2.

3.

Statistics

Single Correct Answer Type The arithmetic mean of the data given by 1.

Variate
$$(x)$$
 0 1 2 3 ... n
Frequency $(f) {}^{n}C_{0}$ ${}^{n}C_{1}$ ${}^{n}C_{2}$ ${}^{n}C_{3}$ ${}^{n}C_{n}$
(1) $\frac{1}{2}(n+1)$ 2) $\frac{1}{2}n$ 3) $\frac{2^{n}}{n}$ 4) $\frac{x^{n+1}}{n}$
Key. 2
Sol. $\bar{x} = \frac{0{}^{n}C_{0} + 1{}^{n}C_{1} + 2{}^{n}C_{2} + ... + n{}^{n}C_{n}}{c_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n}} \Rightarrow \bar{x} = \frac{\sum_{r=0}^{r}r^{r}C_{r}}{\sum_{r=0}^{n}r_{r}C_{r}} \Rightarrow \bar{x} = \frac{1}{2^{n}}\sum_{r}r^{n}r^{n}r^{r}C_{r-1}$
 $\Rightarrow \bar{x} = \frac{n}{2^{n}}\sum_{2}^{n-1}C_{r-1} = \frac{n}{2^{n}}2^{n-1} = \frac{n}{2}$.
2. The mean of 10 observations is 16.3 by an error one observation is registered as 32 instead of 23.
Then the correct mean is
1) 15.6 2) 15.4 3) 15.7 4) 15.8
Key. 2
Sol. Correct mean $= \frac{10 \times 16.3 + 23 - 32}{10} = 15.4$.
3. The mean of n items is \bar{x} if the first item is increased by 1, second by 2 and so on, then the new mean is
1) $\bar{x} + n$ 2) $\bar{x} + \frac{n}{2}$ 3) $\bar{x} + \frac{n+1}{2}$ 4) $\bar{x} - \frac{n}{2}$
Key. 4
Sol. here, $n_{1}, n_{2}, \dots, n_{n}$ be n items. Then $\bar{x} = \frac{1}{n} \sum_{n} \sum_$

Statistics

4. 10 is the mean of a set of 7 observations and 5 is the mean of a set of 3 observations. The mean of the combined set is given by 1) 15 2) 10 3) 8.5 4) 7.5 Kev. 3 Let $n_1 = 7.\overline{x}_1 = 10, n_2 = 3, \overline{x}_2 = 5$. Sol. So, combined mean $= \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2} = \frac{85}{10} = 8.5$. 5. The average marks of boys in a class is 52 and that of girls is 42. The average marks of boys and combined is 50. The percentage of boys in the class is 1) 40 2) 20 3) 80 4) 60 Key. 3 Take $n_1 + n_2 = 100 \Longrightarrow n_2 = 100 - n_1$ Sol. \overline{x}_1 = Average mark of boys = 52, \overline{x}_2 = Average mark of girls = 42 \overline{x} = Average mark of boys and girls = 50. Combined mean $\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2} \Longrightarrow 50 = \frac{n_1 \cdot 52 + (100 - n_1) \cdot 42}{100}$ $n_{1} = 80$ The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is 6. increased by 2, then the median of the new set 1) is decreased by 2 2) is two time the original median 3) remains the same as that of the original set 4) is increased by 2 Key. 3 The median is the value of 5th item when items are arranged in increasing or decreasing order \Rightarrow Sol. median is unchanged. If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is 7. approximately 2) 20.5 3) 25.5 1) 22.0 4) 24.0 Key. Mode = 3 median – 2 mean = 3(22)-2(21)=24. Sol. $(x_i - 8) = 9$ and $\sum_{i=1}^{10} (x_i - 8)^2 = 45$ then the standard deviation of x_1, x_2, \dots, x_{18} is 8. 4) $\frac{2}{2}$ 1) 4/9 2) 9/4 3) 3/2 Kev. 3 Let $d_i = x_i - 8$ but $\sigma_x^2 = \sigma_d^2 = \frac{1}{18} \Sigma d_i^2 - \left(\frac{1}{18} \Sigma d_i\right)^2 = \frac{1}{18} \times 45 - \left(\frac{9}{18}\right)^2 = \frac{5}{2} - \frac{1}{4} = \frac{9}{4}$. Sol. $\therefore \sigma_x = \frac{3}{2}$.

