Quadratic Equations & Theory of Equations

Quadratic Equations & Theory of Equations Single Correct Answer Type

1.	Let α and β be the roots of $x^2 - 6x - 2 = 0$ with $\alpha > \beta$ if $a_n = \alpha^n - \beta^n$ for $n \ge 1$ then		
	the value of $\frac{a_{10} - 2a_8}{3a_9} =$		
	1) 1	2) 2	
	3) 3	4) 4	
Key.	2		
Sol.	$\alpha^2 - 6\alpha - 2 = 0$		$\beta^2 - 6\beta - 2 = 0$
	$\Rightarrow \alpha^{10} - 6\alpha^9 - 2\alpha^8 = 0 \dots$		
	a_{1} (b) from (1)	$\Rightarrow \beta^{10} - 6\beta^9 - 2\beta^8 = 0 \dots$	(2)
	subtract (2) from (1)		01
2.	If a,b,c are positive real	numbers such that $a+b+$	-c=1 then the least value of
	(1+a)(1+b)(1+c).		$\mathbf{\nabla}$
	$\frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$ is		
	1) 16	2) 8	
	3) 4	4) 5	
Key.	a = 1 - b - c		
Sol.	$ a = 1 - b - c \Rightarrow 1 + a = (1 - b) + (1 - c) \ge 2 $	(1-b)(1-c)	
2	$(1+a)(1+b)(1+c) \ge 8(1-c)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c)(1+$		
3.	The range of values of a' for $(a + b)(a + 2)^2$		
	$(a-1)(1+x+x^2)^2 = (a+1)(a+1)(a+1)(a+1)(a+1)(a+1)(a+1)(a+1)$	$(1+x^2+x^4)$ are imaginary is	5
	1) (−∞,−2]	2) (2,∞)	
	3) (-2,2)	4) [2,∞)	
Key.	3		
Sol.	The given equation can be writ	tten as $(x^2+x+1)(x^2-ax+a)(x^2-ax$	(-1) = 0
4.	If $lpha,eta$ are the roots of the eq	quation $ax^2 + bx + c = 0$ and	$S_n = \alpha^n + \beta^n$ then
	$aS_{n+1} + bS_n + cS_{n-1} = (n \ge 2)$)	
	1) 0	2) <i>a+b+c</i>	
	3) $(a+b+c)n$	4) $n^2 abc$	
Key.	1		
Sol.	$S_{n+1} = \alpha^{n+1} + \beta^{n+1}$		
	$=(\alpha+\beta)(\alpha^n+\beta^n)-\alpha\beta$	$etaig(lpha^{n-1}+eta^{n-1}ig)$	
	$= -\frac{b}{a}.S_n - \frac{c}{a}.S_{n-1}$		
	u u		

Quadratic Equations & Theory of Equations

maine	emutics			leory of Equality
5.	A group of students decided to buy a Alarm Clock priced between Rs. 170 to Rs 195. But			
	at the last moment, two students backed out of the decision so that the remaining			
	students had to pay 1 Rupee more than they had planned. If the students paid equal			
	shares, the price of the Alarr			
	1) 190	2) 196		
	3) 180	4) 171		
17	-	1) 1/ 1		
Key.	3			
Sol.	Let cost of clock = x			
	number of students $= n$			
) m		
	then $\frac{x}{n-2} = \frac{x}{n} + 1 \Longrightarrow x = \frac{n^2}{n}$	-2n		
	n-2 n	2		
	$n^2 - 2n$		•	
	\Rightarrow 170 $\leq \frac{n^2 - 2n}{2} \leq 195$			
	2			
6.	If tan <i>A</i> , tan <i>B</i> are the roots	of $x^2 - Px + Q = 0$ the value	e of $\sin^2(A+B)$	
01				
	(where $P, Q \in R$)			
	(, 2)		\mathbf{C}	
	P^2		P^2	
	1) $\frac{P^2}{P^2 + (1-Q)^2}$		2) $\frac{1}{P^2 + Q^2}$	
	P + (1 - Q)		I + Q	
	O^2		\mathbf{p}^2	
	3) $\frac{Q^2}{P^2 + (1-Q)^2}$		4) $\frac{P^2}{(P+Q)^2}$	
	$P^{2} + (1 - Q)^{2}$		$(P+Q)^2$	
	(~~)		(~~)	
Key.	1			
	$ \tan(A+B) = \frac{P}{1-Q} $ then sim	$\tan^2(A+B)$		
Sol.	$\tan(A+B) = \frac{1}{1-C}$ then sin	$A^{2}(A+B) = \frac{1}{1+\tan^{2}(A+B)}$	-	
	1-Q	$1 + \tan(A+B)$		
7.	The number of solutions of			or < ric
/.	The number of solutions of	$ x_1 - 2x = 4$ where $ x_1 $ is the	lle greatest lifteg	$\leq \lambda 15$
	1) 2		2) 4	
	3) 1		4) Infinite	
17.			1) minite	
Key.	2			
Sol.	If $x = n \in \mathbb{Z}$, $ n-2n = 4 \equiv$	$> n = \pm 4$		
				1
	If $x = n \in Z$, $ n-2n = 4 =$ If $x = n+K$ where $0 < K < 2$	1 then $ n-2(n+k) = 4$, it i	s possible if $K =$	<u> </u>
				2
	$\rightarrow -n-1 - 4$			
	:.n=3,-5			
0	Let a b and a be used assured	$a_{1} = a_{1} + b_{2} + a_{1} + b_{2} + b_{3} + b_{3$	4 h	····· l
8.	Let a, b and c be real numb	ers such that $a + 2b + c = 4$	then the maxim	um value of
	ab+bc+ca is			
		2) 2	3) 3	4) 4
	1) 1	2)2	5) 5	4)4
Key.	4			
Sol.	Let $ab+bc+ca=x$			
		+ r = 0		
	$\Rightarrow 2b^2 + 2(c-2)b - 4c + c^2$	$\pm \lambda = 0$		
	Since $b \in R$,			
	$\therefore c^2 - 4c + 2x - 4 \le 0$			
	Since $c \in R$			

	$\therefore x \le 4$		
9.	For the equation $3x^2 + px + 3 = 0$, $p > 0$, if one root is the square of the other then value		
	of P is		
	1) $\frac{1}{3}$	2) 1	
	3		
	3) 3	4) $\frac{2}{3}$	
Key.	3	5	
Sol.	$\alpha + \alpha^2 = -\frac{p}{3}$	<u> </u>	
	$\alpha^3 = 1$		
10.	If the equations $2x^2 + kx - 5 = 0$ and $x^2 - 3x - 4 = 0$ h	ave a common root, then the	
	value of k is		
	1) -2	2) -3	
	3) $\frac{27}{4}$	$(4) - \frac{1}{4}$	
Key.	2	4	
Sol.	If ' α ' is the common root then $2\alpha^2 + k\alpha - 5 = 0, \alpha^2 - 1$	$-3\alpha - 4 = 0$ solve the equations.	
11.	If α and β are the roots of the equation $x^2 - x + 1 = 0$		
	1) 1		
	3) -1	2) 2 4) -2	
Key.	1		
Sol.	$x = \frac{1 \pm i\sqrt{3}}{2}$		
	$\alpha = -\omega \beta = -\omega^2$		
	a = a, p = a	2	
12.	$\therefore \alpha = -\omega, \ \beta = -\omega^2$ If $P(Q-r)x^2 + Q(r-P)x + r(P-Q) = 0$ has equal	roots then $\frac{-}{Q}$ =	
	(where $P, Q, r \in \mathbb{R}$) 1) $\frac{1}{R} + \frac{1}{2}$		
	11^{11}	2) $\frac{1}{P} - \frac{1}{r}$	
	$\frac{1}{P}r$		
V	3) $P+r$	4) <i>Pr</i>	
Key. Sol.	Product of the roots $=1$		
501.			
13.	If $(1+K)\tan^2 x - 4\tan x - 1 + K = 0$ has real roots tar	x_1 and $\tan x_2$ then	
	1) $k^2 \le 5$	2) $k^2 \ge 6$	
	3) $k = 3$	4) <i>k</i> > 10	
Key.	1		
Sol.	Discriminate ≥ 0		

