STATES OF MATTER

CHEMISTRY

	Single Correct Answer Type				
1.	Select incorrect statemen	ıt			
	a) The properties of liqui	d crystals are intermediate	e b) Surface tension of a lie	quid is maximum at critical	
	between liquids and so		temperature		
	c) Viscosity decreases wi	th increases in temperatur	e_{d} CO ₂ and H ₂ O show the	e unusual properties of	
			supercritical fluids		
2.		lecular weight (<i>M</i>) and vap			
2	a) $M = 2.5 \times VD$	b) $M = 2 \times VD$	c) $M = 0.5 \times \text{VD}$	d) $M = VD$	
3.		kide ore of nickel has formu	ala $Ni_{0.98}O_{1.00}$. The percent	tage of nickel as Ni ³⁺ ions is	
	nearly	h) 04		d) 98	
4	a) 2 In the calcium fluoride st	b) 96 ructure, the coordination n	c) 4	<i>,</i>	
4.	a) 4, 4	b) 6, 6	c) 4, 8	d) 8, 4	
5.	-	uation we make use of the		-	
5.	a) The average speed of r		root mean square speed of	the molecules which is.	
	b) The most probable spe				
		average of the square of th	e speed of the molecules		
		n in which speed can be us			
6.	Bravais lattices are of	Ċ			
	a) 8 types	b) 9 types	c) 12 types	d) 14 types	
7.	One poise is equal to:				
	a) 1 dyne sec ⁻² cm	b) 1 dyne sec cm ⁻²	c) 1 dyne $sec^{-1} cm^{-2}$	d) 1 dyne $sec^{-1} cm^{-1}$	
8.	The rate of diffusion of hy	drogen is about			
	a) One half that of helium		b) 1.4 times that of heliu		
	c) Twice that of helium		d) Four times that of hel		
9.			s volume is 5 L according t	o van der Waals' equation is	
	(Given, $a = 4.17, b = 0.3$				
10	a) 10.33 atm	b) 9.33 atm	c) 9.74 atm	d) 9.2 atm	
10.	-	rm are held together by a v	veak attraction among the	molecules, called as:	
	a) Nuclear attraction b) Bond attraction				
	c) Van der Waals' attract	ion			
	d) Gravitational attractio				
11	The value of the molar ga				
	a) 8.3145×10^3 J (g mol)		b) 1.987 cal mol K ⁻¹		
	c) $0.083145 \times 10^3 \text{ dm}^3 \text{ b}$		d) 0.083145 dm ³ bar mo	${\rm pl}^{-1} {\rm K}^{-1}$	
12.	-	a = a, and for oxygen gas C	,		
	a) $a = 16b$	b) $16a = b$	c) $a = 4b$	d) $a = b$	
13.		nductor of electricity since	,		
	a) In solid NaCl, there is a	-	b) In solid NaCl, there ar	e no ions	
	c) In solid NaCl, there are	e no electrons	d) Solid NaCl is covalent		
14.	A gas deviates from ideal	behaviour at a high pressu	re because its molecules		
	a) Attract one another		b) Show the Tyndall effe	ct	

	c) Have kinetic energy	d) Are bound by	
15.	1 2	d H ₂ molecules at sam	e T. Which of the following is not
	true?		
	a) The average speed of the hydrogen molecules	-	
	b) The hydrogen molecules strike the walls of the		
	c) The average kinetic energy of the two gases is		
	d) The weight of H_2 is the same as the weight of d		
16.	Two identical cylinders contain helium at 2.5 atm		espectively. if both the gases are
	filled in one of the cylinders, the pressure would		
	a) 3.5 atm b) 1.75 atm	c) 1.5 atm	d) 1 atm
17.	$\rm NH_3$ and HCl gas are introduced simultaneously f	rom the two ends of a	a long tube. A white ring of NH ₄ Cl
	appears first		
	a) Nearer to the HCl end	b) At the centre of	
10	c) Throughout the tube	d) Nearer to the	5
18.	The molecular weight of O_2 and SO_2 are 32 and processing N molecules the number of m		
	pressure contains <i>N</i> molecules, the number of m	Infectiles III two III e	of SO ₂ under the same conditions of
	temperature and pressure will be: a) <i>N</i> /2 b) <i>N</i>	c) 2 <i>N</i>	d) 4N
19.	The pressure of a real gas is less than the pressur	,	,
19.	a) Increases in the number of collisions	b) Finite size of t	
	c) Increase in the kinetic energy	d) Intermolecula	Y
20	32 g of O_2 , 2 g of H_2 and 28 g of N_2 at STP occupy		
20.	a) 1 L b) 2 L	c) 22.4 L	d) 2.24 L
21.	At what temperature is the rms speed of hydroge		2
	1327°C?		
	a) 173 K b) 100 K	c) 400 K	d) 523 K
22.		,	,
	a) Boyle's temperature $T_B = \frac{b}{aR}$	b) Critical pressu	tre $p_c = \frac{a}{a}$
	$a = \frac{1}{2} \sum_{i=1}^{n} $		270
	c) Critical temperature, $T_c = \frac{aR}{27Rb}$	d) Critical volum	$e V_c = 3b$
23.	Which is true statement?		
	a) All liquid have concave meniscus		
	b) All liquid have convex meniscus		
	c) Mercury has convex and other liquids have con		
24	d) Mercury has concave and other liquids have co		
24.	If Z is the number of atoms in the unit cell that re-		packing sequence ABC ABC,
	the number of tetrahedral voids in the unit cell is	_	7
	a) Z b) 2Z	c) $\frac{Z}{2}$	d) $\frac{Z}{4}$
25.	A Dewar flask is usually used to:	2	T
	a) Measure the amount of liquid		
	b) Measure known volumes of a gas		
	c) Store distilled water		
\sim	d) Store liquid air		
26.	What is the coordination number of sodium in Na	a ₂ 0?	
	a) 2 b) 4	c) 6	d) 8
27.	For a given crystal, the lattice parameter ' a ' is 31	8 pm. The <i>d</i> -spacing f	or a (III) plane is
	a) 318 pm b) 184 pm	c) 390 pm	d) 225 pm
28.	Select correct statement(s)		
	a) The standard boiling temperature is the tempe	erature at which the v	apour pressure of the substance is 1
	bar		

	b) The normal boiling temperature is the temperature atm	ure at which the vapour pre	essure of the substance is 1
	c) Substances for which $T > T_c$ and $p > p_c$ are called	d super critical fluids	
	d) All the above are correct statements	a super critical nulus	
29	The ratio of Boyle's temperature and critical tempe	rature for a gas is:	
_).	a) 8/27 b) 27/8	c) ½	d) 2/1
30.	Positive deviation from ideal behaviour takes place	,	u) u / 1
50.	a) Molecular interaction between atoms and pV/nF		
	b) Molecular interaction between atoms and pV/nF		
	c) Finite size of atoms and $pV/nRT > 1$		
	d) Finite size of atoms and $pV/nRT < 1$		
31	<i>a</i> and <i>b</i> are van der Waals' constants for gases. Chlo	orine is more easily liquefie	d than ethane because
01.	a) <i>a</i> and <i>b</i> for $Cl_2 > a$ and <i>b</i> for C_2H_6	ine is more cashy inquene	
	b) a and b for Cl ₂ < a and b for C ₂ H ₆		
	c) a for $Cl_2 > a$ for C_2H_6 but b for $Cl_2 > b$ for C_2H_6		
	d) a for $Cl_2 > a$ for C_2H_6 but b for $Cl_2 < b$ for C_2H_6		\bigcirc
32	Longest mean free path under similar conditions of	·	
52.	a) N_2 b) O_2	c) H ₂	d) CL
22	Ferrous oxide has a cubic structure and each edge of		ming density of the oxide as
55.	4.0g/cm ⁻³ then the number of Fe ²⁺ and O ²⁻ ions p		
	a) Two Fe ²⁺ and four O^{2-}	b) Three Fe ²⁺ and three	
	c) four Fe^{2+} and two O^{2-}	d) four Fe^{2+} and four O^{2-}	
24	5		
34.	Which one of the following is correct about surface		
	a) Both decrease with temperature	b) Both increase with ter	
25	c) ST increases and η decreases	d) ST decreases and η inc	creases
35.	In which of the following crystals alternate tetrahed		
26	a) NaCl b) CaF_2	c) Na ₂ O	d) ZnS
36.	For an ideal gas, number of mol per litre in terms of		
27	a) pT/R b) pRT	c) p/RT	d) <i>RT/p</i>
37.	For a gas $(R/C_v) = 0.67$, the gas is made up of mole		
20	a) Monoatomic b) Diatomic	c) Polyatomic	d) Mixture of gases
38.	As the speed of molecules increases, the number of	=	
20	a) Decreases b) Increases	c) Does not change	d) None of these
39.	To an evacuated vessel with movable piston under	-	
	of an unknown compound (vapour pressure 0.68 at		considering the ideal gas
	behaviour, the total volume (in litre) of the gases at		9) O
40	a) 3 b) 5	c) 7	d) 9
40.	A closed vessel contains equal number of nitrogen a		bressure of P mm. If nitrogen
	is removed from the system, then the pressure will		מ נו
4.4	a) P b) 2P	c) P/2	d) <i>P</i> ²
41.	The molar volume of CO_2 is maximum at		
40	a) NTP b) 0°C and 2.0 atm	c) 127°C and 1 atm	d) 273°C and 2 atm
42.	An example of a metallic crystalline solid is		N C
	a) P b) Si	c) W	d) C
43.	The density of neon will be highest at		
	a) STP b) 0°C, 2 atm	c) 273°C, 1 atm	d) 273°C, 2 atm
44.	A 4 : 1 mixture of helium and methane is contained	-	
	vessel, the gas mixture leaks out. The composition of		
	a) 8 : 1 b) 8 : 3 Which of the following set of variables give a straight	c) 4 : 1	d) 1 : 1
4 -	Inversely of the tell or give got of travial log give a straig	nt line with a negative slong	when nietted?

	y - axis $x - axis$	_				
	a) p T b) $\log_{10} p$ T	c) $\log_{10} p \frac{1}{T}$	d) $\log_{10} p \ \log_{10} \frac{1}{T}$			
46.	Volume occupied by 3.01×10^{23} molecules of acetylene at NTP is:					
	a) 22.4 litre b) 11.2 litre	c) 1.12 litre	d) 2.24 litre			
47.	According to Charles' law:		2			
	5	c) $(\partial V/\partial T)_P = -K/T$	d) None of these			
48.	Which of the following is a Boyle's plot at very l					
-		I	\frown			
	a) pV	b) $\left \right $				
	P	р				
	pV	d) pV	\circ			
	p	p				
49.	Gases X, Y, Z, P and Q have the van der Waals' c	constants a and h (in CCS units)	as shown helow			
17.	X Y Z P Q	onstants a and b (in eds and)				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	The gas with the highest critical temperature is	s				
	a) <i>P</i> b) <i>Q</i>	c) <i>Y</i>	d) <i>Z</i>			
50.	At what temperature will be total kinetic energ	y (KE) of 0.30 mole of He be th	e same as the total <i>KE</i> of			
	0.40 mole of Ar at 400 K ?					
	a) 400 K b) 373 K C	c) 533 K	d) 300 K			
51.	At constant temperature, in the given mass of a	n ideal gas				
	a) The ratio of pressure and volume always ren	nains constants				
	b) Volume always remains constant					
	c) Pressure always remains constant					
	d) The product of pressure and volume always	remains constant				
52.	At what temperature will the volume of a gas at	t 0°C double itself, pressure ren	naining constant?			
	a) –546°C b) 273 K	c) 546°C	d) 546 K			
53.	Which of the following is non-crystalline solid?					
	a) NaCl b) CsCl	c) CaF ₂	d) Glass			
54.	The ratio of close packed atoms to tetrahedral h	noles in cubic close packing is				
	a) 1:1 b) 1:2	c) 1:3	d) 2:1			
55.	Which of the following statement is not true?					
	a) The pressure of a gas is due to collision of the	e gas molecules with the walls	of the container.			
	b) The molecular velocity of any gas is proporti	onal to the square root of the a	bsolute temperature.			
	c) The rate of diffusion of a gas is directly prope	ortional to the density of the ga	s at constant pressure.			
5	d) Kinetic energy of an ideal gas is directly prop	portional to the absolute tempe	rature.			
56.	When air is blown to balloon (at constant temp	erature) its pressure and volur	ne both increases. This			
	violates:					
	a) Boyle's law b) Charles' law	c) Gas law	d) None of these			
57.	The joule Thomson coefficient is zero at					
	a) Absolute temperature	b) Critical temperature				
	c) Inversion temperature	d) Below 0°C				
58.	The rms velocity of molecules of a gas of densit		10 ⁵ Nm ⁻² is			
	a) 300 ms^{-1} b) 900 ms^{-1}	c) 120 ms ⁻¹	d) 600 ms ⁻¹			

59.	The rms speed of hydroge a) $T_{H_2} = T_{N_2}$	en is $\sqrt{7}$ times the rms spee	b) $T_{H_2} > T_{N_2}$	emperature of the gas, then
	c) $T_{H_2} < T_{N_2}$		d) $T_{H_2} = \sqrt{7T_{N_2}}$	
60.	The most unsymmetrical	crystal system is	·	
	a) hexagonal	b) Triclinic	c) Cubic	d) orthorhombic
61.			pressure <i>p</i> atm, then what	at will be the rms speed at a
	pressure 2 <i>p</i> atm and cons	=		
62	a) x	b) $2x$	c) $4x$	d) $x/4$ leakage. When the leakage
02.	=	The dropped to 100 cm of Hg	—	
	during leakage is:			
	a) 0.06	b) 0.05	c) 0.07	d) 0.08
63.	Avogadro's number is the	e number of molecules pres	ent at NTP in:	
	a) 1 mL of gas	b) 1 litre of gas	c) 22.4 litre of gas	d) 22.4 mL of gas
64.		ffusion of helium and m	ethane under identical	conditions of pressure and
	temperature is:			
	a) 4	b) 2	c) 1	d) 0.5
65.		be rate of effusion of N_2 be		
66	a) 273 K When a sample of gas is c	b) 893 K	c) 110 K	d) 173 K 60 atm, its volume changes
00.		Which of the following stat		
	1. The gas behaves non-ic		ements are possible expla	
	2. The gas dimerises		G. XY	
	3. The gas is absorbed int	o the vessel walls	Y.	
	a) 1, 2, and 3		c) 2 and 3 only	d) 1 only
67.		locity of a gas is double whe		
	a) Increased four times		b) Increased two times	
(0	c) Reduced to half		d) Reduced to one fourth	
68.	A flask is of a capacity of Assume pressure constant		will escape out from it of	n heating from 27°C to 37°C?
	-	b) 33.3 mL	c) 33.3 litre	d) None of these
69.	The correct statement in			a) none of these
	a) The ionic crystal of Ag	—		
	b) The coordination num	ber of Na ⁺ ion in NaCl is 4		
	c) In ionic compounds ha	ving Frenkel defect, the rat	io $\frac{r_+}{r}$ is high	
	d) The unit cell having cry	ystal parameters, $a = b \neq a$	$c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ is	hexagonal
70.		he bcc structure has 12.08		
	element in these cells wil			
	a) 6.04×10^{23}	b) 12.08 × 10 ²³	c) 24.16 × 10 ²³	d) 36.18×10^{23}
71.		ording to $PV = \text{constant.}$ Or	n expansion, the temperat	ure of gas:
	a) Will rise b) Will drop			
×	c) Will remain constant			
	-	because the external press	ure is not known	
72.	•	h the second virial coefficie		alled:
	a) Critical temperature	b) Eutectic point	c) Boiling point	d) Boyle's temperature
73.	-	of an ideal gas (monoatom		-
	a) 600 cal	b) 900 cal	c) 800 cal	d) 300 cal
74.	<i>KE</i> of one mole of He at 0	°C is:		

	a) 819.0 cal	b) 84.43 cal	c) 8.143 cal	d) None of these
75.	-	ll gases except H_2 and He s	how:	
	a) Negative deviation			
	b) Positive deviation	1		
	c) Positive and negative	deviation		
	d) None of the above			
76.	0	from ideal gas behaviour a		
	a) -10° C and 5.0 atm	b) –10°C and 2.0 atm	c) 0°C and 1.0 atm	d) 100°C and 2.0 atm
77.	Effect of temperature on			
	a) Hole theory	b) Arrhenius theory	c) Adsorption theory	d) Collision theory
78.			0 to 600 K. Which statemen	
	a) Pressure of the gas inc		b) The rate of collision in	
	c) The number of mole o		d) The energy of gaseous	
79.			K) then entropy of vaporisa	
	a) <i>LT</i>	b) LT^{-1}	c) TL^{-1}	d) None of these
80.			ntainers at the same temper	ature and pressure. Then:
	a) Masses of the two gas			
		f two gases would be simila		r
		the same number of molec		
		ved to diffuse would do so a		
81.			t pressure. The final volum	
	a) 350 L	b) 270 mL	c) 540 mL	d) 135 mL
82.	Which one of the following	ng will give a linear plot at o	constant pressure?	
	a) T vs $\frac{1}{V}$	b) $V vs \frac{1}{T}$	c) V vs T	d) None of these
83.	When gases are heated fi	rom 20°C to 40°C at constan	nt pressure. the volume:	
	a) Increase by the same		r	
	b) Become double			
	c) Increase in the ratio o	f their molecule masses		
	d) Increase but to differe			
84.	In which one of the follow	wing does the given amoun	t of chlorine exert the least	pressure in a vessel of
	capacity 1 dm ³ at 273 K?			
	a) 0.0355g		b) 0.071	
	c) 6.023×10^{21} molecule	es	d) 0.02 moles	
85.	A crystalline solid			
	a) Changes abruptly from	n solid to liquid when heate	ed	
	b) Has no definite meltin	g point		
	c) Has an irregular three	-dimensional arrangement	S	
	d) Undergoes deformation	on of its geometry easily		
86.	1 atm			
	$H_2O(l) \longleftarrow H_2O(g), l$	$\Delta H_{\rm vap} = 10 \text{ kcal mol}^{-1}$. If p	ressure is increased	
Ċ	a) Steam is liquefied		b) b.p. of H_2O is elevated	
	c) Both (a) and (b)		d) None of these	
87.		weighs 8 g. The vapour den		
	a) 32	b) 40	c) 16	d) 8
88.		rill increase with the increase		
	a) Surface tension	b) Viscosity	c) Molality	d) Vapour pressure
89.	The condition of SATP re			
0.0	a) 25° C and 2 atm	b) 25°C and 1 atm	c) 0°C and 2 atm	d) 25°C and 1 bar
90.	The equation, $\left[P_r + \frac{3}{V_r^2}\right]$	$3V_r - 1] = 8T_r:$		
	, -			

	a) Is equation for law of corresponding states.				
	States that under similar conditions of reduced pressure (P_r) and reduced temperature (T_r) gases				
	b) possess same reduced volume (V_r) c) Provides better results at boiling point of two liquids				
	d) All of the above	s at boining point of two liqu	lius		
01	,	gas is less than unity as STF	Therefore		
91.	a) $v_m > 22.4$ L	b) $v_m < 22.4 \text{ L}$	c) $v_m = 11.2 \text{ L}$	d) <i>v</i> _m = 44.8 L	
92		and absolute temperature c			
12.	a) 4	b) 2	c) Same	d) 8	
93	Which form of matter is	,	cj same		
<i>.</i>	a) Solid	b) Liquid	c) Gas	d) Colloidal	
94.	,	· ·	,	$\frac{1}{2}$ g of H ₂ gas in one and 44 g	
,		of CO_2 is 1 atm in other, the			
	a) 1 atm	b) Zero	c) 22 atm	d) 44 atm	
95.	Vapour pressure increas		,		
		tion containing non-volatile	solute		
	b) Temperature up to bo	iling point	Ć		
	c) Temperature up to tri	ple point			
	d) Altitude of the concert	ned place of boiling			
96.	An alloy of Cu, Ag and Au	is found to have Cu formin	g the simple cubic close pa	cked lattice. If the Ag atoms	
	occupy the face centres a	and Au is present at the bod	y centre, the formula of the	alloy will be	
	a) Cu ₄ Ag ₄ Au	b) CuAg ₃ Au	c) CuAgCu	d) Cu ₄ Ag ₂ Au	
97.				temperature is doubled, the	
		to two atoms. The new rms			
	a) √2 <i>u</i>	b) u	c) 2u	d) 4 <i>u</i>	
98.		lecules at constant tempera	iture in gaseous state is:		
	a) More than those in the	-			
	b) Less than those in the				
	c) Equal to those in the l	iquid state			
00	d) None of the above	what should be the nergen	tage increases in the terms	erature in Kelvin for a 10%	
99.	increase in volume?	what should be the percen	ltage increase in the temp	erature in Kelvin for a 10%	
	a) 10%	b) 20%	c) 5%	d) 50%	
100		argon contains 3 mole of He	•		
100	is:			e partial pressure of argon	
	a) $2/3$ the total pressure				
	b) 1/3 the total pressure				
	c) 2/5 the total pressure				
	d) 1/5 the total pressure				
101.	. Boyle's law is applicable	in:			
	a) Isobaric process	b) Isochoric process	c) Isothermal process	d) Adiabatic process	
102	. Which defect causes dec	reases in the density of crys	ital?		
	a) Frenkel	b) Schottky	c) Interstitial	d) F-centre	
103.			mall vessel and then in a	large vessel, such that their	
	volume remains unchang				
	a) Parabolic with same c				
	b) Parabolic with differe				
	c) Linear with same slop				
104	d) Linear with different s	er are solid, liquid and gas. V	Which of the following state	ments is / are true about	
104	The unce states of matte	n are sona, nquia ana gas. V	men of the following state	mento loj ule ti de about	

a) Gases and liquids have viscosity as a common property b) The molecules in all the three states posses random translational motion c) Gases cannot be converted into solids without passing through the liquid phase d) Solids and liquids have vapour pressure as a common property 105. The kinetic theory of gases predicts that total kinetic energy of a gaseous assembly depends on a) Pressure of the gas b) Temperature of the gas d) Pressure, volume and temperature of the gas c) Volume of the gas 106. If two moles of a ideal gas at 546 K occupy volume 44.8 L, then pressure must be a) 2 atm b) 3 atm c) 4 atm d) 1 atm 107. What is kinetic energy of 1 g of O_2 at 47°C? c) 1.24×10^3 J a) 1.24×10^2 J b) 2.24×10^2 J d) 3.24×10^2 108. If volume containing gas is compressed to half, how many moles of gas remained in the vessel? d) More than double b) Just half c) Same a) Just double 109. At constant volume, the pressure of a monoatomic gas depends upon: a) Thickness of the walls of the container b) The absolute temperature c) The atomic number of the element d) The number of valency electrons 110. If two moles of an ideal gas at 246 K occupy a volume of 44.8 L, the pressure must be a) 4 atm b) 2 atm c) 8 atm d) 6 atm 111. Example of unit cell with crystallographic dimensions, $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$, is a) Calcite b) rhombic sulphur c) Graphite d) Monoclinic sulphur 112. The unit of van der Waals' constant 'a' is: c) newton m⁴ mol⁻² b) dyne cm⁴ mol⁻² a) atm litre² mol^2 d) All of these 113. Use of hot air balloons in sports and meteorological observations is an application of: a) Boyle's law b) Newtonic law c) Charles' law d) Brown's law 114. The circulation of blood in human body supplies O_2 and releases CO_2 . The concentration of O_2 and CO_2 is variable but on the average, 100 mL blood contains 0.02 g of O₂ and 0.08 g CO₂. The volume of O₂ and CO₂ at 1 atm and body temperature 37°C, assuming 10 litre blood in human body is: b) 1.5 litre, 4.5 litre a) 2 litre, 4 litre c) 1.59 litre, 4.62 litre d) 3.82 litre, 4.62 litre 115. If the distance between Na⁺ and Cl⁻ ions in NaCl crystal is 'a' pm what is the length of the cell edge? b) $\frac{a}{4}$ pm d) $\frac{a}{2}$ pm c) 2*a* pm a) 4*a* pm 116. Normal temperature and pressure (NTP) of gases refers to: a) 273 K and 760 mm Hg b) 273°C and 760 mm Hg c) 273 K and 76 mm Hg d) 273°C and 76 mm Hg 117. CuSO₄*aq*. absorbs: a) NH₂ b) H_2S c) PH_3 d) All of these 118. Under which of the following conditions, van der Waals' gas approaches ideal behaviour? a) Extremely lower pressure b) Low temperature c) High pressure d) Low product of *pV* 119. The compressibility factor of an ideal gas is b) 2 a) 1 c) 4 d) 0 120. A vessel has two equal compartments A and B containing H₂ and O₂ respectively, each at 1 atm pressure. If the wall separating the compartment is removed, the pressure: a) Will remain unchanged in A and B

b) Will increase in *A* and decrease in *B*c) Will decrease in *A* and increase in *B*

them?

	4 15		
d) Will increase in both			
121. Quartz is a crystalline v	-	a) Ciliaan aanhida	d) Codium cilianto
a) Silica	b) Silicon	c) Silicon carbide	d) Sodium silicate
122. A sample of gas at 35°C		-	_
	if it is required to reduce the		
a) –26.6°C	b) 0°C	c) 3.98°C	d) 28°C
123. Air at sea level is dense			
a) Boyle's law	b) Charles' law	c) Avogadro's law	d) Dalton's law
124. The strength of van der		th:	\wedge
a) Increase in molecula		1	
-	per of electrons in the mole	cule	
c) Increases in molecul	ar weight		
d) All of the above	1		*
125. The vacant space in the		.) 220/	
a) 23%	b) 26%	c) 32%	d) None of these
126. Pressure remaining cor			
a) 254°C	b) 527°C	c) 400 K	d) 800°C
127. The numerical value of			
a) NH_3	b) H ₂	c) 0 ₂	d) He
128. To which of the following			
a) Ne + He + SO ₂	b) $NH_3 + HCl + HBr$	c) $0_2 + N_2 + C0_2$	d) $N_2 + H_2 + O_2$
129. At critical temperature	of a liquid, surface tension		
a) Zero	,	b) Infinite	
c) Varies liquid to liqui		d) Can't be measured	
130. The rms speed of hydro			
a) $T_{\rm H_2} = T_{\rm N_2}$	b) $T_{\rm H_2} > T_{\rm N_2}$	c) $T_{\rm H_2} < T_{\rm N_2}$	d) $T_{\rm H_2} = \sqrt{7} T_{\rm N_2}$
			7°C. The total pressure exerted
by the gaseous mixture	is 1 atm. The partial press	ure exerted by ethylene gas	s is :
a) 0.67 atm	b) 0.33 atm	c) 0.50 atm	d) 0.20 atm
132. At a constant temperat	ture what should be the pe	ercentage increase in press	sure for a 5% decrease in the
volume of gas?			
a) 5%	b) 10%	c) 5.26%	d) 4.26%
-		'o what temperature must	it be heated so that it occupies
the original volume? (P			
a) 54°C	▶ b) 600°C	c) 327 K	d) 327°C
			t while the atom <i>X</i> occupy all
	hat is the formula of the co	mpound?	
a) <i>XZ</i>	b) <i>XZ</i> ₂	c) X_2Z	d) $X_2 Z_3$
135. For cubic coordination,			
a) 0.000 – 0.225		c) 0.414 – 0.732	d) 0.732 – 1.000
136. An example of fluorite s	structure is		
a) NaF	b) AlCl ₃	c) SrF ₂	d) SiF ₄
137. Clausius-Clapeyron equ	lation is		
a) $\frac{d \log p}{dT} = \frac{\Delta H_{\text{vap}}}{2.303 RT^2}$		b) $\log p = \log A - \frac{\Delta H_{e}}{2.302}$	vap
		210 0 0	3 <i>RT</i>
c) Both (a) and (b)		d) None of the above	
138. The concept of critical t		-	
a) Andrew	b) Boyle	c) Charles	d) None of these
139. Correct gas equation is			17.17
a) $\frac{p_1 T_1}{V_1} = \frac{p_2 T_2}{V_2}$	b) $\frac{V_1T_2}{p_1} = \frac{V_2T_1}{p_2}$	c) $\frac{p_1 V_1}{p_2 V_2} = \frac{T_1}{T_2}$	d) $\frac{V_1 V_2}{T_1 T_2} = p_1 p_2$
$V_1 V_2$	$p_1 p_2$	p_2V_2 T_2	T_1T_2