Mathematics

9.	If the standard deviation of $x_1, x_2,, x_n$ is 3.5, then the standard deviation of				
	$-2x_1 - 3, -2x_2 - 3$	$-3, \dots, -2x_n - 3$ is			
	1) -7	2) -4		3) 7	4) 1.75
Key.	3				
Sol.	We know that if	$d_i = rac{x_i - A}{h}$ then σ_x	$= h \sigma_d$.		
	In this case $-2x_i$	$-3 = \frac{x_i - 3/2}{-1/2}$.			
	So $h = -\frac{1}{2}$.				
	Thus $\sigma_d = \frac{1}{ h }\sigma_x$	$= 2 \times 3.5 = 7$.			011.
10.	Let $x_1, x_2,, x_n$	¹ be <i>n</i> observations su	uch that $\Sigma x_i^2 =$	400 and $\Sigma x_i =$	80 . Then a possible value of \emph{n}
	among the follow	ving is			5
	1) 15	2) 18		3) 9	4) 12
Key.	2		/	X.	
Sol.	$\frac{\Sigma x_i^2}{n} \ge \left(\frac{\Sigma x_i}{n}\right)^2 =$	\Rightarrow $n \ge 16$.	\sim		
11.	Marks scored by	100 students in a 25	marks unit test	of Mathematics	is given below. Their median is
	Marks 0-5 5	5-10 10-15 15-2	0 20-25		
	Students	10 18 42	23	7	
	1) 12	2) 12.62		3) 12.3	4) 12.7
Key.	2				
Sol.	l = 10, f = 42, m	n = 28, n = 100, c = 5	100/2 28	22~5	
	\therefore Median = $l + \frac{1}{2}$	$\frac{10}{f} \times c = 10 + \frac{1}{2}$	$\frac{100/2-28}{42}$ × 5	$=10+\frac{22\times 3}{42}=$	10 + 2.62 = 12.62.
12.	The starting value	e of the model class o	of a distribution	is 20. The frequ	ency of the model class is 18. The
	frequencies of th	e classes preceeding	and succeeding	g are 8,10 and th	e width of the model class is 5,
	then mode =				
	1) 18.5	2) 20.5	3) 21.4	4) 22	2.78
Key.	4 f	f - f	18-8	50	
Sol.	Mode = $l + \frac{f}{2f}$	$\frac{f_1}{-f_1-f_2} \times c = 20 + \frac{1}{3}$	$\frac{10}{6-8-10} \times 5 =$	$20 + \frac{30}{18} = 20 +$	2.78 = 22.78.

In the series of 2n observations, half of them each equal to a and remaining half each equal to -a. If 13. the standard deviation of the observations is 2, then |a| equals to: 4) $\frac{\sqrt{2}}{\sqrt{2}}$ 1) $\frac{1}{n}$ 2) $\sqrt{2}$ 3) 2 Key. 3 Sol. Standard. If a variable x takes values 0,1,2,...., n with frequencies proportional to be binomial coefficients 14. ${}^{n}C_{0}, {}^{n}C_{1}, {}^{n}C_{2}, \dots, {}^{n}C_{n}$ then the variance of x is 1) $\frac{n^2-1}{12}$ 2) $\frac{n}{2}$ Key. 3 Conceptual Sol. The range of a random variable *X* is $\{0,1,2\}$ and P(X=0) $=1) = 4K - 10K^2$ 15. P(X=2)=5K-1. Then we have 1) P(X=0) < P(X=2) < P(X=1)2) P(X=0) < P(X=1) < P(X=2)4) P(X=1) > P(X=0) + P(X=2)3) P(X=1)+P(X=0)=P(X=2)Key. $\Sigma P(X=x_i)=1.$ Sol. Consider any set of observations $x_1, x_2, x_3, ..., x_{101}$; it being given that $x_1 < x_2 < x_3 < ... < x_{100} < x_{101}$; 16. then the mean deviation of this set of observations about a point k is minimum when k equals 3) $\frac{x_1 + x_2 + \dots + x_{101}}{101}$ 4) x_{50} 1) x_1 2) x_{51} Kev. Mean deviation is minimum when it is considered about he item, equidistant from the beginning and Sol. the end i.e., the median. In this case median is $\frac{101+1}{2}$ th i.e., 51st item i.e., x_{51} . Mean of the numbers 1,2,3,....,n with respective weights $1^2 + 1, 2^2 + 2, 3^2 + 3, \dots, n^2 + n$ is 17. 1) $\frac{3n(n+1)}{2(2n+1)}$ 2) $\frac{2n+1}{2}$ 3) $\frac{3n+1}{4}$ 4) $\frac{3n+1}{2}$ Key. 3 Here for each $x_i = i$ Sol. Weight $w_i = i^2 + i$