 α,β are the roots of $ax^2+bx+c=0$ and γ,δ are the roots of $px^2+qx+r=0$ and 14. D_1, D_2 be the respective discriminants of these equations. If α, β, γ and δ are in A.P. then $D_1: D_2 = ($ where $\alpha, \beta, \gamma, \delta \in R \& a, b, c, p, q, r \in R)$ 1) $a^2: p^2$ 2) $a^2:b^2$ 3) $c^2:r^2$ 4) $a^2: r^2$ Key. $\beta = \alpha + d, \ \gamma = \alpha + 2d, \ \delta = \alpha + 3d$ Sol. $d^2 = \frac{D_1}{a^2} = \frac{D_2}{p^2}$ If $x^2 + 4y^2 - 8x + 12 = 0$ is satisfied by real values of x and y then 'y' 15. 1) [2,6] 3) [-1,1] Key. $x^2 - 8x + (4y^2 + 12) = 0$ is a quadratic in 'x', 'x' is real then discriminate ≥ 0 Sol. For $x > 0, 0 \le t \le 2\pi, K > \frac{3}{2} + \sqrt{2}$, K being a fixed real number the minimum 16. value of $x^{2} + \frac{K^{2}}{x^{2}} - 2\left\{ (1 + \cos t)x + \frac{K(1 + \sin t)}{x} \right\} + 3 + 2\cos t + 2\sin t$ is b) $\frac{1}{2} \left\{ \sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right) \right\}^2$ d) $2 \left\{ \sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right) \right\}^2$ a) $\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$ c) $3\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$ Key. Given expansion = $\left\{ x - (1 + \cos t) \right\}^2 + \left\{ \frac{K}{x} - (1 + \sin t) \right\}^2$ Sol. Let $\phi(\mathbf{x}) = \frac{(\mathbf{x}-\mathbf{b})(\mathbf{x}-\mathbf{c})}{(\mathbf{a}-\mathbf{b})(\mathbf{a}-\mathbf{c})}f(\mathbf{a}) + \frac{(\mathbf{x}-\mathbf{c})(\mathbf{x}-\mathbf{a})}{(\mathbf{b}-\mathbf{c})(\mathbf{b}-\mathbf{a})}f(\mathbf{b}) + \frac{(\mathbf{x}-\mathbf{a})(\mathbf{x}-\mathbf{b})}{(\mathbf{c}-\mathbf{a})(\mathbf{c}-\mathbf{b})}f(\mathbf{c}) - f(\mathbf{x})$ 17. Where a < c < b and $f^{11}(x)$ exists at all points in (a,b). Then, there exists a real number $\mu, a < \mu < b$ such that $\frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-a)(c-b)} =$ c) $\frac{1}{2}f^{11}(\mu)$ d) $\frac{1}{2}f^{111}(\mu)$ a) $f^{11}(\mu)$ b) $2f^{11}(\mu)$ Key. Apply RT's, twice Sol.

Quadratic Equations & Theory of Equations

If α,β,γ are the roots of the equation $x^3 + px + q = 0$, then the value of the 18. ß α γ determinant $|\beta|$ γ α is β α lγ (A) 4 (C)0 (B)2(D) -2 Key. С Sol. Since α, β, γ are the roots of $x^3 + px + q = 0$ $\alpha + \beta + \gamma = 0$ *.*.. Applying $C_1 \rightarrow C_1 + C_2 + C_3$, then $|\alpha + \beta + \gamma \beta \gamma| |0 \beta \gamma|$ $\alpha + \beta + \gamma \gamma$ $\alpha = |0 \gamma \alpha| = 0$ $\alpha + \beta + \gamma \alpha$ β 0α ß 19. The number of points (p, q) such that $p, q \in \{1, 2, 3, 4\}$ and the equation px +qx+1=0 has real roots is A. 7 B. 8 C. 9 D. None of these Kev. А $px^2 + qx + 1 = 0$ has real roots if $q^2 - 4p \ge 0$ or qSol. Since $p, q \in \{1, 2, 3, 4\}$ The required points are(1,2), (1,3),(1,4), (2,3),(2,4),(3,4),(4,4)So the required number is 7 The value of *b* and *c* for which the identity f(x+1)-f(x)=8x+3 is satisfied. 20. where $f(x) = bx^2 + cx + dare$ (A) b = 2, c = 1(B) b = 4, c = -1(C) b = -1, c = 4(D) b = -1, c = 1Key. В Sol. \therefore f (x + 1) f(x) = 8x + 3 $b(x+1)^{2}+c(x+1)+d - {bx^{2}+cx+d} = 8x+3$ +c=8x+3b!(x+1)b(2x+1)+c=8x+3 on comparing 2b = 8 and b + c = 3Then, b = 4 and c = -1Let $f(x) = ax^2 + bx + c$, $g(x) = ax^2 + px + q$ where a, b, c, q, p, \in R and $b \neq p$. If their 21. discriminants are equal and f(x) = g(x) has a root α , then 1) α will be A.M. of the roots of f(x) = 0, g(x) = 0 2) α will be G.M of all the roots of f(x) = 0, g(x) = 0 3) α will be A.M of the roots of f(x) = 0 or g(x) = 0 4) α will be G.M of the roots of f(x) = 0 or g(x) = 0 Key. 1

 $a\alpha^{2} + b\alpha + c = a\alpha^{2} + p\alpha + q \Longrightarrow \alpha = \frac{q-c}{b-n} \rightarrow (i)$ Sol. And $b^2 - 4ac = p^2 - 4aq$ $\Rightarrow b^2 - p^2 = 4a(c-q)$ $\Rightarrow b + p = \frac{4a(c-q)}{b-n} = -4a\alpha$ (from(i)) $\alpha = \frac{-(b+p)}{4a} = \frac{\frac{-b}{a} - \frac{p}{a}}{4}$ which is A.M of all the roots of f(x) = 0 and g(x) = 0 If the equations $x^2 + 2\lambda x + \lambda^2 + 1 = 0$, $\lambda \in R$ and $ax^2 + bx + c = 0$ where a, b, c are 22. lengths of sides of triangle have a common root, then the possible range of values of λ is 3) $(2\sqrt{2}, 3\sqrt{2})$ 2) $(\sqrt{3},3)$ 1) (0, 2) 4) (0,∞) Key. 1 $(x+\lambda)^2+1=0$ has clearly imaginary roots Sol. So, both roots of the equations are common $\therefore \frac{a}{1} = \frac{b}{2\lambda} = \frac{c}{\lambda^2 + 1} = k(say)$ Then a = k, b = $2\lambda k$, c = $(\lambda^2 + 1)$ k As a, b, c are sides of triangle $a+b>c \Rightarrow 2\lambda+1>\lambda^2+1 \Rightarrow \lambda^2-2\lambda<0$ $\Rightarrow \lambda \in (0,2)$ The other conditions also imply same relation. The number of real or complex solutions of $x^2 - 6|x| + 8 = 0$ is 23. 1) 6 2) 7 3) 8 4) 9 1 Key. If x is real, $x^2 - 6|x| + 8 = 0 \implies |x|^2 - 6|x| + 8 = 0 \implies |x| = 2, 4 \implies x = \pm 2, \pm 4$ Sol. If x is non – real, say $x = \alpha + i\beta$, then $(\alpha + i\beta)^2 - 6\sqrt{\alpha^2 + \beta^2} + 8 = 0$ $(|\alpha + i\beta| = \sqrt{\alpha^2 + \beta^2})$ $\left(\alpha^2 - \beta^2 + 8 - 6\sqrt{\alpha^2 + \beta^2}\right) + 2i\alpha\beta = 0$ Comparing real and imaginary parts, $\alpha\beta = 0 \implies \alpha = 0$ (if $\beta = 0$ then x is real.) $\& -\beta^2 + 8 - 6\sqrt{\beta^2} = 0$ $\beta^2 \pm 6\beta - 8 = 0 \Longrightarrow \beta = \frac{\mp 6 \pm \sqrt{68}}{2}$ ie., $\beta = \pm (3 - \sqrt{17})$ Hence $\pm (3 - \sqrt{17})i$ are non-real roots.

