SMART ACHIEVERS CHEMISTRY - XI | **Conceptual Equation NCERT** Date: 16/10/2021 | 11 | Choose | tha | corroct | anewor | |----------|--------|-----|---------|----------| | <i>,</i> | CHOOSE | uie | COLLECT | aliswei. | A thermodynamic state function is a uantity - (i) used to determine heat changes - (ii) whose value is independent of path - (iii) used to determine pressure volume work - (iv) whose value depends on temperature only. - Q2. For the process to occur under adiabatic conditions, the correct condition is: - (i) $\Delta T = 0$ - (ii) $\Delta p = 0$ - (iii) $\Delta q = 0$ - (iv) w = 0 ### Q3. The enthalpies of all elements in their standard states are: - (i) unity - (ii) zero - (iii) < 0 - (iv) different for each element - Q4. ΔU^{\odot} of combustion of methane is X kJ mol⁻¹. The value of $\Delta H^{\$}$ is: - (i) = ∆U[⊙] - (ii) > ∆U[⊙] - (iii) < ∆U[⊙] - (iv) - Q5. A reaction, $A + B \longrightarrow C + D + q$ is found to have a positive entropy change. The reaction will be - (i) possible at high temperature - (ii) possible at low temperature - (iii) not possible at any temperature - (iv) possible at any temperature - Q6. For the reaction; $2Cl(g) \longrightarrow Cl_2(g)$; what will be the signs of ΔH and ΔS ? - Q7. Comment on the thermodynamic stability of NO(g) and $NO_2(g)$ given: $$\frac{1}{2} \text{ N}_2(g) + \frac{1}{2} \text{ O}_2(g) \longrightarrow \text{NO}(g); \quad \Delta_f \text{H}^{\odot} = 90 \text{ kJ mol}^{-1}$$ $$\text{NO}(g) + \frac{1}{2} \text{ O}_2(g) \longrightarrow \text{NO}_2(g); \quad \Delta_f \text{H}^{\odot} = -74 \text{ kJ mol}^{-1}$$ ### Q8. What happens to work, when (a) gas expands against an external pressure. (b) gas is compressed. - (c) gas expands into vacuum. - (d) an ideal gas expands reversibly and isothermally. - Q9. What are instant cold and hot packs? for what purpose they are used? ### Q10. Give appropriate reasons - (a) It is preferable to determine $\Delta_{r}H$ than $\Delta_{r}U$ - (b) Defining the standard state is necessary - (c) It is necessary to specify phases/ physical states of reactants and products while writing thermochemical equations. # SMART ACHIEVERS CHEMISTRY - XI | **Conceptual Equation NCERT-Solution** Date: 16/10/2021 - **S1.** As per the definition. The correct answer is (ii). - **S2.** The correct answer is (iii) because in adabatic process no heat change occurs. - **S3.** The correct answer is (ii) - **S4.** The correct answer is (iii). The combustion of methane is represented on $$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$$ Here, $\Delta n_{(g)} = 1 - 3 = -2$ Thus, $\Delta H^{\odot} < \Delta U^{\odot}$. - **S5.** The correct answer is (iv). Since the reaction is exothermic ($\Delta H < 0$) and has $\Delta S > 0$, therefore, it is feasible at all temperatures because both the factors favour spontaneity. - **S6.** ΔH : Negative (-ve) because energy is released in bond formation. - ΔS : Negative (– ve) because entropy decreases when atoms combine to form molecules. - **S7.** For NO(*g*); $\Delta_f H^{\odot} = + \text{ ve}$: Unstable in nature. For $NO_2(g)$; $\Delta_f H^{\odot} = -ve$: Stable in nature. - **S8.** (a) When a gas expands against the external pressure p_{ex} in an irreversible manner, work is done by the gas and it is given by the expression; $w_{PV} = p_{ex} \Delta V$ - (b) When gas compressed, work is done on the gas. - (c) When gas expands into vacuum, on work is done because external pressure is zero. - (d) In case the expansion is done under reversible conditions, the work done by the gas is maximum because the opposing force is infinitessimally smaller than the driving force. - **S9.** The instant packs consist of a plastic bags containing a pouch of water and a suitable chemical substance in dry state. In cold packs, the chemical substance used is generally ammonium nitrate whose dissolution process is endothermic. As a result it is gives cold sensation. $$NH_4NO_3 \xrightarrow{Water} NH_4^+ + NO_3^-; \Delta H = + 26.2 \text{ kJ}$$ In hot instant pack, the chemical compound used is MgSO₄ or CaCl₂, the dissolution of which is exothermic. As a result it gives hot sensation, $$CaCl_2(s) \xrightarrow{Water} Ca^{2+}(aq) + 2Cl^-(aq); \Delta H = -82.2 \text{ kJ}$$ These packs are generally used by athletes as first aid devices for treatment of injuries. Their effect lasts for about 15–20 minutes. **S10.** (i) Δ_r H refers to heat change taking place at constant temperature and constant pressure. Since most of the reactions that we carry out in laboratory occur in open vessels *i.e.*, at the atmospheric pressure. Hence, it is more convenient to determine the value of Δ_r H as compared to Δ_r U. - (ii) Enthalpy change depends upon the conditions of the reaction. Thus, in order to make a comparative study, it is necessary to chose same standard reference state of various substances, and express the value of $\Delta_t H$ at the standard state. - (iii) Physical changes like fusion, vaporisation, sublimation, etc., and phase transitions such as diamond to graphite or S₈ (Monoclinic) are also accmpanied by the change of enthalpy. Therefore, while writing the thermochemical equation, it is necessary to specify to physical state or phase of the substance involved. ## SMART ACHIEVERS CHEMISTRY - XI | Numerical Question NCERT Date: 16/10/2021 Q1. For the following equilibrium, $K_c = 6.3 \times 10^{14}$ at 1000 K. $$NO(g) + O_3(g) \rightleftharpoons NO_2(g) + O_2(g)$$ Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_c , for the reverse reaction? - Q2. Calculate the value of K_p at 100 °C for the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$. It is given that at equilibrium partial pressures of N_2O_4 and NO_2 are 0.002 bar and 0.4 bar respectively at 100 °C. - Q3. What is K_c for the following equilibrium when the equilibrium concentration of each substance is: $[SO_2] = 0.60 \, \text{M}$, $[O_2] = 0.82 \, \text{M}$ and $[SO_3] = 1.90 \, \text{M}$? $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ - Q4. At 900 K a sealed bulb contains equilibrium mixture of SO₃ at 0.23 atm, SO₂ at 0.15 atm and O₂ at 0.73 atm. What is the equilibrium constant for $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$? - Q5. Equilibrium constant, K_c for the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 500 K is 0.061. At a particular time, the analysis shows that composition of the reaction mixture is 3.00 mol L⁻¹ N_2 , 200 mol L⁻¹ H_2 , and 0.500 mol L⁻¹ NH^3 . Is the reaction at equilibrium? If not, which direction does the reaction tend to proceed to reach equilibrium? - Q6. