REDOX REACTIONS

CHEMISTRY

	Single Correct	Answer Type	
1.	Which among the following shows maximum oxidat	tion state?	
	a) V b) Fe	c) Mn	d) Cr
2.	A substance, that by its sharp colour change indicate	es the completion of reaction	on is known as :
	a) Acid b) Base	c) Indicator	d) None of these
3.	In the reaction, $CH_3OH \rightarrow HCOOH$, the number of e	electrons that must be adde	ed to the right is:
	a) 4 b) 3	c) 2	d) 1
4.	A solution of KMnO ₄ is reduced to MnO ₂ . The normal	ality of solution is 0.6. The	molarity is:
	a) 1.8 <i>M</i> b) 0.6 <i>M</i>	c) 0.1 <i>M</i>	d) 0.2 <i>M</i>
5.	In the reaction of O_3 and H_2O_2 , the later acts as :		\sim
	a) Oxidising agent	^	X
	b) Reducing agent		
	c) Bleaching agent		
	d) Both oxidising and bleaching agent		
6.	Of the following reactions, only one is a redox reaction	ion. Identify this reaction.	
	a) $Ca(OH)_2 + 2HCI \rightarrow CaCl_2 + 2H_2O$	b) $2S_2 0_7^{2-} + 2H_2 0 \rightarrow 2S_2^{2-}$	$50_4^{2-} + 4H^+$
	c) $BaCl_2 + MgSO_4 \rightarrow BaSO_4 + MgCl_2$	d) $Cu_2S + 2FeO \rightarrow 2Cu -$	$+ 2Fe + SO_2$
7.	Reductants are substances which :		
	a) Show an increase in their oxidation number durin	ng a change	
	b) Lose electrons during a change	Y	
	c) Reduce others and oxidise themselves		
	d) All of the above		
8.	In the equation, $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + S$	nCl ₄ . The equivalent we	ight of stannous chloride
	(molecular weight = 190) will be :		
	a) 190 b) 95	c) 47.5	d) 154.5
9.	The oxoacid which acts both as oxidising and reduci	ing agent is :	
	a) H_2SO_4 b) H_3PO_4	c) HNO ₂	d) HClO ₄
10.	Oxidation state of oxygen is -1 in the compound :		
	a) NO ₂ b) MnO ₂	c) PbO_2	d) Na_2O_2
11.	When sulphur dioxide is passed in an acidified K_2Cr	$r_2 O_7$ solution, the oxidation	i state of sulphur is changed
	trom		
10	a) 4 to 0 b) 4 to 2	c) 4 to 6	d) 6 to 4
12.	Reduction is a process which involves :		
	a) Electronation		
	b) Addition of motol or removal of non-motol		
\mathbf{C}	d) All of the above		
12	The number of electrons lost or gained during the cl	hange $F_0 \perp H \cap \rightarrow F_0 \cap$	⊥H ic
15.	The number of electrons lost of gamea during the class b A	$\operatorname{nange} \operatorname{re} + \operatorname{n_2O} \rightarrow \operatorname{re_3O_4}^{-1}$	
14	A group of methods of quantitative chemical analy	vsis involving the measure	ment of volume of reacting
17.	substance is known as .	ysis myorying the measure	inent of volume of reacting
	a) Gravimetric analysis b) Volumetric analysis	c) Both (a) and (b)	d) None of the above
15.	Which one of the following reaction is possible at ar	node?	
_0.		$\frac{1}{2}$	
	a) $F_2 + 2e \rightarrow 2F^-$	bJ 2H ⁺ + $\frac{1}{2}$ O ₂ + 2e ⁻ →	H ₂ 0

a)
$$F_2 + 2e^- \rightarrow 2F^-$$
 b) $2H^+ + \frac{1}{2}O_2 + 2e^-$

	c) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O$	$D_7^{2-} + 14 H^+ + 6e^-$	d) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	
16.	The anion nitrate is con	verted into ammonium ion	n. The equivalent mass of	nitrate ion in the reaction
	would be:		1	
	a) 6.20	b) 7.75	c) 10.5	d) 21.0
17.	WI ich acts as a reducing	agent?	,	5
	a) HNO ₃	b) KMnO₄	c) H₂SO₄	d) (COOH) ₂
18.	What weight of HNO_3 is n	eeded to convert 5 g I ₂ into	$HIO_3, HNO_3 \rightarrow NO?$	
	a) 4.13 g	b) 24.8 g	c) 6.2 g	d) 10.2 g
19.	When SO_2 is passed in aci	dified potassium dichroma	te solution, the oxidation s	tate of S is changed from :
	a) + 4 to 0	b) $+4$ to $+2$	c) $+4$ to $+6$	d) +6 to +4
20.	Among the properties giv	en below, the set of proper	ties shown by CN ⁻ ion tow	ards metal species is :
	1. Reducing; 2. Oxidising	; 3. Complexation	,	
	a) 1, 3	b) 1, 2, 3	c) 1, 2	d) 2, 3
21.	Solution of sodium metal	in liquid NH ₃ is strongly re	ducing due to the presence	e of :
	a) Sodium atoms	b) Solvated electrons	c) NaOH	d) Sodium amide
22.	Oxidation numbers of Fe	in Fe_3O_4 are :		
	a) +2 and +3	b) $+1$ and $+2$	c) +1 and +3	d) None of these
23.	It is found that V forms	a double salt isomorphous	s with Mohr's salt. The ox	idation number of V in this
	compound is :	-		
	a) + 3	b) + 2	c) + 4	d) -4
24.	MnO_4^- is a good oxidising	agent in different medium	changing to	
	$MnO_4^- \rightarrow Mn^{2+}$			
	\rightarrow MnO ₄ ²⁻			
	$\rightarrow MnO_2$		G. XY	
	$\rightarrow Mn_2O_3$	4		
	Changes in oxidation num	ber respectively are		
	a) 1,3,4,5	b) 5,4,3,2	c) 5,1,3,4	d) 2,6,4,3
25.	The oxidation number of	Ba in barium peroxide is :		
	a) +2	b) -1	c) +4	d) +6
26.	Strongest reducing agent	among the following is :		
	a) K	b) Mg	c) Al	d) Ba
27.	The eq. wt. of $Na_2S_2O_3$ as	reductant, in the reaction,	$Na_2S_2O_3 + 5H_2O + 4Cl_2 -$	$\rightarrow 2$ NaHSO ₄ + 8HCl :
	a) (Mol. wt.)/1	b) (Mol. wt.)/2	c) (Mol. wt.)/6	d) (Mol. wt.)/8
28.	When Fe metal is rusted t	hen Fe is :		
	a) Oxidised	b) Reduced	c) Hydrolysed	d) Precipitated
29.	The value of n in MnO ₄ ⁻ +	$8\mathrm{H}^{+} + ne^{-} \rightarrow \mathrm{Mn}^{2+} + 4\mathrm{H}_{2}$	20 is	
	a) 5	b) 4	c) 2	d) 3
30.	In nitric oxide (NO), the o	xidation state of nitrogen is	S :	
	a) –2	b) +1	c) -1	d) +2
31.	Reaction of acidified KMn	0 ₄ with ferrous oxalate giv	es oxidation products cont	aining :
	a) Fe ³⁺	b) CO ₂	c) Both (a) and (b)	d) None of these
32.	How many litre a 0.5 N so	olution of an oxidising ager	it are reduced by 2 litre of	2.0 <i>N</i> solution of a reducing
	agent?			
	a) 8 litre	b) 4 litre	c) 6 litre	d) 7 litre
33.	In which of the following	oxygen shows –1 oxidation	n state?	
	a) $H_2 O_2$	b) CO_2	c) H ₂ 0	d) OF ₂
34.	The coefficients of I^- , IO	$_3$ and H ^{$+$} in the redox read	ction, $I^- + IO_3^- + H^+ \rightarrow I_2$	+ H ₂ O in the balanced form
	respectively are			
	a) 5, 1, 6	b) 1, 5, 6	cJ 6, 1, 5	dJ 5, 6, 1
35.	Which compound shows	nighest oxidation number f	or chlorine?	

	a) HCl b) KClO	c) KClO ₃	d) KClO ₄
36.	The number of Fe ²⁺ ion oxidised by one mole of MnC	D_4^- ions is :	
	a) 1/5 b) 2/3	c) 5	d) 3/2
37.	The oxidation number and covalency of sulphur in th	ie sulphur molecule (S_8) ar	e respectively :
	a) 0 and 2 b) $+ 6$ and 8	c) 0 and 8	d) $+6$ and 2
38.	The equivalent weight of iron in Fe_2O_2 would be :	·) · · · · ·	- ,
	a) 18.6 b) 28	c) 56	d) 11
39.	Oxidation number of carbon in carbon suboxide is :	0,00	~)
	2 4	c) +4	. 4
	a) $+\frac{1}{3}$ b) $+\frac{1}{3}$		d) $-\frac{1}{3}$
40.	Volumetric estimation of CuSO ₄ using hypo as inter	mediate solution along wit	h KI solution and starch as
	indicator is an example of :		
	a) Redox titration b) Acid-base titration	c) Precipitation titration	d) None of these
41.	Oxidation state of oxygen in H_2O_2 is		
	b) +2	1	d) - 2
	aj -1	$\frac{1}{2}$	uj -2
42.	Which reaction indicates the oxidising behavior of H	₂ SO ₄ ?	
	a) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$		
	b) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$		
	c) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$		
	d) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$		
43.	HCO_3^- contains carbon in the oxidation state:		
	a) +5 b) +1	c) +4	d) zero
44.	Oxidation state of oxygen atom in potassium superov	cide (KO ₂) is :	
	a) -1/2 b) Zero	c) +1/2	d) -2
45.	Which of the following reaction involves oxidation an	nd reduction?	
	a) NaBr + HCl \rightarrow NaCl + HBr	b) HBr +AgNO ₃ \rightarrow AgBr	+ HNO ₃
	c) $H_2 + Br_2 \rightarrow 2HBr$	d) $Na_2O + H_2SO_4 \rightarrow Na_2SO_4$	$SO_4 + H_2O$
46.	The number of mole of oxalate ions oxidized by one i	mole of MnO_4^- ion is:	
	a) 1/5 b) 2/5	c) 5/2	d) 5
47.	The number of mole of $KMnO_4$ that will be needed to	o react completely with on	e mole of ferrous oxalate in
	acidic solution is :		
40	a) 3/5 b) 2/5	c) 4/5	d) 1
48.	Equivalent mass of IO_4 when it is converted to I_2 in a	icid medium :	
40	a) $M/6$ b) $M/7$	c) <i>M</i> /5	d) <i>M</i> /4
49.	The eq. wt. of Fe_3O_4 in , Fe_3O_4 + KMn O_4 \rightarrow Fe_2O_3	+ MnO_2 is:	$\mathbf{D} \mathbf{M} \mathbf{D}$
F 0	a) $M/6$ b) M	C) $2M$	a) $M/3$
50.	what volume of 3 molar HNU ₃ is needed to oxidise 8 r_{1} r_{2} r_{3} r_{3} r_{4} r_{3} r_{3} r_{4} r_{1} r_{2} r_{3} r_{3} r_{3} r_{3} r_{3} r_{3} r_{4} r_{3}	g of Fe ²⁺ to Fe ³⁺ ? HNO_3 , g	ets converted to NU :
۲1	a) 8 mL b) 16 mL	CJ 32 mL	a) 64 mL
51.	which ordering of compounds is according to the de	creasing order of the oxida	d NO UNO NU CI N
F 2	a) ΠNO_3 , NO , NH_4 CI, N_2 D) ΠNO_3 , NO , N_2 , NH_4 CI The evidence states of indires in UIO II IO and UI	C) HNO_3 , NH_4CI , NO , N_2	d J NO , HNO_3 , NH_4CI , N_2
52.	The oxidation states of fourier in HIO_4 , H_3IO_5 and H_5I	O_6 are respectively	d) $+7$ $+ E$ $+ 2$
F 2	dJ + 1, +3, +7 $DJ + 7, +7, +3$	$C_{J} + 7, + 7, + 7$	uj +7,+5,+5
55.	In which reaction $\pi_2 O_2$ acts as a reducing agent:		
	a) $Ag_2 \cup \mp H_2 \cup 2 \longrightarrow 2KQ \mp H_2 \cup \pm U_2$ b) $2KI \pm H_1 \cap \longrightarrow 2KOU \pm I$		
	c) $PhS \pm 4H = 0$ $rac{1}{2} PhSO \pm 4H = 0$		
	$d) H_1O_1 + SO_2 \longrightarrow H_SO_4 + 4\Pi_2O_4$		
51	In the reaction $\cdot 2\Delta \sigma \perp 2H_1 \Omega_2 \rightarrow \Delta \sigma \Omega_2 \perp 2H_2 \Omega_2$	+ SO H. SO act as t	
54.	a) Oxidising agent b) Reducing agent	c) Dehydrating agent	d) None of these
55	Oxidants are substances which :	of Denyarating agent	aj none of these

Page | 3

a) Show a decrease in their oxidation number during a change b) Gain electrons during a change c) Oxidise others and reduce themselves d) All of the above 56. One gas bleaches the colour of the flowers by reduction while the other by oxidation. The gases are : a) CO, Cl_2 b) H_2S , Br_2 c) SO_2 , Cl_2 d) NH_3 , SO_3 57. 5 g of a sample of bleaching powder is treated with excess acetic acid and KI solution. The liberated I_2 required 50 mL of N/10 hypo. The percentage of available chlorine in the sample is : a) 3.55 b) 7.0 c) 35.5 d) 28.2% Cl₂ 58. The oxidation number of iodine in IF_5 is : a) +5 c) −1 b) -5 d) +1 59. The eq. wt. of FeC_2O_4 in , $FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2$ is : d) None of these a) its mol. wt. b) mol. wt./3 c) mol. wt./4 60. Moles of H_2O_2 required for decolorizing 1 mole of acidified KMnO₄ are : b) 3/2 c) 5/2 a) 1/2 61. Oxidation number of sulphur in Caro's acid is b) +4c) +8 a) +6 62. The equivalent weight of a reductant or an oxidant is given by : mol. weight of reductatn or oxidant b) Eq. wt. = $\frac{1 \text{ molecule of reductant or oxidant}}{\text{valence}}$ mol.wt. c) Eq. wt. = $\frac{1}{\text{total charge on cation or anion}}$ d) All of the above 63. In presence of dil. H_2SO_4 . The equivalent weight of KMnO₄ is : a) 1/5 of its molecular weight b) 1/6 of its molecular weight c) 1/10 of its molecular weight d) 1/2 of its molecular weight 64. Respiration is : b) Reduction a) Oxidation d) None of these c) Both (a) and (b) 65. $aK_2Cr_2O_7 + bKCl + cH_2SO_4 \rightarrow xCrO_2Cl_2 + yKHSO_4 + zH_2O.$ The above equation balances when a) a = 2, b = 4, c = 6 and x = 2, y = 6, z = 3b) a = 4, b = 2, c = 6 and x = 6, y = 2, z = 3c) a = 6, b = 4, c = 2 and x = 6, y = 3, z = 2d) a = 1, b = 4, c = 6 and x = 2, y = 6, z = 366. Which of the following shows highest ox, no. in combined state? a) Os b) Ru c) Both (a) and (b) d) None of these 67. The oxidation number of sulphur in $H_2S_2O_8$ is : a) +2 c) +7 d) +14 b) +6 68. In the following reaction $M^{x+} + MnO_4 \qquad MO_3 + Mn^{2+} + \frac{1}{2}O_2,$ If one mole of MnO_4 oxidises 2.5 moles of M^{x+} then the value of x is d) 2 a) 5 b) 3 c) 4 69. What volume of $N K_2 Cr_2 O_7$ solution is required to oxidise (in acid solution) a solution containing 10 g of $FeSO_4$? (mol.wt.of $FeSO_4 = 152$) a) 65.78 mL b) 134 mL c) 35 mL d) 33.5 mL

70.	Bleaching action of chlorin	e in presence of moisture	is :	
	a) Reduction	b) Oxidation	c) Hydrolysis	d) substitution
71.	A mixture of potassium ch	nlorate, oxalic acid and su	Iphuric acid and sulphuri	c acid is heated. During the
	reaction which element un	dergoes maximum change	e in the oxidation number?	
	a) Cl			
	b) C			
	c) S			
	d) H			
72.	Stannous chloride gives a	white precipitate with a s	olution of mercuric chlorid	de. In this process mercuric
	chloride is :			\sim
	a) Oxidized			
	b) Reduced			
	c) Converted into a comple	ex compound containing S	n and Hg	
	d) Converted into a chloro	complex of Hg		
73.	In the titration of CuSO ₄ vs	s. Hypo in presence of KI, v	which statement is wrong?	
	a) It is iodometric titration	1		V ·
	b) I ₂ with starch gives blue	e colour	C A	
	c) CuSO ₄ is reduced to whi	ite Cu ₂ I ₂ during redox cha	nge	
	d) The solution before titra	ation, on addition of KI app	pears blue	
74.	Manganese acts as stronge	est oxidising agent in the o	xidation state	
	a) +7	b) +2	c) +4	d) +5
75.	The value of $'n'$ in the rea	ction		
	$Cr_2O_7^{2-} + 14H^+ + nFe^{2+}$	$\rightarrow 2\mathrm{Cr}^{3+} + n\mathrm{Fe}^{3+} + 7\mathrm{H}^2\mathrm{O}$		
	will be			
	a) 2	b) 3	c) 6	d) 7
76.	In a reaction 4 mole of el	ectrons are transferred t	o one mole of HNO ₃ when	n it acts as an oxidant. The
	possible reduction product	t is :		
	a) (1/2) mole N ₂	b) (1/2) mole N ₂ 0	c) 1 mole of NO_2	d) 1 mole NH ₃
77.	The oxidation number of p	hosphorus in PO_4^{3-} , P_4O_{10}	and $P_2 O_7^{4-}$ is :	
	a) +3	b) +2	c) -3	d) +5
78.	In the equation ,			
	$CrO_4^2 + SO_3^2$ $Cr(OH)$	$_{4} + SO_{4}^{2}$		
	the oxidation number of Ci	r changes from		
	a) 6 to 4	b) 6 to 3	c) 8 to 4	d) 4 to 3
79.	Oxidation numbers of P in	PO_4^{3-} of S in SO ₄ ²⁻ and that	t of Cr in $Cr_2O_7^{2-}$ are respectively the test of Cr in $Cr_2O_7^{2-}$ are respectively the test of	ctively :
	a) -3 , $+6$ and $+6$	b) +5, +6 and +6	c) +3, +6 and +5	d) +5, +3 and +6
80.	In alkaline condition KMn(D_4 reacts as follows,		
	$2KMnO_4 + 2KOH \rightarrow 2K_2N$	$MnO_4 + H_2O + O$		
	Therefore, its equivalent w	reight will be :		
	a) 31.6	b) 52.7	c) 79.0	d) 158.0
81.	Oxidation number of S in S	0_4^{2-}		
C	a) +6	b) +3	c) +2	d) -2
82.	Which of the following is r	edox reaction?		
	a) $N_2U_5 + H_2U \rightarrow 2HNO_3$			
	b) $AgNU_3 + KI \rightarrow AgI + KI$	NU ₃		
	c) $BaU_2 + H_2SU_4 \rightarrow BaSU_4$	$_4 + H_2 U_2$		
02	a) $SnU_2 + HgU_2 \rightarrow SnU_2$	$_4$ + Hg		
83.	in which of the following (compounds, the oxidation	inumber of loaine is fractio	
04	aj IF ₃	U IF_5	CJ I ₃	uj 1 ⁴ 7
ŏ4.	The oxidation number of C	a in Kuu ₃ is :		

