THERMODYNAMICS

CHEMISTRY

Single Correct Answer Type

1.	Standard enthalpy of vapourisation $\Delta_{vap.} H^{\ominus}$ for wa	ter at 100°C is 40.66 kJ m	ol^{-1} . The internal energy of
	vapourisation of water at 100° C (in kJ mol ⁻¹) is:		\frown
	a) +43.76 b) +40.66	c) +37.56	d) -43.76
2.	The factor $\left(\frac{\partial Q}{\partial T}\right)_{P} - \left(\frac{\partial Q}{\partial T}\right)_{V}$ is equal to :		
	i v	D	
	a) γ b) <i>R</i>	c) $\frac{R}{M}$	d) ΔnRT
3.	Heat of combustion of a substance:	1/1	
0.	a) Is always positive	b) Is always negative	
	c) Is equal to heat of formation	d) Nothing can be said wi	thout reaction
4.	The heat of formations of $CO(g)$ and $CO_2(g)$ are -26 .	,	
	combustion of carbon monoxide will be		
	a) –67.6 kcal b) 36.5 kcal	c) –36.5 kcal	d) –46.5 kcal
5.	Which reaction either endothermic or exothermic	characteristics has the g	reater chance of occurring
	spontaneously?		-
	a) One in which entropy change is positive		
	b) One is which entropy change is negative		
	c) One in which Gibbs energy change is negative		
	d) One in which equilibrium has been established	Y	
6.	Net work done by the system in a cyclic process is eq	ual to:	
	a) Zero b) ΔU	c) Δ <i>H</i>	d) <i>q</i>
7.	A thermodynamic quantity is that:		
	a) Which is used in thermochemistry		
	b) Which obeys all the laws of thermodynamics		
	c) Quantity which depends only on the state of the sy		
0	d) Quantity which is used in measuring thermal char		
8.	The Gibbs energy change for a reversible reaction at	-	
0	a) Zero b) Small positive	c) Small negative	d) Large positive
9.	If, $S + O_2 \rightarrow SO_2$; $\Delta H = -298.2 \text{ kJ} \dots (i)$ $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$; $\Delta H = -98.7 \text{ kJ} \dots (ii)$		
	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3; \ \Delta H = -98.7 \text{ kJ} \dots (ii)$		
	$SO_3 + H_2O \rightarrow H_2SO_4; \Delta H = -130.2 \text{ kJ} \dots (iii)$		
	SO ₃ + H ₂ O → H ₂ SO ₄ ; ΔH = −130.2 kJ(<i>iii</i>) H ₂ + $\frac{1}{2}$ O ₂ → H ₂ O; ΔH = −227.3 kJ(<i>iv</i>)		
	The enthalpy of formation of H_2SO_4 at 298 K will be:		
$\hat{\mathbf{C}}$	a) – 754.4 kJ b) + 320.5 kJ		
	c) - 650.3 kJ		
	d) - 433.7 kJ		
10	, ,	by 1 K is called	
10.	The heat required to raise the temperature of a body a) Specific heat b) Thermal capacity	c) Water equivalent	d) None of these
11	A system absorbs 10 kJ of heat and does 4 kJ of work		•
11.	a) Increases by 6 kJ b) Decreases by 6 kJ	c) Decreases by 14 kJ	d) Increases by 14 kJ
12	Which of the following statement is true?		aj mercases by 17 KJ
± <i>u</i> .	a) ΔH is positive for exothermic reactions		
	· · · · · · · · · · · · · · · · · · ·		

c) The enthalpy of fusion is negative d) The heat of neutralization of strong acid with strong base is always the same 13. The temperature at which the reaction, $Ag_2 O(s) \rightarrow 2Ag(s) + \frac{1}{2}O_2(g)$ Is at equilibrium is ...; gives, $\Delta H = 30.5$ kJ mol⁻¹ and $\Delta S = 0.066$ kJ K⁻¹mol⁻¹. a) 462.12 K b) 362.12 K c) 262.12 K d) 562.12 K 14. During an adiabatic process: a) Pressure is maintained constant b) Gas is isothermally expanded c) There is perfect heat insulation d) The system changes heat with surroundings 15. If $CH_3COOH + OH^- = CH_3COO^- + H_2O + q_1$ and $H^+ + OH^- = H_2O + q_2$, then the enthalpy change for the reaction, $CH_3COOH = CH_3COO^- + H^+$ is equal to : d) $-q_1 - q_2$ a) $q_1 + q_2$ b) $q_1 - q_2$ c) $q_2 - q_1$ 16. Which of the following statements is true? The entropy of the universe a) Increases and tends towards maximum value b) Decreases and tends to be zero c) Remains constant d) Decreases and increases with a periodic rate 17. The standard change is Gibbs energy for the reaction, $H_20 \rightleftharpoons H^+ + 0H^-$ at 25°C is: c) 90 kJ d) -100 kJ a) 100 kJ b) -90 kJ 18. Which is not characteristic of thermochemical equation? a) It indicates physical state of reactants and products b) It indicates whether the reaction is exothermic or endothermic c) It indicates allotrope of reactants if present d) It indicates whether reaction would occur or not 19. For the reaction, $H_2(g) + Cl_2(g) \rightarrow 2HCl(g) + x_1 kJ \dots \dots (i)$ $2\text{HCl}(g) \rightarrow \text{H}_2(g) + \text{Cl}_2(g) - x_2 \text{ kJ} \qquad \dots \dots (\text{ii})$ Which of the following statement is correct? a) x_1 and x_2 are numerically equal b) x_1 and x_2 are numerically different c) $x_1 - x_2 > 0$ d) $x_1 - x_2 < 0$ 20. For which process energy will be absorbed? a) Separation of an electron from an electron b) Separation of proton from a neutron c) Separation of a neutron from neutron d) Separation of an electron from a neutral atom Which of the following is correct for an ideal gas : a) $\left(\frac{\partial E}{\partial T}\right)_V = 0$ b) $\left(\frac{\partial E}{\partial P}\right)_{T} = 0$ c) $\left(\frac{\partial E}{\partial T}\right)_{\rm p} = 0$ d) All of these 22. An exothermic reaction is one in which the reacting substances a) Have more energy than the products b) Have less energy than the products c) Are at a higher temperature than the product d) None of the above 23. Heat energy change during the chemical reaction, $CO + \frac{1}{2}O_2 \rightarrow CO_2$ is known as : a) Heat of combustion of CO b) Latent heat of CO₂ c) Latent heat of vaporisation

b) ΔH is negative for endothermic reactions

d) Heat of formation of CO₂ 24. Under the same conditions how many mL of 1M KOH and 0.5 M H₂SO₄ solutions, respectively when mixed for a total volume of 100 mL produce the highest rise in temperature? b) 33 : 67 a) 67:33 c) 40 : 60 d) 50 : 50 25. The first law of thermodynamic is expressed as b) $\Delta E = q - W$ a) $q - W = \Delta E$ c) $q = \Delta E - W$ d) $W = q + \Delta E$ 26. One mole of a non-ideal gas undergoes a change of state (2.0 atm, 3.0 L, 95 K) \rightarrow (4.0 atm, 5.0 L, 245 K) with a change in internal energy, $\Delta U = 30.0$ L atm. The change in enthalpy (ΔH) of the process in L atm is: a) 40.0 b) 42.3 c) 44.0 d) Not defined, because pressure is not constant 27. Which one of the following is an exothermic reaction? a) $N_2(g) + O_2(g) + 180.8 \text{kJ} \rightarrow 2 \text{NO}(g)$ b) $N_2(g) + 3H_2(g) - 92kJ \rightarrow 2NH_3(g)$ c) $C(g) + H_2 0 \rightarrow CO(g) + H_2(g) - 131.1 \text{kJ}$ d) C(graphite) + 2S(s) \rightarrow CS₂(l) - 91.9kJ 28. If liquids *A* and *B* from an ideal solution, the: a) Enthalpy of mixing is zero b) Entropy of mixing is zero c) Free energy of mixing is zero d) Free energy as well as the entropy of mixing are each zero 29. In which of the following cases entropy decreases? a) Solid changing to liquid b) Expansion of a gas c) Crystals dissolve d) Polymerisation 30. For the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$: ΔH is a) $\Delta E - 2RT$ b) $\Delta E - RT$ c) $\Delta E + RT$ d) $\Delta E + 2RT$ 31. When one mole of monoatomic ideal gas at T temperature undergoes adiabatic change under a constant external pressure of 1 atm change in volume is from 1 L to 2 L, the final temperature in Kelvin would be b) $T + \frac{2}{3 \times 0.0821}$ d) $T - \frac{2}{3 \times 0.0821}$ a) $\frac{T}{2^{(2/3)}}$ c) T 32. In the combustion of 2.0 g of methane, 25 kcal heat is liberated. Heat of combustion of methane would be a) 150 kcal b) 200 kcal c) 250 kcal d) 350 kcal 33. 1 mole of an ideal gas at 25°C is subjected to expand reversibly ten times of its initial volume. The change in entropy of expansion is: b) 16.15 JK⁻¹mol⁻¹ a) $19.15 \, \text{JK}^{-1} \text{mol}^{-1}$ c) 22.15 JK⁻¹mol⁻¹ d) None of these 34. The heat of formation (ΔH_f) of $H_2O(l)$ is equal to: a) Zero b) Molar heat of combustion of $H_2(l)$ c) Molar heat of combustion of $H_2(g)$ d) Sum of heat of formation of $H_2O(g)$ and $O_2(g)$ The entropy change for the reaction given below, 35. $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ Is...at 300 K. Standard entropies of $H_2(g), O_2(g)$ and $H_2O(l)$ are 126.6, 201.20 and 68.0 JK⁻¹mol⁻¹ respectively. b) $318.4 \, \text{JK}^{-1} \text{mol}^{-1}$ c) $31.84 \, \text{JK}^{-1} \text{mol}^{-1}$ a) $-318.4 \, \text{JK}^{-1} \text{mol}^{-1}$ d) None of these 36. Heat of combustion ΔH for C(s), H₂(g) and CH₄(g) are -94, -68 and -213 kcal/mole then ΔH for C(s) + $2H_2(g) \rightarrow CH_4(g)is$: a) -17 kcal b) -111 kcal c) -170 kcal d) -85 kcal

37. A positive change in enthalpy occurs in :

	a) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2$				
	b) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$				
	c) MgCO ₃ (s) \rightarrow MgO(s)				
	d) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2$	20(l)			
38.	A gas expands isotherma	lly and reversibly. The wor	k done by the gas is:		
	a) Zero	b) Minimum	c) Maximum	d) Equal to work done	
39.			en both the reactants and p		
40	a) 0	b) 1	c) 0.5	d) 1.5	
40.	0	sure of a gas of unit volume			
	a) $P = \frac{2}{3}U$	b) $P = \frac{3}{2}U$	c) $P = \frac{U}{2}$	d) $P = 2U$	
41.	A reaction accompanied	with the absorption of ener	gy is :		
	a) Burning of a candle	b) Rusting of iron	c) Electrolysis of water	d) Digestion of food	
42.	The second law of therm	odynamics introduced the	concept of:	\sim	
	a) Third law of thermody	vnamics	Ć.		
	b) Work				
	c) Entropy				
43	d) Internal energy The enthalpy change is n	egative for ·			
15.	a) $Cl^{-}(g) + aq \rightarrow Cl^{-}(aq)$	-			
	b) $Cl(g) \rightarrow Cl^+(g) + e$	17			
	c) $\frac{1}{2}$ Cl ₂ (g) \rightarrow Cl(g)				
	d) $Cl_2(l) \rightarrow Cl_2(g)$				
44.		tomic and diatomic gases a	t same initial temperature a	and pressure are mixed. The	
		he mixture (C_p/C_v) will be	<i>V</i>	•	
	a) 1	b) 2	c) 1.67	d) 1.2	
45.	If, $C(s) + O_2(g) \rightarrow CO_2(g)$	g), $\Delta H = -393.5$ kJ and			
	$CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$	$(g), \Delta H = -283.5 \text{ kJ},$			
	then the heat of formatio				
		b) 676.5 kJ	c) – 676.5 kJ	d) 110.5 kJ	
46.		at summation is an applica	tion of :		
	a) Kirchhoff's lawb) First law of thermodyn	appics			
	c) Second law of thermody				
	d) Entropy				
47.	The heat of reaction at co	onstant pressure is equal to	:		
	a) $\Sigma U_P - \Sigma U_R$	<i>y</i> n 1	2 1 11	d) $\Sigma H_R - \Sigma H_P$	
48.		ions of III law of thermodyr			
C		elvin has entropy greater tl of isotopes do not have ent			
), H ₂ O, etc., do not have zer			
	d) All of the above	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
49.		(g) at 1 atm and 25°C is – 2	243 kJ. ΔU for the reaction,		
	$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(g)$				
	a) 241.8 kJ	b) –241.8 kJ	c) — 243 kJ	d) 243 kJ	
50.	Molar heat capacity of a g	gas at constant temperature	e and pressure is :		
	a) (3/2) <i>R</i>				

	b) (5/2) <i>R</i>			
	c) Infinite			
	d) Depends upon atomicit			
51.		⁺ ions and OH ⁻ , the heat of		
	a) –13.7 kcal	b) +13.7 kcal	c) –63.4 kcal	d) +63.4 kcal
52.	The process of evaporatio	n of a liquid is accompanie	d by:	
	a) Increase in enthalpy			
	b) Decrease in Gibbs ener	gy		
	c) Increase in entropy			· · ·
	d) All of the above			
53.	The work done during the	e process when 1 mole of ga	as is allowed to expand free	ely into vacuum is:
	a) Zero	b) +ve	c) —ve	d) Either of these
54.	The van't Hoff reaction iso	otherm is:		
	a) $\Delta G = RT \log_e K_p$	b) $-\Delta G = RT \log_e K_p$	c) $\Delta G = RT^2 \ln K_p$	d) None of these
55.	Which species have negat	•	- r	
	a) Ice	b) Water	c) Vapour	d) Saturated vapour
56.	2	nation of sodium ions in aqu		-
001		(.) from NaOH(s) = -470 .		
	· -	$(aq.)$ From $OH^{-}(s) = -22$		
	a) – 251.9 kJ	b) 241.9 kJ	c) $- 241.9 \text{ kJ}$	d) 251.9 kJ
57				t a constant pressure of 1 ×
57.	10^5 Nm ⁻² . The work done		× 10 m at 500 K agains	
	a) 270 kJ	b) –900 kJ	c) -9001	d) 900 kJ
EO		20_3 ; $\Delta H = +$ ve, we can say		uj 900 kj
50.	a) O_3 is more stable than			
	b) O_3 is less stable than O_3	-	Y	
		-		
	c) Both are equally stable			
FO	d) Formation of O_3 is exot		volumo. Ita tomporaturo ria	es from 298K To 308K. The
59.	•		olume. Its temperature its	es itolii 298K 10 508K. The
	change in internal energy	IS:	308	298
	2 2 2 2 2			d) 200×10^{-1}
	a) 200 J	b) —200 J	$(J_{200} \times \frac{1}{200})$	$\frac{1}{200} \times \frac{1}{200}$
60			c) $200 \times \frac{308}{298}$ J	d) $200 \times \frac{298}{308}$ J
60.	Which of the following ha		$(1200 \times \frac{1}{298})$	$(1) 200 \times \frac{308}{308}$
60.	Which of the following ha (i) work (ii) Heat	ve same units?	$(\frac{1}{200} \times \frac{1}{298})$	$(3) 200 \times \frac{308}{308}$
60.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy	ve same units?	270	
	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii)	ve same units? b) (i), (ii) and (iv)	c) (ii), (iii) and (iv)	d) (iii) and (iv)
	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re	ve same units? b) (i), (ii) and (iv)	c) (ii), (iii) and (iv)	
	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by :	ve same units? b) (i), (ii) and (iv) lation between the entha	c) (ii), (iii) and (iv) lpy change and internal o	d) (iii) and (iv) energy change at constant
61.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$	ve same units? b) (i), (ii) and (iv) lation between the entha	c) (ii), (iii) and (iv)	d) (iii) and (iv)
61.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$ Vibrational energy is:	ve same units? b) (i), (ii) and (iv) lation between the entha b) $\Delta H = \Delta U + \Delta nRT$	c) (ii), (iii) and (iv) lpy change and internal c c) $\Delta U = \Delta H + P \Delta V$	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$
61.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and	ve same units? b) (i), (ii) and (iv) lation between the entha b) $\Delta H = \Delta U + \Delta nRT$	c) (ii), (iii) and (iv) lpy change and internal o	d) (iii) and (iv) energy change at constant
61. 62.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic	ve same units? b) (i), (ii) and (iv) lation between the entha b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential	c) (ii), (iii) and (iv) lpy change and internal c c) $\Delta U = \Delta H + P \Delta V$	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$
61.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic The relation $\Delta G = \Delta H - T$	ve same units? b) (i), (ii) and (iv) lation between the entha b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential	c) (ii), (iii) and (iv) lpy change and internal of c) $\Delta U = \Delta H + P \Delta V$ c) Only kinetic	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$ d) None of the above
61. 62. 63.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re- temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic The relation $\Delta G = \Delta H - T$ a) Boltzmann	ve same units? b) (i), (ii) and (iv) lation between the enthat b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential CAS was given by b) Faraday	c) (ii), (iii) and (iv) lpy change and internal c c) $\Delta U = \Delta H + P \Delta V$	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$
61. 62. 63.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic The relation $\Delta G = \Delta H - T$ a) Boltzmann Calculate the free energy of	ve same units? b) (i), (ii) and (iv) lation between the entha b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential CAS was given by b) Faraday change of	c) (ii), (iii) and (iv) lpy change and internal of c) $\Delta U = \Delta H + P \Delta V$ c) Only kinetic	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$ d) None of the above
61. 62. 63.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic The relation $\Delta G = \Delta H - T$ a) Boltzmann Calculate the free energy of	ve same units? b) (i), (ii) and (iv) lation between the entha b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential CAS was given by b) Faraday change of	c) (ii), (iii) and (iv) lpy change and internal of c) $\Delta U = \Delta H + P \Delta V$ c) Only kinetic	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$ d) None of the above
61. 62. 63.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re- temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic The relation $\Delta G = \Delta H - T$ a) Boltzmann Calculate the free energy of $2CuO(s) \rightarrow Cu_2O(s) + \frac{1}{2}C$	ve same units? b) (i), (ii) and (iv) lation between the enthat b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential TAS was given by b) Faraday change of $D_2(g)$	c) (ii), (iii) and (iv) lpy change and internal of c) $\Delta U = \Delta H + P \Delta V$ c) Only kinetic	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$ d) None of the above
61. 62. 63.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic The relation $\Delta G = \Delta H - T$ a) Boltzmann Calculate the free energy D $2CuO(s) \rightarrow Cu_2O(s) + \frac{1}{2}C$ Given, $\Delta H = 145.6$ kJ per r	ve same units? b) (i), (ii) and (iv) lation between the enthat b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential TAS was given by b) Faraday change of $D_2(g)$	c) (ii), (iii) and (iv) lpy change and internal of c) $\Delta U = \Delta H + P \Delta V$ c) Only kinetic	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$ d) None of the above
61. 62. 63.	Which of the following ha (i) work (ii) Heat (iii) Energy (iv) Entropy a) (i), (ii) and (iii) For an ideal gas, the re- temperature is given by : a) $H = U + PV$ Vibrational energy is: a) Partially potential and partially kinetic The relation $\Delta G = \Delta H - T$ a) Boltzmann Calculate the free energy of $2CuO(s) \rightarrow Cu_2O(s) + \frac{1}{2}C$	ve same units? b) (i), (ii) and (iv) lation between the enthat b) $\Delta H = \Delta U + \Delta nRT$ b) Only potential TAS was given by b) Faraday change of $D_2(g)$	c) (ii), (iii) and (iv) lpy change and internal of c) $\Delta U = \Delta H + P \Delta V$ c) Only kinetic	d) (iii) and (iv) energy change at constant d) $\Delta H = \Delta G + T \Delta S$ d) None of the above

65. The bond dissociation energy of B-F in BF₃ is 646 kJ mol⁻¹, whereas that of C-F in CF₄ is 515 kJ mol⁻¹. The correct reason for higher B-F bond dissociation energy as compared to that of C-F is : a) Stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄ b) Significant $p\pi - p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄ c) Lower degree of $p\pi - p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄ d) Smaller size of B-atom as compared to that of C-atom 66. When water is added to quick lime, the reaction is : a) Explosive b) Endothermic c) Exothermic d) None of these 67. An engine operating between 150°C and 25°C takes 500 J heat from a higher temperature reservoir if there are no frictional losses, then work done by engine is c) 157.75 J a) 165.85 J b) 169.95 J 68. Least random state of water is: a) Ice b) Liquid water c) Steam d) All present in same random state 69. Given that standard heat enthalpy of CH_4 , C_2H_4 and C_3H_8 are -17.9, 12.5, -24.8 kcal/mol. The ΔH for $CH_4 + C_2H_4 \rightarrow C_3H_8$ is : b) – 30.2 kcal mol⁻¹ c) 55.2 kcal mol⁻¹ a) $- 55.2 \text{ kcal mol}^{-1}$ d) $- 19.4 \text{ kcal mol}^{-1}$ 70. Absorption of gasses on solid surface is generally exothermic because a) Enthalpy is positive b) Entropy decreases c) Entropy increases d) Free energy increases 71. Energy equivalent to one erg, one joule and one calorie are in order: b) 1 erg > 1 cal > 1c) 1 cal > 1 J > 1 erga) 1 erg > 1 J > 1 cald) 1 > 1 cal > 1 erg72. When the change of entropy is greater, then the ability for work is: b) Minimum d) None of these a) Maximum c) Medium 73. For which change $\Delta H \neq \Delta U$? a) $H_2 + I_2 \rightleftharpoons 2HI$ b) HCl + NaOH \rightarrow NaCl + H₂O c) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$ d) $N_2 + 3H_2 \rightarrow 2NH_3$ 74. Net work done by a system is given by: a) Decrease in Helmholtz energy (ΔA) b) Decrease in Gibbs energy (ΔG) c) Decrease in internal energy d) Decrease in heat enthalpy 75. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below : $\frac{1}{2}\text{Cl}_2(g) \xrightarrow{\frac{1}{2}\Delta_{\text{diss}}H^{\Theta}} \text{Cl}(g) \xrightarrow{\Delta_{\text{eg}}H^{\Theta}} \text{Cl}^-(g) \xrightarrow{\Delta_{\text{hyd}}H^{\Theta}} \text{Cl}^-(aq)$ The energy involved in the conversion of $\frac{1}{2}$ Cl₂ (g) to Cl⁻(aq) (using the data, $\Delta_{diss}H^{\theta}_{Cl_2} = 240 \text{ kJ mol}^{-1}$, $\Delta_{eg}H^{\theta}_{Cl} = -349 \text{ kJ mol}^{-1}$, $\Delta_{hyd}H^{\theta}_{Cl^-} = -381 \text{ kJ mol}^{-1}$) will be : a) + 120 kJ mol⁻¹ c) $- 610 \text{ kJ mol}^{-1}$ d) $- 850 \text{ kJ mol}^{-1}$ b) + 152 kJ mol⁻¹ 76. The law of Lavoisier and Laplace is based on :

a) The principle of conservation of energy

b) Equivalence of mechanical and thermal energies c) The principle of conservation of matter d) Equivalence of mechanical and chemical energies 77. ΔH for the reaction given below represents, $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g); \Delta H = 40 \text{ kJ}:$ a) Heat of formation b) Heat of combustion c) Heat of neutralisation d) Heat of reaction 78. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is -1349 kcal, then his daily consumption of sugar is: a) 728 g b) 0.728 g c) 342 g d) 0.342 g 79. The enthalpy of hydrogenation of cyclohexene is -119.5 kJ mol⁻¹. If resonance energy of benzene is -150.4 kJ mol⁻¹, its enthalpy of hydrogenation would be: a) $- 269.9 \text{ kJ mol}^{-1}$ b) $- 358.5 \text{ kJ mol}^{-1}$ c) $-508.9 \text{ kJ mol}^{-1}$ d) $- 208.1 \text{ kJ mol}^{-1}$ 80. The incorrect expression among the following is: In isothermal process b) $\ln K = \frac{\Delta H^{\circ} - T \Delta S^{\circ}}{RT}$ c) $K = e^{-\Delta G^{\circ}/RT}$ a) $\frac{W_{\text{reversible}}}{= -nRT \ln \frac{V_f}{V_c}}$ 81. An ideal gas expands in volume from 1×10^{-3} m³ to 1×10^{-2} m³ at 300 K against a constant pressure of 1×10^5 Nm⁻². The work done is a) -900 I b) -900 kJ c) 270 kl d) 900 kJ 82. $C + O_2 \rightarrow CO_2$; $CO + \frac{1}{2}O_2 \rightarrow CO_2$ Then the heat of formation of CO is a) *X* – *Y* b) *Y* – 2*X* c) X + Y d) 2*X* − *Y* 83. The formation water from $H_2(g)$ and $O_2(g)$ is an exothermic reaction because : a) The chemical energy of $H_2(g)$ and $O_2(g)$ is more than that of water b) The chemical energy of $H_2(g)$ and $O_2(g)$ is less than that of water c) Not dependent on energy d) The temperature of $H_2(g)$ and $O_2(g)$ is more than that of water 84. Which statements are correct? a) $2.303 \log \frac{P_2}{P_1} = \frac{\Delta H_{\text{vap}}}{R} \frac{[T_2 - T_1]}{T_1 T_2}$ is Clausius Clapeyron equation b) $\frac{\Delta H_{\text{vap}}}{\text{Boiling point}} = 88 \text{J mol}^{-1} \text{K}^{-1}$ is called Trouton's rule c) Entropy is a measure of unavailable energy, *i. e.*, unavailable energy = entropy \times temperature d) All of the above 85. The work done in an open vessel at 300 K, when 112 g iron reacts with dil. HCl is: a) 102 kcal b) 0.6 kcal c) 0.3 kcal d) 0.2 kcal 86. A solution of 500 mL of 2M KOH is added to 500 mL of 2M HCl and the mixture is well shaken. The rise in temperature T_1 is noted. The experiment is then repeated using 250 mL of each solution and rise in temperature T_2 is again noted. Assume all heat is taken up by the solution: a) $T_1 = T_2$ b) T_1 is 2 time as larger as T_2 c) T_2 is twice larger as T_1 d) T_1 is 4 time as larger as T_2 87. When 1 mole of gas is heated at constant volume. Temperature is raised from 298 to 308 K. Heat supplied to the gas is 500 J. Then which statement is correct? a) $q = -W = 500 \text{ J}, \Delta U = 0$ b) $q = \Delta U = 500$ J, W = 0c) $q = W = 500 \text{ J}, \Delta U = 0$

d) $\Delta U = 0, q = W = -500 \text{ J}$

- 88. The heat of formation is the change in enthalpy accompanying the formation of a substance from its elements at 298 K and 1 atm pressure. Since, the enthalpies of elements in their most stable state are taken to be zero, the heat of formation of compounds is :
 - a) Always negative
 - b) Always positive
 - c) Standard heat enthalpy of that compound
 - d) Zero
- 89. If enthalpies of methane and ethane are respectively 320 and 360 cal then the bond energy of C C bond is
- a) 80 calb) 40 calc) 60 cald) 120 cal90.Which correctly represents the physical significance of Gibbs energy change?
 - a) $-\Delta G = W_{\text{compression}}$

b) $\Delta G = W_{\text{expansion}}$

- c) $\Delta G = -W_{\text{expansion}} = W_{\text{non-expansion}}$
- d) $-\Delta G = W_{\text{expansion}}$
- 91. Heat of neutralisation of which acid-base reaction is -57.32 kJ for? a) CH₃COOH + NaOH b) HCl + NH₄OH c) HCOOH + KOH
- 92. Entropy change of vaporisation at constant pressure is given by:

a)
$$\Delta S_{(v)} = \frac{\Delta H_v}{T}$$
 b) $\Delta S_v = \frac{\Delta U_v}{T}$