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $K_p = 0.157$ atm at 300 K. Calculate the value of K_c for the same reaction at the same temperature. - Q7. For the reaction $2A(g) \to B(g) + 2C(g)$ the equilibrium constant K_p is 1.776×10^{-5} atm at 700 K. Calculate K_c for the reaction. - Q8. The dissociation constant for the reaction $$CuO(s) \rightleftharpoons Cu(s) + \frac{1}{2}O_2(g) \text{ is } 2 \times 10^{-22}(atm)^{1/2}$$ What is the pressure of oxygen? Q9. At 298 K, the equilibrium constant K_c is 2.0×10^{15} for the reaction $$Cu(s) + 2Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$$ If at equilibrium [Ag⁺] = 1.0×10^{-9} mol L⁻¹, what is the equilibrium concentration of [Cu²⁺]? - Q10. For the reaction, $Cu(s) + 2Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$, the equilibium constant is $2.0 \times 10^{15} \, L \, mol^{-1}$ at 278 K. In a solution copper has displaced some silver ions so that the concentration of Ag+ ions is $3.0 \times 10^{-9} \, mol \, L^{-1}$ and the concentration of Cu^{2+} ions is $1.8 \, 10^{-2} \, mol^{-1}$. Is this system at equilibrium? - Q11. The equilibrium constant for the decomposition of solid ammonium chloride into gaseous anmonia and hydrogen chloride is 6×10^{-9} atm² at 400 K. Calculate the equilibrium pressure of the two gases. - Q12. For the reaction Cu(s) + 2 Ag⁺(aq) \rightleftharpoons Cu²⁺(aq) + 2 Ag (s) K = 2 × 10¹⁵ at 298 K. Calculate the equilibrium constant for $$\frac{1}{2}$$ Cu(s) + Ag⁺(aq) $\rightleftharpoons \frac{1}{2}$ Cu²⁺(aq) + Ag (s) ... (i) Q13. At 298 K the equilibrium constant is 138 for the reaction $$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$$... (A) Calculate the equilibrium constant at 298 K for the following reactions: - (a) $2Fe^{3+}(aq) + 2SCN^{-}(aq) \rightleftharpoons 2FeSCN^{2+}(aq)$ - (b) $Fe SCN^{2+}(aq) \rightleftharpoons Fe^{3+}(aq) + SCN^{-}(aq)$ - Q14. For the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ the degree of dissociation of PCl_5 is 82% at 520 K and 1 bar. Calculate the equilibrium constant K_p . - Q15. For the reaction $N_2O_5(g) \rightleftharpoons 2 \ NO_2(g) + 0.5 \ O_2(g)$, calculate the mole fraction of $N_2O_5(g)$ decomposed at a constant volume and temperature, if the initial pressure is 600 mm Hg and the pressure at any time is 960 mm Hg. Assume ideal gas behabiour. - Q16. The degree of dissociation is 0.4 at 400 K and 1.0 atm for the gaseous reaction $PCI_5 \rightleftharpoons PCI_3 + CI_2$. Assuming ideal behaviour of all the gases, calculate the density of equilibrium mixture at 400 K and 1.0 atmosphere. (Atomic mass of P = 31.0 and CI = 35.5) - Q17. At 700 K equilibrium constant for the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is 54.8. If 0.5 mol L⁻¹ of HI(g) is present at equilibrium what are the concentrations of $H_2(g)$ and $I_2(g)$ assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700 K. - Q18. A sample of pure PCI_5 was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PCI_5 was found to be 0.05 mol L⁻¹. If the value of K_c is 8.3×10^3 mol L⁻¹, what are the concentrations of PCI_3 and
CI_2 at equilibrium? - Q19. The equilibrim constant for the reaction $H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$ is 1.6×10^5 at 1024 K. Find the equilibrium pressure of all gases if HBr at 10 bar is introduced into a sealed container at 1024 K. - Q20. At a certain temperature and a total pressure of 10^5 kPa, iodine vapour contains 40% by volume of iodine atoms. Calculate K_p for the equilibrium reaction $\mathbf{I}_2(g) \rightleftharpoons 2\mathbf{I}(g)$. - Q21. At 473 K, equilibrium constant, K_c for decomposition of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If decomposition is depicted as $PCl_5(s) \rightleftharpoons PCl_3(g) + Cl_2(g)$; $\Delta H = 124.0 \text{ kJ mol}^{-1}$. - (a) Write an expression for K_c for the reaction. - (b) What is the value of K_c for the reverse reaction at the same temperature? - (c) What would be the effect on K_c If (i) more PCI $_5$ is added (ii) the pressure is increased (iii) the temperature is increased? - Q22. A sample of pure PCI_5 was introduced into an evacuated vessel at 473 K. After equilibrium was attained, the concentration of PCI_5 was found to be 0.05 mol L⁻¹. What are the concentrations of PCI_3 and CI_2 at equilibrium if the value of K_c is 8.3×10^{-3} mol/L? - Q23. A sample of HI(g) is placed in flask at a pressure of 0.2 atm. At equilibrium, the partial pressure of HI(g) is 0.04 atm. What is K_p for the given equilibrium? $$2HI(g) = H_2(g) + I_2(g)$$ Q24. At 450 K, $K_p = 2.0 \times 10^{10}$ /bar for the given reaction at equilibrium $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ What is K_c at this temperature? Q25. A mixture of 1.57 mol of N_2 , 192 mol of H_2 and 8.13 mol of NH_3 is introduced into a 20 L reaction vessel at 500 K. At this temperature, the equilibrium constant, K_c for the reaction $$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \text{ is } 1.7 \times 10^2.$$ Is the reaction mixture at equilibrium? If not, what is the direction of th net reaction? Q26. What is the equilibrium concentration of each of the substance in the equilibrium when the initial concentration of ICI was 0.78 M? $$2ICl(g) \implies I_2(g) + Cl_2(g); K_c = 0.14$$ Q27. One mole of H₂O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium 40% of water (by mass) reacts with CO according to the equation, $$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$$ Calculate the equilibrium constant for the reaction. - Q28. A mixture of SO₃, SO₂ and O₂ gases is maintained in a 10 L flask at a temperature at which the equilibrium constant (K_c) is 100 for the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$: - (a) If the amounts of SO_2 and SO_3 in the flask are eual, how many moles of O_2 are present? - (b) If the amount of SO₃ in the flask is twice the amount of SO₂, how many moles of O₂ are present? - Q29. At 700 K the equilibrium constant K_p for the reaction $$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$ is 1.80×10^{-3} k Pa. Calculate the value of K_c in mol L⁻¹ for the same reaction at 700 K. - Q30. For the reaction, $\operatorname{CH_4}(g) + 2\operatorname{H_2S}(g) \rightleftarrows \operatorname{CS_2}(g) + 4\operatorname{H_2}(g)$, at value of the equilibrium constant, K_c is 3.6. For each of the following composition, decide whether reaction mixture is a equilibrium. If it is not, decide to which direction the reaction should go. - (a) $[CH_4] = 10.7 \text{ M}$, $[H_2S] = 1.20 \text{ M}$, $[CS_2] = 0.90 \text{ M}$, $[H_2] = 1.78 \text{ M}$ - (b) $[CH_4] = 1.45 \text{ M}$, $[H_2S] = 1.29 \text{ M}$, $[CS_2] = 1.25 \text{ M}$, $[H_2] = 1.75 \text{ M}$ - Q31. Find out the value of K_c for each of the following equilibria from the value of K_p - (a) $2NOCI(g) \rightleftharpoons 2NO(g) + CI_2(g)$ $$K_p = 1.8 \times 10^{-2} \text{ bar at } 500 \text{ K}$$ (b) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ $$K_p = 167 \text{ bar at } 1073 \text{ K}$$ - Q32. Prove that the equilibrium constants for the two reactions - (a) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ (b) $$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$ are related by $K_p(ii) = 1/K_p(i)$. Q33. For the reaction $$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$ the equilibrium constant K_c = 1.7 \times 10¹² at 300 K. Calculate the equilibrium constants for the following reactions at 300 K: - (a) $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons 2SO_3(g)$ (b) $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$. - Q34. For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ if $K_p = 41$ at 400 K what is the value of K_p for each of the following reactions at the same temperature? - (a) $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$ (b) $$\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightleftharpoons NH_3(g)$$ (c) $2N_2(g) + 6H_2(g) \rightleftharpoons 4NH_3(g)$ - Q35. Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction 2 NO (g) + Br₂ $(g) \rightleftharpoons 2$ NOBr (g). When 0.087 mol of NO and 0.0437 mol of Br₂ are mixed in a closed container at constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine. What is the value of K_c ? - Q36. Bromine monochloride (BrCl) decomposes into bromine and chlorine and reaches the equilibrium $2\text{BrCl}(g) \rightleftharpoons \text{Br}_2(g) + \text{Cl}_2(g)$ for which $K_c = 32$ at 500 K. If initially pure BrCl is present at a concentration of 3.30×10^{-3} mol L⁻¹ what is its molar concentration in the mixture at equilibrium? - Q37. A mixture of 1 mole of $\rm H_2O$ and 2 mole of CO is taken in a 10 litre container and heated to 725 K. At equilibrium 40 per cent of water by mass reacts with carbon monoxide according to the equation $$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$ Calculate the equilibrium constants K_c for the given reaction. - Q38. The composition of the equilibrium mixture ($\text{CI}_2 \rightleftarrows 2\text{CI}$), which is attained at 1200 °C, is determined by measuring the rate of effusion through a pin-hole. It is observed that at 1.80 mm Hg pressure, the mixture effuses 1.16 times as fast as krypton effuses under the same conditions. Calculate the fraction of chloride molecules dissociated into atoms, (Relative atomic mass of Kr = 84) - Q39. At 1127 K and 1 atm pressure, a gaseous mixure of CO and CO₂ in equilibrium with solid carbon has 90.55% CO by mass $$C(s) + CO_2(g) \rightleftharpoons 2CO(g)$$ Calculate K_c for this reaction at the above temperatue. Q40. Reaction between N_2 and O_2 takes place as follows: $$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$ If a mixture of 0.482 mol N_2 and 0.933 mol of N_2 is placed in a 10 L reaction vessel and allowed to form N_2 0 at a temperature for which N_2 0 at a temperature for which N_2 0 at a temperature for which N_2 1 determine the composition of equilibrium mixture. Q41. One of the reactions that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to given iron metal and CO_2 . FeO(s) + CO(g) $$\rightleftharpoons$$ Fe(s) + CO₂(g); K_p = 0.265 atm at 1050 K. What are the equilibrium partial pressures of CO and CO₂ at 1050 K if the initial pressures are: $p_{CO} = 1.4$ atm and $p_{CO_2} = 0.80$ atm? - Q42. Three moles of PCI_5 are placed in a 100 L vessel which contains 1 mole N_2 and is maintained at 500 K. The equilibrium pressure is 2.05 atm. Calculate the equilibrium constant Kp for the dissociation of PCI_5 . Take R = 0.0820 atm L mol⁻¹ K⁻¹. - Q43. In the reaction representing the dissociation of phosgene gas (COCI₂) $$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$ the pressure at equilibrium is increased, that is the mixture of gases is compressed keeping the temperature constant. What is the effect of this compression on (a) the eqilibrium concentration of CO, (b) the partial pressure of $COCl_2$, and (c) the equilibrium constant (K_p) of the reaction? Q44. Two moles of HI are confined in one litre vessel at 760 K. The dissociation reaction takes place as $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ For the reaction K_c = 0.023 at 760 K. Compute the equilibrium concentrations of H₂, I₂ and HI. What is the degree of dissociation of HI at 760 K? Q45. One mole of $N_2O_4(g)$ is confined in a 24.6 litre vessel at 300 K. The dissociation reaction takes place as $N_2O_4(g) \rightleftharpoons 2NO_2(g)$. For the reaction, $Kc = 4.6 \times 10^{-3}$ calculate - (a) the degree of dissociation of N₂O₄, and - (b) the equilibrim concentration of NO₂. - Q46. Expression for K_c for the reaction $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ - Q47. Expression for K_c for the $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ - Q48. Calculate $\Delta_r G^{\Theta}$ and K for the reaction NO(g) + 0.5 O₂(g) \rightleftharpoons NO₂(g) at 298 K. Given that Gas NO_2 NO O_2 $\Delta_f G^{\Theta}/kJ \text{ mol}$ 52.0 87.0 0.0 Q49. Ethyl acetate is formed by the reaction of ethanol and acetic acid. The equilibrium is represented by $CH_3COOH(\mathbf{I}) + C_2H_5OH(\mathbf{I}) \rightleftharpoons CH_3COOC_2H_5(\mathbf{I}) + H_2O(\mathbf{I})$ - (a) Name the reactants and products in this reaction. - (b) Express the concentration ratio for the reaction. - (c) At 293 K, when we start with 1.0 mole of acetic acid and 0.18 mole of ethanol 0.171 mole of ethyl acetate is formed at equilibrium. Calculate the equilibrium constant. - (d) Starting with 0.50 mole of ethanol and 1.00 mole of acetic acid 0.214 mole of ethyl acetate is formed after some time at 293 K. Has equilibrium been reached? - (e) Why is some concentrated sulphuric acid added to the reaction mixture in the laboratory preparation of ethyl acetate? - (f) We do not use dilute sulphuric acid for this reaction. Give reason. - (g) The heat of reaction is nearly zero for the given reaction. Tell how will the equilibrium
constant depend upon the temperature? - Q50. At 288 K the solubility of iodine in water is 1.1×10^{-3} mol/L. In an experiment 200 mg of iodine is strirred in 100 mL of water till equilibrium ia reached. - (a) Calculate the mass of iodine in the resultiong saturated solution at 288 K. - (b) What will be the mass of the iodine that is left undissolved? - (c) After equilibrium is reached. 150 mL of water is added to the above saturated solution and stirred will till new equilibrium is established. - (i) How much iodine will be dissolved in the final solution? - (ii) How much iodine will be left undissolved? - (iii) What will be the concentration of iodine solution? (Atomic mass of iodine = 127u) - Q51. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ the equilibrium constant is 80 atm at 100 °C. Predict the behaviour of the following mixtures of NO_2 and N_2O_4 . - (a) $p(NO_2) = p(N_2O_4) = 4 \times 10^{-3}$ atm (b) $p(N_2O_4) = 4 \times 10^{-3}$ (b) $p(N_2O_4) = 2 \times 10^{-3}$ atm and $p(NO_2) = 0.4$ atm - (c) $p(N_2O_4) = 2 \times 10^{-3}$ atm and $p(NO_2) = 1$ atm - (d) $p(N_2O_4) = 0$ and $p(NO_2) = 2 \times 10^{-3}$ atm - Q52. For the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, the equilibrium constant is 0.35 at 298 K. Predict the direction of the reaction in the following mixtures. - (a) Partial pressure of $H_2 = p(H_2) = 0.10$ atm, and p(HI) = 0.80 atm and there is solid I_2 in the container. - (b) $p(H_2) = 0.55$ atm, p(HI) = 0.44 atm, and there is solid I_2 in the container. - (c) $p(H_2) = 2.5$ atm, p(HI) = 0.15 atm, and there is solid I_2 in the container. ## SMART ACHIEV **Numerical Question NCERT-Solution** **CHEMISTRY - XI** Date: 16/10/2021 S1. $$K'_c = \frac{1}{6.3 \times 10^{14}} = 1.59 \times 10^{-15}$$. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$. $$K_p = \frac{(p \text{NO}_2)^2}{p \text{N}_2 \text{O}_4} = \frac{(0.4 \text{ bar})^2}{0.002 \text{ bar}} = 80 \text{ bar}.$$ S3. $$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$ = $$\frac{(1.90)^2}{(0.60)^2(0.82)}$$ = 12.33 mol L⁻¹. For the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $$K_p = \frac{p^2(SO_3)}{p^2(SO_2) \times p(O_2)}$$ The partial pressures of gases are given $$p(SO_3) = 0.23 atm$$ $$p(SO_2) = 0.15 atm$$ $$p(O_2) = 0.73 \text{ atm}$$ $$K_p = \frac{(0.23 \text{ atm})^2}{(0.15 \text{ atm})^2 \times (0.73 \text{ atm})}$$ = 3.22 atm⁻¹. For the reaction $N_2(g) + 3H_2(g) \rightleftarrows 2NH_3(g)$ $K_c = 0.061$, and at a particular time $$Q_c = \frac{[NH_3]^2}{[N_2][H_2]^3} = \frac{(0.500)^2}{(3.00) \times (2.00)^3}$$ $$= \frac{0.25}{24} = 0.0104 < 0.061$$ $$=\frac{0.25}{24}=0.0104<0.061$$ - Since $Q_c < K_c$, the reaction is not at equilibrium. - The reaction will proceed in the forward direction to form more NH₃ to reach equilibrium. - For a reaction K_p and K_c are related by $$K_p = K_c (RT)^{\Delta v}$$ For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $$\Delta v = 2 - 1 = 1$$ $$K_p = 0.157$$ atm at $T = 300$ K Now, $$R = 0.082 \text{ atm L mol}^{-1} \text{ K}^{-1}$$ $$K_c = \frac{K_p}{(RT)^{\Delta V}} = \frac{0.157 \text{ atm}}{0.082 \text{ atm L mol}^{-1} \text{ K}^{-1} \times 300 \text{ K}}$$ $$= 6.38 \times 10^{-3} \text{ mol L}^{-1}.$$ We know that. $$K_p = K_c (RT)^{\Delta v}$$ $$K_c = \frac{K_p}{(RT)^{\Delta V}}$$ Now, $K_p = 1.776 \times 10^{-5}$ atm, R = 0.082 atm L mol⁻¹ K⁻¹, T = 700 K. For the reaction $$2A(g) \rightleftharpoons B(g) + 2C(g)$$ $$\Delta v = 1 + 2 - 2 = 3 - 2 = 1$$ On substituting the values of known quantities into equation (i), we get $$K_c = \frac{1.776 \times 10^{-5} \text{ atm}}{0.082 \text{ atm L mol}^{-1} \text{ K}^{-1} \times 700 \text{ K}}$$ = $3.09 \times 10^{-7} \text{ mol L}^{-1}$. $$= 3.09 \times 10^{-7} \text{ mol L}^{-7}$$ For the heterogeneous reaction, $$CuO(s) \rightleftharpoons Cu(s) + \frac{1}{2}O_2(g)$$ The ewuilibrium constant is given in terms of the pressure of O_2 by $$K_{p} = (pO_{2})^{1/2}$$ $$\rho(O_{2}) = K_{p}^{2}$$ $$= (2 \times 10^{-22} \text{ atm}^{1/2})^{2}$$ $$= 4 \times 10^{-44} \text{ atm}$$ Partial pressure of ${\rm O_2}$ is 4×10^{-44} atm. For the reaction $Cu(s) + 2Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$ $$K_c = \frac{[Cu^{2+}]}{[A\alpha^+]^2} \qquad \dots (i)$$... (i) On substituting the given values of $$K_c = 2.0 \times 10^{15} \text{ L mol}^{-1}$$ [Ag⁺] = $1.0 \times 10^{-9} \text{ mol L}^{-1}$ In equation (i), we have ∴ $$2.0 \times 10^{15} \text{ L mol}^{-1} = \frac{[\text{Cu}^{2+}]}{(1.0 \times 10^{-9} \text{ mol L}^{-1})^2}$$ $$[\text{Cu}^{2+}] = 2.0 \times 10^{15} \text{ L mol}^{-1} \times 1.0 \times 10^{-18} \text{ mol}^2 \text{ L}^{-2}$$ $$= 2.0 \times 10^{-3} \text{ mol L}^{-1}.$$ **S10.** For the reaction, $Cu(s) + 2Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$, the quotient (Q_c) is given by: $$Q_c = \frac{[Cu^{2+}]}{[Ag^+]^2} = \frac{1.8 \times 10^{-2} \text{ mol L}^{-1}}{(3.0 \times 10^{-9} \text{ mol L}^{-1})^2} = 2.0 \times 10^{15}.$$ Since quotient (Q_c) for the given reaction is equal to its equilibrium constant (K_c) the system tis at equilibrium. S11. The decomposition of solid ammonium chloride is representd by $$NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$$ For this heterogeneous reaction the equilibrium constant is expressed as $$K_p = p (NH_3) \times p (HCI)$$ Since NH_3 and HCl are formed in equal amounts, their pressures are also same at equilibrium. Thus $p(NH_3) = p(HCl)$ and $$K_{p} = p (NH_{3}) \times p (HCI) = p^{2}(NH_{3}) = p^{2}(HCI)$$ $$\therefore p (NH_{3}) = p (HCI) = \sqrt{K_{p}} = \sqrt{6 \times 10^{-9} \text{ atm}^{2}}$$ $$= 7.7 \times 10^{-5} \text{ atm}.$$ **S12.** Equation (i) is obtained when equation (A) is multiplied by half. Thus: $$K(i) = [K(A)]^{1/2} = (2 \times 10^{15})^{1/2}$$ = $(20 \times 10^{14})^{1/2} = 4.47 \times 10^{7}$. **S13.** (a) When equation (A) is multiplied by 2, we get equation (i). Therefore: $$K(i) = \{K(A)\}^2 = (138)^2 = 19044 = 1.9 \times 10^4$$ (b) Equation (ii) is obtained when equation (A) is reversed. Thus: $$K(ii) = \frac{1}{K(A)} = \frac{1}{138} = 7.2 \times 10^{-3}$$. **S14.** It is given that $\alpha = 82\% = 82/100 = 0.82$ and P = 1 bar $$K_{p} = \frac{\alpha^{2}P}{1 - \alpha^{2}} = \frac{(0.82) \times 1}{1 - (0.82)^{2}} \text{ bar } = 2.052 \text{ bar.}$$ **S15.** $$N_2O_5(g)$$ → $2NO_2(g)$ + $0.5O_2(g)$ Initial P_0 0 0 0 When $t = t$ $P_0(1 - \alpha)$ $2P_0\alpha$ $0.5 P_0\alpha$ $P(\text{total}) = P_0(1 - \alpha + 2\alpha + 0.5\alpha) = P_0(1 + 1.5\alpha)$ ∴ 960 mm Hg = 600 mm Hg (1 + 1.5 α) or, α = 0.4 = Mole fraction of N₂O₅ decomposed. **S16.** Let us suppose that n is the strating amount of PCI_5 . That is n = m/M = m/208.5 g mol⁻¹. For the reaction: $$PCI_5 \iff PCI_3 + CI_2$$ Initial amounts $n = 0 = 0$ Equilibrium amounts $n(1-\alpha) = n\alpha + n\alpha$ Total amount of mixture at equilibrium = $n(1 - \alpha) + n\alpha + n\alpha$ = $$n(1 + \alpha) = n \times 1.4 = 1.4 \times m/M$$ For ideal gas $$PV = n_{\text{mixture}} \times RT = (n \times 1.4) RT = \frac{m}{M} \times 1.4 \times \text{m/M}$$ $$\frac{m}{V} = \frac{PM}{1.4 RT} = \frac{1 \text{ atm} \times 208 \text{ g mol}^{-1}}{1.4 \times 0.082 \text{ atm L mol}^{-1} K^{-1} \times 400 K} = 4.53 \text{ g/L}$$ Thus, density of equilibrium mixture is 4.53 g/L. **S17.** For the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $$K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{[HI]^2}{[H_2]^2} = \frac{[HI]^2}{[I_2]^2}$$ $$\therefore \frac{[HI]}{[H_2]} = (K_c)^{1/2}$$ and $$[H_2] = [I_2] = \frac{[HI]}{(K_c)^{1/2}} = \frac{0.5 \text{ mol L}^{-1}}{(54.8)^{1/2}}$$ = 0.0675 mol L⁻¹. **S18.** For the traction $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$ $$K_c = \frac{[PCI_3][CI_2]}{[PCI_5]} = \frac{x^2}{0.05 \text{ mol L}^{-1}}$$ $$(PCI_3] = [CI_2] = x = (K_c \times 0.05 \text{ mol } L^{-1})^{1/2}$$ $$= (8.3 \times 10^3 \text{ mol } L^{-1} \times 0.05 \text{ mol } L^{-1})^{1/2}$$ $$= 2.04 \text{ mol } L^{-1}.$$ **S19.