	a) +5	b) —5	c) +3	d) -3
85.	The oxidation number of	oxygen in KO_3 , Na_2O_2 is		
	a) 3,2	b) 1,0	c) 0,1	d) -0.33,-1
86.	In the reaction, $I_2 + 2S_2O$	$2^{-} \rightarrow 2I^{-} + S_4 O_6^{2-}$, Equiva	lent weight of iodine will b	e equal to:
	a) Its molecular weight	5 10/1	0	
	b) 1/2 of its molecular we	vight		
	c) $1/4$ of its molecular we	vight		
	d) Twice the molecular w	eight		
87.	The maximum oxidation r	umber of transition metals	may be:	\frown
071	a) $+4$	h) +6	(1) + 8	d) +10
88	The ratio of amounts of F	LS needed to precipitate a	ll the metal ions from 100	mL 1 M AgNO ₂ and 100 mL
001	of 1M CuSO ₄ is :			
	a) $1 \cdot 2$	h) 2 · 1	c) Zero	d) infinite
89	Oxidation state of sulphu	$r in Na_{2}S_{2}O_{2}$ and $Na_{2}S_{2}O_{3}$		
07.	a) 4 and 6	h) 3 and 5	c) 2 and 2 5	d) 6 and 6
90	N $u = C U^+$	$b_{j} = 5$ and $b_{j} = 5$	$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i$	
<i>J</i> 0.	Number of K ⁺ lons and m	ole of K ⁺ lons present in 1	httre of $\frac{1}{5}$ KMnO ₄ acidified s	solution respectively are :
	a) 0.04 and 2.4 \times 10 ²²			
	b) 2.4×10^{22} and 0.04			
	c) 200 and 6.023 \times 10 ²³			
	d) 6.023 \times 10 ²³ and 200			
91.	Conversion of PbSO ₄ to P	bS is :		
	a) Reduction of S	b) Oxidation of S	c) Dissociation	d) None of these
92.	Which change requires a	reducing agent?		
	a) $\operatorname{Cr}O_4^{2-} \rightarrow \operatorname{Cr}O_7^{2-}$	b) $BrO_3^- \rightarrow BrO^-$	c) $H_2O_2 \rightarrow O_2$	d) $Al(OH)_3 \rightarrow Al(OH)_4^-$
93.	In the reaction, $N_2 \rightarrow NH$	I_3 . The eq.wt. of N_2 and NH_2	³ are respectively equal to	:
	$28 \frac{17}{1}$	h) $\frac{28}{17}$	$(1) \frac{28}{28} \frac{17}{17}$	d) $\frac{28}{17}$
	3'3	6'3	2 2	5 ' 5
94.	Which acts as reducing ag	ent as well as oxidising age	nt?	
	a) 0 ₃	b) ClO_4^-	c) F ₂	d) MnO_4^-
95.	When Cl_2 gas reacts wit	h hot and concentrated s	odium hydroxide solution	, the oxidation number of
	chlorine changes from :			
	a) Zero to -1 and zero to	+3		
	b) Zero to +1 and zero to	-3		
	c) Zero to +1 and zero to	-5		
	d) Zero to -1 and zero to	+5		
96.	Which of the following is	not a redox reaction?		
	a) $2Na + Cl_2 \rightarrow 2NaCl$		b) $C + O_2 \rightarrow CO_2$	
	c) $AgNO_3 + NaCl \rightarrow AgCl$	+ NaNO ₃	d) $Zn + H_2SO_4 \rightarrow ZnSO_4 +$	- H ₂
97.	The difference in the oxid	ation numbers of the two ty	pes of sulphur atoms in Na	$a_2S_4O_6$ is
	a) 4	b) 5	c) 6	d) 7
98.	A compound contains ato	oms X, Y, Z . The oxidation r	number of X is $+2$, Y is $+5$	5 and Z is -2 . The possible
	formula of the compound	is :		
\sim	a) XY_1Z_2	b) $Y_2(XZ_3)_2$	c) $X_3(YZ_4)_2$	d) $X_3(Y_4Z)_2$
99.	The equivalent weight of	$SnCl_2$ in the reaction, $SnCl_2$	$+ \operatorname{Cl}_2 \longrightarrow \operatorname{SnCl}_4$ is:	
	a) 49	b) 95	c) 45	d) 59
100.	What is the ox. no. of Mn i	n K ₂ MnO ₄ ?		
	a) +4	b) +6	c) +2	d) +8
101.	The stable oxidation state	s of Mn are :		
	a) +2, +3	b) +3, +7	c) +2, +7	d) +3, +5
102.	25 mL of 0.50 $M H_2 O_2$ s	solution is added to 50 m	L of 0.20 M KMnO ₄ in ac	idic solution. Which of the

following statements is true? a) 0.010 mole of oxygen is liberated b) 0.005 mole of KMnO₄ are left c) 0.030 g atom of oxygen gas is evolved d) 0.0025 mole H_2O_2 does not react with KMnO₄ 103. Oxidation number of carbon in KCN is : a) +2 b) -2 c) +1 d) +3 104. The oxidation state of Ni in $Ni(CO)_4$ is : a) Zero b) +4c) +8 d) +2105. *M* is the molecular weight of KMnO₄. The equivalent weight of KMnO₄ when it is converted into K₂MnO 5 a) *M* c) *M*/5 b) *M*/3 d) M/7106. Oxidation number of Mn in K_2MnO_4 and $MnSO_4$ are respectively: b) +6 and +2c) +5 and +2 a) + 7 and + 2d) +2 and + 107. Which is the best description of behaviour of bromine in the reaction given below? $H_2O + Br_2 \rightarrow HBr + HOBr$ b) Both oxidised and reduced a) Proton accepted only c) Oxidised only d) Reduced only 108. The oxidation number of P in KH₂PO₂ is : a) +1 b) +3c) −3 d) +5 109. LiAIH₄ is used as : c) A mordant a) Oxidising agent b) Reducing agent d) Water softner 110. The brown ring complex $[Fe(H_2O)_5NO^+]SO_4$ has ox.no. of Fe : b) +2a) +1 c) +3 d) +4 111. The oxidation state of Fe in Fe_3O_4 is a) +3 b) 8/3 c) +6 d) +2 112. In the reactions; $As_2S_3 + HNO_3 \rightarrow H_3AsO_4 + H_2SO_4 + NO$, the element oxidized is/ are : c) N only d) As and S both a) As only b) S only 113. The eq. wt. of KMnO₄ in the reaction, $MnO_4^- + Mn^{2+} + H_2O \rightarrow MnO_2 + H^+$ (unbalanced) is : a) 52.7 b) 158 c) 31.6 d) None of these 114. NO_3^- ions are converted to NH_4^+ ions by a suitable reactant. The equivalent mass of NO_3^- and NH_4^+ are : b) 7.75, 7.75 c) 2.25, 7.75 d) 2.25, 2.25 a) 7.75, 2.25 115. Oxidation number of chlorine in $HClO_4$ is : b) -1 c) −7 a) +1 d) +7 116. Iodine has +7 oxidation state in : d) all of these a) HIO₄ b) H_3IO_5 c) H_5IO_6 117. The violent reaction between sodium and water is an example of : a) Reduction b) Oxidation c) Redox reaction d) neutralisation reaction 118. Oxidation number of Fe in K_3 [Fe(CN)₆] is : a) +2 b) +3c) +4 d) +1 119. One mole of acidified $K_2Cr_2O_7$ on reaction with excess KI will liberate.....mole(s) of I_2 . b) 1 a) 6 c) 7 d) 3 120. In the preparation of chlorine from HCl, MnO_2 acts as : a) Reducing agent b) oxidising agent c) Catalytic agent d) Dehydrating agent 121. What volume of O_2 measured at standard conditions will be formed by the action of 100 mL of 0.5 N KMnO₄ on hydrogen peroxide in an acidic solution? The skeleton equation for the reaction is, $KMnO_4 + H_2SO_4 + H_2O_2 \rightarrow KHSO_4 + MnSO_4 + H_2O + O_2$:

	a) 0.12 litre	b) 0.28 litre	c) 0.56 litre	d) 1.12 litre
1	22. Which quantities are cons	served in all oxidation-redu	iction reactions?	
	a) Charge only		b) Mass only	
	c) Both charge and mass		d) Neither charge nor ma	SS
1	23. Which substance serves a	as a reducing agent in the fo	llowing reaction,	
	$14H^+ + Cr_2O_7^{2-} + 3Ni -$	$\rightarrow 2Cr^{3+} + 7H_2O + 3Ni^{2+}?$	0 ,	
	a) $H_{2}O$	h) Ni	с) H ⁺	d) $Cr_{2}O_{2}^{2-}$
1	24 Which of the following ch	emical reactions denicts th	e ovidising behaviour of H.	-50.2
1	a) $2HI + H_2SO_1 \rightarrow I_2 + SO_2$	$SO_{2} + 2H_{2}O_{3}$	b) $(2(0H)_{2} + H_{2}SO_{3} \rightarrow 0)$	230_4 .
	c) NaCl \pm H ₂ SO ₄ \rightarrow NaH	$SO_1 + HC$	d) $2P(l_1 \pm H_1SO_1 \rightarrow 2P(l_2)$	$1000_4 + 2H_20$
1	25 In the aluminothermic nr	30_4 + 101	uj 21 015 + 112004 / 21 0	
1	a) An oxidising agent	b) Δ flux	c) A reducing agent	d) A solder
1	26 In the reaction $SO \pm 2H$	$J = 3S \pm 2H \cap the subst$	ance that oxidizes is	u) II Soluci
1	20. In the reaction, $30_2 \pm 21_2$	$1_{2}^{5} \rightarrow 55 \pm 211_{2}^{5}$ 0 the subst		4) H ()
1	a_{1123}	$U_{1} = U_{2}$	CJ S	u) 11 ₂ 0
T	$27.$ The oxidation number of 20.0 ± 1 and 2	surprise for $\mathfrak{s}_8, \mathfrak{s}_2\mathfrak{r}_2, \mathfrak{n}_2\mathfrak{s}_3\mathfrak{r}_2$	pectively are:	d1 - 2 + 1 and -2
1	a) $0, \pm 1$ and -2	DJ + 2, $+ 1$ and -2	$c_{j} = 0, \pm 1 \text{ and } \pm 2$	$u_{j} = 2, \pm 1$ and -2
1	28. Maximum oxidation state	e is present in :		
	a) CrO_2Cl_2 and MrO_4			
	$DJ M n U_2$	אין 13–		
	c) $[Fe(UN)_6]^3$ and $[Lo(U)_6]^3$.N) ₆] ³		
4	d) MnO	11		
1	29. With which element oxyg	en shows positive oxidation	n state in its compounds?	
	a) Na		C) N	d) F
1	30. What is the oxidation nur	nber of chlorine in ClO_3 ?		
	a) +5	b) +3	c) +4	d) +2
1	31. NaClO solution reacts wit	th H_2SO_3 as, NaClO + H_2SO_3	$H_3 \rightarrow \text{NaCl} + \text{H}_2\text{SO}_4$	
	A solution of NaClO used	d in the above reaction co	ntained 15 g of NaClO per	litre. The normality of the
	solution would be :			
	a) 0.40	b) 0.20	c) 0.60	d) 0.80
1	32. In sodium hydride, oxidat	tion state of sodium is :		
	a) Zero	b) +1	c) -1	d) +2
1	33. The oxidation number of	xenon in XeOF ₂ is		
	a) Zero	b) 2	c) 4	d) 3
1	34. Which is not a redox reac	tion?		
	a) $H_2 + Br_2 \rightarrow 2HBr$			
	b) $\rm NH_4Cl \rightarrow \rm NH_3 + \rm HCl$			
	c) $NH_4NO_3 \rightarrow N_2O + 2H_3$	I ₂ 0		
	d) Fe + S \rightarrow FeS			
1	35. In C + H ₂ O \rightarrow CO + H ₂ ;	H_20 acts as :		
	a) Oxidant	b) Reductant	c) Both (a) and (b)	d) None of these
1	36. Millimole of a solute in a s	solution can be given by :		
C	a) $M \times V_{\text{in litre}}$	b) $M \times V_{\text{in mL}}$	c) $\frac{\text{wt.}}{\text{mol. wt.}} \times 1000$	d) Both (b) and (c)
1	37. The oxidation number of	carbon in $H_2C_2O_4$ is :		
	a) +2	b) +3	c) +4	d) +1
1	38. What is the oxidation stat	te of P in Ba $(H_2PO_2)_2$?	,	
	a) +1	b) +2	c) +3	d) -1
1	39. Oxidation state of +1 for	phosphorus is found in :	-	-
	a) H_3PO_3	b) H₃PO₄	c) H ₃ PO ₂	d) $H_4P_2O_7$
1	40. Oxidation number of S in	$(CH_3)_2$ SO is :		~ 1 4 1
	a) Zero	b) +1	c) +2	d) +3
	-	-	-	-

1 11. In which reaction the under med substance has bee	n reduced?	
a) Carbon monoxide + copper oxide \rightarrow carbon dio	xide + copper	
b) <u>Copper oxide</u> + hydrochloric acid \rightarrow water + co	pper chloride	
c) <u>Steam</u> + iron \rightarrow hydrogen + iron oxide		
d) <u>Hydrogen</u> + iron oxide \rightarrow water + iron		
142. The decomposition of $KCIO_3$ to KCl and O_2 on heati	ng is an example of :	
a) Intermolecular redox change		
b) Intramolecular redox change		
c) Disproportionation or auto redox change		
d) None of the above		$\langle \cdot \rangle$
143. Mohr's salt is oxidised to in presence of acidize	d KMnO ₄ .	
a) Fe ²⁺ b) Fe ³⁺	c) Fe	d) None of these
144. Fluorine is a strong oxidising agent because :		
a) It has several isotopes		
b) It is very small and has 7 electrons in valency sh	ell	
c) Its valency is one		
d) It is the first member of the halogen series	Ć	
145. In the conversion of Br_2 to BrO_3^- , the oxidation num	ber of Br changes from	
a) Zero to +5 b) +1 to +5	c) Zero to −3	d) +2 to +5
146. The oxidation number of Cr in CrO ₅ is		
a) +3 b) +5	c) +6	d) 0
147. An indicator used for redox reaction is itself :		
a) Either an oxidant or a reductant		
b) Neither an oxidant nor a reductant	G.XY	
c) Acid or base		
d) None of the above		
148 (r0, reacts with H S0, to give (r (S0)) H 0 ar	d O Molos of O liborato	d has 1 male of Cro in this
$140. \ 1005 \ $	In O_2 . Moles of O_2 liberate	ed by 1 mole of CrO_5 in this
reaction are :	In O_2 . Moles of O_2 liberate	a by 1 mole of CrO_5 in this
reaction are : a) 2.5 b) 1.25	c) 4.5	d) 1.75
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2O$	c) 4.5 KH ₂ PO ₂ + PH ₃	d) 1.75
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2O$ a) P is only oxidized	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced	d) 1.75
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2O$ a) P is only oxidized c) P is both oxidized as well as reduced	c) 4.5 KH ₂ PO ₂ + PH ₃ b) P is only reduced d) None of the above	d) 1.75
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2O$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is :	c) 4.5 $(H_2PO_2 + PH_3)$ b) P is only reduced d) None of the above	d) 1.75
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4	c) 4.5 $(H_2PO_2 + PH_3)$ b) P is only reduced d) None of the above c) +5	d) 1.75 d) +6
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2O$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati	c) 4.5 $(H_2PO_2 + PH_3)$ b) P is only reduced d) None of the above c) +5 on number of chromium :	d) 1.75 d) +6
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of K ₂ Cr ₂ O ₇ to K ₂ CrO ₄ the oxidati a) Increases b) Remains the same	 c) 4.5 KH₂PO₂ + PH₃ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases 	 d) 1.75 d) +6 d) None of these
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{7-}$ is : a) +3 b) +4 151. In the conversion of K ₂ Cr ₂ O ₇ to K ₂ CrO ₄ the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O	 c) 4.5 KH₂PO₂ + PH₃ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged in 	 d) 1.75 d) +6 d) None of these n increasing order?
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of K ₂ Cr ₂ O ₇ to K ₂ CrO ₄ the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$	 c) 4.5 KH₂PO₂ + PH₃ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged in b) BaO₂ < KO₂ < O₃ < C 	 d) 1.75 d) +6 d) None of these n increasing order?)F₂
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of K ₂ Cr ₂ O ₇ to K ₂ CrO ₄ the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$	 c) 4.5 KH₂PO₂ + PH₃ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged if b) BaO₂ < KO₂ < O₃ < C d) None of these 	 d) 1.75 d) +6 d) None of these n increasing order? 0F₂
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of K ₂ Cr ₂ O ₇ to K ₂ CrO ₄ the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is	 c) 4.5 KH₂PO₂ + PH₃ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged if b) BaO₂ < KO₂ < O₃ < O d) None of these 	 d) 1.75 d) +6 d) None of these n increasing order? DF₂
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged i b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2	 d) 1.75 d) +6 d) None of these n increasing order? 0F₂ d) zero
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1 154. The apparatus in which standard solution is prepare	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged it b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 red is known as :	 d) 1.75 d) +6 d) None of these n increasing order? DF₂ d) zero
reaction are : a) 2.5 b) 1.25 149. In the following reaction, 4P + 3KOH + 3H ₂ O → 3H a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of K ₂ Cr ₂ O ₇ to K ₂ CrO ₄ the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of of a) OF ₂ < KO ₂ < BaO ₂ < O ₃ c) BaO ₂ < O ₃ < OF ₂ < KO ₂ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1 154. The apparatus in which standard solution is preparatus a) Measuring flask b) Round bottom flask	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged i b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 ed is known as : c) Burette	 d) 1.75 d) +6 d) None of these n increasing order?)F₂ d) zero d) None of these
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_1$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1 154. The apparatus in which standard solution is prepara a) Measuring flask b) Round bottom flask 155. $K_3Fe(CN)_6$ is used as Indicator for FeSO ₄ vs. K	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged it b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 ed is known as : c) Burette $_2Cr_2O_7$ titrations.	 d) 1.75 d) +6 d) None of these n increasing order?)F₂ d) zero d) None of these
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_1$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidatian a) Increases b) Remains the same 152. In which of the following, the oxidation number of $O_1O_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1 154. The apparatus in which standard solution is preparatus a) Measuring flask b) Round bottom flask 155. $K_3Fe(CN)_6$ is used as Indicator for FeSO ₄ vs. K a) Self b) External	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged it b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 ed is known as : c) Burette $_2Cr_2O_7$ titrations. c) Internal	 d) 1.75 d) +6 d) None of these in increasing order? oF₂ d) zero d) None of these d) None of these d) None of these d) Not an
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_1$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1 154. The apparatus in which standard solution is prepara a) Measuring flask b) Round bottom flask 155. $K_3Fe(CN)_6$ is used as Indicator for FeSO ₄ vs. K a) Self b) External 156. The oxidation number of N in N ₂ H ₅ ⁺ is :	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged it b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 red is known as : c) Burette $_2Cr_2O_7$ titrations. c) Internal	 d) 1.75 d) +6 d) None of these n increasing order? 0F₂ d) zero d) None of these d) None of these d) Not an
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_1$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1 154. The apparatus in which standard solution is prepara a) Measuring flask b) Round bottom flask 155. $K_3Fe(CN)_6$ is used as Indicator for FeSO ₄ vs. K a) Self b) External 156. The oxidation number of N in N ₂ H_5 ⁺ is : a) -2 b) +3	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged i b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 ed is known as : c) Burette $_2Cr_2O_7$ titrations. c) Internal c) +2	d) 1.75 d) 1.75 d) +6 d) None of these n increasing order? DF_2 d) zero d) None of these d) None of these d) Not an d) -3
reaction are : a) 2.5 b) 1.25 149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_2O$ a) P is only oxidized c) P is both oxidized as well as reduced 150. Oxidation number of P in $P_2O_7^{4-}$ is : a) +3 b) +4 151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati a) Increases b) Remains the same 152. In which of the following, the oxidation number of O_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam is a) +2 b) +1 154. The apparatus in which standard solution is preparal a) Measuring flask b) Round bottom flask 155. $K_3Fe(CN)_6$ is used as Indicator for FeSO ₄ vs. K a) Self b) External 156. The oxidation number of N in N ₂ H ₅ ⁺ is : a) -2 b) +3 157. Which can act as oxidant?	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged if b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 red is known as : c) Burette $_2Cr_2O_7$ titrations. c) Internal c) +2	d) 1.75 d) 1.75 d) +6 d) None of these n increasing order? DF_2 d) zero d) None of these d) None of these d) Not an d) -3
140. Cross reacts with H_2 so 4 to give $G_2(30_4)_3, H_2$ or all reaction are :a) 2.5b) 1.25149. In the following reaction, $4P + 3KOH + 3H_2O \rightarrow 3H_3$ a) P is only oxidized c) P is both oxidized as well as reduced150. Oxidation number of P in $P_2O_7^{4-}$ is :a) +3b) +4151. In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidati a) Increasesb) Remains the same152. In which of the following, the oxidation number of G_1 a) $OF_2 < KO_2 < BaO_2 < O_3$ c) $BaO_2 < O_3 < OF_2 < KO_2$ 153. Oxidation number of sodium in sodium amalgam isa) $+2$ b) $+1$ 154. The apparatus in which standard solution is preparal a) Measuring flaskb) Round bottom flask155. $K_3Fe(CN)_6$ is used as Indicator for FeSO4 vs. Ka) Selfb) External156. The oxidation number of N in $N_2H_5^+$ is :a) -2 b) $+3$ 157. Which can act as oxidant?a) H_2O_2 b) H_2S	c) 4.5 $KH_2PO_2 + PH_3$ b) P is only reduced d) None of the above c) +5 on number of chromium : c) Decreases oxygen has been arranged in b) BaO_2 < KO_2 < O_3 < C d) None of these : c) -2 red is known as : c) Burette $_2Cr_2O_7$ titrations. c) Internal c) +2 c) NH ₃	d) 1.75 d) 1.75 d) +6 d) None of these n increasing order? DF_2 d) zero d) None of these d) None of these d) Not an d) -3 d) None of these