- 93. Given, $C + O_2 \rightarrow CO_2 + 94.2 \text{ kcal} \dots (i)$
 - $H_2 + \frac{1}{2}O_2 \rightarrow H_2O + 68.3 \text{ kcal} \dots .(ii)$
 - $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 210.8 \text{ kcal } \dots (iii)$

The heat of formation in kcal will be :

- a) 45.9
- b) 47.8
- c) 20.0
- d) 47.3
- 94. The enthalpy of formation of HI is 30.4 kJ. Which statement is false according to this observation? a) HI is an endothermic compound
 - b) For the reaction, $H_2(g) + I_2(g) \rightarrow 2HI(g); \Delta H = 60.8 \text{ kJ}$
 - c) HI is a stable compound
 - d) HI is an unstable compound
- 95. Mark the correct statement
 - a) For a chemical reaction to be feasible, ΔG should be zero
 - b) Entropy is a measure of order in a system
 - c) For a chemical reaction to be feasible, ΔG should be positive
 - d) The total energy of an isolated system is constant

96. The entropy change for vaporisation of liquid water to steam at 100°C is...J K⁻¹mol⁻¹. Given that heat of vaporisation is 40.8 kJ mol⁻¹.

a) 109.38 b) 100.38 c) 110.38 d) 120.38 97. Given the bond energies of N \equiv N, H–H and N–H bonds as 945, 436 and 39 kJ mol⁻¹ respectively, the enthalpy of the reaction, N₂(g) + 3H₂(g) \rightarrow 2NH₃(g) is :

	a) – 93 kJ	b) 102 kJ	c) 90 kJ	d) 105 kJ
20	XA71	1 - 1 - 1 - 1 - 1 - 1		

98. When ammonium chloride is dissolved in water, the solution becomes cold. The change is:a) Endothermicb) Exothermicc) Super coolingd) None of these

99. The Gibbs energy change and standard Gibbs energy change are equal if reaction quotient is equal to:

a) Zero b) 1 c) > 1 d) < 1

d) $HNO_3 + LiOH$

d) None of these

100. The bond energy of H ₂ is 104.3 kcal mol ⁻¹ . It means : ($N = Av. no.$)				
a) 104.3 kcal heat is required to break up N bonds in N molecules of H_2				
b) 104.3 kcal heat is required to break up <i>N</i> molecules to 2 <i>N</i> atoms of H				
c) 104.3 kcal heat is evolved during combination of 2N atoms of H to from N molecules of H_2				
Heat of formation of H atom				
$d = \frac{1}{2} \times bond energy of H - H$				
101. For the process, $CO_2(s) \rightarrow CO_2(g)$:				
a) Both ΔH and ΔS are +ve				
b) ΔH is -ve and ΔS is +ve				
c) ΔH is +ve and ΔS is –ve d) Both ΔH and ΔS are –ve				
102. The process, in which no heat enters or leaves the system is termed as				
a) Isochoric b) Isobaric c) Isothermal d) Adiabatic				
103. The work done during the expansion of a gas from a volume of 4 dm ³ to 6 dm ³ against a constant				
external pressure of 3 atm is				
a) -6 J b) -608 J c) +304 J d) -304 J				
104. Which are correct to express work terms?				
Work = Capacity factor \times Intensity factor; where capacity factor is a measure of extent of work done				
and intensity factor is a measure of force responsible for work				
b) Electrical work = $E \times nF$; E is intensity factor; nF is capacity factor				
c) Expansion work = $P \times \Delta V$; P is intensity factor; ΔV is capacity factor				
d) All of the above				
105. Theenthalpy change for the transition of liquid water to steam is $\Delta H_{\text{vap}} = 37.3 \text{ kJ mol}^{-1}$ at 373 K. The				
entropy change for the process is				
a) $132.5 \text{ J} \text{ mol}^{-1}\text{K}^{-1}$ b) $100 \text{ J} \text{ mol}^{-1}\text{K}^{-1}$ c) $135.3 \text{ J} \text{ mol}^{-1}\text{K}^{-1}$ d) $75.5 \text{ J} \text{ mol}^{-1}\text{K}^{-1}$				
106. Which is not a spontaneous process?				
a) Expansion of a gas into vacuum				
b) Water flowing down hill				
c) Heat flowing from colder body to a hotter body				
d) Evaporation of water from clothes during drying				
107. In a chemical reaction $\Delta H = 150$ kJ and $\Delta S = 100$ JK ⁻¹ at 300 K. The ΔG for the reaction is:				
a) Zero b) 300 kJ c) 330 kJ d) 120 kJ				
108. Enthalpy of $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$ is negative. If enthalpy of combustion of CH_4 and CH_3OH are x and y				
respectively. Then which relation is correct?				
a) $x > y$ b) $x < y$ c) $x = y$ d) $x \ge y$				
109. The enthalpy and entropy change for the reaction,				
$Br_2(l) + Cl_2(g) \rightarrow 2BrCl(g)$				
Are $30 \text{ kJ} \text{ mol}^{-1}$ and $105 \text{ JK}^{-1} \text{ mol}^{-1}$ respectively. The temperature at which the reaction will be in				
equilibrium is:				
a) 450 K b) 300 K c) 285.7 K d) 273 K				
110. The gas in a refrigerator causes cooling on expansion because:				
\bigcirc a) Work done by the gas is converted into heat				
b) Heat of the gas is lost as work is done by the gas				
c) The heat is spread over a large space				
d) None of the above				
111. ΔS is positive for the change:				
a) Mixing of two gases b) Boiling of liquid c) Melting of solid d) All of these				
112. In a flask, colourless $N_2O_4(g)$ is in equilibrium with brown coloured $NO_2(g)$. At equilibrium when the flask				
is heated to 100° C, the brown colour deepens and on cooling it becomes coloured. Which statement is				

incorrect about this observation?

a) The ΔH for the reaction N₂O₄(g) \rightleftharpoons 2NO₂(g) is +ve

- b) Paramagnetism increases on cooling
- c) The $\Delta H \Delta U$ at 100°C is equal to 200 cal
- d) Dimerisation is reduced on heating
- 113. A gaseous reaction was carried out, first keeping the volume constant and next keeping the pressure constant. In the second experiment, there was an increase in volume. The heats of reaction were different, because :
 - a) In the first case the energy was spent to keep the volume constant
 - b) In the second case energy was spent to expand the gases
 - c) Specific heats of compressed gases is more
 - d) Specific heats of rarefied gases is more
- 114. The maximum work done in expanding 16 g oxygen at 300 K and occupying a volume of 5 dm³ isothermally until the volume become 25dm³ is:

a)
$$2.01 \times 10^3$$
 J b) $+2.81 \times 10^3$ J c) 2.01×10^{-3} J d) $+2.01 \times 10^{-6}$ J

- 115. The heat of neutralization of strong base and a strong acid is 57 kJ. The heat released when 0.5 mole of HNO_3 solution is added to 0.20 mole of NaOH solution, is :
 - b) 34.7 kJ a) 11.4 kJ
- c) 23.5 kJ

d) 58.8 kJ

d) +42.6 kJ

d) Non-spontaneous

116. For which one of the following equations is $\Delta H_{reaction}^{\circ}$ equal to ΔH_{f}° for the product?

a)
$$N_2(g) + O_3(g) \rightarrow N_2O_3(g)$$

b) $CH_4(g) + 2Cl_2(g) \rightarrow CH_2Cl_2(l) + 2HCl(g)$

c)
$$Xe(g) + 2F_2(g) \rightarrow XeF_4(g)$$

- d) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$
- 117. If a chemical change is brought about by one or more methods in one or more steps, then the amount of heat absorbed or evolved during the complete course of reaction is same, whichever method was followed. This law is known as :
 - a) Le-Chatelier's principle
 - b) Hess's law
 - c) Joule-Thomson effect

a) Loss of kinetic energy

c) Decrease in velocity

- d) Trouton's law
- 118. When a gas undergoes adiabatic expansion, it gets cooled due to
 - b) Fall in temperature
 - d) Energy used in doing work
- 119. How much heat (in kJ) is evolved when 2.7 g of aluminium reacts with a stoichiometric amount of Fe_2O_3 ? $2\text{Al}_2 + \text{Fe}_2\text{O}_3 \rightarrow 2\text{Fe} + \text{Al}_2\text{O}_3; \Delta H^o = -852 \text{ kJ}$ c) -42.6 kJ
 - a) 852 kJ b) 426 kJ
- 120. Which reaction is endothermic in nature?

a)
$$CaCO_3 \rightarrow CaO + CO_2$$

b)
$$C + O_2 \rightarrow CO_2$$

c) NaOH + HCl \rightarrow NaCl + H₂O

d) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_1$

- 121. The enthalpy and entropy change for a chemical reaction are -2.5×10^3 cal and 7.4 cal K⁻¹ respectively. Predict that nature of reaction at 298 K is:
 - a) Spontaneous b) Reversible c) Irreversible
- 122. If 50 calorie are added to a system and system does work of 30 calorie on surroundings, the change in internal energy of system is:
- a) 20 cal b) 50 cal c) 40 cal d) 30 cal 123. If a refrigerator's door is opened then, we get a) Room heated b) Room cooled c) More amount of heat is passed out d) No effect on room

124. When a bottle of perfun entire room. The incorre	ne is opened, odourous mo ect fact about the process is		lowly diffuse throughout the
a) $\Delta G = -ve$	b) $\Delta H \simeq 0$	c) $\Delta S = -ve$	d) $\Delta S = +ve$
125. Equilibrium constant of	,		
a) Standard Gibbs energ			
b) Gibbs energy change			
c) Heat enthalpy			
d) None of the above			
126. 48 g of C (diamond) on c	complete combustion evolv	es 1584 kI of heat. The star	dard heat of formation of
	J/mol. The energies require		
(i)C (graphite) \rightarrow C(gas)		a for the process	
(ii)C (diamond) \rightarrow C(gas			
a) 725, 727	b) 717, 725	c) 725, 723	d) None of these
127. An example of closed sys		cj / 10, / 10	uj none or these
a) Hot water present in			
<i>,</i> .	er present in equilibrium wi	th its vanour in a closed an	d insulated heaker
-	water enclosed in a closed c	_	
d) None of the above		ontainer winen is not insu	
128. At 1 atm pressure, $\Delta S =$	$-75 \mathrm{IK}^{-1} \mathrm{mol}^{-1} \cdot \Lambda H - 30 \mathrm{k}^{-1}$	$I \mod^{-1}$ The temperature c	of the reaction at equilibrium
is:	-75 jix mor , $\Delta m = 50$ k		in the reaction at equilibrium
a) 400 K	b) 330 K	c) 200 K	d) 110 K
129. 2.1 g of Fe combines wit	2		3
a) -1.79	b) –100.5	c) -3.77	d) None of these
130. In an isochoric process,	•		uj none or these
a) Equal to the heat abso		16913	
b) Equal to the heat evol		Y	
c) Equal to the work do		Y	
, ,	ne heat adsorbed and work	done	
131. The sublimation energy			n is 15.5 kI/mol. The
enthalpy of vaporisati		and the entitalpy of fusio	115 15.5 KJ/ 1101. The
		a) 72.0 $l_{\rm eI}$ /m al	d) 72.0 $J_{\rm eff}$ (m a)
a) 41.8 kJ/mol		c) 72.8 kJ/mol	d) -72.8 kJ/mol
132. ΔG° for the reaction $X + \frac{1}{2}$		alue of equilibrium constan	nt of the reaction at 227°C is
$(R = 2.0 \text{ cal mol}^{-1}\text{K}^{-1})$	b) 10		10.0.01
a) 100		c) 2	d) 0.01
133. The entropy values (in J			
	re, the entropy change for the		
a) +540.3	b) +727.3	c) -166.9	d) +19.8
134. Bond energy of molecule	e:		
a) Is always negative			
b) Is always positivec) Either positive or neg	rativo		
	•		
135. In which case of mixing	ysical state of the system	and each of 1N concentrat	ion tomporaturo increaco is
*	g of a scrollg actu allu a ba		ion, temperature increase is
highest?	lkali		
a) 20 mL acid – 20mL a b) 10 mL acid – 40mL a			
c) $25 \text{ mL acid} - 25 \text{mL a}$			
d) $35 \text{ mL acid} - 25 \text{ mL a}$			
ΔS^o will be highest for the second seco			
_			
a) $Ca(s) + \frac{1}{2}O_2(g) \to Ca$	10(s)	b) $CaCO_3(g) \rightarrow CaO(s) +$	- CO ₂ (g)

c) $C(g) + O_2(g) \rightarrow CO_2(g)$ d) $N_2(g) + O_2(g) \rightarrow 2NO(g)$ 137. Bond dissociation enthalpy of H_2 , Cl_2 and HCl are 434, 242 and 431 kJ mol⁻¹ respectively. Enthalpy of formation of HCl is : a) – 245 kJ mol⁻¹ b) $- 93 \text{ kJ mol}^{-1}$ c) 245 kJ mol⁻¹ d) 93 kJ mol⁻¹ 138. Joule-Thomson expansion is a) Isobaric b) Isoenthalpic c) Isothermal d) None of these 139. The energy absorbed by each molecule (A_2) of a substance is 4.4×10^{-19} J and bond energy per molecule is 4.0 \times 10⁻¹⁹ J. The kinetic energy of the molecule per atom will be : a) 4.0×10^{-20} J b) 2.0×10^{-20} J c) 2.2×10^{-19} J d) 2.0×10^{-19} 140. Which one of the following is not a state function? a) Enthalpy b) Entropy c) Work d) Free energy 141. Temperature and heat are: a) Extensive properties b) Intensive properties c) Intensive and extensive properties respectively d) Extensive and intensive properties respectively 142. A schematic plot of In K_{eq} versus inverse of temperature for a reaction is shown below 6.0 вq In K_i 2.0 2.0×10^{-3} 1.5×10^{-3} $1/T (K^{-1})$ The reaction must be a) Exothermic b) Endothermic c) One with negligible enthalpy change d) Highly spontaneous at ordinary temperature 143. For a reaction at 25°C, enthalpy and entropy changes are -11.7×10^{3} J mol⁻¹ and -105 J mol⁻¹K⁻¹ respectively. What is the Gibbs free energy? b) 19.59 kJ a) 15.05 kJ c) 2.55 kJ d) 22.55 kJ 144. Which of the following equations correctly represents the standard heat of formation (ΔH_f^o) of methane? a) C(diamond) + $2H_2(g) \rightarrow CH_4(g)$ b) C(graphite) + $2H_2(g) \rightarrow CH_4(l)$ c) C(graphite) + 2H(g) \rightarrow CH₄(g) d) C(graphite) + 4H \rightarrow CH₄(g) 145. Combustion of glucose takes place according to the equation $C_6H_{12}O_6 + CO_2 \rightarrow 6CO_2 + 6H_2O; \Delta H = -72$ kcal. How much energy will be required for the production of 1.6 g of glucose (Molecular mass of glucose = 180)? a) 0.064 kcal b) 0.64 kcal c) 6.4 kcal d) 64 kcal 146. In an irreversible process taking place at constant T and P and in which only pressure volume work is being done, the change in Gibbs free energy (dG) and change in entropy a) $(dS)_{V,E} < 0(dG)_{T,P} < 0$ b) $(dS)_{V,E} > 0(dG)_{T,P} < 0$ c) $(dS)_{V,E} > 0(dG)_{T,P} = 0$ d) $(dS)_{V,E} = 0(dG)_{T,P} > 0$ 147. Hess's law states that a) The standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reactions. b) Enthalpy of formation of a compound is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign. c) At constant temperature the pressure of a gas is inversely proportional to its volume.

d) The mass of a gas dissolved per litre of a solvent is proportional to the pressure of the gas in equilibrium with the solution.

148. Internal energy is sum of a) Kinetic energy and potential energy b) All types of energy of the system c) Energy of internal system d) None of the above 149. Heat given to a system under isochoric process is equal to: a) W c) ΔU d) ΔH b) q_p 150. All the naturally occurring processes, *i.e.*, spontaneous proceed spontaneously in a direction which leads to: a) Decrease of free energy b) Increase of free energy c) Decrease of entropy d) Increase of enthalpy 151. Which phenomena cannot be described as oxidation? a) Oxidation of coal in air b) Burning of magnesium in nitrogen c) Reaction of antimony with chlorine d) Lighting of an electric lamp 152. Heat of formation of H_2O is -188 kJ/mol and H_2O_2 is -286 kJ/mol. The enthalpy change for the reaction $2H_2O_2 \rightarrow 2H_2O + O_2$ is c) 984 kJ a) 196 kJ b) –196 kJ d) -984 kJ 153. When 1g atom of carbon is converted into 1g molecule of CO_2 , the heat liberated is same: a) Irrespective of whether the volume is kept constant or pressure is kept constant b) Irrespective of the temperature at which the reaction is carried out c) Whether the carbon is in the form of diamond or graphite d) None of the above 154. For the gas phase reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ Which of the following conditions are correct? b) $\Delta H < 0$ and $\Delta S < 0$ c) $\Delta H > 0$ and $\Delta S < 0$ d) $\Delta H = 0$ and $\Delta S < 0$ a) $\Delta H > 0$ and $\Delta S > 0$ 155. A system provided 50 joule of heat and work done on the system is 10 J. The change in internal energy during the process is: b) 60 J c) 80 J a) 40 J d) 50 J 156. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_c is a) $\Delta G = RT \ln K_c$ (b) $-\Delta G = RT \ln K_c$ c) $\Delta G^{\circ} = RT \ln K_c$ d) $-\Delta G^{\circ} = RT \ln K_c$ 157. Identify the correct statement for change of Gibb's energy for a system (ΔG_{system}) at constant temperature and pressure: a) If $\Delta G_{\text{system}} = 0$, the system is still moving in a particular direction b) If $\Delta G_{\text{system}} = -\text{ve}$, the process is not spontaneous c) If $\Delta G_{\text{system}} = +\text{ve}$, the process is spontaneous d) If $\Delta G_{\text{system}} = 0$, the system has attained equilibrium 158. The standard heat of combustion of solid boron is : a) $\Delta_f H^{\circ}(B_2O_3)$ b) $\frac{1}{2}\Delta_f \Delta H^{\circ}(B_2O_3)$ c) $-\Delta_f H^0(B_2O_3)$ d) $-\frac{1}{2}\Delta_f \Delta H^{\circ}(B_2O_3)$ 159. During an isothermal expansion of an ideal gas its: a) Enthalpy decreases b) Internal energy decreases c) Internal energy increases d) Internal energy remains constant

160. The exchange of heat energy during chemical reaction at constant temperature and pressure occurs in form of:

a) Free energy b) Internal energy	c) Enthalpy	d) Bond energy
161. Using the data provided, calculate the multiple bo		
the heat of formation of C_2H_2 is 225 kJ mol ⁻¹ (tak	e the bond energy of C—H b	bond as 350 kJ mol^{-1} .) :
$2C(s) \rightarrow 2C(g)$ $\Delta H = 1410 \text{ kJ mol}^{-1}$		
$2C(s) \rightarrow 2C(g)$ $\Delta H = 1410 \text{ kJ mol}^{-1}$		
$H_2(g) \rightarrow 2H(g)$ $\Delta H = 330 \text{ kJ mol}^{-1}$		
a) 1165 b) 837	c) 865	d) 815
162. The molar heat capacity of water at constant press	sure is 75 JK ⁻¹ mol ⁻¹ . When	n 1.0 kJ of heat is supplied to
100 g of water which is free to expand the increase		
a) 2.4 K b) 3.6 K	c) 4.8 K	d) 1.2 K
163. For which of the process, ΔS is negative?		
a) $H_2(g) \rightarrow 2H(g)$	b) $2SO_3(g) \rightarrow 2SO_2(g)$ -	$+ 0_2(g)$
c) $N_2(1 \text{ g atom}) \rightarrow N_2(8 \text{ g atom})$	d) $C_{(\text{diamond})} \rightarrow C_{(\text{graphi})}$	te)
164. Given that, $C(g) + 4H(g) \rightarrow CH_4(g)$; $\Delta H = -166$ k		
a) -416 kJ/mol b) -41.6 kJ/mol	c) 832 kJ/mol	d) None of these
165. In an isobaric process, the ratio of heat supplied to		
diatomic gas is		
a) 1:1 b) 7:2	c) 7:5	d) 5:7
166. An adiabatic process occurs in		
a) Open system	b) Closed system	
c) Isolated system	d) In all the given syst	om
•		em
167. The heat of formation of water is exothermic in na		
a) $H_2(g)$ and $O_2(g)$ have higher temperature than		
b) $H_2(g)$ and $O_2(g)$ have lower temperature than v_2		
c) $H_2(g)$ and $O_2(g)$ have higher internal energy the	an water	
d) None of the above	V	
168. In an adiabatic process		
a) $p.\Delta V = 0$ b) $q = +W$	c) $\Delta E = q$	d) $q = 0$
169. A well stoppered thermos flask containing some ic	-	
a) Closed system b) Open system	c) Isolated system	d) None of these
170. Internal energy is		
a) Partly potential and partly kinetic	b) Totally kinetic	
c) Totally potential	d) None of the above	
171. The enthalpy of formation of ammonia gas at 298	$K \text{ is} - 46.11 \text{ kJ mol}^{-1}$. The	e equation to which this value
relates is:		
a) $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightarrow NH_3(g)$		
b) $N(g) + 3H(g) \rightarrow NH_3(g)$		
c) $N_{\alpha}(\sigma) + 3H_{\alpha}(\sigma) \rightarrow 2NH_{\alpha}(\sigma)$		
c) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ d) $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightarrow NH_3(l)$		
172. $C_{\text{diamond}} + O_2 \rightarrow CO_2$; $\Delta H = -395.3 \text{ kJ/mol}$		
$C_{\text{graphite}} + O_2 \rightarrow CO_2; \Delta H = -393.4 \text{ kJ/mol}$		
$C_{\text{graphite}} \rightarrow C_{\text{diamond}}; \Delta H = ?$		
a) -3.8 b) -1.9	c) +3.8	d) +1.9
173. The heat evolved in the combustion of methane is	,	,
$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + H_2O(l); \Delta H = -890$		
How many grams of methane would be required to		of combustion?
a) 4 g b) 8 g	c) 12 g	d) 16 g
174. The calorific value of fat is :	cj 1 <u>2</u> 6	4) 10 5
17 I. The caloffile value of lat 15.		