140. The edge of unit cell of fcc Xe crystal is 620 pm. The rad	lius of Xe atom is	
a) 189.37 pm b) 209.87 pm c)	219.25 pm	d) 235.16 pm
141. The following is not a function of an impurity present in	n a crystal	
a) Establishing thermal equilibrium b)) Having tendency to diffu	use
c) Contributing to scattering d)) Introducing new electro	onic energy levels
142. Which one of the following statements is not true about	t the effect of an increase	in temperature on the
distribution of molecular speeds in a gas?		
a) The area under the distribution curve remains the sa	ame as under the lower te	emperature
b) The distribution becomes broader		
c) The fraction of the molecules with the most probable	e speed increases	\sim
d) The most probable speed increases	-	
143. Identify the pair of gases that have equal rates of diffusi	ion	
a) CO, NO b) N_2O , CO c)	$N_20, C0_2$	d) CO_2 , NO_2
144. Oxygen gas is collected by downward displacement of w		
adjusted to the height of water outside the jar. When the		
oxygen is:		
a) Equal to the atmospheric pressure	Ć	
b) Equal to the vapour pressure of oxygen at that tempe	erature	þ
c) Equal to atmospheric pressure plus aqueous tension		
d) Equal to atmospheric pressure minus aqueous tensio	-	
145. The maximum radius of sphere that can be fitted in the		al closed packing of sphere
of radius r is		
a) 0.732 r b) 0.414 r c)	0.225 r	d) 0.155 <i>r</i>
146. The root mean square velocity of a gas is doubled when		2
) Increased two times	
) Reduced to one fourth	
147. Assume that air is 21% oxygen and 79% nitrogen by		ic pressure is 740 mm, the
partial pressure of oxygen is closest to which one of the		1
		d) 740 mm
148. A and B are two identical vessels. A contains 15 g of eth		5
gas X_2 at the same temperature and pressure. The vapor		0
		d) 300
149. Which gas contains larger number of molecules?		2
	4 g of PCl ₅	d) 2 g of phoszene
150. A gas is found to have formula $[CO]_x$. Its VD is 70. The value of the second s		
		d) 2.5
151. Which one of the following metal oxides is antiferromag		,
		d) CrO_2
152. If 1 litre of a gas A at 600 mm and 0.5 litre of gas B at 80	-	
pressure is:		U
	2000 mm	d) 500 mm
153. Which of the following gases would have the highest rm		,
	-	d) CO
154. Which statement violates the assumptions of the kinetic	5	
a) Gases consist of large number of small particles called		
b) The molecules are at rest		
c) The molecules possess random and chaotic motion		
d) There is no attraction between the molecules		
155. Space lattice of CaF_2 is		
	hcp	d) simple cubic
, , , , , , , , , , , , , , , , , , ,	1	- 1

	cture, the coordination nu		
a) 2	b) 4	c) 6	d) 8
			rs) taken for 1000 mL of SO_2 to
	e experimental conditions		
a) 240	b) 3	c) 2	d) 4
	he following statements is		
		molecules will be the sam	
		nt molecules will be differ	
		eater for heavier gas mole	
	-	ss for heavier gas molecul	
		ic energy of one mole of g	
a) 1/2 <i>RT</i>	b) 3/2 <i>RT</i>	c) $(C_p - C_V) RT$	d) 2/3 <i>RT</i>
=	f gaseous volumes is deriv	red from:	
a) Law of reciproc	al proportions		
b) Law of multiple	proportions		
c) Experimental of			
d) None of the abo			
	e speed of an oxygen mole	ecule to the rms, speed of a	a nitrogen molecule at the same
temperature is:			
a) $\left(\frac{3\pi}{7}\right)^{1/2}$	b) $\left(\frac{7}{3\pi}\right)^{1/2}$	c) $\left(\frac{3}{3}\right)^{1/2}$	d) $\left(\frac{7\pi}{3}\right)^{1/2}$
		$\sqrt{7\pi}$	$\left(\begin{array}{c} 3 \end{array} \right)$
_	nethod to determine the s		
a) Single capillary		b) Refractometri	
c) Polarimetric me		d) Boiling point r	nethod
163. Which phrase wou			
a) A molecule of an			
b) An atom of an el			
c) A molecule of a	-		
d) None of the abo			a mileu tatuali a duali atua atua 2
	_	_	regular tetrahedral structure?
a) Diamond	b) Benzene	c) Graphite	d) Carbon black
•			density of gas A is twice that of gas
be:	weight of gas A is half that	t of gas B at the same temp	perature, pressure ratio P_A/P_B will
	b) ½	c) 4	d) 1
a) $\frac{1}{4}$,	d) 1 pectively. The rate of diffusion of
these gases follow	_	eights are 2, 4 and 20 resp	becuvery. The rate of unfusion of
a) $C > A > B$	b) $C > B > A$	c) $A = B$	d) $A > L$
			n keeping the vessel at 50° highe
	= =		The original temperature was:
a) 73 K	b) 100 K	c) 200 K	d) 510 K
	perature (T_i) for a gas is g	-	u) 510 K
		-	2 <i>Rb</i>
$a_{a} \frac{a}{Rb}$	b) $\frac{2a}{Rh}$	c) $\frac{Rb}{a}$	d) $\frac{2Rb}{a}$
169. The van der Waals	' equation for real gas is:		~
a) $\left(P + \frac{a}{V^2}\right)(V - b)$			
, v,			
b) $\left(P + \frac{n^2 a}{V^2}\right) (V -$	b) = nRT		
V^2			
c) $P = \frac{nRT}{V - nb} - \frac{a}{V}$	<u>n²</u>		

d) All of the above		
170. Amorphous solids are		
a) Supercooled liquids	b) solid substances	
c) Liquids	d) Substances with defin	ite m.p.
171. The temperature of 20 L of nitrogen was increased f volume will be		
a) 20 L b) 40 L	c) 60 L	d) 80 L
172. A flask of methane (CH_4) was weighed. Methane wa	=	
filled with oxygen at the same temperature and pres	ssure. The mass of oxygen	would be:
a) The same as the methane b) Half of the methane		
c) Double of that of methane		
d) Negligible in comparison to that of methane		
173. When a solid vaporizes directly without melting, it i	s known as:	
a) Evaporation b) Sublimation	c) Sedimentation	d) Saponification
174. For an ionic crystal of the general formula AX and co	oordination number 6, the	value of radius ratio will be
a) in between 0.732 and 0.414	b) in between 0.414 and	0.225
c) less than 0.225	d) greater than 0.732	
175. A gas at 298 K is shifted from a vessel of 250 cm ³ ca	pacity to that of 1 L capacit	ty. The pressure of the gas
will		
a) Becomes four times	b) Becomes doubled	
c) Decrease by one-fourth	d) Decrease by half	
176. Two vessels containing gases A and B are interconn	ected as shown in the figur	e. The stopper is opened,
the gases are allowed to mix homogeneously. The p	artial pressures of A and B	in the mixture will be,
respectively		
Gas A Gas B		
	<i>v</i>	
12 L 8 L 8 atm 5 atm		
a) 8 and 5 atm b) 9.6 and 4 atm	c) 4.8 and 2 atm	d) 6.4 and 4 atm
177. Different gases at the same temperature have same	,	2
a) Pressure	b) Number of moles	
c) Volume	d) Average kinetic energ	У
178. Certain crystals produces electric signals on applica	tion of pressure. This phen	omena is called
a) Ferroelectricity b) Ferrielectricity	c) Pyroelectricity	d) Piezoelectricity
179. If air contains N_2 and O_2 in volume ratio 4 : 1. The a		· ·
a) 14.5 b) 16.5	c) 14.4	d) 29.0
180. In face centred cubic unit cell edge length is	,	2
	4	4
a) $2r$ b) $\frac{\sqrt{3}}{2}r$	c) $\frac{4}{\sqrt{3}}r$	d) $\frac{4}{\sqrt{2}}r$
181. When an ideal gas undergoes unrestricted expansio	n, no cooling takes place be	ecause the molecules:
a) Exert no attractive forces on each other		
b) Do work equal to loss of <i>KE</i>		
c) Collide without loss of energy		
d) Are above the inversion temperature		
182. If volume of a given mass of gas at constant <i>T</i> , become	nes three times, the pressu	re will be:
a) 3 <i>P</i> b) <i>P</i> /3	c) 9 <i>P</i>	d) <i>P</i>
183. The relationship between P_c , V_c and T_c is:	3	N N K 3 N
a) $P_cV_c = RT$ b) $P_cV_c = 3RT_c$ 184. The rms speed of gas molecules at a temperature	0	0
TOT. The this speed of gas molecules at a temperature	27 N and pressure 1.5 Da	

	tomporature and procesur	a are raised three times th	e rms speed of the gas will	ha
	a) 9×10^4 cm/sec	b) 3×10^4 cm/sec	c) 1×10^4 cm/sec	d) $\approx 1 \times 10^4$ cm/sec
10	5. The number of equidista	-	, ,	
10	a) 2	b) 4	c) 6	d) 8
10	6. Equal volumes of two gas	,	•	<i>,</i>
10		_	ressels are joined together,	_
				then what will be the
	a) 400 mm	mixture? (Temperature res	c) 300 mm	d) 200 mm
10	-	b) $\sqrt{400}$ mm	c) 500 mm	
18	7. The mean free path (λ) o			
	a) $\lambda = \sqrt{2} \pi \sigma^2 N$	b) $\lambda = \frac{1}{\sqrt{2} \pi \sigma^2 N}$	c) $\lambda = \sqrt{2} \pi u \sigma^2 N$	d) None of these
10				
18	8. Which of the following is	-	-) Dk7-0	
10	a) BaTiO ₃	b) Pb_2O_3	c) PbZrO ₃	d) $K_4[Fe(CN)_6]$
18	9. Gas CO	1 2		
	Critical temp, $T_c(K)$ 134			
	•	-	e, the greater ease of liquefi	
10	a) SO ₂ 0. The unit of van der Waal'	b) HCl	c) CH ₄	d) CO
19	a) $\text{cm}^3 \text{ mol}^{-1}$	b) litre mol ^{-1}	c) m ³ mol ^{-1}	d) All of these
10	,			<i>,</i>
19		100 g of an icc crystal with	density $a = 10g/cm^2$ and c	cell edge equal to 100 pm, is
	equal to 1×10^{25}	b) 2×10^{25}	c) 3×10^{25}	d) 4×10^{25}
10	a) 1×10^{25}	,		$d) 4 \times 10^{23}$
19	2. Which of the following part $(2, 0) = 14\pi N$			d) 22~0 22~N
10	a) $16 \text{ g} \text{ O}_2$, $14 \text{ g} \text{ N}_2$			d) $32g O_2$, $32g N_2$
19	3. Two closed vessels of equ	_		_
			re in one of the vessels is no	The maintained at I_1 and
		hat will be the pressure in t T .	o =	2n.
	a) $\frac{2p_1T_1}{T_1 + T_2}$	b) $\frac{T_1}{2n T}$	c) $\frac{2p_1T_2}{T_1 + T_2}$	d) $\frac{2p_1}{T_1 + T_2}$
10	4. In case of hydrogen and h	2µ112 Polium the yan der Waals' f	11112	$I_1 + I_2$
17	a) Strong	b) Very strong	c) Weak	d) None of these
10	5. The volume of ammonia		,	•
1)	a) 20 mL	b) 40 mL	c) 30 mL	d) 10 mL
19				
17	6. If the value of ionic radiu	s ratio $\left(\frac{-r_a}{r_a}\right)$ is 0.52 in an ior	lic compound, the geometri	ical arrangement of lons in
	crystal is			
	a) Planar	b) Pyramidal	c) Tetrahedral	d) Octahedral
19	7. The constituent particles	of a solid have		
	a) Rotatory motion only		b) Vibratory motion only	
	c) Translatory motion on	-	d) All of these	
19	8. At relatively high pressur	re, van der Waals' equation	reduces to:	
	a) $PV = RT$	b) $PV = RT + a/V$,	d) $PV = RT - a/V^2$
19	9. Crystals can be classified	into basic crystal lattices	5	
	a) 3	b) 7	c) 6	d) 14
20	0. Which type of solid cryst	als will conduct heat and el	ectricity?	
	a) Ionic	b) Covalent	c) Molecular	d) Metallic
20	1. One atmosphere is nume		-	
	a) $10^{6} \text{ dyne cm}^{-2}$	b) 10^2 dyne cm ⁻²	c) 10^4dyne cm^{-2}	d) 10 ⁸ dyne cm ⁻²
20	2. Calculate the total pressu	re in a 10.0 L cylinder which	ch contains 0.4 g helium, 1.0	6 g oxygen and 1.4 g
	nitrogen at 27°C.			
	a) 0.492 atm	b) 49.2 atm	c) 4.92 atm	d) 0.0492 atm

203. Which of the following is a Boyle plot at very low pressure?

$$p^{p^{p}}$$
a)
$$p^{p}$$
b)
$$p^{p}$$
b)
$$p^{p}$$
c)
$$p^{p}$$

b) Production of low temperature		
c) Production of high temperature		
d) None of the above		
214. A real gas at high pressure occupies under identical co	onditions:	
a) More volume than that of an ideal gas		
b) Less volume than that of an ideal gas		
c) Same volume as that of an ideal gas		
d) More or less volume than that of an ideal gas deper	nding upon the nature of t	he gas
215. Structure similar to zinc blende is found in		
a) NaCl b) AgCl	c) CuCl	d) TICI
216. One mole of a gas is defined as:		
a) The number of molecules in one litre of gas		
b) The number of molecules in 2.24 litre of a gas		
c) The number of atoms contained in 12g of C^{14} isoto	pe	
d) The number of molecules in 22.4 litre of a gas at ST		
217. The formula for determination of density of unit cell i		
		$a^3 \times M$
a) $\frac{a^3 \times N_A}{Z \times M}$ g cm ⁻³ b) $\frac{M \times N_A}{A^3 \times Z}$ g cm ⁻³	c) $\frac{1}{a^3 \times N_4}$ g cm ⁻³	d) $\frac{1}{Z \times N_{\star}}$ g cm ⁻³
218. The crystal system of a compound with unit cell dime		
$\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$ is		
	c) Orthorhombic	d) Rhombohedral
219. Air at sea level is dense, this is a practical implementa		
	c) Avogadro's law	d) Dalton's law
220. During the evaporation of liquid	c) http://www.commenter.com/	
	b) The temperature of the	liquid will fall
	d) The temperature rema	
221. A spherical balloon of 21 cm diameter is to be filled w		
gas at 20 atm and 27°C. If the cylinder can hold 2.82 L		
up is		
-	c) 10	d) 12
222. O_2 is collected over water at 20°C. The pressure inside	5	·)
pressure due to O_2 alone if vapour pressure of H_2O is		
	c) 758 mm	d) None of these
223. A pure crystalline substance, on being heated gradual	2	a) None of these
	lly first forms a turbid loo	king liquid and then the
furbidity completely disappears. This behavior is the		
turbidity completely disappears. This behavior is the a) isomeric crystals b) liquid crystals	characteristic of substance	es forming
a) isomeric crystals b) liquid crystals	characteristic of substance c) isomorphous crystals	es forming d) allotropic crystals
a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is incr	characteristic of substance c) isomorphous crystals	es forming d) allotropic crystals
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is incr temperature must be: 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat	es forming d) allotropic crystals ed by 1°C its initial
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is incr temperature must be: a) 250 K b) 250°C 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K	es forming d) allotropic crystals ed by 1°C its initial d) 25°C
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic l	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic le e. The formula for the com	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 226. 10 g each of CH₄ and O₂ are kept in cylinders of same 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 226. 10 g each of CH₄ and O₂ are kept in cylinders of same ratio of two gases 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂ volume under same temp	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃ eratures, give the pressure
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 226. 10 g each of CH₄ and O₂ are kept in cylinders of same ratio of two gases a) 2:1 b) 1:4 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂ volume under same temp c) 2 : 3	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃ eratures, give the pressure d) 3 : 4
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increating temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 226. 10 g each of CH₄ and O₂ are kept in cylinders of same ratio of two gases a) 2:1 b) 1:4 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂ volume under same temp c) 2 : 3 s rms speed of the molecu	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃ eratures, give the pressure d) 3 : 4 les will be doubled is:
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 226. 10 g each of CH₄ and O₂ are kept in cylinders of same ratio of two gases a) 2 : 1 b) 1 : 4 227. A sample of gas is at 0°C. The temperature at which it a) 103°C b) 273°C 	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂ volume under same temp c) 2 : 3 s rms speed of the molecu c) 723°C	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃ eratures, give the pressure d) 3 : 4 les will be doubled is: d) 819°C
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increating temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 226. 10 g each of CH₄ and O₂ are kept in cylinders of same ratio of two gases a) 2 : 1 b) 1 : 4 227. A sample of gas is at 0°C. The temperature at which it a) 103°C b) 273°C 228. If the concentration of water vapour in the air is 1% at the centre of the cube of a set of the concentration of two parts of the cube of the cube	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂ volume under same temp c) 2 : 3 s rms speed of the molecu c) 723°C	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃ eratures, give the pressure d) 3 : 4 les will be doubled is: d) 819°C
 a) isomeric crystals b) liquid crystals 224. If pressure of a gas contained in a closed vessel is increated temperature must be: a) 250 K b) 250°C 225. A solid has a structure in which 'W' atoms are located centre of edges and Na atoms at the centre of the cube a) Na₂WO₃ b) Na₂WO₂ 226. 10 g each of CH₄ and O₂ are kept in cylinders of same ratio of two gases a) 2 : 1 b) 1 : 4 227. A sample of gas is at 0°C. The temperature at which it a) 103°C b) 273°C 228. If the concentration of water vapour in the air is 1% a the partial pressure of water vapour is:	characteristic of substance c) isomorphous crystals reased by 0.4% when heat c) 2500 K at the corners of a cubic la e. The formula for the com c) NaWO ₂ volume under same temp c) 2 : 3 s rms speed of the molecu c) 723°C	es forming d) allotropic crystals ed by 1°C its initial d) 25°C attice 'O' atoms at the pound is d) NaWO ₃ eratures, give the pressure d) 3 : 4 les will be doubled is: d) 819°C

229. 0.5 mole of each of H_2 , SO_2 and CH_4 are kept in a		e in the container. After 3 h,
the order of partial pressures in the container wi		
a) $pSO_2 > pH_2 > pCH_4$ b) $pSO_2 > pCH_4 > pH_4$		
230. 22 g solid CO_2 or dry ice is enclosed in a bottle of	one litre properly closed. If	f temperature of bottle is
raised to 25°C to evaporate all the CO ₂ , the press	ure in bottle is:	
a) 13.23 atm b) 12.23 atm	c) 11.23 atm	d) 14.23 atm
231. Gases deviate from ideal gas behaviour at high pi	ressure. Which of the follow	ving is correct for non ideality?
a) At high pressure, the collision between the gas		
b) At high pressure, the gas molecules move only		\frown
c) At high pressure, the volume of gas becomes in		
d) At high pressure, the intermolecular interaction		
232. CsBr crystal has bcc structure. It has an edge leng	-	tarianic distance between Cc ⁺
and Br ⁻ ions is	gui of 4.5 A. The shortest in	terionic distance between cs
	c) 3.72 Å	
a) 1.86 Å b) 2.86 Å	,	d) 4.72 Å
233. Two gases <i>A</i> and <i>B</i> having the same volume d		artition in 20 and 10 seconds
respectively. The molecular mass of <i>A</i> is 49 u. Mo		
a) 25.00 u b) 50.00 u	c) 12.25 u	d) 6.50 u
234. In the van der Waals' equation, the constant 'a' a	nd $'b'$ with temperature sho	ows which trend:
a) Both remains same		>
b) 'a' remains same, b varies		
c) 'a' varies, b remains same		
d) Both varies		
235. Frenkel defect is found in crystals in which the ra	idius ration is	
a) 1.5	b) 1.7	
c) Very low	d) Slightly less than un	nity
236. Graham's law deals with the relation between	\mathbf{V}	
a) Pressure and volume	b) Density and rate of	diffusion
c) Rate of diffusion and volume	d) Rate of diffusion and	d viscosity
237. The density of a gas A is twice that of a gas B at the	he same temperature. The r	nolecular weight of gas <i>B</i> is
thrice that of A. The ratio of the pressures acting		
a) $\frac{1}{6}$ b) $\frac{7}{8}$	c) $\frac{2}{5}$	$d)\frac{1}{2}$
	0	$\frac{d}{4}$
238. The CO_2 gas does not follow gaseous laws at all r		
a) It is triatomic gas	b) Its internal energy i	s quite high
c) There is attraction between its molecules	d) It solidify at low ten	nperature
239. Based on kinetic theory of gases following laws c	an be proved	
a) Boyle's law b) Charles' law	c) Avogadro's law	d) All of these
240. The quantity $pV/(k_BT)$ represents the		
a) Number of molecules in the gas	b) Mass of the gas	
c) Number of moles of the gas	d) Translation energy	of the gas
241. Hydrogen diffuses six times faster than gas A. Th	e molar mass of gas A is	
a) 72 b) 6	c) 24	d) 36
242. A certain mass of gas occupies a volume of 300 co	c at 27°C and 620 mm press	sure. The volume of this gas at
47°C and 640 mm pressure will be		
a) 400 cc b) 510 cc	c) 310 cc	d) 350 cc
243. A closed vessel contains equal number of oxygen	and hydrogen molecules at	t a total pressure of 740 mm. If
oxygen is removed from the system, the pressure		-
a) Becomes half of 740 mm		
b) Remains unchanged		
c) Becomes 1/9th of 740 mm		
d) Becomes double of 740 mm		
-		

244. 2 g of hydrogen diffuses from a container in 10 min		xygen would diffused through
the same container in the same time under similar		d) 0 ~
a) 5 g b) 4 g	c) 6 g	d) 8 g
245. The critical temperature of a gas is that temperatur		
a) Above which it can no longer remain in the gased	bus state	
b) Above which it cannot be liquefied by pressure		
c) At which it solidifies		
d) At which volume of gas becomes zero	1 • 1 1 7	
246. A preweighted vessel was filled with CO_2 at STP and	-	
same temperature and pressure and again weighter		
a) The same as that of the SO_2	b) Twice of that of the	-
c) Half that of the SO_2	d) Two third of that of	-
247. The term that corrects for the attractive forces pres a) nb b) $n^2 a/V^2$	c) $-(n^2a/V^2)$	d) $-nb$
a) nb b) $n^2 a/V^2$ 248. 1.0 L of N ₂ and 7/8 L of O ₂ at the same temperature		
relation between the masses of the two gases in the		eu together. What is the
		d M = 16M
a) $M_{N_2} = 3M_{O_2}$ b) $M_{N_2} = 8M_{O_2}$	c) $M_{\rm N_2} = M_{\rm O_2}$	d) $M_{\rm N_2} = 16 M_{\rm O_2}$
249. A gas will approach ideal behaviour at		
a) Low temperature and high pressure	b) Low temperature and	•
c) High temperature and low pressure	d) High temperature a	na nign pressure
250. Which gas may be collected over water?	c) HCl	d) SO_2
a) NH ₃ b) N ₂ 251. The relationship between coefficient of viscosity of		
a) $\eta = Ae^{ERT}$ b) $\eta = Ae^{E/RT}$	c) $\eta = ET/R$	d) $\eta = Ae^{RT/E}$
252. All the three states H_2O , <i>i. e.</i> , the triple point for H_2O		$d \eta = Ae^{-\gamma}$
Ice \Rightarrow Water \Rightarrow Vapour exist at:	o ule equilior luin,	
a) 3.85 mm and 0.0981°C	Y	
b) 4.58 mm and 0.0098°C		
c) 760 mm and 0°C		
d) None of the above		
253. Which is a postulate of kinetic theory of gases?		
a) Gases combine in simple ratio		
b) There is an attraction between gaseous molecule	es	
c) There is no influence of gravity on gas molecules		
d) Atom is indivisible		
254. If a vessel containing hydrogen chloride at a pressu	re <i>p</i> is connected with an	other vessel of the same
volume containing ammonia at a pressure p and the	=	
a white solid then the gas pressure		-
a) Is equal to the pressure p	b) Will be $p/p = 1$	
c) Will be doubled, <i>ie</i> , 2p	d) Drops to zero	
255. The Joule-Thomson coefficient for a gas is zero at:		
a) Inversion temperature		
b) Critical temperature		
c) Absolute temperature		
d) Below 0°C		
256. Consider an ideal gas contained in a vessel. If the in	termolecular interaction	s suddenly begins to acts,
which of the following will happen?		
a) The pressure decrease	b) The pressure increa	se
c) The pressure remains unchanged	d) The gas collapses	
257.5 g each of the following gases at 87°C and 750 mm	n pressure are taken. Wh	hich of them will have the least

volun	ne?			
a) HF		b) HCl	c) HBr	d) HI
258. A thir	n balloon filled with a	air at 47°C has a volume of	3.0 litre. If on placing it in a	a cooled room, its volume
becor	nes 2.7 litre, the tem	perature of room is:		
a) 42	°C	b) 30°C	c) 15°C	d) 0°C
259. The t	emperature at which	n nitrogen under 1.00 atm	pressure has the same root	mean square as that of
carbo	on dioxide at STP, is			
a) 0°0	C	b) 27°C	c) –99°C	d) –200°C
260. At wh	nat temperature will	hydrogen molecules have	the same kinetic energy as	nitrogen molecules have at
35°C	?			K V
₂₈ کا	× 35 °C	b) $\frac{2 \times 35}{28}$ °C	2×28	d) 35°C
	-	20	00	
-			for those gases which on m	
,	not react	b) React with each other	•	d) All of these
262. Consi	der an ideal gas con	tained in a vessel. If the int	ermolecular interactions su	iddenly begins to act, whic
	e following will happ	en?		V I
-	e gas collapses		b) The pressure decrease	
-	e pressure increases		d) The pressure remain u	nchanged
263. The n	umber of moles of H	l ₂ in 0.224 L of hydrogen g		
a) 0.1		b) 1	c) 0.001	d) 0.01
		a ⁺ and CI ⁻ ions in sodium	chloride crystal is <i>x</i> pm, the	e length of the edge of the
unit c				
a) $\frac{x}{2}$ p	m	b) $\frac{x}{4}$ pm	c) 2 <i>x</i> pm	d) 4 <i>x</i> pm
_		iabatic expansion, it gets c	polad due to	
	ss of kinetic energy	labatic expansion, it gets to	b) Fall in temperature	
-	crease in velocity		d) Energy change in doing	work
2	•	as, increasing the tempera		S WOLK
	-	kinetic energy by two times		
	creases the rms velo			
,	creases the rms veloc		a vala situ kut nat signifiasi	
			s velocity, but not significat	ntiy
		s depends only on its	a) Number of moles	d) Tomporatura
,	essure	b) Volume	c) Number of moles	d) Temperature
			l is 562.8 pm. Calculate the	density you would expect
	is basis, $N_A = 6.023$			1) 2 2 4 - 3
		_	c) $1.859 \mathrm{g}\mathrm{cm}^{-3}$	_
		= =	e molecules of the second n	number of alkyne series be
	ame as that of SO_2 at		20000	
	7°C	b) 227°C	c) 800°C	d) 254°C
			same pressure <i>P</i> and same	
			volume <i>V</i> , the pressure of	
a) 2P		b) P	c) <i>P</i> /2	d) 4 <i>P</i>
		on we feel discomfort as:		
-	mperature is high			
-	e blood pressure inc			
-	=	n decreases due to large rel	lative humidity	
	· · · · · · · · · · · · · · · · · · ·	ant		
-	e question is irreleva		-	
272. Whic	h of the given sets of		e will cause a gas to exhibit	the greatest deviation from
272. Whic ideal	-	temperature and pressure	e will cause a gas to exhibit c) —100°C and 4 atm	the greatest deviation from d) 0°C and 2 atm

273. In van der Waals' equation of state of the gas, the constant 'b' is a measure of:
a) Intermolecular attraction
b) Intermolecular attraction
c) Volume occupied by molecules
d) Intermolecular repulsions
274. Which statement about evaporation is incorrect?
a) Evaporation takes place at all temperature
b) Evaporation takes place at all temperature
c) Evaporation takes place at all temperature
b) Evaporation takes place at all temperature
b) Evaporation takes place at all temperature
c) Evaporation takes place at all temperature
b) Evaporation takes place at all temperature
c) Evaporation takes place at all temperature at the state at the above
276. Piezoelectric crystals are used in
a) TV b) Radio c) Freeze c) Record player
277. The root mean square speed of an ideal gas in a closed container of fixed valume is increased from 5 ×
10⁶ cms⁻¹ to 10 × 10⁴ cms⁻¹. Which statement might correctly explain how the change accomplished?
a) By heating the gas, the pressure is made frour times
c) By heating the gas, the pressure is made frour times
c) By heating the gas, the pressure is made three times
278. At low pressure, the van der Waals' equation is reduced to
a)
$$Z = \frac{pV_m}{RT} = 1 - \frac{a}{RT}$$
 b) $Z = \frac{pV_m}{RT} = 1 + \frac{b}{RT}p$ c) $pV_m = RT$ d) $Z = \frac{pV_m}{RT} = 1 - \frac{a}{RT}$
279. If saturated vapours are compressed slowly (temberature remaining constant) to half the initial volume,
the vapour pressure will
a) Become four times b) Become doubled c) Remain unchanged d) Become half
280. In two vessels of 1 L each at the same temperature 1 go H₂ and 1 g of CH₂ are taken, for these
a) V_m values will be same b) Bix tent cenergy per mol will be same

(p = vapour pressure of a liquid, T = absolute temperature)

c) The average mole	cular speed	d) Size of the molecule	
, ,	onia and one of dry hydrogen (-	
=	ls of the tube are opened simu		
formed will be	s of the tube are opened shind	italieously. The white and	nomum emorrae ring mot
a) At the centre of th	e tube	b) Near the hydrogen o	chloride bottle
c) Near the ammonia		d) Throughout the leng	
311. Point defects are pre		uj iniougnout the leng	
a) ionic solids	b) amorphous solids	c) molecular solids	d) Liquids
312. Frenkel defect is cau	,	ej morecanar condo	
	tive ion from its normal lattice	e site to an interstitial site	
	om the normal lattice site crea		
	ion occupying an interstitial p		
	ion occupying an interstitial p		
, ,	ng is not correct for ionic crys		
a) All are electrolyte			
b) Exhibit the proper			
c) They process high	n melting point and boiling poi	nt	
d) Exhibit directiona	l properties of the bond		S
314. If temperature of 1 m	nole of gas is increased by 50°	C, calculate the change in I	kinetic energy of the system.
a) 623.25 J	b) 6.235 J	c) 623.5 J	d) 6235.0 J
315. Oxygen gas generate	d by the decomposition of pot	assium chlorate is collecte	ed. The volume of oxygen
collected at 24°C and	l atmospheric pressure of 760	mm Hg is 128 mL. Calcula	ated the mass of oxygen gas
obtained. The pressu	re of the water vapour at 24°	C is 22.4 mm Hg	
a) 0.123 g	b) 0.163 g	c) 0.352 g	d) 1.526 g
316. Which set of condition	ons represents easiest way to l	liquefy a gas?	
a) Low temperature			
b) High temperature		<i>6</i> 7	
c) Low temperature	-		
d) High temperature			
	root mean square velocities of		
	HBr b) HBr $> 0_2 > N_2 > H_2$		
		ough a porous plug of 1/	6th of the speed of hydrogen
under identical cond		-) 2(
a) 27	b) 72	c) 36	d) 48
	lar speed is greatest in case of	a gas sample of:	
a) 2.0 mole of He at b) 0.05 mole of Ne at			
c) 0.40 mole of O_2 at			
d) 1.0 mole of N_2 at $\frac{1}{2}$			
	nstant temperature is called a	n isotherm. This shows the	a relationship between
		1	
a) p and $\frac{1}{v}$	b) pV and V	c) V and $\frac{1}{p}$	d) p and V
321. Which gas is adsorbe	ed by charcoal?		
🗸 a) CO	b) N ₂	c) H ₂	d) All of these
322. If the temperature of	f 500 mL of air increases from	27°C to 42°C under consta	ant pressure, then the increase
=			
in volume shall be			
in volume shall be a) 15 mL	b) 20 mL	c) 25 mL	d) 30 mL
in volume shall be a) 15 mL 323. In the closest packed	l structure of a metallic lattice	, the number of nearest ne	eighbours of a metallic atom is
in volume shall be a) 15 mL 323. In the closest packed a) 4	l structure of a metallic lattice b) 6	, the number of nearest ne c) 8	eighbours of a metallic atom is d) 12
in volume shall be a) 15 mL 323. In the closest packed a) 4	l structure of a metallic lattice	, the number of nearest ne c) 8	eighbours of a metallic atom is d) 12

a) CO_2

338. Which of the following statements is not true about NaCl structure?

a) CI⁻ ions are in fcc arrangement

c) CI⁻ ions has coordination number 6

b) Na⁺ ions has coordination number 4

d) Each cell contains 4 NaCl molecules

339. For real gases van der Waals' equation is written as

$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

Where a' and b' are van der Waals' constants

Two set of gases are:

(I) O_2 , CO_2 , H_2 and He

(II) CH_4 , O_2 and H_2

The gases given in set-I in increasing order of 'b' and gases given in set-II in decreasing order of 'a arranged below. Select the correct order from the following:

a) (I) He < H₂ < CO₂ < O₂ (II) CH₄ > H₂ > O₂

b) (I) $O_2 < He < H_2 < CO_2$ (II) $H_2 > O_2 > CH_4$

c) (I) $H_2 < He < O_2 < CO_2$ (II) $CH_4 > O_2 > H_2$

- d) (I) $H_2 < O_2 < He < CO_2$ (II) $O_2 > CH_4 > H_2$
- 340. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_i is the initial temperature and T_f is the final temperature, which of the following statements is correct?

a)
$$(T_f)_{irrev} > (T_f)_{rev}$$

b) $T_f > T_i$ for reversible process but $T_f = T_i$ for irreversible process

c)
$$(T_f)_{rev} = (T_f)_{irrev}$$

d) $T_f = T_i$ for both reversible and irreversible processes

341. A gas cannot be liquefied if:

a) Forces of attraction are low under ordinary conditions

b) Forces of attraction are high under ordinary conditions

- c) Forces of attraction are zero under ordinary conditions
- d) Forces of attraction either high or low under ordinary conditions
- 342. The average speed of gas molecules is equal to:

a) $\left[\frac{2RT}{M}\right]^{1/2}$	b) $\left[\frac{3RT}{M}\right]^{1/2}$	c) $\left[\frac{8RT}{\pi M}\right]^{1/2}$	d) $\left[\frac{4RT}{\pi M}\right]^{1/2}$

343. If the pressure on a NaCl structure is increased, then its coordination number will

b) Decrease a) Increase c) Either (a) or (b)

344. To raise the volume of a gas by four times, the following method may be adopted. Which of the method is wrong?

- a) T is doubled and P is also doubled
- b) Keeping *P* constant, *T* is raised by four times
- c) Temperature is doubled and pressure is halved
- d) Keeping temperature constant, pressure is reduced to 1/4 of its initial value

345. 50 mL of hydrogen diffuses through small hole from a vessel in 20 min. Time taken for 40 mL of oxygen to diffuse out under similar conditions will be

a) 12 min b) 32 min c) 8 min

d) 64 min

d) Remain the same

346. Tetragonal crystal system has the following unit cell dimensions

a) a = b = c and $\alpha = \beta = \gamma = 90^{\circ}$ b) $a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$

c) $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$ d) $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$

347. A balloon filled with methane CH₄ is pricked with a sharp point and quickly plunged into a tank of

- hydrogen at the same pressure. After sometime, the balloon will have b) Collapsed
 - a) Enlarged
 - c) Remained unchanged in size d) Ethylene (C_2H_4) inside it
- 348. If a gas is expanded at constant temperature:

- b) The kinetic energy of the molecules decreases
- c) The kinetic energy of the molecules remains the same

b) $P_1 < P_2$

- d) The kinetic energy of the molecules increases
- 349. The compressibility factor for H₂ and He is usually:
- a) > 1 b) = 1 c) < 1 d) Either of these 350. The number of spheres contained (i) in one body centred cubic unit cell and (ii) in one face centred cubic unit cell, is
 - a) In (i) 2 and in (ii) 4

a) $P_1 > P_2$

- b) In (i) 4 and in (ii) 2 d) In (i) 3 and in (ii) 2
- c) In (i) 2 and in (ii) 3 351. *V versus T* curves at constant pressure P₁ and P₂ for an ideal gas are shown in figure. Which is correct?

c) $P_1 = P_2$

d) All of these

d) $\frac{1}{8}$

- 352. The root mean square speed of hydrogen molecules at room temperature is 2400 ms⁻¹. At room temperature the root mean square speed of oxygen molecules would be: a) 400 ms^{-1} b) 300 ms⁻¹ c) 600 ms⁻¹ d) 1600 ms⁻¹ 353. 4.4 g of CO₂ and 2.24 litre of H₂ at STP are mixed in a container. The total number of molecules present in
- the container will be:
- b) 1.2044×10^{23} d) 6.023×10^{24} a) 6.022×10^{23} c) 2 354. If 10⁻⁴ dm³ of water is introduced into a 1 dm³ flask at 300 K, how many moles of water are in the vapour
 - phase when equilibrium is established (Given vapour pressure of H_2O at 300K is 3170 Pa; R =8.314 JK⁻¹ mol⁻¹)
- b) 1.53×10^{-2} mol d) 1.27×10^{-3} mol a) 5.56×10^{-6} mol c) 4.46×10^{-2} mol 355. The most probable velocity (in cm/s) of hydrogen molecule at 27°C, will be b) 17.8×10^4 c) 24.93×10^9 d) 17.8×10^8 a) 19.3×10^4
- 356. Four particles have speed 2,3,4 and 5 cm/s respectively. Their rms speed is: b) (272) cm/s a) 3.5 cm/s
- c) $\sqrt{54}$ cm/s d) $(\sqrt{54}/2)$ cm/s 357. An open vessel containing air is heated from 300 K to 400 K. The fraction of air originally present which goes out of it is:
 - a) $\frac{3}{4}$

c) $\frac{2}{3}$

358. Which is valid at absolute zero?

- a) *KE* of the gas becomes zero, but molecular motion does not become zero
- b) KE of the molecules becomes zero and the molecular motion also becomes zero
- c) KE of the gas decreases but does not become zero

b) $\frac{1}{4}$

d) None of the above

359. Types of forces that can be present in ethanol giving it a liquid state

- a) Dipole-dipole interaction b) London forces
 - c) Hydrogen bonding d) All of these

360. At what temperature would the volume of a given mass of a gas at constant pressure be twice to its volume at 0°C?

- a) 100°C b) 273°C c) 373°C d) 446°C 361. Specific heat is defined as: a) Heat capacity/g

 - b) Heat capacity/mol

c) Heat capacity at const			
d) Heat capacity at const		-0.214 W ⁻¹ m al ⁻¹).	
362. The kinetic energy of two	b) 6491.6 J	c) 7482.6 J	d) 8882.4 J
a) 5491.6 J 363. An example of a substance		, ,	uj 8882.4 j
a) Solid CO_2	b) Silica	c) Iodine crystal	d) White phosphorus
364. The ratio of cationic radi	•	· ·	
number is		fine erystal is greater than o	5.752. Its coor unration
a) 1	b) 4	c) 6	d) 8
365. The most probable speed	,	,	
a) 240 J	b) 180 J	c) 320 J	d) 360 J
366. The intermetallic compo		, ,	
coordination number of e			
a) Simple cubic	b) Body centred cube	c) Face-centred cube	d) None of these
367. Graham's law of diffusior	· ·	-)	
a) High pressure	b) High temperature	c) Low pressure	d) At all conditions
368. Ratio of average to most	, , ,		*
a) 1.128	b) 1.224	c) 1.0	d) 1.112
369. A sample of pure gas has	-	it 26.5°C and 680.2 mm Hg.	Which of the following is
present in the sample?			
a) CH ₄	b) C ₂ H ₆	c) CO ₂	d) Xe
370. Dalton's law of partial pr	essure is not applicable to		
a) $0_2 + 0_3$	b) $CO + CO_2$	c) $NH_3 + HCl$	d) I + O_2
371. The rate of diffusion of h	ydrogen gas is	G S'	
a) 1.4 times to He gas	b) Same as He gas 🔨	c) 5 times to He gas	d) 2 times to He gas
372. Which is not true in case	-		
a) It cannot be converted	-		
b) There is no interaction			
c) All molecules of the ga			
	e pV is proportional to the		
373. Weight of 112 mL of oxyg			
a) 0.32 g	b) 0.64 g	c) 0.96 g	d) 0.16 g
374. Gas equation $pV = nRT$ i		a) Dath (a) and (b)	d) Nora of the chore
a) Adiabatic process 375. A gas can be easily liquef		c) Both (a) and (b)	d) None of the above
	nperature equals the Boyle	tomporaturo	
b) Under adiabatic comp		temperature	
· · ·	it is cooled to below the cri	tical temperature	
d) All of the above	it is cooled to below the en		
376. At 400 K, the root mean s	square (rms) speed of a gas	X (molecular weight = 40)) is equal to the most
	at 60 K. The molecular weig)
a) 2	b) 4	c) 6	d) 8
377. What is the pressure of 2	,	,	-
(a = 4.17, b = 0.03711)	U U		-
a) 10.33 atm	b) 9.33 atm	c) 9.74 atm	d) 9.2 atm
378. Vapours of a liquid exist	only:		
a) Below b.p.			
b) Below critical tempera	ature		
c) Below inversion temp			
d) Above critical tempera	ature		

	=		essure of nitrogen in the mixture
a) 4%	per cent of nitrogen in the b) 40%	c) 400%	d) 2.5%
,	,	,	ensity of the metal is 2 g cm ^{-3} .
The unit cells in 200 g		of the unit cell is 2A. Theu	
a) 1×10^{25}	b) 1×10^{24}	c) 1 × 10 ²²	d) 1×10^{20}
,	,	,	temperature is raised from 50
to 200°C?			
a) $\frac{1.21}{1}$	b) $\frac{1.46}{1}$	c) $\frac{1.14}{1}$	d) $\frac{4}{1}$
1	1	I	gas having the highest partial
pressure is:	italiis 1 g of 112, 1 g of 110, 7		gus navnig tile ingnest på tal
a) H ₂	b) 0 ₂	c) He	d) N_2
	, 1	,	e cubic unit cell. If all the face-
		d then the resultant stoichi	
a) AB_2	b) A_2B	c) A_3B_4	d) A_4B_3
384. Which has maximum v	, 1		
a) CH ₃ CH ₂ CH ₂ OH		c) CH ₃ − O − CH ₃	d) CH ₃ COOH
385. The molecular mass of molecules, the number	-	.5 L of N_2 at 27°C and 700 O under identical condition	-
a) $\frac{n}{2}$	b) <i>n</i>	c) 2n	d) None of these
386. If a gas is allowed to ex	mand at constant tempera	ature then	
a) Number of molecule		iture then	
-	of the gas molecules decre	2565	
, .	of the gas molecules increa		
	of the gas molecules remain		
387. The ratio of average sp temperature is			rogen molecule at the same
-	7 1/2	$(3)^{1/2}$	$(7\pi)^{1/2}$
a) $\left(\frac{3\pi}{7}\right)^{1/2}$	b) $\left(\frac{7}{2\pi}\right)$	c) $\left(\frac{3}{7\pi}\right)^{1/2}$	d) $\left(\frac{7\pi}{2}\right)^{1/2}$
388. The relative rates of di	iffusion of $\mathrm{H}^{235}\mathrm{F}_{\star}$ and H^{235}	$\sqrt{7\pi}$	
a) 1.0043	b) 1.2	c) 1.4	d) 1.6
389. In van der Waals' equa		,	, , , , , , , , , , , , , , , , , , ,
a) Intermolecular repu	e e e e e e e e e e e e e e e e e e e	b) Intermolecular att	
c) Volume occupied by			llisions per unit volume
390. There is 10 litre of a ga		-	-
a) 273 K and 2 atm	b) 273°C and 2 atm	c) 546°C and 0.5 atm	
391. In the gas equation <i>PV</i>		,	-
a) The nature of the ga		rsui gus constant depends	upon.
b) The pressure of the			
c) The temperature of			
d) The units of measur			
392. Sodium metal crystalli sodium atom?		ic lattice with the cell edge	4.29 Å. What is the radius
	b) 2.371×10^{-7} cm	c) $3,817 \times 10^{-8}$ cm	d) 9.312×10^{-7} cm
393. The density of a gas is			a) 7.512 × 10 thi
a) CH_4	b) C_2H_6	$c) CO_2$	d) Xe
394. How many space lattic		, 1	•
a) 7	b) 14	c) 32	d) 230
,	2	,	,

395. By what factor does the average velocity of a gaseous molecule increase when the temperature (in Kelvin) is doubled? a) 1.4 b) 2.0 c) 2.8 d) 4.0 396. Consider 1 cm³ sample of air at absolute temperature T_0 at sea-level and another 1 cm³ sample of air at a height where the pressure is one third atmosphere. The absolute temperature *T* of the sample at the height is : a) Equal to $T_0/3$ b) Equal to T_0 c) Equal to $3T_0$ d) Cannot be determined in terms of T_0 from the above data 397. Which among the following will show anisotropy? d) Wood c) Barium chloride a) Glass b) Plastic 398. If the radius ratio is in the range of 0.414 - 0.732, then the coordination number will be b) 4 d) 8 a) 2 c) 6 399. A gaseous mixture contains oxygen and nitrogen in the ratio of 1 : 4 by weight. Therefore, the ratio of their number of molecules is: c) 7 : 8 d) 3 : 16 a) 1 : 4 b) 1 : 8 400. A vogadro's hypothesis states that a) The ideal gas consists of a large number of small particles called molecules. b) Under the same conditions of temperature and pressure equal volumes of gases contain the same number of molecules. c) Volume of definite quantity of gas at constant pressure is directly proportional to absolute temperature. d) A given mass of gas at constant pressure is directly proportional to absolute temperature. 401. An fcc lattice has a lattice parameter a = 400 pm. Calculate the molar volume of the lattice including all the empty space a) 7.6 mL b) 6.5 mL c) 10.8 mL d) 9.6 mL 402. Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by a definite fraction of its volume at: a) Zero degree centigrade b) Its critical temperature c) Absolute zero d) Its Boyle's temperature 403. A gaseous mixture of 2 moles of *A*, 3 moles of *B*, 5 moles of *C* and 10 moles of *D* is contained in a vessel. Assuming that gases are ideal and the partial pressure of C is 1.5 atm, total pressure is **b**) 6 atm c) 9 atm a) 3 atm d) 15 atm 404. At constant volume, for a fixed number of mole of a gas, the pressure of the gas increases with rise of temperature due to a) Increase in average molecular speed b) Increase in number of mole c) Increase in molecular attraction d) Decrease in mean free path 405. A gaseous mixture contains 56 g of N₂, 44 g ofCO₂ and 16 g of CH₄. The total pressure of mixture is 720 mm of Hg. The partial pressure of methane is a) 75 atm b) 160 atm c) 180 atm d) 215 atm 406. A certain gas diffuses from two different vessels A and B. The vessel A has a circular orifice while vessel B has square orifice of length equal to the radius of the orifice of vessel A. The ratio of the rates of diffusion of the gas from vessel A to vessel B, assuming same temperature and pressure is: a) π b) 7 : 22 c) 1 : 1 d) 2 : 1 407. Two gases *A* and *B*, having the mole ratio of 3 : 5 in a container, exert a pressure of 8 atm. If *A* is removed, what would be the pressure due to *B* only, temperature remaining constant? a) 1 atm b) 2 atm c) 4 atm d) 5 atm 408. By what ratio the average velocity of the molecule in a gas change when the temperature is raised from 50

to 200°C?					
	1.46	1 1 4	А		
a) $\frac{1.21}{1}$	b) $\frac{1.46}{1}$	c) $\frac{1.14}{1}$	d) $\frac{4}{1}$		
409. If surface area is ir	rreased	1	1		
a) evaporation inc		b) b.p. increases			
c) m.p. increases		d) Surface tension increa			
, i	rature calculate the ratio of aver		1303		
a) 2 : 3	b) 3 : 4	c) 1:2	d) 1 : 6		
411. The molar volume	,	01.2	u) 1.0		
a) NTP	b) 0° C and 2.0 atm	c) 127°C and 1 atm	d) 273°C and 2 atm		
2	f A and B having mass 100 kg and	-			
	te of diffusion of <i>B</i> ?	u 04 kg allu late ol ulliusiol			
		E × 10-3	d) 46×10^{-3}		
a) 15×10^{-3}	b) 64×10^{-3}	c) 5×10^{-3}	d) 40 × 10		
413. When <i>r</i> , <i>p</i> and <i>M</i> r	epresent rate of diffusion, pressu	re and molecular mass, res	pectively, then the ratio of		
	on (r_A/r_B) of two gases A and B,				
	(M_B) b) $(p_A/p_B) (M_B/M_A)^{1/2}$		d) $(p_A/p_B) (M_A/M_B)^{1/2}$		
414. A gas behaves like		(CALLED) (C-BI-TA)			
-	nd low temperature	b) Low pressure and hig	h temperature		
, . .	nd high temperature	d) Low pressure and low	•		
,	plysed in the lungs to form HCl ar				
a) NH ₃	b) Cl ₂	c) SO ₂	d) COCl ₂		
	he coordination number of Cs ⁺ i		-) 2		
a) Equal to that of		b) Equal to that of CI ⁻ , th	nat is 8		
c) Not equal to that		d) Not equal to that of CI			
· ·	r force of attraction between nor	-	,		
a) H-bonding	Ċ				
b) Dispersion force					
c) Interionic attrac					
d) Adhesive forces					
,	s have a tendency to mix with eac	ch other. This property is k	nown as:		
a) Diffusion	b) Fusion	c) Mixing	d) None of these		
	he value of <i>a</i> , <i>b</i> and <i>c</i> are respect	, ,	2		
	mol^{-1} and that of density is 3.3 g	•			
a) 2		5, cc, the number of formula	and per and cen is		
b) 3					
c) 4					
d) 6					
	ure the rms speed of the molecul	es of a certain diatomic gas	is found to be 1930 m/s		
The gas is:	are the rms speed of the molecul	es of a certain alatonne gas	15 Iouna co be 1900 mps.		
a) H_2	b) F ₂	c) 0 ₂	d) Cl ₂		
	ient regarding F-centre is		u) u.z		
	d in the voids of crystals				
	ces colour to the crystals				
· ·	the crystal increases due to F-ce	ntre			
d) All of the above	-				
•	at constant pressure p_1 and p_2 for	or an ideal gas are shown ir	figure. Which is correct?		

$\begin{bmatrix} 1 \\ V \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$		
a) $p_1 > p_2$ b) $p_1 < p_2$	c) $p_1 = p_2$	d) All of these
423. Which gas has the highest partial pressure in atmos a) CO_2 b) H_2O	-	d) N_2
a) CO_2 b) H_2O 424. Figure shows graphs of pressure <i>versus</i> density fo	c) O ₂ r an ideal gas at two temp	· -
correct?	i un lucul gus ut two temp	eratures 11 and 12. Which is
↓ ↑		
$\begin{bmatrix} \mathbf{T} \\ \mathbf{P} \end{bmatrix}$ \mathbf{T}_{1}		
a) $T_1 > T_2$ b) $T_1 = T_2$	c) $T_1 < T_2$	d) None of these
425. For an ideal gas, number of moles per litre in terms	, .	
a) PT/R b) PRT	c) P/RT	d) <i>RT/P</i>
426. The compressibility factor for a real gas at high pre		S ⁻¹
a) 1 b) $1 + (Pb/RT)$	c) 1 – (<i>Pb/RT</i>)	d) $1 + (RT/Pb)$
427. If NaCl is doped with 10^{-3} mol % SrCl ₂ , then the con		
a) 1×10^{-3} mol % b) 2×10^{-3} mol %	c) 3×10^{-3} mol %	d) $4 \times 10^{-3} \text{ mol } \%$
428. This graph expresses the various steps of the system	m containing 1 mole of gas	s. Which type of process,
system has when it moves from <i>C</i> to <i>A</i> ?		
D	X) ^y	
▲ 20.0 L		
10.0 L	Y	
300 K 600 K		
$T \longrightarrow$		
a) Isochoric b) Isobaric	c) Isothermal	d) Cyclic
429. The temperature, at which a gas shows maximum i		
a) Boyle's temperature c) Critical temperature	b) Inversion temperatu	
430. The rate of diffusion of methane at a given temperat	d) Absolute temperatur	
is	iture is twice that of gas A.	The molecular mass of gas x
a) 64.0 b) 32.0	c) 4.0	d) 8.0
431. The liquefaction behaviour of temporary gases like	,	•
etc., as we go:		
a) Below critical temperature		
b) Above critical temperature		
C) Above absolute zero		
d) Below absolute zero		
432. The rates of diffusion of SO_2 , CO_2 , PCl_3 and SO_3 are		<u></u>
a) $PCl_3 > SO_3 > SO_2 > CO_2$ c) $SO_2 > SO_3 > PCl_3 > CO_2$	b) $CO_2 > SO_2 > PCl_3 >$ d) $CO_2 > SO_2 > SO_3 >$	-
433. Hexagonal close packed arrangement of ions is des	, , , , ,	1 013
a) <i>AB AB A</i> b) <i>ABC ABC</i>	c) ABBBAB	d) ABC ABA
434. If both oxygen and helium gases are at the same ter	•	,
	- , 	2 2

a) 4 times that of He b) 2 times that of He c) 0.35 times that of He d) 8 times that of He 435. If C_1, C_2, C_3, \dots represent the speeds of n_1, n_2, n_3, \dots molecules, then the root mean square speed is:

a)
$$\left[\frac{n_1C_1^2 + n_2C_2^2 + n_3C_3^2 + \cdots}{n_1 + n_2 + n_3 + \cdots}\right]^{1/2}$$

b)
$$\left[\frac{n_1^2C_1^2 + n_2^2C_2^2 + n_3^2C_3^2 + \cdots}{n_1 + n_2 + n_3 + \cdots}\right]^{1/2}$$

c)
$$\frac{(n_1C_1^2)^{1/2}}{n_1} + \frac{(n_2C_2^2)^{1/2}}{n_2} + \frac{(n_3C_3^2)^{1/2}}{n_3} + \cdots$$

d)
$$\left[\frac{(n_1C_1 + n_2C_2 + n_3C_3 + \cdots)^2}{(n_1 + n_2 + n_3 + \cdots)}\right]^{1/2}$$

436. The ratio of molar heats of vaporization and boiling point of a liquid is constant. This is known as

a) Ostwald's rule b) Phase rule c) Vant Hoff rule d) Trouton's rule

437. At high temperature and low pressure, the van der Waals' equation is reduced to

a)
$$\left(p + \frac{a}{V_m^2}\right)(V_m) = RT$$

b) $pV_m = RT$
c) $p(V_m - b) = RT$
d) $\left(p + \frac{a}{V_m^2}\right)(V_m - b)$

438. To what temperature must a neon gas sample be heated to double its pressure, if the initial volume of gas at 75°C is decreased by 15.0%? c) ^{128°C} d) ^{60°C}

439. Consider following pairs of gases A and B

S. no. A	В	SXY .	
(i) CO ₂	N ₂ 0		
(ii) CO	N ₂		
(iii) 0 ₂	03	The second secon	
(iv) H ₂ 0	D ₂ 0		
(v) $^{235}\text{UF}_6$	²³⁸ UF ₆		
	usion of gases A and B is in the	e order	
a) $a = b < c < d < c$	e	b) $a = b < d < c < e$	
c) (i) = (ii) < (v) <	(iv) < (iii)	d) $a < b < c < d < e$	
440. What is the ratio of	diffusion rate of oxygen and h	ydrogen?	
a) 1:4	b) 4 : 1	c) 1:8	d) 8 : 1
441. A monoatomic idea	l gas undergoes a process in	which the ratio of <i>P</i> to <i>V</i> at	any instant is constant and
	nolar heat capacity of the gas		-
			d) Zero
a) $\frac{4R}{2}$	b) $\frac{3R}{2}$	c) $\frac{5R}{2}$,
442. The units of van der	Waals' constants <i>a</i> , <i>b</i> respect	ively, are	
a) L atm ² mol ⁻¹ and		b) L atm mol ² and mol L ⁻	-1
c) L^2 atm mol ⁻² and		d) L^{-2} atm ⁻¹ mol ⁻¹ and l	
	ion for diffraction of X-rays, <i>n</i>	,	
a) Avogadro's numb	_	c) Moles	d) an integer
	an ideal gas at constant pressi	,	
1			
a) $\frac{1}{\sqrt{d}}$	b) ^{<i>d</i>}	c) \sqrt{d}	d) d^2
• • • •	ing diagrams correctly describ	oes the behaviour of a fixed m	ass of an ideal gas?

(*T* is measured in K).

b) we and two re	anastivaly			
b) —ve and +ve re c) +ve	spectively			
d) –ve				
-	t constant pressure, its d	ensity		
a) Will decrease	e constant pressure, its a	b) Will increase		
c) May increase or decrease		•	d) Will remain unchanged	
	y of a gas, whose molecu		mangeu	
a) 44.8 g/L	b) 11.4 g/L	c) 2 g/L	d) 3 g/L	
, .	, .,	<i>,</i> .	e ratio of average kinetic energy of	
their molecules is:	=	Kanu 550 Krespectively. In	e latto of average kinetic energy (
a) 7 : 6	b) 6 : 7	c) 36 : 49	d) 49 : 36	
		and methane under identical		
			condition of pressure and	
temperature will h	b) 0.2		d) 0 F	
a) 4 456 An axample of a n	-	c) 2	d) 0.5	
	on-stoichiometric compo			
a) PbO	b) NiO ₂	c) Al_2O_3	d) $\operatorname{Fe}_3 O_4$ as is: d) $\left[\frac{3E}{2M}\right]^{1/2}$	
	the average kinetic energy $2\pi \frac{1}{2}$	gy is given as <i>E</i> . The $u_{\rm rms}$ of g	$as is: a = \frac{1}{2}$	
a) $\left[\frac{2E}{M}\right]^{1/2}$	b) $\left[\frac{3E}{M}\right]^{1/2}$	c) $\left[\frac{2E}{3M}\right]^{1/2}$	d) $\left[\frac{3E}{2}\right]^{1/2}$	
		10 111		
		on of kinetic theory of gases?		
		ules is negligible as compared	l to the total volume of the gas	
b) Molecules are p	-			
=	=	of the kinetic energy of the m	olecule	
	avity on motion of molec			
-		uced to half and temperature	is increased two times, then the	
volume would bec		$c \vee$		
a) V/4	b) 2V ²	c) 6V	d) 4V	
	s having 2 mole in 44.8 l			
a) 1 atm	b) 2 atm	c) 3 atm	d) 4 atm	
461. Charles' law is rep	resented mathematically			
a) $V_t = KV_0 t$	b) $V_t = \frac{KV_0}{t}$	c) $V_t = V_0 \left(1 + \frac{27}{2} \right)$	$\left(\frac{3}{2}\right)$ d) $V_t = V_0 \left(1 + \frac{t}{273}\right)$	
	l		, 1,0,	
		e at 30°C and one atmospheric		
a) 0.90	b) 1.11	c) 0.11	d) 1.0	
			lled. Assuming that the volume	
		re at which the vessel was hea		
a) 307°C	b) 107°C	c) 480°C	d) 207°C	
		on is times the actual volum		
a) 2	b) 4	c) 3	d) 0.5	
465. In octahedral hole	, ,			
	void surrounded by six s	-		
	void surrounded by four	-		
	void surrounded by eigh	-		
	ılar void surrounded by	four spheres		
466. Monoclinic crystal				
a) $a \neq b \neq c, \alpha = c$		b) $a = b = c, \alpha = b$	•	
c) $a = b = c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$		d) $a \neq b = c, \alpha = 0$	d) $a \neq b = c$, $\alpha = \beta = \gamma = 120^{\circ}$	
467. When the tempera	ture is raised, the viscos	ity of the liquid decreases. Th	is is because of:	
a) Decreased volu	me of the solution			
b) Increase in tem	perature increases the a	verage kinetic energy of mole	cules which overcome the	
	between them			

c) Decreased covalent and hydrogen bond forces			
d) Increased attraction between the molecules			
468. 10 mL of oxygen and 10 mL of hydrogen is kept a	t the same temperature and	pressure which is correct	
about number of molecules?	t the same temperature and	pressure, which is correct	
a) $No_2 > N_{H_2}$ b) $No_2 < N_{H_2}$	c) $No_2 = 16N_{H_2}$	d) $No_2 = N_{H_2}$	
	-	$u_j w_{0_2} = w_{H_2}$	
469. The speed possessed by majority of gaseous mole		d) None of these	
a) Average speed b) Most probable spee 470. If the number of atoms per unit in a crystal is 2, th	, ,	d) None of these	
	b) Body centred cubic (bcc)		
a) Simple cubic c) Octahedral	d) Face centred cubic (fcc)		
471. Average speed is equal to	u) race centieu cubic (i		
a) 0.9813 RMS speed	b) 0.9 RMS speed		
c) 0.9213 RMS speed	d) 0.9602 RMS speed		
472. The number of unit cells in 58.5 g of NaCl is nearly			
a) 0.5×10^{24} b) 1.5×10^{23}	c) 3×10^{22}	d) 6×10^{20}	
473. During the evaporation of liquid	$C_{J} J \times 10$		
a) The temperature of the liquid will rise	b) The temperature of t	the liquid will fall	
c) May rise or fall depending on the nature	d) The temperature rer		
474. A mixture of two gases, having partial pressures p			
law	p_1 and p_2 , has total pressure	<i>p</i> , then according to Datton's	
a) $p = p_1 + p_2$ b) $p = \sqrt{(p_1 + p_2)}$		d) $p = (p_1 + p_2)/2$	
a) $p - p_1 + p_2$ b) $p = \sqrt{(p_1 + p_2)}$	c) $p = p_1 \times p_2$		
475. The cooling caused by the adiabatic expansion of	a compressed gas below its	Inversion temperature (I_i)	
without doing external work is called:			
a) Joule-Thomson effect			
b) Adiabatic demagnetism			
c) Tyndall effect	Y		
d) Compton effect	T are in the rotio.		
476. The rates of diffusion of O_2 and H_2 at same <i>P</i> and a) 1 : 4 b) 1 : 8	c) 1 : 16	d) 4 : 1	
477. 300 mL of a gas at 27°C is cooled to 3°C at consta		2	
a) 270 mL b) 340 mL	c) 150 mL	d) 240 mL	
478. Surface tension of water is 73 dyne cm^{-1} at 20°C.	-	2	
a) 7.3 erg b) 7.3×10^4 erg	c) 73 J	d) 0.73 J	
479. The temperature at which real gases obey the ide	, ,		
a) Critical temperature	b) Boyle temperature	se of pressure is cancu	
c) Inversion temperature	d) Reduced temperatur	' P	
480. A gas behaves most like an ideal gas under condit	, ,	C	
a) High pressure and low temperature			
b) High temperature and high pressure			
c) Low pressure an high temperature			
d) Low pressure and low temperature			
481. The partial pressure of a dry gas is:			
a) Less than that of wet gas			
b) Greater than that of wet gas			
c) Equal to that of wet gas			
d) None of the above			
482. The number of collisions depends on:			
a) Mean free path b) Pressure	c) Temperature	d) All of these	
483. The molecular velocity of any gas is		2	
a) Inversely proportional to the square root of ter	nperature		

