Straight lines

Single Correct Answer Type

1. The line $\mathrm{x}+\mathrm{y}=1$ meets x -axis at A and y -axis at $\mathrm{B} . \mathrm{P}$ is the mid-point of $\mathrm{AB} . P_{1}$ is the foot of the perpendicular from P to $\mathrm{OA} ; M_{1}$ is that from P_{1} to $\mathrm{OP} ; P_{2}$ is that from M_{1} to $\mathrm{OA} ; M_{2}$ is that from P_{2} to OP; P_{3} is that from M_{2} to OA and so on. If P_{n} denotes the nth foot of the perpendicular on OA from M_{n-1}, then $O P_{n}=$
A. $\frac{1}{2}$
B. $\frac{1}{2^{n}}$
C. $\frac{1}{2^{n / 2}}$
D. $\frac{1}{\sqrt{2}}$

Key. B
Sol. $\quad x+y=1$ meets x-axis at $A(1,0)$ and y-axis at $B(0,1)$.

The coordinates of P are $(1 / 2,1 / 2)$ and $P P_{1}$ is perpendicular to OA.
$\Rightarrow O P_{1}=P_{1} P=1 / 2$

Equation of line OP is $y=x$
We have $\left(O M_{n-1}\right)^{2}=\left(O P_{n}\right)^{2}+\left(P_{n} M_{n-1}\right)^{2}=2\left(O P_{n}\right)^{2}=2 P_{n}^{2}$ (say)

Also, $\left(O P_{n-1}\right)^{2}=\left(O M_{n-1}\right)^{2}+\left(P_{n-1} M_{n-1}\right)^{2}$
$\left(O P_{n-1}\right)^{2}=\left(O M_{n-1}\right)^{2}+\left(P_{n-1} M_{n-1}\right)^{2}=2 p_{n}^{2}+\frac{1}{2} p_{n-1}^{2}$
$\Rightarrow p_{n}^{2}=\frac{1}{4} p_{n-1}^{2} \Rightarrow p_{n}=\frac{1}{2} p_{n-1}$
$\therefore O P_{n}=p_{n}=\frac{1}{2} p_{n-1}=\frac{1}{2^{2}} p_{n-2}=\ldots \ldots . .=\frac{1}{2^{n-1}} p_{1}=\frac{1}{2^{n}}$
2. $\quad M$ is the mid point of side $A B$ of equilateral triangle $A B C . P$ is a point on $B C$ such that $A P+P M$ is minimum. If $A B=20$ then $A P+P M$ is
(A) $10 \sqrt{7}$
(B) $10 \sqrt{3}$
(C) $10 \sqrt{5}$
(D) 10

Key. A
Sol. Take the reflection of $\triangle A B C$ in $B C$.

$$
\mathrm{PM}=\mathrm{PM}^{\prime}
$$

$P A+P M=P A+P M^{\prime}$ it is minimum when $M^{\prime} P A$ lies in a line
Now apply cosine rule in triangle ABM'
We will get $\mathrm{AM}^{\prime}=10 \sqrt{7}$
3. The algebraic sum of distances of the line $a x+b y+2=0$ from $(1,2),(2,1)$ and $(3,5)$ is zero and the lines bx -ay $+4=0$ and $3 x+4 y+5=0$ cut the coordinate axes at concyclic points then
(a) $a+b=-\frac{2}{7}$
(b) area of the triangle formed by the line $a x+b y+2=0$ with coordinate axes is $\frac{14}{5}$
(c) line ax + by $+3=0$ always passes through the point $(-1,1)$
(d) $\max \{a, b\}=\frac{5}{7}$

Key. C
Sol. Line always passes through the point $\left(2, \frac{8}{3}\right)$ hence $6 a+8 b+6=0 \Rightarrow 3 a+$ $4 b+3=0$
$b x-a y+4=0$ and $3 x+4 y+5=0$ are concyclic.
So, $\mathrm{m}_{1} \mathrm{~m}_{2}=1$
$\frac{\mathrm{b}}{\mathrm{a}} .-\frac{3}{4}=1 \Rightarrow 4 \mathrm{a}+3 \mathrm{~b}=0$
Solving $\mathrm{a}=9 / 7, \mathrm{~b}=-12 / 7$
4. The algebraic sum of distances of the line ax + by $+2=0$ from (1, 2), (2, 1) and $(3,5)$ is zero and the lines $b x-a y+4=0$ and $3 x+4 y+5=0$ cut the coordinate axes at concyclic points then
(a) $a+b=-\frac{2}{7}$
(b) area of the triangle formed by the line $a x+b y+2=0$ with coordinate axes is $\frac{14}{5}$.
(c) line $a x+b y+3=0$ always passes through the point $(-1,1)$
(d) $\max \{\mathrm{a}, \mathrm{b}\}=\frac{5}{7}$

Key. C
Sol. Line always passes through the point $\left(2, \frac{8}{3}\right)$ hence $6 a+8 b+6=0 \Rightarrow 3 a+$
$4 b+3=0$
$b x-a y+4=0$ and $3 x+4 y+5=0$ are concyclic.
So, $\mathrm{m}_{1} \mathrm{~m}_{2}=1$
$\frac{\mathrm{b}}{\mathrm{a}} .-\frac{3}{4}=1 \Rightarrow 4 \mathrm{a}+3 \mathrm{~b}=0$
Solving $\mathrm{a}=9 / 7, \mathrm{~b}=-12 / 7$
5. The orthocentre of the triangle formed by the lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lies in
(A) I quadrant
(B) II quadrant
(C) III quadrant
(D) IV quadrant

