Statistics

Single Correct Answer Type

1. The arithmetic mean of the data given by
Variate (x)
0
1
2
3
... n

Frequency $(f){ }^{n} C_{0} \quad{ }^{n} C_{1} \quad{ }^{n} C_{2} \quad{ }^{n} C_{3} \quad{ }^{n} C_{n}$

1) $\frac{1}{2}(n+1)$
2) $\frac{1}{2} n$
3) $\frac{2^{n}}{n}$

Key. 2
Sol. $\bar{x}=\frac{0 .{ }^{n} C_{0}+1 .{ }^{n} C_{1}+2 .{ }^{n} C_{2}+\ldots .+n .{ }^{n} C_{n}}{{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots .+{ }^{n} C_{n}} \Rightarrow \bar{x}=\frac{\sum_{r=0}^{n} r .{ }^{n} C_{r}}{\sum_{r=0}^{n}{ }^{n} C_{r}} \Rightarrow \bar{x}=\frac{1}{2^{n}} \sum_{r=1}^{n} r \cdot \frac{n}{r}{ }^{n-1} C_{r-1}$
$\Rightarrow \bar{x}=\frac{n}{2^{n}} \sum_{2^{n}}^{n}{ }^{n-1} C_{r-1}=\frac{n}{2^{n}} 2^{n-1}=\frac{n}{2}$.
2. The mean of 10 observations is 16.3 by an error one observation is registered as 32 instead of 23 . Then the correct mean is

1) 15.6
2) 15.4
(3) 15.7
3) 15.8

Key. 2
Sol. Correct mean $=\frac{10 \times 16.3+23-32}{10}=\frac{154}{10}=15.4$.
3. The mean of n items is \bar{x}. If the first item is increased by 1 , second by 2 and so on, then the new mean is

1) $\bar{x}+n$
2) $\bar{x}+\frac{n}{2}$
3) $\bar{x}+\frac{n+1}{2}$
4) $\bar{x}-\frac{n}{2}$

Key.
Sol. Let $x_{1}, x_{2}, \ldots \ldots, x_{n}$ be n items. Then $\bar{x}=\frac{1}{n} \Sigma x_{i}$.
Let $y_{1}=x_{1}+1, y_{2}=x_{2}+2, y_{3}=x_{3}+3, \ldots . ., y_{n}=x_{n}+n$.
\therefore The mean of the new series is
$\bar{y}=\frac{1}{n} \Sigma y_{t}=\frac{1}{n} \Sigma\left(x_{i}+i\right) \Rightarrow \bar{y}=\frac{1}{n} \Sigma x_{i}+\frac{1}{n}(1+2+3+\ldots+n)$
$\Rightarrow \bar{y}=\bar{x}+\frac{1}{n} \cdot \frac{n(n+1)}{2}=\bar{x}+\frac{n+1}{2}$.
4. 10 is the mean of a set of 7 observations and 5 is the mean of a set of 3 observations. The mean of the combined set is given by

1) 15
2) 10
3) 8.5
4) 7.5

Key. 3
Sol. Let $n_{1}=7 \cdot \bar{x}_{1}=10, n_{2}=3, \bar{x}_{2}=5$.
So, combined mean $=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}=\frac{85}{10}=8.5$.
5. The average marks of boys in a class is 52 and that of girls is 42 . The average marks of boys and girls combined is 50 . The percentage of boys in the class is

1) 40
2) 20
3) 80
-4) 60

Key. 3
Sol. Take $n_{1}+n_{2}=100 \Rightarrow n_{2}=100-n_{1}$
$\bar{x}_{1}=$ Average mark of boys $=52, \bar{x}_{2}=$ Average mark of girls $=42$
$\bar{x}=$ Average mark of boys and girls $=50$.
Combined mean $\bar{x}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}} \Rightarrow 50=\frac{n_{1} .52+\left(100-n_{1}\right) 42}{100} \Rightarrow n_{1}=80$.
6. The median of a set of 9 distinct observations is 20.5 . If each of the largest 4 observations of the set is increased by 2 , then the median of the new set
1) is decreased by 2
2) is two time the original median
3) remains the same as that of the original set
4) is increased by 2