	$HNO_3 \rightarrow HIO_3 + NO_2 + 1$	H ₂ 0?		
	a) 12.4 g	b) 24.8 g	c) 0.248 g	d) 49.6 g
15	9. In which SO ₂ acts as oxida	ant, while reacting with :		
	a) Acidified $KMnO_A$	b) Acidified K ₂ Cr ₂ O ₇	c) H ₂ S	d) Acidified C ₂ H ₅ OH
16	0. HBr and HI reduce H_2SO_4	$HCl can reduce KMnO_4 an$	d HF can reduce:	2 2 3
10	a) $H_{2}SO$.	b) $K_{2}(r_{2})$	c) KMnO.	d) None of these
16	$\begin{array}{c} a_{1} \\ 1 \\ F_{2} \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $	0 in its reaction with L is	egual to .	uj None of these
10	1. Equivalent mass of Na_2S_2	O_3 III its reaction with I_2 is	equal to :	
1.0	a) Molar mass	b) Molar mass / 2	c) Molar mass / 3	d) Molar mass / 4
16	2. Which of the following ch	ange represents a dispropo	ortionation reaction(s)?	
	a) $Cl_2 + 2OH^- \rightarrow ClO^-$	$+ Cl^{-} + H_2O$		\wedge \vee
	b) $Cu_2O + 2H^+ \rightarrow Cu + Q$	$Cu^{2+} + H_2O$		
	c) $2HCuCl_2 \xrightarrow{\text{Dilution with}}_{\text{water}}$	$-Cu + Cu^{2+} + 4Cl^{-} + 2H^{+}$		
	d) All of the above			
16	Oxidation number of 'N' in	n N ₃ H(hydrazoic acid) is		
	a) _ ¹	b) +3	c) 0	$d_{1} = 3$
	$a_{j} = \frac{-1}{3}$	0) +3	Ć	uj -5
16	4. Cerric ammonium sulpha	te and potassium permang	anate are used as oxidising	agents in acidic medium
	for oxidation of ferrous a	mmonium sulphate to ferrie	c sulpahte. The ratio of nun	nber of moles of cerric
	ammonium sulphate requ	uired per mole of ferrous an	nmonium sulphate to the n	umber of moles of KMnO ₄
	required per mole of ferro	ous ammonium sulphate, is		
	a) 5.0	b) 0.2	c) 0.6	d) 2.0
16	5. Eq.wt. of NH ₂ in NH ₂ + 0	$P_2 \rightarrow NO + H_2O$ is:		,
	a) 3.4	b) 17	c) 85	d) None of these
16	6 Carbon is in the lowest ox	vidation state in ·		
10	a) CH.	h) (C).	c) (O_{c}	d) CF.
16	7 When the ion $Cr_{1}O^{2-}$ acts	5 3 3 3 3 3 3 3 3 3 3	$c_{1} c_{2}$	tis formed How many mole
10	r^{2} of Sn^{2+} would be ovidized	d = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	ions?	is formed. Now many more
		10311 by one of Cl_2O_7 i	-) 2	د ر ا
10	$a_{J} 2/3$			u) 3
16	8. 100 mL of 0.1 <i>M</i> solution	of a reductant is diluted to	1 litre, which of the followi	ng changes?
	a) Molarity	b) Millimole	c) Milliequivalent	d) None of these
16	9. If H_2S is passed through a	an acidified $K_2 Cr_2 O_7$ solution	on, the colour of the solutio	n :
	a) Will remain unchanged	i y		
	b) Will change to deep re	d		
	c) Will change to dark gre	een		
	d) Will change to dark bro	own		
17	0. Ozone tails mercury. The	reaction isof Hg.		
	a) Reduction	b) Oxidation	c) Substitution	d) None of these
17	1. The oxidation number of	$Cr in [Cr(NH_3)_{4}Cl_2]^+ is :$	-	2
	a) +3	h) + 2	c) +1	d) zero
17	2 In the reaction $VO + Fe_{0}$	$D_{1} \longrightarrow FeO \pm V_{1}O_{1}$ The eq	wt of $V_1 O_2$ is equal to its :	
17.	2 mol wt	b) mol wt /9	$_{205}$ is equal to its :	d) None of those
G 17	a) mon. wt. 2 The equation of V (ref. $c_{\rm ref}$) and $c_{\rm ref}$	b) mon. wt./8	c) moi. wt./o	uj none or these
17.	5. The eq. wt. of $K_2 CrO_4$ as a	h > (2 + 1) + 2	$= 2 \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$	
	a) (mol. wt.)/2	b) $(2 \times \text{mol. wt.})/3$	c) (mol. wt.)/3	a) (mol. wt.)/6
17-	4. Which reaction involves r	heither oxidation nor reduc	tion?	2
	a) $\operatorname{Cr}O_4^{2-} \rightarrow \operatorname{Cr}_2O_7^{2-}$	b) Cr \rightarrow CrCl ₃	c) Na \rightarrow Na ⁺	d) $2S_2O_3^{2-} \rightarrow S_4O_6^{2-}$
17	5. The number of equivalent	t per mole of H ₂ S used in its	s oxidation to SO ₂ is :	
	a) 3	b) 6	c) 4	d) 2
17	6. Oxidation number of sulp	hur in Na ₂ SO ₄ is :		
	a) +2	b) +4	c) +6	d) -2
17	7. Which can have both +ve	and -ve oxidation states?		

a) F	b) I	c) Na	d) He	
178. Milliequivalent	of a solute in a solution car	n be given by:		
a) Mz. _{eq.} = M	$\times V_{\rm inmL}$			
b) $M_{eq} = N$	< V _{in mL}			
c) $Mz_{eq} = \frac{\text{wt}}{\text{Eq.wt}}$	$\frac{1}{1} \times 1000$			
d) Both (b) and	d (c)			
179. H_2S is passed	through an acidified solution	on of copper sulphate and	a black precipitate is formed. This is	S
due to :				
a) Oxidation of	Cu ²⁺			
b) Reduction o	f Cu ²⁺			
c) Double deco	omposition			
d) Reduction a	nd oxidation			
180. Iodine has high	est oxidation number in the	e compound :		
a) KIO ₄	b) IF ₅	c) KI ₂	d) KI	
181. Oxidation num	ber of S in $S_2O_3^{2-}$ is :			
a) +2	b) -2	c) 4	d) zero	
182. In the reaction	, $Cr_2O_7^{2-}$ + 14H ⁺ + 6I ⁻ →	$2Cr^{3+} + 3H_2O + 3I_2$, The e	q.wt. of Cr ³⁺ is :	
a) <u>mol. wt.</u>	b) 	c) <u>at. wt.</u>	d) mol. wt.	
² 3	⁵ 6	3	6	
183. In the reaction	$H_2U_2 + Na_2U_3 \rightarrow Na_2U_2$	$+ CO_2 + H_2O$ the substance	undergoing oxidation is	
a) $\Pi_2 U_2$	DJ Na ₂ CO ₃	$CJ Na_2 U_2$	a) None of these	
2) 0.1 mJ	b) 0.01 ml	a) 0.2 mI	d) 0.02 mI	
185 Among NH ₂ H	$NO_{2} NaN_{2} and Mg_{2} N_{2}$ the	umber of molecules having	nitrogen in negative ovidation state	
is	100_{3} , 100_{3} , 100_{3} , 100_{3} , 100_{3}	fumber of molecules having	, includent in negative oxidation state	
13 2) 1	h) 2		d) 4	
186. In which iron h	as the lowest oxidation stat	c) 5		
a) $Fe(CO)_r$				
b) Fe_2O				
c) K_4 Fe(CN) ₆	× Y			
d) FeSO ₄ . (NH ₄)2SO ₄ .6H ₂ 0			
187. A chemical bal	ance used normally for weig	ghing in laboratory can weig	gh upto a least count of :	
a) 0.0001 g	b) 0.001 g	c) 0.0002 g	d) 0.002 g	
188. When NaCl is c	lissolved in water, the sodiu	im ion becomes :		
a) Oxidized	b) Reduced	c) Hydrolysed	d) hydrated	
189. Which is not a	redox reaction?			
a) BaO ₂ + H ₂ S	$0_4 \longrightarrow BaSO_4 + H_2O_2$			
b) 2BaO + O ₂	$\rightarrow 2BaO_2$			
c) $4\text{KCIO}_3 \rightarrow$	4KCIO ₂ + 2O ₂			
d) $SO_2 + 2H_2S$	$\rightarrow 2H_2O + 3S$			
190. When BrO_3^- ion	reacts with Br ⁻ ion in acid	ic solution Br_2 is liberated.	The equivalent weight of $KBrO_3$ is :	
a) M/8	b) <i>M</i> /3	c) <i>M</i> /5	d) <i>M</i> /6	
191. Corrosion of ir	on 1s :			
a) Redox proce	2SS			
a) Proginitation	on process			
d) None of the	n process			
192 During a rode	v titration involving a coluti	on containing Fe ²⁺ ions age	inst MnO^{-} in the presence of evenes	
$172.$ During a reduce of U^+ ions the	number of electrons that a	on containing re - 10115 aga	mist milo ₄ in the presence of excess	
of fr ions, the	number of electrons tildt ge			

a) 6 b) 5 c) 4 d) 2

lorine is +5?	
c) HClO ₃	d) HClO ₄
+ H_2 , the spectator ion is	:
c) H ⁺	d) All of these
c) K ₃ Fe(CN) ₆	d) Na ₄ Fe(CN) ₆
bines with strongly electr	ropositive metals is
c) +4	d) +2
g and reducing agent is:	· · ·
c) $Fe_2(SO_4)_3$	d) $K_2 Cr_2 O_7$
number A ^{n–} . It is oxidized	d by $Cr_2O_7^{2-}$ in acidic medium. In
ere used for 3.26 \times 10 ⁻³	mole of <i>ABD</i> . The new oxidation
c) <i>n</i> −3	d) +n
c) Oxidation	d) reduction
xide is :	
c) +6	d) +7
ns is :	
) is an example of :	
\mathbf{V}^{\prime}	
e +3)	
)	
nave 0)	
c) Addition of hydrog	gen d) Addition of metal
xidation process, the rea	son he gives that an oxide of the
ct?	
idising agent is :	
c) SO ₂	d) H_2SO_3
IS.	
c) Internal	d) Not an
nc iodide is formed, which	n is oxidised?
c) Zinc atom	d) Iodine
c) Zinc atom	d) Iodine
c) Zinc atom c) Sulphur	d) Iodine d) Oxygen
	lorine is $+5$? c) HClO ₃ + H ₂ , the spectator ion is c) H ⁺ c) K ₃ Fe(CN) ₆ bines with strongly electric c) +4 g and reducing agent is: c) Fe ₂ (SO ₄) ₃ number A^{n-} . It is oxidized ere used for 3.26×10^{-3} c) $n-3$ c) Oxidation tide is : c) +6 hs is : c) +6 hs is : e +3) have 0) c) Addition of hydrogonia point of hydrogonia (a) SO ₂ (b) SO ₂ (c) Internal nc iodide is formed which

	a) +2	b) +1	c) Zero	d) +3
212	1. A compound of Xe and F i	s found to have 53.3% Xe.	Oxidation number of Xe in	this compound is :
	a) -4	b) Zero	c) +4	d) +6
212	2. Which combination is odd	d with respect to oxidation	numbers of S. Cr. N and H	respectively:
	a) H_2SO_{E} , $H_2S_2O_{e}$, H_2SO_{4}	SFc	, - ,	
	b) $K_2Cr_2O_7$, K_2CrO_4 , CrO_7	CrOaCla		
	c) NH ₂ NH ^{$+$} N ₂ H NO ^{$-$}			
	d) CaH ₂ , NaH LiH M σ H ₂			
213	C_{12} C	required 10 mL of NKN	$\ln \Omega$ in a titration in the r	records of H SO Durity of
21,		2 required to mill of N KM	110_4 in a un auon in the p	resence of H ₂ SO ₄ . Fully of
	$H_2 U_2 IS$	b) 050/	a) (F0)	
21	$a_{J} 25\%$	UJ 85%	$C_{\rm J} 05\%$	2+ (h
214	$\frac{1}{2}$. when KMinU ₄ as oxidisin	g agent and ultimately for	ms MnO_4^2 , Mn_2O_3 and Mn_3	the number of electrons
	transferred per mole of K	MnO_4 each case respective		
	a) 4, 3, 1, 5	b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 1, 3, 8, 5
215	5. Titration of KI with H_2O_2	in presence of acid is a :		\sim
	a) Clock reaction	b) Redox reaction	c) Intermolecular redox	d) All of these
216	Oxidation state of nitroge	n is incorrectly given for :		Y
	Compound	Oxidation state		>
	a) [Co(NH ₃) ₅ Cl]Cl ₂	-3		
	b) NH ₂ OH	-1		
	c) (N ₂ H ₅) ₂ SO ₄	+2		
	d) Mg_3N_2	-3		
217	7. Fluorine exhibits only –1	oxidation state, while iodi	ine exhibits oxidation state	es of -1 , $+1$, $+3$, $+5$ and $+7$.
	This is due to :			
	a) Fluorine being a gas	4	$\mathbf{\nabla}'$	
	b) Available <i>d</i> -orbitals in	iodine)	
	c) Non-availability of <i>d</i> -o	rbitals in iodine		
	d) None of the above			
218	R Elements which generally	vexhibit multiple oxidation	states and whose ions are	coloured are known as :
	a) Metalloid	h) Non-metals	c) Metals	d) Transition metals
210	The oxidation state of sul	nhur in sodium tetrathiona	(N_2, S, Ω_1) is	a) manshion metals
21 .		b) 0	c) 25	d) 2 5
220	aj 2 Which is strongest ovidie	bj 0	() 2.5	u) 5.5
220	-> O	h) O	-) (l	-1) F
22	a) U_3		cj cl ₂	$a_{\rm J} F_2$
ZZ.	L. Sulphur has the highest o	xidation state in :		
	a) SO ₂	b) SO_3	c) H_2SO_3	d) H_2S
222	2. Nitrogen has fractional ox	ridation number in :		
	a) N ₂ H ₄	b) NH ₄	c) HN ₃	d) N_2F_2
223	3. As the oxidation state for	any metal increases, the te	ndency to show ionic natu	re:
	a) Decreases	b) Increases	c) Remains same	d) None of these
224	4. In acid medium Zn reduce	es nitrate ion to NH_4^+ ion a	ccording to the reaction	
C	$Zn + NO_3$ $Zn^{2+} + N$	$MH_4^+ + H_2O$ (unbalanced)		
	How many moles of HCl a	re required to teduce half a	a mole of NaNO ₃ completel	y? Assume the availability
	of sufficient Zn.			
	a) 5	b) 4	c) 3	d) 2
225	5. Weight of FeSO4 (mol. wt	. = 152) oxidized by 200 m	L of 1 N KMnO ₄ solution is	3:
	a) 30.4 g	b) 15.2 g	c) 60.8 g	d) 158 g
226	5. In the ionic equation,	-	-	-
	$BiO_3^- + 6H^+ + xe^- \rightarrow E$	$Bi^{3+} + 3H_2O$		
	The values of x is	-		

a) 6 b) 2	c) 4	d) 3
227. The reaction, $5H_2O_2 + XClO_2 + 2OH^- \rightarrow XCl^-$	$+ YO_2 + 6H_2O$ is balanced	l if :
a) $X = 5, Y = 2$ b) $X = 2, Y = 5$	c) $X = 4, Y = 10$	d) $X = 5, Y = 5$
228. What volume of 0.40 M Na ₂ S ₂ O ₃ would be requ	ired to react with the I_2 lil	perated by adding excess of KI to
50 mL of 0.20 M CuSO ₄ solution?		
a) 12.5 mL b) 25 mL	c) 50 mL	d) 2.5 mL
229. For the reaction, $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{2+}$	⁴⁺ The normality of Sn	Cl_2 (mol.wt. = 189.7) solution
prepared by dissolving 47.5 g in acid solution an	d diluting with H_2^0 to a to	otal of 2.25 litre is :
a) 0.222 <i>N</i> b) 0.111 <i>N</i>	c) 0.333 <i>N</i>	d) 0.444 N
230. The eq.wt. of $Fe_2(SO_4)_3$, the salt to be used as an	n oxidant in an acidic solut	ion is :
a) (Mol. wt.)/1 b) (Mol. wt.)/2	c) (Mol. wt.)/3	d) (Mol. wt.)/5
231. Oxalic acid on reacting with acidified KMnO ₄ is o	oxidised to :	
a) CO and H_2 b) CO ₂ and H_2	c) CO_2 and H_2O	d) CO and H_2O
232. The oxidation number of N and Cl in NOClO ₄ res	pectively are	
a) +2 and +7 b) +3 and +7	c) −3 and +5	d) +2 and -7
233. Sulphur in +3 oxidation state is present in		
a) Sulphurous acid b) Pyrosulphuric acid	c) Dithionous acid	d) Thiosulphuric acid
234. Among the properties (a) reducing, (b) oxidisin	ng and (c) complexing the	set of properties shown by CN ⁻
ion towards metal species is :		
a) a, b, c b) b, c	c) c, a	d) a, b
235. Magnesium reacts with acids producing hydrog	gen and corresponding ma	gnesium salts. In such reactions
magnesium undergoes :		
a) Oxidation		
b) Reduction	S.XY	
c) Neither oxidation nor reduction		
d) Simple dissolution		
d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can	be reduced by 250 g of a	an 8 per cent by weight KMnO4
d) Simple dissolution236. What volume of 0.1 <i>N</i> oxalic acid solution can solution?	be reduced by 250 g of a	an 8 per cent by weight $KMnO_4$
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 	be reduced by 250 g of a c) 25.2 litre	an 8 per cent by weight $KMnO_4$ d) 0.63 litre
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: 	be reduced by 250 g of a c) 25.2 litre	an 8 per cent by weight KMnO ₄ d) 0.63 litre
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid 	be reduced by 250 g of a	an 8 per cent by weight KMnO ₄ d) 0.63 litre
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid 	be reduced by 250 g of a	an 8 per cent by weight KMnO ₄ d) 0.63 litre
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid 	be reduced by 250 g of a	an 8 per cent by weight KMnO ₄ d) 0.63 litre
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 	be reduced by 250 g of a	an 8 per cent by weight KMnO ₄ d) 0.63 litre
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution 	be reduced by 250 g of a c) 25.2 litre	an 8 per cent by weight KMnO ₄ d) 0.63 litre ate, then chromium sulphate is
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chrooper acid 	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is :	an 8 per cent by weight KMnO ₄ d) 0.63 litre ate, then chromium sulphate is
d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chroo a) +4 to +2 b) +5 to +3	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3	an 8 per cent by weight KMnO ₄ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chrona) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are 	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma mium is : c) +6 to +3 e respectively :	an 8 per cent by weight KMnO ₄ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chromal +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are al +3, +5, +4 b) +4, +3, +5 	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chrone a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine 	<pre>be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives:</pre>	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4
d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chron a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2-})$ ions by iodine a) SO ₃ b) SO ₄ ²⁻	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma mium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4 O_6^{2-}$	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroe a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine a) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL 	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4O_6^{2-}$ solution. The solution req	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ uired 90 mL of <i>N</i> /20 KMnO ₄ for
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chroe a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine a) SO₃ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL complete oxidation. The % of oxalate ion in salt in the solution is a solution. 	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4 O_6^{2-}$ solution. The solution requise:	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ uired 90 mL of <i>N</i> /20 KMnO ₄ for
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chronea) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodinea) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL complete oxidation. The % of oxalate ion in salt if a) 33% 	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4O_6^{2-}$ solution. The solution requis: c) 70%	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ puired 90 mL of <i>N</i> /20 KMnO ₄ for d) 40%
 d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO₂ is passed through acidified solution formed. The change in oxidation number of chrona) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H₄P₂O₅, H₄P₂O₆, H₄P₂O₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate (S₂O₃²⁻) ions by iodine a) SO₃⁻ b) SO₄²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL complete oxidation. The % of oxalate ion in salt if a) 33% b) 66% 	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4 O_6^{2-}$ solution. The solution requis: c) 70% the oxidation of NaCl with	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ uired 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% n 10 g KMnO ₄ ?
d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chron a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2-})$ ions by iodine a) SO ₃ b) SO ₄ ²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL complete oxidation. The % of oxalate ion in salt i a) 33% b) 66% 242. How many litre of Cl ₂ at STP will be liberated by a) 3.54 litre b) 7.08 litre	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4O_6^{2-}$ solution. The solution requis: c) 70% the oxidation of NaCl with c) 1.77 litre	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ quired 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% n 10 g KMnO ₄ ? d) None of these
d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chron a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2-})$ ions by iodine a) SO ₃ ⁻ b) SO ₄ ²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL complete oxidation. The % of oxalate ion in salt if a) 33% b) 66% 242. How many litre of Cl ₂ at STP will be liberated by a) 3.54 litre b) 7.08 litre 243. What is the normality of a KMnO ₄ solution to be	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4 O_6^{2-}$ solution. The solution requis: c) 70% the oxidation of NaCl with c) 1.77 litre e used as an oxidant in action	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ quired 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% a 10 g KMnO ₄ ? d) None of these id medium, which contain 15.8 g
d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chron a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2-})$ ions by iodine a) SO ₃ ⁻ b) SO ₄ ²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL complete oxidation. The % of oxalate ion in salt if a) 33% b) 66% 242. How many litre of Cl ₂ at STP will be liberated by a) 3.54 litre b) 7.08 litre 243. What is the normality of a KMnO ₄ solution to be of the compound in 100 mL of solution? Mol. wt.	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) +6 to +3 e respectively : c) +3, +4, +5 e gives: c) $S_4 O_6^{2-}$ solution. The solution requis: c) 70% the oxidation of NaCl with c) 1.77 litre e used as an oxidant in action of KMnO ₄ is 158 :	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ quired 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% n 10 g KMnO ₄ ? d) None of these id medium, which contain 15.8 g
d) Simple dissolution 236. What volume of 0.1 <i>N</i> oxalic acid solution can solution? a) 6.3 litre b) 12.6 litre 237. The oxidation state of +3 for phosphorus is in: a) Hypophosphorous acid b) Meta-phosphoric acid c) Ortho-phosphoric acid d) Phosphorous acid 238. When SO ₂ is passed through acidified solution formed. The change in oxidation number of chron a) +4 to +2 b) +5 to +3 239. Oxidation no. of P in H ₄ P ₂ O ₅ , H ₄ P ₂ O ₆ , H ₄ P ₂ O ₇ are a) +3, +5, +4 b) +4, +3, +5 240. Oxidation of thiosulphate $(S_2O_3^{2-})$ ions by iodine a) SO ₃ b) SO ₄ ²⁻ 241. 0.3 g of an oxalate salt was dissolved in 100 mL complete oxidation. The % of oxalate ion in salt if a) 33% b) 66% 242. How many litre of Cl ₂ at STP will be liberated by a) 3.54 litre b) 7.08 litre 243. What is the normality of a KMnO ₄ solution to be of the compound in 100 mL of solution? Mol. wt. a) 2 <i>N</i> b) 3 <i>N</i>	be reduced by 250 g of a c) 25.2 litre on of potassium dichroma omium is : c) $+6$ to $+3$ e respectively : c) $+3$, $+4$, $+5$ e gives: c) $S_4O_6^{2-}$ solution. The solution requis: c) 70% the oxidation of NaCl with c) 1.77 litre e used as an oxidant in act of KMnO ₄ is 158 : c) 4 <i>N</i>	an 8 per cent by weight $KMnO_4$ d) 0.63 litre ate, then chromium sulphate is d) +7 to +2 d) +5, +3, +4 d) $S_2O_8^{2-}$ quired 90 mL of <i>N</i> /20 KMnO ₄ for d) 40% a 10 g KMnO ₄ ? d) None of these id medium, which contain 15.8 g d) 5 <i>N</i>