Key. A
Sol. Coordinates of A and B are $(-3,4)$ and $\left(-\frac{3}{5}, \frac{8}{5}\right)$ if orthocentre $p(h, k)$

Then, $($ slope of $P A) \times($ slope of $B C)=-1$
$\frac{\mathrm{k}-4}{\mathrm{~h}+3} \times 4=-1$
$\Rightarrow \quad 4 \mathrm{k}-16=-\mathrm{h}-3$
$\Rightarrow \quad h+4 k=13$
and slope of $P B \times$ slope of $A C=-1$

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{k}-\frac{8}{5}}{\mathrm{~h}+\frac{3}{5}} \times-\frac{2}{3}=-1 \\
\Rightarrow & \frac{5 \mathrm{k}-8}{5 \mathrm{~h}+3} \times \frac{2}{3}=1 \\
\Rightarrow \quad & 10 \mathrm{k}-16=15 \mathrm{th}+9 \\
& 15 \mathrm{th}-10 \mathrm{k}+25=0 \\
& 3 \mathrm{~h}-2 \mathrm{k}+5=0 \quad . . \text { (ii) }
\end{array}
$$

Solivng Eqs. (i) and (ii), we get $\mathrm{h}=\frac{3}{7}, \mathrm{k}=\frac{22}{7}$
Hence, orthocentre lies in I quadrant.
6. A, B, C are three points on the curve $x y-x-y-3=0$ which are not collinear. \hat{D}, E, F are foot of perpendiculars from vertices A, B, C to the sides $B C, C A$ and $A B$ of $\triangle A B C$ respectively. If (α, α) is incentre of $\triangle D E F$ then ' α ' can be
A) 1
B) 2
C) 3
D) 4

Key. C
Sol. Incentre of $\triangle D E F$ is ortho-centre of $\triangle A B C$. But in a rectangular hyperbola \& orthocentre lies on hyperbola $\Rightarrow \alpha^{2}-2 \alpha-3=0 \Rightarrow(\alpha-3)(\alpha+1)=0 \Rightarrow \alpha=3$
7. The reflection of the curve $x y=1$ in the line $y=2 x$ is the curve $12 x^{2}+r x y+s y^{2}+t=0$ then the value of ' r ' is
A) -7
B) 25
C) -175
D) 90

Key: A

HINT : The reflection of (α, β) in the line $y=2 x$ is

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\frac{4 \beta-3 \alpha}{5}, \frac{4 \alpha+3 \beta}{5}\right)=\alpha_{1} \beta_{1}=1
$$

$\Rightarrow 12 \alpha^{2}-7 \alpha \beta-12 \beta^{2}+25=0$
8. The line $x+y=1$ meets x-axis at A and y-axis at B. P is the mid-point of $A B . P_{1}$ is the foot of the perpendicular from P to $O A ; M_{1}$ is that from P_{1} to $O P ; P_{2}$ is that from M_{1} to $O A$ and so on. If P_{n} denotes the nth foot of the perpendicular on $O A$ from M_{n-1}, then $O P_{n}=$
(a) $1 / 2$
(b) $1 / 2^{n}$
(c) $1 / 2^{1 / 2}$
(d) $1 / \sqrt{2}$

Key: b
Hint:
$x+y=1$ meets x-axis at $A(1,0)$ and y-axis at $B(0,1)$.
The ordinates of P are $(1 / 2,1 / 2)$ and
PP_{1} is perpendicular to OA .
$\Rightarrow \mathrm{OP}_{1}=\mathrm{P}_{1} \mathrm{P}=1 / 2$
Equation of the line OP is $\mathrm{y}=\mathrm{x}$.
We have
$\left(\mathrm{OM}_{\mathrm{n}-1}\right)^{2}=\left(\mathrm{OP}_{\mathrm{n}}\right)^{2}+\left(\mathrm{P}_{\mathrm{n}} \mathrm{M}_{\mathrm{n}-1}\right)^{2}$

$=2\left(\mathrm{OP}_{\mathrm{n}}\right)^{2}=2 p_{n}^{2}$ (say)
Also, $\left(\mathrm{OP}_{\mathrm{n}-1}\right)^{2}=\left(\mathrm{OM}_{\mathrm{n}-1}\right)^{2}+\left(\mathrm{P}_{\mathrm{n}-1} \mathrm{M}_{\mathrm{n}-1}\right)^{2}=2 \mathrm{p}_{\mathrm{n}}^{2}+2 \mathrm{p}_{\mathrm{n}}^{2}$
$\Rightarrow \mathrm{p}_{\mathrm{n}}^{2}=\frac{1}{4} \mathrm{p}_{\mathrm{n}-1}^{2} \Rightarrow \mathrm{p}_{\mathrm{n}}=\frac{1}{2} \mathrm{p}_{\mathrm{n}-1}$
$\therefore \mathrm{OP}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}}=\frac{1}{2} \mathrm{p}_{\mathrm{n}-1}=\frac{1}{2^{2}} \mathrm{p}_{\mathrm{n}-2}=\ldots .=\frac{1}{2^{\mathrm{n}-1}} \mathrm{p}_{1}=\frac{1}{2^{\mathrm{n}}}$
9. A line passes through (2, 0). The slope of the line, for which its intercept between $y=x-1$ and $y=-x+1$ subtends a right angle at the origin, is/are
(A) $\sqrt{3}$
(B) $-\sqrt{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) $-\frac{1}{\sqrt{3}}$