** Let us suppose that x is the equilibrium pressure of each one of H_2 and Br_2 , and p (= 10 bar) is that of HBr. Thus, for the reaction $H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$ $$K_p = \frac{(p \, \text{HBr})^2}{(p \, \text{H}_2) \times (p \, \text{Br}_2)} = \frac{p^2}{x^2}$$ and $$x^2 = \frac{p^2}{K_p} = \frac{(10 \text{ bar})^2}{1.6 \times 10^5} = 6.25 \times 10^{-4} \text{ bar}^2$$ $$x = (6.25 \times 10^{-4} \text{ bar}^2)^{1/2} = 2.5 \times 10^{-2} \text{ bar}$$ $$x = p(H_2) = p(Br^2) = 2.5 \times 10^{-2} \text{ bar}$$ $$p = (HBr) = 10 bar.$$ **S20.** For the reaction $I_2(g) \rightleftharpoons 2I(g)$ $$K_p = (pI)^2/pI_2$$.. Dalton's law Partial pressure = Mole fraction × Total pressure Mole fraction of gas = Volume % if gas. Thus Mole fraction of I = 40/100 = 0.4 Mole fraction of $I_2 = 1 - 0.4 = 0.6$ Partial pressure of I = pI = 0.4×10^5 k Pa Partial pressure of $I_2 = \rho I_2 = 0.6 \times 10^5 \text{ k Pa}$ $$K_p = \frac{(pl)^2}{pl_2} = \frac{(0.4 \times 10^5 \,\mathrm{kPa})^2}{0.6 \times 10^5 \,\mathrm{kPa}}$$ = 2.67 × 10⁴ kPa. **S21.** (a) For the reaction $PCl_5(s) \rightleftharpoons PCl_3(g) + Cl_2(g)$ $$K_c(a) = [PCl_3][Cl_2] = 8.3 \times 10^{-3}$$ (b) For the reverse reaction $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ $$K_c(b) = \frac{1}{[PCl_3][Cl_2]} = \frac{1}{K_c(a)} = \frac{1}{8.3 \times 10^{-3}} = 120.48$$ (c) Change of K It is independent of the initial amount of the reactant and also independent of total pressure. Therefore, - (i) Addition of more PCI_5 will not affect the value of K_c - (ii) Increase of pressure will not affect the value of K_c - (iii) Increase of temperature will increase the value of K_c (reaction is endothermic). **S22.** For the reaction $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$ $$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]}$$ Or, $$[PCI_3] \times [CI_2] = [CI_2]^2 = [PCI_3]^2 = K_c \times [PCI_5] = 8.3 \times 10^{-3} \times 0.05 \text{ mol/L}$$ \therefore $[PCI_3] = [CI_2] = (8.3 \times 10^{-3} \text{ mol/L}
\times 0.05 \text{ mol/L})^{1/2} = 0.02 \text{ mol/L}$ **S23.** $$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$ Initial pressure 0.2 atm — — At equilibrium (0.2 - p) atm p/2 atm p/2 atm 0.08 atm $$K_p = \frac{P_{H_2} \times P_{I_2}}{(P_{HI})^2} = \frac{0.08 \times 0.08}{(0.04)^2} = 4.$$ **S24.** For the given reaction, $$\Delta n_g = n_p - n_r = 2 - 3 = -1$$ $Kp = K_c (RT)^{\Delta n}$ $Kc = K_p (RT)^{-\Delta n} = K_p (RT)$ $= (2.0 \times 10^{10} \, \text{bar}^{-1}) (0.0831) \, \text{L bar K}^{-1} \, \text{mol}^{-1}) (450 \, \text{K})$ or S25. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $= 5.48 \times 10^{11} \, \text{L mol}^{-1}$ $$Q_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$ $$= \frac{(8.13/20 \text{ mol L}^{-1})^2}{(1.57/20 \text{ mol L}^{-1})(1.92/20 \text{ mol L}^{-1})^3}$$ $$= 2.38 \times 10^3.$$ Since $Q_c \neq K_c$, the reaction mixture is not at equilibrium. Since $Q_c > K_c$, the net reaction will be in the backward direction. **\$26.** Suppose at equilibrium, $$[I_2] = [CI_2] = x \mod L^{-1}$$ $$2ICI(g) \Longrightarrow I_2(g) + CI_2(g)$$ Initial conc. ٠. 0.78 M 0 0 At equilibrium 0.78 - 2 x x $$K_c = \frac{[I_2][CI_2]}{[ICI]}$$ $$0.14 = \frac{x \times x}{(0.78 - 2x)^2}$$ or $$\frac{x}{0.78 - 2x} = \sqrt{0.14} = 0.37$$ or $$x = 0.29 - 74x$$ or or $$1.74 = 0.29$$ or $x = 0.17$ Hence, at equilibrium $$[I_2] = [CI_2] =$$ **0.17 M**, $[ICI] = 0.78 - 2 \times 0.17 M =$ **0.44 M**. #### **\$27.** At equilibrium $$[H_2O] = \frac{1 - 0.40}{10} \text{ mol } L^{-1} = 0.06 \text{ mol } L^{-1}$$ $$[CO] = 0.06 \text{ mol L}^{-1}$$ $$[H_2] = \frac{0.40}{10} \text{ mol } L^{-1} = 0.04 \text{ mol } L^{-1}$$ $$[CO_2] = 0.04 \text{ mol L}^{-1}$$ $$H_{2}] = \frac{0.40}{10} \text{ mol } L^{-1} = 0.04 \text{ mol } L^{-1}$$ $$O_{2}] = 0.04 \text{ mol } L^{-1}$$ $$K = \frac{[H_{2}][CO_{2}]}{[H_{2}O][CO]} = \frac{0.04 \times 0.04}{0.06 \times 0.06} = \mathbf{0.44}.$$ as: $$SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{3}(g).$$ ### **S28.** Equilibrium state is described as: $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$. $$K_c = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$$ $$O_2 = \frac{[SO_3]^2}{[SO_2]^2} \times \frac{1}{K_c} = Molarity of O_2.$$ (a) $$:$$ $[SO_3] = [SO_2]$... [Given] $$\therefore [O_2] = 1 \times \frac{1}{100} = 0.01 \text{ mol } L^{-1}$$ and amount of O_2 = Molarity \times Volume = 0.01 mol $$L^{-1} \times 10 L = 0.1$$ mol. (b) : $$[SO_3] = 2[SO_2]$$... [Given] $$[O_2] = \frac{[SO_3]^2}{[SO_2]^2} \times \frac{1}{K_c} = \frac{[2SO_2]^2}{[SO_2]^2} \times \frac{1}{100} = 0.04 \text{ mol L}^{-1}$$ and amount of O_2 = Molarity \times Volume $= 0.04 \text{ mol } L^{-1} \times 10 L = 0.4 \text{ mol}.$ **S29.** We know that $$K_p = K_c (RT)^{\Delta v}$$ $$\mathcal{K}_{c} = \frac{\mathcal{K}_{p}}{(RT)^{\Delta v}} \qquad \dots (i)$$ It is given that $K_p = 1.80 \times 10^{-3} \,\mathrm{kPa} = 1.80 \times 10^{-3} \times 10^3 \,\mathrm{Pa} = 1.80 \,\mathrm{Pa} = 1.80 \,\mathrm{N\,m^{-2}}$. Since K_p is in N m⁻², we shall use $R = 8.314 \,\mathrm{N\,m\,mol^{-1}\,K^{-1}}$ and $T = 700 \,\mathrm{K}$. For the reaction $$2SO_3(g) \implies 2SO_2(g) + O_2(g)$$ $\Delta v = (2 + 1) - 2 = 3 - 2 = 1$ On substituting the values of known quantities into equation (i), we get $$K_c = \frac{1.80 \text{ Nm}^{-2}}{8.314 \text{ N m mol}^{-1} \text{ K}^{-1} \times 700 \text{ K}}$$ $$= 3.09 \times 10^{-4} \text{ mol m}^{-3}.$$ $$= 3.09 \times 10^{-7} \text{ mol L}^{-1}. \qquad (\because 10^{-3} \text{ m}^3 = 1 \text{ dm}^3 = 1 \text{ L})$$ **S30.** For the reaction $CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g) K_c = 3.6$ (a) $$Q_c = \frac{[CS_2][H_2]^2}{[CH_4][H_2S]^2} = \frac{(0.90 \text{ M}) \times (1.78 \text{ M})^4}{(1.07 \text{ M}) \times (1.20 \text{ M})^2} = 6.51 > 3.6$$ \therefore $Q_c > K_c$, therefore the reaction mixture is not at equilibrium. The reaction will proceed in the reverse direction to form more reactants to reach equilibrium. (b) $$Q_c = \frac{[CS_2][H_2]^2}{[CH_4][H_2S]^2} = \frac{(1.25) \times (1.75)^4}{(1.45) \times (1.29)^2} = 3.88 > 3.6$$ $Q_c > K_c$, therefore the reaction mixture is not at equilibrium. It will proceed in the reverse direction to form more reactants to reach equilibrium. **S31.** The reaction $K_p = K_c (RT)^{\Delta v}$ gives $$K_c = \frac{K_p}{(RT)^{\Delta V}}$$ For the reaction $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$ $$\Delta v = (2 + 1) - 2 = 1$$, $K_p = 1.8 \times 10^{-2}$ bar at 500 K $$K_c = \frac{K_p}{(RT)^{\Delta \nu}} = \frac{1.8 \times 10^{-2} \text{ bar}}{0.08314 \text{ bar dm}^3 \text{ mol}^{-1} \times 500 \text{ K}}$$ $$= 4.33 \times 10^{-4} \text{ mol dm}^{-3}.$$ $$= 4.33 \times 10^{-4} \text{ mol L}^{-1}.