	Hence, the required mean $= \frac{\sum w_i x_i}{\sum w_i} = \frac{\sum_{i=1}^n i(i^2 + i)}{\sum_{i=1}^n (i^2 + i)}$		
	$=\frac{\sum_{i=1}^{n}i^{3}+\sum_{i=1}^{n}i^{2}}{\sum_{i=1}^{n}i^{2}\sum_{i=1}^{n}i}=\frac{\frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2n+1)}{6}}{\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)(2n+1)}{2}}$	+1) +1)	
	$=\frac{\frac{n(n+1)}{2}\left\{\frac{n(n+1)}{2}+\frac{2n+1}{3}\right\}}{\frac{n(n+1)}{2}\left\{\frac{2n+1}{3}+1\right\}}$		
	$=\frac{3n^2+7n+2}{2(2n+4)}=\frac{(3n+1)(n+2)}{4(n+2)}=\frac{3n+1}{4}.$		
18.	The first and the third quartiles of the data given below Marks No. of the Students 0-10 4 10-20 8 20-30 11 30-40 15 40-50 12 50-60 6 60-70 3 are respectively	w:	
Key.	1) 41.5, 43.8 2) 46.26, 49.69 3) 44.25, 45. 4	2	4) 22.5, 45.2
Sol.	Here, we construct the cumulative frequency table. Class Frequency Cum 0-10 4 10-20 8 20-30 11 30-40 15 40-50 12 50-60 6 60-70 3 Total 59 For Q_1 , Here $n = 59 \Rightarrow \frac{n}{4} = \frac{59}{4} = 14.75$. \therefore Class of first quartile is 20 - 30 $\Rightarrow Q_1 = 20 + \frac{14.75 - 12}{11} \times 10 = 20 + \frac{27.5}{11} = 22.5$. For Q_3 , Here $\frac{3n}{4} = \frac{3 \times 59}{4} = 44.25$.	ulative fre 4 12 23 38 50 56 59	quency

Mathematics

Statistics

$$\therefore$$
 Class of third quartile is 40 – 50

$$\Rightarrow Q_3 = 40 + \frac{44.25 - 38}{12} \times 10 = 40 + \frac{62.5}{12} = 45.2$$

19. For two data sets, each size 5, the variances are given to be 4 and 5 and the corresponding means are

given to be 2 and 4, respectively. The variance of the combined data set is

1)
$$\frac{5}{2}$$
 2) $\frac{11}{2}$ 3) $\sqrt{\frac{11}{2}}$ 4) $\frac{13}{2}$
 $\sigma_1^2 = 4, n_1 = 5, \overline{x}_1 = 2$
 $\sigma_2^2 = 5, n_2 = 5, \overline{x}_2 = 4$
 $\overline{x}_{12} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2} = \frac{5 \times 2 + 5 \times 4}{10}$
 $d_1 = (\overline{x}_1 = \overline{x}_{12}) = -1, d_2 = (\overline{x}_2 - \overline{x}_{12}) - 1$
 $\sigma = \sqrt{\left[\frac{n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}\right]} = \sqrt{\left[\frac{5.4 + 5.5 + 5.1 + 5.4}{10}\right]} = \sqrt{\left[\frac{55}{10}\right]} = \sqrt{\left[\frac{11}{2}\right]}.$
 $\therefore \sigma^2 = \frac{11}{2}.$

20. In a business venture a man can make a profit of Rs.2000/- with probability of 0.4 or have a loss of

Key.

Sol.

Key. Sol.

21. A random variable X takes the values -2, -1, 1 and 2 with probabilities $\frac{1-a}{4}, \frac{1+2a}{4}, \frac{1-2a}{4}$ and