Key. C,D
Sol. The joined equation of straight line $y=x-1$ and $y=-x+1$ is

$$
\begin{align*}
& (x-y-1)(x+y-1)=0 \\
\Rightarrow & x^{2}-y^{2}-2 x+1=0 \tag{1}
\end{align*}
$$

Let equation of line passes through $(2,0)$ is

$$
\begin{equation*}
y=m(x-2) \tag{2}
\end{equation*}
$$

By homogenizing equation (1) with help of line (2) is

$$
x^{2}-y^{2}-2 x\left(\frac{m x-y}{2 m}\right)+\left(\frac{m x-y}{2 m}\right)^{2}=0
$$

Q coefficient of $x^{2}+$ coefficient of $y^{2}=0$

$$
\Rightarrow \quad m= \pm \frac{1}{\sqrt{3}}
$$

10. The complete set of values of ' a ' for which the point $\left(a, a^{2}\right), a \in R$ lies inside the triangle formed by the lines $x-y+2=0, x+y=2$ and x-axis is
(A) $(-2,2)$
(B) $(-1,1)$
(C) $(0,2)$
(D) $(-2,0)$

KEY : B
HINT :

$\left(a, a^{2}\right)$ lies of $y=x^{2}$
$a-a^{2}-2=0 \quad a=-1,2$
$a+a^{2}-2=0 \quad a=1,-2$
11. The values of k for which lines $k x+2 y+2=0,2 x+k y+3=0,3 x+3 y+k=0$ are concurrent
a) $\{2,3,5\}$
b) $\{2,3,-5\}$
c) $\{3,-5\}$
d) $\{-5\}$

Key: C
Hint: Three non parallel lines are concurrent if $\Delta=0$
$\left|\begin{array}{lll}k & 2 & 2 \\ 2 & k & 3 \\ 3 & 3 & k\end{array}\right|=0 \Rightarrow k=2,3,-5 \quad$ But for $\mathrm{k}=2$, first two lines are parallel.
12. A straight line passes through the point of intersection $x-2 y-2=0$ and $2 x-b y-6=0$ and the origin then the complete set of values of b for which the acute angle between this line and $y=0$ is less than 45°
(A) $\quad(-\infty, 4) \cup(7, \infty)$
(B) $\quad(-\infty, 5) \cup(7, \infty)$
(C) $\quad(-\infty, 4) \cup(5,7) \cup(7, \infty)$
(D) $(-\infty, 4) \cup(4,5) \cup(7, \infty)$

Key: D
Hint: As line passes through the point of intersection of $x-2 y-2=0$ and $2 x-b y-6=0$
It can be represented as $\lambda(x-2 y-2)+(2 x-b y-6)=0$
As it passes through the origin
$-2 \lambda-6=0$
$\lambda=-3$
\therefore equation of the line is $-x+(6-b) y=0$
Its slope is $\frac{1}{6-b}$
As its angle with $\mathrm{y}=0$ is less than $\frac{\pi}{4}$
$\therefore-1<\frac{1}{6-b}<1$
$\Rightarrow 6-\mathrm{b}>1$ or $<-1 \Rightarrow \mathrm{~b}<5$ or $\mathrm{b}>7$
But $\mathrm{b} \neq 4$ (as the lines intersect)
$\therefore \mathrm{b} \in(-\infty, 4) \cup(4,5) \cup(7, \infty)$
13. Equation of angle bisector of the lines $3 x-4 y+1=0$ and $12 x+5 y-3=0$ containing the point $(1,2)$ is
(A) $3 x+11 y-4=0$
(B) $99 x-27 y-2=0$
(C) $3 x+11 y+4=0$
(D) $99 x+27 y-2=0$

Key: B
Hint: Since $3 \times 1-4 \times 2+1$ and $12 \times 1+5 \times 2-3$ are of the opposite sign, so required angle bisector is given by
$\frac{3 x-4 y+1}{5}=-\left(\frac{12+5 y-3}{13}\right)$
14. Let S be the set of all values of α such that the points $(\alpha, 6),(-5,0)$ and $(5,0)$ form an isosceles triangle. Then the value of $\sum_{\alpha \in S} \alpha^{2}$ is
(A) 356
(B) 18
C) 178
(D) 338

Key: A
Hint $\quad \alpha$ can take 5 values :0,3,-3,13.-13
15. If the orthocenter and circumcentre of a triangle are $(0,0)$ and $(3,6)$ respectively then the centroid of the triangle is
(A) $(1,2)$
(B) $(2,4)$
(C) $\left(\frac{2}{3}, \frac{4}{3}\right)$
(D) $\left(\frac{1}{3}, \frac{2}{3}\right)$