a) Mn ⁴⁺ b) Mn ²⁺	c) Mn ⁶⁺	d) Mn
245. In balancing the half reaction, $S_2O_3^{2-} \rightarrow S_3^{2-}$	S(s), the number of electrons that	t must be added is :
a) 2 on the right b) 2 on the left	c) 3 on the right	d) 4 on the left
246. What volume of 0.1 M KMnO ₄ is needed t	to oxidise 100 mg of FeC_2O_4 in ac	cidic solution?
a) 4.1 mL b) 8.2 mL	c) 10.2 mL	d) 4.6 mL
247. Which one is not a redox titration?		
a) FeSO ₄ vs. $K_2Cr_2O_7$ b) CuSO ₄ vs. h	ypo c) $I_2 vs$. hypo	d) AgNO ₃ <i>vs</i> . KCl
248. A 0.518 g sample of lime stone is dissol	ved in HCl and then the calcium	is precipitated as CaC_2O_4 . After
filtering and washing the precipitate, it r	equires 40.0 mL of 0.250 N KMn	O_4 , solution acidified with H_2SO_4
to titrate is as, $MnO_4^- + H^+ + C_2O_4^{2-} \rightarrow D_4^{2-}$	$Mn^{2+} + CO_2 + 2H_2O$. The percer	ntage of CaO in the sample is :
a) 54.0 % b) 27.1 %	c) 42%	d) 84%
249. The missing term in following equation is	$S: 2Fe^{3+}(aq) + Sn^{2+}(aq) \rightarrow 2Fe^{3+}(aq)$	$e^{2+}(aq)+?$
a) Sn^{4+} b) Sn^{2+}	c) Sn	d) None of these
250. Reaction of Br_2 with Na_2CO_3 in aqueous s	solution gives sodium bromide a	nd sodium bromate with
evolution of CO_2 gas. The number of sodi	um bromide molecules involved	in the balanced chemical
equation is		
a) 1 b) 3	c) 5	d) 7
251. Oxidation number of carbon in C_3O_2 , Mg ₂	C_3 are respectively :	S
a) $-4/3$, $+4/3$ b) $+4/3$, $-4/3$	c) -2/3 + 2/3	d) $-2/3$, $+4/3$
252. The reaction; $KI + I_2 \rightarrow KI_3$ shows :		, , , , , , , , , , , , , , , , , , ,
a) Oxidation b) Reduction	c) Complex formatic	on d) All of these
253. The oxidation state of Cr in chromium tri	oxide is	
a) +3 b) +4	c) +5	d) +6
254. Oxidation number of S in S_2Cl_2 is :		,
a) $+1$ b) $+6$	c) Zero	d) -1
255. In which of the following N has lowest ox	idation number?	,
a) NO b) NO_2	c) $N_2 O$	d) N_2O_5
256. 2 mole of FeSO ₄ are oxidized by 'X' mole	e of KMnO ₄ whereas 2 mole of F	eC_2O_4 are oxidized by 'Y'mole of
KMnO ₄ . The ration $f'X'$ and $'Y'$ is :		
a) 1:3 b) 1:2	c) 1:4	d) 1 : 5
257. H_2S reacts with halogens, the halogens :	-	-
a) Are oxidised b) Are reduced	t c) Form sulphur hal	ides d) None of these
258. In an experiment 50 mL of 0.1 <i>M</i> solution	of a salt reacted with 25 mL of (0.1 <i>M</i> solution of sodium sulphite.
The half equation for the oxidation of sul	phite ion is :	
$SO_3^{2-}(aq) + H_2O(l) \rightarrow SO_4^{2-}(aq) + 2H^+(aq)$	$(aq) + 2e^{-}$	
If the oxidation number of metal in the sa	llt was 3, what would be the new	oxidation number of metal?
a) Zero b) 1	c) 2	d) 4
259. The most stable oxidation state of copper	is:	
a) +2 b) +1	c) +3	d) +4
260. White phosphorus reacts with caustic so	da, the products are PH_3 and NaF	$I_2 PO_2$. This reaction is an
example of		
a) Oxidation b) Reduction	c) Disproportionatio	on d) Neutralisation
261. When a sulphur atom becomes a sulphide	e ion :	
a) It gains two electrons		
b) The mass number changes		
c) There is no change in the composition	of atom	
d) None of the above		
262. Titre value is the volume of titrant used for	or a definite amount of unknown	reagent at its :
a) Equivalence point b) End point	c) Neutralization po	int d) All of these
263. Oxidation states of <i>X</i> , <i>Y</i> , <i>Z</i> are +2, +5 and	-2 respectively. Formula of the	compound formed by these wii

be			
a) $X_2 Y Z_6$	b) XY_2Z_6	c) <i>XY</i> ₅	d) X_3YZ_4
264. In which compound, o	oxygen has an oxidation state	of +2 ?	
a) H ₂ O ₂	b) H ₂ O	c) OF ₂	d) CO
265. If equal volumes of 1	1M KMnO ₄ and $1M$ K ₂ Cr ₂ O ₇	solutions are allowed to	oxidise F^{2+} to F^{3+} in acidic
medium volume of ox	idant required for one mole o	of F ²⁺ will be :	
a) $V_{KMnO_4} > V_{K_2Cr_2O_7}$			
b) $V_{KMnO_4} < V_{K_2Cr_2O_7}$			
c) $V_{KMn0} = V_{K,Cr,0}$			
d) Nothing can be pre	dicted		
266. How many gram of K	MnO ₄ should be taken to mak	e up 250 mL of a solution	of such strength that 1 mL is
equivalent to 5.0 mg c	of Fe in FeSO ² ?		
a) 1.414 g	b) 0.70 g	c) 3.16 g	d) 1.58 g
267. The oxidation number	r of Cr in K_2 CrO ₄ is		
a) +3	b) -6	c) +6	d) - 3
268. In the reaction, 2Na ₂ S	$S_2O_2 + I_2 \rightarrow Na_2S_4O_4 + 2NaI_4$, the oxidation state of sulp	hur is :
a) Decreased	b) Increased	c) Unchanged	d) None of these
269. The equivalent weigh	t of KMnO ₄ (acidic medium) i	s (at. wt. of $K = 39$: Mn = 5	5):
a) 158	b) 15.8	c) 31.6	d) 3.16
270. The oxidation number	er of chromium in potassium of	lichromate is	
a) +2	b) +4	c) +6	d) +8
271. The equivalent weigh	t of MnSO ₄ is half of its molec	ular weight when it is conv	erted to :
a) Mn_2O_2	b) MnO ₂	c) $Mn07$	d) Mn_{4}^{2-}
272. Aqueous solution of S	O_2 reacts with H_2S to precipit	tate sulphur. Here SO ₂ acts	as :
a) Catalyst	b) Reducing agent	c) Oxidizing agent	d) Acid
273. Saline hydrides are :			
a) Strong oxidants	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e.	
b) Strong reductants			
c) Strong dehydrating	g agents		
d) Strong bleaching as	gents		
274. State the oxidation nu	umber of carbonyl carbon in n	nethanal and methanoic aci	d respectively
a) 0 and 0	b) 0 and $+2$	c) +1 and +2	d) $+1$ and $+3$
275. The eq. wt. of I_2 in the	e change $I_2 \rightarrow IO_2^-$ is :	,	2
a) 12.7	b) 63.5	c) 25.4	d) 2.54
276. Equivalent mass of ox	tidizing agent in the reaction i	S.	, ,
$SO_2 + 2H_2S \rightarrow 3S +$	2H ₂ O		
a) 32	b) 64	c) 16	d) 8
277. In a conjugate pair of	reductant and oxidant, the re	ductant has :	2
a) Lower ox.no.	b) Higher ox.no.	c) Same ox.no.	d) Either of these
278. In which of the follow	ving reactions, hydrogen is act	ing as an oxidising agent?	2
a) With Li to form LiH	H b) With I_2 to give HI	c) With S to give H_2S	d) None of the above
279. The number of moles	of Mohr's salt required per m	ole of dichromate ion is :	2
a) 3	b) 4	c) 5	d) 6
280. For reducing one mol	e of Fe ²⁺ ion to Fe, the numbe	r of faraday of electricity is	:
a) 2	b) 1	c) 1.5	d) 4
281. $Co(s) + Cu^{2+}(ag) \rightarrow$	$\rightarrow Co^{2+}(aq) + Cu(s)$. This reac	tion is :	
a) Oxidation reaction	b) Reduction reaction	c) Redox reaction	d) None of these
282. The oxidation state of	f I in $H_4IO_6^-$ is:	,	,
a) +7	b) -1	c) +5	d) +1
283. The oxidation number	r of N in NH ₃ is :	,	,

	a) –3	b) +3	c) Zero	d) 5
	284. Mn^{2+} can be converted	into Mn ⁷⁺ by reacting with		
	a) SO ₂	b) Cl ₂	c) PbO ₂	d) SnCl ₂
	285. The oxidation number of	of Ni in K ₄ [Ni(CN) ₄] is :		
	a) +1	b) +2	c) -1	d) 0
	286. Which change occur wh	en lead monoxide is conver	ted into lead nitrate?	
	a) Oxidation			
	b) Reduction			
	c) Neither oxidation not	r reduction		
	d) Both oxidation and re	eduction		\sim
	287. How many mole of elec	tron are involved in the rec	luction of one mole of Mn(D_4^- ion in alkaline medium to
	$MnO_3^-?$			
	a) 2	b) 1	c) 3	d) 4
	288. The oxidation number of	of Fe in K_4 Fe(CN) ₆ is :		
	a) +2	b) +3	c) +4	d) +6
	289. For the reaction, NH_3 +	$OCl^{-} \rightarrow N_2H_4 + Cl^{-}$,	
	occurring in basic medi	um, the coefficient of N_2H_4 i	n the balanced equation w	ill be
	a) 1	b) 2	c) 3	d) 4
	290. In the reaction $H_2O + H$	$_{2}O_{2} \rightarrow S + 2H_{2}O$		
	a) H_2S is an acid and H_2	0_2 is a base		
	b) H_2S is a base and H_2	D_2 is an acid		
	c) H_2S is an oxidising ag	gent and H_2O_2 is a reducing	agent	
	d) H_2S is a reducing age	$h_2 h_2 h_2$ is an oxidising	agent	
	291. When H_2SO_3 is converted	ed into H_2SO_4 the change in	the oxidation state of sulpl	hur is from:
	a) 0 to $+2$	b) +2 to +4 \checkmark	c) +4 to +2	d) +4 to +6
	292. The oxidation number of	of nitrogen in NH ₂ OH is :		
	a) +1	b) -1	c) -3	d) -2
	293. In the reaction, 2CuSO	$_4 + 4$ KI \rightarrow Cu ₂ I ₂ + 2K ₂ SO ₄	$_{1} + I_{2}$ The ratio of equiva	lent weight of $CuSO_4$ to its
	molecular weight is :			
	a) 1/8	b) 1/4	c) 1/2	d) 1
	294. In the reaction between	acidified K ₂ Cr ₂ O ₇ and iron	(II) ions shown by the equ	ation : $Cr_2 O_7^{2-}(aq) +$
	$6 \mathrm{Fe}^{2+}(aq) + 14 \mathrm{H}^{+}(aq)$	$\rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$	$+ 6Fe^{3+}(aq)$	2 / 2 //
	a) The colour of the solu	ation changes from green to	blue	
	b) The iron (II) ions are	reduced		
	c) The dichromate ions	are reduced		
	d) Hydrogen ions are re	duced		
	295. Which is the reducing a	gent in the reaction, $8H^+ + 4$	$4NO_3^- + 6Cl^- + Sn(s) \rightarrow S$	${\rm SnCl}_6^{2-} + 4{\rm NO}_2 + 4{\rm H}_2{\rm O}_2^{2-}$
	a) Sn(s)	b) Cl ⁻	c) NO_{3}^{-}	d) $NO_2(g)$
	296. Which is a redox reaction	on?	2 3	<i>j</i> 2(0)
	a) $H_2SO_4 + 2NaOH \rightarrow$	$Na_2SO_4 + 2H_2O$		
	b) BaCl ₂ + H ₂ SO ₄ \rightarrow B	$aSO_4 + 2HCl$		
(c) $CH_3COOH + C_2H_5OH$	\rightarrow CH ₃ COOC ₂ H ₅ + H ₂ O		
	d) $2FeCl_3 + SnCl_2 \rightarrow 2$	$FeCl_2 + SnCl_4$		
	297. Which one of the follow	ing reactions involves dispr	oportionation?	
	a) $2H_2SO_4 + Cu$	$CuSO_4 + 2H_2O + SO_2$	b) $As_2O_3 + 3H_2S$	$As_2S_3 + 3H_2O$
	c) $2KOH + Cl_2$	$KCl + KOCl + H_2O$	d) $Ca_3P_2 + 6H_2O$	$3Ca(OH)_2 + 2PH_3$
	298. The oxidation state of cl	hromium in the final produc	t formed by the reaction be	etween KI and acidified
	potassium dichromate s	solution is		
	a) +3	b) +2	c) +6	d) +4
	299. Which of the following a	acts as an oxidising as well a	s reducing agent?	
	6	5		

a) Na ₂ O	b) Na ₂ O ₂	c) NaNO ₃	d) NaNO ₂
300. Oxidation state of	carbon in graphite is:		
a) Zero	b) +1	c) +4	d) +2
301. Which compound l	has oxidation number of car	bon equal to zero?	
a) C ₆ H ₆	b) CH ₃	c) C ₂ H ₄	d) C ₆ H ₁₂ O ₆
302. In the reaction, 2K	$MnO_4 + 16HCl \rightarrow 2KCl + 2$	$2MnCl_2 + 8H_2O + 5Cl_2$, the	e reduction product is :
a) Cl_2	b) MnCl ₂	c) KCl	d) H_2O
303. The oxidation num	ber of phosphorus in Mg ₂ P	$_{5}0_{7}$ is :	<u> </u>
a) + 5	b) – 5	c) +6	d) – 7
304.1 mole of chlorine	e combines with a certain	weight of a metal giving	111 g of its chloride. The atomic
weight of the meta	l (assuming its valency to b	e 2) is :	
a) 40	b) 20	c) 80	d) None of these
305. Oxidation state of	chromium	2	
o, o			
			C
		4	
a) +10	b) +6	c) +3	d) +2
306. Oxidation states of	the metal in the minerals h	aematite and magnetite, r	espectively, are
a) II, III in haemati	te and III in magnetite	b) II, III in haemati	te and II in magnetite
c) II in haematite a	nd II, III in magnetite	d) III in haematite	and II, III in magnetite
307. The colour of K_2 Cr	$r_2 0_7$ changes from red-oran	ge to lemon-yellow on trea	atment with $KOH(aq)$ because of :
a) Reduction of Cr	(VI) to Cr(III)		
b) Formation of ch	romium hydroxide		
c) Conversion of d	ichromate into chromate io	n	
d) Oxidation of pot	assium hydroxide to potass	ium peroxide	
308. How many electro	ns are involved in oxidation	of KMnO₄ in basic mediu	n?
a) 1	b) 2	c) 5	d) 3
309. The oxidation state	e of nitrogen in NH₄NO₂ is :	,	,
a) -3 and $+5$	b) $+3$ and $+5$	c) +5	d) +3
310. When Sn(IV) chlor	ride is treated with excess	HCl, the complex $[SnCl_{\beta}]^{2}$	is formed. The oxidation state of
Sn in this complex	is:	-,FCOJ	
a) +6	b) -2	c) +4	d) -5
311. Oxidation number	of chlorine in HOCl is :	•) · ·	
a) Zero	h -1	c) +1	d) +2
312. In the reaction, C +	$4HNO_2 \rightarrow CO_2 + 2H_2O +$	$4NO_{2}$ HNO ₂ acts as:	a) + 2
a) An oxidising age	ont	11102,111103 acts us !	
h) An acid			
c) An acid as well a	as ovidising agent		
d) A reducing agen	t		
313 Change of hydroge	n into proton is :		
a) Ovidation of hydroge	lrogen		
b) Acid base reacti	on		
c) Poduction of hy	drogon		
d) Displacement re	action		
214. Q z of culmbur or	action	is suidiand by Cl. water	The colution is treated with DoCl
514. o g of sulphur are	but fit to form SU_2 which is	is oxidised by Cl ₂ water.	The solution is treated with $BaCl_2$
solution. The amol	μ_{11} or μ_{30} μ_{4} precipitated is		d) 0 25
aj 1.0 mole	DJ U.5 MOLE	cj U.24 mole	aj 0.25 mole
315. The number of mo	ie of ferrous oxalate oxidise	a by one mole of $KMnO_4$ is	S:
aj 1/5	b) 3/5	c) 2/3	d) 5/3

316. Reactants react in	n the equal number of to	give products.	
a) Mole	b) Weights	c) Equivalent	d) All of these
317. Mole and millimo	ole of reactants react in the	as represented by balance	ed stoichiometric equation.
a) Molar ratio	b) Equal amount	c) Both (a) and (b)	d) None of these
318. The reaction of v	white phosphorus with aqueo	ous NaOH gives phosphine a	along with another phosphorus
containing comp	ound. The reaction type the o	oxidation states of phosphor	rus in phosphine and the other
product are resp	ectively :		
a) Redox reaction	-3 and -5		
b) Redox reaction	n; +3 and +5		
c) Disproportion	ation reaction; -3 and $+1$		\sim
d) Disproportion	ation reaction; -3 and $+3$		
319. Which can act on	ly as oxidising agent?		
a) Oxygen	b) Fluorine	c) Iodine	d) H_2O_2
320. For the reaction	$N_2 + 3H_2 \rightarrow 2NH_3$; if E_1 and	d E_2 are equivalent masses of	of NH ₃ and N ₂ respectively, then
$E_1 - E_2$ is :		2	
a) 1	b) 2	c) 3	d) 4
321. Bleaching action	of SO ₂ is due to :	,	
a) Reduction	b) Oxidation	c) Hydrolysis	d) Acidic nature
$322. \ln N_2 + 2H_20 =$	$\rightarrow NH_4^+ + NO_2^-$: N is :		
a) Oxidised	b) Reduced	c) Both (a) and (b)	d) None of these
323. If three electrons	are lost by a metal ion M^{3+} it	s final oxidation number wil	l he :
a) Zero	b) + 6	c) + 2	d) + 4
324 In the reaction N	$aH + H_0 O \rightarrow NaOH + H_0$	0,12	
a) H^- is oxidised			
h) Na ⁺ is reduced	1		
c) Both NaH and	H_{2} O are reduced	N Y	
d) None of the ab	ove		
325 Which of the follo	wing acts as an oxidizing age	nt?	
$_{2}$ HNO.	h) Cl-	c) FeCl	d) All of these
326 How many gram	of L_{a} are present in a solution	which requires 40 mL of ($11 N Na_{2}S_{2}\Omega_{2}$ to react with it
$S_2 O_2^{2^-} + I_2 \rightarrow S_2$	$0^{2^{-}} + 2^{1^{-2}}$	i winen requires to init, or e	
$3_2 0_3 + 1_2 + 0_2$	b) 0 558 g	c) 25 4 g	d) 11 4 g
aj 12.7 g 327 The number of m	$b_{\rm J} 0.550 {\rm g}$	ded to react with one mole	u) 11.7 g
je -	fore of Ridino ₄ that will be nee	ded to react with one more (of surpline for in acture solution
$\frac{13}{2}$	b) 3/5	c) 4/5	d) 1
328 What weight of F	INO is required to make 1 li	$c_{J} = 73$	uji
320. What weight of 1	3 INO_3 is required to make 1 in $3 \text{ INO}_3 \rightarrow 3 \text{ Cu}(\text{NO}_3) \rightarrow 2 \text{ NO}_3$	$\perp 1 H \cap$	eu as an oxidising agent in the
reaction: 5 cu + c	$ = \frac{1}{2} \sum_{n=1}^{\infty} \frac$	c) 12 g	d) 94 g
aj 05 g	DJ ZI g	C) 42 g	u) 64 g
329. The oxidation sta	h_2	$3_2 0_8$	d) 4
$a_{J} = 0$	DJ = 2	C + 0	u) -4
330. In a conjugate pa	h) Lower ov no	e oxidant has :	d) Either of these
a) flighter ox.iio.	D LOWEL 0X.110.	C Same 0x.no.	u) Either of these
a) 17	1_2 S + 2HNO ₃ \rightarrow 2H ₂ O + 2NC	$v_2 + 5$. The equivalent weigh	d) 10
aj 17 222 Ju subish turu sfor	DJ 34	0 68	u) 18
332. In which transfer	of five electrons takes place:		$1) = 0^{2} = 0^{3} = 0^{3}$
a) $MnO_4 \rightarrow Mn^2$	$b) \operatorname{Cr}_{4} \operatorname{Cr}_{5}$	$cJ MNO_4 \rightarrow MnO_2$	a) $\operatorname{Cr}_2\operatorname{O}_7^2 \longrightarrow 2\operatorname{Cr}^3$
333. Uxidation numbe	er of nitrogen is highest in		
aj N_3H	b) $N_2 U_4$	cj NH ₂ OH	aj nh ₃
334. Starch gives blue	colour with :		
a) KI	b) l ₂	c) Cl ₂	d) None of these

