Straight lines Single Correct Answer Type

1. The line x + y = 1 meets x-axis at A and y-axis at B. P is the mid-point of AB. P_1 is the foot of the perpendicular from P to OA; M_1 is that from P_1 to OP; P_2 is that from M_1 to OA; M_2 is that from P_2 to OP; P_3 is that from M_2 to OA and so on. If P_n denotes the nth foot of the perpendicular on OA from M_{n-1} , then $OP_n =$

A.
$$\frac{1}{2}$$
 B. $\frac{1}{2^n}$ C. $\frac{1}{2^{n/2}}$

Key. B Sol. x + y = 1 meets x-axis at A(1, 0) and y-axis at B(0, 1).

The coordinates of P are (1/2, 1/2) and PP_1 is perpendicular to OA.

 $\Rightarrow OP_1 = P_1P = 1/2$

Equation of line OP is y =

We have $(OM_{n-1})^2 = (OP_n)^2 + (P_nM_{n-1})^2 = 2(OP_n)^2 = 2P_n^2$ (say)

Also, $(OP_{n-1})^2 = (OM_{n-1})^2 + (P_{n-1}M_{n-1})^2$

$$(OP_{n-1})^2 = (OM_{n-1})^2 + (P_{n-1}M_{n-1})^2 = 2p_n^2 + \frac{1}{2}p_{n-1}^2$$

$$\Rightarrow p_n^2 = \frac{1}{4} p_{n-1}^2 \Rightarrow p_n = \frac{1}{2} p_{n-1}$$

:
$$OP_n = p_n = \frac{1}{2} p_{n-1} = \frac{1}{2^2} p_{n-2} = \dots = \frac{1}{2^{n-1}} p_1 = \frac{1}{2^n}$$

2. M is the mid point of side AB of equilateral triangle ABC. P is a point on BC such that AP + PM is minimum. If AB = 20 then AP + PM is

<u>Math</u>	ematics	Straight lin
	(A) 10 √ 7	(B) 10√3
	(C) $10\sqrt{5}$	(D) 10
Key.	A	
Sol.	Take the reflection of $\triangle ABC$ in BC.	
	A M M H H H H H H H H H H H H H	PA lies in a line
	We will get $AM' = 10\sqrt{7}$	R
3.	The algebraic sum of distances of the and $(3, 5)$ is zero and the lines bx – a ordinate axes at concyclic points the	the line $ax + by + 2 = 0$ from (1, 2), (2, 1) ay + 4 = 0 and $3x + 4y + 5 = 0$ cut the co- n
	(a) $a+b=-\frac{2}{7}$	
	(b) area of the triangle formed by the axes is $\frac{14}{5}$.	he line $ax + by + 2 = 0$ with coordinate
	(c) line $ax + by + 3 = 0$ always passes	s through the point $(-1,1)$
C	(d) max {a, b} = $\frac{5}{7}$	
Key.		$\left(\begin{array}{c} 0 \end{array} \right)$
Sol.	Line always passes through the poin	it $\left(2,\frac{8}{3}\right)$ hence $6a + 8b + 6 = 0 \implies 3a + 3a + 3a = 3a + 3a = 3a + 3a = 3a + 3a = 3a =$
	4b + 3 = 0 bx - ay + 4 = 0 and 3x + 4y + 5 = 0 So, $m_1m_2 = 1$ $\frac{b}{a} \cdot -\frac{3}{4} = 1 \implies 4a + 3b = 0$	are concyclic.
	Solving a = $9/7$, b = $-12/7$	