Key: B
Hint In any triangle centroid divides the line joining orthocenter and circumcentre internally in the ratio $2: 1$.
So, centroid is $(2,4)$.
16. The line $L_{1} \equiv 4 x+3 y-12=0$ intersects the x-axis and $y-$ axis at A and B respectively. A variable line perpendicular to L_{1} intersect the x and $y-$ axes at P and Q respectively. The locus of the circumcentre of triangle ABQ is
A) $6 x-8 y+7=0$
B) $6 x+8 y-25=0$
C) $8 x-6 y+7=0$
D) $14 x-12 y+3=0$

Key. A
Sol. clearly circumcentre of triangle $A B Q$ will lie on perpendicular bisector of line $A B$, which is $6 x-8 y+7=0$
17. If the area of the rhombus enclosed by the lines $l x \pm m y \pm n=0$ be 2 square units, then
A) $l, 2 m, n$ are in G.P
B) l, n, m are in G.P
C) $l m=n$
D) $l n=m$

Key. B
Sol. By solving the sides of the rhombus, the vertices are
$\left(0, \frac{-n}{m}\right),\left(\frac{-n}{l}, 0\right)\left(0, \frac{n}{m}\right),\left(\frac{n}{l}, 0\right)$
\therefore The area $=\frac{1}{2}\left(\frac{2 n}{m}\right)\left(\frac{2 n}{l}\right)=2 \Rightarrow n^{2}=l m$
18. If P is a point which moves inside an equilateral triangle of side length ' a ' such that it is nearer to any angular bisector of the triangle than to any of its sides, then the area of the region in which P lies is \qquad sq units
A) $a^{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
B) $\frac{\sqrt{3} a^{2}}{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
C) $\sqrt{3} a^{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
D) a^{2}

Key. B
Sol. Shaded area is the region traced by P , its area $=\triangle A B C-3 \triangle A B D$

$=\frac{\sqrt{3}}{4} a^{2}-\frac{3}{2} a \times \frac{a}{2} \tan 15^{0}$
$==\frac{\sqrt{3}}{2} a^{2}\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$
19. In $\triangle A B C$ orthocentre is $(6,10)$ circumcentre is $(2,3)$ and equation of side sum $B C$ is $2 \mathrm{x}+\mathrm{y}=17$. Then the radius of the circumcircle of $\triangle A B C$ is
a) 4
b) 5
c) 2
d) 3

Key: B
Hint Image of orthocenter of $\triangle A B C$ w.r.t. $\stackrel{\text { sur }}{B C}$ lies on the circle.
20. The area of the triangle formed by the line $x+y=3$ and the angular bisectors of pair of straight lines $x^{2}-y^{2}+2 y=1$ is
A. 8 sq.units
B. 6 sq.units
C. 4 sq.units
D. 2 sq.units

Key.
Sol. $\quad x^{2}-(y-1)^{2}=0$ is given pair of lines

Vertices are $(0,1),(0,3),(2,1)$,
Angular bisector is $x(y-1)=0$

Area $=2$ sq.units
21. Let $O(0,0), P(3,4), Q(6,0)$ be the verticals of triangle OPQ . The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The point S is such that $O S=$ $\mathrm{PS}=\mathrm{QS}$. Then RS =
A. $\frac{13}{16}$
B. $\frac{11}{12}$
c. $\frac{13}{24}$
D. $\frac{11}{24}$

Key. D
Sol. $\quad \mathrm{R}$ is centroid . S is circumcentre. $R=\left(3, \frac{4}{3}\right), S=\left(3, \frac{7}{8}\right)$
$R S=\frac{11}{24}$
22. An equilateral triangle has its centroid at origin and one side is $x+y=1$. The equations of the others sides are
A. $y+1=(2 \pm \sqrt{3})(x+1)$
B. $y+1=(2 \pm \sqrt{3}) x, y+1=(3 \pm \sqrt{3}) x$
C. $y+1=(3 \pm \sqrt{3})(x-1), y+1=\sqrt{3} x$
D.
$y \pm 1=(3 \pm \sqrt{3})(x-1), y+1=\frac{\sqrt{3}-1}{\sqrt{3}+1}(x+1)$
Key. A
Sol. Third vertex ' A ' lies on $x-y=0$ and in III quadrent
Perpendicular distance from $(0,0)$ to $\mathrm{x}+\mathrm{y}=1$ is $\frac{1}{\sqrt{2}}$
$\therefore A O=\sqrt{2} \Rightarrow A(-1,-1)$
If m is the slope of other side,
$\tan 60^{\circ}=\left|\frac{m+1}{1-m}\right|$
$\Rightarrow m=2 \pm \sqrt{3}$
23. Triangle is formed by the lines $x+y=0, x-y=0$ and $1 x+m y=1$. If 1 and m vary subject to the condition $1^{2}+\mathrm{m}^{2}=1$, then the locus of its circumcentre is
(A) $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
(B) $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)$
(C) $\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y^{2}$
(D) $\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$

Key.