24.	If $x_1, x_2(x_1 > x_2)$ are abscissae of points P,	Q lying on $y = 2x^2 - 4x$	c-5 such that the
	tangents drawn at these points pass through the point (0, -7), then $3x_1 - 2x_2$ equals to		
	1) 4 2) 5	3) 6	4) 7
Key.	2	,	-)
Sol.	Let $ig(lpha, eta ig)$ be point on the curve such that t	the tangent drawn at (a)	lpha,etaig) passes through (0,
	7)		
	$y^1 = 4x - 4 \Longrightarrow y^1_{(\alpha,\beta)} = 4\alpha - 4$		
	Tangent at (α, β) is $y - \beta = (4\alpha - 4)(x $	lpha)pass through (0, -	
7)⇒-	$-7-\beta = (4\alpha - 4)(0-\alpha)$		
	But $\beta = 2\alpha^2 - 4\alpha - 5$. It follows that α^2	= 1	
	$\Rightarrow \alpha = \pm 1$		
	So, $x_1 = 1$, $x_2 = -1$		$\langle \cdot \rangle$
	So, $3x_1 - 2x_2 = 5$.		
25.	Let $f(x) = x^2 + 5x + 6$, then the number o	f real roots of $\left(f(x)\right)^2$	+5f(x)+6-x=0 is
	1) 1 2) 2	3) 3	4) 0
Key.			,,
Sol.	Use "f(x) = x has non real roots \Rightarrow f(f(x)) = x		
26.	Sum of the roots of the equation is $4^x - 3(2$)+128=0	4) 0
Key.	1) 5 2) 6 3	3)/	4) 8
Sol.	Put $2^x = y$. Equation becomes		
	$y^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 =$	0	
	$\Rightarrow (y-8)(y-16) = 0 \Rightarrow y = 16,8$		
	$\Rightarrow 2^{x} = 16, 8 \Rightarrow x = 4, 3$		
	$\therefore \text{ Sum of the roots is 7.}$		
27.	The number of solutions of $\sqrt{3x^2 + x + 5} = x$	c-3 is	
271	1) 0 2) 1	3) 2	4) 4
Key.	1		
Sol.	Note that we must have $3x^2 + x + 5 \ge 0$ and	$x-3 \ge 0$ or $x \ge 3$.	
	$\sqrt{3x^2 + x + 5} = x - 3 \dots (1)$		
	Squaring both sides of (1), we get		
	$3x^{2}+x+5=x^{2}-6x+9$ $\Rightarrow 2x^{2}+7x-4=0 \Rightarrow (2x-1)(x+4)=0$		
	$\Rightarrow 2x + 7x - 4 = 0 \Rightarrow (2x - 1)(x + 4) = 0$ $\Rightarrow x = 1/2, -4$		
	$\rightarrow x = 1/2, -4$ None of these satisfy the inequality $x \ge 3$. T	bus (1) bas no solution	
	Note of these satisfy the inequality $x \ge 3$.		
28.	The value of <i>a</i> for which one root of the qua	dratic equation.	
	$(a^2-5a+3)x^2+(3a-1)x+2=0$ is twice	as large as other, is	
	1) -2/3 2) 1/3	3) -1/3	4) 2/3
Key.			
Sol.	$(a^2-5a+3a)x^2+(3a-1)x+2=0(1)$)	

Mathe	ematics	Quadratic Equations	& Theory of Equation
	Let α and 2α be the roots of (1), then $(a^2-5a+3)\alpha^2+(3a-1)\alpha+2=0$	(2)	
	and $(a^2 - 5a + 3)(4\alpha^2) + (3a - 1)(2\alpha) +$	-2=0 (3)	
	Multiplying (2) by 4 and subtracting it form		-6 = 0
	Clearly $a \neq 1/3$. Therefore, $\alpha = -3/(3a - 3)/(3a - 3)/$		
	Putting this value in (2) we get)	
	$(a^2-5a+3)(9)-(3a-1)^2(3)+2(3a-3)(3a-3)(3a$	$1)^2 = 0$	
	$\Rightarrow 9a^2 - 45a + 27 - (9a^2 - 6a + 1) = 0 \Rightarrow$	-39a + 26 = 0	
	$\Rightarrow a = 2/3.$		
	For $x=2/3$, the equation becomes x^2+9	9x + 18 = 0, whose roots ar	re —3,—6.
29.	If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2$	$a^2 - 2cx + b^2$ are such that	
	$\min f(x) > \max g(x)$, then relation between the terms of te	ween b and c , is	
	1) no relation 2) $0 < c < b/2$	3) $ c < \frac{ b }{\sqrt{2}}$	4) $ c > \sqrt{2} b $
Key.	4		
Sol.	$f(x) = (x+b)^2 + 2c^2 - b^2$	21	
	$\Rightarrow \min f(x) = 2c^2 - b^2$		
	Also $g(x) = -x^2 - 2cx + b^2 = b^2 + c^2 - (x^2 - b^2) + c^2 - ($	$(x+c)^2$	
	$\Rightarrow \max g(x) = b^2 + c^2$	×	
	As min $f(x) > \max g(x)$, we get $2c^2 - b^2$	$b^2 > b^2 + c^2$	
	$\Rightarrow c^2 > 2b^2 \Rightarrow c > \sqrt{2} b $		
30.	The equation $(\cos p - 1)x^2 + (\cos p)x + 3$	$\sin p = 0$ in variable x has	real roots, if p belongs
	to the interval 1) $(0,2\pi)$ 2) $(-\pi,0)$	3) $(-\pi/2,\pi/2)$	4) $(0, \pi)$
Key.	4	or (, <u>_</u> ,, <u>_</u>)	., (0,,)
Sol.	$(\cos p - 1)x^2 + (\cos p)x + \sin p = 0$	(1)	
	Discriminant of (1) is given by		
C	$D = \cos^2 p - 4(\cos p - 1)\sin p = \cos^2 p$	· · · · ·	
	Note that $\cos^2 p \ge 0, 1 - \cos p \ge 0$. Thus,	$D \ge 0$ if $\sin p \ge 0$ <i>i.e.</i> if p	$p \in (0,\pi).$
31.	If $x^2 + 2ax + 10 - 3a > 0$ for each $x \in R$, t	hen	
• = .	1) $a < -5$ 2) $-5 < a < 2$	3) $a > 5$	4) 2 <i><a<</i> 5
Key.	2		
Sol.	$x^{2} + 2ax + 10 - 3a > 0 \forall x \in R$ $\Rightarrow (x + a)^{2} (a^{2} + 10 - 2a) > 0 \forall x \in R$		
	$\Rightarrow (x+a)^2 - (a^2 + 10 - 3a) > 0 \forall x \in \mathbb{R}$		
	$\Rightarrow a^2 + 3a - 10 < 0$		