The algebraic sum of distances of the line ax + by + 2 = 0 from (1, 2), (2, 1) 4. and (3, 5) is zero and the lines bx - ay + 4 = 0 and 3x + 4y + 5 = 0 cut the coordinate axes at concyclic points then (a) $a+b=-\frac{2}{7}$ (b) area of the triangle formed by the line ax + by + 2 = 0 with coordinate axes is $\frac{14}{5}$. (c) line ax + by + 3 = 0 always passes through the point (-1,1)(d) max {a, b} = $\frac{5}{7}$ С Key. Line always passes through the point $\left(2,\frac{8}{3}\right)$ hence $6a + 8b + 6 = 0 \Rightarrow$ 3a + Sol. 4b + 3 = 0bx - ay + 4 = 0 and 3x + 4y + 5 = 0 are concyclic. So, $m_1m_2 = 1$ $\frac{b}{a} \cdot -\frac{3}{4} = 1 \implies 4a + 3b = 0$ Solving a = 9/7, b = -12/75. The orthocentre of the triangle formed by the lines x + y = 1, 2x + 3y = 6 and 4x - y + 4 = 0 lies in (B) II quadrant (A) I quadrant (C) III quadrant (D) IV quadrant Key. А Coordinates of A and B are (-3, 4) and $\left(-\frac{3}{5}, \frac{8}{5}\right)$ if orthocentre p (h, k) Sol. 0 Then, (slope of PA) × (slope of BC) = -1 $\frac{\mathbf{k}-4}{\mathbf{h}+3} \times 4 = -1$ 4k - 16 = -h - 3 \Rightarrow \Rightarrow h + 4k = 13... (i) and slope of PB × slope of AC = -1

$$\Rightarrow \frac{k-\frac{6}{5}}{h+\frac{3}{5}} \times -\frac{2}{3} = -1$$

$$\Rightarrow \frac{5k-8}{5h+3} \times \frac{2}{3} = 1$$

$$\Rightarrow 10k-16 = 15th+9$$

$$15th-10k+25 = 0$$

$$3h-2k+5 = 0 \dots \text{ (ii)}$$

Soliving Eqs. (i) and (ii), we get $h = \frac{3}{7}, k = \frac{22}{7}$
Hence, orthocentre lies in I quadrant.

0

6. A, B, C are three points on the curve xy - x - y - 3 = 0 which are not collinear. D, E, F are foot of perpendiculars from vertices A, B, C to the sides BC, CA and AB of ΔABC respectively. If (α, α) is incentre of ΔDEF then ' α ' can be

A) 1 B) 2 C) 3 D) 4

Key. C

Sol. Incentre of $\triangle DEF$ is ortho-centre of $\triangle ABC$. But in a rectangular hyperbola & orthocentre lies on hyperbola $\Rightarrow \alpha^2 - 2\alpha - 3 = 0 \Rightarrow (\alpha - 3)(\alpha + 1) = 0 \Rightarrow \alpha = 3$

7. The reflection of the curve xy = 1 in the line y = 2x is the curve $12x^2 + rxy + sy^2 + t = 0$ then the value of 'r' is A) -7 B) 25 C) - 175 D) 90

Key: A

HINT : The reflection of (α, β) in the line y = 2x is

$$(\alpha_1, \beta_1) = \left(\frac{4\beta - 3\alpha}{5}, \frac{4\alpha + 3\beta}{5}\right) = \alpha_1 \beta_1 = 1$$
$$\Rightarrow 12\alpha^2 - 7\alpha\beta - 12\beta^2 + 25 = 0$$

8. The line x + y = 1 meets x-axis at A and y-axis at B. P is the mid-point of AB. P₁ is the foot of the perpendicular from P to OA; M₁ is that from P₁ to OP; P₂ is that from M₁ to OA and so on. If P_n denotes the nth foot of the perpendicular on OA from M_{n-1}, then OP_n =

(a) 1/2 (b) 1/2ⁿ (c) 1/2^{n/2} (d) $1/\sqrt{2}$ Key: b Hint:

x + y = 1 meets x-axis at A(1, 0) and y y-axis at B(0, 1). В The ordinates of P are (1/2, 1/2) and PP_1 is perpendicular to OA. р \Rightarrow OP₁ = P₁P = 1/2 M Equation of the line OP is y = x. M₂ We have $(OM_{n-1})^2 = (OP_n)^2 + (P_nM_{n-1})^2$ $P_2 P_2$ À P $= 2(OP_n)^2 = 2p_n^2$ (say) Also, $(OP_{n-1})^2 = (OM_{n-1})^2 + (P_{n-1}M_{n-1})^2 = 2p_n^2 + 2p_n^2$ $\Rightarrow p_n^2 = \frac{1}{4} p_{n-1}^2 \Rightarrow p_n = \frac{1}{2} p_{n-1}$:. $OP_n = p_n = \frac{1}{2}p_{n-1} = \frac{1}{2^2}p_{n-2} = \dots = \frac{1}{2^{n-1}}p_1 = \frac{1}{2^n}$ A line passes through (2, 0). The slope of the line, for which its intercept between 9. y = x - 1 and y = -x + 1 subtends a right angle at the origin, is/are (D) $-\frac{1}{\sqrt{3}}$ (A) $\sqrt{3}$ (B) $-\sqrt{3}$ Key. C,D The joined equation of straight line y = x - 1 and y = -x + 1 is Sol. (x-y-1)(x+y-1) = 0 $\Rightarrow x^2 - y^2 - 2x + 1 = 0$ (1) Let equation of line passes through (2, 0) is y = m(x - 2)(2) By homogenizing equation (1) with help of line (2) is $x^{2} - y^{2} - 2x\left(\frac{mx - y}{2m}\right) + \left(\frac{mx - y}{2m}\right)^{2} = 0$ coefficient of x^2 + coefficient of y^2 = 0 0 $m = \pm \frac{1}{\sqrt{2}}$ The complete set of values of 'a' for which the point (a, a^2) , $a \in R$ lies inside the triangle 10. formed by the lines x - y + 2 = 0, x + y = 2 and x - axis is (B) (-1,1)(C)(0,2)(D) (-2,0)(A) (-2,2)KEY : B

.....

 (a,a^2) lies of $y = x^2$ $a-a^2-2=0$ a=-1.2 $a + a^2 - 2 = 0$ a = 1, -2The values of k for which lines kx+2y+2=0, 2x+ky+3=0, 3x+3y+k=0 are 11. concurrent b) $\{2,3,-5\}$ c) $\{3,-5\}$ a) $\{2,3,5\}$ d) $\{-5\}$ Key: С Three non parallel lines are concurrent if $\Delta = 0$ Hint: 2 $\begin{vmatrix} 2 & k & 3 \\ 3 & 3 & k \end{vmatrix} = 0 \Longrightarrow k = 2, 3, -5$ But for k= 2, first two lines are parallel. A straight line passes through the point of intersection x - 2y - 2 = 0 and 2x - by - 6 = 012. and the origin then the complete set of values of b for which the acute angle between this line and y = 0 is less than 45° $(-\infty, 4) \cup (7, \infty)$ (B) $(-\infty, 5) \cup (7, \infty)$ $(-\infty, 4) \cup (5, 7) \cup (7, \infty)$ (D) $(-\infty, 4) \cup (4, 5) \cup (7, \infty)$ (A) (C) D Key: As line passes through the point of intersection of x - 2y - 2 = 0 and 2x - by - 6 = 0Hint: It can be represented as $\lambda(x-2y-2)+(2x-by-6)=0$ As it passes through the origin $-2\lambda - 6 = 0$ $\lambda = -3$ \therefore equation of the line is -x + (6-b)y = 0Its slope is As its angle with y = 0 is less than $\frac{\pi}{4}$ $\therefore -1 < \frac{1}{6-h} < 1$ \Rightarrow 6-b>1 or <-1 \Rightarrow b<5 or b>7 But $b \neq 4$ (as the lines intersect) $\therefore b \in (-\infty, 4) \cup (4, 5) \cup (7, \infty)$

- 13. Equation of angle bisector of the lines 3x 4y + 1 = 0 and 12x + 5y 3 = 0 containing the point (1, 2) is (A) 3x + 11y - 4 = 0 (B) 99x - 27y - 2 = 0
 - 6

Mathematics (C) 3x + 11y + 4 = 0(D) 99x + 27y - 2 = 0Kev: В Since $3 \times 1 - 4 \times 2 + 1$ and $12 \times 1 + 5 \times 2 - 3$ are of the opposite sign, so required angle Hint: bisector is given by $\frac{3x-4y+1}{5} = -\left(\frac{12+5y-3}{13}\right)$

14. Let S be the set of all values of α such that the points $(\alpha, 6)$, (-5, 0) and (5, 0) form an isosceles triangle. Then the value of $\sum \alpha^2$ is

C) 178

(A) 356 (B) 18
$$\alpha \in S$$

Key:

Α

Hint α can take 5 values :0,3,-3,13.-13

If the orthocenter and circumcentre of a triangle are (0,0)and (3,6) respectively 15. then the centroid of the triangle is

(A) (1,2) (B)(2,4)

Key: В

In any triangle centroid divides the line joining orthocenter and circumcentre internally in Hint the ratio 2 : 1.