$$ For the reaction $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ $$\Delta v = 1 - 0 = 1$$, $K_p = 167$ bar at 1073 K $$\Delta v = 1 - 0 = 1, \quad K_p = 167 \text{ bar at } 1073 \text{ K}$$ $$K_c = \frac{K_p}{RT} = \frac{167 \text{ bar}}{0.08314 \text{ bar dm}^3 \text{ mol}^{-1} \times 1073 \text{ K}}$$ $$= 1.872 \text{ mol dm}^{-3}.$$ $$= 1.872 \text{ mol L}^{-1}.$$ **S32.** For the reaction (a) $$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$ $$K_p(i) = \frac{(pHI)^2}{(pH_2)(pI_2)}$$... (i) and for (ii) $2HI(g) \Leftrightarrow H_2(g) + I_2(g)$ $$K_p(i) = \frac{(pH_2)(pI_2)}{(pHI)^2}$$... (ii) Now, right hand side of equation (ii) may be written as R.H.S. = $$\frac{1}{(pHI)^2/(pH_2)(pI_2)} = \frac{1}{K_p(i)}$$ Therefore, $K_p(ii) = 1/K_p(i)$. ### **S33.** For the given reaction $$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$ $$K_c = \frac{[SO_3]}{[SO_2][O_2]^{1/2}} = 1.7 \times 10^{12}$$ $$g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ $$K_c(i) = \frac{[SO_3]^2}{[SO_2]^2[O_2]} = 2.89 \times 10^{24}.$$ $$\rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g).$$ - For reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ - (a) For reaction $SO_3(g) \Leftrightarrow SO_2(g) + \frac{1}{2} O_2(g)$. $$\Rightarrow SO_{2}(g) + \frac{1}{2}O_{2}(g).$$ $$K_{c}(ii) = \frac{[SO_{2}][O_{2}]^{1/2}}{[SO_{3}]} = \frac{1}{K_{c}} = \frac{1}{1.7 \times 10^{12}}$$ $$= 0.588 \times 10^{-12} = 5.88 \times 10^{-13}.$$ **S34.** Let us suppose that the given reaction is (A) i.e., $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$... (A) $2NH_3(g) \rightleftarrows N_2(g) + 3H_2(g)$ is the reverse reaction. Thus $$K_p(i) = \frac{1}{K_p(A)} = \frac{1}{41} = 2.439 \times 10^{-2}$$ - $K_{p}(i) = \frac{1}{K_{p}(A)} = \frac{1}{41} = 2.439 \times 10^{-2}$ (b) $\frac{1}{2}N_{2}(g) + \frac{3}{2}H_{2}(g) \rightleftharpoons NH_{3}(g)$ is half of reaction (A). Thus $K_{p}(ii) = [K_{p}(A)]^{1/2} = (41)^{1/2} = 6.403$ - (c) $2N_2(g) + 6H_2(g) \rightleftharpoons 4NH_3(g)$ is twice of reaction (A), Thus $K_{n}(iii) = [K_{n}(A)]^{2} = (41)^{2} = 1681.$ **S35.** For the reaction 2 NO (g) + Br₂ $(g) \rightleftharpoons$ 2 NOBr (g) at equilibrium $$[NOBr] = 0.0518 \, mol$$ $$[NO] = [NO]_{initial} - [NO]_{reacted}$$ $$= [NO]_{initial} - [NOBr]_{formed}$$ $$= 0.087 \text{ mol} - 0.0518 \text{ mol} = 0.0352 \text{ mol}$$ $$[Br_2] = [Br_2]_{initial} - [Br_2]_{reacted}$$ $$= [Br]_{initial} - \frac{1}{2} [NOBr]_{formed}$$ = $$0.0437 \text{ mol} - \frac{1}{2} \times 0.0518 \text{ mol} = 0.0178 \text{ mol}$$ $$K_c = \frac{[\text{NOBr}]^2}{[\text{NO}]^2 [\text{Br}_2]} = \frac{(0.0518)^2}{(0.0352)^2 \times (0.0178)} = 1.22 \times 10^2.$$ **S36.** Let us suppose that amount of BrCl used is x. Therefore, for the reaction: $$2BrCl(g)$$ \rightleftharpoons $Br_2(g)$ + $Cl_2(g)$ Initial mole: $$3.30 \times 10^{-3}$$ Equilibrium mole: $$(3.30 \times 10^{-3} - x)$$ $$K_c = \frac{[Br_2][Cl_2]}{(3.30 \times 10^{-3} - x)^2} = \frac{(x/2)^2}{(3.30 \times 10^{-3} - x)^2}$$ or $$\frac{x/2}{3.30 \times 10^{-3} - x} = \sqrt{K_c} = \sqrt{32} = 5.6568$$ $$\therefore 0.5 x = (3.30 \times 10^{-3}) \times 5.6568 - 5.6568 \times x$$ $$x(0.5 + 5.6568) = 3.30 \times 10^{-3} \times 5.6568$$ $$\therefore \qquad x = \frac{3.30 \times 10^{-3} \times 5.6568}{6.1568} = 3.0 \times 10^{-3}$$ $$x = \frac{3.30 \times 10^{-3} \times 5.6568}{6.1568} = 3.0 \times 10^{-3}$$ [BrCl] = $3.30 \times 10^{-3} - 3.0 \times 10^{-3}$ = $0.3 \times 10^{-3} = 3.0 \times 10^{-4}$ mol L⁻¹. Initial amount of water = 1 mole S37. Initial mass of water = 1 mol \times 18 g mol⁻¹ = 18 g Mass of water that is used up = 40% of the initial mass $$=\frac{40}{100} \times 18 g = 0.4 \times 18 g = 7.2 g$$ Mole of water that is used up = $$\frac{\text{Mass of water used up}}{\text{Molar mass of water}}$$ $$= \frac{0.4 \times 18g}{18 \,\mathrm{gmol}^{-1}} = 0.4 \,\mathrm{mol}$$ According to the balanced chemical equation Mole of H₂O consumed = Mole of CO consumed = 0.4 mol Mole of CO₂ formed = Mole of H₂ formed = 0.4 mol Thus: $$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$ Equilibrium mole: $$(1-0.4)$$ mol $(1-0.4)$ mol 0.4 mol 0.4 mol 0.4 mol Equilibrium molarity: $$\frac{0.6 \text{ mol}}{10 \text{ L}}$$ $\frac{0.6 \text{ mol}}{10 \text{ L}}$ $\frac{0.4 \text{ mol}}{10 \text{ L}}$ $\frac{0.4 \text{ mol}}{10 \text{ L}}$ For the given reaction: $$K_c = \frac{[CO_2][H_2]}{[CO][H_2O]} = \frac{(0.4 \text{ mol/} 10 \text{ L}) \times (0.4 \text{ mol/} 10 \text{ L})}{(0.6 \text{ mol/} 10 \text{ L}) \times (0.6 \text{ mol/} 10 \text{ L})} = 0.44$$ **S38.** Let us suppost that for the reaction $Cl_2 \rightleftharpoons 2Cl$ $$n_0$$ = Initial mole of Cl_2 $$\alpha$$ = Degree of dissociation of Cl_2 at equilibrium $$n_0(1-\alpha)$$ = Mole of undissociated Cl₂ $$2n_0 \alpha$$ = Mole of CI produced $$n_0$$ 0 ... initial state $\operatorname{Cl}_2 \iff 2\operatorname{Cl}$... equilibrium state $a_0(1-lpha) = 2n_0lpha$ Total mole of the mixture = $n_0 (1 - \alpha) + 2n_0 \alpha = n_0 (1 + \alpha)$ Mole fraction of $$Cl_2 = \frac{n_0 (1 - \alpha)}{n_0 (1 + \alpha)} = \frac{1 - \alpha}{1 + \alpha} = x (Cl_2)$$ Mole fraction of CI = $$\frac{2n_0\alpha}{n_0(1+\alpha)} = \frac{2\alpha}{1+\alpha} = x$$ (CI) Molar mass of the mixture = $(x \times M) \text{ Cl}_2 + (x \times M) \text{ Cl}$ $$= \frac{1-\alpha}{1+\alpha} \times 71 + \frac{2\alpha}{1+\alpha} \times
35.5$$ $$M(\text{mixture}) = \frac{71}{1+\alpha}$$ According to Graham's law of diffusion, under similar conditions $$\frac{r \text{ (mixture)}}{r \text{ (Krypton)}} = \frac{M \text{ (Krypton)}}{M \text{ (mixture)}} = 1.16$$ $$M \text{ (mixture)} = \frac{M \text{ (Krypton)}}{(1.16)^2} = \frac{84}{(1.16)^2} = 62.42$$ Now, $$M(\text{mixture}) = \frac{71}{1+\alpha} = 62.42$$ or $71 = 62.42 + 62.42 \alpha$ α = 0.1375 and Fraction of chlorine molecule dissociated = 0.1375. **S39.** If total mass of the mixture of CO and CO₂ is 100 g, then Mass of $$CO = 90.55g$$ Mass $CO_2 = 100 - 90.55 = 9.45 g$ and Number of moles of CO = 90.55/28 = 3.23٠:. Number of moles of $CO_2 = 9.45/44 = 0.22$ $$p_{CO} = \frac{3.23}{3.23 + 0.22} \times 1 \text{ atm} = 0.94 \text{ atm}$$ of CO = 90.55/28 = 3.23 of CO₂ = 9.45/44 = 0.22 $$p_{CO} = \frac{3.23}{3.23 + 0.22} \times 1 \text{ atm} = 0.94 \text{ atm}$$ $$p_{CO_2} = \frac{0.22}{3.23 + 0.22} \times 1 \text{ atm} = 0.06 \text{ atm}$$ $$K_p = \frac{p_{CO}^2}{p_{CO_2}} = \frac{(0.94)^2}{9.06} = 14.25$$ $$K_p = \frac{p_{CO}^2}{p_{CO_2}} = \frac{(0.94)^2}{9.06} = 14.25$$ $$\Delta n_g = 2 - 1 = 1$$ $$K_p = K_c (RT)$$ $$K_{o} = K_{c} (RT)$$ or $$K_c = \frac{K_p}{RT} = \frac{14.25}{0.0821 \times 1127} = 0.154$$ S40. Initial moles: ٠. (0.482 - x) (0.933 - x/2)Moles at equilibrium: Since, the value of K is very small (2.0×10^{-37}) it indicates that the equilibrium is very much in favour much in favour of reactants and thus the value of x is very very small. Therefore, the approximate concentrations at equilibrium may be writen as $$[N_2] = \left(\frac{0.482 - x}{10}\right) \approx 0.0482 \text{ mol } L^{-1}$$ $$[O_2] = \left(\frac{0.933 - x/2}{10}\right) \approx 0.0933 \text{ mol } L^{-1}$$ $$[N_2O] = \left(\frac{x}{10}\right) \quad \text{or} \quad 0.1x \, \text{mol} \, L^{-1}$$ $$K_c = \frac{[N_2O]^2}{[N_2]^2 [O_2]} = \frac{(0.1x)^2}{(0.0482)^2 (0.0933)}$$ $$= 20 \times 10^{-37}$$ $$x = 6.6 \times 10^{-20}$$ $$\therefore \qquad [N_2O] = 0.1 \times 6.6 \times 10^{-20} = 6.6 \times 10^{-21} \, \text{mol} \, L^{-1}$$ $$[N_2] = 0.0482 \, \text{mol} \, L^{-1}$$ $$[O_2] = 0.0933 \, \text{mol} \, L^{-1}.