 $\Rightarrow (a+5)(a-2) < 0$ $\Rightarrow -5 < a < 2$ Sum of all the values of x satisfying the equation $\log_{17} \log_{11} \left(\sqrt{x+11} + \sqrt{x} \right) = 0$ is 32. 1) 25 2) 36 3) 171 4) 0 1 Key. Sol. Equation (1) is defined if $x \ge 0$. We can rewrite (1) as $\log_{11} \left(\sqrt{x+11} + \sqrt{x} \right) = 17^{\circ} = 1$ $\Rightarrow \sqrt{x+11} + \sqrt{x} = 11^1 = 11$ $\Rightarrow \sqrt{x+11} = 11 - \sqrt{x}$ Squaring both sides we get $x+11=121-22\sqrt{x}+x$ $\Rightarrow 22\sqrt{x} = 110 \Rightarrow \sqrt{x} = 5 \text{ or } x = 25$ This clearly satisfies (1). Thus, sum of all the values satisfying (1) is 25. The number of solutions of the equations of the equation $x^2 + [x] - 4x + 3 = 0$ is Where [] 33. denotes G.I.F. 2) 1 4) 3 1) 0 Key. 1 Given equation can be written as $(x^2 - 3x + 3) - f = O$ where f = x - [x] and $O \le f < 1$ Sol. $: O \le x^2 - 3x + 3 < 1$ solving $x^2 - 3x + 3 = 0$; roots are Imaginary $\therefore x^2 - 3x + 3 \ge O \forall x \in R$ solving $x^2 - 3x + 3 < 1 \Longrightarrow 1 < x <$ if 1 < x < 2; [x] = 1. putting [x] = 1 in the given equation and solving we get x = 2. But 1 < x < 2 \therefore the given equation has no solution. The number of values of 'a' for which the equation $(x-1)^2 = |x-a|$ has exactly three 34. solutions is 2) 2 1)1 3) 3 4) 4 Key. 3 $|x-a| = (x-1)^2$ Iff $a = x \pm (x-1)^2$ Sol. No of solutions = no of intersection its between y = a; $f(x) = x^2 - x + 1$ and $g(x) = -x^2 + 3x - 1$. clearly the graphs of f(x), g(x) are tangents to each other at A(1,1). The line y = a intersects the two graphs at three points If fit passes through one of the three pts A,B, C. Here $B = \left(\frac{1}{2}, \frac{3}{4}\right)$ vertex of f and $C = \left(\frac{3}{2}, \frac{5}{4}\right)$ vertex of 'g' i.e if $a \in \left\{\frac{3}{4}, \frac{5}{4}, 1\right\}$

35. If *a*, *b*, *c* are positive numbers such that a>b>c and the equation $(a+b-2c)x^2+(b+c-2a)x+(c+a-2b)=0$ has a root in the interval (-1,0), then

A) b cannot be the G.M. of a. c B) b may be the G.M. of a, c C) b is the G.M. of a, c D) none of these Key. Α Let $f(x) = (a+b-2c)x^2 + (b+c-2a)x + (c+a-2b)$ Sol. According to the given condition, we have f(0)f(-1) < 0(c+a-2b)(2a-b-c)<0i.e. (c+a-2b)(a-b+a-c) < 0i.e. $[a > b > c, given \Rightarrow a - b > 0, a - c > 0]$ c+a-2b<0i.e. $b > \frac{a+c}{2}$ i.e. *b* cannot be the G.M. of *a*, *c*, since G.M < A.M. always. \Rightarrow $ax^2 + bx$ Let α , β (a < b) be the roots of the equation $ax^2 + bx + c = 0$. If $\lim_{x \to m} \frac{dx}{ax^2}$ 36. then A) $\frac{|a|}{a} = -1, m < \alpha$ B) $a > 0, \alpha < m < \beta$ D) $a < 0, m > \beta$ Key. According to the given condition, we have Sol. $\left|am^2 + bm + c\right| = am^2 + bm + c$ $am^2+bm+c>0$ i.e. if a < 0, the *m* lies in (α, β) \Rightarrow if a>0, then *m* does not lies in (α, β) and Hence, option (c) is correct, since $\frac{|a|}{a} = 1 \Longrightarrow a > 0$ And in that case *m* does not lie in (α, β) . Let f(x) be a function such that f(x) = x - [x], where [x] is the greatest integer less 37. than or equal to x. Then the number of solutions of the equation $f(x) + f\left(\frac{1}{x}\right) = 1$ is (are) B) 1 D) infinite A) O C) 2 Given, $f(x) = x - [x], x \in R - \{0\}$ Sol. $f(x) + f\left(\frac{1}{r}\right) = 1$ $\therefore \qquad x - [x] + \frac{1}{x} - \left\lceil \frac{1}{x} \right\rceil = 1$ Now $\Rightarrow \left(x + \frac{1}{x}\right) - \left(\left[x\right] + \left|\frac{1}{x}\right|\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) = \left[x\right] + \left[\frac{1}{x}\right] + 1$...(i) Clearly ,R.H.S is an integer ... L. H. S. is also an integer Let $x + \frac{1}{k} = k$ an integer $\Rightarrow x^2 - kx + 1 = 0$

 $\therefore x = \frac{k \pm \sqrt{k^2 - 4}}{2}$ For real values of x, $k^2 - 4 \ge 0 \Longrightarrow k \ge 2$ or $k \le -2$ We also observe that k=2 and -2 does not satisfy equation (i) \therefore The equation (i) will have solutions if k > 2 or k < -2, where $k \in z$. Hence equation (i) has infinite number of solutions. If both the roots of $(2a-4)9^x - (2a-3)3^x + 1 = 0$ are non-negative, then 38. B) $2 < a < \frac{5}{2}$ C) $a < \frac{5}{4}$ A) 0 < a < 2D) a > 3Key. В Sol. Putting $3^x = y$, we have $(2a-4)y^2-(2a-3)y+1=0$ This equation must have real solution $(2a-3)^2 - 4(2a-4) \ge 0$ \Rightarrow $4a^2 - 20a + 25 \ge 0$ \Rightarrow $(2a-5)^2 \ge 0$. This is true. \Rightarrow y=1 satisfies the equation Since 3^x is positive and $3^x \ge 3^0$, $y \ge 1$ Product of the roots $= 1 \times y > 1$ $\frac{1}{2a-4} > 1$ \Rightarrow $2a - 4 < 1 \Rightarrow a$ \Rightarrow Sum of the roots = \Rightarrow $\frac{1}{2a-4} > 0 \Longrightarrow a > 2$ $2 < a < \frac{5}{2}$ If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of x and y then 39.

A)
$$x \in [1,3], y \in [1,3]$$
 B) $x \in [1,3], y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$
C) $x \in \left[\frac{-1}{3}, \frac{1}{3}\right], y \in [1,3]$ D) $x \in \left[\frac{-1}{3}, \frac{1}{3}\right], y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$

Key. B

Sol. Given equation is
$$x^2 + 9y^2 - 4x + 3 = 0$$
 ...(i)

Or,
$$x^2 - 4x + 9y^2 + 3 = 0$$
.
Since x is real $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$
Or, $16 - 4(9y^2 + 3) \ge 0$ or, $4 - 9y^2 - 3 \ge 0$
Or, $9y^2 - 1 \le 0$ or, $9y^2 \le 1$ or, $y^2 \le \frac{1}{9}$
Now $y^2 \le \frac{1}{9} \Leftrightarrow -\frac{1}{3} \le y \le \frac{1}{3}$...(ii)
Equation (i) can also be written as
 $9y^2 + 0y + x^2 - 4x + 3 = 0$...(iii)
Since y is real $\therefore 0^2 - 4.9(x^2 - 4x + 3) \ge 0$
Or, $x^2 - 4x + 3 \le 0$
 $\Rightarrow x \in [1,3]$
40. The equation $a_8x^8 + a_7x^7 + a_9x^6 + ... + a_9 = 0$ has all its roots positive and real
(where $a_8 = 1, a_7 = -4, a_9 = 1/2^8$), then
A) $a_1 = \frac{1}{2^8}$ B) $a_1 = -\frac{1}{2^4}$ C) $a_2 = \frac{7}{2^5}$ D) $a_2 = \frac{7}{2^8}$
Key. B
Sol. Let the roots be $\alpha_1, \alpha_2, ..., \alpha_8$
 $\Rightarrow \alpha_1 + \alpha_2 + ... + \alpha_8 = 4$
 $\alpha_1 \alpha_2, ..., \alpha_8 = \frac{1}{2^8}$
 $\Rightarrow AM = GM \Rightarrow$ all the roots are equal to $\frac{1}{2}$.
 $\Rightarrow AM = GM \Rightarrow$ all the roots are equal to $\frac{1}{2}$.
 $\Rightarrow a_1 = -^8C_5(\frac{1}{2})^5 = -\frac{7}{2^4}$
 $a_3 = -^8C_5(\frac{1}{2})^5$

41. If every root of a polynomial equation (of degree 'n') f(x) = 0 with leading coefficient "1" is real and distinct, then the equation $f''(x)f(x) - \{f'(x)\}^2 = 0$ has.