Sol. Circumcentre of the triangle formed by the given lines is given by

$$
\left(\frac{1}{1^{2}-\mathrm{m}^{2}}, \frac{\mathrm{~m}}{1^{2}-\mathrm{m}^{2}}\right)
$$

Hence the locus of this point is

$$
\left(x^{2}-y^{2}\right)^{2}=\quad x^{2}+y^{2}
$$

24. A piece of cheese is located at $(12,10)$ in a coordinate plane. A mouse is at $(4,-2)$ and is running up the line $y=-5 x+18$. At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of $(a+b)$ is
(A) 6
(B) 10
(C) 18
(D) 14

Key. B

Sol.

$$
\begin{aligned}
& a=2, b=8 \\
& a+b=10
\end{aligned}
$$

25. $A\left(3 x_{1}, 3 y_{1}\right), B\left(3 x_{2}, 3 y_{2}\right), C\left(3 x_{3}, 3 y_{3}\right)$ are vertices of a triangle with orthocentre H at $\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}\right)$ then the $\angle A B C$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Key. B
SoL. Centroid $G=\left(\frac{3 x_{1}+3 x_{2}+3 x_{3}}{3}, \frac{3 y_{1}+3 y_{2}+3 y_{3}}{3}\right)=\left(x_{1}+x_{2}+x_{3}, y_{1}+y_{2}+y_{3}\right)=H$

$$
\therefore \angle A B C=\pi / 3
$$

26. The area of the triangle with vertices $(a, b),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ where a, x_{1}, x_{2} are in G.P. with common ratio ' r ' and b, y_{1}, y_{2} are in G.P with common ratio ' s ' is
A. $|a b(r-1)(s-1)(s-r)|$
B. $\frac{1}{2}|a b(r+1)(s+1)(s-r)|$
C. $\frac{1}{2}|a b(s-1)(r-1)(s-r)|$
D. $\frac{1}{2} a b r s$

Key. C
SoL. $\quad a, x_{1}, x_{2}$ are in GP with C.R is ' r ' $, b, y_{1}, y_{2}$ are in G.P with C.R is s, $x_{1}=a r, x_{2}=r^{2}$, $y_{1}=b s, x_{2}=b s^{2}$
27. If h denote the A.M, k denote G.M of the intercepts made on axes by the lines passing through $(1,1)$ then (h, k) lies on
A. $y^{2}=2 x$
B. $y^{2}=4 x$
C. $y=2 x$
D. $x+y=2 x y$

Key. A
SoL. $\quad a=x$-intercept, $b=y$-intercept

$$
2 \mathrm{~h}=\mathrm{a}+\mathrm{b}, k^{2}=a b
$$

$$
\frac{x}{a}+\frac{y}{b}=1, \text { substitute }(1,1)
$$

$$
\frac{1}{a}+\frac{1}{b}=1
$$

$$
a+b=a b
$$

$$
2 h=k^{2} \Rightarrow y^{2}=2 x
$$

28. A straight rod of length $3 /$ units slides with its ends A, B always on the x and y axes respectively then the locus of centroid of $\triangle O A B$ is
A. $x^{2}+y^{2}=3 l^{2}$
B. $x^{2}+y^{2}=l^{2}$
C. $x^{2}+y^{2}=4 l^{2}$
D. $x^{2}+y^{2}=2 l^{2}$

Key. B
SoL. Let $O A=a, O B=b, A B=31$

$$
\mathrm{A}=(\mathrm{a}, 0), \mathrm{b}=(0, \mathrm{~b})
$$

$$
\begin{aligned}
& \text { Let } \mathrm{G}(\mathrm{x}, \mathrm{y})=\left(\frac{a}{3}, \frac{b}{3}\right), \mathrm{a}=3 \mathrm{x}, \mathrm{~b}=3 \mathrm{y} \\
& a^{2}+b^{2}=9 l^{2} \Rightarrow x^{2}+y^{2}=l^{2}
\end{aligned}
$$

29. By translation of axes the equation $x y-x+2 y-6=0$ changed as $\mathrm{XY}=\mathrm{c}$ then $\mathrm{c}=$
A. 4
B. 5
C. 6
D. 7

Key. A
SoL. New origin $\left(x_{1}, y_{1}\right)=\left(\frac{-f}{h}, \frac{-g}{h}\right)=(-2,1)$
Transformed equation of $x y-x+2 y+6=0$ is $x y=4$
30. A line has intercepts a, b on axes when the axes are rotated through an angle α, the line makes equal intercepts on axes then $\tan \alpha=$
A. $\frac{a+b}{a-b}$
B. $\frac{a-b}{a+b}$
C. $\frac{a}{b}$
D. $\frac{b}{a}$

Key. B
SoL. Equation of the lime $\frac{x}{a}+\frac{y}{b}=1$

Transformed eqution is $\frac{1}{a}(x \cos \alpha-y \sin \alpha)+\frac{1}{b}(x \sin \alpha+y \cos \alpha)=1$

Intercepts are equal
$\mathrm{x}-$ coefficient $\equiv y$-coefficient
$\therefore \tan \alpha=\frac{a-b}{a+b}$
31. In a $\triangle A B C$, the coordinates of B are $(0,0) \mathrm{AB}=2, \angle A B C=\frac{\pi}{3}$ and the mid point of BC is $(2,0)$. The centroid of triangle is

1) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
2) $\left(\frac{5}{3}, \frac{1}{\sqrt{3}}\right)$
3) $\left(\frac{4+\sqrt{3}}{3}, \frac{1}{\sqrt{3}}\right)$
4) $\left(\frac{4-\sqrt{3}}{3}, \frac{1}{\sqrt{3}}\right)$

Key. 2
Sol. Let $A(h, k)$ then $\cos 60^{\circ}=\frac{h}{2} \Rightarrow h=1$

$$
\sin 60^{\circ}=\frac{k}{2} \Rightarrow k=\sqrt{3}
$$

$\therefore A(1, \sqrt{3})$
\therefore centroid $=\left(\frac{5}{3}, \frac{\sqrt{3}}{3}\right)$
32. A point moves in the XY- plane such that the sum of its distances form two mutually perpendicular lines is always equal to 3 . The area enclosed by the locus of the point is .

1) 18 Sq. Units
2) $9 / 2$ Sq. Units
3) 9 Sq. Units
4) 27 Sq. Units

Key. 1
Sol. Given $|x|+|y|=3$
Required area $=\frac{2 c^{2}}{|a b|}=9 \times 2=18 \mathrm{~S} . \mathrm{U}$
33. If the point (a, a) falls between the lines $|x+y|=2$, then

1) $|a|=2$
2) $|a|=1$
3) $|a|<1$
4) $|a|<\frac{1}{2}$

Key. 3
Sol. Origin and (a, a) lies on the same side of the given lines $\therefore|a|<1$
34. A ray travelling along the line $3 x-4 y=5$ after being reflected from a line ' l ' travels along the line $5 x+12 y=13$. Then the equation of the line ' l ' is

1) $x+8 y=0$
2) $x-8 y=0$
3) $32 x+4 y+65=0$
4)

$32 x-4 y+65=0$
Key. 2
Sol. The line ' l ' can be any one of the bisectors of the angles between the lines $3 x-4 y=5$ and $5 x+12 y=13$
\therefore Angular bisectors, $\frac{3 x-4 y-5}{5}= \pm\left[\frac{5 x+12 y-13}{13}\right]$
$\Rightarrow x-8 y=0,32 x+4 y-65=0$
35. The values of m for which the system of equations $3 x+m y=m$ and $2 x-5 y=20$ has a solution satisfy the conditions $x>0, y>0$ are given by the set

1) $\left\{m: m<\frac{-13}{2}\right\}$
2) $\left\{m: m>\frac{17}{2}\right\}$
3) $\left\{m: m<\frac{-13}{2}\right.$ or $\left.m>\frac{17}{2}\right\}$
4) $\left\{m: m>30\right.$ or $\left.m<\frac{-15}{2}\right\}$

Key. 4
Sol. Solve the equations $x=\frac{25 m}{2 m+15}, y=\frac{2 m-60}{2 m+15}$
But $x>o, y>0 \Leftrightarrow 25 m>0,2 m+15>0,2 m-60>0$
$\Leftrightarrow m>30$ or $m<\frac{-15}{2}$
36. $A_{1}, A_{2} \ldots . . A_{n}$ are points on the line $\mathrm{y}=\mathrm{x}$ lying in the positive quadrant such that $O A_{n}=n O A_{n-1} \quad 0$ being the origin. If $O A_{1}=1$ and the coordinates of A_{n} are $(2520 \sqrt{2}, 2520 \sqrt{2})$, then $\mathrm{n}=$

1) 5
2) 6
3) 7
4) 8

Key. 3
Sol. We have, $O A_{n}=n \cdot O A_{n-1}=n(n-1) \cdot O A_{n-2}=---$
$\therefore O A_{n}=\frac{n!}{\sqrt{2}}$
$\Rightarrow \sqrt{2}(2520 \sqrt{2})=n!\Rightarrow n!=5040$
$\Rightarrow n=7$
37. M is the mid point of side $A B$ of an equilateral triangle $A B C$. P is a point on $B C$ such that $\mathrm{AP}+\mathrm{PM}$ is minimum. If $\mathrm{AB}=20$ then $\mathrm{AP}+\mathrm{PM}$ is
(A) $10 \sqrt{7}$
(B) $10 \sqrt{3}$
(C) $10 \sqrt{5}$
(D) 10

Key. A
Sol. Take the reflection of $\triangle A B C$ in $B C$.

$$
\mathrm{PM}=\mathrm{PM}^{\mathrm{L}}
$$

$\mathrm{PA}+\mathrm{PM}=\mathrm{PA}+\mathrm{PM}^{\prime}$ it is minimum when $\mathrm{M}^{\prime} \mathrm{PA}$ lies in a line
Now apply cosine rule in triangle ABM^{\prime}
We will get $A M^{\prime}=10 \sqrt{7}$

38. All points inside the triangle formed by $\mathrm{A}(1,3), \mathrm{B}(5,6), \mathrm{C}(-1,2)$ will satisfy
(A) $2 x+2 y \leq 0$
(B) $2 x+y+1 \geq 0$
(C) $2 x+3 y-12 \geq 0$
(D) $-2 x+11 \leq 0$