$$ $$\text{FeO}(s) + \text{CO}(g) \implies \text{Fe}(s) + \text{CO}_2(g)$$ S41. Initial pressures $$FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$$ $$- 1.4 atm - 0.80 atm$$ $$Q_p = \frac{p_{CO_2}}{p_{CO}} = \frac{0.80}{1.4} = 0.571$$ Since $Q_p > K_p$, the net reaction will proceed in the backward direction. Therefore, pressure of CO_2 will decrase and that of CO will increase to attain equilibrium. Hence, if p is the decrease in pressure of CO_2 , then increase in pressure of CO = p. :. At equilibrium: $$p_{\text{CO}_2} = (0.80 - p) \text{ atm}, \quad p_{\text{CO}} = (1.4 + p) \text{ atm}$$ $$K_{p} = \frac{p_{\text{CO}_{2}}}{p_{\text{CO}}}$$ $$0.265 = \frac{0.80 - p}{1.4 + p} \quad \text{or } 0.265 (1.4 + p) = 0.80 - p$$ $$0.265 p = 0.80 - p$$ $$1.265 p = 0.429 \quad \text{orr} \quad p = 0.339 \text{ atm}$$ 0.371 + 0.265 p = 0.80 - por 1.265 p = 0.429 orr p = 0.339 atm or At equilibrium: *:*. ٠. $$p_{CO}$$ = 1.4 + 0.339 atm = **1.739 atm** p_{CO_2} = 0.80 – 0.339 atm = **0.461 atm**. **S42.** For the decomposition of x mole of PCI₅, we have ٠. ٠. The presence of N₂ will be counted in the calculation of total moles of the gaseous mixture. Equilibrium moles = Mole of $$(PCI_5 + PCI_3 + CI_2 + N_2)$$ = $3(1 - \alpha) + 3\alpha + 3\alpha + 1$ mole N_2 $n_{total} = 4 + 3\alpha$ From ideal gas equation PV = nRt, we have n = PV/RT. Therefore. $$n_{\text{total}} = \frac{PV}{RT}$$ $$4 + 3\alpha = \frac{2.05 \,\text{mol} \times 100 \,\text{L}}{0.082 \,\text{atm} \,\text{L} \,\text{mol}^{-1} \,\text{K}^{-1} \times 500 \,\text{K}} = 5$$ $$\alpha = (5 - 4)/3 = 1/3$$ Mole fractions of reactive gases at equilibrium: $$A + 3\alpha = \frac{2.05 \text{ mol} \times 100 \text{ L}}{0.082 \text{ atm L mol}^{-1} \text{ K}^{-1} \times 500 \text{ K}} = 5$$ $$\alpha = (5 - 4)/3 = 1/3$$ **tive gases at equilibrium:** $$x(\text{PCI}_5) = \frac{3 - 3\alpha}{5} = \frac{3 - 3/3}{5} = \frac{2}{5} = 0.4$$ $$x(\text{PCI}_3) = \frac{3\alpha}{5} = \frac{3 \times 1/3}{5} = \frac{1}{5} = 0.2$$ $$x(\text{CI}_2) = \frac{3\alpha}{5} = \frac{3 \times 1/3}{5} = \frac{1}{3} = 0.2$$ Partial pressures of reactive gases at equilibrium: $$x(PCI_3) = x(PCI_5) \times P = 0.4 \times 2.05 \text{ atm} = 0.82 \text{ atm}$$ $x(PCI_3) = x(PCI_3) \times P = 0.2 \times 2.05 \text{ atm} = 0.41 \text{ atm}$ $p(CI_2) = x(CI_2) \times P = 0.2 \times 2.05 \text{ atm} = 0.41 \text{ atm}$ N₂ is inert, therefore its partial pressure does not appear in the expression of equilibrium constant. Thus, $$K_p = \frac{p(PCl_3) \times p(Cl_2)}{p(PCl_5)}$$ $$= \frac{(0.41 \text{ atm}) \times (0.41 \text{ atm})}{(0.82 \text{ atm})} = 0.205 \text{ atm}.$$ **S43.** In the reaction: $$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$ $\Delta v = (1 + 1) - 1 = 1$ There is increase in the moles as the products are formed. Therefore, according to Le Chatelier's principle an increase of pressure will favour the back direction of the reaction where the number of molecules is less than that in the forward direction. Thus on increasing the pressure: - (a) The equilibrium concentration of CO will decrease. - (b) The partial pressure of COCl₂ will increase. - (c) The equilibrium constant (K_p) will not change with change of pressure. Because, this equilibrium constant is related to the partial pressures of the gases in the following form: $$K_p = \frac{p \, \text{CO} \times p \, \text{Cl}_2}{p \, \text{COCl}_2}$$ The partial pressures of gases are related to their mole fractions as: $$p(CO) = x(CO) \times P, \qquad p(Cl_2) = x(Cl_2) \times P$$ and $$p(COCl_2) = x(COCl_2) P$$ $$\therefore \qquad \qquad \mathcal{K}_p = \frac{x(CO) \times x(Cl_2)}{x(COCl_2)} \times P = \mathcal{K}_x \times P$$ where $$\mathcal{K}_x = \frac{x(CO) \times x(Cl_2)}{x(COCl_2)}$$ Now as the pressure is increased the mole fractions of CO and Cl_2 will decrease and that of $COCl_2$ will increase. Thus K_x will decrease. But the product $K_x \times P$ will remain constant when P is increased. **S44.** For the given reaction let us suppose that *x* is the amount of HI dissociated. Mole of H_2 formed = x/2 = Mole of I_2 formed It is given that $n_0 = 2 \text{ mol and } V = 1 \text{ L. Therefore, } C_0 = 2 \text{ mol L}^{-1}$ Equilibrium law gives $$K_c = \frac{[H_2][I_2]}{[HI]^2} = \frac{[H_2]^2}{[HI]^2} = \frac{[I_2]^2}{[HI]^2}$$ $$\therefore \qquad \frac{[H_2]}{[HI]} = (K_c)^{1/2}$$ Thus, $$\frac{x/2}{C_0 - x} = (K_c)^{1/2}$$ $$\frac{x}{2 - x} = 2 \times (0.023)^{1/2} = 0.3033$$ On solving for x, we get $$x = 0.4654 \text{ mol L} - 1$$ $$[H_2] = [I_2] = x/2 = 0.2327 \text{ mol L}^{-1}$$ and [HI] = $$2 - x = 2 \text{ mol } L^{-1} - 0.4654 \text{ mol } L^{-1}$$ = 1,5346 mol L^{-1} $$\alpha = \frac{x}{n_0} = \frac{0.4654}{2} = 0.2327.$$ **S45.** For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ Initial mole of $N_2O_4 = n_0 = 1$ Moles of N_2O_4 undissociated = $n_0 - x = 1 - x$ Moles of NO_2 formed = 2x Mollarity of $$N_2O_4 = [N_2O_4] = \frac{1 - x}{V}$$ Mollarity of $$NO_2 = [NO_2] = \frac{2x}{V}$$ $$K_c = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(2x/V)^2}{(1-x)/V} = \frac{4x^2}{(1-x)V}$$ $$4x^2 + K_c Vx - K_c V = 0$$ It is a quadratic equation. Its solution is given by $$x = \frac{-K_c V \pm \sqrt{(K_c V)^2 + 16(K_c V)}}{2 \times 4}$$ It is given that $$K_c = 4.6 \times 10^{-3}$$ and $V = 24.6$ L $$x = \frac{-4.6 \times 10^{-3} \times 24.6 \pm \sqrt{(4.6 \times 10^{-3} \times 24.6)^2 + 16(4.6 \times 10^{-3} \times 24.6)}}{8}$$ $$= 0.168$$ Degree of dissociation of $N_2O_4 = \alpha = \frac{\text{Moles of } N_2O_4 \text{ dissociated}}{\text{Initial moles of } N_2O_4}$ $$= \frac{0.168 \text{ mol}}{1.0 \text{ mol}} = 0.168$$ Equilibrium concentration of $$NO_2 = \frac{2x}{V} = \frac{2 \times 0.168 \text{ mol}}{24.6 \text{ L}}$$ $= 0.0136 \text{ mol L}^{-1}$ $$n_0$$ 0 $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ n_0-x 2x Equilibrium moles $$n_0(1-\alpha)$$ $$2 n_0 \alpha$$ Molarities $$\frac{n_0(1-\alpha)}{V}$$ $$\frac{2n_0\alpha}{V}$$ Equilibrium law gives $$K_c = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(2n_0\alpha/V)^2}{n_0(1-\alpha)/V}$$ $$= \frac{4\alpha^2(n_0/V)}{1-\alpha} = \frac{4\alpha^2C_0}{1-\alpha}$$ Here $C_0 = n_0/V = \text{Initial molarity}$, and α is the degree of dissociation of N_2O_4 . S47. Initial mole $$n_0$$ 0 0 $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$ $n_0 - x$ x x $\frac{n_0 - x}{V}$ $\frac{x}{V}$ Equilibrium Molarities Equilibrium law gives $$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{(x/V)(x/V)}{(n_0 - x)/V} = \frac{x^2}{n_0 - x} \times \frac{1}{V}$$ $$\alpha = \frac{x}{N}$$ $$\alpha = \frac{x}{n_0}$$ ∴. $$x = n_0 \alpha$$ ∴ $$K_c = \frac{(n_0 \alpha)^2}{n_0 - n_0 \alpha} \cdot \frac{1}{V} = \frac{\alpha^2}{1 - \alpha} \times C_0.