D. $\frac{1}{5}$

(A) at least one real root (B) no real root

(C) at most one real root $\,$ (D) exactly two real roots

Sol. Let $f(x) = (x-a_1)(x-a_2)\dots(x-a_n)$ where $a_1, a_2, \dots, a_{n \in \mathbb{R}}$ take log both sides and differentiate. Then

$$\frac{f'(x)}{f(x)} = \frac{1}{x - a_1} + \frac{1}{x - a_2} + \dots + \frac{1}{x - a_n}$$
Again diff w.r.t. 'x'

$$\frac{f f'' - (f')^2}{f^2} = -\left[\frac{1}{(x-a_1)^2} + \frac{1}{(x-a_2)^2} + \dots + \frac{1}{(x-a_n)^2}\right] < 0 \,\forall x \in \mathbb{R}$$

$$\Rightarrow f f' - (f')^2 = 0$$
 has no real root

В.

42. If f(x) is a polynomial of least degree such that $f(r) = \frac{1}{r}$, $r = 1, 2, 3, __9$, then $f(10) = __$

Key. D

Sol.
$$xf(x) - 1 = 0$$
 has roots 1,2,3 ____9

$$xf(x) - 1 = A(x-1)(x-2)$$
____x-9

Put $x = 0 \Longrightarrow A = \frac{1}{9!}$

Put
$$x = 10 \Rightarrow 10f(10) - 1 = 1 \Rightarrow f(10) = \frac{1}{5}$$

43. The number of ordered pairs of integers (x, y) satisfying the equation $x^2 + 6x + y^2 = 4$ is A. 2 B. 8 C. 6 D. 10 Key. B Sol. $(x+3)^2 + y^2 = 13$ $x+3=\pm 2, y=\pm 3 \text{ or } x+3=\pm 3, y=\pm 2$

44. The number of non-negative integer solutions of
$$x + y + 2z = 20$$
 is
A. 76 B. 84 C. 112 D. 121
Key. D
Sol. $x + y = 20 - 2Z$, $Z = 0, 1, 2, ... 10$

The number of solutions (non –ve) is $\sum_{7=0}^{10} (20 - 2Z + 1)_{C_1} = 121$

If
$$a+b+c=0$$
 for $a,b,c \in R$, then the equation $3ax^2+2bx+c=0$ has

- At least one root in [0,1]One root in [2,3] and another root in Α. Β. [-2, -1]C.
 - Imaginary roots D. Atleast one root in [1, 2]

Key. А

Let $f(x) = ax^3 + bx^2 + cx$. Then f is continuous and differentiable [0,1], Sol. f(0) = f(1) = 0. Hence by Rolle's theorem there exists $k \in (0,1)$ such that $3ak^2 + 2bk + c = 0$

If a,b,c be the sides of a triangle ABC and if roots of the equation $a(b - c)x^2 + c^2 +$ 46. b(c - a)x + c(a – b) = 0 are equal, then $\sin^2\left(\frac{A}{2}\right), \sin^2\left(\frac{B}{2}\right), \sin^2\left(\frac{C}{2}\right)$ are in (A) AP (B)GP (D) AGP Key. С a(b-c) + b(c-a) + c(a-b) = 0Sol. ÷ x = 1 is a root of the equation • $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$ Then, other root = 1 (:: roots are equal) $\alpha \times \beta = \frac{c(a-b)}{a(b-c)}$ ÷. ab - ac = ca - bc $b = \frac{2ac}{a + c}$ \Rightarrow *.*.. a, b, c are in HP *.*.. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in AP. Then, $\Rightarrow \frac{s}{a}, \frac{s}{b}, \frac{s}{c} \text{ are in AP}$ $\Rightarrow \frac{s}{a} - 1, \frac{s}{b} - 1, \frac{s}{c} - 1 \text{ are in AP}.$ $\Rightarrow \frac{(s-a)}{a}, \frac{(s-b)}{b}, \frac{(s-c)}{c}$ are in AP.
$$\begin{split} \text{Multiplying in each by } & \frac{abc}{(s-a)(s-b)(s-c)} \\ \text{Then} & \frac{bc}{(s-b)(s-c)}, \frac{ca}{(s-c)(s-a)}, \frac{ab}{(s-a)(s-b)} \text{ are in AP.} \end{split}$$
 $\Rightarrow \qquad \frac{(s-b)(s-c)}{bc}, \frac{(s-c)(s-a)}{ca}, \frac{(s-a)(s-b)}{cb} \text{ are in HP.}$

Quadratic Equations & Theory of Equations

Or
$$\sin^2\left(\frac{A}{2}\right), \sin^2\left(\frac{B}{2}\right), \sin^2\left(\frac{C}{2}\right)$$
 are in HP
47. If a, β, γ are the roots of the equation $x^3 + px + q = 0$, then the value of the determinant $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha & \beta \end{vmatrix}$ is
 $\begin{vmatrix} (A) & 4 & (B)2 & (C)0 & (D) -2 \end{vmatrix}$
Key. C
Sol. Since a, β, γ are the roots of $x^3 + px + q = 0$
 $\therefore \quad \alpha + \beta + \gamma = 0$
Applying $C_1 \rightarrow C_1 + C_2 + C_3$, then
 $\begin{vmatrix} \alpha + \beta + \gamma & \gamma & \alpha \\ \alpha + \beta + \gamma & \gamma & \alpha \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \gamma & \alpha \\ \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
 $\begin{vmatrix} \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \alpha \quad \beta \end{vmatrix}$
48. The value of *b* and *c* for which the identity $f(x + 1) - f(x) = 8x + 3$ is satisfied, where $f(x) = bx^2 + cx + d$ are
 $(A) \quad b = 2, c = 1$ (B) $b = 4, c = -1$
 $(C) \quad b = -1, c = 4$ (D) $b = -1, c = 1$
Key. B
Sol. $\because f(x + 1)^2 - f(x) = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 + c(x + 1) + d\} - \{bx^2 + cx + d\} = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 8x + 3$
 $\Rightarrow \quad b\{(x + 1)^2 - x^2\} + c = 2x + (c + a - 2b) = 0$ has a root in the interval $(-1, 0)$, then
 $A)$ be annot be the G.M. of a, c B) b may be the G.M. of a, c
 $C) b is the G.M. of a, c D) none of these
Key. A
Sol: tet $f(x) = (a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b)$
According to the given condition, we have
 $f(0)f(-1) < 0$
i.e. $(c + a - 2b)(2a - b - c) < 0$
i.e. $(c + a - 2b)(2a - b - c) < 0$
i.e. $(c + a - 2b)(a - b - a - c) < 0$
i.e. $(c + a - 2b)(a - b - a - c) < 0$
i.e. $b > \frac{d + c}{2}$
 $\Rightarrow b$ cannot be the G.M. of a, c , since G.M < A.M. always.$