a) Lesser than that of carbohydrate and protein b) Lesser than that of protein but more than carbohydrates c) Lesser than that of carbohydrate but more than protein d) More than that of carbohydrate and protein 175. The standard heat of formation of $NO_2(g)$ and $N_2O_4(g)$ are 8.0 and 2.0 kcal mol⁻¹ respectively. The heat of dimerization of NO₂ in kcal is : a) 10.0 b) - 6.0c) -12.0 d) -14.0 176. Given that, $3C(s) + 2Fe_2O_3(s) \rightarrow 4Fe(s) + 3CO_2(g)\Delta H^o = -93657$ cal $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H^o = -94050 \text{ cal}$ If both the values of ΔH are at 25°C then calculate $\Delta H_{\text{Fe}_2O_2}^0$ a) 16.750 kcal b) -16.750 kcal c) -94.25 kcal d) -393 kcal 177. 16 g oxygen gas expands at STP to occupy double of its original volume. The work done during the process is: d) 272.8 kcal c) 130 kcal a) 260 kcal b) 180 kcal 178. One mole of an ideal gas at 300K is expanded isothermally from an initial volume of 1 litre to 10 litre. The ΔU for this process is ($R = 2 \text{ cal } \text{K}^{-1} \text{mol}^{-1}$): c) 1.0 J mol⁻¹K⁻¹ d) 0.1 J mol⁻¹K⁻¹ b) 1381.1 cal a) 163.7 cal 179. Gibbs energy *G*, enthalpy *H* and entropy *S* are related by: a) G = H + TSb) G = H - TSc) G - TS = Hd) S = H - G180. In a closed insulated container a liquid is stirred with a paddle to increase the temperature, which of the following is true? c) $\Delta U = 0, W = q \neq 0$ d) $W = 0, \Delta U = q \neq 0$ b) $\Delta U = W = q \neq 0$ a) $\Delta U + W \neq 0, q = 0$ 181. The ionization energy of solid NaCl is 180 kcal per mole. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1 kcal per mol. If the solvation energies of Na⁺ and Cl⁻ ions are in the ratio 6:5, what is the enthalpy of hydration of sodium ion? b) - 97.5 kcal/mol c) 82.6 kcal/mol a) – 85.6 kcal/mol d) + 100 kcal/mol 182. Enthalpy of solution of NaOH (solid) in water is -41.6 kJ mol⁻¹, when NaOH is dissolved in water, the temperature of water b) Decreases a) Increases d) Fluctuates indefinitely c) Does not change 183. Mark out the enthalphy of formation of carbon monoxide (CO) Given, $C(s) + O_2(g) \rightarrow CO(g), \Delta H = -393.3 \text{ kJ/mol}$ $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g), \Delta H = -282.8 \text{ kJ/mol}$ b) 676.1 kJ/mol a) 110.5 kJ/mol c) 282.8 kJ/mol d) 300.0 kJ/mol 184. Heat of neutralization of a strong acid and a strong base is equal to ΔH of : a) $H^+ + 0H^- = H_2 0$ b) $H_2 O + H^+ = H_3 O^+$ c) $2H_2 + O_2 = 2H_2O$ d) $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$ 185. The temperature of the system increases during an: a) Isothermal expansion b) Adiabatic compression c) Adiabatic expansion d) Isothermal compression 186. For an adiabatic expansion of a perfect gas $\Delta P/P$ is equal to: b) $\gamma \frac{\Delta V}{V}$ c) $-\gamma \frac{\Delta V}{V}$ d) $-\gamma^2 \frac{\Delta V}{V}$ a) $\Delta V/V$ 187. The heat evolved during neutralisation is maximum in the reaction of :

a) NH₄OH and CH₃COOH b) NH₄OH and HCl c) NaOH and CH₃COOH d) NaOH and HCl 188. In which reaction ΔS is positive? a) $H_2O(l) \rightarrow H_2O(s)$ b) $30_2(g) \rightarrow 20_3(g)$ c) $H_2O(l) \rightarrow H_2O(g)$ d) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ 189. It is impossible to attain the lowest temperature known as zero degree absolute. This is a simple statement of: a) First law of thermodynamics b) Second law of thermodynamics c) Third law of thermodynamics d) None of the above 190. The total entropy change for a system and its surroundings increases, if the process is: c) Exothermic d) Endothermic a) Reversible b) Irreversible 191. Heat of formation of compound is defined as : a) Heat evolved to form one mole of the compound from its elements b) Heat required to form one molecule of a compound c) Change in heat content of the system when one molecule of a compound is formed d) None of the above 192. At absolute zero, the entropy of a perfect crystal is zero. This is ... of thermodynamics. a) First law b) Second law c) Third law d) None of these 193. Standard state Gibbs free energy changes for the isomerization reaction, *cis*-2-pentene \rightleftharpoons *trans*-2-pentene is -3.67 kJ/mol at 400K. If more *trans*-2-pentene is added to the reaction vessel, then: a) Equilibrium remains unaffected b) Additional trans-2-pentene is formed c) More *cis*-2-pentene is formed d) Equilibrium is shifted in forward direction 194. If S° for H₂, Cl₂ and HCl are 0.13, 0.22 and 0.19kJK⁻¹mol⁻¹ respectively. The total change in standard entropy for the reaction, $H_2 + Cl_2 \rightarrow 2HCl$ is: c) 60 JK⁻¹mol⁻¹ a) $30 \, \text{JK}^{-1} \text{mol}^{-1}$ b) 40 [K⁻¹mol⁻¹ d) 20 [K⁻¹mol⁻¹ 195. The total internal energy change for a reversible isothermal cycles is a) Always 100 calories per degree b) Always negative c) Zero 🧹 d) Always positive 196. One mole of a gas occupying 3dm³ expands against constant external pressure of 1 atm to a volume of 13 dm³. The work done is: a) $-10 \text{ atm } \text{dm}^3$ b) $-20 \text{ atm } \text{dm}^3$ c) $-39 \text{ atm } \text{dm}^3$ d) -48 atm dm³ 197. The heat of combustion of methane is -880 kJ mol⁻¹. If 3.2 g of methan is burnt: a) – 176 kJ of heat is evolved b) 176 kJ of heat is absorbed c) 88 k/ of heat is evolved d) None of above 198. Heat of solution is defined as : a) Heat required to dissolved one mole in excess of water b) Heat evolved, when one mole is dissolved in excess of water

c) Change in heat content of the system when one mole of the solute is dissolved un excess of water, so that further dilution of solution does not bring any heat change

d) None of the above

- 199. A mixture of two moles of carbon monoxide and one mole of oxygen, in a closed vessel is ignited to convert the carbon monoxide to carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy, then
 - a) $\Delta H > \Delta E$
 - b) $\Delta H < \Delta E$
 - c) $\Delta H = \Delta E$
 - d) The relationship depends on the capacity of the vessel
- 200. Molar heat capacity is given by :
 - b) $dQ \times dT$
- c) $\Sigma Q \frac{1}{dT}$
- d) None of these
- a) $\frac{dQ}{dT}$ 201. Two mole of an ideal gas is expanded isothermally and reversibly from 1 L to 10 L at 300 K. The enthalpy change (in kJ) for the process is
- c) 0 d) 4.8 a) 11.4 b) -11.4 202. A gaseous system changes from state $A(P_1, V_1, T_1)$ to $B(P_2, V_2, T_2)$, B to $C(P_3, V_3, T_3)$ and finally from C to A. The whole process may be called:
- d) Spontaneous process c) Isobaric process a) Reversible process b) Cyclic process 203. One mole of ice is converted into water at 273 K. The entropies of $H_2O(s)$ and $H_2O(l)$ are 38.20 and $60.01 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$ respectively. The enthalpy change for the conversion is:
 - b) 5954 J mol⁻¹ a) 59.54 $| mol^{-1} |$ c) 595.4 J mol⁻¹ d) 320.6 J mol⁻¹
- 204. For a diatomic molecule *AB*, the electronegativity difference between *A* and *B* = $0.2028\sqrt{\Delta}$. [Where Δ = bond energy of AB Geometric mean of the bond energies of A_2 and B_2] The electronegativities of fluorine and chlorine are 4.0 and 3.0 respectively and the bond energies are of F - F: 38 kcal mol⁻¹ and Cl - Cl : 58 kcal mol⁻¹. The bond energy of Cl – F is :
- c) \sim 48 kcal/mol d) ~ 75 kcal/mol a) ~ 71 kcal/mol b) ~ 61 kcal/mol 205. Any series of operation so carried out that at the end, the system is back to its state is called
- b) Reversible process a) Boyle's cycle c) Adiabatic process d) Cyclic process 206. The heat of neutralisation of a strong acid and a strong alkali is 57.0 kJ mol⁻¹. The heat released when 0.5
- mole of HNO₃ solution is mixed with 0.2 mole of KOH is a) 57.0 kJ b) 11.4 kJ c) 28.5 kJ d) 34.9 kJ
- 207. The Kirchhoff's equation gives the effect ofon heat of reaction. b) Temperature a) Pressure c) Volume d) Molecularity
- 208. Δn values in $\Delta H = \Delta U + \Delta nRT$ may have: a) Integer nature b) Fractional value
- c) Positive or negative d) All of these 209. AB, A_2 and B_2 are diatomic molecules. If the bond enthalpies of A_2 , AB and B_2 are in the ratio 1:1:0.5 and the enthalpy of formation of AB from A_2 and B_2 is -100 kJ mol⁻¹, what is the bond enthalpy of A_2 ? a) 400 kJ mol⁻¹ b) 200 kJ mol⁻¹ c) 100 kJ mol⁻¹ d) 300 kJ mol⁻¹ 210. Which of the following is an intensive property?
- c) Surface tension d) All of these 211. The temperature of the system decreases in an
 - b) Isothermal compression
 - d) Adiabatic expansion
- 212. If a refrigerator door is kept open, then we get:
 - a) Room cooled
 - b) Room heated

a) Temperature

c) More heat is passed out

a) Adiabatic compression

c) Isothermal expansion

- d) No effect on room
- 213. The enthalpy of vaporization of a liquid is 30 kJ mol⁻¹ and entropy of vaporization is 75 J mol⁻¹. The boiling point of liquid at 1 atm is : d) 600 K
 - a) 250 K b) 400 K c) 450 K

b) Viscosity

214. Which is correct about the heat of combustion? a) The combustion be exothermic in some cases and endothermic in other cases b) Heat of combustion is always exothermic c) Its value change with temperature d) All of the above 215. In an isothermal process a) q = 0 and $\Delta E = 0$ c) q = 0 and $\Delta E \neq 0$ b) $q \neq 0$ and $\Delta E = 0$ d) $q \neq 0$ and $\Delta E \neq 0$ 216. The enthalpy of combustion of H_2 , cyclohexane (C_6H_{10}) and cyclohexane (C_6H_{12}) are -241, -3800 and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexane is b) -121 kJ/mol a) 121 kJ/mol c) +242 kJ/mol d) -242 kJ/mo 217. For the isothermal expansion of an ideal gas a) *E* and *H* increases b) *E* increases but *H* decreases c) *H* increases but *E* decreases d) *E* and *H* are unaltered 218. Heat evolved in the reaction, $H_2 + Cl_2 \rightarrow 2HCl$ is 182 kJ. Bond energies of H–H and Cl–Cl are 430 and 242 kJ/mol respectively. The H-Cl bond energy is : t) 154 kJ mol⁻¹ a) 245 kJ mol⁻¹ b) 427 kJ mol⁻¹ c) 336 kJ mol⁻¹ 219. Which is not correct? a) In an exothermic reaction, the enthalpy of products is less than that of reactants b) $\Delta H_{\text{fusion}} = \Delta H_{\text{sublimation}} - \Delta H_{\text{vaporisation}}$ c) A reaction for which $\Delta H^{\circ} < 0$ and $\Delta S^{\circ} > 0$ is possible at all temperatures ΔH is less than ΔU for the reaction, $C(s) + (1/2)O_2$ (g) $\rightarrow CO_2(g)$ 220. A cylinder of gas is assumed to contain 11.2 kg of butane (C_4H_{10}). If a normal family needs 20000 kJ of energy per day. The cylinder will last (Given that ΔH for combustion of butane is -2658 kJ) a) 20 days b) 25 days c) 26 days d) 24 days 221. The enthalpy of formation of water from hydrogen and oxygen is -286 kJ mol⁻¹. The enthalpy of decomposition of water into hydrogen and oxygen is: a) $- 286 \text{ kJ mol}^{-1}$ b) – 143 kJ mol⁻¹ c) + 286 kJ mol⁻¹ d) +143 kJ mol⁻¹ 222. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_i is the initial temperature and T_f is the final temperature, which of the following statements is correct? a) $(T_f)_{irrev} > (T_f)_{rev}$ b) $T_f > T_i$ for reversible process but $T_f = T_i$ for irreversible process c) $(T_f)_{rev} = (T_f)_{irrev}$ d) $T_f = T_i$ for both reversible and irreversible processes 223. Heat of fusion of a molecular solid is : d) None of these a) Very high b) High c) Low 224. Which plot represents for an exothermic reaction? c) d) b) [225. For a spontaneous chemical change the Gibbs energy change is: a) Positive b) Negative c) Zero d) Depends whether the reaction is exothermic or endothermic

226. An ideal gas undergoing expansion in vacuum shows:

a) $\Delta U = 0$ b) W = 0 c) q = 0

d) All of these

227. Select the incorrect statement				
a) <i>PV</i> work is usually negligible for solid and liquid				
b) For a closed system with $P - V$ work only, an isobaric process that has $q = +ve$ must have $\Delta T = +ve$.				
c) For a cyclic process $q = 0$				
d) Black phosphorus is most stable form of <i>P</i> but <i>H</i>	$e_{\epsilon} = 0$ for white phosphorus.			
228. Entropy decreases during:				
a) Crystallization of sucrose from solution				
b) Rusting of iron				
c) Melting of ice				
d) Vaporization of camphor				
229. At 27°C latent heat of I fusion of a compound is 293				
a) 9.77 J/mol K b) 10.77 J/mol K	c) 9.07 J/mol K d) 0.977 J/mol K			
230. The values of ΔH and ΔS for the reaction.				
$C_{(\text{graphite})} + \text{CO}_2(\text{g}) \rightarrow 2\text{CO}(\text{g})$				
Are 170 kJ and 170 JK ⁻¹ respectively. this reaction	will be spontaneous at:			
a) 510 K b) 710 K	c) 910 K d) 1110 K			
231. The temperature of 5 mL of a strong acid increases	by 5°C when 5 mL of strong base is added to it. If 10 mL			
of each is mixed and complete neutralisation takes				
a) 20°C b) 10°C	c) 5°C d) 2°C			
232. When an ideal gas is compressed adiabatically and	,			
a) Higher than the initial temperature				
b) Lower than the initial temperature				
c) The same as the initial temperature				
d) Dependent on the rate of compression				
233. In a closed insulated container, a liquid is stirred wi	ith a naddle to increase its temperature. In this process			
which of the following is true	in a padale to mercuse its temperature. In this process,			
a) $\Delta E = W \neq 0, Q = 0$	b) $\Delta E \neq 0, Q = W = 0$			
c) $\Delta E = W = Q = 0$	d) $\Delta E = 0, Q \neq 0, W = 0$			
234. If the bond dissociation energies of XY , X_2 and Y_2 (a				
ΔH for the formation of XY is -200 kJ mol ⁻¹ . The bo				
a) 100 kJ mol^{-1} b) 800 kJ mol^{-1}	c) 300 kJ mol^{-1} d) 400 kJ mol^{-1}			
235. The dissociation energy of CH_4 and C_2H_6 are respectively				
bond is:	envery 500 and 020 kear/mol. The bond energy of C C			
	c) 130 kcal/mol d) 80 kcal/mol			
236. In a calorimeter, the temperature of the calorimeter				
1.23 kJ/g deg. What is the molar heat of decomposit				
a) -7.53 kJ/mol b) -398.1 kJ/mol				
237. The bond energies of F_2 , Cl_2 , Br_2 and I_2 are 155.				
	4, 245.0, 195.2 and 151.2 kj mor respectively. The			
strongest bond is : a) F – F b) Cl – Cl	c) $Br - Br$ d) $I - I$			
	, , , , , , , , , , , , , , , , , , ,			
238. The enthalpy changes of formation of the gaseous o	sides of fill ogen (N_2) and NO are positive because of:			
a) The high bond energy of the nitrogen molecule				
\checkmark b) The high electron affinity of oxygen atoms				
c) The high electron affinity of nitrogen atoms 2^{27}				
d) The tendency of oxygen to form O^{2-}				
239. If 900 J/g of heat is exchanged at boiling point of wa				
a) 43.4 J/mol b) 87.2 J/mol	c) 900 J/mol d) Zero			
240. A reaction occurs spontaneously if:				
a) $T\Delta S = \Delta H$ and both ΔH and ΔS are positive				
b) $T\Delta S > \Delta H$ and both ΔH and ΔS are positive				

- c) $T\Delta S < \Delta H$ and both ΔH and ΔS are positive
- d) $T\Delta S > \Delta H$ and ΔH is positive and ΔS are negative

241. $H_2(g) + Cl(g) = 2HCl(g); \Delta H(298 \text{ K}) = 22.06 \text{ kcal. For this reaction, } \Delta U$ is equal to:

- a) $-22.06 + 2 \times 10^{-3} \times 298 \times 2$ kcal
- b) $-22.06 + 2 \times 298$ kcal
- c) $-22.06 2 \times 298 \times 4$ kcal
- d) -22.06 kcal

a) -1410 kJ

242. The heat change taking place during the reaction $H_2O(l) \rightarrow H_2O(g)$ is: [Given, ΔH_f of $H_2O(g) = -57$ kcal, $\Delta H_f = H_2 O(l) = -68.3 \text{ kcal}$

a) + 11.3 kcal c) – 115.3 kcal d) + 115.3 kcal b) - 11.3 kcal 243. ΔH for CaCO₃(s) \rightarrow CaO(s) + CO₂(g) is 176 kJ mol⁻¹ at 1240 K. The ΔU for the change is equal to: b) 165.6 kJ c) 186.3 kJ d) 180.0 kJ a) 160 kJ

244. When one mole of monoatomic ideal gas at TK undergoes adiabatic change under a constant external pressure of 1 atm changes volume from 1 L to 2 L. The final temperature in Kelvin would be

a)
$$\frac{T}{2^{2/3}}$$
 b) $T + \frac{2}{3 \times 0.0821}$ c) T
245. ΔH° , (298 K) of methanol is given by the chemical equation d) $T - \frac{2}{3 \times 0.0821}$

a) $CH_4(g) + \frac{1}{2}O_2(g) \to CH_3OH(g)$ b) C(graphite) + $\frac{1}{2}$ O₂(g) + 2H₂(g) \rightarrow CH₃OH(*l*) d) $CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$

c) C(diamond) +
$$\frac{1}{2}O_2(g) \rightarrow CH_3OH(l)$$

246. For the reaction, $C_2H_4(g) + 3O_2(g) \rightarrow 2$

g)
$$\rightarrow 2CO_2(g) + 2H_2O$$
; $\Delta U = -1415$ kJ. Then ΔH at 27°C is :

a)
$$-1410 \text{ kJ}$$
 b) -1420 kJ c) $+ 1420 \text{ kJ}$ d) $+1410 \text{ KJ}$
247. The heat of combustion of ethanol determined by a bomb calorimeter is $-670.48 \text{ kcal mol}^{-1}$ at 25°C.

What is ΔU at 25°C for the following reaction?

$$\begin{array}{c} C_{2}H_{5}OH(l) + \frac{7}{2}O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(g) \\ a) -335.24 \ \text{kcal} & b) -669.28 \ \text{kcal} & c) -670.48 \ \text{kcal} & d) +670.48 \ \text{kcal} \\ 248. \ \text{Which has the least entropy?} \\ a) \ \text{Graphite} & b) \ \text{Diamond} & c) \ N_{2}(g) & d) \ N_{2}O(g) \end{array}$$

249. A carnot engine operates between temperature T and 400 K (T > 400 K). If efficiency of engine is 25%, the temperature *T* is: d) 600 K

b) 500 K a) 400 K c) 533.3 K 250. It is a general principle that if a system has the less energy then it is:

a) More stable b) Less stable d) More unstable c) Unstable

a)
$$\Delta H = \Delta U$$
 b) $\Delta H < \Delta U$ c) $\Delta H > \Delta U$ d) None of these
252. H \downarrow 1 0 \downarrow H 0:

$$\Delta H = -68.39 \text{ kcal } \dots \dots (i)$$

$$K + aq. \rightarrow KOH(aq) + \frac{1}{2}H_2;$$

$$\Delta H = -48 \text{ kcal } \dots \dots (ii)$$


$$KOH + aq. \rightarrow KOH(aq);$$

$$\Delta H = -14 \text{ kcal } \dots \dots (iii)$$
The heat of formation (in kcal) of KOH is :
a) - 68.39 + 48 - 14
b) - 68.39 - 48 + 14
c) 68.39 - 48 + 14

c)
$$68.39 - 48 + 14$$

d) $68.39 + 48 + 14$

253. Which of the following expressions represents the first law of thermodynamics? c) $\Delta E = q + W$ d) $\Delta E = -q - W$ a) $\Delta E = -q + W$ b) $\Delta E = q - W$ 254. A thermodynamic state function is: a) One which obeys all the laws of thermodynamics b) A quantity which is used to measure thermal changes c) A quantity whose value is independent of the path d) A quantity which is used to express pressure-volume work 255. When two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the molecule is: a) Greater than that of separate atoms b) Equal to that of separate atoms c) Lower than that of separate atoms d) Sometimes lower and sometimes higher 256. The enthalpies of formation of N_2O and NO are 28 and 90 kJ mol⁻¹ respectively. The enthalpy of the reaction, $2N_2O(g) + O_2(g) \rightarrow 4NO(g)$ is equal to : c) - 16 kJ a) 8 kJ b) 88 kJ d) 304 kJ 257. Heat of combustion of CH₄, C₂H₄, C₂H₆ are – 890, –1411 and –1560 kJ/mol respectively. Which has the lowest calorific fuel value in kJ/g? d) All same a) CH₄ c) C_2H_6 b) C_2H_4 258. Given that $\Delta H_{r_{298}\,\text{K}} = -54.07 \,\text{kJ}\,\text{mol}^{-1}$ and $\Delta S_{r_{298}\,\text{K}}^{\circ} = 10 \,\text{J}\,\text{mol}^{-1}$ and $R = 8.314 \,\text{JK}^{-1}\text{mol}^{-1}$. The value of $\log_{10} K$ for a reaction, $A \rightleftharpoons B$ is: c) 95 a) 5 b) 10 d) 100 259. Hess's law is based on b) Law of conservation of energy a) Law of conservation of mass c) First law of thermodynamics d) None of the above 260. What is the entropy change (in $JK^{-1}mol^{-1}$) when one mole of ice is converted into water at 0°C? (The enthalpy change for the conversion of ice to liquid water is 6.0 kJ mol⁻¹ at 0°C) c) 2.198 d) 21.98 a) 20.13 b) 2.013 261. Which is an extensive property of the system? a) Temperature b) Volume c) Refractive index d) Viscosity \rightarrow 2CO₂(g) + 3H₂O(l) which one is true? 262. For the reaction; $C_2H_5OH(l) + 3O_2(g) - C_2H_5OH(l) + 3O_2(g)$ a) $\Delta H = \Delta U - RT$ b) $\Delta H = \Delta U + RT$ c) $\Delta H = \Delta U + 2RT$ d) $\Delta H = \Delta U - 2RT$ 263. The heat atomisation of $PH_3(g)$ is 228 kcal per mol and that of $P_2H_4(g)$ is 335 kcal per mol. The energy of P - P bond is a) 102 kcal/mol b) 31 kcal/mol c) 26 kcal/mol d) 204 kcal/mol 264. If, $H_2(g) + Cl_2(g) \rightarrow 2HCl; \Delta H^\circ = -44$ kcal $2Na(s) + 2HCl(g) \rightarrow 2NaCl(s) + H_2(g);$ $\Delta H = -152$ kcal then, $Na(s) + 0.5 Cl_2(g) \rightarrow NaCl(s); \Delta H^{\circ} = ?$ a) 108 kcal b) 196 kcal c) -98 kcal d) 54 kcal 265. From the reaction, $P_{(white)} \rightarrow P_{(red)}$; $\Delta H = -18.4$ kJ it following that : a) Red P is readily formed from white P b) White P is readily formed from red P c) White P cannot be converted to red P d) White P can be converted into red P and red P is more stable

a) – 13.7 kcal	e : b) – 27.4 kcal	c) – 6.85 kcal	d) – 3.425 kcal
			(ΔU) when 1 mol of water
			ion at 1 bar and 373 K is 41
mol^{-1} and $R = 8.3$ J mo	-		
a) 41.00 kJ mol ⁻¹	b) 4.100 kJ mol ⁻¹	c) 3.7904 kJ mol ⁻¹	d) 37.904 kJ mol ⁻¹
268. Change in entropy for a			
a) 2.303 $nR \log_{10} \frac{V_2}{V_1}$	b) $nR \log_e \frac{V_2}{V_1}$	c) $nR \log_e \frac{P_1}{P_2}$	d) All of these
269. At constant pressure an a) Entropy	nd temperature, the direc b) Enthalpy	tion of any chemical reactio c) Gibbs energy	n is one where, the decrea d) None of these
270. Which of the following	conditions will always lea	ad to a non spontaneous cha	inge?
a) Positive ΔH and pos	itive ΔS	b) Negative ΔH and ne	gative ΔS
c) Positive ΔH and neg	ative ΔS	d) Negative ΔS and pos	sitive ΔS
		<i>B</i> , at same temperature and	l pressure are mixed. The ra
	<i>(</i>) of the mixture will be:		· · · · · · · · · · · · · · · · · · ·
a) 0.83	b) 1.50	c) 3.3	d) 1.67
272. Two atoms of hydrogen		cule of hydrogen gas, the en	ergy of the H ₂ molecule is :
a) Greater than that of	-		
b) Equal to that of sepa			
c) Lower than that of s			
d) Sometimes lower an		and Days 127 04 11	12 and 124 least respective
			1.2 and -12.4 kcal respectiv
when they are neutrali			
when they are neutralized as $A > B > C > D$			
a) $A > B > C > D$	b) $A > D > C > B$	c) $D > C > B > A$	d) $D > B > C > A$
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The	c) $D > C > B > A$ heat change, for the decomp	d) $D > B > C > A$ position of 3.6 g of water is :
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is give	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done comp 	 d) D > B > C > A position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas 2
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is give is a) O_2 276. Diborane is a potential	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which underg	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas <i>X</i> in an isoba b) NH ₃ rocket fuel which underg $_2O_3(g) + 3H_2O(g)$	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which underg ${}_2O_3(g) + 3H_2O(g)$ change for the combustio	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O_2$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i) $2B(s) + \frac{3}{2}O_2(g) \rightarrow B$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which underg ${}_2O_3(g) + 3H_2O(g)$ change for the combustio ${}_2O_3(s); \Delta H = -1273$ kJ p	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O_2$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i)2B(s) + $\frac{3}{2}O_2(g) \rightarrow B$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which underg ${}_2O_3(g) + 3H_2O(g)$ change for the combustio	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O_2$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i)2B(s) + $\frac{3}{2}O_2(g) \rightarrow B$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which undergy ${}_{2}O_{3}(g) + 3H_{2}O(g)$ change for the combustion ${}_{2}O_{3}(s); \Delta H = -1273$ kJ pe ${}_{2}H_{2}O(l); \Delta H = -286$ kJ pe	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas 2 d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i) $2B(s) + \frac{3}{2}O_2(g) \rightarrow B$ (ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H$ (iii) $H_2(0(l) \rightarrow H_2O(g);$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which undergy ${}_{2}O_{3}(g) + 3H_{2}O(g)$ change for the combustion ${}_{2}O_{3}(s); \Delta H = -1273$ kJ pe ${}_{2}H_{2}O(l); \Delta H = -286$ kJ pe	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal aric process its work done co c) He goes combustion according t an of diborane. Given ber mol r mol 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO ₂
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i)2B(s) + $\frac{3}{2}O_2(g) \rightarrow B$ (ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iv)2B(s) + 3H_2(g) \rightarrow a) +2035 kJ per mol	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which underg $_{2}O_{3}(g) + 3H_{2}O(g)$ change for the combustion $C_{2}O_{3}(s); \Delta H = -1273$ kJ pe $H_{2}O(l); \Delta H = -286$ kJ per $\Delta H = 44$ kJ per mol $B_{2}H_{6}(g); \Delta H = 36$ kJ per b) -2035 kJ per mol	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given ber mol r mol c) +2167 kJ per mol 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas D d) SO ₂ o the equation d) -2167 kJ per mol
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i) $2B(s) + \frac{3}{2}O_2(g) \rightarrow B$ (ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which underge ${}_2O_3(g) + 3H_2O(g)$ change for the combustion ${}_2O_3(s); \Delta H = -1273$ kJ pe ${}_4D_2(l); \Delta H = -286$ kJ per $\Delta H = 44$ kJ per mol ${}_8D_2H_6(g); \Delta H = 36$ kJ per b) -2035 kJ per mol unt of work done in jou	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given ber mol r mol c) +2167 kJ per mol 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas 2 d) SO ₂ o the equation d) -2167 kJ per mol
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i)2B(s) + $\frac{3}{2}O_2(g) \rightarrow B$ (ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iv)2B(s) + 3H_2(g) \rightarrow a) +2035 kJ per mol	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isoba b) NH ₃ rocket fuel which underge ${}_2O_3(g) + 3H_2O(g)$ change for the combustion ${}_2O_3(s); \Delta H = -1273$ kJ pe ${}_4D_2(l); \Delta H = -286$ kJ per $\Delta H = 44$ kJ per mol ${}_8D_2H_6(g); \Delta H = 36$ kJ per b) -2035 kJ per mol unt of work done in jou	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given ber mol r mol c) +2167 kJ per mol 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas D d) SO ₂ o the equation d) -2167 kJ per mol
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i) $2B(s) + \frac{3}{2}O_2(g) \rightarrow B$ (ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isobation b) NH ₃ rocket fuel which underge $_{2}O_{3}(g) + 3H_{2}O(g)$ change for the combustion $D_{2}O_{3}(s); \Delta H = -1273$ kJ pe $H_{2}O(l); \Delta H = -286$ kJ per $\Delta H = 44$ kJ per mol $B_{2}H_{6}(g); \Delta H = 36$ kJ per b) -2035 kJ per mol unt of work done in jou to be expressed in	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given ber mol r mol c) +2167 kJ per mol 	d) $D > B > C > A$ position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas D d) SO ₂ o the equation d) -2167 kJ per mol
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i)2B(s) + $\frac{3}{2}O_2(g) \rightarrow B$ (ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iv) 2B(s) + 3H_2(g) \rightarrow a) +2035 kJ per mol 277. To calculate the among gas, the volume must	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isobation b) NH ₃ rocket fuel which underge ${}_{2}O_{3}(g) + 3H_{2}O(g)$ change for the combustion $D_{2}O_{3}(s); \Delta H = -1273$ kJ pe $H_{2}O(l); \Delta H = -286$ kJ per $\Delta H = 44$ kJ per mol $B_{2}H_{6}(g); \Delta H = 36$ kJ per b) -2035 kJ per mol unt of work done in jou the expressed in b) dm ³ only	 c) D > C > B > A heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given oer mol r mol c) +2167 kJ per mol les during reversible isoth c) cm³ only 	 d) D > B > C > A position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas A d) SO₂ o the equation d) -2167 kJ per mol nermal expansion of an ide
a) $A > B > C > D$ 274. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$ a) 136 kcal 275. When 500 J heat is given is a) O_2 276. Diborane is a potential $B_2H_6(g) + 3O_2(g) \rightarrow B$ Calculate the enthalpy (i) $2B(s) + \frac{3}{2}O_2(g) \rightarrow B$ (ii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow B$ (iii) $H_2O(l) \rightarrow H_2O(g)$; (iv) $2B(s) + 3H_2(g) \rightarrow a$ a) $+2035$ kJ per mol 277. To calculate the amongas, the volume must a) m ³ only	b) $A > D > C > B$ $O(l); \Delta H = -68$ kcal. The b) 13.6 kcal en to the gas X in an isobation b) NH ₃ rocket fuel which underge ${}_{2}O_{3}(g) + 3H_{2}O(g)$ change for the combustion $D_{2}O_{3}(s); \Delta H = -1273$ kJ pe $H_{2}O(l); \Delta H = -286$ kJ per $\Delta H = 44$ kJ per mol $B_{2}H_{6}(g); \Delta H = 36$ kJ per b) -2035 kJ per mol unt of work done in jou the expressed in b) dm ³ only	c) $D > C > B > A$ heat change, for the decomp c) 1.36 kcal ric process its work done co c) He goes combustion according t n of diborane. Given her mol r mol c) +2167 kJ per mol les during reversible isoth c) cm ³ only y:	 d) D > B > C > A position of 3.6 g of water is : d) 68 kcal omes out as 142.8 J. The gas Z d) SO₂ o the equation d) -2167 kJ per mol nermal expansion of an ide d) Any of these