335. The number of mol	e of potassium salt, <i>i.e</i> , KHO	C_2O_4 . $H_2C_2O_4$. $2H_2O$ oxidised b	by one mole of permanganate
ion is :			
a) 2/5	b) 4/5	c) 1	d) 5/4
336. When an acidified s	olution of ferrous ammoniu	m sulphate is treated with KM	nO ₄ solution, the ion which is
oxidised is:	$h) co^{2} =$	-) NUL+	
a) Fe ²	$b) SO_4^2$	c) NH_4	d) MnO_4
337. Oxidation number of	of N in N ₃ H is :		D 4/D
a) – 3	b) +3	c) Zero	d) -1/3
338. Hydrogen peroxide	in aqueous solution decom	poses on warming to give oxyg	gen according to the equation,
$2H_2O_2(aq) \rightarrow 2H_2$	$O(l) + O_2(g)$ under condition	ons where one mole of gas occ	uples 24 dm ³ , 100 cm ³ of XM
solution of H_2O_2 produces a solution of H_2O_2 produces	oduces 3 dm ³ of O_2 . Thus, X	15:	
aj 2.5	b) I 	cJ 0.5	a) 0.25
339. $CuSO_4$ and KI on mi	xing gives :		
aJ $UI_2 + K_2 SU_4$	$\text{DJ} \text{Cu}_2 \text{I}_2 + \text{K}_2 \text{SU}_4$	$C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{1}C_{2}C_{2}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	a) $Cul_2 + K_2 SO_4 + l_2$
340. Which metal exhibit	ts more than one oxidation s	states?	
aj Na 241 Milish - Gulta Galla	DJ Mg	c) Al	d) Fe
341. Which of the follow	ing oxidation state is the mo	and among the lantnar	101des :
aj 4 242-12 F e al mini e al	DJZ	cj 5	d) 3
342.13.5 g aluminium ci	langes to Al ³⁺ in solution by	losing :	
a) 18×10^{23} electric	ons		
b) 6.023×10^{23} ele	ectrons		
C) 3.01×10^{23} elec	trons		
a) 9×10^{23} electro	ns tion much an af C ia		
343. In CH_2CI_2 , the oxida	tion number of C is :		$D \rightarrow A$
$a_{J} = 4$	DJ + Z What and K Cri O, the big	C) Zero	d) +4
344. In the compounds K	MIO_4 and $K_2 CI_2 O_7$, the hig	c) O	d) Cr
dj MII 24E The ovidation state	of nitrogen varies from		
343. The oxidation state $x_1 = 3$ to ± 5	b) 0 to ± 5	c) -3 to 1	d) ± 3 to ± 5
346 The oxidation state	of hydrogen in Call, is		4) 13 10 13
3+0. The oxidation state a) ± 1	h -1	c) Zero	d) +2
347 The most common	ovidation state of an eleme	-2 The number of elect	rons present in its outermost
shell is ·	oxidation state of an elemen		ions present in its outermost
a) 2	h) 4	റിര	9 (P
348 A good indicator m	ist possess the following ch	aracteristics ·	4,5
a) The colour change	e should be sharp		
b) The colour change	e should be clear		
c) It must be sensit	ve to the equivalent point		
d) All of the above			
349. The oxidation num	ber of Xe in XeF₄ and XeO₂ i	S	
a) +6	b) +4	c) +1	d) +3
350. The oxidation numb	per of arsenic in arsenate is		-)
a) +5	b) +4	c) +6	d) +2
351. The reaction,	,	,	,
$Ag^{+2}(ag) + Ag(s)$	\Rightarrow 2Ag ⁺ (ag)		
is an example of			
a) Reduction	b) Oxidation	c) Disproportionation	d) None of these
352. During the presence	e of SO_3^{2-} and S^{2-} in a mixtu	re, on addition of dil. H ₂ SO ₄ of	one notice that:
a) SO ₂ and H ₂ S are	not formed	,	
b) SO_2 and H_2S form	ned during change undergoe	es a redox change forming coll	oidal sulphur and thus, no

•
s,
5,
S
n

c) Oxidising action of H_2O_2				
d) Reducing action of H_2O_2				
371. For redox reaction,				
$MnO_{4}^{-} + C_{2}O_{4}^{2-} + H^{+} \rightarrow Mn^{2+} + CO_{2} + H_{2}O_{4}$				
coefficient of reactants in balanced states are				
MnO_{4}^{-} $C_{2}O_{4}^{2-}$ H ⁺				
a) 2 5 16	b) 16	5	2	
c) 5 16 2	d) 2	16	5	
372. Chlorine has +1 oxidation state in :	,			
a) HCl b) HClO ₃	c) Cl_2O			d) ICl ₃
373. Which statement is incorrect?	<i>J L</i>			<i>y y</i>
a) Oxidation of a substance is followed by reduc	tion of another			
b) Reduction of a substance is followed by oxida	ation of another			
c) Oxidation and reduction are complementary	reactions			
d) It is not necessary that both oxidation and re	duction should t	ake plac	e in th	e same reaction
374. In the standardization of Na ₂ S ₂ O ₂ using K ₂ Cr ₂ O	- by iodometry.	the eau	ivalen	t weight of $K_2Cr_2O_7$ is :
a) (molecular weight)/2	, _, _, _,		C	
b) (molecular weight)/6			$\langle \cdot \rangle$	
c) (molecular weight)/3		1		
d) Same as molecular weight				
375. When SO ₂ is passed in a solution of potassium in	odate, the oxidat	tion stat	e of io	dine changes from :
a) $+5$ to 0 b) $+5$ to -1	c) -5 to 0		0 01 10	d) -7 to -1
376 The halogen that shows same oxidation state in	all its compound	ds with a	other e	elements is:
a) I _a b) F _a				d) Br _a
377 The reaction	c) dig			
$P_1 + 3N_2OH + 3H_2O \rightarrow 3N_2H_2PO_2 + PH_2$				
is an example of	Y			
a) Disproportionation reaction	b) Neutral	isation	reactio	'n
c) Double-decomposition reaction	d) Purolut	ic roacti	on	11
378 Titrations in which L solution is used as interm	ediate are know	mae t	itratio	ne
a) Iodometric b) Iodimetric	c) Acidim	n as	iti atioi	d) alkalimetric
379 In the reaction Cr. $\Omega^{2-} \pm 14H^+ \pm 6I^- \longrightarrow 2Cr^{3+}$	$\pm 7H_{\odot}0 \pm 3I_{\odot}$	which al	omont	is reduced?
207 h) 0	c) H		cincin	d) Cr
390 Carbon reacts with avugen to form two avides (C_{1}	is here	1150 .	uj ci
a) Carbon has two crystalling forms	10 and 00_2 . This	s is Deca	use.	
a) Carbon has two ovidation states				
c) Owner donates as well as accent electrons				
d) Ovygen donates as wen as accept electrons				
291 How many millifter of $0.5 N SnCh$ colution will	raduas 600 ml	of 0 1 N	UaCl	
solution with the solution of $0.5 \text{ //} \text{ Solution}$	a) 20 ml	01 0.1 //	ngci ₂	$d_{12}^{2} = d_{12}^{2} + d_{$
a) 120 IIIL D) 00 IIIL 202 What weight of $E_0 SO$ (mal. wt. -152) will be	CJ 30 IIIL	0 m L o	fnorm	uj 240 IIIL
552. What weight of FeSO ₄ (mol. wt. =152) will be	e oxidised by 20			iai KMIIO ₄ solution in actuic
solution: b) (0.0 g)	a) 121 (a			d) 15 0 a
a) 50.4 g D) 60.6 g 202 How more millioner of iner (Ee^{2+}) are equal to	CJ 121.0 g	NV Cm	0	uj 15.8 g
$rac{1}{2}$ So $rac{1}{2}$ are equal to	1 IIIL 0I 0.1055	$N K_2 Cr_2$	$_2 O_7 eq$	d f
a) 5.9 mg b) 0.59 mg	cJ 59 mg		ı.	d) 59 × 10 ° mg
384. Number of moles of MnU ₄ required to oxidise	one mole of fer	rous ox	alate d	completely in acidic medium
		_		
aj U.4 mole b) 7.5 mole	cJ U.2 mol	e J:		aj v.6 mole
385. A, B and C are three elements forming a pa	irt of compoun	a in ox	idatior	1 states of $+2$, $+5$ and -2
respectively. What could be the compound?				

a) $A_2(BC)_2$	b) $A_2(BC_4)_3$	c) $A_3(BC_4)_2$	d) ABC
386. In an oxidation process	for a cell $M_1 \rightarrow M_1^{n+} +$	<i>ne</i> , the other metal $(M_2$) being univalent showing
reduction takes up the	electrons to complete redo	ox reaction.	
a) $(n-1)$	b) 1	c) <i>n</i>	d) 2
387. In which of the following	reactions, chlorine acts as a	an oxidising agent?	, ,
(i) $CH_2CH_2OH + Cl_2$	$CH_{2}CHO + HCI$	0 0	
$(ii)CH_2CHO + Cl_2$	$CC_{2}CHO + HC$		
(ii)CH ₄ + Cl ₂	$(H_{\alpha}C) + HC$		
The correct answer is			\frown
a) (i) only			
b) (ii) only			
c) (i) and (iii)			
d) (i) (ii) and (iii)			
388 During a redox change th	e oxidant K _a Cr _a O _z is alway	vs reduced to ·	
a) (r^{5+})	h) Cr ⁴⁺	c) (r^{3+})	d) Cr^{2+}
280 When notassium norman	by CI	forrous ammonium sulpha	to the equivalent weight of
notassium permanganate		lerrous annionium sulpha	te, the equivalent weight of
a) Molecular weight/10	b) Molecular weight /5	c) Molecular weight /2	d) Molecular weight
390 Which conversion is an o	vidation?	c) Molecular weight/2	uj Molecular weight
$2) SO^{2-} \longrightarrow SO^{2-}$	b) $Cu^{2+} \rightarrow Cu$	о) H+ — H	d) H− → H
a) $50_4 \rightarrow 50_3$	$rac{1}{2}$		
391 . III which case ± 1 oxidation	b) Al		d) B
a) ua 202 In the reduction of dichro	UJ AI	c of electrons involved per	d) b
	b) 1	a) 2	d) 4
a_{J} a_{J	UJI od into K CrO the change	() 2 in ovidation number of ch	u) 4 romium is
$_{2}$	b) 5		d) Q
a) 0 304 Which of the following ac	UJ J ts as both an ovidizing as w	c) 7 rell as reducing agent?	uj y
a) HNO.	b) HNO.	c) HI	d) H. SO
395 In which of the following	compounds nitrogen exhib	vits highest ovidation state	7 N2304
a) N. H	b) NH, OH	c) N ₂ H ₂	d) NH
396.1 mole of MnO ²⁻ in neutr	al aqueous medium dispro	nortionates to :	a) mig
2^{2} mole of MaQ ² and 1^{2}		portionates to .	
a) $\frac{-1}{3}$ mole of MnO ₄ and $\frac{-1}{3}$ m	tole of MnO ₂		
b) $\frac{1}{3}$ mole of MnO ₄ and $\frac{2}{3}$ n	tole of MnO ₂		
c) $\frac{1}{2}$ mole of Mn ₂ O ₇ and $\frac{1}{2}$	mole of MnO ₂		
2^{2} 1 (1) 2^{1} 1			
d) $\frac{1}{3}$ mole of Mn ₂ O ₇ and $\frac{1}{3}$	mole of MnO ₂		
397. Which one of the compou	nd does not decolourised a	n acidified solution of KMr	10 ₄ ?
a) SO ₂	b) FeCl ₃	c) H ₂ O ₂	d) FeSO ₄
398. When one mole of KMnO	₄ reacts with HCl, the volum	ne of chlorine liberated at N	NTP will be:
a) 11.2 litre	b) 22.4 litre	c) 44.8 litre	d) 56.0 litre
399. What would happen when	n a small quantity of H_2O_2 i	s added to a solution of Fe	SO ₄ ?
a) Colour disappears			
b) H_2 is evolved			
c) An electron is added to) Fe ²⁺		
d) An electron is lost by F	e^{2+}		
400. The oxidation state of I in	IPO ₄ is		
a) +1	b) +3	c) +5	d) +7
401. The number of moles of k	MnO ₄ reduced by one mole	e of KI in alkaline medium	is
a) 1	b) 5	c) ½	d) 1/5
402. A 0.50 <i>M</i> solution of KI re	eacts with excess of H ₂ SO ₄	and KIO ₃ solutions accord	ding to the equation, $6H^+$ +

 $5I^- + IO_3^- \rightarrow 3I_2 + 3H_2O$. Which of the following statements is true? a) 200 mL of the KI solution reacts with 0.10 mole KIO₃. b) 100 mL of the KI solution reacts with 0.060 M of H_2SO_4 . c) 0.5 litre of the KI solution produces 0.15 mole of I_2 d) None of the above 403. Oxidation number of chromium in $K_2Cr_2O_7$ is : a) +2 b) +3 c) +6 d) -4 404. A standard solution is one whose : a) Concentration is 1 M b) Concentration is unknown c) Concentration is known d) None of the above 405. In the reaction, $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$, the substance oxidised is c) S d) H_2 a) H_2S b) SO_2 406. Oxidation number of P in $HP_2O_7^-$ ion is c) +7 d) +3 a) +5 b) +6 407. The oxidation number that iron does not exhibit in its common compounds or in its elemental state is : d) +3 a) Zero b) +1 c) +2 408. Oxidation number of Cl in NOClO₄ is : d) −5 a) +7 b) -7 c) +5 409. In which reaction is hydrogen acting as an oxidising agent? a) With iodine to give hydrogen iodide b) With lithium to give lithium hydride c) With nitrogen to give ammonia d) With sulphur to give hydrogen sulphide 410. In presence of moisture SO_2 can : a) Gain electrons b) Lose electrons c) Act as oxidising agent d) Does not act as reducing agent 411. The oxidation number of Mn in MnO_2 is : b) +6 a) +4 c) +2 d) −4 412. Which is not correct in case of Mohr's salt? a) It decolourises KMnO₄ b) It is primary standard c) It is a double salt d) Oxidation state of Fe is +3 in the salt 413. In the reduction of dichromate by Fe (II), the number of electrons involved per chromium atom is : b) 1 c) 2 d) 4 a) 3 414. Which of the following is a redox reaction? a) NaCl + $KNO_3 \rightarrow NaNO_3 + KCl$ b) $CaC_2O_4 + 2HCl \rightarrow CaCl_2 + H_2C_2O_4$ c) $Ca(OH)_2 + 2NH_4Cl \rightarrow CaCl_2 + 2NH_3 + 2H_2O$ d) $2K[Ag(CN)_2] + Zn \rightarrow 2Ag + K_2[Zn(CN)_4]$ 415. What volume of $2N K_2 Cr_2 O_7$ solution is required to oxidise 0.81 g of $H_2 S$ in acidic medium? a) 47.8 mL b) 23.8 mL c) 40 mL d) 72 mL 416. Oxidation number of As atom in H_3AsO_4 is : a) +5 b) +6 c) +4 d) -3 417. In the following change, $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$. If the atomic weight of iron is 56, then its equivalent weight will be : a) 42 c) 63 d) 84 b) 21 418. In permonosulphuric acid (H_2SO_5) , the oxidation number of sulphur is a) +8 b) +4c) +5 d) +6

419. The reaction,

 $Ag^{2+}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$ is an example of

a) Reduction b) Oxidation

- 420. Amount of oxalic acid present in a solution can be determined by its titration with $KMnO_4$ solution in the presence of H_2SO_4 . The titration gives unsatisfactory result when carried out in the presence of HCl, because HCl :
 - a) Oxidises oxalic acid to carbon dioxide and water
 - b) Gets oxidized by oxalic acid to chlorine
 - c) Furnishes H⁺ ions in addition to those from oxalic acid
 - d) Reduces permanganate to Mn²⁺
- 421. Which is not a redox change?

a)
$$CaCO_3 \rightarrow CaO + CO_2$$

b)
$$2H_2 + O_2 \rightarrow 2H_2O$$

c) Na + H₂O \rightarrow NaOH + $\frac{1}{2}$ H₂

d)
$$MnCl_3 \rightarrow MnCl_2 + \frac{1}{2}Cl_2$$

422. Sulphurous acid can be used as :

a) Oxidising agent b) Reducing agent

c) Bleaching agent

c) Comproportionation

d) All of these

d) Disproportionation

REDOX REACTIONS

CHEMISTRY

						: ANS	W	ER K	EY						
1)	С	2)	С	3)	а	4)	d	177)	b	178)	d	179)	С	180)	a
-) 5)	a	_) 6)	d	-) 7)	d	8)	b	181)	a	182)	С	183)	d	184)	a
9)	С	10)	d	11)	С	12)	d	185)	С	186)	а	187)	С	188)	d
13)	d	14)	b	15)	d	16)	b	189)	а	190)	С	191)	а	192)	b
17)	d	18)	а	19)	с	20)	а	193)	С	194)	а	195)	a	196)	b
21)	b	22)	а	23)	b	24)	С	197)	b	198)	b	199)	С	200)	d
25)	а	26)	а	27)	d	28)	а	201)	d	202)	С	203)	d	204)	a
29)	а	30)	d	31)	С	32)	а	205)	b	206)	b	207)	а	208)	С
33)	а	34)	а	35)	d	36)	С	209)	d	210)	а	211)	d	212)	С
37)	а	38)	а	39)	b	40)	а	213)	b	214)	С	215)	d	216)	С
41)	а	42)	d	43)	С	44)	а	217)	b	218)	d	219)	С	220)	d
45)	С	46)	С	47)	а	48)	b	221)	b	222)	С	223)	а	224)	a
49)	b	50)	b	51)	b	52)	С	225)	а	226)	b	227)	b	228)	b
53)	а	54)	а	55)	d	56)	С	229)	а	230)	b	231)	С	232)	b
57)	а	58)	а	59)	b	60)	С	233)	С	234)	С	235)	а	236)	a
61)	а	62)	а	63)	а	64)	С	237)	d	238)	С	239)	С	240)	С
65)	d	66)	С	67)	b	68)	b	241)	b	242)	а	243)	d	244)	b
69)	а	70)	b	71)	а	72)	b	245)	d	246)	а	247)	d	248)	a
73)	d	74)	а	75)	С	76)	b	249)	a	250)	С	251)	b	252)	d
77)	d	78)	b	79)	b	80)	d	253)	a	254)	а	255)	С	256)	a
81)	a	82)	d	83)	С	84)	a	257)	b	258)	С	259)	a	260)	С
85)	d	86)	b	87)	С	88)	a	261)	а	262)	d	263)	b	264)	C
89)	C	90)	b	91)	a	92)	b	265)	а	266)	b	267)	C	268)	b
93)	b	94)	а	95)	d	96J	C	269)	C	270)	C	271)	b	272)	С
97	D	98)	C N h	99J	D	100)	D	273)	D	274)	D	275)	C J	276)	C
101	l) C	102	ij D	103)	a h	104)	a	2//)	a	2/8)	a	2/9)	a	280J	a
105	bja N h	100) D N a	10/j	b b	108)	a d	201) 205)	C d	282J 296)	a	283J 297)	a	284J 200)	C
105	ען עי ער עי	110	ja Da	115	U A	112)	u d	205)	u	200)	L d	207J 201)	d d	200J 202)	d h
117	7) c	119	n h	113)	u d	110)	u h	209)	a d	290) 294)	u c	291)	u a	292)	d d
121) b	122	7 0 1) a	123)	h	120)	a	297)	u C	298)	a	299)	d	290) 300)	u a
125	5) c	126	a) a	123)	a	121)	a	301)	d	302)	h	303)	a	304)	c c
129) d	130)) a	131)	a	132)	b	305)	b	306)	d	307)	c	308)	a
133	3) c	134) b	135)	a	136)	d	309)	a	310)	c	311)	c	312)	a
137	7) b	138	3) a	139)	С	140)	a	313)	а	314)	d	315)	d	316)	С
141	L) C	142) b	143)	b	144)	b	317)	а	318)	С	319)	b	320)	a
145	5) a	146) с	147)	а	148)	d	321)	а	322)	С	323)	b	324)	а
149) c	150) c	151)	b	152)	b	325)	d	326)	b	327)	а	328)	с
153	s) d	154) a	155)	b	156)	а	329)	С	330)	а	331)	а	332)	a
157	7) a	158	8) a	159)	С	160)	d	333)	b	334)	b	335)	d	336)	a
161	l) a	162	2) d	163)	а	164)	а	337)	d	338)	a	339)	С	340)	d
165	5) a	166	5) a	167)	d	168)	а	341)	d	342)	d	343)	С	344)	a
169	9) c	170)) b	171)	а	172)	С	345)	а	346)	b	347)	С	348)	d
173	B) c	174	-) a	175)	b	176)	С	349)	b	350)	a	351)	d	352)	b

