefficient of x23 and x-25 in the binomial expansion of (x23+12x-25)9 is                   [2024]

  • 6916

     

  • 6316

     

  • 214

     

  • 194

     

(C)

Tr+1=Cr9(x-2/52)r(x2/3)9-r

=Cr912rx6-23r-25r=Cr912rx6-16r15

For coefficient of x2/3,6-16r15=23

90-16r=10

r=5

For coefficient of x-2/5,6-16r15=-25

90-16r=-6

r=6

Required sum =C59125+C69126=12625+8426

=33626=214



Q 5 :    

Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of (13x13+12x23)18. Then (nm)13 is:        [2024]

  • 19

     

  • 14

     

  • 49

     

  • 94

     

(D)

Tr+1=Cr18(13x1/3)18-r·(12x-2/3)r

     Coefficient of 7th term =C618(13)12·(12)6

and coefficient of 13th term =C1218(13)6·(12)12

So, (nm)1/3=[C1218(13)6·(12)12C618(13)12·(12)6]1/3=94

 



Q 6 :    

If the constant term in the expansion of (1+2x-3x3)(32x2-13x)9 is p, then 108p is equal to _______.             [2024]



(54)

General term of I=(32x2-13x)9 is

Tr+1=Cr9(32x2)9-r(-13x)r

=Cr9(32)9-rx18-2rxr(-13)r

=Cr9(32)9-rr18-3r(-13)r

Now, (1+2x-3x3)(32x2-13x)9will have the constant term =1×coeff of x0 in I+2×coeff of 1x in I-3×coeff of x-3 in I

=1×C69(32)3(-13)6+2×0-3×C79(32)2(-13)7

=8423×33+3×36×122×35=72×32+22×32

=92×32=12

       p=12. So 108p=12×108=54



Q 7 :    

If the second, third and fourth terms in the expansion of (x+y)n are 135, 30, and 103, respectively, then 6(n3+x2+y) is equal to ______.       [2024]



(806)

Tr+1=Crnxn-ryr

    C1nxn-1y=135,                                            ...(i)

          C2nxn-2y2=30                                              ...(ii)

and   C3nxn-3y3=103                                            ...(iii)

By (i) and (ii), we have

      C1 nxC2 ny=13530=92                                            ...(iv)

By (ii) and (iii), we have

       C2 nxC3 ny=30103=9                                             ...(v)

By (iv) and (v), we have

       C1 nxC2 ny×C3 nyC2 nx=929

C1 C3nn(C2n)2=122C1 nC3n=(C2n)2

2n n!3!(n-3)!=(n!2!(n-2)!)2

2n2(n-1)(n-2)6=(n(n-1)2)2

n2(n-1)(n-2)3=n2(n-1)24n-23=n-14

4n-8=3n-3n=5

C2 x5C35 y=9                                                            [Using (v)]

xy=9

x=9y                                                                     ...(vi)

    From (i), C1 5x4 x9=135x5=135×95

x5=35

x=3 and y=13                                                 [Using (vi)] 

Hence, 6(n3+x2+y)=6(125+9+13)=806 



Q 8 :    

The coefficient of x2012 in the expansion of (1-x)2008(1+x+x2)2007 is equal to _______ .              [2024]



(0)

We have, (1-x)2008(1+x+x2)2007

=(1-x)2007(1-x)(1+x+x2)2007=(1-x)(1-x3)2007

(1-x)(C0-C12007(x3)+...2007)

General term is (1-x)((-1)r Cr 2007x3r)

=(-1)r Cr 2007x3r-(-1)rCr  2007x3r+1

Now, 3r=2012r20123

So, 3r+1=20123r=2011r20113

Hence, there is no term containing x2012.

So, coefficient of x2012=0

 



Q 9 :    

Number of integral terms in the expansion of {7(12)+11(16)}824 is equal to _______ .             [2024]



(138)

We have, {7(12)+11(16)}824

Now, (n+1)th term =tn+1=Crn 11r6 7824-r2

For integral term, 6 should divide r and 824-r2 must be integer.

2 must divide r and r is divisible by 6

Possible values of r so that integral terms are obtained i.e., 0, 6, 12, ... 822

Now, this is an A.P. so let n be number of integral terms 

   822=0+(n-1)6n=138

So, 138 integral terms will be there in the expansion.



Q 10 :    

In the expansion of (1+x)(1-x2)(1+3x+3x2+1x3)5,x0, the sum of the coefficients of x3 and x-13 is equal to _______ .           [2024]



(118)

The given expansion (1+x)(1-x2)(1+3x+3x2+1x3)5

(1+x)2(1-x)(x3+3x2+3x+1)5x15

(1+x)2(1-x)[(x+1)3]5x15(1-x)(1+x)17x15

    Coefficient of x3x18 in (1-x)(1+x)17

(1+x)17-x(1+x)17

0-x(C17 17x17)=C17 17(-1)=-1

and coefficient of x-13x2 in (1-x)(1+x)17

(1+x)17-x(1+x)17

C217-C117=17×8-17=17×7=119

The sum of the coefficient x3 and x-13=-1+119=118