formation of CH₄ is : b) 274.1 kJ c) 374.1 kJ a) 174.1 kJ d) 74.1 kJ 293. Given, (i)S + $O_2 \rightarrow SO_2$, $\Delta H = -298.2 \text{ kJ}$ (ii)SO₂ + $\frac{1}{2}$ O₂ \rightarrow SO₃, $\Delta H = -98.7$ kJ (iii)SO₃ + H₂O \rightarrow H₂SO₄, $\Delta H = -130.2$ kJ (iv) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$, $\Delta H = -287.3 \text{ kJ}$ Then the enthalpy of formation of H₂SO₄ at 298 K will be a) -814.4 kJ b) +320.5 kJ c) -650.3 kJ d) -933.7 kl 294. Based on the first law of thermodynamics, which one of the following is correct? a) For an isochoric process = $\Delta E = -Q$ b) For an adiabatic process= ΔE = d) For a cyclic process = Q = -Wc) For an isothermal process = Q = +W295. According to Hess's law, the heat of reaction depends upon b) Initial and final conditions of reactants a) Initial condition of reactants d) End conditions of reactants c) Intermediate path of the reaction 296. In which case, a spontaneous reaction is possible at any temperature? a) $\Delta H - \text{ve}, \Delta S + \text{ve}$ b) $\Delta H - \text{ve}, \Delta S - \text{ve}$ c) ΔH + ve, ΔS + ve d) In none of the cases 297. Select the incorrect statement : a) Combustion of F_2 is exothermic b) Combustion of N₂ to N₂O is endothermic c) A good fuel have higher calorific value d) Nutrition calorie = 10^3 calories or 1 cal or 1 kcal 298. The enthalpy change for the following reaction. NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l) is -57 kJ. Predict the value of the enthalpy change in the following reaction : $Ba(OH)_2 + H_2SO_4(aq) \rightarrow BaSO_4(s) + H_2SO_4(s) + H$ $2H_2O(l)$ a) – 57 kJ b) - 76 kJ c) - 114 kJ d) - 228 kJ 299. At 27°C one mole of an ideal gas is compressed isothermally and reversible from a pressure of 2 atm to 10 atm. The value of ΔE and q are (R=2 cal) a) 0, -965.84 cal b) -965.84 cal, -865.58 cal c) +865.58 cal, -865.58 cal d) +965.84 cal, +865.58 cal 300. Change in entropy is negative for: a) Bromine $(l) \rightarrow$ Bromine (g)b) $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$ c) $N_2(g, 10 \text{ atm}) \rightarrow N_2(g, 1 \text{ atm})$ d) Fe (1 mol, 400 K) \rightarrow Fe(1 mol, 300 K) 301. Hess's law is related to: a) Change in heat during a reaction b) Rates of reaction c) Equilibrium constant d) Influence of pressure on volume of a gas 302. Heat of dissociation of benzene of elements is 5335 kJ/mol. The bond enthalpies of T -C - C - ; C = C and - C - Hbonds are 347.3, 615 and 416.2 kJ respectively. Resonance energy of benzene is c) 937.2 kJ a) 1.15 kJ b) 15.1 kJ d) 1511 kJ 303. 2 mole of ideal gas at 27°C temperature is expanded reversibly from 2 litre to 20 litre. Find entropy change (R = 2 cal/mol K).a) 92.1 b) 0 d) 9.2 c) 4

304. Work done by the system on surroundings is: c) Zero d) None of these a) Positive b) Negative 305. What is ΔE for system that does 500 cal of work on surrounding and 300 cal of heat is absorbed by the system? b) -300 cal a) -200 cal c) +200 cal d) +300 cal 306. Which fuel provides the highest calorific value? a) Charcoal b) Kerosene c) Wood d) Dung 307. The value of ΔE for combustion of 16 g of CH₄ is -885389 J at 298 K. The ΔH combustion for CH₄ in J mol⁻¹ at this temperature will be (Given that, $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$) a) -55337 b) -880430 c) -885389 d) -890348 308. Human body is an example of a) Open system b) Closed system c) Isolated system d) None of these 309. A hypothetical reaction $A \rightarrow 2B$, proceeds through following sequence of steps (i) $A \rightarrow C$; $\Delta H = q$ (ii) $C \rightarrow D$; $\Delta H = v$ (iii) $\frac{1}{2}D \to B$; $\Delta H = x$ Then the heat of reaction i a) q - v + 2xb) q + v - 2xd) q + 2v - 2xc) q + v + 2x310. The entropy of crystalline substances at absolute zero by the third law of thermodynamics should be taken as a) 100 b) 50 d) Different for different substance c) Zero 311. Identify the state quantity among the following: c) q + Wb) *q* − *W* d) q/Wa) q 312. For the following two reactions, $(i)CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O_2(g)$ $\Delta H = -890.4 \text{ kJ}$ (ii) $2HgO(s) \rightarrow 2Hg(l) + O_2(g) - 181.6 \text{ kJ}$ Which one of the following statements is correct? a) Both of them are exothermic b) Both of them are endothermic c) (i) is exothermic and (ii) is endothermic d) (i) is endothermic and (ii) is exothermic 313. From the following data, the heat of formation of $Ca(OH)_2(s)$ at 18°C iskcal: $CaO(s) + H_2O(l) = Ca(OH)_2(s);$ $\Delta H = -15.26$ kcal (i) $H_2O(l) = H_2(g) + \frac{1}{2}O_2(g);$ $\Delta H = 68.37 \text{ kcal} \dots \dots (\text{ii})$ $Ca(s) + \frac{1}{2}O_2(g) = CaO(s);$ $\Delta H = -151.80$ kcal (iii) a) – 98.69 b) -235.43c) 194.91 d) 98.69 314. If $\frac{1}{2}X_2O(s) \rightarrow X(s) + \frac{1}{4}O_2(g)$; $\Delta H = 90$ kJ, then heat change during reaction of metal 'X' with one more of O_2 to form oxide to maximum extent is :

a) 360 KJ b) -360 KJ c) -180 KJ d) +180 KJ 315. Decrease in Gibbs energy of a reacting system indicates to: a) Exothermic reaction b) Equilibrium reaction c) Spontaneous reaction d) Slow reaction ^{316.} S + $\frac{3}{2}$ O₂ \rightarrow SO₃ + 2*x* kcal; $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3 + y$ kcal; The heat of formation of SO₂ is : a) *y* − 2*x* b) (2x + y)c) (x + y)d) 2x/y317. The standard molar heat of formation of ethane, CO_2 and water (l) are respectively -21.1 - 94.1 and -68.3 kcal. The standard molar heat of combustion of ethane will be d) 183.5 kcal a) -372 kcal b) 162 kcal c) -240 kcal 318. Among them intensive property is d) Enthalpy c) Surface tension a) Mass b) Volume 319. Equal volume of C₂H₂ and H₂ are combusted under identical condition. The ratio of their heat of combustion is : $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g); \quad \Delta H = -241.8 \text{ kJ}$ $C_2H_2(g) + 2\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(g);$ $\Delta H = -1300 \text{ kJ}$ a) 5.37/1 b) 1/5.37 c) 1/1 d) None of these 320. 1 litre – atmosphere is equal to: c) 101.3×10^7 erg a) 101.3 J b) 24.206 cal d) All of these 321. For the precipitation of AgCl by Ag⁺ ions and HCl: c) $\Delta G = -ve$ a) $\Delta H = 0$ b) $\Delta G = 0$ d) $\Delta H = \Delta G$ 322. When a certain amount of ethylene was burnt 6226 kJ heat was evolved. If heat of combustion of ethylene is 1411 kJ, the volume of O_2 (at NTP) that entered into the reaction is: b) 296.5 litre a) 296.5 mL c) 6226 × 22.4 litre d) 22.4 litre 323. The heat change for the reaction, $C(s) + 2S(s) \rightarrow CS_2(l)$ is called: a) Heat of solution of CS_2 b) Heat of fusion of CS₂ c) Heat of formation of CS₂ d) Heat of combustion of carbon 324. Given enthalpy of formation of $CO_2(g)$ and CaO(s) are -94.0 kJ and -152 kJ respectively and the enthalpy of the reaction, $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ is 42 kJ. The enthalpy of formation of $CaCO_3(s)$ is : a) – 42 kJ b) - 202 kJ c) + 202 kJd) – 288 kJ 325. The ratio of slopes of log *P* vs log *V* for reversible adiabatic process and reversible isothermal process of an ideal gas is equal to: d) $\frac{1}{v}$ b) $1 - \gamma$ c) $\gamma - 1$ a)γ 326. In which of the following processes of neutralization magnitude of $\Delta H_{neutralisation}$ is less than that of $\Delta H_{\text{ionisation}}$ of water? a) HCl + NaOH b) $H_2SO_4 + NaOH$ c) $CH_3COOH + NaOH$ d) $HClO_4 + KOH$ 327. A boiled egg show a/an ...in entropy. a) Increase b) Decrease c) No change d) None of these 328. Which unit represents largest amount of energy? a) Calorie b) Joule d) Electron volt c) Erg

220 The base of combination of combine to CO is -202 by	۲/	
329. The heat of combustion of carbon to CO_2 is -393 k	J/mol. The heat released up	Son formation of 35.2 g of
CO_2 from carbon and oxygen gas is		
a) $+325 \text{ kJ}$ b) -31.5 kJ	c) -315 kJ	d) +31.5 kJ
330. A thermally isolated gaseous system can exch	lange energy with the s	surroundings. The mode of
transference of energy can be:	a) II.a.t. a.u.d. u.a.di.a.ti.a.u.	d) Nama af thana
a) Heat b) Work	c) Heat and radiation	d) None of these
331. Warming ammonium chloride with sodium hydrox		
a) Closed system b) Isolated system	c) Open system	d) None of these
332. Identify the correct statements regarding entropy	h) At abaaluta zava afta	much the entropy of all
At 0°C, the entropy of a perfectly crystalline a) substance is taken to be zero		mperature, the entropy of all
c) At absolute zero of temperature, the entropy of a	perfectly crystalline s	-
crystalline substance is taken to be negative		ubstance is taken to be zero
333. The matter has highest entropy in:	perfectly crystalline s	ubstance is taken to be zero
a) Solid state b) Liquid state	c) Gaseous state	d) Equal in all
	-	
334. H ₂ (g) + $\frac{1}{2}$ O ₂ (g) = H ₂ O(<i>l</i>); ΔH _{298K} = -68.32 kcal.	Heat of vaporization of	water at 1 atm and 25°C is
10.52 kcal. The standard heat of formation (in kcal)) of 1 mole of water vapour	at 25°C is :
a) -78.84 b) 78.84	c) + 57.80	d) -57.80
335. For vaporization of water at 1 atmospheric press		
108.8 JK ^{-1} mol ^{-1} , respectively. The temperature w	when Gibbs energy change	(ΔG) for this transformation
will be zero, is:		
a) 273.4 K b) 393.4 K	c) 373.4 K	d) 293.4 K
336. For an adiabatic process:		
a) $Q = +W$ b) $Q = 0$	c) $\Delta U = q$	d) $P\Delta V = 0$
337. The $\Delta H_{\text{ionisation}}^{\circ}$ for HCN and CH ₃ COOH are 45.2 and	d 2.1 kJ mol ⁻¹ .Which of the	following correct?
a) $pKa_{HCN} < pKa_{CH_3COOH}$	Y	
b) $pKa_{HCN} > pKa_{CH_3COOH}$		
c) $pKa_{HCN} = pKa_{CH_3COOH}$		
d) None of the above		
338. Which of the following taking place in the blast	furnace is endothermic?	,
a) $CaCO_3 \rightarrow CaO + CO_2$	b) $2C + O_2 \rightarrow 2CO$	
c) $C + O_2 \rightarrow CO_2$	d) $Fe_2O_3 + 3CO \rightarrow 2Fe_3O_3 + 3CO \rightarrow 2FO_3 $	$2 + 3CO_{2}$
339. Hess's law is used to calculate	× 2 5	2
a) Enthalpy of reaction	b) Entropy of reaction	
c) Work done in reaction	d) All of these	
340. For spontaneity of a cell, which is correct?	a) fin of these	
a) $\Delta G = 0$, $\Delta E = 0$ b) $\Delta G = -\text{ve}, \Delta E = 0$	c) $\Lambda C = \pm v \rho \Lambda F = \pm v \rho$	d) $\Lambda C = -v \rho \Lambda F = +v \rho$
341. If heat of neutralisation is -13.7 kcal and $H_f^0 H_2 O =$	-	-
a) 54.3 kcal b) -54.3 kcal	c) 71.3 kcal	d) –71.3 kcal
342. Work done in reversible isothermal process is give $\frac{V}{R}$		d) None of these
(a) 2.303 RT log $\frac{V_2}{V_1}$ b) $\frac{nR}{(\gamma - 1)}(T_2 - T_1)$	c) 2.303 <i>RT</i> $\log \frac{V_1}{V_2}$	d) None of these
343. Internal energy of an ideal gas depends on:		
a) Pressure b) Temperature	c) Volume	d) None of these
344. For a given substance, melting point T_B and freezing	ng point is T_A , which of the	following represents correct
variation of $\Delta S vs T$?		

I.т.		I	
	b) ^{ΔS}		
	b) ⁴³	c) ²³	
345. Bond energies of (H–I	H), (0 ⊒ 0) and (0−H) a	re 105, 120 and 220 kcal/m	ol respectively, then ΔH in the
reaction, $2H_2(g) + 0_2$			1 07
a) – 115	b) – 130	c) – 118	d) — 550
346. The apparatus general	ly used for measuring he	at changes is:	
a) Voltameter	b) Voltmeter	c) Calorimeter	d) Coulometer
347. The enthalpy change for	or the process, $C(s) \rightarrow C(s)$	g) is known as enthalpy of :	
a) Fusion	b) Vaporisation	c) Combustion	d) Sublimation
348. Standard heat of form	nation of $CH_4(g), CO_2(g)$) and water 25° C are -17.9	$9, -94.1 \text{ and } -68.3 \text{ kcal mol}^{-1}$
respectively. Calculate	the heat change (in kcal)	in the following reaction at 2	25°C:
$CH_4(g) +$	$20_2(g) = C0_2(g) + 2H_2$	0(l)	
a) —144.5	b) -180.3	c) -248.6	d) -212.8
349. Which is the best defin	ition of heat of neutraliza	ation?	
a) The heat absorbed v	when one gram molecule	of an b) The heat set free or	_
acid is neutralized	by one gram molecule of a	a base atom of an acid is ne	eutralized by one gram atom of
	a stated temperature	a base at a stated ter	-
	absorbed when a normal		en one gram-equivalent of an
_	one gram-equivalent		y one gram-equivalent of a
	ed by a normal solution		on at a stated temperature
	n-equivalent of a base at a		
stated temperature			
350. Thermochemistry is th			
a) Chemical energy	b) Activation energy		d) None of these
351. Enthalpy change for th		(g) is – 869.6 kJ	
The dissociation energ			
a) + 217.4 kJ		c) – 869.6 kJ	d) + 434.8 kJ
352. Which of the following			
a) $\Delta H = 0$	b) $\Delta W = 0$	c) $\Delta q = 0$	d) $\Delta V = 0$
353. Which of the followin			
a) Volume	b) Enthalpy	c) Surface tension	d) Free energy
354. $C_6 H_{12}(l) + 90_2(g) = 6$	$H_2O(l) + 6CO_2(g); \Delta H_2$	$_{98K} = -936.9$ kcal. Thus :	
	$\times 10^{-3} \times 298 \times 3$) kcal		
	$\times 10^{-3} \times 298 \times 3$ kcal		
	$\times 10^{-3} \times 298 \times 2$) kcal		
	$\times 10^{-3} \times 298 \times 2$ kc		stant tomporature) when the
opposing pressure, P i		Δv (at com	stant temperature), when the
			d) None of these
a) $W = -\int P\Delta V$	b) $W = 0$	c) $W = -P\Delta V$	uj None or these
356. If a gas has 2 atm and 5	5 atm pressure at 30°C an	d 27°C respectively. Then it v	will
a) Cool on expansion	1	b) Warm on expansion	
c) No change on expan	sion	d) None of these	
		nally and irreversible at 27	^{7°} C from volume 1 dm ³ to
	ssure of 100 k Pa. Calcu	-	
a) 99900 kJ	b) 99900 J	c) 34464.65 kJ	d) 34464.65 J
358. The efficiency of heat e	- ,	· ·	, ,
-	rce > temperature of sin		

a) Temperature of source > temperature of sink

b) Temperature of sink > temperature of source c) Temperature difference of source and sink is minimum d) Temperature difference of source and sink is maximum 359. Which one of the following has ΔS° greater than zero? a) $CaO + CO_2(g) \rightleftharpoons CaCO_3(s)$ b) $NaCl(aq) \rightleftharpoons NaCl(s)$ c) NaNO₃(s) \rightleftharpoons Na⁺(aq) + NO₃⁻(aq) d) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ 360. A spontaneous change is one in which the system suffers a) A lowering of entropy b) No energy change c) An increase in internal energy d) A lowering of free energy 361. Which of the following are not state functions? (I) q + w(II) q (IV) H - TS(III) w d) (I) and (IV) a) (II), (III) and (IV) b) (I), (II) and (III) c) (II) and (III) 362. An isolated system is that system in which: a) There is no exchange of energy with the surroundings b) There is exchange of mass and energy with the surroundings c) There is no exchange of mass and energy with the surroundings d) There is exchange of mass with the surroundings 363. Thermodynamics is concerned with: a) Total energy of a system b) Energy changes in a system c) Rate of chemical change d) Mass changes in nuclear reactions 364. Which of the reactions defines $\Delta H^{\circ} f$? a) $C_{(diamond)} + O_2(g) \rightarrow CO_2(g)$ b) $\frac{1}{2}$ H₂(g) + $\frac{1}{2}$ F₂(g) \rightarrow HF(g) c) $\overline{N}_2(g) + 3\overline{H}_2(g) \rightarrow 2NH_3(g)$ d) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ 365. A process is taking place at constant temperature and pressure. Then b) $\Delta H \Rightarrow T \Delta S$ a) $\Delta H = \Delta E$ c) $\Delta H = 0$ d) $\Delta S = 0$ 366. An isothermal process is associated with: a) Constant entropy b) Constant temperature c) Constant enthalpy d) Large change in heat content 367. $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = -94$ kcal $2CO(g) + O_2 \rightarrow 2CO_2(g); \Delta H = -135.2 \text{ kcal}$ The heat of formation of CO(g) is a) -26.4 kcal b) 41.2 kcal c) 26.4 kcal d) 229.2 kcal 368. $C_{\text{graphite}} + O_2(g) \rightarrow CO_2(g);$ $\Delta H = -94.05 \text{ kcal mol}^{-1}$ $C_{\text{diamond}} + O_2(g) \rightarrow CO_2(g);$ $\Delta H = -94.05 \text{ kcal mol}^{-1} \text{ therfore}:$ a) $C_{\text{diamond}} \rightarrow C_{\text{graphite}}$; $\Delta H_{298K}^{\circ} = +450 \text{ cal mol}^{-1}$ b) $C_{\text{graphite}} \rightarrow C_{\text{diamond}}$; $\Delta H_{298K}^{\circ} = -450 \text{ cal mol}^{-1}$ c) Diamond is harder than graphite d) Graphite is the stabler allotrope 369. Enthalpy change for a reaction does not depend upon

	a) The physical states of	•			
	b) Use of different reactants for the same products				
	c) The nature of intermediate reaction steps				
	d) The differences in initial and final temperature of involved substances				
37	370. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?				
		b) $q = 0, \Delta T \neq 0, w = 0$			
37			d entropy change (ΔS) a	re -11.7×10^3 J mol ⁻¹ and	
	$-105 \text{ J} \text{ mol}^{-1} \text{K}^{-1} \text{ respective}$	•			
	a) Spontaneous	b) Non-spontaneous	c) Instantaneous	d) None of these	
37	2. Which of the following	s is a path function?		\sim	
	a) Internal energy	b) Enthalpy	c) Work	d) Entropy	
37	3. The work done by a sys	stem is 8 J, when 40 J heat	is supplied to it. The chan	ge in internal energy of the	
	system during the proce	ss is:			
	a) 32 J	b) 40 J	c) 36 J	d) 44 J	
37	4. Heat of reaction at const	ant volume is equal to :		01	
	a) $\Sigma U_P - \Sigma U_R$	b) $\Sigma U_R - \Sigma U_P$		d) $\Sigma H_R - \Sigma H_P$	
37	5. Boiling point of a liquid i	is 50 K at 1 atm and $\Delta H_{ m vap.}$:	= 460.6 cal mol ⁻¹ . What w	ill be its b. p. at 10 atm?	
	a) 150 K	b) 75 K	c) 100 K	d) 200 K	
37	6. The change in the enthal	py during the reaction, NaC	$H + HCl \rightarrow NaCl + H_2O$, is	called :	
	a) Heat of reaction	b) Heat of neutralization	c) Heat of formation	d) Heat of liquefaction	
37	7. The heat of combustion	n of rhombic and monocl	inic sulphur are 70.96 a	nd 71.03 kcal. The heat of	
	transition of $S_{R \to M}$ is:				
	a) 70.96 kcal	b) 71.03 kcal	c) –70 cal	d) + 70 cal	
37	8. Hess law is applicable fo	r the determination of heat	of		
	a) Reaction	b) Formation	c) Transition	d) All of these	
37	9. A heat engine absorbs he	eat Q_1 at temperature T_1 and	d heat Q_2 at temperature T_2	₂ , work done by the engine	
	is $(Q_1 + Q_2)$ this data				
	a) Violates 1st law of the	ermodynamics			
	b) Violates 1st law of the	ermodynamics if a_1 is –ve			
	c) Violates 1st law of the	ermodynamics if a_2 is –ve			
	d) Does not violates 1st	law of thermodynamics			
38	0. In which of the following	g condition a chemical react	ion can not occur?		
	a) ΔH and ΔS increase as	nd $T\Delta S > \Delta H$	b) ΔH and ΔS decrease as	nd $\Delta H > T \Delta S$	
	c) ΔH increase and ΔS d	ecreases	d) ΔH decreases and ΔS i	ncreases	
38	1. $C_{\text{diamond}} + O_2(g) \rightarrow CO_2$	$_{2}(g); \Delta H = -395 \text{ kJ} \dots$	(i)		
	$C_{\text{graphite}} + O_2(g) \rightarrow CO_2$	$_{2}(g); \Delta H = -393.5 \text{ kJ} \dots$. (ii)		
	The ΔH , when diamond i	is formed from graphite, is :			
	a) – 1.5 kJ	b) + 1.5 kJ	c) + 3.0 kJ	d) — 3.0 kJ	
38	2. Entropy change of fusior	n at constant pressure is giv	en by:		
		b) $\Delta S_{(f)} = \frac{\Delta G_f}{T}$		d) None of these	
38		1		om a pressure of 2 atm to 10	
	atm. The values of ΔE and		- ,	r	
	a) 0, –965.84 cal		b) -965.84 cal, -865.58	cal	
	c) +865.58 cal, -865.58	cal	d) -865.58 cal, -865.58		
38		gen burn to form water in a	-		
	a) Negative	J	, ,,,,,,	17 0	
	b) Positive				
	c) Zero				
	d) May be positive or po	activo			

d) May be positive or negative

205 The temperature as	fficient of a m f of a coll con h	a givan hy	
_	efficient of e.m. f. of a cell can be $(\partial E) \qquad (E_2 - E_1)$		d) All of these
a) $\left(\frac{\partial L}{\partial T}\right)_P = \frac{\Delta B}{nF}$	b) $\left(\frac{\partial E}{\partial T}\right)_P = \left(\frac{E_2 - E_1}{T_2 - T_1}\right)_P$	c) $\left(\frac{\partial E}{\partial T}\right)_P = \left[\frac{\partial H}{nF} + E\right]\frac{1}{T}$	
386. The internal energy			
a) $\frac{3}{2}RT$	b) $\frac{KT}{2}$	c) $\frac{RT}{2}$	d) $\frac{3KT}{2}$
2	2 nange in a reaction is the same	2	2
statement is called	U	ľ	0
a) Lavoisier and Laplace law		b) Hess's law	
c) Joule's law		d) Le-Chatelier's princip	le 🔨
388. ΔH for transition of suggests that :	f carbon in the diamond forr	n to carbon in the graphi	te form, is – 453.5 cal. This
	cally different from diamond		
b) Graphite is as stat	ole as diamond		
c) Graphite is more s	stable than diamond		
d) Diamond is more	u 1		N I
389. The enthalpy of fusio	-		Y
a) 18 kJ	b) 8 kJ	c) 80 kJ	d) 6 kJ
	porisation of water at 100°C a		
a) Δ <i>H</i>	b) ΔS	c) Zero	d) $\Delta H/T$
	sation of a liquid is 6 kJmol ^{-1} .	If the entropy change is 16	J mol ⁻¹ K ⁻¹ , the boiling point
of the liquid is			1) 10000
a) 273 K	b) 375°C	c) 375 K	d) 102°C
is:	on of water is 1.435 kcal/mol.	. The molar entropy change	e for the melting of ice at 0°C
	b) 0.526 cal/(mol K)	c) 10.52 col/(mol K)	d) 21.04 cal/(mol K)
	ving is an endothermic react		u) 21.04 cal/ (1101 K)
	$-92kJ \rightarrow 2NH_3(g)$		$0.8 \text{ kI} \rightarrow 2 \text{NO}(a)$
	\rightarrow 2HCl(g) + 184.6 kJ		, (6)
	s of melting of ice at -15° C is:		$g \rightarrow GII_4(g) + 74.0 \text{ KJ}$
a) $\Delta G = -ve$	b) $\Delta G = +ve$	c) $\Delta G = 0$	d) All of these
,	ogen and oxygen mixture in ra		uj Ali ol tilese
•	The mixture decreases	b) Internal energy of the	mixture increases
c) Entropy of the min		d) Entropy of the mixtur	
396. Which one is not a sp		j i rj	
a) Dissolution of CuS	<u> </u>		
b) Water flowing dow			
	om low potential to high poter	ntial	
d) None of the above			
397.1 mole of gas occupy	ring 3 L volume is expanded ag	gainst a constant external p	ressure of 1 atm to a volume
	done by the system is:		
a) 1.215 × 10 ³ J	b) 12.15 × 10 ³ J	c) 121.5 × 10 ³ J	d) None of these
398. The heat evolved du	ring the combustion of 112 lit	re of water gas (mixture of	equal volume of H_2 and CO)
is :			
	$I_2 O(g); \Delta H = -241.8 \text{ kJ}$		
$\mathrm{CO}(\mathrm{g}) + \frac{1}{2}\mathrm{O}_2(\mathrm{g}) \to \mathrm{O}_2(\mathrm{g})$	$CO_2(g); \Delta H = -283 \text{ kJ}$		
a) 241.8 kJ	b) 283 kJ	c) — 1312 kJ	d) 1586 kJ
	ible adiabatic process is given		