357) b 361) a 365) a 369) c 373) d 377) a 381) a 385) c 389) b 393) a 397) b	354) b 358) a 362) a 366) d 370) c 374) b 378) b 382) a 386) c 390) d 394) b 398) d	 355) b 359) a 363) b 367) a 371) a 375) a 379) d 383) a 387) d 391) c 395) a 399) d 	356)b360)c364)b368)d372)c376)b380)b384)d388)c392)a396)a400)b	
 401) a 405) a 409) b 413) a 417) b 421) a 	402) c 406) b 410) b 414) d 418) d 422) d	403) c 407) b 411) a 415) b 419) c	404) c 408) a 412) d 416) a 420) d	NGPV
			RSLA	
	RIA			

REDOX REACTIONS

CHEMISTRY

 $MnO_2 = Mn = +4$ $Mn_2O_3 = Mn = +3$ Hence, changes in oxidation number are 5,1,3,4. 25 (a) Alkaline earth metals have only +2 ox.no. in combined state. 26 (a) Alkali metals are strongest reducing agents. 27 (d) $S_2^{2+} \rightarrow 2S^{6+} + 8e$ 28 (a) $2\mathrm{Fe}^0 \rightarrow \mathrm{Fe}_2^{3+} + 6e.$ 29 (a) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O_4^-$ 30 (d) a + (-2) = 0 $\therefore a = +2$ 31 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2 + 3e$ 32 (a) Meq. of oxidant = Meq. of reductant $0.5 \times V = 2 \times 2000$ \therefore V = 8 litre 33 (a) Oxygen shows -1 oxidation state in H_2O_2 . 2(+1) + 2x = 02x = -2x = -134 (a) $\mathbf{I}^{-} + (\mathbf{IO}_{3})^{-1} + \mathbf{H}^{+} \longrightarrow \overset{\mathbf{0}}{\mathbf{I}_{2}} + \mathbf{H}_{2}\mathbf{O}$ \dots (i) \times 5 $10e^{-} + 2(IO_3)^{-1}$... (ii) On adding Eq. (i) and (ii), we get $10I^- + 2IO_3^- \rightarrow 6I_2$ To balance O atom, add 6H₂O molecules on RHS and 12H⁺ on LHS, then $10I^- + 2IO_3^- + 12H^+ \rightarrow 6I_2 + 6H_2O$ or $5I^- + IO_3^- + 6H^+ \rightarrow 3I_2 + 3H_2O$ 35 (d) Cl has +7 ox.no. in KClO₄. 36 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$: $Fe^{2+} \rightarrow Fe^{3+} + e$ 37 (a) Oxidation number in elemental form is zero. Covalency is two because of S-S-S-chain. 38 (a)

 Fe_2O_3 \therefore Total charge on cation or anion = +6 Fe₂³⁺ 0₃²⁻ $\therefore E = \frac{112}{6} \text{ or } \frac{56}{3}$ 39 (b) C_3O_2 is carbon sub-oxide. Thus, $3a - (2 \times 2) = 0$ $a = +\frac{4}{3}$ 40 **(a)** $Cu^{2+} + 2I^- \rightarrow CuI_2 \rightarrow Cu_2I_2 + I_2$ $I_2 + Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$ (Redox change) 41 (a) Oxidation state of oxygen in H_2O_2 is -1. -1 is the intermediate oxidation state of oxygen. 42 (d) $2e + S^{6+} \rightarrow S^{4+}$ S of H₂SO₄ is reduced. 43 **(c)** $1 + a + 3 \times (-2) = -1$ $\therefore a = +4$ 44 **(a)** $1 + a \times 2 = 0$ $\therefore a = -\frac{1}{2}$ Ox.no. of alkali metals is always + 1. 45 (c) Oxidation 0 0 $H_2 + Br_2$ -Reduction Only this reaction involves oxidation and reduction. 46 (c) $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 2$ $[C_2^{3+} \rightarrow 2C^{4+} + 2e] \times 5$ 47 (a) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $Fe^{2+} \rightarrow Fe^{3+} + e$ $C_2^{3+} \rightarrow 2C^{4+} + 2e$ \therefore 3 mole of KMnO₄ = 5 mole of FeC₂O₄ 48 **(b)** $2I^{7+} + 14e \rightarrow (I^0)_2$ $E_{IO_4^-} = \frac{M}{7}$ 49 (b) $2e + 2Fe_3^{(8/3)+} \rightarrow 3Fe_2^{3+}$

 $\therefore E_{Fe_3O_4}$ $(0^{-1})_2 \rightarrow 0^0_2 + 2e$ М $Mn^{7+} + 5e \rightarrow Mn^{2+}$ = $\overline{\text{No. of electrons lost or gained by one molecule}}$ 5 mole $H_2O_2 \equiv 2$ mole KMnO₄ 61 (a) $=\frac{M}{1}$ 50 **(b)** Meq. of $HNO_3 = Meq.$ of Fe^{2+} (Eq. wt. of $HNO_3 = M/3$) $0r 3 \times 3 \times V = \frac{8}{56} \times 1000$ $:: V = 15.87 \, \text{mL}$ 51 **(b)** The oxidation state of N are +5, +2, 0 and -3 in HNO₃, NO, N₂ and NH₄Cl respectively. 52 (c) 2 + x - 6 - 2 = 0The oxidation state of iodine in HIO_4 is + 7 as x - 6 = 01 + x + 4(-2) = 0x = 6x = +762 (a) The oxidation state of iodine in H_3IO_5 is +7 as 3+x+5(-2)=063 (a) x = +7The oxidation state of iodine in H_5IO_6 is +7 as $\therefore E = M/5$ 5+x+6(-2)=064 (c) *x* = +7 53 (a) Ag⁺is reduced to Ag. 65 (d) 54 (a) $2e + S^{6+} \rightarrow S^{4+}$ S of H_2SO_4 is reduced. 55 (d) The characteristics of oxidant. Note these. 66 **(c)** 56 (c) $SO_2 + H_2O \rightarrow SO_3 + 2H;$ 67 (b) $Cl_2 + H_20 \rightarrow 2HCl + 0$ 57 (a) Meq. of bleaching powder = Meq. of Cl_2 = Meq. of hypo 0 $\therefore a = +6$ $\frac{w}{35.5} \times 1000 = 50 \times \frac{1}{10}$ $\therefore w_{\text{Cl}_2}$ 68 (b) 0.1775 g :. Per cent $Cl_2 = \frac{0.1775}{5} \times 100 = 3.55 \%$ $5M^{x+} + 2MnO_4$ $a+5 \times (-1) = 0$ $\therefore a = +5$ 59 **(b)** $Fe^{2+} \rightarrow Fe^{3+} + e$ $\frac{(C^{3+})_2 \to 2C^{4+} + 2e}{Fe^{2+} + C_2 O_4^{2-} \to CO_2 + Fe^{3+} + 3e}$:. 69 (a) $\therefore E = M/3$ $1 \times V = \frac{10}{152/1} \times 1000$ 60 (c)

Caro's acid is H₂SO₅. It has a peroxide linkage so, oxidation state of S is Let the oxidation state of S is x. H₂SO₅(one peroxide bond) +2 + x + 3(-2) + 1(-2) = 0The formula for Eq. wt. of reductant or oxidant. $Mn^{7+} + 5e \rightarrow Mn^{2+}$ No doubt oxygen is taken in respiration, but oxidant-reduction occur simultaneously. $aK_2Cr_2O_7 + bKCl + cH_2SO_4$ $\rightarrow x \operatorname{CrO}_2 \operatorname{Cl}_2 + y \operatorname{KHSO}_4 + z \operatorname{H}_2 \operatorname{O}_2$ Both Os and Ru show + 8 ox.no. Two oxygen atom have peroxide linkage, (i.e., -1)oxidation number) and six have -2 ox.no. Thus, $2 \times 1 + 2 \times a + 6 \times (-2) + 2 \times (-1) =$ Oxidation Change in oxidation state = 2 $\longrightarrow M^{+5} O_3^- + Mn^{2^+} + \frac{1}{2} O_2^-$ Change in oxidation state = 5Reduction x + 2 = 5x = 5 - 2 = +3Meq. of $K_2Cr_2O_7 = Meq.$ of $FeSO_4$

 $:: V = 65.78 \, \text{mL}$ 70 **(b)** $Cl_2 + H_2O \rightarrow 2HCl + 0$; thus, matter is oxidised 82 (d) by liberated oxygen. 72 **(b)** 83 (c) $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + SnCl_4$ 73 (d) Addition of KI to CuSO₄ makes it dark brown. 74 (a) Mn is stronger oxidising agent in +7 oxidation state. e. g., KMnO₄. 75 (c) 84 (a) $Cr_2O_7^{2-} + 14H^+ + nFe^{2+}$ $\rightarrow 2Cr^{3+} + nFe^{3+} + 7H_2O$ $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ 85 (d) (reduction)...(i) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ (oxidation)...(ii) Eq.(ii) is multiplied by 6 $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-}$ Thus, balanced equation is $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+}$ \rightarrow 2Cr³⁺ + 6Fe³⁺ + 7H₂O Hence, the value of 'n' is 6. 86 **(b)** 76 **(b)** $4e + N^{5+} \rightarrow N^+$ 87 (c) \therefore Possible product is N₂O. 77 (d) 88 (a) Find oxidation number of P in each 78 **(b)** $\operatorname{CrO}_4^{2-} + \operatorname{SO}_3^{2-} \rightarrow \operatorname{Cr}(\operatorname{OH})_4^- + \operatorname{SO}_4^{2-}$ Let the oxidation number of Cr is x in CrO_4^{2-} 89 (c) x + 4(-2) = -2x = 6and in $Cr(OH)_4^-$ the oxidation number of Cr is y y + 4(-2) + 4(1) = -1y - 8 + 4 = -1y = 3Hence, oxidation number of Cr changes from +6to +3. 79 **(b)** Find oxidation no.in each. 80 (d) $Mn^{7+} + e \rightarrow Mn^{6+}$ $\therefore E = M/1$ 81 (a) The sum of oxidation states of all elements in an ion is equal to charge on it. Let the oxidation state of S in $SO_4^{2-} = x$ 90 **(b)**

 $\therefore x + (-2 \times 4) = -2$ 0r x = +6 $\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+} + 2\mathrm{e}; 2\mathrm{e} + \mathrm{Hg}^{2+} \rightarrow \mathrm{Hg}^{0}$ Oxidation number of iodine in given species is as follows O.N. of iodine in $IF_3 = +3$ O.N. of iodine in $I_3^- = -\frac{1}{2}$ O.N. of iodine in $IF_5 = +5$ O.N. of iodine in $IF_7 = +7$ $1 + a + 3 \times (-2) = 0$ $\therefore a = +5$ Na_2O_2 **KO**₃ Suppose O.N. of O = xsuppose 0.N. of 0 = x $2 \times 1 + 2x = 0$ +1 + 3x2 + 2x = 02x = -2 $x = -\frac{2}{2}$ 0.33x = -1 $I_2^0 \rightarrow 2I^- + 2e$ Os and Ru show +8 oxidation number. Meq. of $AgNO_3 = 100 \times 1 - 100$ Meq. of $CuSO_4 = 100 \times 1 \times 2 = 200$ Thus, H_2S is needed in the same Meq. ratio. $Na_2S_2O_3$, 2(+1) + 2x + 3(-2) = 02 + 2x - 6 = 0*x* = +2 $Na_2S_4O_6$ 2(+1) + 4(x) + 6(-2) = 02 + 4x - 12 = 04x = +10x = +2.5

Meq. of $K^+ = Meq. of KMnO_4$ $=\frac{1}{r} \times 1000 = 200$: Eq. of K⁺ = $\frac{200}{1000}$ = 0.2 Also, mole of $K^+ = \frac{0.2}{5} \left[\frac{\text{Valence factor} = 5}{\text{Mn}^{7+} + 5e} \longrightarrow \text{Mn}^{2+} \right] = 0.04$: No. of K⁺ = $\frac{0.2}{5}$ × 6.023 × 10²³ = 2.4 × 10²² $Mn^{2+}: 1s^2, 2s^22p^6, 3s^23p^6 3d^5$ half filled d 92 **(b)** $4e + Br^{5+} \rightarrow Br^{1+}$; Thus, BrO_3^- is to be reduced $Mn^{7+}: 1s^2, 2s^22p^6, 3s^2 3p^6$ by a reducing agent. 93 (b) 102 **(b)** $6e + (N^0)_2 \rightarrow 2N^{-3}$ Meq. of $H_2O_2 = 25 \times 0.5 \times 2 = 25;$ $\therefore E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$ Meq. of KMnO₄ = 50 \times 0.2 \times 5 = 50; \therefore 25 Meq. or 5 milli mole of KMnO₄ are left. 94 (a) 103 (a) F_2 is oxidant; ClO_4^- and MnO_4^- are also oxidant. $K - C \equiv N$ 96 (c) N is more electronegative and thus, has -3None of elements in reaction (c) undergoes a oxidation number as it involves three covalent change in oxidation number, therefore reaction bonds. (c) is not a redox reaction Thus, 1 + a + (-3) = 0+1 +5 -2 +1 -1 a = +2+1 -1 +1+5 -2 $Ag NO_3 + NaCl \rightarrow Ag Cl + Na NO_3$ 104 (a) It is a double decomposition reaction Øx.no.of Ni is equal to zero. 97 (b) 105 (a) $Na_2S_4O_6$ is salt of $H_2S_4O_6$ which has the following $Mn^{7+} + le \rightarrow Mn^{6+}$ structure $\therefore E = M/1$ 106 **(b)** Mn has +6 ox.no. in K_2MnO_4 and +2 ox.no. in MnSO₄. 107 (b) In reaction 0 -1 +1 \Rightarrow Difference in oxidation number of two types of $H_2O + Br_2 \rightarrow HOBr + HBr$ sulphur = 5The oxidation number of bromine increases from 98 (c) 0 to +1 and decreases from 0 to -1, so due to this Sum of oxidation no. of atoms in it is zero. reason bromine is both oxidised as well as 99 (b) reduced in the above reaction. $\operatorname{Sn}^{2+} \rightarrow \operatorname{Sn}^{4+} + 2e$ 108 (a) $\therefore E = M/2 = \frac{119 + 71}{2} = 95$ $1 + 2 \times (+1) + a + 2 \times (-2) = 0$ $\therefore a = +1$ 100 (b) 109 **(b)** $2 \times 1 + a + 4 \times (-2) = 0$ H in LiAIH₄ has -1 ox.no. and thus, easily $\therefore a = +6$ oxidized. 101 (c) 110 (a) Electronic configuration of NO in iron complex has +1 ox.no. Thus, $a + 5 \times (0) + 1 + 1 \times (-2) = 0$ Mn : $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2 \vdash$ More stable $\therefore a = +1$ due to 111 (b)

Let the oxidation state of Fe in $Fe_3O_4 = x$ $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O_2$ $\therefore 3x + 4 \times (-2) = 0$ $H_2SO_4 - Reduced to \rightarrow SO_2$ 3x - 8 = 0oxidising 0r agent $x = \frac{6}{3}$:. 125 (c) 112 (d) $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr.$ $As^{3+} \rightarrow As^{5+} + 2e$ 126 (a) $S^{2-} \rightarrow S^{6+} + 8e$ $H_2 \stackrel{-2}{\longrightarrow} \stackrel{0}{S}$ 113 (a) $3e + Mn^{7+} \rightarrow Mn^{4+}; E = \frac{158}{3} = 52.66$ The oxidation number of S increases from -2 to 0 in elemental sulphur and hence, H₂S gets oxidized 114 (a) 127 (a) $8e + N^{5+} \rightarrow N^{3-}$ S₈has zero oxidation state of S. $E_{\rm NO_3^-} = \frac{M}{8} = \frac{62}{8}$ In S₂F₂: 2 × a + 2 × (-1) = 0; $\therefore a = +1$ In H₂S: 2 × 1 + a = 0; $\therefore a = -2$ $E_{\rm NH_4^+} = \frac{M}{8} = \frac{18}{8}$ 128 (a) Cr in CrO_2Cl_2 has +6 and Mn in MNO_4^- has +7 115 (d) oxidation number respectively, the highest value $1 + a + 4 \times (-2) = 0$ for them. 🔺 $\therefore a = +7$ 129 (d) 116 (d) F is more electronegative than oxygen. Find oxidation number of iodine in each. 130 (a) 117 (c) Oxidation number of Cl in ClO_3^- . $Na + H_2O \rightarrow NaOH + (1/2)H_2$. $ClO_3 = -1$ 118 **(b)** x + 3(-2) = -1 $3 \times 1 + a + 6 \times (-1) = 0$ x = +6 - 1 $\therefore a = +3$ *x* = +5 119 (d) $Cr_2 0_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2 0$ 131 (a) $2e + Cl^+ \rightarrow Cl^ (2I^- \rightarrow I_2 + 2e^-) \times 3$ $N = \frac{15}{74.5/2 \times 1} = 0.40$ $Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$ Hence, number of moles of I_2 produced =3 132 (b) 120 **(b)** In ionic hydrides, H has -1 ox.no. $Mn^{4+} + 2e \rightarrow Mn^{2+}$ 133 (c) MnO_2 is itself reduced. Let the oxidation number of Xe is x in XeOF₂. 121 **(b)** x + (-2) + 2(-1) = 0Meq. of $O_2 = Meq.$ of $KMnO_4 = 100 \times 0.5$ x - 2 - 2 = 0 $\frac{w}{8} \times 1000 = 50$ x = +4∴ $w_{0_2} = 0.4 \text{ g}$ ∴ $V_{0_2} = \frac{224 \times 0.4}{32} = 0.28 \text{ litre}$ 134 **(b)** No change in ox.no. of any species. 135 (a) 122 (a) $H_2^{1+} + 2e \rightarrow H_2^0$ Oxidation involves loss of electrons and reduction 136 (d) involves gain of electrons, hence in case of Both are same. oxidation-reduction reactions(redox 137 (b) reactions)charge remains conserved $2 \times 1 + 2 \times 1 + 4 \times (-2) = 0$ 123 **(b)** $\therefore a = +3$ $Ni \rightarrow Ni^{2+} + 2e$; Ni is oxidized and thus, 138 (a) reductant. Let oxidation state of P in $Ba(H_2PO_2)_2$ is x, then 124 (a) 2(+1) + 2[2(+1) + x + 2(-2)] = 02 + 2(2 + x - 4) = 0-1 +6 0 +4