b) Inversely proportional to absolute temperature c) Directly proportional to square of temperature d) Directly proportional to square root of temperature 484. In order to increase the volume of a gas by 10%, the pressure of the gas should be c) Decreased by 10% d) Decreased by 1% a) Increased by 10% b) Increased by 1% 485. Compounds with identical crystal structure and analogous chemical formula are called a) Isomers b) Isotones c) Allotropes d) Isomorphous 486. 26 mL of CO₂ are passed over hot coke. The maximum volume of CO formed is : a) 15 mL b) 10 mL c) 32 mL d) 52 mL 487. Under what conditions will a pure sample of an ideal gas not only exhibit a pressure of 1 atm but also concentration of 1 mol litre $^{-1}$? $(R = 0.082 \text{ litre atm mol}^{-1} \text{ deg}^{-1})$ a) At STP b) When V = 22.4 litre c) When T = 12Kd) Impossible under any condition 488. 380 mL of a gas at 27°C, 800 mm of Hg weighs 0.455 g. The molecular weight of gas is c) 28 a) 46 b) 38 'd) 24 489. If a gas contains only three molecules that move with velocities of 100, 200, 500 ms⁻¹. What is the rms velocity of that gas in ms^{-1} ? 800 c) 100 √10 b) 100 √30 a) $100\frac{\sqrt{8}}{2}$ d) 3490. A vessel has nitrogen gas and water vapours at a total pressure of 1 atm. The partial pressure of water vapours is 0.3 atm. The contents of this vessel are transferred to another vessel having one third of the capacity of original volume, completely at the same temperature, the total pressure of the system in the new vessel is: a) 3.0 atm b) 1 atm c) 3.33 atm d) 2.4 atm 491. Average speed of the molecules of a gas in a container moving in one direction is: d) Zero 8RT πM 3RT 2RT a) 492. Cooking is fast in a pressure cooker, because a) Food particles are effectively smashed b) Water boils at higher temperature inside the pressure cooker c) Food is cooked at constant volume d) Loss of heat due to radiation is minimum 493. If one mole of a monoatomic gas ($\gamma = 5/3$) is mixed with one mole of a diatomic gas ($\gamma = 7/5$), the value of γ for the mixture is: a) 1.4 b) 1.5 c) 1.53 d) 3.07 494. The kinetic energy of *N* molecules of O_2 is *x* joule at -123° C. Another sample of O_2 at 27°C has a kinetic energy of 2x joule. The latter sample contains: a) N molecules of O_2 b) 2N molecules of O_2 c) N/2 molecules of O_2 d) None of these 495. A gas is heated in such a way so that its pressure and volume both becomes double. Again by lowering temperature, one fourth of initial number of moles of air has been taken in, to maintain the double volume and pressure. By what fraction, the temperature must have been raised finally? b) $\frac{4}{5}$ times d) $\frac{8}{5}$ times c) $\frac{16}{5}$ times a) $\frac{1}{5}$ times 496. If the absolute temperature of a gas is doubled and the pressure is reduced to one half, the volume of the gas will b) Be doubled a) Remain unchanged

 c) Increase four fold d) Be halved 497. Diffusion of helium gas is four times faster than a) CO₂ b) SO₂ c) NO₂ d) O₂ 498. The ratio between root mean square speed of H₂ at 50 K and that of O₂ at 800 K is: 	
a) CO_2 b) SO_2 c) NO_2 d) O_2 498. The ratio between root mean square speed of H_2 at 50 K and that of O_2 at 800 K is:	
498. The ratio between root mean square speed of H_2 at 50 K and that of O_2 at 800 K is:	
a) 4 b) 2 c) 1 d) 1/4	
499. The product of pressure and volume (<i>PV</i>) has a unit of:	
a) Impulse b) Energy or work c) Entropy d) Force	
500. Boyle's law may be expressed as:	
a) $(\partial P/\partial V)_T = K/V$ b) $(\partial P/\partial V)_T = -K/V^2$ c) $(\partial P/\partial V)_T = -K/V$ d) None of these	
501. The structure of Na ₂ O crystal is	
a) NaCl type b) CsCl type c) ZnS type d) Antifluorite type	
502. If detergent is added	
a) Surface tension decreases b) Surface tension increases	
c) Surface tension decrease or decrease d) No effect	
503. Under identical conditions of temperature the density of a gas A is three times that of gas B while	
molecular mass of gas B is twice that of A. The ratio of pressures of A and B will be:	
a) 6 b) $1/6$ c) $2/3$ d) $3/2$	
504. One mole of CO_2 contains:	
a) 6.02×10^{23} atoms of C	
b) 6.02×10^{23} atoms of 0	
c) 3.01×10^{23} molecules of CO ₂	
d) None of the above 505. The pressure exerted by 6.0 g of methane gas in a 0.03 m ³ vessel at 129°C is: (Atomic masses of C =	
12.01, H = 1.01 and $R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$) a) 215216 Pa b) 13409 Pa c) 41648 Pa d) 31684 Pa	
506. Two vessels having equal volume contain molecular hydrogen at one atmospheric and helium at two atmospheric programs respectively. If both camples area at the same temperature the mean velocity of the same temperature is the mean velocity of the same temperature is the same temperature in the same temperature is	
atmospheric pressure respectively. If both samples area at the same temperature the mean velocity on hydrogen molecular is:	Л
a) Equal to that of helium	
b) Twice that of helium	
c) Half that of helium	
d) $\sqrt{2}$ times that of helium	
507. Solid carbon dioxide is an example of	
a) Metallic crystal b) Covalent crystal c) Molecular crystal d) Ionic crystal	al
508. A gas is heated from 0°C to 100°C at 1.0 atm pressure. If the initial volume of the gas is 10 litre, its fin	ai
volume would be:	
a) 7.32 litre b) 10.0 litre c) 13.66 litre d) 20.0 litre	-1
509. 32 g of oxygen and 3 g of hydrogen are mixed and kept in a vessel of 760 mm pressure and 0°C. The tot	ai
volume occupied by the mixture will be nearly:	
a) 22.4 litre b) 33.6 litre c) 56 litre d) 44.8 litre	
510. The rate of diffusion of a gas is proportional to $\sqrt{2}$	
a) $\frac{p}{\sqrt{d}}$ b) $\sqrt{\frac{p}{d}}$ c) $\frac{p}{d}$ d) $\frac{\sqrt{p}}{d}$	
511. The structure of MgO is similar to NaCl. What would be the coordination number of magnesium?	
a) 2 b) 4 c) 6 d) 8	
512. Which solid will have the weakest intermolecular forces?	
a) P b) Naphthalene c) NaF d) Ice	
513. A 0.5 dm ³ flask contains gas A and another flask of 1dm ³ contains gas B at the same temperature. If	
density of gas 4 is 3.0 g dm ⁻³ and of gas B is 1.5 g dm ⁻³ and mol. wt. of $A = \frac{1}{2}$ mol. wt. of B then the ratio	
density of gas A is 3.0 g dm ⁻³ and of gas B is 1.5 g dm ⁻³ and mol. wt. of $A = \frac{1}{2}$ mol. wt. of B, then the ratio of pressure exerted by gases is:	

a) $\frac{P_A}{P_B} = 2$	b) $\frac{P_A}{P_B} = 1$	c) $\frac{P_A}{P_B} = 4$	d) $\frac{P_A}{P_B} = 3$
514. A helium atoms is	- <i>D</i>	- <i>B</i>	the average kinetic energy of a
helium atom is			
	of a hydrogen molecule		f a hydrogen molecule
c) Half that of a hy	_	d) Same as that of a	
	by 1 mole of methane in a 0.23 atm L^2 mol ⁻² , $b = 0.0428$ L m		ng van der Waals' equation is
a) 82.82 atm	b) 152.51 atm	c) 190.52 atm	d) 70.52 atm
516. The temperature	of an ideal gas is increased fro	om 140 K to 560 K. If at 140	0 K the root mean square velocity
of the gas molecul	les is <i>V</i> , at 560 K it becomes:		
a) 5 <i>V</i>	b) 2 <i>V</i>	c) V/2	d) V/4
517. When a certain cr	ystal was studied by the Brag	g technique using X-rays o	f wavelength 229 pm, an X-ray
reflection was obs $[\sin(23^{\circ}20') = 0.3]$	served at an angle of 23° 20'. V 3961	What is the corresponding	interplanar spacing?
a) 375.6 pm	b) 256.5 pm	c) 289.2 pm	d) 315.4 pm
· ·	, I	j 1	essibility factor of an ideal gas is:
a) Zero	b) Infinite	c) 1	d) -1
	lue of $\frac{RT}{PV}$ for a gas at critical co		
	.,		
a) 4	b) 3/8	c) 8/3	d) ¼
520. Which gas is most			
a) H ₂ S	b) NH ₃	c) SO_2	d) CO_2
521. Introduction of ab	osolute scale of thermometry i		
a) Gaseous law	b) Graham's law	c) Charles' law	d) Dalton's law
522. As the temperatur	re is raised from 20°C to 40°C,	, the average kinetic energ	y of neon atoms changes by a
factor of which of	the following?		
a) 1/2	b) √ <u>313/293</u>	c) 313/293	d) 2
523. Calculate the total	l pressure in a 10.0 L cylinder	which contains 0.4 g heliu	ım, 1.6 g oxygen and 1.4 g
nitrogen at 27°C			
a) 0.492 atm	b) 49.2 atm	c) 4.92 atm	d) 0.0492 atm
524. Which one, among	g the following, is the van der e ranges of temperature and p	-	ng the behaviour of one mole of a
524. Which one, among real gas over wide	e ranges of temperature and p	pressure?	-
524. Which one, among real gas over wide	e ranges of temperature and p	b) $\left(p - \frac{a}{V^2}\right)(V - b)$	= RT
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - C)$ c) $\left(p + \frac{a}{V^2}\right)(V - C)$	e ranges of temperature and p b) = RT $b) = \frac{R}{T}$	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$	P = RT P = RT
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flag	e ranges of temperature and p b) = RT b) = $\frac{R}{T}$ sks are separately filled with	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and	P = RT P = RT
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - C)$ c) $\left(p + \frac{a}{V^2}\right)(V - C)$ 525. Four one litre flas The ratio of numb	e ranges of temperature and p b) = RT $b) = \frac{R}{T}$ sks are separately filled with per of molecules in these gases	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s:	P = RT P =
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3	e ranges of temperature and p b) = RT $b) = \frac{R}{T}$ sks are separately filled with per of molecules in these gases	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and	P = RT P =
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero:	e ranges of temperature and p b) = RT $b) = \frac{R}{T}$ sks are separately filled with per of molecules in these gases b) 1: 1: 1: 1	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s:	P = RT P =
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ sks are separately filled with per of molecules in these gases (b) 1 : 1 : 1 : 1 does not exist	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s:	P = RT P =
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti	e ranges of temperature and p b) = RT $b) = \frac{R}{T}$ sks are separately filled with per of molecules in these gases b) 1 : 1 : 1 : 1 does not exist ion ceases	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s:	P = RT P =
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti c) Temperature is	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ sks are separately filled with per of molecules in these gases (b) 1 : 1 : 1 : 1 does not exist ion ceases (s -273°C	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s:	P = RT P =
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti c) Temperature is d) All of the above	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ (b) = $\frac{R}{T}$ (c) sks are separately filled with (c) b) 1 : 1 : 1 : 1 (c) does not exist (c) c) constant (c) constant	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and c: c) 1 : 2 : 3 : 4	P = RT P =
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti c) Temperature is d) All of the above 527. The equation of st	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ sks are separately filled with per of molecules in these gases (b) 1 : 1 : 1 : 1 does not exist ion ceases (s -273°C e tate corresponding to 8g of 0 ₂	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s: c) 1:2:3:4	d = RT d = RT $d CO_2$ under the same conditions. d = 2 : 2 : 3 : 4
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti c) Temperature is d) All of the above 527. The equation of st a) $pV = 8RT$	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ sks are separately filled with per of molecules in these gases (b) 1 : 1 : 1 : 1 does not exist ion ceases (s - 273°C (e) tate corresponding to 8g of 0 ₂ (b) $pV = RT/4$	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s: c) 1 : 2 : 3 : 4	d = RT d = RT $d CO_2$ under the same conditions. d) 2 : 2 : 3 : 4 d) pV = RT/2
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti c) Temperature is d) All of the above 527. The equation of st a) $pV = 8RT$ 528. The molecular vel	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ sks are separately filled with per of molecules in these gases (b) 1 : 1 : 1 : 1 does not exist ion ceases (s -273°C (e) tate corresponding to 8g of 0 ₂ (b) $pV = RT/4$ locities of two gases at the sam	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s: c) 1 : 2 : 3 : 4 g is c) $pV = RT$ me temperature are u_1 and	d = RT d = RT $d CO_2$ under the same conditions. d = 2 : 2 : 3 : 4
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti c) Temperature is d) All of the above 527. The equation of st a) $pV = 8RT$ 528. The molecular vel m_2 respectively. V	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ (b) = $\frac{R}{T}$ (c) sks are separately filled with oer of molecules in these gases (c) b) 1 : 1 : 1 : 1 (c) does not exist (c) constant (c) constan	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O_2 , F_2 , CH_4 and s: c) $1:2:3:4$ g is c) $pV = RT$ ne temperature are u_1 and sions are correct?	d = RT d = RT $d CO_2$ under the same conditions. d) 2 : 2 : 3 : 4 d) pV = RT/2
524. Which one, among real gas over wide a) $\left(p + \frac{a}{V^2}\right)(V - A)$ c) $\left(p + \frac{a}{V^2}\right)(V - A)$ 525. Four one litre flas The ratio of numb a) 2 : 2 : 4 : 3 526. At absolute zero: a) Gaseous phase b) Molecular moti c) Temperature is d) All of the above 527. The equation of st a) $pV = 8RT$ 528. The molecular vel	e ranges of temperature and p (b) = RT (b) = $\frac{R}{T}$ sks are separately filled with per of molecules in these gases (b) 1 : 1 : 1 : 1 does not exist ion ceases (s -273°C (e) tate corresponding to 8g of 0 ₂ (b) $pV = RT/4$ locities of two gases at the sam	b) $\left(p - \frac{a}{V^2}\right)(V - b)$ d) $\left(p + \frac{a}{V^2}\right)(V + b)$ the gases, O ₂ , F ₂ , CH ₄ and s: c) 1 : 2 : 3 : 4 g is c) $pV = RT$ me temperature are u_1 and	d = RT d = RT $d CO_2$ under the same conditions. d) 2 : 2 : 3 : 4 d) pV = RT/2

d) Evaporation is exothermic while boiling is endothermic 530. Certain volume of a gas exerts on its walls some pressure at a particular temperature. It has been found that by reducing the volume of the gas to half of its original value the pressure becomes twice that of the initial value at constant temperature. This happens because: a) Weight of the gas increases with pressure b) Speed of the gas molecules decreases c) More number of gas molecules strike the surface per second d) Gas molecules attract each other 531. The three dimensional graph of lattice points which sets the pattern for the whole lattice is called a) Space lattice b) Simple lattice c) Crystal lattice d) Unit cell 532. According to kinetic theory of gases for a diatomic molecule a) The pressure exerted by the gas is proportional to the mean square speed of the molecules b) The pressure exerted by the gas is proportional to the root mean square speed of the molecules c) The root mea square speed is inversely proportional to the temperature d) The mean translational KE of the molecule is directly proportional to the absolute temperature 533. 10 g of hydrogen fluoride gas occupy 5.6 litre of volume at NTP. The empirical formula of the gas is HF. The molecular formula of the gas will be: (at. Wt. of fluorine = 19) b) HF c) H₂ d) H_3F_3 a) H_4F_4 534. Dalton's law of partial pressure is applicable to which one of the following systems? c) $H_2 + Cl_2$ a) $NH_3 + HCl$ b) NO + 0_2 d) $CO + H_2$ 535. 50 mL of each gas A and of gas B takes 150 and 200 seconds respectively for effusing through a pin hole under the similar conditions. If molecular mass of gas *B* is 36, the molecular mass of gas *A* will be: a) 32 b) 64 c) 96 d) 128 536. The volume-temperature graphs of a given mass of an ideal gas at constant pressures are shown below. What is the correct order of pressures? *T*(K) b) $p_1 > p_2 > p_3$ c) $p_2 > p_3 > p_1$ d) $p_2 > p_1 > p_3$ a) $p_1 > p_3 > p_2$ 37. A balloon filled with N₂O is pricked with a sharp point and quickly plunged into a tank of CO₂ under the

a) Evaporation is spontaneous at all temperature while boiling is at constant temperature

c) Both are spontaneous at all temperature

b) Boiling is spontaneous at all temperatures while evaporation takes place at constant temperature

same pressure and temperature. The balloon will:

- a) Be enlarged
- b) Shrink
- c) Remain unchanged in size
- d) Collapse completely

538. Kinetic energy of one mole of an ideal gas at 300 K in kJ is

- a) 3.74 b) 348 c) 34.8
- 539. In the laboratory, sodium chloride is made by burning the sodium in the atmosphere of chlorine which is yellow in colour. The cause of yellow colour is

d) 3.48

a) Presence of elec	ctrons in the crystal lattice	b) Presence of Na	⁺ ions in the crystal lattice
c) Presence of CI ⁻	ions in the crystal lattice	d) Presence of fac	ce centred cubic crystal lattice
540. A mixture of 0.50	mole of H_2 and 0.50 mole of	of SO ₂ is introduced into a	10.00 L container at 25°C. The
container has a pi	nhole leak. After a period o	of time, the partial pressure	e of H_2 in the remaining mixture
a) Exceeds that of	SO ₂	b) Is equal to that	t of SO ₂
c) Is less than that	c of SO ₂	d) Is the same as	in the original mixture
541. The density of oxy	gen gas at 25°C is 1.458 m	g/litre at one atmosphere.	At what pressure will oxygen have
the density twice	he value?		
a) 0.5 atm and 25°	b) 2 atm and 25°C	c) 4 atm and 25°	d) None of these
542. A device used for	measurement of gaseous p	ressure based on Boyle's la	aw is known as:
a) Macleod gauge	b) Manometer	c) Fortin's barom	
543. The average speed	l of an ideal gas molecule a	at 27°C is 0.3 m sec ^{-1} . The a	average speed at 927°C will be
\dots m sec ⁻¹	C C		
a) 0.6	b) 0.3	c) 0.9	d) 3.0
,	,	the coordination number of	
a) 0	b) 4	c) 6	d) 8
	wing is correct for critical	,	
	temperature at which liqu	-	
-		-	two phases and a gas cannot be
liquefied by cor			
	•	n of the system is not zero	
<i>,</i> .		uid phases have different	critical densities
	_	The molar concentration o	
a) 2	b) 4	c) 3	d) 1
,	probable velocity to average		u) I
π		_	2
a) $\frac{\pi}{2}$	b) $\frac{2}{\pi}$	c) $\frac{\sqrt{\pi}}{2}$	d) $\frac{1}{\sqrt{\pi}}$
-) 2			
548. The interionic dist	ance for cesium chloride c	crystal will be	
a) a	a b	a^{2a}	d) $\frac{\sqrt{3}}{2}a$
a) <i>a</i>	b) $\frac{a}{2}$	c) $\frac{1}{\sqrt{3}}$	$a_{j} \frac{1}{2}a_{j}$
549. A certain mass of a	a gas occupies a volume of	2 L at STP. To what tempe	rature the gas must be heated to
double its volume	, keeping the pressure con	stant?	
a) 100 K	b) 273 K	c) 273°C	d) 546°C
550. In A^+B^- ionic com	pound, radii of A^+ and B^-	ions are 180 pm and 187	om respectively. The crystal
structure of this co	ompound will be		
a) NaCl type	b) CsCl type	c) ZnS type	d) Similar to diamond
551. The density of a ga	as filled electric lamp is 0.7	⁷ 5 kg/m ³ . After the lamp ha	as been switched on, the pressure in
	1×10^4 Pa to 9 $\times 10^4$ Pa. W		-
a) 100	b) 300	c) 200	d) 400
	,	given by the formula $(p +$	2
		`	
			e number of moles of the gas. Which
	interpretation for the para		
al	<i>a</i> accounts for the finite si	ze of the molecule, not incl	uded temperature in the ideal gas
law.			
	a accounts for the shape o		
		ular interaction's present in	
d) The parameter	a has no physical significa	nce and van der Waals' int	roduced it as a numerical correction
^d factor only.			
553. Compressibility fa	ctor of an ideal gas is		

a) Equal to 2 554. Which of the given sets o	b) Equal to 1 of temperature and pressu	c) Greater than 1 re will cause a gas to exhib	-
ideal gas behaviour?			
		c) -100 °C and 4 atm	
555. The van der Waals' equa	tion for a real gas is given	by the formula $\left(p + \frac{n^2 a}{V^2}\right)$ ((V - nb) = nRT where p, V, T
and <i>n</i> are the pressure, w	volume, temperature and t	he number of moles of the	gas. Which one is the correct
interpretation for the pa	rameter a?		
The parameter a acco	unts for the finite size of t	he molecule, not included t	emperature in the ideal gas
a) law			
b) The parameter <i>a</i> acco	ount for the shape of gas ph	nase molecules	
c) The parameter <i>a</i> acco	unts for intermolecular in	teractions present in the m	olecule
d) The parameter is a co	rrection factor to the volu	me of the container	
556. Schottky defect in crysta	ls is observed when		
a) Density of crystal is ir	icreased		Y
b) An ion leaves its norn	nal site and occupies an int	terstitial site	\sim
c) Equal number of cation	ons and anions are missing	g from the lattice	×.
d) Unequal number of ca	ations and anions are missi	ing from the lattice 🔍	\
557. Following properties wi	ll decrease with increase in	n temperature except	
a) Surface tension	b) Viscosity	c) Density	d) Vapour pressure
558. Which statement is inco	rrect?		
a) A curve plotted betwe	en p and V at constant ter	nperature is called isother	n
	een p and T at constant vol		
	een <i>V</i> and <i>T</i> at constant pr		
d) At absolute zero, the g	=		
559. The closest distance bet		olecules of a gas taking par	t in collision is called
a) Effective molecular di		b) Collision diameter	
c) Both (a) and (b)		d) None of the above	
560. A flask containing air is l	neated from 300 K to 500]	-	caped to the atmosphere is
nearly		1 0	1 1
a) 40%	b) 30%	c) 80%	d) 60%
561. Equal masses of ethane			,
pressure exerted by hyd		I I I I I I I I I I I I I I I I I I I	
		c) 1:16	d) 15 : 16
562. If the pressure of N_2/H_2	mixture in a closed vessel	is 100 atmosphere and 20	d) 15 : 16 % of the mixture then reacts,
the pressure at the same	temperature would be	is 100 utiliosphere una 20	
a) The same		c) 90 atmospheres	d) 80 atmospheres
563. Which is not correct for	2	cj yo atmospheres	uj oo atmospheres
a) Gases do not have def			
	l to volume of container co	onfining the gas	
		ills of its container in all dir	ractions
d) None of the above	linor in pressure on the wa		ections
	and manifal arman the malum	we accurated by the male cul	as contained in 4 5 log water
564. If the intermolecular for	ces vanish away, the volun	ne occupied by the molecul	es contained in 4.5 kg water
\checkmark at STP will be:		> 11 0 14	
		c) 11.2 litre	
565. At low pressure, van der	Waals' equation is reduce	ed to $\left[p + \frac{a}{V^2}\right]V = RT$. The c	ompressibility factor can be
given as			
-	RTV	RTV	a d) 1
$aJ^{+} + \overline{RTV}$	a	c) $1 + \frac{RTV}{a}$	$uJ = \frac{1}{RTV}$
566. Air contains 79% N ₂ and of oxygen is:	l 21% O ₂ by volume. If the	barometric pressure is 75	0 mm Hg the partial pressure
			Page 40

a) 157.5 mm of Hg 5.7	b) 175.5 mm of Hg	c) 315.0 mm of Hg	d) None of these
a) Higher than its crit	by pressure alone when its ical temperature	b) Lower than its critica	al temperature
c) Either (a) or (b)		d) None of the above	
568. Gas equation $PV = nI$			
a) Only isothermal pr			
b) Only adiabatic pro	Cess		
c) Both (a) and (b)			
d) None of these	hle under		
569. Charles' law is applica		c) Icothormal process	d) Adjabatic process
a) Isobaric process	b) Isochoric process ture and the edge length of i	c) Isothermal process	
will be	ure and the edge length of I	ts unit cell is 3.04 A. The vol	tume of the unit centri cm ³
	b) $2.81 \times 10^{-23} \text{cm}^3$	c) $6.02 \times 10^{-23} \text{ cm}^3$	d) $6.6 \times 10^{-24} \text{ cm}^3$
571. Bragg's law is given b	-	$C_{\rm J} 0.02 \times 10$ Cm	
			Θ θ d
a) $n\lambda = 2\theta \sin \theta$	b) $n\lambda = 2d\sin\theta$	c) $2n\lambda = d\sin\theta$	d) $n\frac{\theta}{2} = \frac{d}{2}\sin\theta$
572. Surface tension vanis	nes at		
a) Boiling point	b) Critical point	c) Condensation point	d) Triple point
	ry of gases following laws ca	an be proved	
a) Boyle's law	b) Charles' law	c) Avogadro's law	d) All of these
574. Which gas cannot be	kept in a glass bottle becaus	e it chemically reacts with g	lass?
a) F ₂	b) Cl ₂	c) Br ₂	d) SO ₂
575. Most probable speed,	average speed and RMS spe		
a) 1 : 1.128 : 1.224		c) 1:2.128:1.224	
	o expand through a small jet	under adiabatic condition l	heating effect is observed.
This is due to the fact	that:		
a) Helium is an inert g			
b) Helium is a noble g			
c) Helium is an ideal g			
	perature of helium is very lo		
	t mean square speeds of ozo		
a) √(3/5)	b) $\sqrt{(4/3)}$	c) $\sqrt{(2/3)}$	d) 0.25
	l 0.99 atm pressure occupie	s a volume of 2.241 L. Pred	ict which of the following is
correct?	J.		
a) The gas is ideal	P		
, ,	intermolecular attraction		
	out intermolecular repulsio		
	intermolecular repulsion g		
	ntity effuses at the rate of 83		
dioxide effuses at the	rate of 102 mLs ⁻¹ . Calculate		0
a) 6.597 g mol ⁻¹	b) ^{65.97} g mol ⁻¹	c) $3.650 \mathrm{g mol^{-1}}$	d) ^{36.50} g mol ⁻¹
580. The flame colours of r	netal ions are due to		
a) Schottky defect		b) Frenkel defect	
c) Metal excess defect	t	d) Metal deficiency defe	ect
581. With increase of pres			
a) Decreases	b) Increases	c) Becomes zero	d) Remains same
-	sity of sodium chloride crys	-	-
	The fraction of unoccupied s		
a) 5.96	b) 5.96×10^{-1}	c) 5.96×10^{-2}	d) 5.96× 10 ⁻³
	-	-	

	-	than that of an unknown g	as when both gases are at 350 K
	ight of the unknown gas is:		
a) 188	b) 56	c) 94	d) 31.0
584. Which is not a sur	-		
a) Surface tension		c) Evaporation	d) All of these
585. A certain gas takes	s three times as long to effuse	e out as helium. Its molecula	ar mass will be:
a) 27 u	b) 36 u	c) 64 u	d) 9 u
586. Which of the follow	wing statements is not true?		
b) The square of the temperature	mean speed to the RMS spee he mean speed of the molecul	les is equal to the mean squ	ared speed at a certain
d) The difference	between RMS speed and mea	n speed at any temperature	dependent of the mean speed e for different gases diminishes
	et larger molar masses are con		
pressures in cylinder		caining CO and N_2 (equal matrix)	asses). The ratio of their partial
a) 1 : 1	b) 1 : 2	c) 2 : 1	d) 1 : 3
	e has NaCl type structure. Wh	at is the distance between i	K^+ and F^- ions if cell edge is a
cm?			
a = cm	b) $\frac{a}{4}$ cm	c) 2 <i>a</i> cm	d) 4 <i>a</i> cm
a) $\frac{1}{2}$ cm	Т		uj 4 <i>u</i> chi
589. Amorphous substa			
(i)Short and long	range order		
(ii)Short range or	der		
(iii)Long range or	der		
(iv)Have no sharp	melting point	\sum	
a) (i)and (iii) are	correct C	b) (i)and (ii) are cor	rect
c) (ii)and (iii) are	correct	d) (ii)and (iv) are co	rrect
590. Doping of silicon (Si) with boron (B) leads to		
a) <i>n</i> -type semicon	ductor	b) <i>p</i> -type semicondu	ctor
c) Metal		d) Insulator	
591. The value of gas co	onstant <i>R</i> in SI unit is:	,	
_	⁻¹ b) 0.082 litre atm	c) 8.3 J mol ⁻¹ K ⁻¹	d) 0.987 cal mol ⁻¹ K ⁻¹
	the largest amount of energy		
a) Calorie	b) Joule	c) Erg	d) Electron-volt
-			igh a fine hole then find what
			and SO_2 in 1 : 2 : 3 mole ratio)
	<i>v</i>	c) 4: 4: 3	
a) $\sqrt{2}:\sqrt{2}:3$	b) 2: 2: 3		d) 1: 1: 3
			cules are halved and their spee
	ting pressure <i>P</i> will be equal		
a) 4P ₀	b) 2 <i>P</i> ₀	c) <i>P</i> ₀	d) $P_0/2$
595. The number of atc	ms/molecules contained in o	one face centred cubic unit o	cell of a monoatomic substance
a) 1	b) 2	c) 4	d) 6
,	water is 73 dyne cm ^{-1} at 20 ^o		-
a) 7.3 erg	b) $7.3 \times 10^4 \text{ erg}$	c) 73 J	d) 0.73 J
	loon filled with 4.0 g of He at	2 ·	, ~ ,
a) 25.565 litre	b) 20 litre	c) 15 litre	d) 30 litre
	terms used in van der Waals	,	uj 50 liu c
a) atm litre mol ⁻¹		c) dyne cm mol ^{-1}	d) All of these
599. Which has more w	-	cj dyne chi mor	d) All of these