So, centroid is (2,4).

The line $L_1 \equiv 4x + 3y - 12 = 0$ intersects the x - axis and y - axis at A and B 16. respectively. A variable line perpendicular to L_1 intersect the x and y - axes at P and Q respectively. The locus of the circumcentre of triangle ABQ is A) 6x - 8y + 7 = 0B) 6x + 8y - 25 = 0C) 8x - 6y + 7 = 0D) 14x - 12y + 3 = 0

Key.

Α

Sol. clearly circumcentre of triangle ABQ will lie on perpendicular bisector of line AB, which is 6x - 8y + 7 = 0

If the area of the rhombus enclosed by the lines $lx \pm my \pm n = 0$ be 2square units, then 17. A) l, 2m, n are in G.P B) l, n, m are in G.P D) ln = mC) lm = nKey. В

By solving the sides of the rhombus, the vertices are Sol.

$$\left(0, \frac{-n}{m}\right), \left(\frac{-n}{l}, 0\right) \left(0, \frac{n}{m}\right), \left(\frac{n}{l}, 0\right)$$

$$\therefore \text{ The area} = \frac{1}{2} \left(\frac{2n}{m}\right) \left(\frac{2n}{l}\right) = 2 \Longrightarrow n^2 = lm$$

Straight lines

(D) 338

(D) $\left(\frac{1}{3}, \frac{2}{3}\right)$

18. If P is a point which moves inside an equilateral triangle of side length 'a' such that it is nearer to any angular bisector of the triangle than to any of its sides, then the area of the region in which P lies is ______ sq units

A)
$$a^2 \left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$$
 B) $\frac{\sqrt{3}a^2}{2} \left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$ C) $\sqrt{3}a^2 \left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$ D) a^2
B

Key.

Sol. Shaded area is the region traced by P, its area = $\Delta ABC - 3\Delta ABD$

19. In $\triangle ABC$ orthocentre is (6,10) circumcentre is (2,3) and equation of side $\stackrel{Sum}{BC}$ is 2x+y=17. Then the radius of the circumcircle of $\triangle ABC$ is

a) 4

c)2

Key: B

- Hint Image of orthocenter of $\triangle ABC$ w.r.t. $\stackrel{Sum}{BC}$ lies on the circle.
- 20. The area of the triangle formed by the line x + y = 3 and the angular bisectors of pair of straight lines $x^2 y^2 + 2y = 1$ is

A. 8 sq.units B. 6 sq.units C. 4 sq.units D. 2 sq.units Key. D

Sol. $x^2 - (y-1)^2 = 0$ is given pair of lines

Vertices are (0,1),(0,3),(2,1),

Angular bisector is x(y-1) = 0

Area = 2 sq.units

21. Let O(0,0), P(3,4), Q(6,0) be the verticals of triangle OPQ. The point R inside the triangle OPQ is such that the triangles OPR, PQR, OQR are of equal area. The point S is such that OS = PS = QS. Then RS =

Mathematics				Straight lines
A. $\frac{13}{16}$	в. <u>11</u> 12	C. $\frac{13}{24}$	D. $\frac{11}{24}$	

Sol. R is centroid .S is circumcentre .
$$R = \left(3, \frac{4}{3}\right), S = \left(3, \frac{7}{8}\right)$$

RS=
$$\frac{11}{24}$$

22. An equilateral triangle has its centroid at origin and one side is x + y = 1. The equations of the others sides are

A.
$$y+1 = (2 \pm \sqrt{3})(x+1)$$

C. $y+1 = (3 \pm \sqrt{3})(x-1), y+1 = \sqrt{3}x$

B.
$$y+1 = (2 \pm \sqrt{3})x, y+1 = (3 \pm \sqrt{3})x$$

D.
 $y\pm 1 = (3 \pm \sqrt{3})(x-1), y+1 = \frac{\sqrt{3}-1}{\sqrt{3}+1}(x+1)$

Key. A

Third vertex 'A' lies on x - y = 0 and in III quadrent Sol.