Quadratic Equations & Theory of Equations

main	ematics Quadratic Equations & Theory of Equations
50.	The values of 'a' for which the quadratic expression $ax^2 + (a-2)x - 2$ is negative for exactly
	two integral values of x, belongs to (A) $\begin{bmatrix} -1,1 \end{bmatrix}$ (B) $\begin{bmatrix} 1,2 \end{bmatrix}$
	(c) $[3,4]$ (d) $[-2,-1)$
Key.	B
Sol.	Let $f(x) = ax^2 + (a-2)x - 2$
	$\mathrm{f}\left(\mathrm{x} ight)$ is negative for two integral values of x, so graph should be vertically upward parabola
	i.e., $a > 0$
	Let two roots of $f(x) = 0$ are α and β then $\alpha, \beta = \frac{-(a-2)\pm(a+2)}{2a}$
	$\Rightarrow \alpha = -1, \beta = \frac{2}{a} \Rightarrow 1 < \beta \le 2 \Rightarrow 1 < \frac{2}{a} \le 2 \Rightarrow a \in [1, 2]$
51.	Let $f(x)$ be a function such that $f(x) = x - [x]$, where $[x]$ is the greatest integer less
	than or equal to x. Then the number of solutions of the equation $f(x) + f\left(\frac{1}{x}\right) = 1$ is (are)
Vari	A) 0 B) 1 C) 2 D) infinite
Key.	D
	Sol. Given, $f(x) = x - [x], x \in R - \{0\}$
	Now $f(x) + f\left(\frac{1}{x}\right) = 1$ \therefore $x - [x] + \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor = 1$
	$\Rightarrow \left(x + \frac{1}{x}\right) - \left(\left[x\right] + \left[\frac{1}{x}\right]\right) = 1 \qquad \Rightarrow \left(x + \frac{1}{x}\right) = \left[x\right] + \left[\frac{1}{x}\right] + 1 \qquad \dots (i)$
	Clearly ,R.H.S is an integer L. H. S. is also an integer
	Let $x + \frac{1}{x} = k$ an integer $\Rightarrow x^2 - kx + 1 = 0$
	$\therefore x = \frac{k \pm \sqrt{k^2 - 4}}{2}$
	For real values of x, $k^2 - 4 \ge 0 \Longrightarrow k \ge 2$ or $k \le -2$
	We also observe that $k=2$ and -2 does not satisfy equation (i)
6	The equation (i) will have solutions if $k > 2$ or $k < -2$, where $k \in z$. Hence equation (i) has infinite number of solutions.
52.	If both the roots of $(2a-4)9^x - (2a-3)3^x + 1 = 0$ are non-negative, then
	A) $0 < a < 2$ B) $2 < a < \frac{5}{2}$ C) $a < \frac{5}{4}$ D) $a > 3$
Key.	В
Sol.	Putting $3^x = y$, we have
	$(2a-4)y^2-(2a-3)y+1=0$
	This equation must have real solution

Mathematics

$$\Rightarrow (2a-3)^2 - 4(2a-4) \ge 0$$

$$\Rightarrow 4a^2 - 20a + 25 \ge 0$$

$$\Rightarrow (2a-5)^2 \ge 0. \text{ This is true.} y=1 \text{ satisfies the equation}$$

Since 3^x is positive and $3^x \ge 3^0$, $y \ge 1$
Product of the roots $=1 \times y > 1$

$$\Rightarrow \frac{1}{2a-4} > 1$$

$$\Rightarrow 2a-4 < 1 \Rightarrow a < \frac{5}{2}$$

Sum of the roots $= \frac{2a-3}{2a-4} > 1$

$$\Rightarrow \frac{(2a-3)-(2a-4)}{2a-4} > 0$$

$$\Rightarrow \frac{1}{2a-4} > 0 \Rightarrow a > 2$$

$$\Rightarrow 2 < a < \frac{5}{2}$$

If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of x and y then
A) $x \in [1,3], y \in [1,3]$ B) $x \in [1,3], y \in [-\frac{1}{3}, \frac{1}{3}]$
C) $x \in [-\frac{1}{3}, \frac{1}{3}], y \in [1,3]$
B

Key.

53.

Sol. Given equation is
$$x^2 + 9y^2 - 4x + 3 = 0$$
 ...(i)
Or, $x^2 - 4x + 9y^2 + 3 = 0$.
Since x is real $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$
Or, $16 - 4(9y^2 + 3) \ge 0$ or, $4 - 9y^2 - 3 \ge 0$
Or, $9y^2 - 1 \le 0$ or, $9y^2 \le 1$ or, $y^2 \le \frac{1}{9}$
 $y^2 = 1 = 1$ or, $y^2 \le \frac{1}{9}$ (iii)

Now
$$y^2 \le \frac{1}{9} \Leftrightarrow -\frac{1}{3} \le y \le \frac{1}{3}$$
 ...(ii)
Equation (i) can also be written as
 $9y^2 + 0y + x^2 - 4x + 3 = 0$...(iii)
Since y is real $\therefore 0^2 - 4.9(x^2 - 4x + 3) \ge 0$
Or, $x^2 - 4x + 3 \le 0$
 $\Rightarrow x \in [1,3]$

The equation $a_8x^8 + a_7x^7 + a_6x^6 + ... + a_0 = 0$ has all its roots positive and real 54. $(where a_8 = 1, a_7 = -4, a_0 = 1/2^8)$, then B) $a_1 = -\frac{1}{2^4}$ C) $a_2 = \frac{7}{2^5}$ A) $a_1 = \frac{1}{2^8}$ D) $a_2 = \frac{7}{28}$ Key. Sol. Let the roots be $\alpha_1, \alpha_2, ..., \alpha_8$ $\alpha_1 + \alpha_2 + \dots + \alpha_8 = 4$ \Rightarrow $\alpha_1 \alpha_2 \dots \alpha_8 = \frac{1}{2^8}$ $(\alpha_1 \alpha_2 \dots \alpha_8)^{1/8} = \frac{1}{2} = \frac{\alpha_1 + \alpha_2 + \dots + \alpha_8}{8}$ \Rightarrow AM=GM \Rightarrow all the roots are equal to $\frac{1}{2}$. \Rightarrow $a_1 = -{}^8C_7 \left(\frac{1}{2}\right)' = -\frac{1}{2^4}$ \Rightarrow $a_2 = {}^{8}C_6 \left(\frac{1}{2}\right)^6 = -\frac{7}{2^4}$ $a_3 = -{}^8C_5 \left(\frac{1}{2}\right)$ If f(x) = $\prod_{i=1}^{n-1} (x - a_i) + \sum_{i=1}^{n-1} a_i - 3x$, where $a_i < a_{i+1}$, then f(x) = 0 has 55. (A) only one real root (B) three real roots of which two of them are equal (C) three distinct real roots (D) three equal roots KEY : C SOL : $f(x) = (x-a_1)(x-a_2)(x-a_3)+(a_1-x)+(a_2-x)+(a_3-x)$ Now $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow \infty$ are $x \rightarrow \infty$. Again $f(a_1) = (a_2 - a_1) + (a_3 - a_1) > 0$ $[:: a_1 < a_2 < a_3]$ \Rightarrow One root belongs to $(-\infty, a_1)$ Also, $f(a_3) = (a_1 - a_3) + (a_2 - a_3) < 0$ \Rightarrow One root belongs to (a_1, a_3) So f(x) = 0 has three distinct real roots.