2 + 4 + 2x - 8 = 0+1 unit increases 2 + 2x - 4 = 02x = 2 $4P + 3KOH + 3H_2O$ x = +1-3 unit decreases 139 (c) Hence, P is both oxidized as well as reduced $3 \times 1 + a + 2 \times (-2) = 0$ 150 (c) $\therefore a = +1$ $2 \times a + 7 \times (-2) = -4$ 140 (a) $\therefore a = +5$ Calculate ox.no. of S by assuming $(CH_3)^+$ and 151 (b) SO²⁻. $6e + Cr_2^{6+} \rightarrow 2Cr^{3+}.$ 141 (c) 152 (b) $H_2^{1+}O \rightarrow H_2^0$; Steam is reduced. Let the oxidation number of oxygen in following 142 (b) compounds is *x*. $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$. An intramolecular redox In OF₂ change is one in which one element of a x + (-1)2 =compound is oxidized $(0^{2} to 0^{0}_{2})$ and one x = +2element is reduced (Cl^{5+} to Cl^{1-}) In KO₂ 143 **(b)** $+1 + (x \times 2)$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 2x = -1 $Fe^{2+} \rightarrow Fe^{3+} + e$ 144 (b) Due to smallest halogen, it possesses maximum In BaO₂ tendency for accepting electron in aqueous $+2 + (x \times 2) = 0$ medium. 2x = -2(1/2) F₂ + e + aq \rightarrow F⁻, $\Delta H = -ve(max. for F_2)$ x = -1145 (a) In Bromine has zero oxidation state because it is in O_3 , oxidation number of oxygen is zero because ox free state. free state or in any of its allotropic form is always 0 zero. $Br_2 \rightarrow BrO_3^-$ Thus, the increasing order of oxidation number is Let the oxidation number of Br in BrO_3^- is x. $BaO_2 < KO_2 < O_3 < OF_2$ $x + (-2 \times 3) = -1$ -1 $-\frac{1}{2}$ 0 +2 x + (-6) = -1153 (d) x = +6 - 1Na-Hg is uncombined state of sodium. *x* = +5 154 (a) So, oxidation number changes from 0 to +5. A measuring flask has a definite volume. 146 (c) 155 (b) Since, K₃Fe(CN)₆ reacts with FeSO₄ (if added internally) to give blue colour of iron complex. ie, it has four peroxide bonds each 156 (a) having an oxidation number of -1 and one double $2 \times a + 5 \times 1 = +1$ bond in which oxidation number of 0 is -2 $\therefore a = -2$ Therefore, $x + 4 \times (-1) + 1 \times (-2) = 0$ 157 (a) $\therefore x = \times 6$ Oxygen of H_2O_2 gets reduced from -1 to -2. 147 (a) 158 (a) Indicator then only can show redox change with Meq. of $HNO_3 = Meq. of I_2$ either of the titre species to indicate end point. $\frac{w}{63/1} \times 1000 = \frac{5}{254/10} \times 1000$ 148 (d) $4CrO_5 + 6H_2SO_4 \rightarrow 2Cr_2(SO_4)_3 + 6H_2O + 7O_2$ $\therefore w = 12.4 \text{ g}$ 149 (c) 159 (c)

 $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$ 175 (b) $S^{2-} \rightarrow S^{4+} + 6e$ 160 (d) F^- can be oxidized to F_2 only by electrolysis. \therefore Eq. = mole \times 6 176 (c) 161 **(a)** $2S_2^{2+} \rightarrow S_4^{(5/2)+} + 2e : Eq. \text{ wt. of } Na_2S_2O_3 = \frac{M}{1}$ $2 \times 1 + a + 4 \times (-2) = 0$ $\therefore a = +6$ $I_2^0 + 2e \rightarrow 2I^-$ 177 (b) 162 (d) Iodine has -1 (minimum ox.no.) and +7The same species in each reaction is oxidized and (maximum ox.no.). reduced as well to give disproportionation 178 (d) reaction. These are formulae of Meq. 163 (a) 179 (c) N₃H (hydrazoic acid) $CuSO_4 + H_2S \rightarrow CuS + H_2SO_4$ +3(x) + 1 = 0180 (a) 3x + 1 = 0I in KIO_4 has +7 ox.no, $x = -\frac{1}{3}$ 181 (a) $2 \times a + 3 \times (-2) =$ 164 (a) $\therefore a = +2$ $Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}$ 182 (c) $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ $cr_2^{s+} \rightarrow 2Cr^{3+};$ Eq. wt. of Cr = $\frac{\text{at. wt.}}{2}$ Moles of cerric ammonium sulphate $\frac{1}{1}$ Moles of potassium permanganate = $\frac{1}{1/5}$ = 5.0183 (d) 165 (a) -1 +2 +4 -2 +1 -1 +4 -2 -2 H₂O₂ + Na₂C O₃ \rightarrow Na₂O₂ + CO₂ + H₂O $N^{3-} \rightarrow N^{2+} + 5e$ $\therefore E_{\rm NH_3} = \frac{17}{5}$ None of the elements changes its oxidation number 166 (a) 184 (a) C has -4 ox.no. in CH₄, Usually burettes have least count of 0.1 mL. In rest all it has +4 ox.no. 185 (c) 167 (d) \rightarrow Sn⁴⁺ + 2e] The oxidation state of N in NH₃ is $[Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}] \times 1; [Sn^{2+}]$ x + 3(+1) = 0× 3 x = -3168 (a) $[(W/Eq. wt.) \times 1000]$ The oxidation state of N in HNO₃ is Milliequivalent or 1 + x + 3(-2) = 0 $\left[\left(\frac{W}{M}\right) \times 1000\right]$ do not change millimole on *x* = 5 dilution. The oxidation state in N in NaN₃ is 169 (c) +1 + 3x = 0 Cr^{3+} ion is green; $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$. x = -1/3170 **(b)** The oxidation state of N in Mg_3N_2 is $Hg + O_3 \rightarrow HgO + O_2$ 3(2) + 2x = 0171 (a) 6 + 2x = 0 $a + (4 \times 0) + 2 \times (-1) = 1$ x = -3 $\checkmark \therefore a = +3$ Hence, three molecules 172 (c) $(i. e., NH_3, NaN_3, Mg_3N_2)$ have negative oxidation $2V^{2+} \rightarrow V_2^{5+} + 6e$ state. 173 (c) 186 (a) $Cr^{6+} + 3e \rightarrow Cr^{3+}$ Fe in Fe $(CO)_5$ has zero oxidation no., *i.e.*, the $\therefore E = M/3$ lowest for metals. 174 (a) 187 (c) Ox.no. of Cr on both side is +6 The weight of rider used is 0.0002 g.

188 (d) reactions are called auto redox or Ions are hydrated on dissolution of salt in water. disproportionation reactions. 189 (a) 203 (d) Ox.no. of each element on two sides is same. Ox.no. of S in $Na_2S_4O_6$ is no doubt 2.5 but it is average of two values, i.e., 190 (c) $\frac{2 \times (+5) + 2 \times 0}{4} = +5/2$ $10e + 2Br^{5+} \rightarrow Br_2^0 \quad \therefore \text{ Eq. wt. of } \text{KBrO}_3 = \frac{M}{r}$ $2Br^- \rightarrow Br_2 + 2e$ 204 (a) 191 (a) De-electronation is loss of electrons, i.e. M -Corrosion involves oxidation of species. $M^{4+} + 4e$ 192 **(b)** 205 **(b)** $\mathrm{MnO_4^-} + 8\mathrm{H^+} + 5e^- \longrightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_2O}$ $CaCO_3 \xrightarrow{\Delta} CaO + CO_2;$ $[Fe^{2+} \rightarrow Fe^{3+} + e^{-}]^{5}$ $MnO_{4}^{-} + 8H^{+} + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O$ Five electrons gets transferred.This simple decomposition and not a redox change. 206 **(b)** S²-has minimum ox.no. and thus, can act only as reducing agent. 193 (c) $1 + a + 3 \times (-2) = 0$ 207 (a) $\therefore a = +5$ It imparts its colour at end point. 208 (c) 194 (a) $Zn^0 \rightarrow Zn^{2+} + 2e$ The species present in solution but does not take part in the reaction and are also omitted while 209 (d) writing the potential redox change are called Oxygen has highest electron affinity in its family. 210 (a) spectator ion. 195 (a) Na₂[Fe(CN)₅NO] It is the formula of turns bull's blue. 211 (d) 196 (b) The formula is obtained by taking an account of g Si has 4 electrons in its valence shell. When it atoms. $Xe = \frac{53.3}{131} = 0.4, F = \frac{46.5}{20} = 2.325,$ reacts with strongly electropositive metal like Na, Mg, K etc., it gives 4 electrons and its oxidation state in this case is -4. *i.e.*, $1:6 \text{ or } XeF_6$ 197 (b) Oxygen in H_2O_2 has ox.no. -1 which can increase 212 (c) N in NH₃, NH₄⁺, N₃H and NO₂⁻ has -3, -3, -1/3or decrease. and +3 oxidation number respectively. 198 **(b)** $A^{n-} \to A^{a+} + (a+n)e$ 213 (b) Meq. of $H_2O_2 = Meq. of KMnO_4$ $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ Also, Meq of $A = Meq. of K_2 Cr_2 O_7$ $\frac{W}{34/2} \times 1000 = 10 \times 1$ $3.26 \times 10^{-3}(a+n) = 1.68 \times 10^{-3} \times 6$ $\therefore w_{H_2O_2} = 0.17$ Or a + n = 3 $\therefore \text{ Per cent purity} = \frac{0.17}{0.2} \times 100 = 85\%$ $\therefore a = 3 - n$ 199 (c) 214 (c) $H_2^0 \rightarrow H_2^+ + 2e (H_2 0 \text{ is formed})$ $Mn^{7+} + e \rightarrow Mn^{6+}$ (MnO_4^{2-}) 200 (d) $Mn^{7+} + 3e \rightarrow Mn^{4+}$ (MnO₂) $2 \times a + 7 \times (-2) = 0$ $2\mathrm{Mn}^{7+} + 8e \rightarrow (\mathrm{Mn}^{3+})_2$ (Mn_20_3) $\therefore a = +7$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ (MnO_2) 201 (d) 215 (d) Due to higher E_{OP}^0 order. The reaction involves : 202 (c) $H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O(l)$ Cl atom is oxidised ($Cl^{1+} \rightarrow Cl^{5+} + 4e$) as well as $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$ Cl atom is reduced ($Cl^{1+} + 2e \rightarrow Cl^{-}$). Such The reaction gives blue colour only after all the

 $Na_2S_2O_3$ is used. The reaction is carried out with adjusted amount of Na₂S₂O₃ so that only a fraction of H_2O_2 and KI reaction occurs before the blue colour of starch— I_2 appears, however the 226 (b) slow redox reaction of $H_2O_2 - I_2$ continues. The appearance of blue colour is like clock alarm and 227 (b) in such reactions time for the appearance of blue colour is noticed. The phenomenon is used in 228 (b) studying rate of reaction. If time taken for blue colour appearance is longer, the reaction is slow and vice – versa. 216 (c) 229 (a) N in $(N_2H_5)_2SO_4$ has -2 ox.no. 217 (b) The 5p –electrons of outermost shell in iodine are 230 (b) unpaired during their excitation to 5d –subshell. 218 (d) 231 (c) A characteristic property of transition elements. 219 (c) Let the oxidation state of sulphur in $Na_2S_4O_6$ is *x*. 232 (b) $Na_2S_4O_6$ $1 \times 2 + 4 \times x + (-2) \times 6 = 0$ 2 + 4x - 12 = 04x - 10 = 04x = 10 $x = \frac{10}{4} = 2.5$ 233 (c) 220 (d) F₂ is strongest oxidant among all the species. 1. 221 **(b)** S has +6 ox. no. in SO₃ 222 (c) $3 \times a + 1 \times 1 = 0$ $\therefore a = -1/3$ 223 (a) 2. Tendency to lose more electron for cation decreases. 224 (a) $\therefore 4\text{Zn} + \text{NO}_3^- + 10\text{H}^+ \rightarrow 4\text{Zn}^{2+} + \text{NH}_4^+ +$ $3H_2O(Net equation)$ $4\text{Zn} + \text{NO}_3^- + 10\text{HCl} \rightarrow 4\text{Zn}^{2+} + \text{NH}_4^+ + 5\text{Cl}_2 +$ $3H_2O$ 3. \therefore 1 mole of NO₃ (0r NaNO₃) is reduced by =10 moles of HCl $\therefore \frac{1}{2}$ mole of No₃ will be reduced by $= 10 \times \frac{1}{2}$ moles of HCl = 5 moles of HCl 225 (a) 4. Meq. of $FeSO_4 = Meq. of KMnO_4$

 $\frac{w}{152/1} \times 1000 = 200 \times 1$ $\therefore w = 30.4 \text{ g}$ $BiO_3^- + 6H^+ + 2e^- \rightarrow Bi^{3+} + 3H_2O$ $5H_2O_2 + 2CIO_2 + 2OH^- \rightarrow 2CI^- + 5O_2 + 6H_2O_2$ Meq. of $Na_2S_2O_3 = Meq.$ of $CuSO_4$ $\therefore V \times 0.4 \times 1 = 50 \times 0.2 \times 1$ $\therefore V = 25 \text{ mL}$ $N = \frac{47.5}{189.7/2 \times 2.25} = 0.222 \, N$ $2e + Fe_2^{3+} \rightarrow 2Fe^{2+}$ $Mn^{7+} + 5e C_2^{3+} \rightarrow 2C^{4+}$ Oxidation no. of N in NO⁺ is $(1 \times x) + 1 \times (-2) = +1$ $\therefore x = +3$ Oxidation no. of Cl in ClO₄⁻ is $(1 \times x) + 4 \times (-2) = -1$ x = +7Sulphurous acid H₂SO₃ $2 + x + (-2 \times 3) = 0$ x - 4 = 0 $\therefore x = 4$ Pyrosulphuric acid $(H_2S_2O_7)$ $2 + 2x + (-2 \times 7) = 0$ or 2x = 12 $\therefore = 6$ Thiosulphuric acid $(H_2S_2O_3)$ $2 + 2x + (-2 \times 3) = 0$ or 2x = 4x = 2Dithionous acid $(H_2S_2O_4)$

 $2 + 2x + (-2 \times 4) = 0$

2x = 6 $\therefore x = 3$ 234 (c) $KCN + AgCN \rightarrow KAg(CN)_2$ (Complex formation) CN⁻ also acts as reducing agent. 235 (a) $Mg + 2HCl \rightarrow MgCl_2 + H_2$. 236 (a) Meq. of oxalic acid = Meq. of $KMnO_4$ $V \times 0.1 \frac{250 \times 8}{100 \times 31.6} \times 1000 = 6.3$ litre 237 (d) H_3PO_3 is phosphorous acid. 238 (c) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ 239 (c) $H_4P_2O_5: 4 \times 1 + 2 \times a - 5 \times 2 = 0$ a = +3 $H_4P_2O_6: 4 \times 1 + 2 \times a - 6 \times 2 = 0$ a = +4 $H_4P_2O_7: 4 \times 1 + 2 \times a - 7 \times 2 = 0$ a = +5240 (c) $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-.$ 241 (b) Meq. of oxalate = Meq. of KMnO4 $\frac{w}{88/2} \times 1000 = 90 \times \frac{1}{20}$ \therefore *w* oxalate ion = 0.198 g \therefore % of oxalate ion = $\frac{0.198}{0.3} \times 100 = 66\%$ 242 (a) Meq. of $Cl_2 = Meq. of KMnO_4$ $\frac{w}{71/2} \times 1000 = \frac{10}{31.6} \times 1000$ ∴ $w_{\text{Cl}_2} = 11.23 \text{ g}$ ∴ $V_{\text{Cl}_2} = \frac{22.4 \times 11.23}{71} = 3.54 \text{ litre}$ 243 (d) $\frac{15.8 \times 1000}{158/5 \times 100} = 5$ 244 (b) $Mn^{7+}5e \rightarrow Mn^{2+}$ 245 (d) $S_2 O_3^{2-} \rightarrow S(s)$ or $4e + S_2^{2+} \rightarrow 2S^0$ 246 (a) Meq. of $KMnO_4 = Meq.$ of FeC_2O_4 $Fe^{2+}C_2^{2+}O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e$

 $0.1 \times 5 \times V = \frac{100 \times 10^{-3}}{144/3} \times 1000$ \therefore V = 4.1 mL 247 (d) It is precipitation reaction. 248 (a) Meq. of lime stone = Meq. of CaC_2O_4 = Meq. of KMnO₄ = Meq. Of CaO $\therefore 40 \times 0.250 = \frac{w}{56/2} \times 1000$ $\therefore w_{CaO} = 0.28$: per cent of CaO = $\frac{0.28 \times 100}{0.518}$ = 54% 249 (a) $\therefore a = +4$; Thus, Sn⁴⁺ is choice. 250 (c) Br₂ is disproportionated in basic medium as $3Br_2 + 3Na_2CO_3$ \rightarrow 5NaBr + NaBrO₃ + 3CO₂ 251 (b) Carbon has negative oxidation no.in Mg_3C_2 and positive oxidation number in C_3O_2 ; 0 is more electronegative than C. Mg is more electropositive than C. 252 (d) It is a complexation reaction involving reduction of I₂ and oxidation of KI. 253 (a) Oxidation state of Cr in Cr_2O_3 is Cr_2O_3 , 2x + (-2)3 = 02x - 6 = 02x = 6x = +3254 (a) $2 \times a + 2 \times (-1) = 0$ $\therefore a = +1$ 255 (c) N has + 1 ox.no. 256 (a) $Fe^{2+} \rightarrow Fe^{3+} + e$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 5 mole $FeSO_4 = 1$ mole $KMnO_4$ $X' = \frac{2}{2}$ mole Or $Fe^{2+} \rightarrow Fe^{3+} + e$ $(C^{3+})_2 \rightarrow 2C^{4+} + 2e$ $\operatorname{FeC}_2O_4 \longrightarrow \operatorname{Fe}^{3+} + 2C^{4+} + 3e$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$

5 mole $FeC_2O_4 = 3$ mole $KMnO_4$ $\therefore 'Y' = \frac{3 \times 2}{\varsigma}$ 257 (b) $H_2S + Cl_2 \rightarrow 2HCl + S$ 258 (c) Meq. of salt = Meq. Of Na_2SO_3 $50 \times 0.1 \times n = 25 \times 0.1 \times 2$ $\therefore n = 1$ (change in ox. no.) $\therefore M^{3+} + e \rightarrow M^{2+}$ 259 (a) Cu²⁺ is more stable than Cu⁺ although later, has $3d^{10}$ configuration. In Cu⁺18 electron core is not held properly by nuclear charge and thus, Cu⁺ is readily converted to Cu²⁺. 260 (c) : In this reaction phosphorus is simultaneously oxidised and reduced. : It is disproportionation reation. $P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$ 261 (a) $S + 2e \rightarrow S^{2-}$. 262 (d) All terms have same meaning. 263 (b) The sum of the oxidation states is always zero in neutral compound. The oxidation state of *X*, *Y*, and *Z* are +2, +5 and -2 respectively. 5. $\ln X_2 Y Z_6$ $2 \times 2 + 5 + 6(-2) \neq$ 6. $\ln XY_2Z_6$ $2 + 5 \times 2 + 6(-2) = 0$ 7. In XY $2+5 \times 5 \neq 0$ $\ln X_3 Y Z_4$ $3 \times 2 + 5 + 4(-2) \neq 0$ Hence, the formula of the compound is XY_2Z_6 . 264 (c) F is most electronegative element and thus, has -1 ox.no. Thus, a + (-2) = 0 $\therefore a = +2$ v = 2265 (a)

 $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $(Cr^{6+})_2 + 6e \rightarrow 2Cr^{3+}$ $Fe^{2+} \rightarrow Fe^{3+} + e$ $Fe^{2+} = Meq. of KMnO_4 =$ Meq. of Meq. of $K_2Cr_2O_7$ $1 \times 5 \times V_{\text{KMnO}_4} = 1 \times 6 \times V_{\text{K}_2\text{Cr}_2\text{O}_7}$ $\therefore V_{\rm KMnO_4} = \frac{6}{5} V_{\rm K_2Cr_2O_7}$ 266 (b) Meq. of $KMnO_4$ in 1 mL = Meq. of Fe 10^{3} \therefore Meq. if KMnO₄ in 250 mL = Thus, $\frac{w}{31.6} \times 1000 = \frac{5 \times 250}{56/1}$ 267 (c) Let the oxidation number of Cr in K_2CrO_4 is x. 2(+1) + x + 4(-2) = 02 + x - 8 = 0x = +6268 (b) 269 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $\therefore E = M/5$ 270 (c) Let the oxidation number of Cr be *x* \therefore For K₂Cr₂O₇ $+1 \times 2 + 2x + 7(-2) = 0$ 2 + 2x - 14 = 02x = 12x = 6271 (b) $Mn^{2+} \rightarrow Mn^{4+} + 2e$ 272 (c) $S^{4+} + 4e \rightarrow S^0$; SO_2 is reduced and thus, oxidant. 273 **(b)** $2H^- \rightarrow H_2 + 2e$ 274 (b) Let the oxidation number of carbonyl carbon in methanal (HCHO) and methanoic acid (HCOOH) is x and y is respectively. In HCHO. 2(+1) + x + (-2) = 02 + x - 2 = 0x = 0In HCOOH, 2(+1) + y + 2(-2) = 02 + y - 4 = 0

275 (c) $H_2S + H_2O_2$ $I_2^0 \rightarrow 2I^{5+} + 10e$ $\therefore E = \frac{M}{10} = \frac{254}{10} = 25.4$ 276 (c) $2e^{-}$ lose $4e + S^{4+} \rightarrow S^0$ H_2S – Oxidation, Reducing agent. : $E_{SO_2} = \frac{64}{4} = 16$ H_2O_2 – Reduction, Oxidising agent. 291 (d) 277 (a) $S^{4+} \rightarrow S^{6+} + 2e$. $M^{5+} \rightarrow M^{7+} + 2e; M^{5+}$ is reductant. 292 **(b)** 278 (a) $a + 2 \times 1 - 1 = 0$ 0 +1 -1 $\therefore a = -1$ $Li + H_2 \rightarrow 2LiH$ 293 (d) Oxidation number of hydrogen is decreasing from $2\mathrm{Cu}^{2+} + 2e \rightarrow \mathrm{Cu}_2^{1+}$ 0 to -1. So, H₂ is acting as oxidising agent in this $\therefore E = \frac{M}{1}$ reaction. 279 (d) 294 (c) Mohr's salt is FeSO₄. (NH₄)₂ SO₄. 6H₂O $Cr_2^{6+} + 6e \rightarrow 2C$ $Fe^{2+} \rightarrow Fe^{3+} + e \times 6$ $Cr^2 O_7^{2-}$ is reduced. $6e + Cr_2 O_7^{2-} \rightarrow 2Cr^{3+} \times 1$ 295 (a) 280 (a) $\mathrm{Sn}^0 \rightarrow \mathrm{Sn}^{4+} + 4e$ 1 faraday of electricity involves change of one 296 (d) mole electron. $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$ $Fe^{2+} + 2e \rightarrow Fe$ 297 (c) 281 (c) The reactions, in which the same element is Oxidation of Co and reduction of Cu^{2+} is taking oxidised as well as reduced, are called place. disproportionation reactions. 282 (a) Reduction $4 \times 1 + a + 6 \times (-2) = -1$ \rightarrow K Cl + KOCl + H₂O $2KOH + Cl_2$ $\therefore a = +7$ 283 (a) Oxidation $a + 3 \times (+1) = 0$ $\therefore a = -3$ In this reaction, the same element, *ie*., Cl_2 is oxidised as well as reduced, so it is an example of 284 (c) disproportionation reaction. $2MnCl_2 + 5PbO_2 + 6HNO_3$ 298 (a) \rightarrow 2HMnO₄ + 2PbCl₂ $-3Pb(NO_3)_2 + 2H_2O$ $Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$ $Cr_2O_7^{2-}$ is reduced to Cr^{3+} . 285 (d) $+a+4 \times (-1) = 0$ Thus, final state of Cr is +3. Hence, (a) 4 × 1 299 (d) 286 (c) NaNO₂ (Sodium nitrite) acts both as oxidising as Ox. no. of each species remains same. well as reducing agent because in it N-atom is in +3 oxidation state (intermediate oxidation state). 287 (a) $Mn^{7+} + 2e \rightarrow Mn^{5+}$. Oxidising property $2NaNO_2 + 2KI + 2H_2SO_4$ 288 (a) \rightarrow Na₂SO₄ + K₂SO₄ + 2NO $4 \times 1 + a + 6 \times (-1) = 0$ $\therefore a = +2$ $+ 2H_2O + I_2$ 289 (a) Reducing property $2NH_3 + OCl^- \rightarrow N_2H_4 + Cl^- + H_2O$ $H_2O_2 + NaNO_2 \rightarrow NaNO_3 + H_2O_3$ 300 (a) 290 (d) Graphic is uncombined state of carbon.