Key. B

Sol. $\quad \mathrm{L}_{1} \equiv 2 \mathrm{x}+2 \mathrm{y}=0$

$$
\begin{aligned}
& \mathrm{L}_{1}(1,3)>0 \text { so } a \text { is wrong } \\
& \mathrm{L}_{2}=2 x+y+1=0 \\
& \mathrm{~L}_{2}(1,3)>0 \\
& \mathrm{~L}_{2}(5,6)>0 \\
& \mathrm{~L}_{3}(-1,2)>0
\end{aligned} \quad \Rightarrow \quad b \text { is ture } \quad \begin{aligned}
& \\
&
\end{aligned}
$$

39. Let $P(1,1), Q(2,4), R(\alpha, \beta)$ be the vertices of the triangle PQR. The point $S(2,2)$ inside the triangle PQR is such that
$\operatorname{Area}(\triangle \mathrm{PQS})=\operatorname{Area}(\triangle \mathrm{PSR})=\operatorname{Area}(\Delta \mathrm{RSQ})$, then $(\alpha, \beta)=$
(A) $(2,3)$
(B) $(2,5 / 2)$
(C) $(3,1)$
(D) $(5 / 2,2)$

Key. C
Sol. Here S must be cenroid of $\triangle P Q R$

$$
\begin{aligned}
& \Rightarrow \frac{1+2+\alpha}{3}=2 \& \frac{1+4+\beta}{3}=2 \\
& \Rightarrow \alpha=3 \& \beta=1 .
\end{aligned}
$$

40. A system of line is given as $y=m_{i} x+c_{i}$, where m_{i} can take any value out of $0,1,-1$ and when m_{i} is positive then c_{i} can be 1 or -1 when m_{i} equal $0, c_{i}$ can be 0 or 1 and when m_{i} equals $-1, c_{i}$ can take 0 or 2 . Then the area enclosed by all these straight line is
(A) $\frac{3}{\sqrt{2}}(\sqrt{2}-1)$ sq. units
(B) $\frac{3}{\sqrt{2}}$ sq. units
(C) $\frac{3}{2}$ sq. untis
(D) $\frac{3}{4}$ sq. units

Key. C
Sol. Lines are $y=1, y=0, y=-x, y=-x+2, y=x+1, y=x-1$
Area of OABCDE
$=$ area of OBGF
$=\frac{3}{2} \times 1=\frac{3}{2}$ units.
41. Point A lies on $\mathrm{y}=\mathrm{x}$ and
 mx so that length $\mathrm{AB}=4$
point B on $\mathrm{y}=$ units then value of m for which locus of mid point of $A B$ represents a circle is
(A) $\mathrm{m}=0$
(B) $\mathrm{m}=-1$
(C) $\mathrm{m}=2$
(D) $\mathrm{m}=-2$

Key. B
SOL. LET CO-ORDINATES OF $\mathrm{A}\left(\mathrm{X}_{1}, \mathrm{X}_{1}\right)$ AND B($\left.\mathrm{X}_{2}, \mathrm{MX}_{2}\right)$.
CLEARLY $\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}+\left(\mathrm{X}_{1}-\mathrm{MX}_{2}\right)^{2}=16$
LET MID POINT OF P(H, K)
$\Rightarrow \quad \mathrm{X}_{1}+\mathrm{X}_{2}=2 \mathrm{H}$ AND $\mathrm{X}_{1}+\mathrm{MX}_{2}=2 \mathrm{~K}$
$\Rightarrow \quad\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}+4 \mathrm{X}_{1} \mathrm{X}_{2}=4 \mathrm{H}^{2} \mathrm{AND}\left(\mathrm{X}_{1}-\mathrm{MX}_{2}\right)^{2}+4 \mathrm{MX}_{1} \mathrm{X}_{2}=4 \mathrm{~K}^{2}$

$$
\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}+\left(\mathrm{X}_{1}-\mathrm{MX}_{2}\right)^{2}=4 \mathrm{H}^{2}+4 \mathrm{~K}^{2}=16
$$

when $m=-1$
42. The joint equation of two altitudes of an equilateral triangle is
$(\sqrt{3} x-y+8-4 \sqrt{3})(\sqrt{3} x+y-12-4 \sqrt{3})=0$. The equation of the third altitude is
a) $\sqrt{3} x=2-4 \sqrt{3}$
b) $y-10=0$
c) $\sqrt{3} x=2+4 \sqrt{3}$
d) $y+10=0$

Key. B
Sol. The required altitude will be the bisector of obtuse angle between the 2 given altitudes
43. A line $x+2 y=4$ is translated by 3 units, away from origin and then rotated by 30° in clock wise sense about the point where shifted line cuts x-axis. If m is the slope of line in new position then [m] where [.] denotes GIF, is
a) -1
b) -2
c) -3
d) -4

Key. A
Sol. The required line is at a distance of 3 units from given line and parallel to it. Hence it is $x+2 y-4-3 \sqrt{5}=0$, cuts x-axis at $C(4+3 \sqrt{5}, 0)$ with slope $\tan \theta=\frac{-1}{2}$.After rotation about C by 30°, slope becomes $m=\tan \left(\theta-30^{\circ}\right)=\frac{-(2+\sqrt{3})}{2 \sqrt{3}-1}=\frac{-(4+3 \sqrt{3})}{11} \Rightarrow[m]=-1$
44. In a triangle $A B C, E$ and F are points on $A C$ and $A B$ respectively. The lines $B E$ and $C F$ intersect at P. If area $(B P F)=5$. area $(P F A E)=22$, and area $(C P E)=8$, then area $(B P C)$ is
(A) 22
(B) 16
(C) 10
(D) not uniquely decidable

Key. C
Sol.