Key. 3
Sol. The median is the value of $5^{\text {th }}$ item when items are arranged in increasing or decreasing order \Rightarrow median is unchanged.
7. If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately

1) 22.0
2) 20.5
3) 25.5
4) 24.0

Key. 4
Sol. \quad Mode $=3$ median -2 mean $=3(22)-2(21)=24$.
8. If $\sum_{i=1}^{18}\left(x_{i}-8\right)=9$ and $\sum_{i=1}^{18}\left(x_{i}-8\right)^{2}=45$ then the standard deviation of $x_{1}, x_{2} \ldots \ldots x_{18}$ is

1) $4 / 9$
2) $9 / 4$
3) $3 / 2$
4) $\frac{2}{3}$

Key. 3
Sol. Let $d_{i}=x_{i}-8$ but $\sigma_{x}^{2}=\sigma_{d}^{2}=\frac{1}{18} \Sigma d_{i}^{2}-\left(\frac{1}{18} \Sigma d i\right)^{2}=\frac{1}{18} \times 45-\left(\frac{9}{18}\right)^{2}=\frac{5}{2}-\frac{1}{4}=\frac{9}{4}$. $\therefore \sigma_{x}=\frac{3}{2}$.
9. If the standard deviation of $x_{1}, x_{2}, \ldots . x_{n}$ is 3.5 , then the standard deviation of $-2 x_{1}-3,-2 x_{2}-3, \ldots \ldots .,-2 x_{n}-3$ is

1) -7
2) -4
3) 7
4) 1.75

Key. 3
Sol. We know that if $d_{i}=\frac{x_{i}-A}{h}$ then $\sigma_{x}=|h| \sigma_{d}$.
In this case $-2 x_{i}-3=\frac{x_{i}-3 / 2}{-1 / 2}$.
So $h=-\frac{1}{2}$.
Thus $\sigma_{d}=\frac{1}{|h|} \sigma_{x}=2 \times 3.5=7$.
10. Let $x_{1}, x_{2}, \ldots \ldots, x_{n}$ be n observations such that $\Sigma x_{i}^{2}=400$ and $\Sigma x_{i}=80$. Then a possible value of n among the following is

1) 15
2) 18
3)9
3) 12

Key. 2
Sol. $\frac{\Sigma x_{i}^{2}}{n} \geq\left(\frac{\Sigma x_{i}}{n}\right)^{2} \Rightarrow n \geq 16$.
11. Marks scored by 100 students in a 25 marksunit test of Mathematics is given below. Their median is $\begin{array}{lllllll}\text { Marks } & 0-5 & 5-10 & 10-15 & 15-20 & 20-25\end{array}$
$\begin{array}{llllllll}\text { Students } & 10 & 18 & 42 & 23 & 7\end{array}$

1) 12
2) 12.62
3) 12.3
4) 12.7

Key. 2
Sol. $\quad l=10, f=42, m=28, n=100, c=5$.
\therefore Media $=l+\frac{N / 2-m}{f} \times c=10+\frac{100 / 2-28}{42} \times 5=10+\frac{22 \times 5}{42}=10+2.62=12.62$.
12. The starting value of the model class of a distribution is 20 . The frequency of the model class is 18 . The frequencies of the classes preceeding and succeeding are 8,10 and the width of the model class is 5 , then mode $=$

1) 18.5
2) 20.5
3) 21.4
4) 22.78

Key. 4
Sol. \quad Mode $=l+\frac{f-f_{1}}{2 f-f_{1}-f_{2}} \times c=20+\frac{18-8}{36-8-10} \times 5=20+\frac{50}{18}=20+2.78=22.78$.
13. In the series of $2 n$ observations, half of them each equal to a and remaining half each equal to $-a$. If the standard deviation of the observations is 2 , then $|a|$ equals to:

1) $\frac{1}{n}$
2) $\sqrt{2}$
3) 2
4) $\frac{\sqrt{2}}{n}$

Key. 3
Sol. Standard.
14. If a variable x takes values $0,1,2, \ldots . ., n$ with frequencies proportional to be binomial coefficients ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots \ldots .,{ }^{n} C_{n}$ then the variance of x is

1) $\frac{n^{2}-1}{12}$
2) $\frac{n}{2}$
3) $\frac{n}{4}$
4) $\frac{n^{2}+1}{12}$

Key. 3
Sol. Conceptual
15. The range of a random variable X is $\{0,1,2\}$ and $P(X=0)=3 K^{3}, P(X=1)=4 K-10 K^{2}$, $P(X=2)=5 K-1$. Then we have

1) $P(X=0)<P(X=2)<P(X=1)$
2) $P(X=0)<P(X=1)<P(X=2)$
3) $P(X=1)+P(X=0)=P(X=2)$
4) $P(X=1)>P(X=0)+P(X=2)$

Key. 2
Sol. $\quad \Sigma P\left(X=x_{i}\right)=1$.
16. Consider any set of observations $x_{1}, x_{2}, x_{3}, \ldots ., x_{101}$; it being given that $x_{1}<x_{2}<x_{3}<\ldots .<x_{100}<x_{101}$; then the mean deviation of this set of observations about a point k is minimum when k equals

1) x
2) x_{51}
3) $\frac{x_{1}+x_{2}+\ldots .+x_{101}}{101}$
4) x_{50}

Key. 2
Sol. Mean deviation is minimum when it is considered about he item, equidistant from the beginning and the end i.e., the median. In this case median is $\frac{101+1}{2}$ th i.e., $51^{\text {st }}$ item i.e., x_{51}.
17. Mean of the numbers $1,2,3, \ldots .$. ,n with respective weights $1^{2}+1,2^{2}+2,3^{2}+3, \ldots \ldots ., n^{2}+n$ is

1) $\frac{3 n(n+1)}{2(2 n+1)}$
2) $\frac{2 n+1}{3}$
3) $\frac{3 n+1}{4}$
4) $\frac{3 n+1}{2}$

Key. 3
Sol. Here for each $x_{i}=i$
Weight $w_{i}=i^{2}+i$

$$
\begin{aligned}
& \text { Hence, the required mean }=\frac{\sum w_{i} x_{i}}{\sum w_{i}}=\frac{\sum_{i=1}^{n} i\left(i^{2}+i\right)}{\sum_{i=1}^{n}\left(i^{2}+i\right)} \\
& =\frac{\sum_{i=1}^{n} i^{3}+\sum_{i=1}^{n} i^{2}}{\sum_{i=1}^{n} i^{2} \sum_{i=1}^{n} i}=\frac{\frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2 n+1)}{6}}{\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}} \\
& =\frac{\frac{n(n+1)}{2}\left\{\frac{n(n+1)}{2}+\frac{2 n+1}{3}\right\}}{\frac{n(n+1)}{2}\left\{\frac{2 n+1}{3}+1\right\}} \\
& = \\
& =\frac{3 n^{2}+7 n+2}{2(2 n+4)}=\frac{(3 n+1)(n+2)}{4(n+2)}=\frac{3 n+1}{4} .
\end{aligned}
$$

18. The first and the third quartiles of the data given below:

Marks	No. of the Students
$0-10$	4
$10-20$	8
$20-30$	11
$30-40$	15
$40-50$	12
$50-60$	6
$60-70$	3

are respectively

1) $41.5,43.8$
2) $46.26,49.69$
3) $44.25,45.2$
4) $22.5,45.2$

Key. 4
Sol. Here, we construct the cumulative frequency table.

