Q 1 :    

The pair of linear equations 2x + 3y = 5 and 4x + 6y = 10 is

  • inconsistent

     

  • consistent

     

  • dependent consistent

     

  • none of these

     

(3)

Dependent Consistent

 



Q 2 :    

If the system of equations 3x+y=1 and (2k-1)x+(k-1)y=2k+1 is inconsistent, then k =

  • -1

     

  • 0

     

  • 1

     

  • 2

     

(4)

3x+y=1   ...(i)

and (2k-1)x+(k-1)y=2k+1 ...(ii)

Comparing eq. (i) with a1x+b1y+c1=0 and eq. (ii)

with a2x+b2y+c2=0, we get

a1=3,  a2=2k-1,  b1=1,  b2=k-1,  c1=-1 and c2=-(2k+1)

Since, system is inconsistent, then a1a2=b1b2c1c2

32k-1=1k-1-1-(2k+1)32k-1=1k-1 or 1k-112k+1

3k-3=2k-1 or 2k+1k-1k=2 or k-2

Hence, the value of k is 2.

 



Q 3 :    

In the given figure, graphs of two linear equations are shown. The pair of these linear equations is:

[IMAGE]

  • consistent with unique solution.

     

  • consistent with infinitely many solutions.

     

  • inconsistent.

     

  • inconsistent but can be made consistent by extending these lines.

     

(4)    inconsistent but can be made consistent by extending these lines.

 



Q 4 :    

The pair of equations x = 2a and y = 3b (a,b0) graphically represents straight lines which are :

  • coincident

     

  • parallel

     

  • intersecting at (2a, 3b)

     

  • intersecting at (3b, 2a)

     

(3)     intersecting at (2a, 3b)

 



Q 5 :    

The value of k for which the system of equations 3x – y + 8 = 0 and 6x – ky + 10 = 0 has infinitely many solutions, is

  • – 2

     

  • 2

     

  • 1/2

     

  • − 1/2

     

(2)

Given equation are 3x-y+8=0 and 6x-ky+16=0

Here, a1=3, b1=-1, c1=8

a2=6, b2=-k, c2=16

For Infinite many solution, a1a2=b1b2=c1c236=-1-k=8161k=12k=2