399. Work done in reversible adiabatic process is given by:

a) 2.303 RT log $\frac{V_2}{V_1}$ b) $\frac{nR}{(\gamma - 1)}(T_2 - T_1)$ c) 2.303 RT log $\frac{V_1}{V_2}$ d) None of these 400. The H–H bond energy is 430 kJ mol⁻¹ and Cl–Cl bond energy is 240 kJ mol⁻¹. ΔH for HCl is –90 kJ. The H–Cl bond energy is about: b) 213 kJ mol⁻¹ c) 360 kJ mol⁻¹ a) 425 kJ mol⁻¹ d) 180 kJ mol⁻¹ 401. Given, $NH_3(g) + 3Cl_2(g) \rightleftharpoons NCl_3(g) + 3HCl(g); -\Delta H_1$ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g);$ $-\Delta H_2$ $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g);$ ΔH_3 The heat of formation of NCl₃(g) in the terms of ΔH_1 , ΔH_2 and ΔH_3 is: a) $\Delta H_f = -\Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$ b) $\Delta H_f = \Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$ c) $\Delta H_f = \Delta H_1 - \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$ d) None of the above 402. 50 mL of water takes 5 min to evaporate from a vessel on a heater connected to an electric source which delivers 400 W. The enthalpy of vaporisation of water is a) 40.3 kJ per mol b) 43.2 kJ per mol c) 16.7 kJ per mol d) 180.4 kJ per mol 403. The work done by a system in an expansion against a constant external pressure is: b) $-P \cdot \Delta V$ a) $\Delta P \cdot \Delta V$ d) $V \cdot \Delta P$ c) Q404. If, combustion of 4 g of CH_4 liberates 2.5 kcal of heat, the heat of combustion of CH_4 is : b) -10 kcal mol⁻ c) 2.5 kcal mol⁻¹ d) -5 kcal mol⁻¹ a) -2 kcal mol⁻ 405. A gas expands isothermally against a constant external pressure of 1 atm from a volume of 10 dm³ to a volume of 20 dm³. It absorbs 800 J of thermal energy from its surroundings. The ΔU is a) -312 I c) -213 [b) +123 [d) +231 J 406. Enthalpy of vaporisation for water is $186.5 \text{ kJ mol}^{-1}$. The entropy change during vaorisation is ...kJ K⁻¹mol⁻¹. a) 0.5 d) 2.0 b) 1.0 c) 1.5 407. ΔC_p for : N₂(g) + 3H₂(g) \rightarrow 2NH₃(g) is a) $C_p NH_3 + C_p N_2 + C_p H_2$ b) $C_p NH_3 - C_p N_2 - C_p H_2$ c) $2C_p NH_3 - C_p N_2 - 3C_p H_2$ d) $2C_p NH_3 + C_p N_2 - 3C_p H_2$ 408. Which statement(s) is/are correct? a) $\left(\frac{\partial H}{\partial T}\right)_{P} - \left(\frac{\partial U}{\partial T}\right)_{V} = R$ b) $\left(\frac{\partial H}{\partial T}\right)_{P} > \left(\frac{\partial U}{\partial T}\right)_{V}$ c) $\left(\frac{\partial U}{\partial V}\right)_T$ for ideal gas is zero d) All of the above 409. For a reversible process at T = 300 K, the volume of 2 mole of ideal gas is increased from 1 litre to 10 litre, the ΔH for isothermal change is: a) 11.47 kJ b) 4.98 kJ c) 0 d) 2.49 kJ 410. If $C(s) + 2H_2(g) \rightarrow CH_4(g)$; $\Delta H = -X_1$ kcal $C(g) + 4H(g) \rightarrow CH_4(g); \Delta H = -X_2 \text{ kcal}$ $CH_4(g) \rightarrow CH_3(g) + H(g); \Delta H = + Y \text{ kcal}$ The average bond energy of C - H bond in kcal mol⁻¹ is :

X.				
a) $\frac{X_1}{4}$				
b) Y				
c) $\frac{X_2}{4}$				
4				
d) X_1				
	ation of $H_2O(l)$ is given by :			
	$) \rightarrow H_2 O(l); \Delta H = -X_1 kJ$			
L	$\Rightarrow H_2O(l); \Delta H = -X_2 \text{ kJ}$	· LT		
_	\rightarrow CO(g) + H ₂ O(l); $\Delta H = -X$			
2	$\rightarrow 2\text{CO}_2(\text{g}) + \text{H}_2\text{O}(l); \Delta H =$		Contra The second dama has	
	om 100 mL to 250 mL und	er a constant pressure o	f 2 atm. The work done by	
gas is				
a) 30.38 J	b) 25 J	c) 5 kg J	d) 16 J	
413. A system is changed from state A to state B by one path and from B to A by another path. If E_1 and E_2 are the corresponding changes in internal energy, then;				
a) $U_1 + U_2 = +ve$			d) None of these	
	al gas expanded spontaneou			
a) Infinite	b) 3 joules	c) 9 joules	d) Zero	
	g is always negative for exot		d) Norra of these	
a) ΔH	b) ΔS	c) ΔG	d) None of these	
416. In a flask colourless N_2O_4 is in equilibrium with brown coloured NO_2 . At equilibrium when the flask is heated at 100°C, the brown colour deepens and on cooling it becomes less coloured. The change in				
enthalpy, ΔH for this		u on cooming it becomes	less coloured. The change in	
a) Negative	b) Positive	c) Zero	d) Undefined	
, ,	perature and pressure expar	, ,	a) endenned	
_	creases and then decreases	b) Internal energy incr	eases	
c) Internal energy remains the same d) Internal energy decreases				
418. If the enthalpy change for the reaction				
CH ₄ ($g) + Cl_2(g) \rightarrow CH_3Cl(g) + HC$	Cl(g),		
$\Delta H = -25$ kcal. Bon	d energy of C-H is 20 kcal	mol ⁻¹ greater than the b	ond energy of C—Cl and bond	
energies of H—H a	nd H—Cl are same in ma	gnitude, then for the re	eaction : $\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) \rightarrow$	
HCl(g); $\Delta H = ?$				
a) – 22.5 kcal/mol	b) – 20.5 kcal/mol	c) – 32.5 kcal/mol	d) — 12.5 kcal/mol	
419. Internal energy is an	example of			
a) Path function	b) State function	c) Both (a) and (b)	d) None of these	
420. In a closed containe	er, a liquid is stirred with a	paddle to increase the te	emperature. Which of the	
following is true?				
a) $\Delta E = W \neq 0$, $q =$	$(= 0 b) \Delta E = W = q \neq 0$	c) $\Delta E = 0, W = q \neq 0$	0 d) $W = 0, \Delta E = q \neq 0$	
421. In a reaction, ΔH an	d ΔS both are positive. In v	which of the following cas	es, the reaction would not be	
spontaneous?				
a) $\Delta H > T \Delta S$	b) $\Delta S = \frac{\Delta H}{T}$	c) $\Delta H = T \Delta S$	d) All of these	
422. The bond dissociation enthalpy of formation	n energies of gaseous H_2 , Cl_2 n of HClgas would be	and HClare 104, 58 and 10	3 kcal respectively. The	
a) –44 kcal	b) 44 kcal	c) –22 kcal	d) 22 kcal	
-	•	•	0 kJ/mol. If the system goes	
•••			ble path, what would be the	

net change in internal energy? a) 40 kJ b) >40 kI c) <40 kI d) Zero 424. The enthalpy of vaporisation of a substance is 840 J/mol and its boiling point is -173° C. Its entropy of vaporisation is a) 4.8 J/mol/K b) 12 J/mol/K c) 210 J/mol/K d) 49 J/mol/K 425. The ΔH_f^o of O₃, CO₂, NH₃ and HI are 142.2 – 393.3, –46.2 and +25.9 kJ per mol respectively. The order of their increasing stabilities will be a) O_3 , CO_2 , NH_3 , HIb) CO_2 , NH_3 , HI, O_3 c) O₃, HI, NH₃, CO₂ d) NH_3 , HI, CO_2 , O_3 426. For the reaction, C (graphic) $+\frac{1}{2}O_2(g) \rightarrow CO(g)$ at 298 K and 1 atm, $\Delta H = -26.4$ kcal. What is ΔE , if the molar volume of graphite is 0.0053 L? $(R = 0.002 \text{ kcal mol}^{-1} \text{ K}^{-1})$ a) -26.7 kcal b) +26.7 kcal d) +52.4 kcal c) -52.4 kcal 427. For the reaction of one mole of zinc dust with one mole of sulphuric acid in a bomb calorimeter, ΔU and W correspond to a) $\Delta U < 0, W = 0$ b) $\Delta U = 0, W < 0$ c) $\Delta U > 0, W = 0$ d) $\Delta U = 0, W > 0$ 428. The quantity of heat measured for a reaction in a bomb calorimeter is equal to a) Δ*G* b) ∆*H* d) ∆*E* c) $p\Delta V$ 429. For the reactions: $C + O_2 \rightarrow CO_2; \Delta H = -393 \text{ kJ}$ $2Zn + O_2 \rightarrow 2ZnO; \Delta H = -412 \text{ kJ}$ which one is correct? a) Carbon can reduce ZnO to Zn b) Oxidation of carbon is not feasible c) Oxidation of Zn is not feasible d) Zn liberates more heat than carbon during oxidation 430. The following two reactions are known $\operatorname{Fe}_2O_3(s) + 3CO_{(g)} \rightarrow 2\operatorname{Fe}_{(s)} + 3CO_{2(g)};$ $\Delta H = -26.8 \text{ kJ}$ $\operatorname{FeO}_{(s)} + \operatorname{CO}_{(g)} \rightarrow \operatorname{Fe}_{(s)} + \operatorname{CO}_{2(g)};$ $\Delta H = -16.5 \text{ kJ}$ The value of ΔH for the following reaction $\operatorname{Fe}_2\operatorname{O}_{3(s)} + \operatorname{CO}_{(g)} \rightarrow 2\operatorname{FeO}_{(s)} + \operatorname{CO}_{2(g)}$ is : a) + 10.3 kJ b) - 43.3 k] c) -10.3 kJ d) + 6.2 kJ 431. The process in which pressure remains constant throughout a change is: a) Adiabatic b) Isochoric c) Isobaric d) Isothermal 432. Entropy of vaporisation of water at 100°C, if molar heat of vaporisation is 9710 cal mol⁻¹ will be: c) 24 cal $mol^{-1}K^{-1}$ a) 20 cal mol⁻¹K⁻¹ b) 26.0 cal $mol^{-1}K^{-1}$ d) 28.0 cal mol⁻¹K⁻¹ 433. Which is an extensive property? a) Temperature b) Chemical potential c) Gibb's free energy d) Molar volume 434. ΔE° of combustion of isobutylene is -x kJ mol⁻¹. The value of ΔH° is a) = ΔE° b) > ΔE° c) = 0d) < ΔE° 435. Which of the following reaction defines ΔH_f^o ? b) $\frac{1}{2}$ H₂(g) + $\frac{1}{2}$ F(g) \rightarrow HF(g) a) C(diamond) + $O_2(g) \rightarrow CO_2(g)$

c) $N_2(l) + 3H_2(g) \rightarrow 2N$	H ₃ (g)	d) $CO(g) + \frac{1}{2}O_2(g) \to 0$	CO ₂ (g)	
436. The heat change for thea) Heat of vaporisation437. The law of conservation	b) Heat of solution of energy states that :	O(g) is called as : c) Heat of fusion	d) Heat of formation	
a) The internal energy ob) The heat content of a	system is constant			
c) Energy is neither creatd) There is an equivalen	=	mass		
438. Heat of neutralization of		inuss		
a) 1. kJ	b) $> 57.32 \text{ kJ}$	c) < 57.32 kJ	d) None of these	
439. From the following bond				
H—H bond energy : 431.	-			
C C bond energy : 606	•			
C—C bond energy : 336.4				
C—H bond energy : 410.5	-			
Enthalpy for the reaction		Ć		
Н Н Н	H	~	A	
$\begin{array}{c} H & H & H \\ I & I \\ C = C + H - H \longrightarrow H - C - \\ I & I \\ H & H \end{array}$	 С - Н			
н н п	H			
will be :				
	b) 1523.6 kJ mol ⁻¹		d) $- 120.0 \text{ kJ mol}^{-1}$	
440. The enthalpies of format	-	es can be conveniently deter	mined from :	
a) Heats of combustion of	lata			
b) Boiling point	^	\mathbf{V}		
c) Melting point	C	Y		
d) Heats of neutralisatio		at aquilibrium iq		
441. The free energy change			4) 0	
a) Large, positive	b) Small, negative	c) Small, positive	d) 0	
442. In an irreversible proces				
a) +ve	b) –ve	c) = 0	d) All of these	
443. A container has hydroge		n ratio of 4 : 1 by weight, the	n:	
a) Entropy of these gase				
b) Internal energy increa				
c) Internal energy of the d) Entropy of the gases of				
		utralized by dilute NaOH col	ution and x and y local of heat	
are liberated respectivel			ution and x and y kcal of heat	
a) $x = y$	b) $x = 0.5 y$	c) $x = 0.4 y$	d) None of these	
445. Identify the intensive qu	, ,	· ·	dj None of these	
a) Enthalpy and tempera	=	b) Volume and tempera	ature	
c) Enthalpy and volume			d) Temperature and refractive index	
			eacts with explosion. The step	
involved in the initiation		ite to ultra violet sumgit it	cuets with explosion. The step	
		c) $H_a + Cl_a \rightarrow 2HCl$	d) $Cl_a \rightarrow Cl^{\bullet} + Cl^{\bullet}$	
a) $H_2 \rightarrow H^{\bullet} + H^{\bullet}$		in a bomb calorimeter is		
a) $H_2 \rightarrow H^{\bullet} + H^{\bullet}$ 447. The amount of heat m	easured for a reaction		d) nAV	
a) $H_2 \rightarrow H^{\bullet} + H^{\bullet}$ 447. The amount of heat me a) ΔG	easured for a reaction b) Δ <i>H</i>	c) ∆ <i>E</i>	d) $p \Delta V$	
a) $H_2 \rightarrow H^{\bullet} + H^{\bullet}$ 447. The amount of heat me a) ΔG	easured for a reaction b) Δ <i>H</i>	c) ∆ <i>E</i>	d) <i>p.∆V</i> s supplied and W is work done	

449. Which one of the following bonds has the highest a a) $S = 0$ b) $C \equiv C$	c) $C \equiv N$ d) $N \equiv N$			
450. If gas, at constant temperature and pressure ex				
	-			
a) Entropy increases and then decreases	b) Internal energy increases			
c) Internal energy remains the same	,			
451. For a reaction, $\Delta H = 9.08$ kJ mol ⁻¹ and $\Delta S = 35.7$ Jl	K ⁻¹ mol ⁻¹ . Which of the following statement is correct			
for the reaction?				
a) Reversible and isothermal	b) Reversible and exothermic			
c) Spontaneous and endothermic	d) Spontaneous and exothermic			
452. The correct thermochemical equation is :				
a) $C + O_2 \rightarrow CO_2$; $\Delta H = -94$ kcal b) $C + O_2 \rightarrow CO_2$; $\Delta H = +94$ kcal				
c) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = -94$ kcal				
d) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = +94$ kcal				
	action entropy change (ΔS°) is positive and standard			
Gibbs's energy change (ΔG°) decreases sharply wit				
a) $Mg(s) + \frac{1}{2}O_2(g) \to MgO(s)$				
b) $\frac{1}{2}$ C(graphite) + $\frac{1}{2}$ O ₂ (g) $\rightarrow \frac{1}{2}$ CO ₂ (g)				
c) C(graphite) + $\frac{1}{2}O_2(g) \rightarrow CO(g)$				
d) $CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$				
	\rightarrow CH ₄ (g) at constant pressure is 18500 cal at 25°C. The			
heat of reaction at constant volume would be:				
a) 19096 cal b) 18798 cal	c) 18202 cal d) 17904 cal			
455. Minimum work is obtained when 1 kg of gas	expanded under 500 kPa to 200 kPa pressure at			
0°C.				
a) Chlorine b) Oxygen	c) Nitrogen d) Methane			
456. The temperature of the system decreases in an				
a) Adiabatic compression	b) Isothermal compression			
c) Isothermal expansion	d) Adiabatic expansion			
457. The bond of energies of H–H, Br–Br and H–Br are	433, 192 and 364 kJ mol ⁻¹ respecively. The ΔH° for the			
reaction ; $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ is :				
a) – 261 kJ b) + 103 kJ	c) + 261 kJ d) - 103 kJ			
458. The absolute enthalpy of neutralisation of the react				
a) Greater than —57.33 kJ mol ⁻¹	b) 57.33 kJmol ^{-1}			
c) Less than -57.33 kJ mol ^{-1}	d) $-57.33 \text{ kJ mol}^{-1}$			
459. We believe in the laws of thermodynamics bec	ause they are			
a) Theoretical	b) Derived based on mathematical analysis			
C C) Empirical and nobody disproved	d) Mere statements			
460. The enthalpy of dissolution of $BaCl_2(s)$ and $BaCl_2 \cdot$	$2H_2O(s)$ are -20.6 and 8.8 kJ per mol respectively. The			
enthalpy of hydration for,				
$BaCl_2(s) + 2H_2O \rightarrow BaCl_2 \cdot 2H_2O(s)$ is				
	c) –11.8 kJ d) 38.2 kJ			
461. The enthalpies of the elements in their standard sta				
a) Zero at 298 K	b) Unit at 298 K			
c) Zero at all temperature d) Zero at 273 K				
462. The change in entropy, ΔS is positive for an ended	othermic reaction. If enthalpy charge ΔH occurs at the			

same temperature *T*, then the reaction is feasible:

- a) At all temperatures b) When $\Delta H > T\Delta S$ c) When $\Delta H < T\Delta S$ d) Not feasible at all 463. If the enthalpy change for the transition of liquid water to steam is 30 kJ mol⁻¹ at 27°C, the entropy change for the process would be:
 - a) $100 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ b) $10 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ c) $1.0 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ d) $0.1 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$
- 464. For the reaction, $C_3H_8(g) + 5O_2 \rightarrow 3CO_2(g) + 4H_2O(l)$ at constant temperature, $\Delta H \Delta U$ is : a) + RT b) - 3RT c) + 3RT d) - RT

a) + RT b) - 3RT c) + 3I 465. The total amount of energy in the universe is fixed, but:

a) Matter is increasing

b) Gravitation is decreasing

c) Disorder is increasing

d) Lightening is increasing

466. Which compound will absorb the maximum amount of heat when dissolved in the same amount of water? (Integral heats of solution at 25°C in kcal/mol of each solute are given in brackets):

a) $HCl(\Delta H = -17.74)$

b)
$$HNO_3(\Delta H = -7.85)$$

c) $NH_4NO_3(\Delta H = +16.08)$

d) NaCl($\Delta H = +1.02$)

THERMODYNAMICS

CHEMISTRY

						: ANS	W	ER K	ΈY	, :			
1)	С	2)	b	3)	b	4)	а	177)	d	178) d	179)	b	180) a
5)	С	6)	d	7)	С	8)	a	181)	b	182) a	183)	а	184) a
9)	а	10)	b	11)	a	12)	d	185)	b	186) c	187)	d	188) d
13)	а	14)	С	15)	b	16)	a	189)	С	190) b	191)	а	192) c
17)	b	18)	d	19)	a	20)	d	193)	С	194) a	195)	C	196) a
21)	b	22)	а	23)	a	24)	d	197)	а	198) c	199)		200) d
25)	С	26)	С	27)	b	28)	а	201)	С	202) b	203)	b	◆ 204) a
29)	d	30)	а	31)	a	32)	b	205)	d	206) b	207)	b	208) d
33)	а	34)	С	35)	а	36)	a	209)	а	210) d	211)	d	212) b
37)	С	38)	С	39)	С	40)	a	213)	b	214) d	215)	b	216) b
41)	С	42)	С	43)	a	44)	d	217)	d	218) a	219)	d	220) c
45)	а	46)	b	47)	С	48)	d	221)	С	222) a	223)	С	224) a
49)	b	50)	С	51)	a	52)	d	225)	b	226) d	227)	b	228) a
53)	а	54)	b	55)	d	56)	С	229)	а	230) d	231)	С	232) b
57)	C	58)	b	59)	а	60)	а	233)	a	234) b	235)	d	236) d
61)	b	62)	а	63)	C	64)	a	237)	b	238) a	239)	a	240) b
65)	b	66) 70)	C L	67) 71)	d	68) 72)	a	241)	d L	242) a	243)	b	244) a
69) 72)	d J	70) 74)	b	71) 75)	C	72) 7()	a	245)	b	246) b	247) 251)	C h	248) b
73) 77)	d d	74) 79)	a	75) 70)	C d	76) 90)	a h	249) 252)	C	250) a	251) 255)	b	252) b
77) 81)	d	78) 82)	a	79) 83)	d	80) 84)	b d	253) 257)	с b	254) c 258) b	255) 259)	C h	256) d 260) d
85)	a a	86)	a a	83) 87)	a b	88)	u C	2 <i>37</i>) 261)	b	230) D 262) a	239J 263)	b b	200) u 264) c
89)	a b	90)	a d	91)	d	92)	с а	265)	d	262) a 266) b	267)	d	264) C 268) d
93)	c	90) 94)	u C	95)	d	96)	a	269)	c c	200) b 270) c	207) 271)	d	200) u 272) с
97)	a	98)	a	-	b	100)	c	273)	b	276) c 274) b	275)	a	272) e 276) b
101)	a	102)	d	103)	b	104)	d	277)	d	278) a	279)	a	280) a
105)	b	106)	C	107)	d	108)	a	281)	a	282) d	283)	a	284) d
109)	c	110)	b	111)	d	112)		285)	b	286) d	287)	а	288) a
, 113)	b	114)		115)	а	116)		289)	а	290) b	291)	d	292) d
, 117)	b	118)	a	119)	с	120)		293)	а	294) d	295)	b	296) a
121)	а	122)	a	123)	a	124)		297)	а	298) c	299)	а	300) d
125)	a	126)	С	127)	С	128)	а	301)	а	302) c	303)	d	304) b
129)	b	130)	а	131)	a	132)	а	305)	а	306) b	307)	b	308) a
133)	d	134)	b	135)	С	136)	b	309)	С	310) c	311)	С	312) c
137)	b	138)	b	139)	b	140)	С	313)	b	314) b	315)	С	316) a
141)	С	142)	a	143)	b	144)	С	317)	а	318) c	319)	а	320) d
145)	b	146)	b	147)	a	148)	b	321)	С	322) b	323)	С	324) d
149)	С	150)	а	151)	d	152)	a	325)	а	326) c	327)	а	328) a
153)	а	154)	а	155)	b	156)	d	329)	С	330) b	331)	С	332) d
157)	d	158)	d	159)	d	160)		333)	С	334) d	335)	С	336) b
161)	d	162)	a	163)	С	164)		337)	b	338) a	339)	а	340) d
165)	b	166)	С	167)	С	168)		341)	b	342) a	343)	b	344) a
169)	С	170)	а	171)	а	172)		345)	d	346) c	347)	d	348) d
173)	b	174)	d	175)	d	176)	С	349)	d	350) a	351)	d	352) c