Let area of $\triangle P B C=x$
$\frac{x}{5+\lambda}=\frac{8}{22-\lambda}$ and $\frac{x}{30-\lambda}=\frac{5}{\lambda}$

$$
\begin{aligned}
\Rightarrow & \frac{\lambda+5}{30-\lambda}=\frac{(22-\lambda) 5}{8 \lambda} \\
\Rightarrow & 8 \lambda^{2}+40 \lambda=5\left(\lambda^{2}-52 \lambda+\right. \\
& 660) \\
\Rightarrow & \lambda^{2}+100 \lambda-1100=0 \\
\Rightarrow & (\lambda+110)(\lambda-10)=0 \Rightarrow \lambda= \\
& 10
\end{aligned}
$$

$$
\Rightarrow x=\frac{(30-\lambda) 5}{\lambda}=\frac{(30-10) \times 5}{10}=10 \text { square units. }
$$

Ans. (C) 10 square units.
45. The perimeter of a parallelogram is 40 . All the sides of the parallelogram are natural numbers, and at least one of its diagonals is a natural number. The number of noncongruent parallelograms so formed is
(A) 10
(B) 30
(C) 60
(D) 100

Key. D
Sol.
Let $B D$ be integer and $I \geq m$
$2(I+m)=40$
$\Rightarrow I+\mathrm{m}=20$
Possible values of $m=1,2,3, \ldots, 10$

Note in any triplet of $I, m, B D$ if atleast one is different parallelogram will be noncongruent
Now $/-\mathrm{m}<\mathrm{BD}<1+\mathrm{m}$ (triangle inequality)
$\Rightarrow 20-2 \mathrm{~m}<\mathrm{BD}<20$
\Rightarrow No. of possible values of BD for a given ' m ' is $20-(20-2 m)-1=2 m-1$
\Rightarrow Total no. of noncongruent parallelogram $=\sum_{\mathrm{m}=1}^{10}(2 \mathrm{~m}-1)=10^{2}=100$
Ans. (D) 100
46. The orthocentre of the triangle formed by the lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lies in
(A) I quadrant
(B) II quadrant
(C) III quadrant
(D) IV quadrant

Key. A
Sol. Coordinates of A and B are $(-3,4)$ and $\left(-\frac{3}{5}, \frac{8}{5}\right)$ if orthocentre $p(h, k)$

Then, (slope of PA$) \times($ slope of $B C)=-1$
$\frac{\mathrm{k}-4}{\mathrm{~h}+3} \times 4=-1$
$\Rightarrow \quad 4 \mathrm{k}-16=-\mathrm{h}-3$
$\Rightarrow \quad \mathrm{h}+4 \mathrm{k}=13$
and slope of $\mathrm{PB} \times$ slope of $\mathrm{AC}=-1$

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{k}-\frac{8}{5}}{\mathrm{~h}+\frac{3}{5}} \times-\frac{2}{3}=-1 \\
\Rightarrow \quad & \frac{5 \mathrm{k}-8}{5 \mathrm{~h}+3} \times \frac{2}{3}=1 \\
\Rightarrow \quad 10 \mathrm{k}-16=15 \mathrm{th}+9 \\
& 15 \mathrm{th}-10 \mathrm{k}+25=0 \\
& 3 \mathrm{~h}-2 \mathrm{k}+5=0 \quad . . \text { (ii) }
\end{array}
$$

Solivng Eqs. (i) and (ii), we get $\mathrm{h}=\frac{3}{7}, \mathrm{k}=\frac{22}{7}$
Hence, orthocentre lies in I quadrant.
47. If $f(x+y)=f(x) f(y) \forall x, y \in R$ and $f(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is (in sq.units)
A) $f(4)$
B) $\frac{1}{2} f(6)$
C) $\frac{1}{3} f(6)$
D) $\frac{1}{3} f(5)$

Key. C

Sol.

Area $=4 \times \frac{1}{2} \times \frac{8}{3} \times 4=\frac{64}{3}=\frac{2^{6}}{3}$
$f(x)=2^{x}$
48. $9 x^{2}+2 h x y+4 y^{2}+6 x+2 f y-3=0$ represents two parallel lines then
a) $h=6, f=2$
b) $h=-6, f=2$
c) $h=6, f=-2$
d) none

Key. A
Sol. Since the given equation represents a pair of parallel lines, we have $h^{2}=a b \Rightarrow h= \pm 6$
Condition for pair of lines $\left|\begin{array}{ccc}9 & h & 3 \\ h & 4 & f \\ 3 & f & -3\end{array}\right|=0$
$108 \pm 36 f-9 f^{2}-144=0$
$\Rightarrow \mathrm{f}=2 \& \mathrm{~h}=6$
$\Rightarrow \mathrm{f}=-2, \mathrm{~h}=-6$