$$ where $$C_0 = n_0 / V = Initial molarity.$$ **S48.** (a) For the reaction $NO(g) + 0.5O_2(g) \rightleftharpoons NO_2(g)$ $$\begin{split} \Delta_r G^\ominus &= \Delta_f G^\ominus(\text{NO}_2) - [\Delta_f G^\ominus(\text{NO}) + 0.5 \ \Delta_f G^\ominus(\text{O}_2)] \\ &= 52.0 \ \text{kJ mol}^{-1} - [87.0 + 0.5 \times 0.0] \ \text{kJ mol}^{-1} \\ &= -35.0 \ \text{kJ mol}^{-1}. \end{split}$$ (b) $$\log K = \frac{\Delta_r G^{\odot}}{2.303 RT}$$ $$= \frac{-(-35.0) \text{ kJ mol}^{-1}}{2.303 \times 8.314 \times 10^{-3} \text{ kJ mol}^{-1} \text{ K}^{-1} \times 298 \text{ K}}$$ $$= 6.134$$ \therefore K = antilog (6.134) = 1.36 × 10⁶. **S49.** (a) $CH_3COOH(I) + C_2H_5OH(I) \rightleftharpoons CH_3COOC_2H_5(I) + H_2O(I)$ Acetic acid Ethanol Ethyl acetate Water Reactants: Acetic acid, Ethanol. Products: Ethylacetate, Water. (b) The given reaction is an example of liquid phase homogeneous reaction. The concentration ratio of the reaction is given by $$Q_{c} = \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]}$$ (c) $CH_3COOH(I) + C_2H_5OH(I) \rightleftharpoons CH_3COOC_2H_5(I) + H_2O(I)$ 1.00 mol 0.18 mol 0 0 ...
Standard 0.171 mol 0.171 mol = 0.829 mol = 0.009 mol ... At equilibriu $K_c = \frac{(0.171 \text{mol})(0.171 \text{mol})}{(0.829 \text{mol})(0.009 \text{mol})} = 3.92$ $Q_c = \frac{0.214 \times 0.214}{0.786 \times 0.286} = 0.204$ Since $Q_c(0.204) < K_c(3.92)$ for the reaction at this time the equilibrium has not been reached. The reaction will proceed in the forward direction. - (e) Concentrated sulphuric acid absorbs water as soon as it is formed in the reaction. Therefore, according to the Le Chatelier's principle, the reaction proceeds in the forward direction. This causes formation of more products. Moreover, H₂SO₄ acts as catalyst, therefore, formation of ester takes less time. - (f) In the presence of dilute sulphuric acid, the amount of water in the mixture is large. Therefore, equilibrium shifts to the left and the yield of ester is very small. - (g) Since heat of reaction is nearly zero for the given reaction, the equilibrium constant is independent of temperature. **S50.** Mole of I_2 in one litre (i.e., 1000 mL) of a saturated solution = 1.1×10^{-3} mol Mole of I_2 in 100 mL of saturated solution = 1.1 \times 10⁻³ mol \times $\frac{100 \text{ mL}}{1000 \text{ mL}}$ $= 1.1 \times 10^{-4} \text{ mol}$ Now, molar mass of I_2 = 1 × I = 2 × 127 = 254 g/mol Mass of iodine in 100 mL of saturated solution = (mole × molar mass) of $$I_2$$ = 1.1×10^{-4} mol 254 g/mol = 279.4×10^{-4} g = 0.02794 g = 0.028 g. (b) Initial mass of iodine = 200 mg = $$\frac{200}{1000}$$ = 0.200 g Mass of undissolved iodine = Initial mass - Disdsolved mass $= 0.200 \, \text{g} - 0.028 \, \text{g} = 0.172 \, \text{g}$ - Total volume of solution = 100 mL + 150 mL = 250 mL (c) - Mass of iodine in 100 mL saturated solution = 0.028 g (i) Mass of iodine in 250 mL saturated solution = $$0.028 \text{ g} \times \frac{250 \text{ mL}}{100 \text{ mL}} = 0.07 \text{ g}$$ - Mass of undissolved iodine = 0.200 g 0.07 g = 0.130 g - The concentration of the solution (mol/L) will be same as in the original saturated solution. Molarity = $$\frac{\text{Mole of solute}}{\text{Volume of solution}} = \frac{0.07 \text{ g}}{254 \text{ g/mol}} \times \frac{1}{0.250 \text{ L}}$$ = 1.1 × 10⁻³ mol/L.. **S51.** It is given that for $N_2O_4(g) \rightleftharpoons 2NO_2(g)$. $$K_p = 80 \text{ atm} = \frac{(p \text{ NO}_2)^2}{p \text{ N}_2 \text{ O}_4}$$ (a) $$K_{p} = 80 \text{ atm} = \frac{(p \text{ NO}_{2})^{2}}{p \text{ N}_{2} \text{O}_{4}}$$ $$Q_{p} = \frac{(4 \times 10^{-3} \text{ atm})^{2}}{4 \times 10^{-3} \text{ atm}} = 0.004 \text{ atm} < K_{p}$$ Since $Q_p < K_p$, the reaction is not at equilibrium. The amount of NO_2 is less than the amount of N_2O_4 . Therefore, the reaction will proceed in the forward direction so that N_2O_4 is changed into NO_2 and the equilibrium is attained, and $Q_p = K_p$. (b) $$Q_p = \frac{(0.4 \text{ atm})^2}{2 \times 10^{-3} \text{ atm}} = 80 \text{ atm} = K_p$$ Since $Q_p = K_p$, the system represents the state of equilibrium. (c) $$Q_p = \frac{(1\text{atm})^2}{(0.002) \text{ atm}} = 500 \text{ atm} > K_p$$ Since $Q_p > K_p$, the system does not represent the state of equilibrium. The amount of NO₂ is much greater than the amount of N2O4. Therefore, the reaction will proceed in the back direction and NO₂ will be changed to N_2O_4 so that equilibrium is attained and $Q_p = K_p$. (d) $$Q_p = \frac{(2 \times 10^{-3} \text{ atm})^2}{0} = \infty \gg K_p$$ The amount of N_2O_4 is zero and $Q_p \gg K_p$. Therefore, NO_2 will be consumed to form N_2O_4 so that equilibrium is reached and $Q_p = K_p$. **S52.** For the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $$K_p = \frac{p^2(HI)}{p(H_2) \times p(I_2)}.$$ It is given that each mixture contains solid I_2 . As I_2 vapour is consumed in the reaction (i) solid I_2 sublimes $I_2(s) \rightleftarrows I_2(g)$ and more I_2 vapour is produced. There is no change in the amount of $I_2(g)$ and its partial vapour pressure remains constant as long as solid I_2 is present in the container. Thus, $p(I_2)$ is constant in each container. Let us suppose that $p(I_2) = x = \text{constant}$. Therefore, $$\frac{p^2(HI)}{p(H_2)\times x} = Q_p$$ (a) $p(H_2) = 0.10$ atm, p(HI) = 0.80 atm, $p(I_2) = x = constant$ ∴ Partial pressure quotient = $$Q_p = \frac{p^2(HI)}{p(H_2) \times x} = \frac{(0.80)^2}{0.1 \times x} = \frac{6.4}{x}$$ or $$Q_p \times x = Q_p' = 6.4$$ $Q_p' > 0.35$. Here, we find that $Q_{\rho}'(6.4) > K_{\rho}(0.35)$. Therefore, the reaction will proceed in the back direction so that HI decomposes to form H_2 and I_2 . $p(H_2) = 0.55 \text{ atm}, \quad p(HI) = 0.44 \text{ atm}, \quad p(I_2) = x = \text{constant}$ $$Q_{p} = \frac{p^{2}(HI)}{p(H_{2}) \times p(I_{2})} = \frac{(0.44)^{2}}{0.55 \times x} = \frac{0.35}{x}$$ or $$Q_{p} \times x = 0.35 = Q'_{p} = K_{p}$$ $$Q'_{p} = 0.35.$$ Since $Q_p' = K_p$, therefore, the reaction is in the **state of equilibrium**. $p(H_2) = 2.5 \text{ atm}, \quad p(HI) = 0.15 \text{ atm}, \quad p(I_2) = x = \text{constant}$ $$P(H_2) = 2.5 \text{ atm}, \quad P(H_1) = 0.15 \text{ atm}, \quad P(I_2) = x = \text{constant}$$ $$Q_p = \frac{p^2(H_1)}{p(H_2) \times p(I_2)} = \frac{(0.15)^2}{2.5 \times x} = \frac{0.009}{x}$$ $$Q_p \times x = 0.009 = Q_p' < 0.35$$ $$Q_p' < 0.35.$$ Since $Q'_p < K_p$, the reaction will proceed in the **forward direction** so that more HI is formed by the consumption of H_2 and I_2 (i)