-	358) 0 362) 0 366) 1 370) a 374) a 378) 0 382) a 386) a 390) 0 394) 1 398) 0 402) 1	d 39 c 30 b 30 a 37 a 37 a 37 a 38 c 39 c 39 c 39 c 39 c 39 c 40 a 40	55) a 59) c 53) b 57) a 71) b 75) c 79) d 33) a 37) b 33) a 37) b 91) c 99) b 03) b 07) c 11) b	356) 360) 364) 368) 372) 376) 380) 384) 388) 392) 396) 400) 404) 408) 412)	 b 413) d 417) b 421) d 425) c 429) b 433) c 437) a 441) c 445) a 449) c 453) a 457) b 461) d 465) a 	C d c a c d d d c d a c	418) 422) 426) 430) 434) 438) 438) 442) 446) 450) 454)	d a c a d b a d c a c c c c	415) 419) 423) 427) 431) 435) 439) 443) 443) 447) 451) 455) 459) 463)	a b d c c d a c c a d a	 416) b 420) a 424) a 428) d 432) b 436) a 440) a 444) b 448) b 452) c 456) d 460) b 464) b
		ctr		400) 404) 408) 412)		R					
SMA											

THERMODYNAMICS

CHEMISTRY

	: HINTS AND	SO	LUTIONS :
1	(c)		surroundings. This can be made by putting
-	$H_2O(l) \rightarrow H_2O(v) \therefore \ \Delta n = 1$		insulation at the boundries of system
	$\Delta H^{\circ} = \Delta U^{\circ} + \Delta n R T$	15	(b)
	$40.66 \times 10^3 = \Delta U^\circ + 1 \times 8.314 \times 373$		$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O + q_1$
	$\therefore \Delta U^{\circ} = 37559 \text{ J} = 37.56 \text{ kJ}$		$\underline{\mathrm{H}}^{+} + \underline{\mathrm{OH}}^{-} \rightarrow \underline{\mathrm{H}}_{2}\mathrm{O} + \underline{q}_{2}$
2	(b)		
	$\left(\frac{\partial Q}{\partial T}\right)_{p} = C_{p} \text{ and } \left(\frac{\partial Q}{\partial T}\right)_{v} = C_{v} \text{ and } C_{p} - C_{v} = R.$	17	$\overline{\text{CH}_3\text{COOH}}$ → $\overline{\text{CH}_3\text{COO}^- + \text{H}^+ + (q_1 - q_2)}$ (b)
4	(a) 1		$\Delta G^{\circ} = -2.303 RT \log K \left(K \text{ for } H_2 O = \frac{10^{-14}}{55.6} \right)$
	C(s) + $\frac{1}{2}$ O ₂ (g) → CO ₂ (g); $\Delta H_1 = -26.4$		$= -2.303 \times 8.314 \times 298 \times \log \frac{10^{-14}}{55.6}$
	$C(s) + \frac{1}{2}O_2(g) \to CO_2(g); \Delta H_2 = -96.0$		$= -89.84 \mathrm{kJ}$
	We have to find for ΔH , for reaction	18	(d)
	$CO + \frac{1}{2}O_2 \rightarrow CO_2; \Delta H_1 =?$		The spontaneity of reaction cannot be decided by
	-		simply looking the chemical change. We need ΔG
	Eqs.(ii) $-$ (i), we get		value for it.
-	$\Delta H = -94 - (-26.4) = -67.6 \text{ kcal}$	19	(a)
5	(c)		ΔH for a reaction is equal but opposite to
C	If $\Delta G = -ve$, process is spontaneous		backward reaction.
6	$\begin{pmatrix} d \\ A \\ H \\ H$	20	(d)
	$\Delta U - W = q$ If cyclic process, then $q = -W$.		Follow definition of ionisation energy.
7	(c) (c)	21	(b)
,	<i>e</i> .g., <i>U</i> , <i>H</i> , <i>S</i> , etc.		Internal energy of an ideal gas is function of
8	(a)		temperature and thus $\left(\frac{\partial E}{\partial P}\right)_T = 0$
C	$\Delta G = 0$ for an equilibrium state.	22	(a)
9	(a)		For exothermic reactions $H_p < H_R$
	Find ΔH for, $H_2 + S + 2O_2 \rightarrow H_2SO_4$	23	(a)
11	(a)	-0	Heat of combustion is defined as the amount of
	q = +10 kJ, W = -4 kJ		the energy released during complete combustion
	$\therefore \Delta E = q + W$		of 1 mole of a substance in oxygen or air.
	= 10 - 4 = 6 kJ	24	(d)
	So, energy increases by 6 kJ		50 Meq. of KOH and 50 Meq. Of H ₂ SO ₄ will
12	(d)		produce maximum heat.
~	Heat of neutralisation is -13.7 kcal eq ⁻¹ .	25	(c)
13	(a)		The first law of thermodynamics can be
-	$\Delta G = \Delta H - T \Delta S$		expressed as :
	$\Delta G = 0$, at equilibrium		$\Delta E = q + W$
	$\therefore \Delta H = T \Delta S$		$q = \Delta E - W$
	or $30.5 = T \times 0.066$	26	(c)
	T = 462.12 K		H = U + PV
14	(c)		$\therefore H_2 - H_1 = U_2 - U_1 + (P_2 V_2 - P_1 V_1)$
	An adiabatic process is one in which exchange of		$\therefore \Delta H = 30 + (4 \times 5 - 2 \times 3)$
	heat is not taking place in between system and		

~-	= 44 L atm	
27	(b)	38
	The reactions in which products has lesser	
	energy than reactants, then energy is released	20
	in the reaction and such reactions are known	39
	as exothermic reactions <i>e.g.,</i>	
	$N_2 + 3H_2 \rightarrow 2NH_3 + 92 \text{ kJ}$	
	In this equation energy is released, so, it is an	
	example of exothermic reaction.	4(
28	(a)	
	$\Delta H_{\text{mixing}} = 0$ for ideal solutions.	
29	(d)	
	In (a), (b), (c) randomness increase.	
30	(a)	
	$\Delta H = \Delta E + \Delta n R T$	
	Since, $\Delta n = 2 - 4 = -2$	41
	Therefore, $\Delta H = \Delta E - 2RT$	4.5
31	(a)	42
	$\frac{T}{T_{\text{final}}} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}$	
	$\frac{T}{T_{\text{final}}} = \left(\frac{2}{1}\right)^{(5/3-1)} = 2^{(2/3)}$	
		1
	$T_{\text{final}} = \frac{T}{2^{(2/3)}}$	π.
32	(b)	
32	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	44
	Molecular weight of $CH_4 = 12 + 4 = 16$	_
	\therefore On the combustion of 2.0 g of methane = 25.0	
	kcal	
	: On the combustion of 16.0 g methane $=\frac{25\times16}{2}=$	
33	200 kcal	45
55	(a) $a 2.303 nRT V_{2}$	
	$\Delta S = \frac{q}{T} = \frac{2.303 \ nRT}{T} \log \frac{V_2}{V_1}$	
	$= 2.303 \times 1 \times 8.314 \log 10$	
	$= 19.15 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$	
34	(c)	46
	Heat of formation of $H_2O(l)$	
	<i>i.e.</i> , $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	
	-	4 -
C	Is also heat of combustion of $H_2(g)$.	47
35	(a)	
	$\Delta S_{\rm reaction} = \sum S_{\rm product} - \sum S_{\rm reactant}$	48
	$= 2 \times S_{H_2O} - [2 \times S_{H_2} + S_{O_2}]$	40
	$= 2 \times 68 - [2 \times 126.6 + 201.20]$	49
	$= -318.4 \mathrm{[K^{-1}mol^{-1}]}$	1.
36	,	
20	Solve using Hess's law	
37	(c)	
		1

Decomposition of MgCO₃ occurs only on heating. 8 (c) Maximum work is obtained under reversible conditions (either isothermal or adiabatic). 9 (c) $C_6H_6(g) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(g)$ $\Delta n = 6 + 3 - 1 - \frac{15}{2} = +0.5$ 40 **(a)** $P \times 1 = RT$ Also internal energy, $U = \frac{3}{2}RT$ $\therefore U = \frac{3}{2}P$ or $P = \frac{2}{2}U$ 1 (c) Electrical energy is used to bring in electrolysis. 2 **(c)** The second law of thermodynamics has been defined as - the entropy of universe is always increasing in the course of every spontaneous process. 3 (a) Rest all are endothermic process. Hydration is always exothermic. 4 **(d)** For monoatomic gas, $\gamma_2 = \frac{c_p}{c_r} = 1.67$ For diatomic gas, $\gamma_2 = \frac{c_p}{c_n} = 1.40$ $\therefore \ \gamma_1{:}\gamma_2 = \frac{1.67}{1.40} = 1.19{:}\,1$ 45 **(a)** $C + O_2 \rightarrow CO_2; \qquad \Delta H = -393.5 \text{ kJ}$ $CO + \frac{1}{2}O_2 \rightarrow CO_2; \qquad \Delta H = -283.5 \text{ kJ}$ On subtracting, $C + \frac{1}{2}O_2 \rightarrow CO; \Delta H - 110.0 \text{ kJ}$ 6 **(b)** It is based on the fact that neither heat can be produced nor destroyed, i.e., Ist law of thermodynamics. 7 (c) $\Delta H = H_P - H_R$; Measurements at constant pressure give ΔH values. 48 **(d)** These all are limitations of third law. 9 **(b)** $\Delta H = \Delta U + \Delta nRT$ $\Delta n = -1/2$ \therefore -43 = ΔU + (-1/2) × 8.314 × 298

 $\times 10^{-3}$

–ve; the

reduced since,

represents

٠

78 (a) Amount of sugar needed = $\frac{2870 \times 342}{1349}$ = 727.6 g 88 (c) 79 (d) $\Delta H = -119.5 \text{ kJ}$; ∆H=3 x (-119.5) 90 (d) $-358.5 \text{ kJ} \text{ mol}^{-1}$ The obs. $\Delta H = \Delta H + \text{Energy needed to disturb}$ resonance = -358.5 + 150.491 (d) $= -208.1 \text{ kJ mol}^{-1}$ 80 **(b)** 92 (a) $:: \Delta G^{\circ} = -RT \ln K$ Also $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ 93 (c) $\therefore -RT \ln K = \Delta H^{\circ} - T\Delta S^{\circ}$ $\operatorname{or} \ln K = \frac{T\Delta S^{\circ} - \Delta H^{\circ}}{RT}$ 94 (c) 81 (a) Work done due to change in volume against constant pressure, 96 (a) $W = -p(V_2 - V_1)$ $= -1 \times 10^5 \text{ Nm}^{-2} (1 \times 10^{-2} - 1 \times 10^{-3}) \text{m}^3$ = -900 Nm = -900 J (1 Nm = 1 J)82 (a) $C + O_2 \rightarrow CO_2$; $\Delta H = x$...(i) $CO + \frac{1}{2}O_2 \to CO_2; \Delta H = y ...(ii)$ 97 (a) Eqs. (i) –(ii) $C + \frac{1}{2}O_2 \rightarrow CO, \Delta H = x - y$ 83 (a) 98 (a) $\Delta H = H_{\text{product}} - H_{\text{reactant}}; \quad H_R >$ H_P . Thus, –ye. cooler. 84 (d) 99 **(b)** These all are facts. 85 (a) $Fe + 2HCl \rightarrow FeCl_2 + H_2$ 100 (c) mole of Fe = $\frac{112}{56}$ = 2, \therefore mole of H₂ formed = 2. now, work done = $P(V_2 - V_1)$; $V_2 = V_{H_2}$ and $V_1 = 0$ (for solid and liquid) $= P \cdot V_{\mathrm{H}_2} = P \cdot \frac{nRT}{P} = nRT$ $= 2 \times 2 \times 300 = 1200$ cal = 1.2 kcal 86 (a) 101 (a) No doubt, heat evolved in first process is twice to second but volume absorbing this heat is also twice in comparison to first. 103 (b)

87 (b) At constant volume $P\Delta V = 0, \therefore q = \Delta U$. $C + O_2 \rightarrow CO_2$; $\Delta H^{\circ} f = ?$ if reaction is made at 25°C and 1 atm. $\Delta H^{\circ} f = H^{\circ}_{\rm CO_2} - H^{\circ}_{\rm C} - H^{\circ}_{\rm O_2} = H^{\circ}_{\rm CO_2} - 0 - 0$ $\Delta H^{\circ} f = H^{\circ}_{CO_2} (H^{\circ}_C \text{ and } H^{\circ}_{O_2})$ are assumed arbitrarily zero) A decrease in Gibbs energy results for useful work done by the system, *i. e.*, work of expansion $(-W_{\text{expansion}})$ or $-\Delta G = W_{\text{exp}}$. Strong acid (HNO₃) and strong base (LiOH). This is derived formula. $C + 2H_2 \rightarrow CH_4; \Delta H = ?$ Find ΔH by eqs. (i) + 2 × (ii) – (iii) Due to positive ΔH , HI is endothermic compound and unstable. $\Delta S = \frac{\Delta H_v}{T}$ $\Delta H = 40.8 \text{ kJ}$ T = 373 K $\therefore \Delta S = \frac{40.8 \times 10^3}{373} = 109.38 \, \mathrm{JK^{-1} mol^{-1}}$ $\Delta H = -2 [3 \times e_{\rm N-H}] + e_{\rm N=N} + 3 \times e_{\rm H-H}$ $= -2 \times 3 \times 391 + 945 + 436 \times 3$ $= -93 \, \text{kJ}$ The heat is provided by solvent and thus, feels $\Delta G = \Delta G^{\circ} + 2.303 RT \log Q$ if Q = 1, $\Delta G = \Delta G^{\circ}$ Bond energy is the amount of heat required (or evolved) to break (or form) 1 mole bond. Also, $H_2 \rightarrow 2H$; $\Delta H = 104.3$ kcal $\therefore \text{ Heat of formatin for H atom} \frac{1}{2} \text{ H}_2 \rightarrow \text{H}$ *i.e.*, equal to $\frac{1}{2} \times 104.3$ kcal Sublimation requires energy, *i.e.*, $\Delta H = +ve$, also, $\Delta S = +$ ve.

Work done(W)= $-p_{ext}(V_2 - V_1)$ $= -3 \times (6 - 4) = -6$ L atm $= -6 \times 101.32 \, \text{J}(\therefore 1 \, \text{L})$ atm=101.32 J) $= -607.92 \approx -608$ [104 (d) These are the expressions to explain work. 105 **(b)** $\Delta S_{\rm vap} = \frac{\Delta H_{\rm vap}}{T} = \frac{37.3 \text{ kJ mol}^{-1}}{373 \text{ K}}$ $= 0.1 \text{ kJ mol}^{-1} \text{K}^{-1}$ $= 100 \,\text{J}\,\text{mol}^{-1}\text{K}^{-1}$ 106 (c) Heat cannot be itself pass from colder to hotter body. 107 (d) $\Delta G = \Delta H - T \Delta S$ $\Delta G = 150 - \frac{100 \times 300}{10^{-3}} = 120 \text{ kJ}$ 108 (a) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O; \quad \Delta H = -x$ $\frac{CH_{3}OH + \frac{3}{2}O_{2} \rightarrow CO_{2} + 2H_{2}O; \ \Delta H = -y}{\frac{-2}{CH_{4} + \frac{1}{2}O_{2} \rightarrow CH_{3}OH; \ \Delta H = y - x}$ $\therefore v - x = -ve$:. x > v109 (c) $\Delta G = \Delta H - T \Delta S$ For $\Delta G = 0$ at equilibrium $T\Delta S = \Delta H$ $T = \frac{\Delta H}{\Delta S} = \frac{30 \times 10^3}{105} = 285.7$ 110 (b) The gives rise to cooling. 111 (d) In every process randomness increases. 112 (c) $\Delta H - \Delta U = \Delta nRT = 1 \times 2 \times 373 = 746 \text{ cal.}$ 113 **(b)** In first case it was equal to ΔU . It II case it is ΔH . The two values are related by $\Delta H = \Delta U + P \Delta V$ 114 (a) $-W = +2.303 \ nRT \log \frac{V_2}{V_1}$ $-W = 2.303 \times \frac{16}{32} \times 300 \times 8.314 \log \frac{25}{5}$ $-W = 2.01 \times 10^3$ 115 (a) 0.2 mole of HNO₃ are neutralized by 0.2 mole of

NaOH to give heat = $57 \times 0.2 = 11.4$ kJ 116 (c) Heat of formation is given when compound is formed from its components. 117 (b) The statement is definition of Hess's law. 118 (a) When a gas undergoes adiabatic expansion, dq =0, it gets cooled due to loss of kinetic energy 119 (c) $2\text{Al} + \text{Fe}_2\text{O}_3 \rightarrow 2\text{Fe} + \text{Al}_2\text{O}_3; \Delta H^\circ = -852 \text{ kJ}$ \therefore 2 mol Al (=54 g) evolved heat = -852 kJ \therefore 2.7 gAl will evolve heat = $-\frac{852 \times 2.7}{54}$ $= -42.6 \, \text{kJ}$ 120 **(a)** Decomposition of $CaCO_3$ is made on heating. 121 (a) $\Delta G = \Delta H - T\Delta S = -2500 - 298 \times 7.4 =$ -4705.2 kcal and thus, spontaneous. 122 (a) $q = \Delta U + W$ $50 = \Delta U + 30$ $\therefore \Delta U = 20$ cal 123 (a) The compressor has to run for longer time releasing more heat to the surroundings 124 (c) $S_V^{\circ} - S_L^{\circ} = +$ ve. Conversion of liquid to vapour occurs process. 125 (a) $-\Delta G^{\circ} = 2.303 \, RT \log K_p$ 126 (c) As graphite is thermodynamically more stable than diamond hence, more heat is required to convert graphite to gaseous carbon 127 (c) Closed systems cannot exchange mass with surrounding. Only exchange of energy is possible. 128 (a) $\Delta G = \Delta H - T \Delta S$ at equilibrium, $\Delta G = 0, \therefore T = \frac{\Delta H}{\Delta S} = \frac{30 \times 10^3}{75} =$ 400 K 129 (b) ΔH /mol of FeS= $\frac{3.77 \times 56}{2.1}$ = 100.5 130 (a) For isochoric process, $\Delta V = 0$ so, $q_v = \Delta E$ *ie*, heat given to a system under constant volume is used up in increasing ΔE

131 **(a)**

According to Hess's law total heat changes during a chemical reaction are independent of path of reaction. Given, $I_2(s) \rightarrow I_2(g), \Delta H_1 = 57.3 \text{ kJ/mol}$...(i) $I_2(s) \rightarrow I_2(l), \Delta H_2 = +15.5 \text{ kJ/mol}$...(ii) Required equation $I_2(l) \rightarrow I_2(g), \Delta H_1 = ?$ subtract Eq. (ii) from Eq. (i) $I_2(l) \rightarrow I_2(g)$ *.*:. $\Delta H = 57.3 + (-15.5)$ = +41.8 kJ/mol132 (a) $\Delta G = -2.303 \, RT \log K$ $-4.606 = -2.303 \times 0.002 \times 500 \log K$ $\log K = 2, K = 100$ 133 (d) $\Delta S^{o} = 2S^{o}_{HCl} - (S^{o}_{H_2} + S^{o}_{Cl_2})$ $= 2 \times 186.7 - (130.6 + 223.0) = 19.8 \, \text{JK}^{-1} \text{mol}^{-1}$ 134 **(b)** The energy required to break a bond. 135 (c) 25 Meq. Of acid and 25 Meq. of base (the maximum value of Meq.) react. 136 **(b)** Eq.(b) shows largest phase change ie, gas \rightarrow solid 137 **(b)** $\frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow 2HCl$ $\Delta H_f = -e_{\rm H-Cl} + \left[\frac{1}{2}e_{\rm H-H} + \frac{1}{2}e_{\rm Cl}\right]$ $= -431 + \left[\frac{1}{2} \times 434 + \frac{1}{2} \times 240\right]$ $= -93 \text{ kJ mol}^{-1}$ 139 **(b)** $A_2 + E_{given} \rightarrow 2A + E_{left}$ $\therefore E_{\text{left}}$ per molecule $= E_{given} - E_{used}$ for dissociation $= 4.4 \times 10^{-19} - 4.0 \times 10^{-19}$ $= 4 \times 10^{-20}$ J The kinetic energy per atom $=\frac{4 \times 10^{-20}}{2} = 2 \times$ 10^{-20} I 140 (c) Macroscopic properties which determine the state of a system are referred as state functions. The change in the state properties

depends only upon the initial and final state

of the system. All thermodynamic functions are state functions except work and heat.

141 **(c)**

Temperature is a measure of intensity of energy, whereas heat is a measure of quantity of energy.

142 **(a)**

For exothermic reactions, K_{eq} varies inversely with T while in case of endothermic reactions, K_{eq} varies directly with T

143 **(b)**

$$\Delta G = \Delta H - T\Delta S, T = 25 + 273 = 298 \text{ K}$$

= -11.7 × 10³ - 298 × (-105) = 19590 J
= 19.59 kJ

144 **(c)**

Standard heat of formation of methane is represented by C(graphite)+2H(g) = $CH_4(g)$ because the elements taken are in their standard state

145 **(b)**

$$\Delta H$$
 per 1.6 g = $\frac{72 \times 1.6}{180}$ = 0.64 kcal

146 **(b)**

$$(dS)_{V,E>0}(dG)_{T,P<0}$$

147 (a)

According to second law of thermo chemistry the law states that the total heat change (ΔH) accompanying a chemical reaction is the same whether the reaction takes place in one or more steps.

It means that heat of a reaction depends only on the initial reactants and final products and not on intermediate products that may be formed.

Now,
$$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$$

Enthalpy change in a reaction is always constant and independent of the path followed.

148 **(b)**

Every system having some quantity of matter, is associated with a definite amount of energy. This energy is known as internal energy. It is sum of many type of energies, such as translation energy, rotational energy, vibrational energy, electronic energy and bonding energy of the molecule.

 $E = E_{\rm trans} + E_{\rm rot} + E_{\rm vib} + E_{\rm bonding} + E_{\rm electronic}$ 149 (c)

For an isochoric process V = constant; thus $\Delta V =$

0 from 1st law $q = \Delta U - W$ or $q_v = \Delta U$. 150 (a) For a spontaneous process $\Delta G = -ve$ or < 0. 151 (d) It is a physical change. 152 (a) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \Delta H = -188 \text{ kJ/mol ...(i)}$ $H_2 + O_2 \rightarrow H_2O_2$; $\Delta H = -286 \text{ kJ/mol ...(ii)}$ By Eq.(i) - (ii) $2H_2O_2 \rightarrow 2H_2O + O_2;$ $\Delta H = 2(-188) - 2(-286) = +196 \text{ kJ}$ 153 (a) $C + O_2(g) \rightarrow CO_2(g)$ $\Delta n = 0$ $\Delta H = \Delta U$:. 154 (a) ΔH = +ve and ΔS = +ve; the disorder increases with increase in moles. $PCl_5 \rightleftharpoons PCl_3 + Cl_2; \Delta H = +ve$ (dissociation) 155 (b) $q = \Delta U - W$; -W is work done by the system $\therefore \Delta U = q + W = 50 + 10 = 60$ (+W is work done on the system)157 (d) $\Delta G_{\text{system}} = -\text{ve}$, the system is spontaneous $\Delta G_{\text{system}} = 0$, the system has attained equilibrium $\Delta G = +$ ve, the system is non-spontaneous. 158 (d) $2B + \frac{3}{2}O_2 \rightarrow B_2O_3;$ $\therefore \quad \Delta_C H'(B) = \frac{1}{2} \Delta_f H'(B_2 O_3)$ The heat is given out. 159 (d) At isothermal condition T =constant. 160 (c) Heat changes at constant pressure are referred as ΔH . Heat changes at constant volume are referred as ΔU . 161 (d) (i) $2C(s) + H_2(g) \rightarrow H - C \equiv C - H(g)$ ΔH $= 225 \text{ kJ mol}^{-1}$ (ii) 2C(s) + 2C(g) ΔH $= 1410 \text{ kJ mol}^{-1}$ (iii) $H_2(g) + 2H(g)$ ΔH $= 330 \text{ kJ mol}^{-1}$ From equation (i) : $225 = \left[2 \times \Delta H_{C(s) \to C(g)} + 1 \times e_{H-H}\right]$ $-[2 \times e_{C-H} + 1 \times e_{C=C}]$

 $225 = [1410 + 1 \times 330]$ $-[2 \times 350 + 1 \times e_{C \equiv C}]$ $225 = [1410 + 330] - [700 + e_{C=C}]$ $225 = 1740 - 700 - e_{C \equiv C}$ $e_{C \equiv C} = 1040 - 225 = 815 \text{ kJ mol}^{-1}$ $BE_{C\equiv C} = 815 \text{ kJ mol}^{-1}$ 162 (a) Heat capacity of water per gram $=\frac{75}{18}=4.17$ J $Q = mst = 100 \times 4.17 \times t = 1000$ $t = \frac{1000}{100 \times 4.17} = 2.4 \text{ K}$ 163 (c) When gas is compressed its entropy decreases so, ΔS is negative 164 (b) Bond energy of C – H bond = $\frac{-166}{4}$ = -41.5 kI/mol 165 (b) ; [:: dE = dW + dQ: -dW]= dQ - dE] $\frac{nC_p dT}{nC_p dT - nC_v dT} = \frac{C_p}{(C_p - C_v)}$ 🗕 🚽 for diatomic gas 166 (c) In an adiabatic process, no exchange of heat takes place between the system and surroundings, *i.e.*, dQ = 0. Such a condition exists when the system is thermally isolated. 167 (c) $\Delta H = H_P - H_R$ $H_{\rm H_20} - H_{\rm H_2} - H_{\rm O_2} = -\rm ve$ 168 (d) In the adiabatic process no heat enters or leaves the system *i*. *e*., q = 0. 169 (c) An isolated system neither shows exchange of heat nor matter with surroundings. 170 (a) The exact value of internal energy is not known as it includes all type of energies of molecules constituting the given mass of matter such as

translational, vibrational and rotational. The kinetic and potential energy of the nuclei and electron with in the individual molecules and the manner in which the molecule are linked together, are