Perpendicular distance from (0,0) to x + y = 1 is

$$\therefore AO = \sqrt{2} \implies A(-1, -1)$$

If m is the slope of other side,

$$\tan 60^{\circ} = \left| \frac{m+1}{1-m} \right|$$

$$\Rightarrow m = 2 \pm \sqrt{3}$$

Triangle is formed by the lines x + y = 0, x - y = 0 and 1x + my = 1. If 1 and m vary subject 23. to the condition $1^2 + m^2 = 1$, then the locus of its circumcentre is

(A)
$$(x^2 - y^2)^2 = x^2 + y^2$$

(B) $(x^2 + y^2)^2 = (x^2 - y^2)$
(C) $(x^2 + y^2)^2 = 4x^2y^2$
(D) $(x^2 - y^2)^2 = (x^2 + y^2)^2$

Key

Circumcentre of the triangle formed by the given lines is given by Sol.

$$\left(\frac{1}{1^2-m^2},\frac{m}{1^2-m^2}\right)$$

Hence the locus of this point is $(x^2 - y^2)^2$ =

 $x^{2} + y^{2}$ 24. A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at (4, -2) and is running up the line y = -5x + 18. At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of (a + b) is (A) 6 **(B)** 10 (C) 18 (D) 14

```
В
Key.
```


28.

A straight rod of length 3/ units slides with its ends A, B always on the x and y axes respectively then the locus of centroid of $\triangle OAB$ is B. $x^2 + y^2 = l^2$ C. $x^2 + y^2 = 4l^2$ D. $x^2 + y^2 = 2l^2$ A. $x^2 + y^2 = 3l^2$ Key. B SOL. Let OA = a, OB = b, AB = 3IA = (a, 0), b = (0, b)Let G(x, y) = $\left(\frac{a}{3}, \frac{b}{3}\right)$, a = 3x, b = 3y $a^2 + b^2 = 9l^2 \Longrightarrow x^2 + y^2 = l^2$ By translation of axes the equation xy - x + 2y - 6 = 0 changed as XY = c then c = 29. C. 6 A. 4 B. 5 D. 7 KEY. А New origin $(x_1, y_1) = \left(\frac{-f}{h}, \frac{-g}{h}\right) = (-2, 1)$ SOL. Transformed equation of xy - x + 2y + 6 = 0 is xy = C = 4 30. A line has intercepts a, b on axes when the axes are rotated through an angle α , the line makes equal intercepts on axes then $\tan \alpha =$ D. $\frac{b}{a}$ B. $\frac{a-b}{a+b}$ C. $\frac{a}{b}$ KEY. Equation of the lime $\frac{x}{a} + \frac{y}{b} = 1$ SOL. Transformed equation is $\frac{1}{\alpha}(x\cos\alpha - y\sin\alpha) + \frac{1}{b}(x\sin\alpha + y\cos\alpha) = 1$ Intercepts are equal x - coefficient \equiv y - coefficient $\therefore \tan \alpha = \frac{a-b}{a+b}$ In a $\triangle ABC$, the coordinates of B are (0,0) AB=2, $\angle ABC = \frac{\pi}{3}$ and the mid point of BC is 31.

(2,0). The centroid of triangle is

Mathematics Straight lines $2)\left(\frac{5}{3},\frac{1}{\sqrt{3}}\right)$ 3) $\left(\frac{4+\sqrt{3}}{3},\frac{1}{\sqrt{3}}\right)$ 4) $\left(\frac{4-\sqrt{3}}{3},\frac{1}{\sqrt{3}}\right)$ 1) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ Key. 2 Let A(h,k) then $\cos 60^{\circ} = \frac{h}{2} \Longrightarrow h = 1$ Sol. $\sin 60^\circ = \frac{k}{2} \Longrightarrow k = \sqrt{3}$ $\therefore A(1,\sqrt{3})$ \therefore centroid = $\left(\frac{5}{3}, \frac{\sqrt{3}}{3}\right)$ A point moves in the XY- plane such that the sum of its distances form two mutually 32. perpendicular lines is always equal to 3. The area enclosed by the locus of the point is . 4) 27 Sq. Units 1) 18 Sq. Units 2) 9/2 Sq. Units 3) 9 Sq. Units Key. 1 Given |x| + |y| = 3Sol. Required area = $\frac{2c^2}{|ab|} = 9 \times 2 = 18$ S.U If the point (a, a) falls between the lines |x + y| = 2, then 33. 2) |a| = 14) $|a| < \frac{1}{2}$ 3) |*a*|<1 1) |a| = 2Key. 3 Origin and (a, a) lies on the same side of the given lines $\therefore |a| < 1$ Sol. A ray travelling along the line 3x - 4y = 5 after being reflected from a line 'l' travels along 34. the line 5x + 12y = 13. Then the equation of the line '*l*' is 1) x+8y=0 2) x-8y=0 3) 32x+4y+65=0 4) 32x - 4y + 65 = 0Key. The line 'l' can be any one of the bisectors of the angles between the lines 3x - 4y = 5 and Sol. 5x + 12y = 13 \therefore Angular bisectors, $\frac{3x-4y-5}{5} = \pm \left[\frac{5x+12y-13}{13}\right]$