608. A fcc unit cell of aluminium contains the equivalent of how many atoms?

a) 1b) 2c) 3d) 4609. Equal volumes of H2 and Cl2 are mixed. How will the volume of the mixture charge after the reaction?a) Unchangedb) Reduced to halfc) Increases two foldd) None of these610. If both gases are at the same temperature, the rate of diffusion of O2 is very close to:

a) 8 times that of H 611. The average kinetic		$t of U_0$ a) 2 times that of U.	e d) 4 times that of He
611. The average kinetic	, an anour of an ideal occ n	t of He c) 2 times that of He c_1 2 times that of He	-
-2 (17 + 10 - 21)			
a) 6.17×10^{-21} kJ	b) 6.17×10^{-21}		d) 7.16 × 10 ⁻²⁰ J
		ic energy of 0.3 mole of helium	n is equal to the kinetic energy of
0.4 mole of argon a			
a) 400 K	b) 873 K	c) 533 K	d) 300 K
			the total pressure of the mixture
was found 1 atmos	phere, the partial pressu	re of the nitrogen (N_2) in the	mixture is:
a) 1 atm	b) 0.5 atm	c) 0.8 atm	d) 0.9 atm
614. Which does not cha	inge during compressior	n of a gas at constant temperat	cure?
a) Density of a gas			
b) The distance bet	ween molecules		
c) Average speed o	f molecules		
d) The number of c	ollisions		
615. Under which catego	ory iodine crystals are pl	aced among the following?	
a) Ionic crystal	b) Covalent cryst	tal c) Molecular crysta	d) Metallic crystal
616. At lower temperatu		· · ·	
a) Negative deviati		b) Positive deviatio	n
c) Positive and neg		d) None of the abov	
			and 44 g of CO_2 respectively. If the
			e in the hydrogen cylinder at the
same temperature		and temperature, the pressur	e in the hydrogen cynnaer at the
a) 2 atm	b) 1 atm	c) 22 atm	d) 44 atm
aj 2 atili	bj i atili	cj zz atili	uj ++ atili
		C VI	
		SVI	
		Shr	
	EVE	Shr	
		Shr	
	HIEVE	Shr	
	CHIEVE	Shr	
	CHIEVE	S	
	CHIEVE	S	
	CHILI	S	
		S	
R		S	
ARTA		S	
MAR		S	
CMAR		S	
SMAR	CHILINE	S	
SMAR	CHILING	S	

STATES OF MATTER

CHEMISTRY

						: ANS	W	ER K	EV					
1)	b	2)	b	3)	С	4)		169)	d	170)	а	171)	b	172) c
5)	c	2) 6)	d	5) 7)	b	1) 8)	b	173)	b	170) 174)	a	171)	c	176) c
9)	b	10)	c	,, 11)	d	12)	d	177)	d	171)	d	179)	c	180) d
13)	a	10) 14)	a	15)	d	16)	a	4045	a	182)	b	183)	-	184) d
17)	a	18)	C	19)	d	20)	c	185)	c	186)	d	187)	b	• 188) a
21)	b	22)	a	23)	с	24)	b	189)	a	190)	d	191)	d	192) a
25)	d	26)	b	27)	b	28)	d	193)	a	194)	c	195)	a	196) d
29)	b	30)	а	, 31)	d	32)	С	197)	b	198)	С	199)	b	200) d
33)	d	34)	а	35)	d	36)	С	201)	а	202)	a	203)	d	204) c
37)	а	38)	b	39)	с	40)	С	205)	b	206)	а	207)	d	208) d
41)	С	42)	С	43)	b	44)	а	209)	b	210)	a	211)	b	212) c
45)	С	46)	b	47)	а	48)	d	-	b	214)	b	215)	С	216) d
49)	b	50)	С	51)	d	52)	d	217)	с	218)	b	219)	а	220) b
53)	d	54)	b	55)	С	56)	d	221)	С	222)	а	223)	b	224) a
57)	С	58)	а	59)	С	60)	b	225)	d	226)	а	227)	d	228) c
61)	а	62)	а	63)	С	64)	b	229)	b	230)	а	231)	d	232) c
65)	b	66)	d	67)	a	68)	b	233)	с	234)	d	235)	С	236) b
69)	d	70)	С	71)	С	72)	d	237)	а	238)	С	239)	d	240) a
73)	b	74)	а	75)	С	76)	а	241)	а	242)	С	243)	а	244) d
77)	а	78)	С	79)	b	80)	С	245)	b	246)	С	247)	b	248) c
81)	b	82)	С	83)	d	84)	а	249)	С	250)	b	251)	b	252) b
85)	а	86)	С	87)	С	88)	d	253)	С	254)	d	255)	a	256) a
89)	d	90)	d	91)	b	92)	а	257)	d	258)	С	259)	С	260) d
93)	С	94)	С	95)	b	96)	b	261)	b	262)	b	263)	d	264) c
97)	С	98)	С	99)	a	100)	С	265)	b	266)	d	267)	d	268) b
101]) с	102)	b	103)	d	104)	а	269)	b	270)	а	271)	С	272) c
105]) b	106)	a	107)	a	108)	С	273)	С	274)	d	275)	b	276) d
109]) b	110)	b	111)	d	112)	d	277)	b	278)	d	279)	С	280) b
113) с	114)	С	115)	С	116)	а	281)	d	282)	а	283)	d	284) c
117]) d 🖌	118)	а	119)	a	120)	а	285)	а	286)	С	287)	b	288) c
121]) a	122)	а	123)	a	124)	d	289)	а	290)	С	291)	а	292) b
125)) C	126)	b	127)	a	128)	b	293)	b	294)	b	295)	С	296) d
129) a	130)	b	131)	С	132)	С	297)	b	298)	а	299)	а	300) a
133) d	134)	С	135)	d	136)	С	301)	С	302)	С	303)	а	304) b
137]) с	138)	а	139)	С	140)	С	305)	а	306)	С	307)	С	308) c
141]		142)	С	143)	С	144)		309)	d	310)	b	311)	а	312) a
145]		146)	а	147)	a	148)		313)	d	314)	а	315)	b	316) a
149]		150)	b	151)	а	152)		317)	а	318)	b	319)	а	320) d
153]		154)	b	155)	a	156)		321)	d	322)	С	323)	d	324) d
157		158)	а	159)	b	160)		325)	b	326)	d	327)	b	328) b
161		162)	а	163)	a	164)		329)	С	330)	С	331)	С	332) d
165)) с	166)	d	167)	С	168)	b	333)	b	334)	b	335)	С	336) a

337)	d	338)	b	339)	С	340)	a	481)	а	482)	d	483)	d	484)	С
341)	С	342)	С	343)	а	344)	a	485)	d	486)	d	487)	С	488)	С
345)	d	346)	С	347)	а	348)	С	489)	С	490)	d	491)	d	492)	b
349)	а	350)	а	351)	b	352)	С	493)	b	494)	а	495)	С	496)	С
353)	b	354)	d	355)	b	356)	d	497)	b	498)	С	499)	b	500)	b
357)	b	358)	b	359)	d	360)	b	501)	d	502)	а	503)	а	504)	а
361)	а	362)	С	363)	b	364)	d	505)	С	506)	d	507)	С	508)	С
365)	а	366)	b	367)	С	368)	a	509)	С	510)	а	511)	С	512)	d
369)	С	370)	С	371)	а	372)	с	513)	С	514)	d	515)	а	516)	b
373)	d	374)	С	375)	С	376)	b	517)	С	518)	С	519)	С	520)	b
377)	b	378)	b	379)	d	380)	d	521)	С	522)	С	523)	a	524)	а
381)	С	382)	С	383)	С	384)	с	525)	b	526)	d	527)	b	528)	d
385)	С	386)	d	387)	b	388)	a	529)	а	530)	С	531)	d	532)	d
389)	С	390)	b	391)	d	392)	a	533)	С	534)	d	535)	С	536)	а
393)	С	394)	b	395)	а	396)	d	537)	С	538)	а	539)	a	540)	С
397)	С	398)	С	399)	С	400)	b	541)	b	542)	b	543)	а	544)	d
401)	d	402)	а	403)	b	404)	a	545)	b	546)	a	547)	С	548)	d
405)	С	406)	а	407)	d	408)	с	549)	С	550)	b	551)	С	552)	С
409)	а	410)	С	411)	С	412)	a	553)	b	554)	С	555)	С	556)	С
413)	b	414)	b	415)	d	416)	b	557)	d	558)	d	559)	С	560)	d
417)	b	418)	а	419)	С	420)	a	561)	d	562)	С	563)	d	564)	а
421)	d	422)	b	423)	d	424)	a	565)	d	566)	а	567)	b	568)	С
425)	С	426)	b	427)	а	428)	b	569)	a	570)	b	571)	b	572)	b
429)	а	430)	а	431)	b	432)	d	573)	d	574)	а	575)	а	576)	d
433)	а	434)	С	435)	а	436) 🗸	d	577)	С	578)	а	579)	b	580)	С
437)	b	438)	d	439)	С	440)	a	581)	а	582)	d	583)	а	584)	b
441)	а	442)	С	443)	d	444)	a	585)	b	586)	b	587)	а	588)	а
445)	d	446)	d	447)	а	448)	С	589)	d	590)	b	591)	С	592)	а
449)	С	450)	d	451)	b	452)	a	593)	С	594)	b	595)	С	596)	b
453)	С	454)	b	455)	С	456)	d	597)	а	598)	d	599)	d	600)	а
457)	а	458)	С	459)	d	460)	b	601)	d	602)	b	603)	d	604)	а
461)	d	462)	а	463)	d	464)	b	605)	b	606)	b	607)	С	608)	d
465)	а	466)	а	467)	b	468)	d	609)	а	610)	b	611)	b	-	С
469)	b	470)	b	471)	С	472)	b	613)	b	614)	С	615)	С	616)	а
473)	b	474)	a	475)	а	476)	a	617)	С						
477)	а	478)	b	479)	b	480)	С								
5	P						I								

STATES OF MATTER

CHEMISTRY

: HINTS AND SOLUTIONS :

Molecular weight = $2 \times vapour density (valid forgases). 3 (c) Let the number of nickel ions =98 \therefore The number of nickel ions =100Total negative charge on 0^{2^-} ions = 2 \times 100 =200Let number of Ni2+ ions = 98 - x\therefore x = 4% of Ni as Ni3+ = \frac{4}{98} \times 100 = 4.08\%4 (d)The Ca2+ ions are arranged in (ccp) arrangement,ie, Ca2 ions are present at all corners and thecentre of each face of the cube. The fluoride ionsoccupy all the tetrahedral sites. This is 8 : 4arrangement, ie, Ca2+ ion is surrounded by 8F-ions and each F- ion by four Ca2+ ions5 (c)It is definition of root mean square speed.7 (b)Poise is unit of viscosity.8 (b)\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{\rm He}}{M_{\rm H}}}= \sqrt{\frac{2}{1}}\frac{r_{\rm H}}{r_{\rm He}} = 1.414.9 (b)\frac{r_{\rm H}}{(v + \frac{r^2a}{V^2})}(V - nb) = nRTp = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}(V - nb) = nRTp = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}(a)Mole of 02 = Mole of H2: \therefore \frac{W_{02}}{32} = \frac{W_{\rm H}}{2};\therefore W_{02} \neq W_{\rm H_2}16 (a)R_{\rm m} = P_1 + P_2 = 1 + 2.5 = 3.517 (a)White ring of NH4Cl will appear nearer to the HClend. The reason is that HCl (mol. wt. = 36.5) isheavier than NH3 (mol. wt. Hence, according toGraham's law of diffusion of the Cl.)\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$	2	(b)		8
3 (c) Let the number of nickel ions =98 \therefore The number of oxide ions =100 Total negative charge on $0^{2^{-}}$ ions = 2 × 100 = 200 Let number of Ni ²⁺ ions = 98 - x $\therefore x = 4$ $\%$ of Ni as Ni ³⁺ = $\frac{4}{98}$ × 100 = 4.08% 4 (d) The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ²⁺ ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{\pi_{11}}{\pi_{16}} = \sqrt{\frac{M_{11e}}{M_{11}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{\pi_{11}}{\pi_{16}} = 1.444$ 9 (b) $p = \frac{nRT}{r_{16}} - \frac{an^{2}}{V^{2}}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^{2}}{V^{2}}$ (a) $M = \frac{M_{12}}{r_{2}} = \sqrt{\frac{M_{12}}{M_{11}}}$ $= \sqrt{\frac{M_{12}}{V_{12}}}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^{2}}{V^{2}}$ (b) $\frac{\pi_{11}}{r_{12}} = \sqrt{\frac{M_{12}}{M_{11}}}$ $\frac{\pi_{12}}{r_{2}} = \sqrt{\frac{M_{12}}{M_{11}}}$				
Let the number of nickel ions =98 \therefore The number of oxide ions =100 Total negative charge on $0^{2^{-1}}$ ions = 2 × 100 = 200 Let number of Ni ²⁺ ions = 98 - x $\therefore x = 4$ $\%$ of Ni as Ni ³⁺ = $\frac{4}{98}$ × 100 = 4.08% 4 (d) The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{T_{H}}{r_{He}} = \sqrt{\frac{M_{He}}{M_{H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{T_{H}}{r_{He}} = 1.414$, 9 (b) $\frac{r_{H}}{r_{He}} = \sqrt{\frac{M_{He}}{V_{Z}}}$ ($V - nb$) = <i>nRT</i> $p = \frac{nRT}{(V - nb)} - \frac{an^{2}}{V^{2}}$ ($V = nb$) ($r + \frac{n^{2}a}{V^{2}}$ ($V - nb$) = <i>nRT</i> $p = \frac{nRT}{(V - nb)} - \frac{an^{2}}{V^{2}}$ ($r = \frac{M_{He}}{V_{Z}}$ ($V = nb$) = <i>nRT</i> $p = \frac{nRT}{(V - nb)} - \frac{an^{2}}{V^{2}}$ ($r = \frac{M_{He}}{V_{Z}}$ ($r = \frac{M_{HE}}{V_{Z}}$) ($r = \frac{M_{HE}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$) ($r = \frac{M_{HE}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$) ($r = \frac{M_{HE}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$) ($r = \frac{M_{HE}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$) ($r = \frac{M_{HE}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$) ($r = \frac{m^{2}}{V_{Z}}$) ($r = \frac{m^{2}}{V_{Z}}$ ($r = \frac{m^{2}}{V_{Z}}$)	3			
$\frac{1}{r_{He}} = \sqrt{\frac{M_{He}}{V_{P}}} = \sqrt{\frac{M_{He}}{V_{P}}} = \sqrt{\frac{1}{V^2}} (V - nb) = nRT$ $p = \frac{nRT}{V - nb)} - \frac{an^2}{V^2}$	Ũ			$= \left \frac{0}{3 \times 314} \right $
10 (c) 11 liquid state, van der Waals' forces becomes 200 Let number of Ni ²⁺ ions = 98 - x $\therefore x = 4$ $\%$ of Ni as Ni ³⁺ = $\frac{4}{98} \times 100 = 4.08\%$ 4 (d) The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ² ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$		\therefore The number of oxide ions =100		N
200 Let number of Ni ²⁺ ions = 98 - x $\therefore x = 4$ % of Ni as Ni ³⁺ = $\frac{4}{98} \times 100 = 4.08\%$ 4 (d) The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ²⁺ ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{\rm He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{\rm He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $(p + \frac{n^2a}{V^2})(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{M_{\rm He}}{(V - nb)} - \frac{an^2}{V^2}$		Total negative charge on 0^{2-} ions= 2 × 100 =	10	
Let number of N1 ^{2+*} ions = 98 - x $\therefore x = 4$ % of Ni as N1 ³⁺ = $\frac{4}{98} \times 100 = 4.08\%$ 4 (d) The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ² ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$. 9 (b) 9 (b) 9 (b) 9 (c) 9 (c)			10	
$\therefore x = 4$ $\frac{1}{9} \text{ (d)}$ The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ² ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions (c) It is definition of root mean square speed. (b) $\frac{r_{H}}{r_{He}} = \sqrt{\frac{M_{He}}{M_{H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{H}}{r_{He}} = 1.444$ 9 (b) (b) $\frac{r_{H}}{r_{He}} = 1.444$ $p = \frac{nRT}{r_{V} - nb} - \frac{an^{2}}{V^{2}}$ (b) (c) (b) (c) (c) (c) (c) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (
4 (d) The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ² ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F- ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) 9 (b) 9 (b) 9 (b) 9 (c) 9 (c)			12	(d)
The Ca ²⁺ ions are arranged in (ccp) arrangement, <i>ie</i> , Ca ² ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{\rm He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$. 9 (b) $\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $\left(V - nb\right) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $\left(\frac{c}{2}\right)$ $\left(\frac{c}{$		% of Ni as Ni ³⁺ = $\frac{4}{98} \times 100 = 4.08\%$		$C_p - C_v = R$ for each gas.
<i>ie</i> , Ca ² ions are present at all corners and the centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F ⁻ ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$. 9 (b) $\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ because ions are not free to move (a) At high pressure, the volume is decreased appreciably, so the attractive forces become large and the molecules are crowded together. Thus, pressure correction is necessary and the gas deviates more from ideal behaviour. 15 (d) Mole of O_2 = Mole of H_2 ; $\therefore \frac{W_{O_2}}{32} = \frac{W_{H_2}}{2}$; $\therefore W_{O_2} \neq W_{H_2}$ 16 (a) $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ 17 (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$	4		13	
centre of each face of the cube. The fluoride ions occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F- ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ (V - nb) = nRT			,	
occupy all the tetrahedral sites. This is 8 : 4 arrangement, <i>ie</i> , Ca ²⁺ ion is surrounded by 8F- ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{11}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ At high pressure, the volume is decreased appreciably, so the attractive forces become large and the molecules are crowded together. Thus, pressure correction is necessary and the gas deviates more from ideal behaviour. 15 (d) Mole of $O_2 = Mole of H_2$; $\therefore \frac{W_{O_2}}{32} = \frac{W_{H_2}}{2}$; $\therefore W_{O_2} \neq W_{H_2}$ 16 (a) $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ 17 (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		· •		
arrangement, <i>ie</i> , Ca^{2+} ion is surrounded by 8F- ions and each F ⁻ ion by four Ca^{2+} ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $p = \frac{nRT}{V^2} + \frac{N}{V^2}$ $p = \frac{N}{V^2} + \frac{N}{V^2}$			14	
ions and each F ⁻ ion by four Ca ²⁺ ions 5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ and the molecules are crowded together. Thus, pressure correction is necessary and the gas deviates more from ideal behaviour. 15 (d) Mole of O_2 = Mole of H_2 ; $\therefore \frac{W_{O_2}}{32} = \frac{W_{H_2}}{2}$; $\therefore W_{O_2} \neq W_{H_2}$ 16 (a) $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ 17 (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$				
5 (c) It is definition of root mean square speed. 7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $p = \frac{mRT}{(V - nb)} - \frac{an^2}{V^2}$ $p = \frac{mRT}{(V - nb)} - \frac{an^2}{V^2}$ $p = \frac{mRT}{(V - nb)} = \frac{nRT}{V^2}$ $p = \frac{mRT}{V^2} = \frac{mRT}{V^2}$ $p = \frac{mRT}{V^2} = \frac{mRT}{V^2}$				
7 (b) Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ 15 (d) Mole of O_2 = Mole of H_2 ; $\therefore \frac{W_{O_2}}{32} = \frac{w_{H_2}}{2}$; $\therefore W_{O_2} \neq W_{H_2}$ 16 (a) $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ 17 (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$	5			
Poise is unit of viscosity. 8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{\rm He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ 9 (b) $\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ 15 (d) Mole of $O_2 = \text{Mole of } H_2; \therefore \frac{w_{O_2}}{32} = \frac{w_{H_2}}{2};$ $\therefore W_{O_2} \neq W_{H_2}$ 16 (a) $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ 17 (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		It is definition of root mean square speed.		deviates more from ideal behaviour.
8 (b) $\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ Mole of O_2 = Mole of H_2 ; $\therefore \frac{w_{O_2}}{32} = \frac{w_{H_2}}{2}$; $\therefore W_{O_2} \neq W_{H_2}$ 16 (a) $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ 17 (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $r_1 = \sqrt{\frac{M_2}{M_1}}$	7		15	(d)
$\frac{r_{\rm H}}{r_{\rm He}} = \sqrt{\frac{M_{He}}{M_{\rm H}}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ $p = \frac{nRT}{(V-nb)} - \frac{an^2}{V^2}$ $\therefore W_{\rm O_2} \neq W_{\rm H_2}$ 16 (a) $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ 17 (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$	0			
$\overline{r_{\text{He}}} = \sqrt{M_{H}}$ $= \sqrt{\frac{2}{1}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\text{H}}}{r_{\text{He}}} = 1.414$ 9(b) $\left(p + \frac{n^{2}a}{V^{2}}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^{2}}{V^{2}}$ $\left(V - nb\right) = nRT$ $\frac{r_{\text{H}}}{r_{\text{He}}} = \frac{1}{\sqrt{\frac{2}{1}}}$ $\left(\frac{16}{(a)} = P_{1} + P_{2} = 1 + 2.5 = 3.5$ $17 (a)$ $White ring of NH_{4}Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH_{3} (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH_{3} will be higher than that of HCl.)$ $\frac{r_{1}}{r_{2}} = \sqrt{\frac{M_{2}}{M_{1}}}$	8			Mole of $O_2 = Mole of H_2$; $\therefore \frac{1}{32} = \frac{1}{2}$;
$= \sqrt{\frac{2}{1}}$ $= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ $9 (b)$ $(p + \frac{n^2 a}{V^2})(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $P_m = P_1 + P_2 = 1 + 2.5 = 3.5$ $17 (a)$ White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		$\frac{r_{\rm H}}{r_{\rm H}} = \frac{M_{He}}{r_{\rm He}}$		2 2
$= \sqrt{\frac{2}{1}}$ $\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ $9 (b)$ $(p + \frac{n^2 a}{V^2})(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $(V - nb) = nRT$ $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$ (a) White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		$r_{\rm He} \sqrt{M_H}$	16	
$\frac{-\sqrt{1}}{r_{He}} = 1.414$ White ring of NH ₄ Cl will appear nearer to the HCl end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		$\overline{2}$	17	
$\frac{r_{\rm H}}{r_{\rm He}} = 1.414$ end. The reason is that HCl (mol. wt. = 36.5) is heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		$=$ $\frac{1}{1}$	17	
$\frac{1}{r_{\text{He}}} = 1.414$ heavier than NH ₃ (mol. wt. Hence, according to Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		r _H		
9 (b) $\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$ $p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ Graham's law of diffusion, the rate of diffusion of NH ₃ will be higher than that of HCl.) $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		$\frac{1}{r_{\rm He}} = 1.414$		
$p = \frac{nRT}{(V - nb)} - \frac{an^2}{V^2}$ $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$	9			Graham's law of diffusion, the rate of diffusion of
$p = \frac{nRT}{(V-nb)} - \frac{an^2}{V^2}$ $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$		$\left(p+\frac{n^2a}{m^2}\right)(V-nb)=nRT$		$\rm NH_3$ will be higher than that of HCl.)
	5			Tree of the second seco
	-	$p = \frac{nRI}{(V - nb)} - \frac{nh}{V^2}$		$\frac{r_1}{r_1} = \frac{M_2}{M_1}$
$2 \times 0.082 \times 300 = 4.1 / \times 4$				$r_{2} = \sqrt{m_{1}}$
$=\frac{2 \times 0.082 \times 300}{5 - 2 \times 0.03711} - \frac{4.17 \times 4}{25}$ 18 (c)		$=\frac{1}{5-2\times0.03711}-\frac{1}{25}$	18	(c)
= 9.33 atm $V \propto$ mole at same P and T.		= 9.33 atm		
U_{av} $\boxed{8RT M}$ 20 (c)		U _{av} 8RT M	20	(c)
$\frac{U_{\rm av}}{U_{\rm rms}} = \sqrt{\frac{8RT}{\pi M} \times \frac{M}{3RT}}$ 20 (c) Gram molecular weight (=1 mol) of any gas		$\overline{U_{\rm rms}} = \sqrt{\frac{\pi M}{\pi M}} \times \frac{3RT}{3RT}$		
contains the volume = 22.4 L		•		contains the volume $= 22.4 \text{ L}$

21 **(b)**

$$v_{H_2} = v_{O_2}$$

So, $\sqrt{M_{O_2}T_{H_2}} = \sqrt{M_{H_2}T_{O_2}}$
 $32 \times T_{H_2} = 2 \times 1600$
 $T_{H_2} = \frac{2 \times 1600}{32}$
 $= 100 \text{ K}$
22 **(a)**
Boyle's temperature $T_B =$
24 **(b)**

Number of tetrahedral voids in the unit cell = $2 \times$ no. of atoms = 2Z

 $=\frac{a}{Rb}$

25 (d)

A method in which Dewar flask is used to involves 35 separation of noble gases from liquid air.

26 **(b)**

In Na₂O, each oxide ions (0^{2^-}) is co-ordinated to 8Na⁺ ions and each Na⁺ ion to 4 oxide ions. Hence, it has 4 : 8 coordination

27 **(b)**

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
$$d_{(111)} = \frac{a}{\sqrt{(1)^2 + (1)^2 + (1)^2}}$$
$$= \frac{a}{\sqrt{3}}$$
$$d_{(111)} = \frac{318}{\sqrt{3}} = 184 \text{ pm}$$

29 **(b)**

$$T_B = \frac{a}{R \cdot b}; T_c = \frac{a}{27R \cdot b} \div \frac{T_B}{T_c} = \frac{27}{8}$$

30 **(a)**

If Z > 1, the gas is less compressible than expected from ideal behaviour and shows positive deviation usually at high pressure, *ie*, pV > RT

31 **(d)**

van der Waals' constant *a* is due to force of attraction and *b* due to finite size of molecules.

Thus greater the value of *a* and smaller the value of *b*, larger the liquefaction.

Thus,
$$a(Cl_2) > a(C_2H_6)$$
 and $b(Cl_2) > b(C_2H_6)$

32 **(c)**

Smaller size of H₂ molecule and mean free path $\propto \frac{1}{(radius)^2}$

33 (d)

Let the units of ferrous oxide in a unit cell = n. Molecular

Weight of ferrous oxide (FeO) $= 56 + 16 = 72 \text{g mol}^{-1}$ Weight of *n* units = $\frac{72 \times n}{6.023 \times 10^{23}}$ Volume of one unit = $(length of corner)^3$ $= (5\text{\AA})^3 = 125 \times 10^{-24} \text{cm}^3$ Density = $\frac{\text{wt.of cell}}{1}$ $72 \times n$ $\therefore 4.09 = \frac{72 \times n}{6.023 \times 10^{23} \times 125 \times 10^{-24}}$ Hence, $n = \frac{3079.2 \times 10^{-1}}{72} = 42.7 \times 10^{-1}$ $= 4.27 \approx 4$ 34 (a) Both surface tension (S.T) and viscosity (η) decreases with temperature (d) In body centred cubic, each atom/ion has a coordination number of 8 36 (c) Ideal gas equation 37 (a) $\because R = C_p - C_v$ $\frac{R}{C_v} = \frac{C_p - C_v}{C_v} = 0.67$ $\frac{C_p}{C_n} - 1 = 0.670 \text{ or } \frac{C_p}{C_n} = 1.67$ or 38 **(b)** Collision frequency = $\frac{u_{\rm rms}}{\text{mean free path}}$ 39 (c) Since, the external pressure is 1.0 atm, the gas pressure is also 1.0 atm as piston is movable. Out of this 1.0 atm partial pressure due to unknown compound is 0.68 atm. Therefore, partial pressure of He=1.00-0.68=0.32 atm. $\Rightarrow \text{Volume} = \frac{n(\text{He})RT}{p(\text{He})}$ $=\frac{0.1\times0.082\times273}{0.32}=7L$ \Rightarrow Volume of container = Volume of He.

40 **(c)**

 $P \propto n(V, T \text{ constant})$

41 **(c)**

The volume of one mole of a gas is called molar volume. It is 22.4 L at STP or NTP for CO_2 gas it is maximum at 127°C and 1 atm

43 **(b)**

We know that density

$$d = \frac{pM}{RT}$$
$$d \propto \frac{1}{T} \text{ and } d \propto p$$

Thus, density of neon is maximum at $0\,^{\circ}\text{C}$ and 2 atm

44 **(a)**

The rate of effusion of He and CH₄

$$\frac{r_{\rm He}}{r_{\rm CH_4}} = \sqrt{\frac{M_{\rm CH_4}}{M_{\rm He}}} = \sqrt{\frac{16}{4}} = 2:1$$

If 4:1 mixture of He and CH_4 contained in a vessel, then the composition of mixture of He and CH_4 effusing out initially is 8:1.

45 **(c)**

 $\frac{1}{T}$ on x axis and $\log_{10} p$ on y axis gives a straight line with a negative slope.

46 **(b)**

N molecules of a gas at NTP occupies 22.4 litre. **47 (a)**

V = KT; on differentiating at constant P, $(\delta V / \delta T)_p = K$

48 **(d)**

At very low pressure, Boyle's plot is represented as

49 **(b)**

p

pV

The value of van der Waals' constant 'a' increases in the same order as the critical temperature. Here, the value of *a* is highest of *Q* hence, gas *Q* has the highest critical temperature.

:.

50 (c) $KE = \frac{3}{2}nRT$, if *KE* are same $n_1T_1 = n_2T_2$ 51 (d) For a fixed amount of gas at constant temperature, the gas volume is inversely proportional to the gas pressure. Thus pV = constant52 (d)

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}; \frac{V}{273} = \frac{2V}{T_2}$$

$$\therefore T_2 = 546 \text{ K}$$

Glass is an amorphous solid 54 **(b)**

(b) Every constituent has two tetrahedral voids. In ccp lattice atoms

$$= 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$$

 \therefore tetrahedral voids = 4 × 2 = 8 Thus, ratio = 4 : 8 = 1 : 2

55 (c)

According to Graham's law the rate of diffusion is inversely proportional to square root of molecular weight and density.

$$r \propto \frac{1}{\sqrt{d}}$$
 and $r \propto \frac{1}{\sqrt{M}}$

56 **(d)**

Both *P* and *V* increase due to increase in moles of air.

57 **(c)**

Joule Thomson coefficient $(\boldsymbol{\mu})$ is zero at inversion temperature

Mathematically,
$$\mu = \left(\frac{\partial T}{\partial p}\right)_{H}$$

When, $\mu=0,$ the gas neither gets cooled down nor gets heated upon expansion

$$v_{\rm rms} = \sqrt{\frac{3p}{d}}$$
$$= \sqrt{\frac{3 \times 1.2 \times 10^5}{4}} = 300 \,\,\mathrm{ms^{-1}}$$

59 **(c)**

$$u = \sqrt{\frac{3RT}{M}}$$
$$u_{H_2} = \sqrt{\frac{3RT_{H_2}}{M}}; u_{N_2} = \sqrt{\frac{3RT_{N_2}}{M}}$$
$$\sqrt{\frac{3RT_{H_2}}{M}} = \sqrt{7} \times \sqrt{\frac{3RT_{N_2}}{M}}$$

 $\begin{pmatrix} \text{because rms speed of } H_2 \text{ is } \sqrt{7} \text{ times the rms} \\ \text{speed of } N_2 \end{pmatrix}$

$$\frac{3RT_{\rm H_2}}{M} = 7 \times \frac{3RT_{\rm N_2}}{M}$$
$$\frac{T_{\rm H_2}}{2} = \frac{7 \times T_{\rm N_2}}{28}$$
$$\frac{T_{\rm H_2}}{14} = \frac{T_{\rm N_2}}{28}$$
or $T_{\rm H_2} < T_{\rm N_2}$

61 **(a)**

rms speed of a gaseous molecule is x m/s at a pressure p atm.