 $E = E_{\text{translational}} + E_{\text{rotational}} + E_{\text{vibrational}}$ Thus, we can say that internal energy is partly

potential ad partly kinetic 171 (a) Heat of formation of NH₃ is given by $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \longrightarrow NH_3(g); \ \Delta H_f$ 172 (d) By (ii)-(i) C(graphite) $\rightarrow C$ (diamond); $\Delta H = -393.4 - (-395.3) = +1.9$ 173 (b) CH_4 required = $\frac{445.15 \times 16}{890.3} = 8 g$ 174 (d) Calorific value : Fat > Carbohydrate > Protein 175 (d) $\frac{1}{2}N_2 + O_2 \rightarrow NO_2; \ \Delta H = 8 \text{ kcal } \dots \dots \text{ (i)}$ $N_2 + 2O_2 \rightarrow N_2O_4; \ \Delta H = 2 \text{ kcal (ii)}$ By eq. (i) $\times 2$ – (ii), $2NO_2 \rightarrow N_2O_4$; $\Delta H = -14.0$ kcal 176 (c) Calculate it for the equation $2\mathrm{Fe}(s) + \frac{3}{2}\mathrm{O}_2(\mathrm{g}) \to \mathrm{Fe}_2\mathrm{O}_3(s)$ Eqs. 3(ii) - (i), we have $4\text{Fe}(s) + 30_2(g) \rightarrow 2\text{Fe}_20_3(s)$ $\Delta H^{\circ} = 3(-94050) - (-93657)$ = -18493 cal = 188.493 kcal \therefore 2 moles Fe₂O₃ has $\Delta H^{\circ} = -188.493$ kcal $\therefore 1 \text{ mole Fe}_2 \text{O}_3 \text{ has} \Delta H^\circ = -\frac{188.493}{2}$ = -94.25 kcal/mol 177 (d) At STP, 16 g O_2 or $\frac{1}{2}$ mole O_2 will occupy 11.2 litre. Thus, if volume is doubled, it means $(V_2 - V_1) = 22.4 - 11.2 = 11.2$ litre Now, $W = P \times (V_2 - V_1) = 1 \times 11.2$ litre atm $=\frac{1\times11.2\times2}{0.0821}$ = 272.84 kcal 178 (d) For isothermal process $\Delta U = 0$. 179 **(b)** Gibbs energy change ΔG is given by: $\Delta G = \Delta H - T \Delta G$ Also, G = H - TS180 (a) For insulated container q = 0. 181 **(b)** $\Delta_{\text{solution}} = \Delta H_i + \Delta H_h$ or $1 = 180 + \Delta H_h$ $= 0.03 \text{ kJ K}^{-1} \text{mol}^{-1}$ $\Delta H_h = -179 \text{ kcal mol}^{-1}$

The total $\Delta H_h = \Delta H_{h_{Na^+}} + \Delta H_{h_{Cl^-}} = \frac{61}{11} + \frac{5a}{11} = a$ Where a is total heat of hydration (ΔH_h). Thus, $\Delta H_{h_{Na^+}} = -\frac{6 \times 179}{11} = -97.63 \text{ kcal mol}^{-1}$ 182 (a) Since, process is exothermic, heat is evolved, due to this temperature of water increases 183 (a) $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ This equation can be obtained by subtraction of $\left[\text{CO}(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{CO}_2(g) \right]$ $[C(s) + \frac{1}{2}O_2(g) \to CO_2(g)]$ from Hence, $\Delta H_f = (CO) = [-393.3 - (-282.8)]$ kJ =110.5 kJ/mol 184 (a) Heat of neutralisation is also defined as the heat of formation of H₂O from H⁺ and OH⁻ ions. 185 **(b)** $q = \Delta U - W$, if q = 0 for adiabatic process, than $-\Delta U = -W$ or $\Delta U = W$, *i. e.*, work done on the system or work of compression brings in an increase in temperature 186 (c) $PV^r = \text{constant}$ $_{P,\gamma}V^{\gamma-1}dV + V^{\gamma} \cdot dP = 0$ $\therefore \frac{dP}{P} = \frac{\gamma \cdot V^{r-1} dV}{V \gamma} = -\gamma \left(\frac{dV}{V}\right)$ 187 (d) Strong acid (HCl) and strong base (NaOH). 188 (d) The randomness in gaseous state is more than liquid state. 189 (c) The definition of third law of thermodynamics. 190 **(b)** $\Delta S = +$ ve for irreversible process. 191 (a) It is the definition of heat of formation. 192 (c) This is definition of third law of thermodynamics. 193 (c) Follow Le-chatelier principle. 194 (a) $\Delta S = S_P - S_R$ $= (2 \times 0.19) - 0.13 - 0.22$

```
= 30 \, \text{JK}^{-1} \text{mol}^{-1}
196 (a)
```

$$W_{exp} = -P \times \Delta V$$
$$= -1 \times (13 - 3) = -10 \text{ atm } \text{dm}^3$$

197 (a)

Heat evolved during combustion of 3.2 g $CH_4 = \frac{880 \times 3.2}{16} = -176 \text{ kJ}$

198 (c)

It is defined of heat of solution.

199 **(b)**

Formation of CO₂ from CO is an exothermic reaction. Heat is evolved from the system *ie*, energy is lowered thus exothermic reactions occur spontaneously on account of decrease in enthalpy of system. Thus, $\Delta E > \Delta H$

200 (d)

$$dQ = nS \Delta T$$
, $\therefore S = \frac{dQ}{dT}$ (for 1 mole).

201 **(c)**

 $\Delta H = nC_p \Delta T$

The process is isothermal therefore, $\Delta G = 0$

 $\therefore \Delta H = 0$

202 **(b)**

The system returns to its original state, *i. e.*, cyclic process.

203 **(b)**

 $\Delta G = \Delta H - T\Delta S; \text{ at equilibrium,}$ $\Delta G = 0, \qquad \therefore \Delta H = T\Delta S$ or $\Delta H = 273 \times (60.01 - 38.20)$ $= 5954.13 \text{ J mol}^{-1}.$

204 **(a)**

$$EN_{\rm F} \sim EN_{\rm Cl} = 0.2028 \sqrt{\Delta}$$

and $\Delta = [e_{\rm F-Cl} - (e_{\rm F-F} \times e_{\rm Cl-Cl})^{1/2}]$
 $\therefore EN_{\rm F} \sim EN_{\rm Cl} = 0.2028 [e_{\rm F-Cl} - (e_{\rm F-F} \times e_{\rm Cl-Cl})^{1/2}]^{1/2}$
Or $1 = 0.2028 [e_{\rm F-Cl} - (38 \times 58)^{1/2}]^{1/2}$
 $\therefore e_{\rm F-Cl} = 71.26 \text{ kcal mol}^{-1}.$
206 **(b)**
0.2 mole will neutralize 0.2 mole of HNO₃ heat
evolved = 51 × 0.2 = 11.4 kJ

207 **(b)**

Kirchhoff's equation is : $\Delta H_2 - \Delta H_1 = \Delta C_p (T_2 - T_1)$

208 (d)

 Δn depends on stoichiometry of reaction. 209 (a)

$$e_{A-A} = a \operatorname{Also}, \frac{1}{2}A_2 + \frac{1}{2}B_2 \rightarrow AB;$$

 $e_{A-B} = a \Delta H = -100 \text{ kJ mol}^{-1}$
 $e_{B-B} = 0.5a$

$$\Delta H = -[e_{A-B}] + \frac{1}{2} [e_{A-A} + e_{B-B}] = a + \frac{1}{2} [a + 0.5a] - 100 = -0.25 a \therefore a = 400 \text{ kJ mol}^{-1}$$

210 **(d)**

The properties of the system whose value is independent of the amount of substance present in the system are called intensive properties *e.g.*, viscosity, surface tension, temperature, pressure etc.

211 (d)

When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled

212 **(b)**

The room got heated because heat is lost to surroundings.

$$T_b = \frac{\Delta H}{\Delta S} = \frac{30 \times 10^3}{75} = 400 \text{ K}$$

214 (d)

217 (d)

Heat of combustion is always exothermic; Few combustion reactions such as

 F_2 to F_2O , N_2 to N_2O and NO are endothermic but these reactions do not give heat of combustion because the substance should be completely oxidized. In F_2O , F_2 is reduced and N_2O and NO are not completely oxidized state of N_2 . However, three reactions are exceptions but these do not represent heat of combustion. These are,

$$N_{2} + 0_{2} → N_{2}0; \qquad \Delta H = +ve$$

$$N_{2} + 0_{2} → N0; \qquad \Delta H = +ve$$
and $F_{2} + (1/2)0_{2} → F_{2}0; \qquad \Delta H = +ve$
215 **(b)**
For an isothermal process $\Delta T = 0$ and $\Delta E =$
0 and $q \neq 0$.
216 **(b)**
Given: (i)H_{2} + $\frac{1}{2}0_{2} → H_{2}0; \qquad \Delta H = -241 \text{ kJ}$
(ii)C₆H₁₀ + $\frac{17}{2}0_{2} → 6C0_{2} + 5H_{2}0; \qquad \Delta H = -3800$
kJ
(iii)C₆H₁₂ + 90₂ → 6C0₂ + 6H₂0; $\Delta H = -3920$
kJ for the reaction
C₆H₁₀ + H₂ → C₆H₁₂
[It is infact Eq.(i)+Eq.(ii)-Eq.(iii)]
Thus, $\Delta H = -241 - 3800 - (-3920) = -121 \text{ kJ}$

In isothermal reversible process, ideal gas has

constant volume and so, $\Delta E = 0$ and $\Delta H = \Delta E = 0$ relative amount is constant 218 (a) 232 (b) $\Delta H = -2 \times e_{\rm H-Cl} + e_{\rm H-H} + e_{\rm Cl-Cl}$ $n182 = -2 \times a + 430 + 242$:. $a = 245 \text{ kJ mol}^{-1}$:. 219 (d) 233 (a) $\Delta H = \Delta U + \Delta nRT$ $\Delta n = +1/2$ Thus, $\Delta H > \Delta U$ 220 (c) 234 (b) Cylinder contains 11.2 kg or 193.10 mole butane. (: molecular mass of butane =58) : Energy released by 1 mole of butane = -2658∴ Energy released by 193.10 mole of butane $= -2658 \times 193.10$ $= 5.13 \times 10^5 \text{ kJ}$ $\therefore \frac{5.13 \times 10^5}{20000} = 25.66 \text{ or } 26 \text{ days}$ 221 (c) Heat of formation of $H_2 O = -$ heat of decomposition of water. 235 (d) 222 (a) CH₄ $T_{f_{irreversible}} > T_{f_{reversible}}$ it is an adiabatic expansion and W(rev) is maximum. 223 (c) Molecular solids are covalent compounds having ... low m.p. 236 (d) 224 (a) $\Delta H = H_P - H_R$ Thus, ΔH is negative because $H_P < H$ 225 (b) $\Delta G = -ve$ for a spontaneous change. 237 **(b)** 226 (d) Ideal gas does not show intermolecular forces of 238 (a) attractions. 227 (b) Rest all are correct. 239 (a) 228 (a) During solidification disorder decreases. 229 (a) 240 **(b)** $\Delta S = \frac{\Delta H_f}{T} = \frac{2930}{300} = 9.77 \text{ J mol}^{-1} \text{K}^{-1}$ 230 (d) $\Delta G = \Delta H - T \Delta S$ 241 (d) The reaction will be spontaneous $(i.e.,\Delta G = -ve)$ If $T\Delta S > \Delta H$... $T > \frac{\Delta H}{\Delta S} = \frac{170}{170 \times 10^{-3}} = 1000 \text{ K}$ 242 (a) 231 (c) θ is independent of initial amount as long as

 $q = \Delta U - W$, if adiabatic process q = 0, then $-\Delta U = -W$, *i. e.*, a decrease in free energy brings in work done by the system (-W). As the system is closed and insulated, no heat enter or leave the system, *ie*, q = 0 $\therefore \Delta E = q + W = W$ $XY \rightarrow X(g) + Y(g); \Delta H = +a \text{ kJ/mol ...(i)}$...(ii) $X_2 \rightarrow 2X$; $\Delta H = +a \text{ kJ/mol}$ $Y_2 \rightarrow 2Y$; $\Delta H = +0.5a \text{ kJ/mol}$...(iii) $\frac{1}{2}$ × (ii) + $\frac{1}{2}$ × (iii) – (i) gives $\frac{1}{2}X_2 + \frac{1}{2}Y_2 \to XY$ $\Delta H = \left(+\frac{a}{2} + \frac{0.5}{2}a - a \right) \text{kJ/mol}$ $\therefore -200 = +\frac{a}{2}$ or a = 800 \rightarrow C + 4H; $\Delta H = 360$ kcal/mol $e_{\rm C-H} = 90$ kcal $C_2H_6 \rightarrow 2C + 6H; \Delta H = 620 \text{ kcal/mol}$ $620 = e_{C-C} + 6e_{C-H}$ $e_{\rm C-C} = 620 - 540 = 80 \,\rm kcal/mol$ Molecular weight of $NH_4NO_3 = 80$: Molar heat of decomposition $H = ms\Delta t = 80 + 1.23 \times 6.12$ = 602 kJ/molGreater is bond energy more is stability to bond. Due to high bond energy of $N \equiv N$, more heat is absorbed to break up N2 molecule. $\Delta S_{\rm vap} = \frac{(900 \times 18)}{373} = 43.4 \, \rm J K^{-1} mol^{-1}$ For spontaneous reaction $\Delta G = -ve$. $\Delta G = \Delta H - T \Delta S$ $\Delta H = +$ ve, $\Delta S = +$ ve and $T\Delta S > \Delta H$ $\Delta n = 0$ $\Delta H = \Delta U$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O(g); \ \Delta H = -57.0 \text{ kcal(i)}$

 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O(l); \quad \Delta H = -68.3 \text{ kcal } \dots \dots (ii)$ $N_2 + \frac{1}{2}O_2 \rightarrow N_2O; \quad \Delta H = 28 \text{ kJ}$ $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO; \ \Delta H = 90 \text{ kJ}$ By eq. (i) and (ii), $H_2O(l) \rightarrow H_2O(g);$ $\Delta H = +11.3$ kcal By eq. $[4 \times (ii)] - [2 \times (i)]$, 243 (b) $2N_2O + O_2 \rightarrow 4NO; \Delta H = 304 \text{ kJ}$ $\Delta H = \Delta U + \Delta nRT$ 257 (b) $\therefore \Delta U = 176 - 1 \times 8.314 \times 1240 \times 10^{-3}$ Calorific value = Heat of combustion per g of fuel, $= 165.6 \, kJ$ i.e., for C_2H_4 , it is $\frac{-1411}{28}$, the lowest value. 244 (a) $TV^{\gamma-1} = \text{constant}$ 258 (b) $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\frac{T}{T_{\text{final}}} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}$ $= -54.07 - 298 \times 10 \times 10^{-3}$ $\frac{T}{T_{\text{final}}} = \left(\frac{2}{1}\right)^{(5/3-1)} = 2^{(2/3)}$ = -57.05 kJAlso, $\Delta G^\circ = 2.303 RT \log_{10} K$ $\frac{T}{T_{\text{final}}} = \frac{T}{2^{(2/3)}}$ $\log_{10} K = \frac{-57.05 \times 10^3}{2.303 \times 8.314 \times 298}$ 246 **(b)** 259 (b) $\Delta n = -2$ Hess's law is based upon law of conservation $\Delta H = \Delta U + \Delta nRT$:. of energy *i.e.*, first law of thermodynamics. $= -1415 + (-2) \times 0.0083 \times 300$ 260 (d) = -1420 kJ $\Delta S_f = \frac{\Delta H_f}{T} = \frac{6 \times 10^3}{273} = 21.98 \,\mathrm{J}$ 247 (c) Experimental determination of heats of reaction 261 (b) by bomb calorimeter represents its value at Properties which are mass independent are constant volume, i.e., ΔU . intensive properties and others which are mass 248 (b) dependent are extensive properties. Graphite possesses sp^2 -hybridisation and has flat 262 (a) layer structure whereas diamond possesses sp^3 - $\Delta n = 2 - 3 = -1$ $\therefore \Delta H = \Delta U - RT$ hybridisation and has rigid tetrahedral nature. 263 (b) 249 (c) Step1. P – H bond energy from bond dissociation $n_{\rm efficiency} = \frac{T_2 - T_1}{T_2}$ energy of $PH_3(g)$ containing 3 such P – H bonds or $0.25 = \frac{T - 400}{T}$ $=\frac{228}{3}=76$ kcal/mol **Step 2**. The structure of P_2H_4 is Step 2. $H \rightarrow P \rightarrow P \rightarrow H$ H = H:: T = 533.3 K250 (a) Lower is energy level of a system, more is its stability. calculated by $4 \times P - H + P - P = bond$ 251 (b) $\Delta H = \Delta U + \Delta n R T$ dissociation energy P₂H₄ Since, $\Delta n = -2$ \therefore P – P bond energy = 335–4(76) Thus, $\Delta H < \Delta U$ = 31 kcal per mol 252 (b) 264 (c) $\bigvee \mathbf{K} + \frac{1}{2}\mathbf{O}_2 + \frac{1}{2}\mathbf{H}_2 \rightarrow \mathbf{KOH}; \ \Delta H = ?$ By Eq. (i) + (ii), $2Na + Cl_2 \rightarrow 2NaCl; \Delta H = -196 \text{ kcal}$ Find ΔH by Eq. [(i) + (ii)] – (iii). 265 (d) 254 (c) Energy of red P is lesser than white P and thus, The fact for a quantity referred as state function. red P is more stable. 255 (c) 266 **(b)** Bond formation is always exothermic. $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ 256 (d) $\Delta H = 2 \times (-13.7) \text{ kcal}$

Page **| 50**

267 (d) $H_2O(l) \rightleftharpoons H_2O(v); \Delta H = 41.0 \text{ kJ mol}^{-1}$ $\Delta H = \Delta U + \Delta nRT$ $41.0 = \Delta U + 1 \times 8.314 \times 373 \times 10^{-3}$ $\therefore \Delta U = 37.89 \text{ kJ mol}^{-1}$ 268 (d) These are derived formulae. 269 (c) Spontaneous process shows a decrease in ΔG . 271 (d) For monoatomic gases $C_P : C_V$ is 1.67. 272 (c) Bond formation is always exothermic. 273 (b) Lower is heat of neutralisation, more is dissociation energy, weaker is acid. 274 (b) Heat change for 3.6 g H₂O = $\frac{68 \ 3.6}{18}$ = 13.6 kcal 275 (a) $\therefore \Delta T = \frac{W}{nR} \therefore Q = nC_p(\Delta T) = nC_p \frac{W}{nR} = \frac{C_p W}{R}$ $C_p = \frac{QR}{W} = \frac{500 \times 2}{142.8} = 7$ $C_p = 7$ indicates that the gas is diatomic. Thus, it should be 0_2 276 (b) For the equation $B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(g) + 3H_2O(g)$ Eqs.(i) + 3(ii) + 3(iii) - (iv) $\Delta H = -1273 + 3(-286) + 3(44)$ = -1273 - 858 + 132 - 36 $= -2035 \, \text{kJ/mol}$ 277 (d) As we know that, Work done(W) = 2.303 nRT log $\frac{V_2}{V_1}$. Hence, V_1 and V_2 are in ratio in the relation. So, unit may be expressed in any one of m^3 , dm^3 or cm^3 . 278 (a) Fuel value per g of substance produced on burning. 279 (a) T_1 and T_2 are same for a substance. 280 (a) For an endothermic reactions ΔH is positive because in endothermic reaction heat is always absorbed. 281 (a) Ice takes up heat to melt and thus, enthalpy

change is +ve. 283 (a) When $\Delta H = -\text{ve}, \Delta S = +\text{ve}$ and $\Delta G = -\text{ve}$ than reaction is spontaneous 284 (d) KE = (3/2)RT285 (b) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = r$...(i) $\operatorname{CO}(g) + \frac{1}{2}\operatorname{O}_2(g) \to \operatorname{CO}_2(g); \Delta H = s$...(ii) $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = ?$ Subtract Eq. (ii) from Eq. (i) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = r$ $CO(g) + \frac{1}{2}O_2 \rightarrow CO_2(g); \Delta H = s$ $\frac{1}{2}O_2(g) \rightarrow CO(g); \Delta H = r - s$ C(s) +286 (d) $Cu(g) \rightarrow Cu^+(g) + e, \qquad \Delta H = 745 \text{ kJ mol}^{-1}$ $\Delta H = -295 \text{ kJ mol}^{-1}$ $I(g) + e \rightarrow I^{-}(g);$ $\frac{\text{Adding Cu}^+(g) + I^-(g) \rightarrow \text{CuI}(g); \ \Delta H^\circ = -446 \text{ kJ r}}{\text{Cu}(g) + I(g) \rightarrow \text{CuI}(g); \qquad \Delta H^\circ = 4 \text{ kJ mol}^-}$ 287 (a) Entropy of universe is tending towards maximum. 289 (a) $\Delta H_{(\text{reaction})} = \Delta H_{f(\text{diamond})} - \Delta H_{f(\text{graphite})}$ = 1.896 -0.23 = 1.666 kJ/ mol290 **(b)** p=1 atm $\Delta V = (50 - 15) = 35 \text{ L}$ $W = -p \cdot \Delta V = -1 \times 35$:. = -35 Latm Hence, work done by the system on the surroundings is equal to 35 L-atm. 291 (d) The product possesses maximum energy and thus, least stable. 292 (d) By eq. $[(i) + 2 \times (ii)] - (iii)$, $C + 2H_2 \rightarrow CH_4$; $\Delta H = 74.1 \ kJ$ 293 (a) For the equation, $H_2 + S + 2O_2 \rightarrow H_2SO_4$

Eqs. (i) +(ii)+(iii)+(iv)300 (d) $\Delta H = -287.3 + (298.2) + (-98.7) + (-130.2)$ The gaseous phase have more entropy and thus, = 814.4 kJ ΔS is +ve in (a) and (b). Also decrease in pressure 294 (d) increases disorder and thus, ΔS is +ve in (c). In (a) For isochoric process, $\Delta V = 0$ (d) the disorder decreases in liquid state due to decrease in temperature. Thus, $\Delta S = -ve$. $W = p\Delta V = 0$ 301 (a) Hess's law states that the total change in heat $\Delta E = Q$ *.*.. enthalpy during the complete course of reaction is same, whether the change is brought in one step (b) For adiabatic process, Q = 0or in several steps by one method or other $\Delta E = W$ method. 302 (c) (c) For isothermal process, $\Delta T = 0$ First we calculate the expected bond dissociation energy of benzene molecules as $\Delta E = 0$ and $3 \times C - C + 3 \times C = C + 6 \times C - H$ Q = -W: Calculated value = 3(347.3) + 3(615) +6(412.2)(d) For cyclic process, state functions like = 4397.8Resonance energy = Experimental value - $\Delta E = 0$ calculated value Q = -W= 5335 - 4397.8= 937.2 kJ per mol 296 (a) 303 (d) $\Delta G = \Delta H - T\Delta S = -ve - ve = -ve$ $\Delta S = 2.303 nR \log \frac{V_2}{V_1}$ 297 (a) $F_2 + \frac{1}{2}O_2 \longrightarrow F_2O; \quad \Delta H = +ve.$ $= 2.303 \times 2 \times 2 \log \frac{20}{2} = 9.2$ 298 (c) Two equivalent of each are used. 299 (a) Isothermally (at constant temperature) and reversible work. $W = 2.303 \, nRT \log \frac{p_2}{p_1}$ $= 2.303 \times 1 \times 2 \times 300 \log \frac{10}{2}$ $= 2.303 \times 600 \times \log 5 = 965.84$ At constant temperature, $\Delta E = 0$ $\Delta E = q + W, q = -W = -965.84$ cal 304 (b) Work done by the system or work of expansion is negative. The modern concept. Work done on the system or work of compression positive. 305 (a) $\Delta E = q + W = 300 + (-500)$ From first law of thermodynamic. = -200 cal $\Delta E = q + W$ Given, q = +300 cal 306 **(b)** (:Heat is absorbed) An experimental fact. 307 (b) W = -500 cal $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ ("Work is done on surroundings) $\Delta n_{\rm g} = 1 - 3 = -2$

We know that,	
$\Delta E = \Delta H + \Delta n_{\rm g} R T$	$C_2H_6 + \frac{3}{2}O_2 \rightarrow 2CO_2 + 3H_2O$
$\therefore \qquad \Delta H = (-885389) - (-2) \times 8.314 \times$	$\Delta x = 2(-94.1) + 3(-68.3) - (-21.1)$
298	= -372 kcal
= -885389 + 4955.1440	318 (c)
	Surface tension is an intensive property because it
$= -880433.86 \mathrm{J}\mathrm{mol}^{-1}$	does not depend upon the quantity of matter
308 (a)	present in the system
Human body is an example of open system as	319 (a) 1200 5 27
it can exchange both mass and energy with	$\frac{1300}{241.8} = \frac{5.37}{1}$
the surroundings.	320 (d)
309 (c)	$PV = 1 \times 1$ lit – atm
According to Hess's law, the total heat	$= 10^{-3} \text{m}^3 \times 0.76 \times 13.6 \times 9.8 \times 10^3 \text{Nm}^{-2}$
changes occurring during a chemical reaction	= 101.3 J
are independent of path.	321 (c)
$A \xrightarrow{\Delta H} B$	$Ag^+ + Cl^- \rightarrow AgCl$ is a spontaneous reaction.
$\langle \rangle $	322 (b)
<i>q</i>	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$
$C \longrightarrow D$	Thus, V_{O_2} used = $\frac{6226 \times 3 \times 22.4}{1411}$
$\Delta H = q + V + 2x$	= 296.5 litre
311 (c)	323 (c)
$\because q_{abs} = \Delta U + (-W)$	CS ₂ is formed from its initial components carbon
$\therefore \Delta U = q + W; \Delta U \text{ is state function.}$	and hydrogen.
312 (c)	324 (d)
For exothermic reaction, $\Delta H = (-)$ for	$C + O_2 \rightarrow CO_2(g);$ $\Delta H = -94 \text{ kJ} \dots (i)$
endothermic reaction, $\Delta H = (+)$.	$C + 0_2 \rightarrow CO_2(g); \qquad \Delta H = -94 \text{ kJ} \dots (i)$ $Ca + \frac{1}{2}O_2 \rightarrow CaO(s); \qquad \Delta H = -152 \text{ kJ} \dots (ii)$
313 (b)	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g); \Delta H$
Find ΔH for, Ca + O ₂ + H ₂ \rightarrow Ca(OH) ₂	$= 42 \text{ kJ} \dots \dots (\text{iii})$
314 (b)	By eq. [(i) + (ii)]- (iii),
For maximum extent of reaction,	$Ca + C + \frac{3}{2}O_2 \rightarrow CaCO_3; \Delta H = -288 \text{ kJ}.$
$4X(s) + O_2(g) \rightarrow 2X_2O(s); \Delta H = a$	
Also, $X(s) + \frac{1}{4}O_2(g) \rightarrow \frac{1}{2}X_2O(s); \Delta H = -90 \text{ kJ}$	325 (a)
$\therefore \qquad a = -90 \times 4 = -360 \text{ kJ}$	PV^{γ} = constant for adiabatic expansion and
315 (c)	PV = constant for isothermal expansion $\therefore \log P = -\gamma \log V \text{slope} = -\gamma$
For spontaneous process $\Delta G = -ve$	$\log P = -\log V \qquad \text{slope} = -\gamma$ $\log P = -\log V \qquad \text{slope} = -1$
316 (a)	326 (c)
	A part of heat is used in dissociation of CH_3COOH ,
$S + \frac{3}{2}O_2 \rightarrow SO_3; \ \Delta H = -2x$ $SO_2 + \frac{1}{2}O_2 \rightarrow CO_2 + SO_3; \ \Delta H = -y$	a weak acid.
$SO_2 + \frac{1}{2}O_2 \rightarrow CO_2 + SO_3; \Delta H = -v$	327 (a)
	No doubt solidification shows a decrease in
$ \begin{array}{c} + \\ \hline S + O_2 \rightarrow SO_2; \qquad \Delta H = (y - 2x) \end{array} $	entropy but in egg proteins structure are
	disordered in solid state due to denaturation.
317 (a)	328 (a)
Given, $2C + 3H_2 \rightarrow C_2H_6$; $\Delta H = -21.1$	$1 \text{ cal} = 4.18 \text{ J} = 4.18 \times 10^7 \text{ erg}$
$C + O_2 \rightarrow CO_2; \ \Delta H = -94.1$	$=\frac{4.18}{1.602} \times 10^{19} \mathrm{eV}$
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \ \Delta H = -68.3$	1.602 329 (c)
Eqs. $2(ii) + 3(iii) - (i)$	$C + O_2 \rightarrow CO_2; \Delta H = -393.5 \text{ kJ/mol}$
• • • • • • • •	