 $\frac{x^2 + 10x - 36}{x(x-3)^2} = \frac{a}{x} + \frac{b}{x-3} + \frac{c}{(x-3)^2}$ is an If a, b and c are numbers for which the equation 56. identity, then a + b + c equals (A) 2 (B) 3 (C) 10 (D) 8 Key. Α Sol. = hence $x^{2} + 10x - 36 = a(x - 3)^{2} + b(x - 3)x + cx$ put x = 0; $-36 = 9a \implies a = -4$ $x^{2} + 10x - 36 = x^{2}(-4 + b) + x(24 - 3b + c) + (-36)$ comparing coefficients also, $-4 + b = 1 \implies b = 5$ $24 - 15 + c = 10 \implies 9 + c = 10 \implies c = 10$ a = -4; b = 5; c = 1 i.e. a + b + c = 257. If one root of equation $x^2 - 4ax + a + f(a) = 0$ is three times of the other then minimum value of f(a) is A) $\frac{-1}{6}$ B) $\frac{-1}{10}$ D) $\frac{-1}{12}$ Key. D Let roots are α and 3α , then $4\alpha = 4a \Rightarrow$ $\alpha = \alpha$ and Sol. $a^2 - 4a^2 + f(a) = 0 \implies f(a) = 3a^2 - a$ f'(a) = 6a - 1, f''(a) = 6, then minimum value of f'(a) = 6a - 1, f''(a) = 6The number of real roots of $\left(\frac{5}{13}\right)^x + \frac{21}{13} = 2^x$ is 58. (A) Two (B) Infinitely many (D) zero (C) only one Key. Sol. (0, 34/13) (0, 1)Both graphs cut at only one point For a non zero polynomial P, the equation $|P(x)| = e^x$ has 59. (A) At least one solution (B) No solution

(D) Exactly 1 solution

(C) Exactly 2 solution

Key. A

Sol. $\lim_{x\to\infty} e^{-x} |P(x)| = 0$

and $\lim_{x \to -\infty} e^{-x} | P(x) | = \infty$

consequently there is an $x_0 \in \mathbb{R}$ such that $e^{-x_0} | \mathbb{P}(x_0) | = 1$

60. A continuous function y = f(x) is defined in a closed interval [-7,5].

A(-7,-4), B(-2,6), C(0,0), D(1,6), E(5,-6) are consecutive points on the graph of 'f' and AB, BC, CD, DE are line segments. The minimum number of real roots of the equation f[f(x)]=6 is

A) 6

C) 2

D) ()

Key. A

Sol.
$$f[f(x)] = 6 \Rightarrow f(x) = -2$$
 (or) $f(x) = 1$

B) 4

$$f(x) = -2$$
, has two roots and $f(x) = 1$ has four roots

61. If
$$f(x) = -3x + \prod_{i=1}^{3} (x - a_i) + \sum_{i=1}^{3} a_i$$
, where $a_i < a_{i+1}$, then $f(x) = 0$ has

- A) Only one real root
- B) Three real roots of which two of them are equal
- C) Three distinct real roots
- D) Three equal roots

Key.

Sol.

С

$$f(x) = (x - a_1)(x - a_2)(x - a_3) + (a_1 - x) + (a_2 - x) + (a_3 - x)$$

Now, $f(x) \rightarrow -\infty_{as} x \rightarrow -\infty_{and} f(x) \rightarrow \infty_{are} x \rightarrow \infty$
Again $f(a_1) = (a_2 - a_1) + (a_3 - a_1) > 0 [\because a_1 < a_2 < a_3]$

$$\Rightarrow_{One root belongs to} (-\infty, a_1)$$

Also,
$$f(a_3) = (a_1 - a_3) + (a_2 - a_3) < 0$$

$$\Rightarrow$$
 One root belongs to (a_1, a_3)

So, f(x) = 0 has three distinct real roots.

62. The number of real values of m' from for which the equation $z^{3}+(3+i)z^{2}-3z-(m+i)=0$ has at least one real root is B) 3 A) 1 C) Infinite D) 2 Key. D $z^{3} + (3+i)z^{2} - 3z - (m+i) = 0$ Sol. $(z^3 + 3z^2 - 3z - m) + i(z^2 - 1) = 0$ If 'z' is a real root, then $z^3 + 3z^2 - 3z - m = 0$ and $z^2 - 1 = 0$ $\therefore z = \pm 1$ $z = 1 \implies m = 1$ $z = -1 \implies m = 5$ Number of all integral values of x, so that $x^2 + 19x + 89$ is a perfect square is 63. a) 0 b) 1 c) 2 d) 3 Key : C Let $x^2 + 19x + 89 = \lambda^2$ Sol. \Rightarrow x²+19x+(89- λ^2)=0 should have integral roots : D should be a perfect square. $(19)^2 - 4(89 - \lambda^2) =$ Perfect square \Rightarrow $(19)^2 - 4(89 - \lambda^2) =$ Perfect square \Rightarrow $(m^2-4\lambda^2)=5 \Rightarrow (m-2\lambda)(m+2\lambda)=5$ \Rightarrow $(m-2\lambda=5, m+2\lambda=1)$ *.*.. $(m-2\lambda = -5, m+2\lambda = -1)$ or $(m-2\lambda = -5, m+2\lambda = -1)$ \Rightarrow $m = 3, -3, \lambda = 1, -1$ For $\lambda = \pm 1$ equation becomes $x^2 + 19x + 88 = 0$ (x+11)(x+8) = 0x = -8, -11.

Thus, required values of x are -8, -11.

64. Let $f(x) = x^2 + bx + c$, b is negative odd integer, f(x) = 0 has two distinct prime number as roots, and b + c = 15, then least value of f(x) is

(A) $\frac{-233}{4}$	(B) $\frac{233}{4}$
(C) $-\frac{225}{4}$	(D) none of these

Ma	them	natic	2

Key:	C		
Hint:	$f(x) = (\sin^2\theta)x^3 + \frac{1}{2} \sin^2\theta x^2 - 2\sin^2\theta x - \sin^2\theta$		
	$f'(x) = (3sin^2\theta)x^2 + sin2\theta x - 2sin^2\theta$		
	Then D > 0 and product of roots < 0		
	So f(x) has local maxima at some $x \in R^-$		
	and local minima at some $x\!\in\!R^{\scriptscriptstyle +}$		
65.	Let $f(x) = x^2 + \lambda x + \mu \cos x$, λ being	g an integer and μ a real numbe	er. The number of
	ordered pairs (λ, μ) for which the equation	ations $f(x) = 0$ and $f(f(x))$	=0 have the same
	(non empty) set of real roots is		
	(A) 4	(B) 6	
	(C) 8	(D) infinite	
Key:	А		
11	Let α be a next of $f(\alpha)$ 0 become by	$f(\alpha) = f(\alpha)$	
Hint:	Let α be a root of $f(x) = 0$, so we have	ave $f(\alpha) = 0$ and thus $f(f(\alpha))$	(x) = 0,
	$\Rightarrow f(0) = 0 \Rightarrow \mu = 0.$		
	We then have $f(x) = x(x+\lambda)$ and the	nus $\alpha = 0, -\lambda$.	
	$f(f(x)) = x(x+\lambda)(x^2+\lambda x+\lambda)$		
	We want λ such that $x^2 + \lambda x + \lambda$ has that $0 \le \lambda < 4$.	no real roots besides 0 and $-\lambda$. We can easily find
66.	If ax ² + bx + c; $a, b, c \in R$ has no real ze	proes, and if c < 0, then	
	(a) $a < 0$ (b) $a + b + c > 0$	(c) 4a + 2b + c > 0	(d) a – b + c > 0
Key:	a		
Hint:	Let $f(x) = ax^2 + bx + c$. Since $f(x)$ has no real zeroes, either $f(x) > 0$ or $f(x) < 0$ for all $x \in R$. since $f(0) = c < 0$, we get $f(x) < 0$ for all $x \in R$. Therefore, $a < 0$ as the parabola $y = f(x)$ must open downward. Obviously $f(1)$, $f(-1)$ and $f(2) < 0$.		
67.	The quadratic equation $(4 + \cos \theta) x^2 -$		
	(A) Real and distinct roots for all θ		
	(B) Real or complex roots for depending	g upon θ	
~	(C) Equal roots for all θ		
	(D) Complex roots for all θ		
Key:	D Discriminant = $4 \sin^2 \theta = 4 (4 + \cos \theta) / 2$	aac())	
Sol :	Discriminant = $4\sin^2\theta - 4(4 + \cos\theta)(3 - 4\sin^2\theta)$		
	$= 4[\sin^2\theta - (12 - \cos\theta - \cos\theta)]$ $= 4[-11 + \cos\theta] < 0 \forall \theta \in \mathbb{R}$		
68.	If α_1 , α_2 , α_n are roots of the equation		$(\alpha_1 - \alpha_2) (\alpha_1 - \alpha_4) \dots$
	$(\alpha_1 - \alpha_n)$ is equal to		, (
	(A) n	(B) n $lpha_1^{n-1}$	
	(C) nα ₁ + b	(D) n α_1^{n-1} + a	