We know that in kinetic theory of gas

rms speed = $\sqrt{\frac{3RT}{M}}$

We know, pV = RT

then rms speed = $\sqrt{\frac{3pV}{M}}$

As temperature is constant so, pV is constant. Hence, rms speed is also constant. If the pressure is doubled at constant temperature, there is no change in rms speed.

62 **(a)**

Using PV = nRTInitially $2 \times 2.24 = n \times 0.0821 \times 300; \therefore n$ = 0.182Finally $\frac{100}{76} \times 2.24 = n_1 \times 0.0821 \times 300;$ $n_1 = 0.120$ Mole given out = 0.182 - 0.120 = 0.06263 (c) Follow Avogadro's hypothesis. 64 (b)

$$\frac{r_{\text{He}}}{r_{\text{CH}_{4}}} = \sqrt{\frac{M_{\text{CH}_{4}}}{M_{\text{He}}}} = \sqrt{\frac{16}{4}} = 2$$
65 (b)
 $r \ll u_{\text{rms}}, \frac{r_{\text{N}_{2}}}{r_{\text{SO}_{2}}} = \frac{u_{\text{N}_{2}}}{u_{\text{SO}_{2}}}$
 $= \sqrt{\left(\frac{3RT}{M}\right)}_{\text{N}_{2}} / \sqrt{\left(\frac{3RT}{M}\right)}_{\text{SO}_{2}} = \sqrt{\frac{M_{\text{SO}_{2}} \times T_{\text{N}_{2}}}{M_{\text{N}_{2}} \times T_{\text{SO}_{2}}}}$
66 (d)
At constant temperature, for ideal gas,
 $p_{1}V_{1} = p_{2}V_{2}$
For the given sample,
 $15 \times 76 = 60 \times 20.5$
 $\therefore p_{1}V_{1} \neq p_{2}V_{2}$
 \therefore The gas behaves non-ideally. However the gas
neither undergo dimerisation nor adsorbed into
the vessel walls.
67 (a)
 $v_{\text{rms}} = \sqrt{\frac{3RT}{M}}$
 $\therefore v_{\text{rms}} \ll \sqrt{T}$
 $\frac{1}{2} = \sqrt{\frac{T}{T'}} [\because V'_{\text{rms}} = 2v_{\text{rms}}]$
 $\frac{1}{4} = \frac{T}{T'},$
 $T' = 4T$
Hence, the rms velocity doubles when the
temperature is increased four times
68 (b)
 $\frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}}$ and, then $(V_{1} - V_{2})$
69 (d)
A crystal system is hexagonal if its unit cell having
 $a = b \neq c$ axial ratio and $a = \beta = 90^{\circ}, \gamma = 120^{\circ},$
axial angles
70 (c)
There are two atoms in a bcc unit cell
So, number of atoms in 12.08 × 10^{23} unit cells
 $= 2^{12.20} \times 10^{23}$

$$= 2 \times 12.08 \times 10^{23}$$

 $= 24.16 \times 10^{23}$ atoms

Ideal gas do not show change in temperature during expansion.

72 **(d)**

The viral equation for gaseous state is $PV = (A + \frac{B}{V} + \cdots)$ at Boyle's temperature, gas shows ideal gas behaviour, *i. e.*, PV = RT which is possible only when A = RT and B = 0.

73 **(b)**

 $KE = \frac{3}{2}RT = \frac{3}{2} \times 2 \times 300 = 900$ cal

74 **(a**)

 $KE = \frac{3}{2}RT = \frac{3}{2} \times 2 \times 273$ cal = 819 cal. 75 (c)

 $PV \ge RT$; H₂, He shows PV > RT; Rest all shows $PV \ge RT$.

76 **(a)**

Maximum deviations are noticed at low *T* and high *P*.

77 **(a)**

Effect of temperature on viscosity is given by **hole theory**

79 **(b)**

 $\Delta S = \frac{L}{T} = LT^{-1}$

80 **(c)**

This is Avogadro's hypothesis.

81 **(b)**

From Charles' law $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

 $\frac{300 \text{ mL}}{300 \text{ K}} = \frac{V_2}{270 \text{ K}}$

 $(V_2 = 270 \text{ mL})$

83 **(d)**

Temperature is doubled in °C and not on Kelvin scale.

84 (a)

Ideal gas equation is

$$Vp = nRT$$

When V and T are same,

 $p \propto n$

Thus, when number of moles, *i.e.*, *n* is least, it will exert least pressure.

(a)
$$n = \frac{\text{wt.}}{\text{mol. wt.}} = \frac{0.0355}{33.5} = 1 \times 10^{-3} \text{ mol}$$

(b)
$$n = \frac{0.071}{33.5} = 2 \times 10^{-3} \text{ mol}$$

(c)
$$n = \frac{\text{number of molecules}}{N_A}$$

$$=\frac{6.023\times10^{21}}{6.023\times10^{23}}=0.01\,\mathrm{mol}$$

(d) n = 0.02 mol

Thus, 0.0335 g chlorine will exert the least pressure.

85 **(a)**

A crystalline substance has a sharp melting point *ie*, solid changes abruptly into liquid state

86 **(c)**

 $H_20 \rightleftharpoons H_20(g)$. This is endothermic process, taking place with increase in pressure. If pressure is increased, equilibrium is displaced in backward side (Le-Chatelier) hence, steam is liquefied. To boil the liquid again, boiling point increases

Mol. wt. of gas
$$=$$
 $\frac{8 \times 22.4}{5.6} = 32;$
Also, vapour density $=$ $\frac{Mol. wt.}{2} = \frac{32}{2} = 16$

88 **(d)**

As the temperature rises, the kinetic energy of the molecules increases. Due to which the molecules can leave the liquid surface easily. In other words the vapour pressure increases. However, surface tension and viscosity decrease with rise in temperature. Molality is the ratio of moles of solute to weight of solvent, hence it does not depend upon the temperature.

89 **(d)**

SATP means 1 bar and 25°C.

90 **(d)**

Follow law of corresponding state, proposed by van der Waals'.

91 **(b)**

The compressibility factor

$$Z = \frac{p \times 22.4}{RT} = 1 \quad \text{(for ideal gas)}$$
$$Z = \frac{p \times Vm}{RT} < 1$$
$$\therefore \frac{22.4}{V_m} > 1 \text{ or } V_m < 22.4$$
$$\textbf{(a)}$$
$$\text{Use} \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

93 (c)

92

Gaseous phase possesses maximum compressibility.

94 **(c)**

Mole of H₂ = 22;
Mole of CO₂ =
$$\frac{44}{44}$$
 = 1; P \propto n

95 **(b)**

Vapour pressure becomes identical as the atmospheric pressure at boiling point. If the liquid is heated beyond that only evaporation continues, vapour pressure does not rise further.

96 **(b)**

Cu atoms are at eight corners of the cube. Therefore, the number of Cu atoms in the unit cell $=\frac{8}{8}=1$

Ag atoms are at the face-centre of six faces.

Therefore, its share in the unit cell $=\frac{6}{2}=3$

Au atoms are at the body centre

 \therefore the number of Au atoms = 1

 \div The formula of the alloy is CuAg_3Au

97 **(c)**

$$u = \sqrt{\frac{3RT}{M}}; \text{ if } T = 2T \text{ and } M = M/2, \text{ then } u_1$$
$$= \sqrt{\frac{3R \times 2T}{M/2}}$$
$$u_1 = \sqrt{4} = 2$$

$$\therefore \frac{u_1}{u} = \sqrt{4} =$$

KE = (3/2)RT in gaseous and liquid phase both. 99 (a)

Use $V \propto T$ then $\frac{V_1}{V_2} = \frac{T_1}{T_2}$ if $V_2 = \left(V_1 + \frac{10V_1}{100}\right)$ find T_2 and calculate percent change.

100 (c)

98

$$P_{\text{Argon}}' = \frac{2}{2+3} \times P_M = \frac{2P_M}{5}$$

101 **(c)**

A constant temperature refers for isothermal process.

102 **(b)**

More is the Schottky defect in crystal, more is the decrease in density

103 **(d)**

 $\therefore PV = nRT \text{ or } P = \frac{nR}{V} \cdot T$

Thus, *P*-*T* curves are linear but with different slopes.

104 **(a)**

Both gases and liquids posses fluidity and hence, viscosity. Molecules in the solid state do not have translational motion

105 **(b)**

The average kinetic energy of a gaseous assembly depends on temperature of the gas

 $V = 44.8 \, \text{L}$

KE $\propto T$

106 **(a)**

From gas equation, pV = nRT

Given that,
$$n = 2$$

 $R = 0.0821 \,\mathrm{L} \,\mathrm{atm} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$

$$T = 546 \, {
m K}$$

$$\therefore p = \frac{2 \times 0.0821 \times 546}{44.8}$$

107 **(a)**

= 2 atm

Kinetic energy $=\frac{3w}{2M}RT$

where, w = mass of a gas = 1 g

M = molecular mass of gas = 32

 $R = 8.314 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

$$T = 47^{\circ} + 273^{\circ} = 320 \text{ K}$$

Kinetic energy = $\frac{3}{2} \times \frac{1}{32} \times 8.314 \times 320$

$$=\frac{7981.44}{64}=1.24\times10^2\,\mathrm{J}$$

108 (c)

A gas is not escaped or injected, so, number of moles remain the same. When volume of gas is compressed to half, no change will occur in the vessel.

```
109 (b)

P \propto T(n, V \text{ are constant}).

112 (d)

a = P \times V^2 = \text{atm litre}^2 \text{ mol}^{-2} = \text{dyne}

\text{cm}^4 \text{mol}^{-2} = \text{Newton m}^4 \text{mol}^{-2} = \text{atm dm}^6 \text{mol}^{-2}

113 (c)

Balloons obey Charles' law, i. e., V \propto T.
```

 \therefore 100 mL blood has 0.02 g O₂ and 0.08 g CO₂ 10,000 mL blood has 2 g O₂ and 8 g CO₂ using *PV* = *nRT*, for O₂ : 1 × *V*

$$= \frac{2}{32} \times 0.0821 \times 310$$
1.59 litre

For
$$CO_2 : 1 \times V = \frac{8}{44} \times 0.0821 \times 310$$

 $V_{CO_2} = 4.62$ litre

115 (c)

 $\therefore V_{0_2} =$

Length of the edge of NaCl unit cell, = $2 \times \text{distance between Na}^+$ and Cl⁻

116 **(a)**

The conditions for which NTP signifies.

117 (d)

 $CuSO_4(aq)$ reacts with all these gases.

118 (a)

van der Waals' gas approaches ideal behaviour at low pressure and high temperature.

119 **(a)**

The compressibility factor (Z) of an ideal gas is one because

 $pV = nRT, \left(Z = \frac{pV}{nRT}\right)$

120 **(a)**

Initially the product *PV* in compartments *A* and $B = 1 \times V + 1 \times V = 2V$ if volume of compartment is *V*. Now *PV* = constant at constant temperature and if wall is removed, then *V* becomes 2*V*, thus, pressure should be 1 atm to have *PV* constant.

121 **(a)**

Quartz is a covalent crystal having a framework of silicates of silica, *ie*, a three diamensional network when all the four oxygen atoms of each of SiO_4 tetrahedron are shared

 $\propto \frac{1}{V}$

122 **(a)**

 $V_1/V_2 = T_1/T_2$

$$V \propto \frac{1}{P}$$
 or density $\propto P\left(: d\right)$

124 **(d)**

These are the three factors on which van der Waals' forces depends.

125 **(c)**

In bcc structure 68% of the available volume is occupied by spheres. Thus, vacant space is 32%

126 **(b)**

 $\text{Use}\frac{V_1}{V_2} = \frac{T_1}{T_2}$

127 **(a)**

Forces of attractions among molecules depends upon molar mass and polarity. NH₃ is polar molecule.

128 **(b)**

In case of $(NH_3 + HCl + HBr)$ mixture, the Dalton's law is not applicable

130 **(b)**

We know that

$$u_{\rm rms} = \sqrt{\frac{3R'}{M}}$$

 \therefore $u_{\rm rms}$ of hydrogen is more than the $u_{\rm rms}$ of nitrogen, thus its temperature is also greater than nitrogen

131 **(c)**

$$P_{M} = P_{N_{2}} + P_{C_{2}H_{4}}$$

and $P_{N_{2}}/P_{M}$ = mole fraction of N₂
$$\frac{P_{N_{2}}}{1} = \frac{w/28}{\frac{w}{28} + \frac{w}{28}} = \frac{1}{2} \quad (P_{M} = 1 \text{ atm})$$

132 **(c)** Use

$$\frac{T_1}{P_2} = \frac{V_2}{V_1}$$

also, $V_2 = \left[V_1 - \frac{5V_1}{100}\right]$

Find
$$P_2$$
 and calculate percent change.

133 **(d)**

 $V \propto T(P, n \text{ are constant}).$

134 **(c)**

Tetrahedral sites are double comparable to octahedral sites then ratio of *X* and *Z* respectively 2:1, since formula of the compound X_2Z

135 **(d)**

For body centred cubic arrangement coordination number is 8 and radius ratio $\left(\frac{r_+}{r}\right)$ is 0.732 - 1.000

138 **(a)**

Andrew derived critical temperature as a characteristic temperature below which only liquefaction was possible by his studies on CO_2 isotherms.

139 **(c)**

Correct gas equation is

$$\frac{p_1 V_1}{p_2 V_2} = \frac{T_1}{T_2}$$

140 **(c)**

$$r = \frac{a}{2\sqrt{2}} = \frac{620}{2\sqrt{2}} = 219.25 \text{ pm}$$

141 (a)

Addition of impurity does not establish equilibrium

142 **(c)**

Distribution of molecules (*N*) with velocity (*u*) at two temperatures T_1 and $T_2(T_2 > T_1)$ is shown below

At both temperatures, distribution of molecules with increase in velocity first increases, reaches a maximum value and then decreases.

143 **(c)**

Rate of diffusion depends upon the molecular masses of gases. Therefore, the gases which have equal molecular mass, have equal rates of diffusion.

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$

Molecular mass of $N_2 0 = 28 + 16 = 44$

Molecular mass of $CO_2 = 12 + 32 = 44$

$$\therefore \frac{r_{N_2O}}{r_{CO_2}} = 1$$

 $\therefore r_{N_2O} = r_{CO_2}$

144 (d)

 $P_{dry O_2} + P_{water vapour} = P_{wet O_2}$ 146 (a)

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

 $v_{\rm rms} \propto \sqrt{T}$

: At two different temperatures,

$$\frac{v_{\rm rms}}{v_{\rm rms}'} = \sqrt{\frac{T}{T'}}$$

Given, $v'_{\rm rms} = 2v_{\rm rms}$

$$\frac{1}{2} = \sqrt{\frac{T}{T'}} \text{ or } \frac{1}{4} = \frac{T}{T'}$$

T' = 4T

 $v_{\rm rms}$ gets doubled, when the temperature is increased four times.

147 **(a)**

:.

$$P'_{O_2} = P_M \times \text{mole fraction of } O_2;$$

 $P'_{O_2} = 740 \times \frac{21}{100} = 155.4 \text{ mm}$

(a)

$$P_1V_1 = \frac{w_1}{30}RT_1; (w_1 = 15)$$

 $P_2V_2 = \frac{w_2}{M}RT_2; (w_2 = 75)$
if $P_1 = P_2, V_1 = V_2, T_1 = T_2$ then $M = 150$ also;
VD = M/2

149 (a) 🔦

More is the number of mole, more will be number of molecules.

$$28 x = 70 \times 2;$$

$$\therefore x = 5$$

151 **(a)**

MnO₂ is antiferromagnetic in nature

152 **(d)**

Use PV = nRT; find *n* for *A* and *B* separately; Now again use PV = nRT for mixture using V = 2 litre

$$u_{\rm rms} \propto \sqrt{\left[\frac{1}{M}\right]}$$

154 **(b)**

Molecules are never in stationary state.

156 **(b)**

Zinc blende (ZnS) has fcc structure and is an ionic crystal having 4 : 4 coordination number

157 **(d)**

Given,
$$r_{\text{He}} = \frac{500}{30} \text{ mL/min}$$

$$r_{\rm SO_2} = \frac{1000}{t} \, \rm mL/min$$

 $M_{\rm He} = 4$

$$M_{\rm SO_2}=64$$

From Graham's law

$$\frac{r_{\rm He}}{r_{\rm SO_2}} = \sqrt{\frac{M_{\rm SO_2}}{M_{\rm He}}}$$
$$\frac{500}{30} \times \frac{t}{1000} = \sqrt{\frac{64}{4}}$$

$$\frac{v}{60} = 4$$

 $t = 240 \min = 4 h$

159 **(b)**

Total kinetic energy $=\frac{3}{2}nRT$

Where, n = number of moles of gas

$$n = 1$$

Then, KE = $\frac{3}{2} RT$

160 **(c)**

Gay-Lussac's were derived from the experiments facts.

161 **(b)**

$$u_{AV}(O_{2}) = \sqrt{\frac{8RT}{\pi \times 32}}; u_{\rm rms}(N_{2}) = \sqrt{\frac{3RT}{28}}$$
$$\therefore \frac{u_{AV}(O_{2})}{u_{rms}(N_{2})} = \sqrt{\frac{8 \times 28}{\pi \times 32 \times 3}} = \sqrt{\frac{7}{3\pi}}$$

162 **(a)**

Single capillary method is used to determine surface tension of liquids.

163 **(a)**

For an element, term 'atom' is used.

165 **(c)**

- Use PM = dRT
- 166 **(d)**

According to Graham's law of diffusion

$r \propto \frac{1}{\sqrt{N}}$

Hence, the order of rate of diffusion is

Gases :

A > B > C

Mol. Weight: 2 4 28

167 **(c)**

Initially for argon : $P \times V = \frac{4}{m} \times R \times T$

On heating for argon : $P \times V = \frac{3.2}{m} \times R \times (T + 50)$ $\therefore 4T = 3.2T + 160 \text{ or } T = 200 \text{ K}$ 168 (b) 2a $T_i = \frac{2\pi}{Rb}$ 169 (d) These are van der Waals' equations for 1 mole (a) and *n* mole gas (b), (c). 171 (b) $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{20}{10} = \frac{V_2}{30} \implies V_2 = 60 \text{ L}$ $V_2 - V_1 = 60 - 20 = 40$ L 172 (c) At constant P, V and T, $w \propto m$. 173 (b) Solid \rightarrow Vapour is called sublimation. 174 (a) The structure arrangement of coordination number 6 is octahedral and its radius ratio is 0.414 - 0.732. The example of octahedral is KCl and NaCl 175 (c) $250 \times p_1 = 1000 \times p_2$ $\therefore \frac{p_2}{p_1} = \frac{250}{1000} = \frac{1}{4}$ or $p_2 = \frac{p_1}{4}$ 176 (c) Moles of A, $n_A = \frac{p_A V_A}{RT} = \frac{8 \times 12}{RT} = \frac{96}{PT}$ Moles of B, $n_B = \frac{p_B V_B}{RT} = \frac{8 \times 5}{RT} = \frac{40}{RT}$ Total pressure × total volume = $(n_A + n_B) \times RT$ $p \times (12+8) = \frac{1}{RT}(96+40)RT$ p = 6.8: Partial pressure of $A = p \times \text{mole fraction of } A$ $= 6.8 \times \left(\frac{96}{RT} / \frac{96 + 40}{RT}\right)$ $= 4.8 \, \text{atm}$: Partial pressure of $B = p \times \text{mole fraction of } B$

$$= 6.8 \left(\frac{40}{RT} / \frac{96 + 40}{RT}\right)$$

= 2 atm.

177 (d)

From kinetic molecular theory of gases, different gases at the same temperature have same average kinetic energy.

178 **(d)**

When polar crystal is subjected to a mechanical stress, electricity is produced-a case of piezoelectricity. Reversely, if electric field is applied, mechanical stress is developed. Piezoelectric crystal acts as a mechanical transduce

179 **(c)**

Mol. wt. of sample = $\frac{28 \times 4 + 32 \times 1}{5} = 28.8$ \therefore V. D. = 14.4

180 **(d)**

For fcc arrangement,

$$4r = \sqrt{2}a$$
$$a = \frac{4r}{\sqrt{2}}$$

181 **(a)**

In absence of attractive forces, energy is not needed to separate molecules from each other on expansion.

182 **(b)**

183

Use $P_1V_2 = P_2V_2$.

(d)

$$\frac{RT_c}{P_cV_c} = \frac{8}{3} :: T_c = \frac{8a}{27Rb}, V_c = 3b \text{ and } P_c = \frac{a}{27b^2}$$

(d)

184 **(d)**

$$u_{\rm rms} = \sqrt{\left[\frac{3RT}{M}\right]}$$

185 (c)

In rock salt structure, the coordination number of Na^+ : CI^- is 6 : 6

- 186 **(d**
 - $P = \frac{P_1 + I}{2}$

187 **(b**)

A derivation for mean free path of gas. **188** (a)

The dipoles in certain solids are spontaneously aligned in a particular direction, even in the absence of electric field. Such substances are called ferroelectric substances. Barium titanate (BaTiO₃) and potassium hydrogen phosphate (KH_2PO_4) are ferroelectric solids Higher the critical temperature, greater will be the ease of liquification

190 (d) h = 4l

b = 4Nv; \therefore unit of $b = \text{litre mol}^{-1} = \text{cm}^3 \text{mol}^{-1} = \text{m}^3 \text{mol}^{-1}$

191 (d)

$$M = \frac{\rho \times a^3 \times N_A \times 10^{-30}}{Z}$$

$$= \frac{10 \times (100)^3 \times 6.02 \times 10^{23} \times 10^{-30}}{4} = 15$$

$$\therefore \text{ Number of atoms in } 100 \text{ g} = \frac{6.02 \times 10^{10}}{15.0}$$

Mole of
$$O_2 = \frac{16}{32}$$
; mole of $N_2 = \frac{14}{28}$

193 (a)

$$\frac{p_1}{T_1} + \frac{p_1}{T_1} = \frac{p}{T_1} + \frac{p}{T_2}$$

$$\frac{2p_1}{T_1} = p\left(\frac{T_1 + T_2}{T_1 T_2}\right)$$
or $p = \frac{2p_1 T_2}{T_1 + T_2}$

194 **(c)**

H₂ and He possess minimum mol. wt. among all gases.

195 **(a)**

 N_2 and H_2 combine in $1:3\ ratio$ forming 2 mole of $NH_3.$

196 **(d)**

The value of ionic radius ratio is 0.52 which is between 0.414 - 0.732, then the geometrical arrangement of ions in crystal is octahedral

197 **(b)**

The constituent particles of a solid can only vibrate about their fixed position

198 **(c)**

At high pressure, volume of molecules should not be neglected in comparison to volume of gas. Also experimental studies reveals PV > RT at high P.

200 **(d)**

Metallic crystals are good conductor of heat and current due to the presence of free electrons in them

201 **(a)**

 $1 \text{ atm} = 76 \text{ cm} = 76 \times 13.6 \times 980 \text{ dyne } \text{cm}^2$ 202 (a)

Number of moles of He = $\frac{0.4}{4} = 0.1$

Number of moles of oxygen = $\frac{1.6}{32} = 0.05$

Number of moles of nitrogen $=\frac{1.4}{28}=0.05$ Total moles in the 10.0 L cylinder at 27°C = 0.1 + 0.05 + 0.05= 0.2 mol $p_T = \frac{nRT}{V} = \frac{0.2 \times 0.082 \times 300}{10} = 0.492$ atm 204 (c) At constant *P*, *V* and *T*, $w \propto m$. 205 (b) In face centred cubic structure, contribution of $\frac{1}{8}$ by each atompresent on the corner and $\frac{1}{2}$ by each atom present on the face 206 (a) Rate of diffusion for H_2 is maximum. 207 (d) Schottky defects occurs in highly ionic compounds which have high coordination number, eg. NaCl, KCl, CsCl etc 208 (d) CsCl has a bcc lattice. So, $d_{\text{body}} = a\sqrt{3}$ or $d_{\text{body}} = \sqrt{3} \times 0.4123 \text{ nm} = 0.7141 \text{ nm}$ The sum of the ionic radii of Cs⁺ and Cl⁻ ions is half this distance ie $r_{\rm Cs^+} + r_{\rm Cs^-} = \frac{d_{\rm body}}{2} = \frac{0.7141}{2} \,\,{\rm nm}$ = 0.3571 nmIonic radius of $Cs^+ = 0.3571 - 0.181 = 0.1761$ 209 **(b)** According to ideal gas equation pV = nRTn = number of moles of gas $\frac{pV}{nRT} = 1$ then, Therefore, the compressibility factor $Z = \frac{pV}{nBT} = 1$ For an ideal gas. For real gas Z may be either greater than one or less than one. 210 (a) $\frac{pV}{nRT}$ > 1, the gas is less compressible than expected from ideal behaviour and shows positive

deviation.

211 (b)

$$PV = \frac{W}{m}RT$$

212 (c)
Given, $\frac{p_2}{p_1} = 2, \frac{T_2}{T_1} = 2, V_1 = 4 \text{ dm}^3, V_2 =?$
From gas equation
 $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$
or $\frac{V_1}{V_2} = \frac{p_2}{p_1} \times T_1/T_2$
 $\therefore \frac{4}{V_2} = 2 \times \frac{1}{2} = 1$
 $\therefore V_2 = 4 \text{ dm}^3$
213 (b)
A principle used for cooling gas.
214 (b)
For real gases van der Waals' pointed out volume
correction in gas equation where *V* was replaced
by $(V - b)$.
215 (c)
Zinc blende (ZnS) has fcc structure and is an ionic
crystal having 4:4 coordination number
216 (d)
Follow Avogadro's hypothesis.
218 (b)
Given, $a = b \neq c, \alpha = \beta = 90^\circ, \gamma = 120^\circ$
This is true for hexagonal system
219 (a)
 $\frac{p_1}{d_1} = \frac{p_2}{d_2} (at a constant temperature)$
This is the Boyle's law
So, the case - "Air at sea level is dense" is studied
under Boyle's law
220 (b)
During evaporation, molecule having high energy
leave the surface of liquid As a result average
kinetic energy of liquid decreases
 $\therefore KE \propto T$
 \therefore Temperature of liquid falls
221 (c)
Volume of balloon $= \frac{4}{3}\pi r^3$
 $= \frac{4}{3} \times \frac{22}{7} \times (\frac{21}{2})^3 = 4851 \text{ mL}$
Volume of the cylinder containing gas =2.82 L =
2820 mL

Volume at STP = $V_1 = 2820 \times \frac{273}{300} \times 20 = 51324$ mL Volume of the gas that will remain in the cylinder after filling balloons is equal to the volume of cylinder, ie, 2820 mL Available hydrogen for filling = 51324 - 2820= 48504 mL Number of balloons = $\frac{48504}{4851} \approx 10$ 222 (a) $P_{\rm dry\,gas} = P_{\rm wet\,gas} - P_{\rm H_2O}$ 223 **(b)** It is a characteristic of liquid crystal 224 (a) $T_2 = T_1 + 1; \ P_2 = P_1 + \frac{0.4 \ P_1}{100}$ Now use, $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ assuming $V_1 = V_2$ 225 (d) In a unit cell, W atoms at the corner $=\frac{1}{8} \times 8 = 1$ 0-atoms at the centre of edges $=\frac{1}{4} \times 12 = 3$ Na-atoms at the centre of the cube =1W: 0: Na = 1: 3: 1Hence, formula = $NaWO_3$ 226 (a) pV = nRTV = sameR = constantT = same $p \propto n$ or $p \propto \frac{w}{M}$ but *w* is same. So, $p \propto \frac{1}{2}$ $\frac{p_{\rm CH_4}}{p_{\rm O_2}} = \frac{M_{\rm O_2}}{M_{\rm CH_4}} = \frac{32}{16} = \frac{2}{1}$ 227 (d) $u_1/u_2 = \left[\left[\frac{T_1}{T_2} \right] \right]$ 228 (c) $P_{H_20}' = P_M \times \frac{1}{100} = 760 \times \frac{1}{100}$ $= 7.6 \,\mathrm{mm} \,\mathrm{of} \,\mathrm{Hg}$

229 (b) Rate of diffusion $\propto \frac{1}{\sqrt{\text{molecular mass}}}$ \therefore Order of diffusion : $H_2 > CH_4 > SO_2$ and amount left is in the order $SO_2 > CH_4 > H_2$ Hence, order of partial pressure is $pSO_2 > pCH_4 > pH_2$ 230 (a) w = 22 g; V = 1 litre, T = 298 K using $PV = \frac{W}{m}RT$ (for CO₂) $P \times 1 = \frac{m}{22} \times 0.0821 \times 298$ $P_{\rm CO_2} = 12.23$ atm :. $\therefore \quad P_{\text{in bottle}} = P_{\text{CO}_2} + \text{atm. pressure}$ = 12.23 + 1 = 13.23 atm 231 (d) A fact for deviations from ideal gas behaviour. 232 (c) Closest approach in bcc lattice $=\frac{1}{2}$ of body diagonal $=\frac{1}{2} \times \sqrt{3}a$ $=\frac{\sqrt{3}}{2} \times 4.3 = 3.72$ Å 233 (c) $\frac{V_A}{t_A} \times \frac{t_B}{V_B} = \frac{M_B}{M_A}$ $\frac{10}{20} = \sqrt{\frac{M_B}{49}}$ $M_B = \frac{49}{4} = 12.254$ 234 (d) This is one of the limitation of van der Waals' equation. 235 (c) Frenkel defect is observed in the crystals in which the radius ratio is low 236 **(b)** Graham's law of diffusion of gases $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{d_2}{d_1}}$ 237 (a) $\frac{d}{d} = \frac{M}{R}$

Let density of gas B = d

So, density of gas A = 2dAnd molecular weight of A = MSo molecular weight of B = 3M

$$p_A = \frac{M_A}{d_A} \text{ and } p_B = \frac{M_B}{d_B}$$
$$\frac{p_A}{p_B} = \frac{M_A}{d_A} \times \frac{d_B}{M_B}$$
$$= \frac{M}{2d} \times \frac{d}{3M} = \frac{1}{6}$$

238 (c)

Real gases do not follow gas laws at all temperature and pressure conditions due to two wrong assumptions in kinetic molecular theory of gases :

(i) The volume occupied by gas molecules is negligible. It is not true because gas

molecules do occupy small volume.

(ii) The forces of attraction between gas molecules are zero. It is not true because

attractive forces are present between molecules of real gases.

239 (d)

Boyle's law, Charles' law and Avogadro's law can be proved on the basis of kinetic theory of gases.