: 44 g of CO₂ formed by which heat released = 342 (a) -393.5 kJ This is the derived formula for W_{rev} is isothermal \therefore 1 g of CO₂ formed by which heat released = change. -393.5 343 (b) Internal energy depends upon the temperature of \therefore 35.2 g (given) of CO₂ formed by which heat gas and not on P and V. released 344 (a) $= -\frac{393.5}{44} \times 35.2 = -314.8 \text{kJ}$ T_A and T_B are same for a liquid. 345 (d) 330 (b) $\Delta H = -2 \times [2 \times e_{0-H}] + 2 \times e_{H-H} + e_{0-0}$ Only work can be done by a thermally isolated $= -4 \times 220 + 2 \times 105 + 120 = -550 \text{ kJ}$ system between it and surroundings. 346 (c) 331 (c) Heat measurements are made in calorimeter An open system is one which involves exchange of usually made of copper. mass and energy. 347 (d) 333 (c) The process involves conversion of 1 mole of C(s)Gaseous molecules have more random motion. to C(g), *i.e.*, sublimation. 334 (d) 348 (d) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O(l); \quad \Delta H = -68.32 \text{ kcal}$ $\begin{array}{ll} C+2H_2 \rightarrow CH_4; & \Delta H=-17.9 \ \text{kcal} \dots \dots (i) \\ C+O_2 \rightarrow CO_2; & \Delta H=-94.1 \ \text{kcal} \dots \dots (ii) \end{array}$ $H_2O(l) \rightarrow H_2O(g); \quad \Delta H = 10.52 \text{ kcal}$: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O(g); \Delta H = -57.80 \text{ kcal}$ $H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \quad \Delta H = -68.3 \text{ kcal (iii)}$ 335 (c) Eqs. $[(ii) + 2 \times (iii)] - (i),$ $\Delta G = \Delta H - T \Delta S$ $CH_4 + 2O_2 \rightarrow 2H_2O$ 350 (a) $\Delta G = 0, \therefore \Delta H = T \Delta S$ $T = \frac{\Delta H}{\Delta S} = \frac{40.63 \times 10^3}{108.8} = 373.4 \text{ K}$ The branch deals with interconversion of heat and chemical energy. 336 **(b)** 351 (d) No exchange of heat in between system and $2H_2 \rightarrow 4H; \Delta H = -869.6 \text{ kJ}$ $\therefore e_{\rm H-H} = \frac{969.6}{2} = +434.8 \,\rm kJ$ surroundings under adiabatic conditions. 337 **(b)** 353 (c) More is heat of ionization of acid more is stability The properties, which do not depend on the of acid or lesser is dissociation or $K_{aCH_{2}COOH} >$ amount of substance, are called intensive $K_{a\text{HCN}}$. Thus, $pK_{a_{\text{HCN}}} > pK_{a_{\text{CH}_3\text{COOH}}}$ property. e.g., surface tension, viscosity etc. 338 (a) 354 (a) Bond breaking process or decomposition Use $\Delta H = \Delta U + \Delta nRT$ processes are endothermic process. $\Delta n = -3$ 339 (a) 355 (a) Hess's law states that enthalpy changes $W_{\rm rev} = -\int P dV \ or - \int P \Delta V$; note that opposing during and process are independent of path. pressure is not constant throughout. So, this law is used in calculating enthalpy. 356 (b) 340 (d) Joule-Thomson coefficient $\mu = \frac{dT}{dP} = \frac{27 - 30}{5 - 2} = -1$ $\checkmark \Delta G = \Delta H - T\Delta S: \Delta G = \Delta E + p\Delta V - T\Delta S$ For spontaneity $\Delta G = -ve$ For all negative values of µ,the gas warms on 341 (b) expansion $H^+ + OH^- \rightarrow H_2O; \Delta H = -13.7$ kcal 357 (b) Also, $\Delta H = H_f^{\circ} H_2 O - [H_{H^+}^{\circ} + H_{OH^-}^{\circ}]$ $W = -p\Delta V$ $Or - 13.7 = -68.0 - [0 + H_{OH}^{\circ}]$ [:. Given, p + 100kPa = 10^5 Pa, $H_{H^+}^{\circ} = 0$] $V_1 = 1 \text{dm}^3 = 10^{-3} \text{m}^3$, $V_2 = 1 \text{m}^3$ $\therefore H_{OH^-}^{\circ} = -54.3$ kcal

$W = 10^{5} × (1 - 10^{-3}) J$ ∴ $W = 99900 J$	370 (a) Under adiabatic conditions work is done on the
358 (d)	cost of internal energy of system.
The efficiency of engine is given as,	371 (b)
$\eta = \frac{T_2 - T_1}{T_2}$; η is more when $T_2 - T_1$ is maximum.	$\Delta G = \Delta H - T \Delta S$
360 (d)	$\therefore \Delta G = -11700 - 298 \times (-105) = +19590 \text{ J} = +19.59 \text{ kJ}$
A spontaneous change is accompanied by	= +19590 $j = +19.59$ kj Thus, reaction is non-spontaneous.
lowering of free energy	372 (c)
361 (c)	Internal energy, enthalpy and entropy are
E and $G(H - TS)$ are state functions. Also, $\Delta E =$	state functions but work and heat are path
q + w is state function. But q and w are path	functions.
dependent and not state functions.	373 (a)
362 (c)	$q = \Delta U - W$; $-W$ is work done by the system
An isolated system neither shows exchange of	$\Delta U = 40 - 8 = 32 \text{ J}$ (: $-W = 8$)
heat nor matter with surroundings. 364 (b)	374 (a)
No doubt (a) and (b) both represent heat of	At constant volume, heat of reaction is ΔU .
formations but standard heat of formation ($\Delta H^{\circ}f$)	375 (c)
for CO ₂ will be from C _(graphite) + O ₂ \rightarrow CO ₂ as	$2.303 \log \frac{P_2}{P_1} = \frac{\Delta H}{R} \frac{[T_2 - T_1]}{T_1 T_2}$
$C_{(graphite)}$ is most stable form of carbon.	$P_1 R T_1 T_2$
365 (a)	$\therefore 2.303 \log \frac{10}{1} = \frac{460.6}{2} \times \frac{[T_2 - 50]}{50 \times T_2}$
For an isothermal process, $\Delta E = 0$	$T_2 = 100 \text{ K}$
As the process is taking place at constant T	376 (b)
and <i>p</i> hence, from equation,	Heat of neutralization is defined as the energy
$\Delta H = \Delta E + \Delta p. V$	released during neutralization of 1 eq. of an acid
We have, $\Delta H = 0 + 0 \times V = 0$	by 1 eq. of base.
Hence, for the process, $\Delta H = \Delta E \neq 0$	377 (d)
366 (b)	$S_R + O_2 \rightarrow SO_2; \Delta H = -70.96 \dots \dots (i)$
At isothermal condition $T = \text{constant}$.	$S_M + O_2 \rightarrow SO_2; \Delta H = -71.03 \dots \dots (ii)$
367 (a)	By eq. (i) – (ii) ,
The heat of formation of CO is calculated by	$S_R \rightarrow S_M;$ $\Delta H = 0.07$ kcal or 70 cal
using Hess's law. According to it, the total	379 (d) It does not violate the first law of
heat changes occurring during a chemical	thermodynamics but violates the II law of
reaction are independent of path.	thermodynamics
$2CO(g) + O_2(g) \rightarrow 2CO_2(g); \qquad \Delta H =$	380 (c)
—135.2 kcal	If $\Delta H = +$ ve and $\Delta S = -$ ve then the reaction is
(I)CO ₂ (g) \rightarrow CO(g) $+\frac{1}{2}$ O ₂ (g); $\Delta H = \frac{135.2}{2}$	spontaneous
kcal	381 (b)
(II) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = -94$ kcal	By eq. (ii) – (i),
Required equation	$C_G \rightarrow C_D; \qquad \Delta H = +1.5 \text{ kJ}$
$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g); \qquad \Delta H = ?$	382 (a) This is derived formula.
2	383 (a)
Add Eqs. (I) and (II)	
$C(s) + \frac{1}{2}O_2(g) \to CO(g); \qquad \Delta H = -26.4$	$W = 2.303 \ nRT \log \frac{p_2}{p_1}$
kcal	$= 2.303 \times 1 \times 2 \times 300 \log \frac{10}{2} = 965.84$
368 (d)	2
Graphite possesses lesser energy than diamond.	At constant temperature, $\Delta E = 0$
	$\Delta E = q + W;$

q = -W = -965.84 cal 384 (a) $H_2(g) + (1/2)O_2(g) \rightarrow H_2O(g)$ $\Delta n = -1/2$ and thus, ΔS decreases or – ve 385 (d) $\Delta G = \Delta H + T \left[\frac{\partial \Delta G}{\partial T} \right]_{P}$ (Gibbs-Helmholtz equation) Also, $\Delta G = \Delta H - T \Delta S$; and $-\Delta G = nF \cdot E$ $\Delta G - \Delta H = -T\Delta S$ *.*.. or $-T\Delta S = T \left[\frac{\partial \Delta G}{\partial T} \right]_{P} = T \left(\frac{-nF\partial E}{\partial T} \right)_{P}$ or $\left[\frac{\partial E}{\partial T}\right]_{P} = \frac{\partial S}{nF}$; similarly derive for other values. 386 (a) Internal energy of 1 mole of gas $=\frac{3}{2}RT$ 388 (c) $C_D \rightarrow C_G$; $\Delta H = -453.5$ cal, *i.e.*, Energy of C_G is less and thus, more stable. 390 (c) At equilibrium $\Delta G = 0$. 391 (c) $\Delta S = 16 \, \text{J} \, \text{mol}^{-1} \text{K}^{-1}$ $T_{\rm b.p} = \frac{\Delta H_{\rm vapour}}{\Delta S_{\rm vapour}} = \frac{6 \times 1000}{16}$ = 375 K392 (a) $\Delta S = \frac{\Delta H}{T} = \frac{1.435 \times 10^3}{273} = 5.260 \text{ cal mole}^{-1} \text{K}^{-1}$ 393 (b) Endothermic reactions are those in which heat energy is absorbed. 394 (b) The melting of ice at -15° C is not an spontaneous process. 395 (c) Mixing of gases increases the entropy 396 (c) Current flows from higher potential to lower one. 397 (a) $-W_{\rm irr.} = P_{\rm ext.}(V_2 - V_1)$ $1 \times (15 - 3) = 12$ litre atm $12 \times 1.987 \times 4.184$ 0.0821 $= 1.215 \times 10^{3}$ J 398 (c) ΔH for combustion of 56 litre H₂ = $\frac{-24.1 \times 56}{22.4}$ ΔH for combustion of 56 litre CO = $\frac{-263 \times 56}{22.4}$ \therefore Total $\Delta H = -1312$ kJ 399 **(b)** This is the derived formula for W_{rev} in adiabatic

process. 400 (a) $\frac{1}{2} H_2 + \frac{1}{2} Cl_2 \rightarrow HCl; \qquad \Delta H = -90 \text{kJ}$ $\therefore \qquad \Delta H = \frac{1}{2} e_{\rm H-H} + \frac{1}{2} e_{\rm CI-CI}$ or $-90 = \frac{1}{2} \times 430 + \frac{1}{2} \times 240 - e_{\text{H-Cl}}$: $e_{H-Cl} = 425 \text{ kJ mol}^{-1}$ 401 (a) Find $\frac{1}{2}N_2 + \frac{3}{2}Cl_2 \rightarrow NCl_3$; Multiply Eqs. (ii) by 1/2, (iii) 3/2 and subtract from Eq.(i); we get $\Delta H_f = -\Delta H_1 - \left[-\frac{\Delta H_2}{2} + \frac{3}{2} \Delta H_3 \right]$ $= -\Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3.$ 402 (b) Work done in 1 s = 400 JHence, work in 5 min (300 s) $= 400 \times 300 = 120 \text{ kJ}$ $\Delta H_{\text{vap.}}^{0} = \frac{120 \text{ kJ}}{50/18} = 43.2 \text{ kJ/mol}$ 403 (b) $W_{\rm irr}$. For a process at constant pressure = $-P \cdot$ ΔV ; note that work is irreversible if expansion is made at constant pressure. 404 (b) $\Delta H = \frac{2.5 \times 16}{4} = -10 \text{ kcl mol}^{-1}$ 405 (c) $W = \int_{-\infty}^{1/2} p dV = -p(V_2 - V_1)$ $W = -1(20 - 10) = -10 \text{ dm}^3 \text{ atm}$ $= -10 \text{ dm}^{3} \times \frac{8.314 \text{ JK}^{-1} \text{mol}^{-1}}{0.0821 \text{ dm}^{3} \text{K}^{-1} \text{mol}^{-1}} = -1013 \text{ J}$ From, 1st law of thermodynamics $\Delta U = q + W$ = 800 (-1013) = -213406 (a) $\Delta S = \frac{\Delta H_v}{T}$ $\Delta H = 186.5 \, \text{kJ}$ $T = 373 \, \text{K}$ $\therefore \Delta S = \frac{186.5}{373} = 0.5 \text{ kJ } \text{K}^{-1} \text{mol}^{-1}$ 407 (c) $\Delta C_p = \Sigma C_p$ product $-\Sigma C_p$ reactant note C_p is for 1 mole. 408 (d)

 $\left(\frac{\partial H}{\partial T}\right)_P = C_P; \left(\frac{\partial U}{\partial T}\right)_V = C_V.$ Also, $(\delta U/\delta V)T$ for ideal gas = 0. 409 (b) $T = 300 \text{ K}, \Delta V = 10 - 1 = 9 \text{ litre}$ $\therefore \Delta H = \Delta U + \Delta PV = \Delta U + 2 \times RT \quad (\because PV)$ = nRT) $= 0 + 2 \times 8.314 \times 300 = 4.98 \text{ kJ}$ (:: $\Delta E = 0$ for isothermal) 410 (c) Average bond energy Heat of dissociation of CH_4 411 (b) Follow definition of heat of formation. 412 (a) $V_1 = 100 \text{ mL}$ $V_2 = 250 \text{ mL}$ Pressure p = 2 atm or $2 \times 1.01 \times 10^5$ Nm⁻² Work done by the gas $W = p\Delta V$ or $p(V_2 - V_1)$ Put the value in given formula $W = 2 \times 1.01 \times 10^{5} (0.250 \times 10^{-3} - 0.100 \times 10^{-3})$ 10^{-3}) $= 2 \times 1.01 \times 10^5 \times 0.15 \times 10^{-3}$ = 30.30 I 413 (c) $\Delta U = 0$ for a cyclic process. 414 (d) $W = P \times \Delta V$ $= 0 \times \Delta V = 0$ 416 (b) On heating $N_2O_4 = 2NO_2$, if NO_2 is formed more, it means $\Delta H = +$ ve because endothermic reactions are favoured with increase in temperature. 417 (c) We know that internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, than its internal energy remains same 418 (a) $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g); \Delta H$ = -25 kcal Given, $e_{C-H} = 20 + e_{C-CI} = 20 + a (e_{C-CI} = a)$ and $e_{H-H} = e_{HCl} = b$ Now, ΔH reaction = $-[e_{C-Cl} + e_{H-Cl}] +$ $[e_{C-H} + e_{CI-CI}]$ or $-25 = -[a+b] + [20 + a + e_{Cl-Cl}]$ $\therefore e_{\text{Cl}-\text{Cl}} = -25 - 20 + b = -45 + b$

Now for, $H_2(g) + Cl_2(g) \rightarrow 2HCl(g); \Delta H_1 = ?$ $\therefore \Delta H_1 = -2 [e_{H-Cl}] + [e_{H-H} + e_{Cl-Cl}]$ = -2[b] + [b + (-45 + b)] $\Delta H1 = -45 \text{ kcal mol}^{-1}$ $\therefore \Delta H$ formation for HCl = -22.5 kcal mol⁻¹ 420 (a) $\Delta E = q + W$ q=0(: Temperature is to be increase, no heat should enter or leave the system) $\Delta E = q + W = 0 + W$ or $\Delta E =$ $W \neq 0, q = 0$:. 421 (d) $\Delta G = +$ ve in each case. 422 (c) Required equation is $\frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow HCl$ $\Delta H = \sum BE_{(products)} - \sum BE_{(reactants)}$ $= BE(HCI) - \left[\frac{1}{2}BE(H_2) + \frac{1}{2}BE(Cl_2)\right]$ $= -103 - \left[\frac{1}{2}(-104) + \frac{1}{2}(-58)\right]$ = -103 - (-52 - 29) = -22 kcal 423 (d) In a cyclic process, $\Delta E = 0$. 424 (a) $\Delta S_{\rm vap} = \frac{\Delta H_{\rm vap}}{T_{\rm b}} = \frac{840}{173} = 4.8 \, \rm J/mol/K$ 425 (c) Energy absorbed $\propto \frac{1}{\text{stability of compound}}$ Energy released \propto stability of compound Thus, the order of stability is 142.2 > 25.9 > -46.2 > -393.2 $ie_{0}, 0_{3} > HI > NH_{3} > CO_{2}$ 426 (a) C (graphite) $+\frac{1}{2}O_2(g) \rightarrow CO(g)$ $\Delta n_g = 1 - \frac{1}{2} = \frac{1}{2}$ $\Delta H = \Delta E + \Delta n_a RT$ $\Delta E = \Delta E - \Delta n_a RT$ $= -26.4 - \frac{1}{2} \times 0.002 \times 298$ = -26.7 kcal 427 (a) Bomb calorimeter is commonly used to find the heat of combustion of organic substance which consists of a sealed combustion chamber called a bomb, if a process is run in a sealed container then no expansion or compression is allowed, so

W = 0 and $\Delta U = q$. Thus it has $\Delta U < 0, W = 0$

428 (d)

Heat of combustion is usually measured by placing a known mass of a compound in a steel container called a constant volume bomb calorimeter.

$$\Delta E = C \times \Delta t \times \frac{M}{m}$$

Where, *C*=heat capacity of calorimeter, $\Delta t = (t_2 - t_1) m$ =mass of substance taken and *M*=molar mass of substance

429 **(a)**

 ΔH /mole for carbon is more and thus carbon can reduce ZnO to Zn.

430 **(d)**

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2;$ $\Delta H = -26.8 \text{ kJ}$ $2FeO + 2CO \rightarrow 2Fe + 2C; \Delta H = -33.0 \text{ kJ}$ - - - +

 $Fe_2O_3 + CO \rightarrow 2FeO + CO_2; \Delta H = +6.2 \text{ kJ}$ 431 (c)

An isobaric process is one in which changes are made at constant pressure.

432 **(b)**

$$\Delta S_{\rm vap} = \frac{\Delta H_{\rm vap}}{T} = \frac{9710}{373} = 26.032 \text{ cal } \text{K}^{-1} \text{mol}^{-1}$$

433 **(c)**

The property of the system whose value depends upon the amount of substance present in the system is called extensive property.

Gibb's free energy is an extensive property.

434 **(d)**

 $(CH_3)_2 C = CH_2(g) + 6O_2(g)$ $\rightarrow 4CO_2(g) + 4H_2O(l)$ $\Delta ng = 4 - 7 = -3(ie, negative)$ We know that $\Delta H = \Delta E + \Delta n_g RT$ $= \Delta E - (\Delta m)RT \quad (\because \Delta n_g = -ve)$ $\therefore \Delta H < \Delta E$

436 **(a)**

The process involves conversion of 1 mole of H_2O from liquid to vapour state and thus, heat changes are called heat of vaporisation.

437 (c)

This is definition.

438 **(b)**

Due to extensive solvation of F^- ion on account of smaller size, observed value of heat of neutralization of HF appears more.

439 (d)

$$\Delta H_{\text{reaction}} = -[l_{\text{C}-\text{C}} + 6 \times l_{\text{C}-\text{H}}] + [l_{\text{C}=\text{C}} + 4 \times l_{\text{C}-\text{H}}]$$

$$= [336.49 + 6 \times 410.50]$$

$$+ [606.10 + 4 \times 410.50]$$

$$+ 431.37]$$

$$= 120.02 \text{ kJ mol}^{-1}$$

440 **(a)**

This is significance of Hess's law, e.g., Heat of formation cannot be determined experimentally for $6C + 3H_2 \rightarrow C_6H_6$; $\Delta H =$? Because the reaction does not occur. However, if heat of combustion for C, H₂ and C₆H₆ are determined experimentally as *A*, *B*, *C*, respectively, then we can calculate, $\Delta H = 6A + 3B - C$.

442 **(a)**

$$\Delta S_{\text{total}} = \Delta S_{\text{sys.}} + \Delta S_{\text{surr.}} = +\text{ve.}$$

443 (a)

On mixing gases entropy increases due to increase in disorderness.

444 **(b)**

 $1 M H_2 SO_4 = 2 eq. H_2 SO_4$ 1 M HCl = 1 eq. HCl

Thus, for equal volume of two acids to be neutralized separately with NaOH, heat evolved will be twice in case of H_2SO_4 to that of HCl.

446 **(d)**

It is Cl_2 molecule which dissociates to give free radicals on exposure to light.

447 **(c)**

Bomb calorimeter measures q_v which is equal to ΔE .

448 **(b)**

If work done by the system is positive, then $q = \Delta U + W$. However, new terminology has revealed that work done by the system is negative and work done on the system is positive. Thus, according to this, $q = \Delta E - W$.

449 **(d)**

B. E. of S = 0, C \equiv C, C \equiv N and N \equiv N are 523, 839, 891 and 941 kJ mol⁻¹ respectively.

450 **(c)**

Internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, then its internal energy remains same.

451 **(c)**

 ΔH and ΔS both are +ve for spontaneous change and ΔH = +ve for endothermic reaction 452 (c)

It provides information about physical states of reactants and products as well as about thermal changes. (d) is wrong because combustion is exothermic.

453 **(c)**

$$C_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)}; \Delta n + \frac{1}{2};$$

Also the moles of gases increase and therefore entropy change (ΔS) is positive. An increase in temperature will cause more change in $T\Delta S$. Also it is a combustion reaction and thus $\Delta H = -ve$ Since $\Delta G = \Delta H - T\Delta S$ = -ve - (+ve) = -ve

$$\Delta H = 18500 = \Delta U + \Delta nRT$$

or
$$18500 = \Delta U + (-1) \times 2 \times 298$$

or
$$\Delta U = 19096$$
 cal

455 **(a)**

Work obtained is isothermal

$$W = -2.303 \ nRT \log \frac{p_1}{p_2}$$

Given,
$$p_1 = 500 \text{ kPa}, p_2 = 200 \text{ kPa}$$

(W) = -2.303 nRT = $\log \frac{500}{200}$
= -2.303 nRT × 0.3980 nRT
∴ Minimum work will be obtained who

 ∴ Minimum work will be obtained when number of moles (n) is minimum.
 Moles of substances, mass=1 kg=1000 g

- 2. Moles of $Cl_2 = 1000/71$
- 3. Moles of $O_2 = 1000/32$
- 4. Moles of $N_2 = 1000/28$
- 5. Moles of $CH_4 = 1000/16$

: Moles of Cl_2 are least.

Minimum work is obtained when 1 kg of chlorine gas expands.

456 **(d)**

In adiabatic expansion work is done by the

system so it will lose heat to the surrounding. Thus, temperature of the system decreases.

$$\Delta H^{\circ} = -2 \times e_{\rm H-Br} + e_{\rm H-H} + e_{\rm Br-Br}$$

= -2 × 364 + 433 + 192
= -103 kJ

458 (c)

Heat of neutralisation will be less than -57.33 kJ/mole because some amount of this energy will be required for the dissociation of weak base (MgO)

459 **(d)**

Only the laws of thermodynamics are mere statements, so they, are believed. Many mathematical expression are derived on the basis of these laws.

462 **(c)**

Given $\Delta H = +ve$; $\Delta S = +ve$ Thus ΔG is we only when $\Delta H < T$

Thus,
$$\Delta G$$
 is -ve only when $\Delta H < T \Delta S$.
463 (a)

$$\Delta S = \frac{\Delta H}{T} = \frac{30 \times 10^3}{300} = 100 \text{ J mol}^{-1} \text{K}^{-1}$$

464 **(b)**

$$\Delta H = \Delta U + \Delta nRT \quad \because \Delta n = 3 - 5 - 1 = -3$$

$$\therefore \quad \Delta H - \Delta U = -3RT$$

465 **(c)**

Entropy (a measure of disorder) of universe is increasing towards maximum. This is second law of thermodynamics.

466 **(c)**

Move +ve is ΔH_s more is heat of solution.