301 (d) $1 + 1 \times (-2) + a = 0$ $6 \times a + 12 \times 1 + 6 \times (-2) = 0$ $\therefore a = +1$ $\therefore a = 0$ 312 (a) $e + N^{5+} \rightarrow N^{4+}$; Thus, HNO₃ is oxidant. 302 **(b)** $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 313 (a) $\mathrm{H}^{0} \rightarrow \mathrm{H}^{1+} + \mathrm{l}e.$ 303 (a) 314 (d) $2 \times 2 + 2 \times a + 7 \times (-2) = 0$ $S \xrightarrow{O_2} SO_2 \xrightarrow{Cl_2} SO_4^{2-} \xrightarrow{BaCl_2} BaSO_4One$ mole of S will $\therefore a = +5$ 304 (c) give one mole of BaSO₄. Thus, mole of BaSO₄ Eq. of $Cl_2 = eq.$ of chloride formed = mole of S = $\frac{8}{32} = \frac{1}{4}$ $1 \times 2 = \frac{111}{E + 35.5}$ 315 (d) $[\mathrm{Mn^{7+}} + 5e \rightarrow \mathrm{Mn^{2+}}] \times 3$ $\therefore E = 40$ $[Fe^{2+}C_2^{3+}O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e] \times 5$ $\therefore M = 40 \times 2 = 80$ (Metal is bivalent.) 305 (b) 316 (c) Equal equivalent of species react together. 317 (a) It is a fact. 318 (c) balanced disproportionation The reaction It is chromium peroxide. involving white phosphorus with aq. NaOH is Let the oxidation number of Cr is ''x''. Oxidation of P^0 to P^{+1} state $Cr^{x+} + O_2^- + O_2^- + O_2^- - CrO_5$ P_{4}^{0} + 3NaOH + 3H₂O \longrightarrow PH₃ + 3NaH₂PO₂ x + (-1)2 + (-1)2 + (-2)1 = 0x - 6 = 0Reduction of P^0 to P^{-3} state x = +6319 **(b)** Hence, the oxidation state of Cr is +6. F can have only -ve ox.no., *i.e.*, $2e + F_2^0 \rightarrow 2F^{1-}$ 306 (d) Haematite is Fe_2O_3 , in which oxidation number of or F₂ can be reduced only. iron is III. 320 (a) Magnetite is Fe_3O_4 which is infact a mixed oxide $(N^0)_2 + 6e \rightarrow 2(N^{3-})$ $3(H^0)_2 \rightarrow 2(H^{+1})_3 + 6e$ (FeO. Fe_2O_3 .), hence iron is present in both II and III oxidation state. $E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$ 307 (c) 321 (a) $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4$ $SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$; thus, matter is (red-orange) (lemon-yellow) reduced by liberated hydrogen. 308 (a) 322 (c) In basic medium N₂ undergoes oxidation and reduction as well; $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$ $N_2^0 \rightarrow 2N^{3+} + 6e; N_2^0 + 6e \rightarrow 2N^{3-}$ Net reaction is +7 +6 323 **(b)** $MnO_4^- \rightarrow MnO_4^{-2}$ $M^{3+} \rightarrow M^{6+} + 3e$. Change in oxidation number 324 (a) =7-6 = +1 $2H^- \rightarrow H_2 + 2e$; Thus, H^- is oxidized. So, electrons involved $=1e^{-1}$ 325 (d) 309 (a) All these substances can accept electrons and can In NH₄⁺, N has ox.no. -3 and in NO₃⁻, N has ox.no. decrease their oxidation number and hence, all +5.these act as oxidation agent 310 (c) $a + 6 \times (-1) = -2$ $\therefore a = +4$ 311 (c)

+5 +4 +2 $HNO_3 \rightarrow NO_2 \text{ or } NO$ $\begin{array}{c} 0 \\ \mathrm{Cl}_2 \end{array} \longrightarrow 2\mathrm{Cl}^- \end{array}$ $^{+3}_{\text{FeCl}_3} \longrightarrow ^{+2}_{\text{FeCl}_2}$ +3326 **(b)** Meq. of $I_2 =$ Meq. of $Na_2S_2O_3 = 40 \times 0.11$ $\therefore \frac{w}{254/2} \times 1000 = 40 \times 0.11$ $w_{I_2} = 0.558 \text{ g}$ 327 (a) $5e + Mn^{7+} \rightarrow Mn^{2+}$ $S^{4+} \rightarrow S^{6+} + 2e$ 328 (c) Meq. of $HNO_3 = 1000 \times 2 = 2000$ $\therefore \frac{w}{63/3} \times 1000 = 2000$ $\therefore w = 42 \text{ g}$ 329 (c) The chemical structure of $H_2S_2O_8$ is as follows 0 0 H - o - s - o - o - s - o - H0 0 $2 \times (+1) + 2 \times x + 6 \times (-2) + 2 \times (-1) = 0$ for 0_0 for H for S for 0 +2+2x - 12 - 2 = 02x = +12x = +6330 (a) $2e + M^{7+} \rightarrow M^{5+}, M^{7+}$ is oxidation; M^{+5} is reductant. 331 (a) $S^{2-} \rightarrow S^0 + 2e$ $\therefore E = M/2 =$ 332 (a) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 333 **(b)** In N₃H Oxidation number of N = $-\frac{1}{3}$ In N_2O_4 Oxidation number of N = +4In NH₂OH Oxidation number of N = -1Oxidation number of N = -3In NH₃ Hence, in N_2O_4 the oxidation number of nitrogen is highest. 334 **(b)** Starch + $I_2 \rightarrow$ Blue

335 (d) $[2C_2^{3+} \rightarrow 4C^{4+} + 4e] \times 5$ $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 4$ 336 (a) $Fe^{2+} \rightarrow Fe^{3+} + e$. 337 (d) $3 \times a + (+1) = 0$ $\therefore a = -1/3$ 338 (a) Mole of O_2 formed = $\frac{3}{24} = \frac{1}{8}$: Mole of $H_2O_2 = \frac{1}{8} \times 2 = \frac{1}{4}$ $\therefore 100 \times X = \frac{1}{4} \times 1000 \ (m \text{ mole} = M \times V)$ $\therefore X = 2.5$ 339 (c) $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$ 340 (d) +2 and +3 341 (d) It is a fact. 342 (d) Al \rightarrow Al³⁺ + 3e Thus, 27 g Al forms Al^{3+} by losing 3N electrons : 13.5 g Al will lose $\frac{3N \times 13.5}{27} = \frac{3}{2} N$ electrons 343 (c) $a + 2 \times 1 + 2 \times (-1) = 0$ $\therefore a = 0$ 344 (a) Mn has +7 oxidation state in KMnO₄. 1 + x + 4(-2) = 01 + x - 8 = 0x = +7345 (a) Minimum ox.no. = group no. -8. Maximum ox.no. = group no.346 **(b)** H possesses negative one value of oxidation number in ionic hydrides. 347 (c) Due to -ve oxidation number it should be nonmetal having six electrons in outer shell. 348 (d) These are characteristics of indicator. 349 (b) The oxidation state of Xe in both XeO₂ and XeF₄ is 4. XeO₂ XeF₄ $x + 2(-2) = 0 \quad x + 4(-1) = 0$ x = 4 x = 4

350 (a) $w_{\rm MnO_2} = 0.24 \, {\rm g}$ Na₃AsO₄ is sodium arsenate 358 (a) Or AsO_4^{-3} is arsenate. More is E_{RP}^{0} , more is the tendency to get itself Thus, $a + 4 \times (-2) = -3$ reduced or more is oxidising power. $\therefore a = +5$ 359 (a) 351 (d) Meq. of $KMnO_4 = 3750 \times 0.85$ $\therefore \frac{w}{31.6} \times 1000 = 3750 \times 0.85$ Reduction : w = 100.7 gincrease in O.N 360 (c) $Ag^{2+} + Ag(S)$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ decrease in O.N 361 (a) Oxidation $Cu^{2+} + 2e \rightarrow Cu$ 362 (a) Hence, those reactions in which two or more It is definition of iodimetric titrations. species undergo oxidation as well as reduction 363 (b) are called comproportionation. $M^{n+} + ne$ -352 (b) 364 (b) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$ $le + Mn^{7+} \rightarrow Mn^{6}$ 353 (c) $\therefore E = M/1$ Glucose is reducing agent. 365 (a) 354 **(b)** $1 + a + 3 \times (-2) = 0$ $a + 6 \times (-1) = -3$ $\therefore a = +5$ $\therefore a = +3$ 366 (d) 355 **(b)** 3 ions of F⁻ from 1 molecule of AIF₃ It is a fact. $\therefore 3 \times 10^{23}$ ions of F⁻from 10²³ molecules 356 **(b)** AIF₃ . Oxidation state of Mn in $Mn^{2+} = +2$ 367 (a) 0. Let oxidation state of Mn in $MnO_2 = x$ Calculate ox.no. by taking NO⁺ in NOCl 368 (d) $\therefore \quad x + (2 \times -2) = 0$ Cl ha +7 ox.no. in Cl_2O_7 . 369 (c) $\therefore x = +4$ Meq. of $KMnO_4 = 4000 \times 0.05$ (iii) Let the oxidation state of Mn in $KMnO_4 = x$ $\therefore \frac{w}{31.6} \times 1000 = 4000 \times 0.05$ $\therefore +1 + x + (-2 \times 4) = 0$ $w = 6.32 \, \mathrm{g}$ 370 (c) $\therefore x = +7$ H_2O_2 oxidises S^{2-} to S^0 . 371 (a) iv) Let oxidation state of Mn in $K_2MnO_4 = x$ Following is balanced redox reaction. $(+1 \times 2) + x + (-2 \times 4) = 0$ $2MnO_4^- + 5C_2O_4^{2-} + 16H^+$ $\rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ x = +6So, coefficients of MnO_4^- , $C_2O_4^{2-}$ and H⁺are 2,5, and 16 respectively. : Increasing order of oxidation states is 372 (c) (i) < (ii) < (iv) < (iii) $2 \times a + 1 \times (-2) = 0$ $\therefore a = +1$ 357 (b) 373 (d) Meq. of $MnO_2 = Meq$. of oxalic acid Oxidation-reduction takes place simultaneously. $= 0.16 \times 35 = 56$ 374 **(b)** $\therefore \frac{W}{87/2} \times 1000 = 5.6$ $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+};$

of

 $\therefore \text{ Eq. wt.} = \frac{\text{mol. wt.}}{6}$ 375 (a) $S^{4+} \rightarrow S^{6+} + 2e$ $10e + 2I^{5+} \rightarrow I_2^0$ 376 **(b)** F_2 shows only -1 ox.no. 377 (a) Reduction (oxidation number decreases) $\begin{array}{c} 0 \\ P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3 \\ 1 \end{array}$ Oxidation (oxidation number is increases) The reactions in which the same substance undergoes oxidation as well as reduction, are called disproportionation reactions. So, the above reaction is an example of disproportionation reaction. 378 (b) It is definition of iodimetric titrations. 379 (d) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ 380 **(b)** +2 oxidation state due to $1s^2, 2s^2, 2p^2$ configuration having 2 unpaired electrons in 2*p* –subshell. +4 oxidation state due to $1s^2$, $2s^12p^3$ configuration in excited state having four unpaired electrons. 381 (a) Meq. if $SnCl_2 = Meq. of HgCl_2$ $0.5 \times V = 600 \times 0.1$ $\therefore V = 120 \text{ mL}$ 382 (a) Meq. of FeSO₄ = Meq. of KMnO₄ = 200 \times 1 $\therefore \frac{w}{152/1} \times 1000 = 200$ $\therefore w = 30.4 \text{ g}$ 383 (a) Meq. of Fe = Meq. of $K_2Cr_2O_7$ $\frac{w}{c_{11}} \times 1000 = 1 \times 0.1055$ $w = 5.9 \times 10^{-3} \text{ g} = 5.9 \text{ mg}$ 384 (d) $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 3$ $Fe^{2+} \rightarrow Fe^{3+} + e$ $\frac{(\mathsf{C}^{3+})_2 \longrightarrow 2\mathsf{C}^{4+} + 2e}{[\mathsf{FeC}_2\mathsf{O}_4 \longrightarrow \mathsf{Fe}^{3+} + 2\mathsf{C}^{4+} + 3e] \times 5}$ \therefore 3 mole MnO₄⁻ \equiv 5 mole FeC₂O₄ 385 (c) The sum of oxidation number is zero. 386 (c)

Electrons released at anode = Electrons used at cathode. 388 (c) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ 389 **(b)** $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $Fe^{2+} \rightarrow Fe^{3+} + e$ 390 (d) Loss of an electron or increase in oxidation number is oxidation process. $H^- \rightarrow H + e^$ i.e.. 391 (c) Due to inert pair effect which is more predominant in T1. 392 (a) $Fe^{2+} \rightarrow Fe^{3+} + le$ $6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$ Thus, electrons involved per Cr atom = 3. 393 (a) Let oxidation state of Cr in $K_2Cr_2O_7 = x$ $(+1 \times 2) + 2x + (-2 \times 7) = 0$ or +2 + 2x - 14 = 0 $\therefore x = +6$ Let oxidation state of Cr in $K_2CrO_4 = x$ $+1 \times 2 + x + (-2 \times 4) = 0$ 2+x-8=0x = 6: Change in oxidation state of Cr is zero when it changes from $K_2Cr_2O_7$ to K_2CrO_4 394 (b) In HNO₂, the oxidation number of N is + 3 which is less than the maximum possible, oxidation number ie, +5 and more than the minimum possible oxidation number ie, -3, therefore, it can act both as an oxidizing as well as reducing agent 395 (a)

Ox. No. of N in N₃H, NH₂OH, N₂H₄, NH₃ are $-\frac{1}{3}$, -1, -2, -3 respectively.

396 (a)

 $\begin{array}{l} \mathrm{Mn^{6+} \rightarrow Mn^{7+} + Ie} \\ \mathrm{Mn^{6+} + 2e} \rightarrow \mathrm{Mn^{4+}} \\ \mathrm{3MnO_4^{2-} \rightarrow 2MnO_4^{-} + Mn^{4+}} \end{array}$

397 **(b)**

FeCl₃ cannot be oxidised because Fe has highest oxidation state.

398 **(d)**

Meq. of KMnO₄ = Meq. Of Cl₂ $1 \times 5 \times 1000 = \frac{W}{(71/2)} \times 1000$

: w = 177.5 g $\therefore V_{Cl_2} = 56$ litre at NTP 399 (d) $Fe^{2+} \rightarrow Fe^{3+} + e; 0^{1-}_2 + 2e \rightarrow 20^{2-};$ H_2O_2 acts as oxidant. 400 **(b)** Let oxidation state of I in IPO₄ = 'x'. x + (-3) = 0 $(PO_4^{3-} \text{ ion has charge equal to } -3)$ x = +3401 (a) In alkaline medium +7 +6 $KMnO_4 + OH^- \rightarrow K_2MnO_4$ Change in oxidation number =7-6= 1 Hence, moles of $KI = moles of KMnO_4$. 402 (c) 5 mole I⁻ gives 3 mole I₂ 403 (c) $2 \times 1 + 2 \times a + 7 \times (-2) = 0$ $\therefore a = +6$ 404 (c) The concentration of standard solution is known. 405 (a) Reduction $+ 2H_2O$ \therefore H₂S is oxidised in this reaction. 406 (b) $HP_{2}0_{7}^{-2}$ $+1+2x-2\times7$ x = +6407 **(b)** Iron usually shows zero, +2, +3 oxidation state. 408 (a) Calculate ox.no. of Cl in NOCIO₄ by assuming $CIO_4^$ and NO⁺. 409 **(b)** $2e + H_2^0 \rightarrow 2H^{1-}$ $Li \rightarrow Li^{1+} + e$ H_2 is reduced and thus, oxidant. 410 **(b)** $S^{4+} \rightarrow S^{6+} + 2e$ 411 (a) $a + 2 \times (-2) = 0$ $\therefore a = +4$ 412 (d)

Ox.no. Mohr's Fe in salt, [FeSO₄. (NH₄)₂SO₄. 6H₂O] is +2. 413 (a) $\operatorname{Cr}_{2}^{6+} + 6e \rightarrow 2\operatorname{Cr}^{3+}$; $\operatorname{Fe}^{2+} \rightarrow \operatorname{Fe}^{3+} + e$ 414 (d) $2K[Ag(CN)_2] + Zn \rightarrow 2Ag +$ $K_2[Zn(CN)_4]$ $2K[Ag(CN)_2] + Zn -2Ag + K_2[Zn(CN)_4]$ Reduction Oxidation 415 (b) Meq. of $K_2Cr_2O_7 = Meq. of H_2S$ $2 \ge V = \frac{0.81}{34/2} \ge 1000$ $\therefore V = 23.8 \text{ mL}$ 416 (a) $3 \times 1 + a + 4 \times$ $\therefore a = +5$ 417 (b) $3Fe^0 \rightarrow Fe_3^{+(8/3)} + 8e$ $\frac{M}{8/3} = \frac{56 \times 3}{8} = 21$ 418 (d) Permonosulphuric acid (H₂SO₅) has two oxygen atoms in peroxide linkage, hence, 2(+1) + x + 2(-1) + 3(-2) = 02 + x - 2 - 6 = 0*x* =+6 419 (c) The reaction, in which two or more species undergo reduction as well as oxidation to give a single species are called comproportionation reaction. This is reverse of disproportionation reaction. $Ag^{2+}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$ 420 (d) HCl is also oxidised along with oxalic acid by $KMnO_4$. $2KMnO_4 + 16HCl$ \rightarrow 2KCl + 2MnCl₂ + 5Cl₂ + 8H₂O $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4$ \rightarrow K₂SO₄ + 2MnSO₄ + 8H₂O $+10C0_{2}$ 421 (a) No change in oxidation no.in any of the species. 422 (d)

S in H_2SO_3 is in +4 oxidation state. It lies in between its maximum and minimum oxidation state, *i. e*, +6 and -2 and thus, S can increase or decrease its ox.no.as the case may be.

Page | 46