35. The values of m for which the system of equations 3x + my = m and 2x - 5y = 20 has a solution satisfy the conditions x > 0, y > 0 are given by the set

1)
$$\left\{m:m < \frac{-13}{2}\right\}$$
 2) $\left\{m:m > \frac{17}{2}\right\}$

 $\Rightarrow x-8y=0,32x+4y-65=0$

4

3)
$$\left\{m:m < \frac{-13}{2} \text{ or } m > \frac{17}{2}\right\}$$
 4) $\left\{m:m > 30 \text{ or } m < \frac{-15}{2}\right\}$

Key.

Sol. Solve the equations
$$x = \frac{25m}{2m+15}$$
, $y = \frac{2m-60}{2m+15}$
But $x > o$, $y > 0 \Leftrightarrow 25m > 0$, $2m+15 > 0$, $2m-60 > 0$
 $\Leftrightarrow m > 30$ or $m < \frac{-15}{2}$

3

36.
$$A_1, A_2, \dots, A_n$$
 are points on the line y=x lying in the positive quadrant such that $OA_n = nOA_{n-1}$ 0 being the origin. If $OA_1 = 1$ and the coordinates of A_n are $(2520\sqrt{2}, 2520\sqrt{2})$, then n=
1) 5 2) 6 3) 7 4) 8
Key. 3
Sol. We have, $OA_n = n.OA_{n-1} = n(n-1).OA_{n-2} = ---$
 $\therefore OA_n = \frac{n!}{\sqrt{2}}$
 $\Rightarrow \sqrt{2}(2520\sqrt{2}) = n! \Rightarrow n! = 5040$
 $\Rightarrow n = 7$
37. M is the mid point of side AB of an equilateral triangle ABC. P is a point on BC such that AP + PM is minimum. If AB = 20 then AP + PM is
(A) $10\sqrt{7}$ (B) $10\sqrt{3}$
(C) $10\sqrt{5}$ (D) 10
Key. A
Sol. Take the reflection of $\triangle ABC$ in BC.

Take the reflection of $\triangle ABC$ in BC. PM = PM'PA + PM = PA + PM' it is minimum when M' PA lies in a line Now apply cosine rule in triangle ABM'

We will get $AM' = 10\sqrt{7}$

All points inside the triangle formed by A(1, 3), B(5, 6), C(-1, 2) will satisfy 38. (A) $2x + 2y \le 0$ (B) $2x + y + 1 \ge 0$ (C) $2x + 3y - 12 \ge 0$ (D) $-2x + 11 \le 0$

Key.

В

Sol. $L_1 \equiv 2x + 2y = 0$ $L_1(1, 3) > 0$ so a is wrong $L_2 \equiv 2x + y + 1 = 0$ $L_2(1, 3) > 0$ $L_2(5, 6) > 0$ b is ture \Rightarrow $L_3(-1, 2) > 0$ 39. Let P(1, 1), Q (2, 4), R(α , β) be the vertices of the triangle PQR. The point S(2, 2) inside the triangle PQR is such that Area (Δ PQS) = Area (Δ PSR) = Area (Δ RSQ), then (α , β) = (A) (2, 3) (B) (2, 5/2) (C) (3, 1) (D) (5/2, 2) Key. С Sol. Here S must be cenroid of Δ PQR $\Rightarrow \frac{1+2+\alpha}{3} = 2 \& \frac{1+4+\beta}{3} = 2$ $\Rightarrow \alpha = 3 \& \beta = 1.$