2) $-\frac{1}{2} \le a \le \frac{1}{2}$

4) $\frac{1}{4} \le a \le \frac{1}{3}$

$$\frac{1+a}{4}$$
 respectively then
1) *a* can have any real value

 $\overset{3}{\mu} = \sum x_i P(X = x_i)$

3) $-1 \le a \le 1$

Key. 2
Sol.
$$0 \le P(A) \le 1$$
, A is any event

22. A discrete random variable X, can take all possible integer values from 1 to K, each with a probability

	$\frac{1}{K}$. Its variance is			
	1) $\frac{K^2}{4}$	$2) \frac{\left(K+1\right)^2}{4}$	3) $\frac{K^2 - 1}{12}$	4) $\frac{K^2 - 1}{6}$
Key. Sol.	$\sum_{i=1}^{3} \Sigma x_i^2 P(X=x_i) - \mu^2.$			<i>.............</i>
23.	A player tosses two fai	r coins. He wins Rs.5/- if two hea	ads occur, Rs.2/- if one he	ad occurs and Rs.1/- if
	no head occurs. Then I	nis expected gain is	01	
	1) <i>Rs</i> . $\frac{8}{3}$	2) Rs. $\frac{7}{3}$	3) Rs. 2,5	4) Rs. 1.5
Key. Sol.	3 Mean.			- 64
24.	The range of random v	variable X is $\left\{1,2,3,4, ight\}$ and th	e probabilities are $Pig(X$	$=K$) $=\frac{3^{CK}}{\angle K}$;
	$K = 1, 2, 3, 4, \dots, t$	then the value of C is		
	1) log _e 3	2) log _e 2 3) log	$\log_e 2$	4) $\log_2(\log_e 3)$
Key. Sol. 25.	3 $\Sigma P(X = x_i) = 1.$ A person who tosses a	n unbiased coin gains two points	s for turning up a head ar	nd loses one point for a
	tail. If three coins are t	ossed and the total score X is ob	served, then the range o	f X is
	1) {0,3,6}	2) {-3,0,3}	3) {-3,0,3,6}	4) {-3,3,6}
Key. Sol.	3 ннт, ннт, (2,2,-1) (2,-1	ннн, ттт ,-1) (2,2,2) (-1,-	·1,-1).	
26.	If the range of a rando	m variable X is $\{0,1,2,3,\ldots,\}$	$\}$ with $P(X=k) = \frac{(k+1)}{3}$	$\left(\frac{1}{b^k}\right)a$ for $k \ge 0$, then
	<i>a</i> =			
	1) 2/3	2) 4/9	3) 8/27	4) 16/81
Key.	2			

Mathematics

 $\Sigma x_i P(X = x_o) = 1.$ Sol. 27. If the variance of the random variable X is 4, then the variance of the random variable 5X + 10 is 1) 100 2) 10 3) 50 4) 25 Key. 1 $V(ax\pm b)=a^2V(X).$ Sol. If f(x) is the cumulative distributive function of a random variable X whose range is from $-\alpha$ to 28. $+ \alpha$, then $P(X < -\alpha) =$ 4) <u>1</u> 3 2) $\frac{1}{2}$ 3) 0 1) 1 3 Key. Sol. Conceptual. S 5

Statistics Assertion Reasoning Type

1. Statement-1: The variance of first *n* even natural numbers is $\frac{n^2 - 1}{\Lambda}$.

Statement-2: The sum of first *n* natural numbers is $\frac{n(n+1)}{2}$ and the sum of square of first *n*

natural numbers is
$$\frac{n(n+1)(2n+1)}{6}$$
.

1) Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for

Statement-1

2) Statement-1 is true, Statement-2 is false

3) Statement-1 is false, Statement-2 is true

4) Statement-1 is true, Statement-2 is true. Statement-2 is a correct explanation for

Statement-1

Key. 3

Sol. Mean of first *n* even natural numbers
$$\frac{2+4+6....+2n}{n} = \frac{2(1+2+...+n)}{n} = n+1$$

Varience of first *n* even natural numbers

$$=\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}-(\overline{x})^{2}=\frac{2^{2}+4^{2}+6^{2}+\ldots+(2n)^{2}}{n}-(n+1)^{2}$$
$$=\frac{4n(n+1)(2n+1)}{n}-(n+1)^{2}=(n+1)\left[\frac{2(2n+1)}{3}-(n+1)\right]=\frac{n^{2}-1}{3}.$$

2. Let x_1, x_2, \dots, x_n be *n* observations, and let \overline{x} be their arithmetic mean and σ^2 be their variance.

Statement-1: Variance of
$$2x_1, 2x_2, \dots, 2x_n$$
 is $4\sigma^2$.

Statement-2: Arithmetic mean of $2x_1, 2x_2, \dots, 2x_n$ is $4\overline{x}$.

1) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1

2) Statement-1 is true, Statement-2 is false

3) Statement-1 is false, Statement-2 is true

4) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for

Statement-1

Key.	2
Sol.	$E(aX) = aE(X), V(aX) = a^2V(X) \Longrightarrow$ Statement-1 is true, Statement-2 is false.

SWARTACHEURSLEAMINGOWITH