Class	Frequency	Cumulative frequency
$0-10$	4	4
$10-20$	8	12
$20-30$	11	23
$30-40$	15	38
$40-50$	12	50
$50-60$	6	56
$60-70$	3	59
Total	59	

For Q_{1}, Here $n=59 \Rightarrow \frac{n}{4}=\frac{59}{4}=14.75$.
\therefore Class of first quartile is $20-30$
$\Rightarrow Q_{1}=20+\frac{14.75-12}{11} \times 10=20+\frac{27.5}{11}=22.5$.
For Q_{3}, Here $\frac{3 n}{4}=\frac{3 \times 59}{4}=44.25$.
\therefore Class of third quartile is $40-50$
$\Rightarrow Q_{3}=40+\frac{44.25-38}{12} \times 10=40+\frac{62.5}{12}=45.2$.
19. For two data sets, each size 5 , the variances are given to be 4 and 5 and the corresponding means are given to be 2 and 4 , respectively. The variance of the combined data set is

1) $\frac{5}{2}$
2) $\frac{11}{2}$
3) $\sqrt{\frac{11}{2}}$
4) $\frac{13}{2}$

Key. 2
Sol. $\quad \sigma_{1}^{2}=4, n_{1}=5, \bar{x}_{1}=2$
$\sigma_{2}^{2}=5, n_{2}=5, \bar{x}_{2}=4$
$\bar{x}_{12}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}=\frac{5 \times 2+5 \times 4}{10}$
$d_{1}=\left(\bar{x}_{1}=\bar{x}_{12}\right)=-1, d_{2}=\left(\bar{x}_{2}-\bar{x}_{12}\right)-1$
$\sigma=\sqrt{\left[\frac{n_{1} \sigma_{1}^{2}+n_{2} \sigma_{2}^{2}+n_{1} d_{1}^{2}+n_{2} d_{2}^{2}}{n_{1}+n_{2}}\right]}=\sqrt{\left[\frac{5.4+5.5+5.1+5.1}{10}\right]}=\sqrt{\left[\frac{55}{10}\right]}=\sqrt{\left[\frac{11}{2}\right]}$.
$\therefore \sigma^{2}=\frac{11}{2}$.
20. In a business venture a man can make a profit of Rs.2000/- with probability of 0.4 or have a loss of

Rs. $1000 /$ - with probability 0.6 . His expected profit is

1) Rs. $800 /-$
2) Rs. 600%
3) Rs. 200/-
4) Rs. 400/-

Key. 3
Sol. $\quad \mu=\Sigma x_{i} P\left(X=x_{i}\right)$.
21. A random variable X takes the values $-2,-1,1$ and 2 with probabilities $\frac{1-a}{4}, \frac{1+2 a}{4}, \frac{1-2 a}{4}$ and $\frac{1+a}{4}$ respectively then

1) a can have any real value
2) $-1 \leq a \leq 1$
3) $-\frac{1}{2} \leq a \leq \frac{1}{2}$
4) $\frac{1}{4} \leq a \leq \frac{1}{3}$

Key. 2
Sol. $0 \leq P(A) \leq 1, A$ is any event.
22. A discrete random variable X, can take all possible integer values from 1 to K, each with a probability $\frac{1}{K}$. Its variance is

1) $\frac{K^{2}}{4}$
2) $\frac{(K+1)^{2}}{4}$
3) $\frac{K^{2}-1}{12}$
4) $\frac{K^{2}-1}{6}$

Key. 3
Sol. $\quad \Sigma x_{i}^{2} P\left(X=x_{i}\right)-\mu^{2}$.
23. A player tosses two fair coins. He wins Rs.5/- if two heads occur, Rs.2/- if one head occurs and Rs.1/- if no head occurs. Then his expected gain is

1) $R s . \frac{8}{3}$
2) $R s . \frac{7}{3}$
3) Rs. 2.5
4) Rs. 1.5

Key. 3
Sol. Mean.
24. The range of random variable X is $\{1,2,3,4, \ldots$,$\} and the probabilities are P(X=K)=\frac{3^{C K}}{\angle K}$; $K=1,2,3,4, \ldots \ldots \ldots$, then the value of C is