40. A system of line is given as $y = m_i x + c_i$, where m_i can take any value out of 0, 1, -1 and when m_i is positive then c_i can be 1 or -1 when m_i equal 0, c_i can be 0 or 1 and when m_i equals - 1, c_i can take 0 or 2. Then the area enclosed by all these straight line is

point B on y = units then value

Mathematics	Straight lines				
(A) $m = 0$	(B) $m = -1$				
(C) $m = 2$	(D) $m = -2$				
Key. B					
SOL. LET CO-ORDINATES OF $A(X_1, X_1)$ AND E	$\mathcal{B}(\mathbf{X}_2, \mathbf{M}\mathbf{X}_2).$				
CLEARLY $(X_1 - X_2)^2 + (X_1 - MX_2)^2 = 16$					
LET MID POINT OF P(H, K) \rightarrow V + V = 211 AND V + MV = 2V					
$\Rightarrow \qquad X_1 + X_2 = 2H \text{ AND } X_1 + MX_2 = 2K$ $\Rightarrow \qquad (X_1 - X_2)^2 + 4X_1X_2 - 4H^2 \text{ AND } (X_1 - X_2)^2 + 4X_2X_2 + 4X_2X_2 + 4X_2X_2 + 4X_2X_2 + 4X_2X_2 + 4X_2X_2 $	$(\mathbf{M}\mathbf{X}_{2})^{2} \pm A\mathbf{M}\mathbf{X}_{2}\mathbf{X}_{2} = AK^{2}$				
$(X_1 - X_2)^2 + (X_1 - MX_2)^2 = 4H^2 + 4K^2$	$^{2} = 16$				
when $m = -1$					
42. The joint equation of two altitudes of an equila	iteral triangle is				
$(\sqrt{3}x - y + 8 - 4\sqrt{3})(\sqrt{3}x + y - 12 - 4)$	$\left(\sqrt{3}\right) = 0$. The equation of the third altitude is				
$(\sqrt{3x} - y + 0 - 4\sqrt{3})(\sqrt{3x} + y - 12 - 4)$	(3) = 0. The equation of the third altitude is				
a) $\sqrt{3}x = 2 - 4\sqrt{3}$ b) $y - 10 = 0$	c) $\sqrt{3}x = 2 + 4\sqrt{3}$ d) $v + 10 = 0$				
Key B					
Sol. The required altitude will be the bisector of ob	tuse angle between the 2 given altitudes				
43 A line $x + 2y = 4$ is translated by 3 units away	A line $r + 2y = 4$ is translated by 3 units away from origin and then rotated by 30° in clock				
wise sense about the point where shifted line of	suts y-axis. If m is the slone of line in new				
position then [m] where [.] denotes GIF. is	ats x axis . In this the slope of the in new				
a) -1 b) -2	c) -3 d) -4				
Key. A					
Sol. The required line is at a distance of 3 units from	n given line and parallel to it . Hence it is				
$r + 2y - 4 - 3\sqrt{5} = 0$ cuts y-axis at $C(4 + 3\sqrt{5})$	$\frac{1}{5}$ (0) with slope $\tan \theta = \frac{-1}{-1}$ After rotation				
x + 2y - 4 - 3y = 0, cuts x-axis at $C(4 + 3y)$	$\frac{1}{2}$				
$1 + 20^{0}$	$-(2+\sqrt{3})$ $-(4+3\sqrt{3})$ $(-(4+3\sqrt{3}))$				
about C by 30°, slope becomes $m = tan(\theta - 30)$	$J^{\prime} = \frac{1}{2\sqrt{3}-1} = \frac{1}{11} \Longrightarrow [m] = -1$				
44. In a triangle ABC, E and F are points on AC ar	nd AB respectively. The lines BE and CF intersect				
at P. If area (BPF) = 5. area (PFAE) = 22, and a	area (CPE) = 8, then area (BPC) is				
(A) 22	(B) 16				
(C) 10	(D) not uniquely decidable				
Key. C					
501.					
Let area of ∆PBC = x	A				
\Rightarrow	2 22 2 E				
x = 8 and $x = 5$	F A 22-A				
$\frac{1}{5+\lambda} = \frac{1}{22-\lambda}$ and $\frac{1}{30-\lambda} = \frac{1}{\lambda}$	5 P °				
$\lambda + 5 (22 - \lambda)5$	B				
$\Rightarrow \frac{77+3}{30-\lambda} = \frac{(22-70)3}{8\lambda}$	D				
50-X 8X					
\Rightarrow 8 λ^2 + 40 λ = 5(λ^2 - 52 λ +					
660)					
$\Rightarrow \lambda^2 + 100\lambda - 1100 = 0$					
\Rightarrow (λ + 110) (λ - 10) = 0 \Rightarrow λ =					
10					
$(30-\lambda)5$ $(30-10)$)×5				
$\Rightarrow x = \frac{2 + \lambda y^2}{\lambda} = \frac{2 + \lambda y^2}{10}$	= 10 square units.				
,, 10					