241 (a)

Given, $\frac{r_{\rm H_2}}{r_A} = 6$, $M_{\rm H_2} = 2$, $M_A = ?$

From Graham's law of diffusion

$$\frac{r_{\rm H_2}}{r_A} = \sqrt{\frac{M_A}{M_{\rm H_2}}}$$

or $6 = \sqrt{\frac{M_A}{2}}$ or $36 = \frac{M_A}{2}$
 $\therefore M_A = 72$

242 (c)

Given initial volume $(V_1) = 300$ cc; initial temperature $(T_1) = 27^{\circ}\text{C} = 300 \text{ K}$, initial pressure 255 (a) $(p_1) = 620$ mm, final temperature $(T_2) = 47^{\circ}C =$ 320 K and final pressure $(p_2) = 640$ mm. We know from the general gas equation

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

$$=\frac{620\times300}{300}=\frac{600\times V_2}{320}$$
$$=310 \text{ cc}$$

(where, V_2 is the final volume of the gas)

Use
$$P_m = P_{O_2} + P_{H_2}$$
 or $740 = 2P(P_{H_2} = P_{O_2} = P)$
244 (d)

Use
$$\frac{w_1}{w_2} = \sqrt{\left[\frac{M_1}{M_2}\right]}$$

245 (b)

246 (c)

$$\frac{M \text{ wt. of } \text{CO}_2}{M \text{ wt. of } \text{SO}_2} = \frac{M_1}{M_2} = \frac{44}{64} = \frac{11}{16}$$
approx = $\frac{2}{3}$

247 (b)

In the van der Waals' equation :

$$\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

The pressure correction factor $(n^2 a/V^2)$ accounts for intermolecular attraction in real gas.

248 (c)

At constant temperature and pressure, the masses of two gases in a mixture are same, so

$$M_{\rm N_2} = M_{\rm O_2}$$

A real gas will approach ideal behaviour at high temperature and low pressure.

250 (b)

Rest all are dissolved in water to greater extent. 251 (b)

$$\eta = Ae^{E/RT}$$

The conditions for triple point of H_2O .

253 (c)

Follow assumptions of kinetic theory.

At inversion temperature gases show neither cooling nor heating on subjecting to Joule-Thomson effect.

257 **(d)**
$$PV = \frac{w}{m}RT;$$

If other factors are same, $V \propto \frac{1}{m}$

258 (c)

 $V \propto T$

259 **(c)**

Let rms speed of nitrogen at *T* K be u and is equal to that of CO₂ at STP

$$u_{\rm rms} = \sqrt{\frac{3RT}{28}} = \sqrt{\frac{3R \times 273}{44}}$$
$$T = \frac{273 \times 28}{44}$$
$$= 173.73 \text{ K} = -99.27^{\circ}\text{C}$$
(d)

260 (d)

$$KE \propto T$$

261 **(b)**

Under similar conditions of *P* and *T*, moles or volume of gases react according to stoichiometry of reaction. This is Gay-Lussac's law of combining volume, *e*.g., 1 volume H_2 combines with 1 volume Cl_2 to give 2 volume HCl as:

$$H_2 + Cl_2 \rightarrow 2HC$$

262 **(b)**

Real gases show less pressure than ideal gases because molecular interactions lowers the speed of molecules with which they collide

264 (c)

Cl⁻ Na⁺ Cl⁻
Or,
$$a = \frac{2d}{\sqrt{3}} = \frac{2 \times 4.52}{\sqrt{3}} = 5.219$$
Å = 522 pm
 $\therefore a = 2x$
266 (d)
Given $T_1 = 273 + 10 = 283$ K
 $T_2 = 273 + 20 = 293$ K
Average KE $= \frac{3}{2}kT$
 $\frac{KE_1}{KE_2} = \frac{283}{293} = 0.96$

Root mean square (rms) velocity,

$$v_{\rm rms} = \sqrt{\frac{3R7}{M}}$$

 $\frac{v_{(\rm rms)_1}}{v_{(\rm rms)_2}} = \sqrt{\frac{T_1}{T_2}}$

$$=\sqrt{\frac{283}{293}}=0.98$$

7 M

Thus both average kinetic energy and root mean square velocity increase but not significantly when temperature is increased from 10°C to 20°C.

268 **(b)**

 $= 2.179 \text{ g cm}^{-3}$

Destiny,
$$d = \frac{3N_A}{a^3 N_A}$$

= $\frac{4(58.5) \text{g mol}^{-1}}{(5.628 \times 10^{-8} \text{cm})^3 (6.023 \times 10^{23} \text{mol}^{-1})}$

Second member of alkyne series is C_3H_4 . (m - 40)

$$\sqrt{\frac{2RT_1}{M_1}} = \sqrt{\frac{2RT_2}{M_2}}$$
$$T_1 = T_2 \left(\frac{M_1}{M_2}\right) = 800 \left(\frac{40}{64}\right) K$$
$$= 500 \text{ K} = 227^{\circ} \text{C}$$

270 **(a)**

Both gases are filled in a container of volume V; Thus, $P_m = P_1 + P_2 = 2P$

A fact why we feel discomfort on hot rainy day.

272 **(c)**

Greatest deviation from ideal behaviour is exhibited by real gases at low temperature and high pressure.

From the given choices it is clear that choice (c) has lowest temperature and highest pressure.

273 **(c)**

 $b = 4 \times N \times$ volume of one molecule in rest.

274 **(d)**

Evaporation takes place at constant temperature and thus, kinetic energy does not change.

2

$$KE = \frac{3}{2} RT$$

$$KE \propto T$$

$$\frac{KE_{O_2}}{KE_{SO_2}} = \frac{T_{O_2}}{T_{SO_2}} = \frac{273}{546} = \frac{1}{2}$$

$$KE_{SO_2} = 2 KE_{O_2}$$

$$KE_{SO_2} > KE_{O_2}$$

277 (b)

$$PV = \frac{1}{3}mu^{2}; \text{ at const. } V : \frac{P}{P_{2}} = \frac{u_{1}^{2}}{u_{2}^{2}}$$
278 (d)
Yan der Waals' equation (at low pressure).

$$\left[p + \frac{a}{\sqrt{2}}\right](V - b) = RT$$
or $pV = RT + pb - \frac{a}{\sqrt{2}} + \frac{ab}{\sqrt{2}}$
or $\frac{P'}{\sqrt{2}} = 1 - \frac{a}{RT} = Z$
280 (b)
KE $= \frac{3}{2} kT$
Where, k is constant.
KE $\propto T$
Here the temperature is same. Hence, for 1 g of H₁
and 1 g of Cl1₄ which are taken in two vessels, of 1
Leach at same temperature, the kinetic energy
per mole will be the same.
281 (d)
 $M_{L} = \sqrt{\frac{1}{T_{L}}}$
284 (c)
According to Clausis-Clapeyron, if a graph is
plotted between log T and $\frac{a}{2}$ a straight line is
obtained with negative slope.
285 (a)
 $M_{R} = \frac{1400 \times 68.5}{100}$ torr
 $= 950/760$ atm
 $= 1.26$ atm
According to Henry's law,
amount of gas absorbed is directly proportionalian
pressure
297 (b)

277 **(b)**

Page | 61

 $M \times C_{v}$

 $C_V = \frac{3}{2}$ R(for monoatomic) and $\frac{5}{2}$ R(for diatomic). hypothesis 306 (c) Thus, for mixture, $C_V = \frac{\left[\frac{3}{2}R + \frac{5}{2}R\right]}{2} = 2R = 4$ cal. 299 (a) measurement. Mol. wt. of moist air is lesser than dry air. 300 (a) According to Boyle's law pV = constantThe plot of *pV* against *p* is straight line parallel to x- axis ∴ Slope is zero. 307 (c) 301 (c) 308 (c) Given that, Density of liquid $(D) = 800 \text{ kgm}^{-3}$ 309 (d) Height of liquid (h) = 4 cm = 0.04 m310 **(b)** Acceleration due to gravity (g) = 9.8 ms^{-2} Diameter of tube (d) = 0.8 mmRadius of tube (r) = $0.4 \text{ mm} = 4 \times 10^{-4} \text{ m}$ Surface tension (T) = ?312 (a) By using $T = \frac{rh Dg}{2}$ $=\frac{(4\times10^{-4})\times(0.04)\times800\times9.8}{2}$ 314 (a) $= 4 \times 10^{-4} \times 0.04 \times 400 \times 9.8$ $= 4 \times 4 \times 4 \times 98 \times 10^{-5}$ Hence, $T = 6.272 \times 10^{-2} \approx 6.3 \times 10^{-2} \text{ Nm}^{-1}$ 302 (c) = 623.25 J *M*_{0₂} = 16/32 315 (b) $M_{\rm SO_2} = \frac{52}{64};$ Equal mole contain equal no. of molecules. 0_{2} 303 (a) Number of octahedral sites = Number of sphere in the packing \therefore Number of octahedral sites per sphere = 1 304 (b) One gram mole of a gas at NTP occupies 22.4 L as volume. This fact was derived from Avogadro's 316 (a)

In ideal gas equation the value of universal gas constant depends on the units of the Numerical values of *R*, (a) 0.0821 L atm K⁻¹ mol⁻¹ (b) $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ (c) $8.314 \times 10^7 \text{ erg K}^{-1} \text{ mol}^{-1}$ These are facts about Loschmidt's number. According to Boyle's law $V = \frac{K}{R}$ Effusion does not depend on size of the molecule According to Graham's law of diffusion The rate of diffusion of ammonia (M = 17) is more than the HCl (M = 36.5), thus white ring forms near the hydrogen chloride bottle Frenkel's defect is due to shift of an ion from the normal lattice site (creating a vacancy) and occupy interstitial spaces $KE = \frac{3}{2} RT$ for 1 mole of gas $\Delta KE = \frac{3}{2} \times 8.315 \times (50 - 0)$ $=\frac{3}{2} \times 8.315 \times 50$

From the total pressure and the vapour pressure of water, we can calculate the partial pressure of

 $p_{0_2} = p_{\rm T} - p_{\rm H_20} = 760 - 22.4 = 737.6 \,\rm mm \, Hg$ From the ideal gas equation we write

$$m = \frac{pVM}{RT} = \frac{0.974 \times 0.128 \times 32.0}{0.0821 \times 297} = 0.163 \text{ g}$$

Lowering of temperature decreases kinetic energy and increase of pressure increases forces of attractions.

317 (a)

We know that,

$$V_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

So, as the molecular mass increases, rms speed decreases. Thus, the correct order of root mean square speed is

$$H_2 > N_2 > O_2 > HBr$$

318 **(b)**

$$\frac{r_1}{r_2} = \frac{1}{6} = \sqrt{\left[\frac{M_2}{M_1}\right]} = \sqrt{\frac{2}{M}} \therefore M = 72$$

319 (a)

$$u_{AV} \propto \sqrt{\left[\frac{8RT}{\pi M}\right]} \text{ or } u \propto \sqrt{\left[\frac{T}{M}\right]}$$

321 (d)

Charcoal adsorbs gases.

322 (c)

Given, $V_1 = 500$ mL, $T_1 = 27 + 273 = 300$ K

$$V_2 = ?, T_2 = 42 + 273 = 315 \text{ K}$$

From Charles' law

 $V_1 T_2 = V_2 T_1$

$$\therefore V_2 = \frac{500 \times 315}{300} = 525 \text{ mI}$$

- 500 Hence, increase in volume = 525

= 25 mL

324 (d)

CO reacts with red colouring haemoglobin molecules in blood to form a complex of cherry red colour.

325 (b)

AgBr exhibits Frenkel defect due to large difference in the size of Ag⁺ and Br⁻ ions

327 (b)

The internal energy, *i.e.*, kinetic energy of gas depends only on temperature.

328 (b)

 $u_{\rm rms} = \sqrt{\frac{3RT}{M}}$

329 (c)

SO₂ has higher value of van der Waals' forces of

attraction and thus, more easily liquefied.

330 (c)

Liquefaction of a gas is easier if it possesses high T_c and higher T_i

$$\therefore \left(P + \frac{a}{V^2}\right)(V) = RT$$

$$\therefore PV = RT - \frac{a}{V} \qquad \dots (i)$$

Following y = mx + c for the curve *PV* $vs\frac{1}{w}$

Slope =
$$-a$$

Slope = $\frac{21.6 - 20.1}{2 - 3} = -1.5$
∴ $a = 1.5$

333 (b)

Gases for which intermolecular forces of attraction are small such as N2, O2 etc have low value of T_c , thus liquefied above critical temperature

334 (b)

335

$$d_1 T_1 = d_2 T_2$$

When *p* remains constant

$$d_{1} = 16; d_{2} = 14; T_{1} = 273 \text{ K}, T_{2} = ?$$

$$d_{1}T_{1} = d_{2}T_{2}$$

$$16 \times 273 = 14 \times T_{2}$$

$$T_{2} = 312 \text{ K}$$

$$T_{2} = 312 - 273 = 39^{\circ}\text{C}$$

$$335 \text{ (c)}$$

$$d = \frac{P_{m}}{RT}$$

$$336 \text{ (a)}$$

Both CO_2 and N_2O have same mol. wt. respectively 337 (d) 351 (b) Mole fraction of nitrogen in air is greater than the *PV* = constant at constant temperature. given gases so it has highest partial pressure in 352 (c) the atmosphere. $\frac{u_{\rm H_2}}{u_{\rm O_2}} = \sqrt{\left[\frac{M_{\rm O_2}}{M_{\rm H_2}}\right]} \text{ if } T \text{ is constant.}$ 338 (b) In rock salt structure, the coordination number of 353 (b) $Na^+: CI^- is 6: 6$ Total mole = $\frac{4.4}{44} + \frac{2.24}{22.4} = \frac{1}{5}$; molecules = 339 (c) 354 (d) CO_2 is more easily liquefied than O_2 gas. Hence $n = \frac{pV}{RT} = \frac{3170 \times 10^{-3}}{8.314 \times 300} = 1.27 \times 10^{-3} \text{ mol}$ (a) of CO_2 is more than that of O_2 . Also CH_4 is easily liquefied than H_2 and He. Hence 'a' of CH_4 is more than H_2 and He. 355 (b) He H_2 CO_2 CH_4 0_{2} Most probable velocity 0.434 0.244 1.36 3.59 2.25 а atom l^2 mole⁻² = (27 + 273) = 300 K 0.0237 0.0266 0.0318 0.0427 0.0428 l mol b \therefore Order of *a* CH₄ > O₂ > H₂ Molecular mass of $H_2 = 2 \text{ g mol}^{-1}$ \therefore Order of *b* He < H₂ < O₂ < CO₂ 340 (a) Most probable velocity (H₂) $(T_f)_{irrev} > (T_f)_{rev}$ 341 (c) $\frac{8 \times 8.314 \times 10^7 \times 300}{3.14 \times 2}$ Ideal gas cannot be liquefied as its molecules have no force of attractions. 342 (c) $= 17.8 \times 10^4 \text{ cm/s}$ $u_{AV} = [8RT/\pi M]^{1/2}$ 356 (d) 344 (a) $u_{\rm rms} = \sqrt{\frac{2^2 + 3^2 + 4^2 + 5^2}{4}} = \frac{\sqrt{54}}{2} \,{\rm cm/s}$ $V \propto \frac{1}{n}$ 345 (d) 357 (b) $\frac{r_{\rm H_2}}{r_{\rm O_2}} = \left| \frac{M_{\rm O_2}}{M_{\rm H_2}} \right|$ On heating the gas in open vessel At 300 K : $P_1V_1 = n_1 \cdot R \cdot 300$ At 400 K : $P_1V_1 = n_2 \cdot R \cdot 400$ $\therefore \frac{n_1}{n_2} = \frac{4}{3} \text{ or } n_2 = \frac{3}{4} n_1$ Thus, $\frac{n_1}{4}$ gas is given out 358 (b) $\Rightarrow t = 64 \text{ min}$ A fact at zero Kelvin. 360 (b) 347 (a) $V_1/V_2 = T_1/T_2$ Rate of diffusion of hydrogen is more than methane thus the balloon will have enlarged 361 (a) $c_p = C_p / M$ 348 (c) 362 (c) Kinetic energy depends on temperature only. 349 (a) $KE = \frac{3}{2}nRT = \frac{3}{2} \times 2 \times 8.314 \times 300$ For H₂ and He, PV > nRT; Also $Z = \frac{PV}{nRT}$ = 7482.6 I350 (a) 363 **(b)** The number of spheres in one body centred cubic Silica (SiO₂) has gaint covalent structure and in one face centred cubic unit cell is 2 and 4

364 (d)

Page | 64

When radius ratio between 0.732 – 1.000, then coordination number is 8 and the structural arrangement is body centred cubic

365 **(a)**

$$200 = \sqrt{\frac{2RT}{2 \times 10^{-3}}}$$

or $RT = 40$
Average kinetic energy $= \frac{3}{2}nRT$
 $= \frac{3}{2} \times \frac{8}{2} \times 40$
 $= 240$ J

367 (c)

Graham's law is valid at low pressure.

368 **(a)**

Average speed of gas molecules

$$=\sqrt{\frac{8RT}{\pi M}}$$

Most probable speed of gas molecules

$$=\sqrt{\frac{2RT}{M}}$$

$$\therefore v_{\rm av} : v_{\rm mp} = \sqrt{\frac{8RT}{\pi M}}$$
$$= \sqrt{\frac{8}{\pi}} : \sqrt{2}$$

1

369 **(c)**

Find *m* by : $m = \frac{WRT}{PV}$ and notice the choice. 370 (c)

Dalton's law of partial pressure : This law states that the total pressure exerted by a mixture of non-reacting gases is equal to the sum of partial pressure exerted by the individual gases.

$$p = p_1 + p_2 + p_3 \dots$$

Dalton's law of partial pressure follows by the mixture of non-reacting gas but NH_3 react with HCl gives NH_4Cl .

 $\rm NH_3 + HCl \rightarrow \rm NH_4Cl$

Hence, Dalton's law of partial pressure is not

applicable to $NH_3 + HCl$.

371 (a)

We know that molecular mass of hydrogen $(M_1) = 2$ and that of helium $(M_2) = 4$. We also know that Graham's law of diffusion

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{4}{2}} = \sqrt{2} = 1.4$$

$$r_1 = 1.4 r_2$$

373 **(d)**

wt. of 112 litre
$$O_2 = \frac{32 \times 112}{22400} = 0.16$$

Ideal gas equation pV = nRT is obeyed by ideal gas in both adiabatic process and isothermal process.

375 (c)

A gas can be easily liquefied under pressure when it is cooled to below the critical temperature 376 (b)

$$V_{\rm rms} = V_{\rm mps}$$

$$\sqrt{\frac{3RT}{M(X)}} = \sqrt{\frac{2RT'}{M(Y)}}$$

$$\Rightarrow \sqrt{\frac{3R \times 400}{40}} = \sqrt{\frac{2R \times 60}{M(Y)}}$$

M(Y) = 4

377 **(b)**

⇒

For n' moles, the van der Waals' equation is

$$\left(p + \frac{an^2}{V^2}\right)\left(V - nb\right) = nRT$$

where, n = 2 moles R = 0.0821 L atm K⁻¹ mol⁻¹

$$T = 27 + 273 = 300 \text{ K}$$

$$V = 5 L$$

$$a = 4.17$$

$$b = 0.03711$$

so
$$p = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

$$= \frac{2 \times 0.0821 \times 300}{(5 - 2 \times 0.3711)} - \frac{4.17 \times (12)^2}{(5)^2}$$
$$= \frac{49.26}{4.926} - \frac{16.68}{25}$$
$$= 10 - 0.66$$

= 9.33 atm

378 (b)

Vapour form is the gaseous state of a substance below its critical temperature.

379 (d)

$$P'_{N_2} = P_M \times M. \text{ f. or } \frac{25}{10} = 100 \times M. \text{ f.}$$

or per cent M. f. $= \frac{25}{10} \times \frac{100}{100} = 2.5\%$

380 (d)

Edge length of the unit cell = $2 \text{ Å} = 2 \times 10^{-8} \text{ cm}$ Volume of the unit cell = $(2 \times 10^{-8})^3$ cm³ $= 8 \times 10^{-24} \text{ cm}^3$ Mass of unit cell = volume \times density $= 8 \times 10^{-24} \times 2.5 \,\mathrm{g}$ No. of unit cells in 200 g of the metal mass of metal 200 $\frac{1}{1} = \frac{1}{8 \times 10^{-24} \times 2.5}$ $= 1 \times 10^{25}$

381 (c)

$$\frac{(v_{av})_1}{(v_{(av)})_2} = \sqrt{\frac{T_1}{T_2}}$$

Given, $T_1 = 150 + 273 =$

$$T_2 = 50 + 273 = 323 \text{ K}$$

$$\therefore \frac{(v_{av})_1}{(v_{av})_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{423}{323}} =$$

382 (c)

P' =mole fraction $\times P_M$ The gas having higher mole fraction has high partial pressure.

383 (c)

There are 6 A atoms on the face centres removing face centred atoms along one of the axes means removal of 2 A atoms

Now, number of A atoms per unit cell

$$= 8 \times \frac{1}{8} + 4 \times \frac{1}{2} = 3$$

(corners) (face- centred)

Number of *B*-atoms per unit cell

$$= 12 \times \frac{1}{4} + 1 = 4$$
(edge centred) (body
Centred)
Hence, the resultant stoichiometry is A_3B_4
384 (c)
CH₃OCH₃ lacks H-bonding hence, it is most
volatile, so it has maximum vapour pressure
385 (c)
Molecular mass of N₂ = 28, C0 = 28
Number of molecules of N₂
($V = 0.5 \text{ L}, T = 27^{\circ}\text{C}, p = 700 \text{ mm}$) = n
Number of molecules of N₂
($V = 1 \text{ L}, T = 27^{\circ}\text{C}, p = 700 \text{ mm}$) = $2n$
387 (b)
 $u_{av} = \sqrt{\frac{8RT}{\pi M}} \text{ So, } u_{av(O_2)} = \sqrt{\frac{8RT}{\pi \times 16}}$
 $u_{rms} = \sqrt{\frac{3RT}{M}} \text{ so } u_{rms(N_2)} = \sqrt{\frac{3RT}{14}}$
 $\frac{u_{av(O_2)}}{u_{rms(N_2)}} = \sqrt{\frac{8 \times 14}{\pi \times 16 \times 3}} = \left(\sqrt{\frac{7}{3\pi}}\right)^{1/2}$
388 (a)
 $\frac{r_1}{r_2} = \sqrt{\left[\frac{M_2}{M_1}\right]}$

389 (c)

van der Waals' equation for one mole of a gas is

$$\left[p + \frac{a}{V^2}\right] \left[V - b\right] = RT$$

1

Where, *b* is volume correction. It arises due to effective size of molecules.

390 (b)

P and *T* both are doubled;

Р

Use
$$V = \frac{nRT}{P}$$

391 (d)

R is universal constant and has different values in different units.

392 (a)

0

Radius of Na(if bcc lattice) = $\frac{\sqrt{3}a}{4} = \frac{\sqrt{3} \times 4.29}{4}$ Å

RT

393 (c)

$$pV = nRT$$

or $pV = \frac{w}{M}RT$
or $M = \frac{w}{T}\frac{RT}{T}$

r
$$M = d \frac{RT}{p}$$

$$d = 1.964 \text{ g/dm}^3 = 1.964 \times 10^{-3} \text{ g/cc}$$

p = 76 cm Hg = 1 atm

 $R = 0.0812 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$

 $= 82.1 \text{ cc} \text{ atm} \text{ K}^{-1} \text{ mol}^{-1}$

T = 273 K

 $M = \frac{1.964 \times 10^{-3} \times 82.1 \times 273}{1} = 44$

The molecular weight of CO_2 is 44.

So, the gas is CO_2 .

395 (a)

$$u_{av} \propto \sqrt{T}$$
$$\therefore \frac{u_1}{u_2} = \sqrt{\frac{1}{2}}$$
$$\therefore u_2 = \sqrt{2} u_1 = 1.4 u_1$$

396 (d)

Mass of the gas is not known.

397 (c)

Crystalline solids such as NaCl, BaCl₂ etc, will show anisotropy

398 (c)

The radius ratio for coordination number 4, 6 and 8 lies in between the ranges 0.225 - 0.414, 0.414 - 0.732 and 0.732 - 1.000 respectively

Mole ratio = Molecule ratio = $\frac{w/32}{w/28} = 7:8$

401 (d)

Volume = $a^3 = (400 \times 10^{-12} \text{m})^3 = 64 \times 10^{-24} \text{cm}^3$ $V_{\text{total}} = VN_4 = 64 \times 10^{-24} \times 6.02 \times 10^{23}$ = 38.4 Molar volume = $\frac{1}{4} \times V_{\text{total}} = \frac{38.4}{4} = 9.6 \text{mL}$

 $V_i = V_0 \left[1 + \frac{t}{273} \right]$; where V_0 is volume at zero degree centigrade. Use $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ to get this

403 **(b)**

Partial pressure = $\frac{\text{no.of moles of gas} \times p_{\text{Total}}}{\text{total no.of moles}}$ $1.5 = \frac{5 \times p_{\text{total}}}{2 + 3 + 5 + 10}$ $\frac{1.5 \times 20}{5} = p_{\text{total}}$

 $p_{\text{total}} = 6 \text{ atm}$

404 **(a)**

As constant volume, pressure of the gases increases on increasing temperature due to increase in average molecular speed

Number of moles of $N_2 = \frac{56}{28} = 2$

Number of moles of $CO_2 = \frac{44}{44} = 1$

Number of moles of $CH_4 = \frac{16}{16} = 1$

 \therefore Total number of moles = 2 + 1 + 1 = 4

 \therefore Mole fraction of CH₄ = $\frac{1}{4}$

 \therefore Partial pressure of CH₄

= mole fraction of $CH_4 \times total presure$

 $=\frac{1}{4} \times 720 = 180$ atm

406 **(a)**

The mole diffused per unit area in first case $\propto \pi r^2$ The mole diffused per unit area in second case $\propto r^2$

Thus,
$$\frac{r_1}{r_2} = \frac{a_1}{t_1} \times \frac{t_2}{a_2} = \frac{\pi r^2}{r^2} = \pi (\because t_1 = t_2)$$

407 **(d)**

$$P_M = 8 \text{ atm}; P_A = \frac{3}{8} P_M \text{ and } P_B = \frac{5}{8} P_M$$

410

 $\frac{(v_{av})_1}{(v_{av})_2} = \sqrt{\frac{T_1}{T_2}}$ Given, $T_1 = 150 + 273 = 423$ K $T_2 = 50 + 273 = 323$ K $\therefore \frac{(v_{av})_1}{(v_{av})_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{423}{222}} = \frac{1.14}{1}$

$$(v_{av})_2 \sqrt{I_2} \sqrt{323} 1$$

(c)

 $U_{av} \propto \frac{1}{\sqrt{M}}$ at constant temperature

$$\frac{U_{av}(SO_2)}{U_{av}(CH_4)} = \sqrt{\frac{M_{CH_4}}{M_{SO_2}}} = \sqrt{\frac{16}{64}} = \frac{1}{2}$$

 $\mathrm{U}_{\mathrm{SO}_2}:\mathrm{U}_{\mathrm{CH}_4}=1:2$

$$pV = nRT$$

$$V = \frac{nRT}{p}$$

Hence, molar volume of CO₂ is maximum at 127°C and 1 atm.

412 (a)

According to Graham's law of diffusion

Rate of diffusion $(r) \propto \frac{1}{\sqrt{d}}$

Molecular weight $(M) = 2 \times$ vapour density

 $= \frac{p_A}{p_B} \left(\frac{M_B}{M_A}\right)^{1/2}$ $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$ 414 (b) At high temperature and low pressure, a gas behaves like as an ideal gas $M_A = \left(\frac{100}{2}\right)$ kg/molecule 415 (d) $\text{COCl}_2 + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2\text{HCl}$ 418 (a) $M_B = \left(\frac{64}{2}\right)$ kg/molecule Follow diffusion of gases. $r_A = 12 \times 10^{-3}$ and $r_B = ?$ $\frac{r_A}{r_B} = \sqrt{\frac{d_B}{d_A}} = \sqrt{\frac{M_B}{M_A}}$ $\frac{12 \times 10^{-3}}{r_B} = \sqrt{\frac{64/2}{100/2}} = \sqrt{\frac{64}{100}} = \frac{8}{10}$ $r_B = \frac{12 \times 10^{-3} \times 10}{8}$ $= 15 \times 10^{-3}$ 413 (b) Rate of diffusion, $r \propto p$ 419 **(c**) $\frac{a^3 \times N_A \times \rho}{M}$ $\frac{4.2 \times 8.6 \times 8.3 \times 10^{-24} \times 6.023 \times 10^{23} \times 3.3}{155} = 3.84 = 4$ 420 (a) 422 (b) Find mol. wt. of gas by $u_{\rm rms} = \sqrt{\frac{3RT}{M}}$ and notice the At constant pressure $V \propto T$, but according to Gay Lussac's law the pressure of a given mass of a gas is directly proportional to the absolute gas. 421 (d) temperature. Thus, All the given statements are correct about F $p_1 < p_2$ centres 423 (d)

 $r \propto \frac{1}{\sqrt{M}} \therefore r \propto \frac{p}{\sqrt{M}}$

For gas A, $r_A \propto \frac{p_A}{\sqrt{M_A}}$... (i)

For gas *B*, $r_B \propto \frac{p_B}{\sqrt{M_B}}$... (ii)

 $\frac{r_A}{r_B} = \frac{p_A}{p_B} \int \frac{M_B}{M_A}$

Eqs. (i)/(ii), we get

or

We know that

$$p = n \frac{R}{V} \frac{R}{W} = \frac{R}{V}$$

$$p = n RT; \quad x_{1} = 2 R$$

$$p = n RT; \quad x_{1} = \frac{R}{T}$$

$$p = \frac{1}{\sqrt{T}} \frac{T_{1}}{T_{2}}$$

$$\frac{T_{1}}{T_{2}} = \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{T_{1}}{T_{2}}$$

$$\frac{T_{1}}{T_{2}} = \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{T_{1}}{T_{2}}$$

$$\frac{T_{1}}{T_{2}} = \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{T_{1}}{T_{2}}$$

$$\frac{R}{T} = \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{R}{T} = \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{R}{T} = \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{1}{\sqrt{T}} \frac{1}{\sqrt{T}} \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{1}{\sqrt{T}} \frac{1}{\sqrt{T}} \frac{R}{T}$$

$$\frac{1}{\sqrt{T}} \frac{1}{\sqrt{T}} \frac{1}{$$

1

cal K^{-1} mol⁻¹

 $= 1 - \frac{15}{100} = \frac{17}{20}$

 $\times \frac{17}{20 \times T_2}$

4

Page | 69

According to Graham's law

$$\frac{r_{O_2}}{r_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}}$$
$$= \sqrt{\frac{2}{32}}$$
$$= \frac{1}{4}$$

$$\therefore r_{0_2}: r_{H_2} = 1:4$$

441 **(a)**

Let P_1V_1 be the pressure and volume of monoatomic gas at temperature *T*.

$$P_{1}V_{1} = RI$$

$$P_{2}(V_{1} + dV) = R(T + 1)$$

$$\therefore P_{2}^{2} = RT + R \quad \left(:: \frac{P_{2}}{V_{1} + dV} = 1\right)$$
or $2\left(\frac{\partial P}{\partial T}\right)_{v} = R$

$$\therefore \left(\frac{\partial P}{\partial T}\right)_{v} = \frac{R}{2}$$

$$\therefore C = C_{v} + \left(\frac{\partial P}{\partial T}\right)_{v} \text{ for a process}$$

$$= \frac{3}{2}R + \frac{R}{2} = \frac{4R}{2}$$

442 (c)

van der Waals' equation is

$$\left(p + \frac{n^2 a}{V^2}\right)\left(V - nb\right) = nRT$$

 $\therefore \text{ Units of } a = \frac{pV^2}{n^2}$

$$= \frac{\operatorname{atm} \times L^2}{\operatorname{mol}^2}$$
$$= L^2 \operatorname{atm} \operatorname{mol}^{-2}$$

$$\therefore \text{ Units of } b = \frac{V}{n}$$
$$= \frac{L}{\text{mol}} = \text{mol}^{-1}\text{L}$$

444 (a)

Kinetic gas equation, for one mole gas is

$$pV = \frac{1}{3} Mu^2$$

Where, p = pressure of gas V = volume of gas M = molecular mass of gas

u = root mean square velocity

$$\Rightarrow \frac{Mu^2}{3} = pV$$

or
$$u = \sqrt{\frac{3pV}{M}}$$

or
$$u = \sqrt{\frac{3p}{d}}$$

If pressure is constant, then

445 (d)

According to Charles' law, graph between *V* and *T* at constant pressure is called isobar or isoplestics and is always straight line.