1) $\log _{e} 3$
2) $\log _{e} 2$
3) $\log _{3}\left(\log _{e} 2\right)$
4) $\log _{2}\left(\log _{e} 3\right)$

Key. 3
Sol. $\quad \Sigma P\left(X=x_{i}\right)=1$.
25. A person who tosses an unbiased coin gains two points for turning up a head and loses one point for a tail. If three coins are tossed and the total score X is observed, then the range of X is

1) $\{0,3,6\}$
2) $\{-3,0,3\}$
3) $\{-3,0,3,6\}$
4) $\{-3,3,6\}$

Key.
Sol

HHT,	HHT,	HHH,	TTT
$(2,2,-1)$	$(2,-1,-1)$	$(2,2,2)$	$(-1,-1,-1)$.

26. If the range of a random variable X is $\{0,1,2,3, \ldots \ldots \ldots$.$\} with P(X=k)=\frac{(k+1) a}{3^{k}}$ for $k \geq 0$, then $a=$
1) $2 / 3$
2) $4 / 9$
3) $8 / 27$
4) $16 / 81$

Key. 2

Sol. $\quad \Sigma x_{i} P\left(X=x_{o}\right)=1$.
27. If the variance of the random variable X is 4 , then the variance of the random variable $5 X+10$ is

1) 100
2) 10
3) 50
4) 25

Key. 1
Sol. $\quad V(a x \pm b)=a^{2} V(X)$.
28. If $f(x)$ is the cumulative distributive function of a random variable X whose range is from $-\alpha$ to
$+\alpha$, then $P(X<-\alpha)=$

1) 1
2) $\frac{1}{2}$
3) 0

Key. 3
Sol. Conceptual.

Statistics
 Assertion Reasoning Type

1. Statement-1: The variance of first n even natural numbers is $\frac{n^{2}-1}{4}$.

Statement-2: The sum of first n natural numbers is $\frac{n(n+1)}{2}$ and the sum of square of first n natural numbers is $\frac{n(n+1)(2 n+1)}{6}$.

1) Statement-1 is true, Statement- 2 is true. Statement- 2 is not a correct explanation for Statement-1
2) Statement-1 is true, Statement-2 is false
3) Statement-1 is false, Statement-2 is true
4) Statement-1 is true, Statement-2 is true. Statement-2 is a correct explanation for

Statement-1

Key. 3
Sol. Mean of first n even natural numbers $\frac{2+4+6 \ldots .+2 n}{n}=\frac{2(1+2+\ldots .+n)}{n}=n+1$. Varience of first n even natural numbers

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}=\frac{2^{2}+4^{2}+6^{2}+\ldots .+(2 n)^{2}}{n}-(n+1)^{2} \\
& \quad=\frac{4 n(n+1)(2 n+1)}{n}-(n+1)^{2}=(n+1)\left[\frac{2(2 n+1)}{3}-(n+1)\right]=\frac{n^{2}-1}{3} .
\end{aligned}
$$

2. Let $x_{1}, x_{2}, \ldots x_{n}$ be n observations, and let \bar{x} be their arithmetic mean and σ^{2} be their variance.
Statement-1: Variance of $2 x_{1}, 2 x_{2}, \ldots \ldots, 2 x_{n}$ is $4 \sigma^{2}$.
Statement-2: Arithmetic mean of $2 x_{1}, 2 x_{2}, \ldots \ldots, 2 x_{n}$ is $4 \bar{x}$.
1) Statement-1 is true, Statement- 2 is true, Statement- 2 is not a correct explanation for Statement-1
2) Statement-1 is true, Statement- 2 is false
3) Statement- 1 is false, Statement- 2 is true
4) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for

Statement-1

Key. 2
Sol. $\quad E(a X)=a E(X), V(a X)=a^{2} V(X) \Rightarrow$ Statement-1 is true, Statement-2 is false.