Key.

Sol.

Ans. (C) 10 square units.

45. The perimeter of a parallelogram is 40. All the sides of the parallelogram are natural numbers, and at least one of its diagonals is a natural number. The number of noncongruent parallelograms so formed is
(A) 10
(B) 30

(D) 100

D

m

(C) 60 D Let BD be integer and $l \ge m$ 2 (l + m) = 40 $\Rightarrow l + m = 20$

Possible values of m = 1, 2, 3, ..., 10

Note in any triplet of *I*, m, BD if atleast one is different parallelogram will be noncongruent

Now l - m < BD < l + m (triangle inequality)

```
\Rightarrow 20 – 2m < BD < 20
```

 \Rightarrow No. of possible values of BD for a given 'm' is 20 – (20 – 2m) – 1 = 2m – 1

 \Rightarrow Total no. of noncongruent parallelogram = $\sum_{m=1}^{\infty} (2m-1) = 10^2 = 100$

- 46. The orthocentre of the triangle formed by the lines x + y = 1, 2x + 3y = 6 and 4x y + 4 = 0 lies in (A) I quadrant (B) II quadrant (C) III quadrant (D) IV quadrant
- Key.

А

Sol. Coordinates of A and B are (-3, 4) and $\left(-\frac{3}{5}, \frac{8}{5}\right)$ if orthocentre p (h, k)

Then, (slope of PA) × (slope of BC) = -1

$$\frac{k-4}{b+3} \times 4 = -1$$

$$\frac{h+3}{h+3} \times 4 = -1$$

$$\Rightarrow \quad 4k - 16 = -h - 3$$

$$\Rightarrow \quad h + 4k = 13 \qquad \dots (i)$$
and slope of PB × slope of AC = -1

Ans. (D) 100

$$\Rightarrow \frac{k - \frac{8}{5}}{h + \frac{3}{5}} \times -\frac{2}{3} = -1$$

$$\Rightarrow \frac{5k - 8}{5h + 3} \times \frac{2}{3} = 1$$

$$\Rightarrow 10k - 16 = 15th + 9$$

$$15th - 10k + 25 = 0$$

$$3h - 2k + 5 = 0 \dots (ii)$$
Soliving Eqs. (i) and (ii), we get $h = \frac{3}{7}, k = \frac{22}{7}$
Hence, orthocentre lies in 1 quadrant.
47. If $f(x + y) = f(x)f(y) \forall x, y \in R$ and $f(1) = 2$, then area enclosed by $3|x| + 2|y| < 8$ is (in squints)
A) $f(4)$
B) $\frac{1}{2}f(6)$
C) $\frac{1}{3}f(6)$
D) $\frac{1}{3}f(5)$
Key. C
$$(\frac{412,9}{0,-9)} = \frac{64}{3} \times \frac{2}{3} \times 4 = \frac{64}{3} = \frac{2^{6}}{3}$$
f(x) = 2^x
48. $9x^{2} + 2hxy + 4y^{2} + 6x + 2fy - 3 = 0$ represents two parallel lines then
a) $h = 6, f = 2$
b) $h = -6, f = 2$
c) $h = 6, f = -2$
d) none
Key. A
Sol. Since the given equation represents a pair of parallel lines, we have $h^{2} = ab \Rightarrow h = \pm 6$
Condition for pair of lines $\begin{vmatrix} 9 & h & 3 \\ 3 & f & -3 \end{vmatrix} = 0$

$$\Rightarrow 108 \pm 36f - 9f^{2} - 144 = 0$$

SMARIACHERRESEARCH