447 **(a)**

When cation shifts from lattice to interstitial site, the defect is called Frenkel defect

448 **(c)**

Volume of molecules in one mole

$$= 4 \times N \times V = 4 \times N \times \frac{4}{3} \pi r^{3}$$

= 4 × 6.023 × 10²³ × $\frac{4}{3} \times \frac{22}{7} \times (10^{-8})^{3}$
= 10.09 mL

449 **(c)**

In between two successive collisions, no force is acting on the gas molecules. Resultantly it travels with uniform velocity during this interval, and hence, it moves along a straight line.

450 **(d)**

$$\frac{F-32}{9} = \frac{C}{5};$$

Let temperature be *t*, same on two scale

$$\therefore t - 32 = \frac{9t}{5}$$
 or $t = -40^\circ$

451 **(b)**

 $\mu = +ve$ for cooling effect and $\mu = -ve$ for heating effect.

453 **(c)**

From gas equation,

$$pM = d.RT$$

$$\therefore d = \frac{1 \times 45}{0.0821 \times 273}$$

= 2 g/L

454 **(b)**

 $KE_1/KE_2 = T_1/T_2$

455 (c)

By Graham's diffusion law,

$$\frac{r_{\rm He}}{r_{\rm CH_4}} = \sqrt{\frac{M_{\rm CH_4}}{M_{\rm He}}}$$

 $M_{\rm CH_4} = 12 + 4 = 16$

 $M_{\rm He} = 4$

$$\frac{r_{\rm He}}{r_{\rm CH_4}} = \sqrt{\frac{16}{4}} = \sqrt{\frac{4}{1}} = 2$$

Thus, the ratio of rate of diffusion of He and CH_4 is 2.

456 **(d)**

 Fe_3O_4 is a non-stoichiometric compound because in it, the ratio of the cations to the anions becomes different from that indicated by the chemical formula

457 **(a)**

Average kinetic energy, $E = \frac{3}{2}RT$

$$u_{\rm rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{2E}{M}}$$

458 **(c)**

It is not the critical temperature but temperature 459 (d)

460 **(b**

$$P = \frac{nRT}{V} = \frac{2 \times 0.0821 \times 540}{44.8} = 2 \text{ atm}$$

461 (d) Mathematical expression for Charles' law is

$$V_t = V_0 \left(1 + \frac{t}{273} \right)$$

462 **(a)**

$$n = PV/RT = \frac{1 \times 22.4}{303 \times 0.0821} = 0.90$$

463 **(d)**

```
According to Gay Lussac's law
```

 $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ If $\frac{3^{\text{th}}}{8}$ of the air is expelled out then remaining air $= \frac{5}{8}$ $T_2 = \frac{(273 + 27) \times 8}{5}$ $= \frac{2400}{5} = 480 \text{ K}$ $= 480 - 273 = 207^{\circ}\text{C}$

464 **(b)**

The volume of a molecule in motion is four times the actual volume of a molecule in rest b = 4Vm

465 **(a)**

The interstitial void formed by the combination of two triangular voids of the first and second layer is called octahedral void because this is enclosed between six spheres, centres of which occupy corners of a regular octahedron

467 **(b)**

It is the reason for given fact.

468 **(d)**

From ideal gas equation,

pV = nRT

Since, p, V and T are same for both O_2 and H_2 , therefore their number of moles(n) are also equal. Hence, number of molecules will be equal for O_2 and H_2 .

469 **(b)**

Most probable velocity. $u_{MP} = \sqrt{\left[\frac{2RT}{M}\right]}$ is the

velocity acquired by majority of molecules.

472 **(b)**

58.5 g NaCl =1 mol = 6.023×10^{23} NaCl units One unit cell contains 4 NaCl units Hence, number of unit cell present

$$=\frac{6.023 \times 10^{23}}{4} = 1.5 \times 10^{23}$$

473 **(b)**

During evaporation, molecule having high energy leave the surface of liquid. As a result average kinetic energy of liquid decreases.

$$\therefore$$
 KE \propto 7

 \therefore Temperature of liquid falls.

475 (a)

Whenever, gases are allowed to expand through a small jet under adiabatic conditions, they suffer a change in temperature. This is Joule-Thomson effect.

if $T > T_i$; heating effect

if $T < T_i$; cooling effect

476 (a)

$$\frac{r_1}{r_2} = \sqrt{\left[\frac{M_2}{M_1}\right]} = \sqrt{\frac{2}{32}} = \frac{1}{4}$$

478 **(b)**

Work done = surface tension × increase in area = $73 \times 0.10 = 73 \times 0.10 \times 10^4$ = 7.3×10^4 erg

479 **(b)**

Temperature at which real gas obeys the gas laws over a wide range of pressure is called Boyle's temperature

$$T_b = \frac{a}{Rb}$$

480 **(c)**

Deviation are maximum under high *P* and low *T*.

481 (a)

 $P_{\rm dry\,gas} = P_{\rm wet\,gas} - P_{\rm water}$

482 (d)

Collision frequency = $\frac{u_{\rm rms}}{\lambda}$; $u_{\rm rms}$ depends on T, λ depends on P and T.

483 **(d)**

Molecular velocity can be 🚄

average velocity =
$$\sqrt{\frac{8RT}{\pi M}}$$

root mean square velocity =
$$\sqrt{\frac{3R}{M}}$$

most probable velocity = $\sqrt{\frac{2RT}{M}}$

In all cases molecular velocity $\propto \sqrt{T}$

484 (c)

According to Boyle's law,

$$p \propto \frac{1}{V}$$

Hence, in order to increase the volume of a gas by 10%, the pressure of the gas should be decreased by 10%.

486 (d) $CO_2 + C \rightarrow 2CO$ 487 (c) Use PV = nRT; $P = 1, \frac{n}{V} = 1 \therefore T = \frac{1}{R} = 12$ K 488 (c) $pV = \frac{W}{M}RT$ $M = \frac{wRT}{pV}$ $= \frac{0.455 \times 0.0821 \times 300 \times 760 \times 1000}{0.000}$ 800×380 = 28.0 g489 (c) $C_1 = 100 \text{ ms}^{-1}, C_2 = 200 \text{ ms}^{-1}$ = 500 ms⁻¹ rms velocity (C) = ?rms velocity (C) $(100)^2 + (200)^2 + (500)^2$ $\sqrt{1,00,000} = 100\sqrt{10} \text{ ms}^{-1}$ 490 (d)

$$P_{N_2} + P_{H_2O(V)} = 1 \text{ atm}, P'_{H_2O} = 0.3 \text{ atm}$$

 $P_{N_2} = 0.7 \text{ atm}$

Now new pressure of N_2 in another vessel of volume V/3 at same T is given by:

$$P_{N_2} \times \frac{V_1}{3} = 0.7 \times V_1$$

$$\therefore \qquad P_{N_2} = 2.1 \text{ atm}$$

Since aqueous tension remains constant and thus, total pressure in new vessel

$$= P_{N_2} + P'_{H_2O} = 2.1 + 0.3 = 2.4$$
 atm

491 **(d)**

The average velocity of gas molecules in one direction is zero otherwise all molecules will be collected in one direction.

492 **(b)**

Water boils at higher temperature inside the pressure cooker because pressure is high in the pressure cooker and therefore, cooling becomes fast.

493 **(b)**

For monoatomic gas $C_{\nu} = \frac{3}{2}RT$; $C_p = \frac{5}{2}RT$ For diatomic gas $C_{\nu} = \frac{5}{2}RT$; $C_p = \frac{7}{2}RT$ Thus, for mixture of 1 mole each,

$$C_{v} = \frac{3}{2} \frac{RT}{2} + \frac{5}{2} \frac{RT}{2}$$
 and $C_{p} = \frac{5}{2} \frac{RT + \frac{7}{2} RT}{2}$
Therefore, $C_{p}/C_{v} = \frac{3RT}{2RT} = 1.5$
494 (a)
Use $KE = \frac{3}{2} nRT$, where n is no. of moles.
495 (c)
 $p_{1} = p_{1}V_{1} = V_{1}p_{2} = 2p_{1}V_{2} = 2V$
 $\frac{P_{1}V_{1}}{P_{1}} = \frac{P_{2}V_{2}}{T_{2}}$
 $\frac{PV}{T_{1}} = \frac{2p_{2}V}{T_{2}}$
 $\frac{PV}{T_{2}} = 2\pi 2V$
 $\frac{PV}{T_{1}} = \frac{p_{2}V_{2}}{T_{2}}$
 $\frac{PV}{T_{2}} = 2\pi 2V$
 $\frac{PV}{T_{1}} = \frac{p_{2}V_{2}}{T_{2}}$
 $\frac{PV}{T_{2}} = 4T_{1}$
 $\frac{1}{2} = \frac{1}{2} \frac{1}{7}$.
 $\frac{1}{2} = \frac{1}{7} \frac{1}{7}$
 $\frac{1}{7} = \frac{1}{2} \frac{1}{7} \frac{1}{2}$
 $\frac{1}{7} \frac{1}{2} = \frac{1}{7} \frac{1}{7}$
 $\frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7}$
 $\frac{1}{7} \frac{1}{7} \frac{1}{7}$

٠

$$\therefore \text{ volume} = \frac{5}{2} \times 22.4 \text{ litre} = 56 \text{ litre}$$

510 **(a)**

Rate of diffusion $\propto \frac{1}{\sqrt{d}}$

Rate of diffusion $\propto p$

$$\therefore \text{ Rate of diffusion } \propto \frac{p}{\sqrt{d}}$$

513 **(c)**

Using
$$PV = \frac{w}{m}RT$$
 or $P = \frac{d}{m}RT$
For gas A: $P_A = \frac{3}{m_A} \times R \times T$
For gas B: $P_B = \frac{1.5}{m_B} \times R \times T$
 $\therefore \qquad (m_B = 2 \times m_A)$
 $\therefore \qquad \frac{P_A}{P_B} = 2 \times \frac{m_B}{m_A} = 2 \times 2 = 4$

514 (d)

Kinetic energy $\left(=\frac{3}{2}RT\right)$ does not depends upon the atomic mass of the gases

515 (a)

we have

From van der Waals' equation,

$$\begin{pmatrix} p + \frac{n^2 a}{V^2} \end{pmatrix} (V - nb) = RT \\ \begin{pmatrix} p + \frac{2.253}{0.25 \times 0.25} \end{pmatrix} (0.25 - 0.0428) \\ = 0.0821 \times 300 \\ (p + 36.048)(0.2072) = 24.63 \\ p + 36.048 = 118.87 \\ p = 118.87 - 36.048 = 82.82 \text{ atm} \\ 516 \text{ (b)} \\ u_{\text{rms}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3R \times 140}{M}} \text{ at } 140 \text{ K} \\ u'_{\text{rms}} = \sqrt{\frac{3R \times 560}{M}} \text{ at } 560 \text{ K} \\ \therefore u'_{\text{rms}} = 2 \times u_{\text{rms}} \\ 517 \text{ (c)} \\ \text{Given that,} \\ \lambda = 229 \text{ pm and } \theta = 23^{\circ}20' \\ \text{Substituting these values in the Bragg's} \\ \end{cases}$$

 $d_{hkl} = \frac{\lambda}{2\sin\theta} = \frac{229 \text{ pm}}{2\sin(23^{\circ}20')}$ $=\frac{229 \text{ pm}}{2 \times 0.396}$ = 289.2 pm518 (c) For ideal gases PV = nRT, $\therefore Z = 1$; because Z =PVnRT 519 (c) $RT_c/P_c \cdot V_c = 8/3 = 8/3 \times 1 = 8/3 \times \frac{RT}{PV}$ 520 **(b)** Due to H-bonding. 521 (c) Charles' used the term absolute temperature. 522 (c) Average KE = $\frac{3}{2} RT/N_0$ (KE) $\propto T$ $\therefore (\text{KE})_{313} / (\text{KE})_{293} = \frac{313}{293}$ 523 **(a)** Number of moles of helium = $\frac{0.4}{4}$ = 0.1 Number of moles of oxygen $=\frac{1.6}{32}=0.05$ Number of moles of nitrogen $=\frac{1.4}{28}=0.05$ Total moles in the 10.0 L cylinder at 27°C = (0.1 + 0.05 + 0.05)= 0.2 mol $p_T = \frac{nRT}{V} = \frac{0.2 \times 0.082 \times 300}{10} = 0.492$ atm 524 (a) The van der Waals' equation for n moles of a gas is $\left[p + \frac{n^2 a}{V^2}\right] (V - nb) = nRT$ For one mole (n = 1) $\left(p + \frac{a}{V^2}\right)(V - b) = RT$ 525 (b) Avogadro's hypothesis. 526 (d) These are characteristics observed at absolute zero. 527 (b) equation, Ideal gas equation pV = nRT

$$pV = \frac{w}{M} RT = \frac{8}{32} RT$$

$$pV = \frac{RT}{4}$$
528 (d)
$$\frac{u_1}{u_2} = \sqrt{\frac{m_2}{m_1} \times \frac{T_1}{T_2}}$$

$$\therefore T_1 = T_2$$
So, $\frac{u_1^2}{u_2^2} = \frac{m_2}{m_1}$ or $u_1^2 m_1 = u_2^2 m_2$

530 **(c)**

Collision frequency increases when molecules come closer to each other.

533 (c)

Calculate *m* by $PV = \frac{w}{m}RT$ and suggest formula.

534 (d)

When a mixture of two or more non-reacting gases are enclosed in a container then the total pressure exerted by the gaseous mixture is equal to the sum of partial pressure of the components in the mixture.

 $e. g., CO + H_2$ are non-reacting gases. Hence, Dalton's law of partial pressure is applicable to this system.

535 (c)

$$\frac{V_1}{t_1} \times \frac{t_2}{V_2} = \sqrt{\frac{M_2}{M_1}}$$
$$\therefore \frac{50}{150} \times \frac{200}{50} = \sqrt{\frac{36}{M_A}}$$
$$\therefore M_A = 36 \times \left(\frac{150}{200}\right)^2$$
$$= \frac{36 \times 9}{16} = 20.25$$

536 (a)

The correct order of pressure is $p_1 > p_3 > p_2$

537 **(c)**

Both CO_2 and N_2O have same rate of diffusion at constant *P* and *T*.

538 **(a)**

Kinetic energy (KE) = $\frac{3}{2}RT$

$$\therefore \quad \text{KE} = \frac{3}{2} \times 8.31 \times 300 \text{ J}$$

= 3.74 kJ

539 **(a)**

Yellow colour on heating NaCl in presence of Na is due to presence of electrons in anion vacancies (F-centres)

540 **(c)**

 $H_2 \rightleftharpoons SO_2$

Initial 0.5 mol 0.5 mol After a period of time H_2 being lighter, effuse faster and hence, in larger amount. Thus, it will remain less than SO_2

541 **(b)**

Use
$$d = \frac{PM}{RT}$$

542 **(b)**

Gaseous pressure are usually obtained by manometer;

Atmospheric pressure is usually read by barometer.

543 **(a)**

$$u_1/u_2 = \sqrt{\left[\frac{T_1}{T_2}\right]} \approx u = \sqrt{\left[\frac{8RT}{\pi M}\right]}$$

544 **(d)**

For bcc lattice, the coordination number is 8 546 (a)

$$[H_2] = \frac{\text{mole}}{V \text{ in litre}} = \frac{20/2}{5} = 2$$

547 (c)

We know, average velocity $v = \sqrt{\frac{8RT}{\pi M}}$

and most probable velocity $\alpha = \sqrt{\frac{2RT}{M}}$

so, their ratio =
$$\alpha : v = \sqrt{\frac{2RT}{M}} : \sqrt{\frac{8RT}{\pi M}}$$

SO,
$$\frac{\sqrt{\pi}}{2}$$

548 **(d)**

CsCl has body centred arrangement, thus,

Interionic distance, $d = \frac{\sqrt{3a}}{2}$

549 (c)

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 (Charles' law)
 $\frac{2}{273} = \frac{4}{T_2}$

 $T_2 = \frac{273 \times 4}{2} = 546 \text{ K or } 273^{\circ}\text{C}$

550 **(b)**

 $\frac{r_{+}}{r_{-}} = \frac{180}{187} = 0.962$, which lies in the range of 0.732 - 1.000, hence, coordination number 8, *ie*, the structure is CsCl type

$$u_1 = \sqrt{\frac{3p}{d}}$$

$$\therefore \Delta u_{rms} = \sqrt{\frac{3}{d}} \times (\sqrt{p_2} - \sqrt{p_2})$$

$$= \sqrt{\frac{3}{0.75}} \times (300 - 200)$$

$$= \sqrt{4} \times 100 = 200$$

552 (c)

In van der Waals' equation

$$\left[p + \frac{n^2 a}{V^2}\right] (V - nb) = nRT$$

Where, p =pressure,

V =volume

 $T = \text{temperature,} \quad n \\ = \text{moles of the gas}$

and parameter *a* accounts for intermolecular interactions present in the molecule.

553 **(b)**

Compressibility factor (Z) = $\frac{pV}{n \cdot RT}$

For an ideal gas, we know that,

pV = nRT

 $\therefore Z = 1$

554 (c)

Greatest deviation from ideal behaviour is exhibited by real has gases at low temperature and high pressure

c)

In van der Waals' equation

$$p + \frac{n^2 a}{V^2} \left[(V - nb) = nRT \right]$$

Where, p =pressure,

V = volume,

T = temperature

n =moles of the gas

and parameter '*a*' accounts for intermolecular interactions present in the molecule

556 **(c)**

Schottky defect is due to missing of equal number

of cations and anions

557 (d) On increasing temperature, vaporisation increases. Hence, vapour pressure increases 558 (d) At absolute zero temperature, KE of the gas is zero, volume of the gas is zero, heat constant is zero, pressure of a gas is zero, molecular motion cases thus no gas exists 559 (c) Collision diameter or effective molecular diameter is the closest distance between the centre of two molecules of a gas taking part in collision 560 (d) $\frac{1}{300} = \frac{1}{500}, V_2 = 1.66V$ Volume escape = 1.66 V - V = 0.66 V= 66% 561 (d) Moles of H₂ = $\frac{w}{2}$, and ethane = $\frac{w}{30}$ Total mo. of moles = $\frac{w}{2} + \frac{w}{30} = \frac{16w}{30}$ Partial pressure of H₂ = $p \times \frac{w/2}{16w/30} = \frac{w}{2} \times \frac{30}{16w} =$ $\frac{30}{32} = \frac{15}{16}$ 562 (c) 20% mixture produce 10% NH₃ $N_2 + 3H_2 \rightarrow 2NH_3$ Thus, percentage remains 90% 564 (a) Mole of water evaporated = $\frac{4.5 \times 10^3}{18}$; Now, calculate volume of vapours assuming 1 mole occupies 22.4 litre = $22.4 \times 10^{-3} \text{m}^3$ 565 (d) $\left[p + \frac{a}{V^2}\right]V = RT$ $pV + \frac{a}{V} = RT$ $\frac{pV}{RT} + \frac{a}{VRT} = 1$ $\frac{pV}{RT} = \left(1 - \frac{a}{VRT}\right) = Z$ 566 (a) P'_{0_2} = mole fraction of $0_2 \times 750 = \frac{21}{100} \times 750$ = 157.5 mm567 (b) A gas can be liquified by pressure along when its temperature is either higher than its critical

temperature or lower than its critical temperature

568 (c)

Gas equation is valid for isothermal and adiabatic conditions both.

569 (a)

A constant pressure refers for isobaric process.

570 **(b)**

Volume of unit cell (*V*) = a^3 $= (3.04 \times 10^{-8})^3$ $= 2.81 \times 10^{-23} \text{ cm}^3$

572 (b)

At critical point, the meniscus between the liquid and vapour disappears, thus the surface tension of $\left| 581 \right|$ (a) liquid becomes zero.

573 (d)

On the basis of kinetic theory of gases

$$pV = \frac{1}{2}N_A m \bar{v}^2$$
And $\frac{1}{2}m\bar{v}^2 = \frac{3}{2}KT$

$$p = \frac{1}{3}\left(\frac{N}{V}\right)m\bar{v}^2$$
or $p = \frac{2}{3}\left(\frac{N}{V}\right)\frac{1}{2}m\bar{v}^2$

$$= \frac{2}{3}\left(\frac{N}{V}\right)\left(\frac{3}{2}\right)KT$$
or $pV = nKT$
574 (a)

F₂ is highly reactive gas.

575 (a)

$$u_{\rm MP}: u_{AV}: u_{\rm rms} :: \sqrt{\left(\frac{2RT}{M}\right)}: \sqrt{\left(\frac{3RT}{\pi M}\right)}: \sqrt{\left(\frac{3RT}{M}\right)}$$
576 (d)

Heating effect is noticed on subjecting a gas for Joule-Thomson effect above its inversion temperature.

577 (c)

$$\frac{U_{0_3}}{U_{0_2}} = \sqrt{\frac{M_{0_2}}{M_{0_3}}} = \sqrt{\frac{32}{48}} = \sqrt{\frac{2}{3}}$$
578 (a)

6.4 g of SO₂ at 0°C and 0.99 atm pressure occupies a volume of 2.241 L. It indicates that the gas is ideal.

579 (b)

$$\frac{r_x}{r_{\rm CO_2}} = \sqrt{\frac{M_{\rm CO_2}}{M_x}}$$

$$\frac{83.3}{102} = \sqrt{\frac{M_{\rm CO_2}}{M_x}} = \sqrt{\frac{44}{M_x}}$$
$$M_x = 44 \times \left(\frac{102}{83.3}\right)^2$$
$$= 65.97 \text{ g mol}^{-1}$$

580 (c)

In metal excess defect when holes created by missing of anions are occupied by electrons, there sites are called F-centres and are responsible for colour in the crystal

Increase of pressure decreases volume and molecules come closer to each other.

582 (d) Difference = $2.178 \times 10^3 - 2.165 \times 10^3 =$ 0.013×10^{3}

Fraction unoccupied = $\frac{0.013 \times 10^3}{2.178 \times 10^3} = 5.96 \times 10^{-3}$

$$\frac{r_1}{r_2} = \frac{V_1/t_1}{V_2/t_2} = \frac{t_2}{t_1} = \sqrt{\frac{M_2}{M_1}} \text{ (for equal volumes, } V_1 = V_2)$$

36

$$\Rightarrow \frac{M_2}{M_1} = \frac{t_2^2}{t_1^2}$$
$$\Rightarrow M_2 = 4(3)^2 =$$

586 (b)

$$u_{\rm rms} = \sqrt{\frac{u_1^2 + u_2^2 + u_3^2 \dots + u_n^2}{n}};$$
$$u_{AV} = \frac{u_1 + u_2 + u_3 \dots + u_n}{n}$$

and $u_{\rm rms} \neq (u_{AV})^2$ 587 (a)

$$P'_{N_2} = P_T \times \text{mole fraction of } N_2$$

$$P'_{CO} = P_T \times \text{mole fraction of } CO$$

$$\therefore \frac{P'_{N_2}}{P'_{CO}} = \frac{\text{Mole fraction of } N_2}{\text{Mole fraction of } CO} = \frac{\text{Mole of } N_2}{\text{Mole of } CO}$$

$$= \frac{w/28}{w/28} = 1 : 1$$

588 (a)

Distance between K⁺ and F⁻ = $\frac{1}{2}$ × length of the edge

589 (d)

Amorphous solids have short range order but no sharp melting point

591 (c)

 $R = \frac{PV}{nT}$; R = 8.3 JK⁻¹mol⁻¹ = 2 cal K⁻¹ mol⁻¹ $= 8.314 \text{ erg } \text{K}^{-1} \text{ mol}^{-1}$ = 0.821 litre atm K⁻¹ mol⁻¹ 592 (a) $1 \text{ cal} = 4.18 \text{ J} = 4.18 \times 10^7 \text{ erg}$ $=\frac{4.18\times10^7}{1.602\times10^{-19}}$ eV 593 (c) $\frac{n'_{\text{He}}}{n'_{\text{CH}}} = \frac{1}{2} \sqrt{\frac{16}{4}} = \frac{1}{1}$ $\frac{n'_{\rm He}}{n'_{\rm sol}} = \frac{1}{3} \sqrt{\frac{64}{4}} = \frac{4}{3}$ So, $n''_{\text{He}}: n''_{\text{CH}_4}: n''_{\text{SO}_2} = 4:4:3$ 594 (b) Use : $PV = \frac{1}{3}mnu^2$ 595 (c) The number of atoms present in sc, fcc and bcc unit cells are 1, 4, 2 respectively 596 (b) Work done = surface tension × increase in area $= 73 \text{ dyne cm}^{-1} \times 0.10 \text{ m}^{2}$ $= 73 \text{ dyne cm}^{-1} \times 0.10 \times 10^4 \text{ cm}^2$ $= 7.3 \times 10^4 \text{ ergs}$ 597 (a) Use $PV = \frac{w}{m}RT$ 598 (d) The units of 'a' are : atm litre² mol⁻² = atm dm⁶mol⁻² = dyne cm²mol⁻² The units of 'b' are : litre $mol^{-1} = dm^3 mol^{-1} =$ cm³mol⁻¹ 599 (d) $PV = \frac{w}{m}RT$ or $w \propto m$, if P, V, T are constants. 600 (a) Find mol. wt. of oxide as, $M = \frac{0.44 \times 22400}{224} = 44$ and notice the gas. 601 (d) $C_P = C_v + w;$ w = Rand $C_v = \frac{3}{2}R + R = \frac{5}{2}R$ (for diatomic gas) $C_p = \frac{5}{2}R + R = \frac{7}{2}R$ Thus, (5/2)R factor of $C_P(7/2)R$ is used in increasing internal energy or heat supplied to increase internal energy of gas at constant P is -

$$\frac{(5/2)R}{(7/2)R} = \frac{5}{7}$$
(b)
 $KE \propto T, \quad \because KE = \frac{3}{2}RT$
(a)
 $RMS \text{ velocity } u_{rms} = \sqrt{\frac{3pV}{M}} \qquad \dots (i)$
and $pV = nkT \quad (k \rightarrow \text{Boltzmann's constant})$
For a molecule $n = 1$
 $pV = kT$
So, $u_{rms} = \sqrt{\frac{3kT}{m}} \qquad \dots (ii)$
Kinetic energy $(E) = \frac{3}{2}kT \text{ or } kT = \frac{2}{3}E$
 $u_{rms} = \sqrt{\frac{3 \times \frac{2}{3}E}{m}} = \sqrt{\frac{2E}{m}}$
(b)
 $\frac{r_{H_2}}{r_{He}} = \sqrt{\frac{4}{2}} = \sqrt{2} = 1.4$

605

602

604

Brass, Cu=80%, Zn=20%, substitutional alloy Brass is an interstitial alloy because it is an alloy of Fe with C, C atoms occupy the interstitial voids of Fe crystal

607 **(c)**

V - T plot representing the behavior of 1 mole of an ideal gas at 1 atm pressure.

Volume of 1 mole of an ideal gas at 273 K and 1 atm pressure is 22.4 L.

Volume of 1 mole of an ideal gas at 373 K and 1 atm pressure will be

$$V = \frac{RT}{p} = \frac{0.0821 \times 373}{1} = 30.58 \,\mathrm{L}$$

608 (d)

 $\frac{1}{8} \times 8 \text{ (at corners)} = 1$ $\frac{1}{2} \times 6(\text{at face center}) = 3$ Z = 1 + 3 = 4 (total number of atoms)

609 **(a)**

When equal volumes of $\rm H_2$ and $\rm Cl_2$ are mixed, the volume of mixture does not changed after the reaction

610 **(b)**

$$r_1/r_2 = \sqrt{\left[\frac{M_1}{M_2}\right]}$$

611 **(b)**

Average kinetic energy per molecule

$$= \frac{3}{2}KT$$

= $\frac{3}{2} \times 1.38 \times 10^{-23} \times 300 \text{ J}$
= $6.17 \times 10^{-21} \text{ J}$

612 (c)

Number of moles of helium = 0.3

Number of moles of argon = 0.4

We know that KE = nRT

KE of helium = $0.3 \times R \times T$... (i)

KE of argon = $0.4 \times R \times 400$... (ii)

According to question

SMARTA

KE of helium = KE of argon

 $0.3 \times R \times T = 0.4 \times R \times 400$

T = 533 K

613 **(b)**

 $P'_{N_2} = P_T \times \text{mole fraction of } N_2$ = $1 \times \frac{1}{1+1} = \frac{1}{2}$

Speed depends only on temperature and mol.wt. of gas.

615 (c)

In iodine crystals, the constituent particles are iodine molecules and they are held together by weak van der Waals' forces. Thus, iodine crystal is an example of molecular solid

617 **(c)**

Partial pressure \propto moles of a gas

Hence, $\frac{p_1}{2}$ =

$$\frac{1}{1} = \frac{44/44}{100}$$

$$_{2} = \frac{44}{2} = 22$$
 atm

Page | 79