KEY : D SOL : $x^n + ax + b = (x - \alpha_1) (x - \alpha_2) \dots (x - \alpha_n)$ differentiate both sides w.r.t. x $nx^{n-1} + a = (x - \alpha_2) \dots (x - \alpha_n) + (x - \alpha_1) (\frac{d}{dx} (x - \alpha_2) \dots (x - \alpha_n))$ $n \alpha_1^{n-1} + a = (\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) \dots (\alpha_1 - \alpha_n)$ put x = α_1 The equation $|2ax-3|+|ax+1|+|5-ax|=\frac{1}{2}$ possesses 69. (A) infinite number of real solution for some $a \in \mathbb{R}$ (B) finite number of real solutions for some $a \in \mathbf{R}$ no real solution for some $a \in \mathbf{R}$ (C) (D) no real solution for all $a \in \mathbf{R}$ Key: D Hint: The equation |2ax - 3| + |ax + 1| + |5 - ax|..... $|2ax-3|+|ax+1|+|5-ax| \ge |2ax-3+(-ax-1)+5-ax|$ So no solution for $\frac{1}{2}$ Let P(x) be a polynomial with degree 2009 and leading co-efficient unity such that 70. P(0)=2008, P(1)=2007, P(2)=2006,....P(2008)=0 then the value of P(2009)= (|n) - a where n and a are natural number then value of (n+a)(B) 2009 (A) 2010 (C) 2011 (D) 2008 Key: Α P(x) - 2008 + x = x(x-1)(x-2)(x-3)....(x-2008)Hint: Put x = 2009 P(2009)+1=(2009)!71. (L-2)If $f(x) = ax^2 + bx + c = 0$ has real roots and its coefficients are odd positive integers then a) f(x) = 0 always has irrational roots $\left| f\left(\frac{p}{q}\right) \right| \ge \frac{1}{q^2}$ where $p, q \in I$

c) If a.c = 1, then equation must have exactly one root α such that $[\alpha] = -1$, where [.] is greatest integer function

d) equation has rational roots

Key; a, b

Sol: An equation with odd coefficients cannot have rational roots

S/

 \therefore f (x) = 0 has irrational roots.

$$f\left(\frac{p}{q}\right) = \frac{ap^2 + bpq + cq^2}{a^2} \ge \frac{1}{a^2} \quad (\therefore a, b, c \text{ are odd integers } p, q \text{ are integers})$$

72. (L-1)Let a, b, c be real numbers with $a \neq 0$ and let α, β be the roots of the equation $ax^{2} + bx + c = 0$. Then one of the roots of the equation $a^{3}x^{2} + abcx + c^{3} = 0$ in terms of α, β are

a)
$$\frac{\alpha^2}{\beta}$$

b) α^3
c) β^3
d) $\alpha\beta^2$

Key:

d

Sol :

We have $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ Let γ , δ be the roots of $a^3x^2 + abcx + c^3 = 0$.

Then
$$\gamma, \delta = \frac{-abc \pm \sqrt{(abc)^2 - 4a^3c^3}}{2a^3} = \frac{ac\left\{-b \pm \sqrt{b^2 - 4ac}\right\}}{2a^3} = \frac{c}{2a}\left\{-\frac{b}{a} \pm \sqrt{\left(\frac{b}{a}\right)^2 - 4\frac{c}{a}}\right\}$$
$$= \frac{1}{2}(\alpha\beta)\left\{(\alpha + \beta) \pm \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}\right\}$$
$$= \frac{1}{2}(\alpha\beta)\left\{(\alpha + \beta) \pm (\alpha - \beta)\right\} = \alpha^2\beta, \alpha\beta^2$$
Thus, roots of $a^3x^2 + abcx + c^3 = 0$ are $\alpha^2\beta$ and $\alpha\beta^2$

73. (L-2) If α,β are the roots of $x^2 - 3x + \lambda = 0(\lambda \in R)$ and $\alpha < 1 < \beta$, then the true set of values

a)
$$\lambda \in \left(2, \frac{9}{4}\right]$$

b) $\lambda \in \left(-\infty, \frac{9}{4}\right]$
c) $\lambda \in (2, \infty)$
d) $\lambda \in (-\infty, 2)$

Key: d

Sol: Let $f(x) = x^2 - 3x + \lambda$ Clearly f(1) < 0

 $\Rightarrow 1 - 3 + \lambda < 0 \Rightarrow \lambda < 2 \Rightarrow \lambda \in (-\infty, 2)$

74. (L-1)Let $2^{y-x}(x+y)=1$ and $(x+y)^{x-y}=2$ then ordered pair (x, y) can be

a)	$\left(\frac{3}{2}\right)$	$\left(\frac{1}{2}\right)$
c)	$\left(\frac{3}{2}\right)$	$\left(\frac{3}{4}\right)$

Key: a

Sol : Put x = 3/2, $y = \frac{1}{2}$ in given equations.

75. (L-1)The equation
$$|2ax - 3| + |ax + 1| + |5 - ax| = \frac{1}{2}$$
 possesses

- a) infinite number of real solution for some $a \in R$
- b) finite number of real solutions for some $a \in R$
- c) no real solution for some $a \in R$

d) no real solution for all
$$a \in R$$

Key: d

Sol:
$$|2ax-3|+|ax+1|+|5-ax| \ge |2ax-3-ax-1+5-ax|$$

Hence it has no solution

76. (L-1)If $x^2 + 5 = 2x - 4\cos(a + bx)$ where $a, b \in (0,5)$, is satisfied for at least one real x, then the maximum value of (a + b) is

a) π c) 3π d) none of these

Key: c

Sol:
$$x^2 - 2x + 5 = -4 \cos(a + bx)$$

 \sim

$$-4\cos(a+bx) \ge 4 \to \cos(a+bx) \le -1$$
$$\therefore \cos(a+b) = -1$$
$$\therefore a+b = \pi or 3\pi$$

77. (L-2)If the equation $x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 5$, with integral co-efficients, has four distinct integral roots then the number of integral roots of the equation

KEY: a

Sol: Let
$$\alpha_i i = 1, 2, 3, 4ihe4$$
 integral roots of $x^n + a_1 x^{n-1} + ... + a_n = 5$ and let K be an integral root of $x^n + a_1 x^{n-1} + ... + a_n = 7$
 $\Rightarrow (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4) = 2$ has an integral root K.
 $\Rightarrow (K - \alpha_1)(K - \alpha_2)(K - \alpha_3)(K - \alpha_4) = 2$
 $K - \alpha_i$, i = 1,2,3,4 are all integers and are distinct which is impossible
(\because product of 4 district integers cannot be 2).
Hence $x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n = 7$ has no integral roots.
24. (L-1)The set of values of 'a' for which
 $x^2 + ax + \sin^{-1}(x^2 - 4x + 5) + \cos^{-1}(x^2 - 4x + 5) = 0$ has at least one real solution is
given by
a) $(-\infty, -\sqrt{2}\pi] \cup [\sqrt{2\pi}, \infty)$
b) $\frac{-\pi - 8}{4}$
Key: b
Sol: Charly $x^2 - 4x + 5 = (x - 2)^2 + 1$, *lies b* | $w - 1, 1$. $\Rightarrow x = 2$ is the only point of the domain,
It must be the solution. $\therefore 4 + 2a + \frac{\pi}{2} = 0 \Rightarrow a \Rightarrow -\frac{\pi - 8}{4}$
78. (L-1)If $ax^2 + bx + c = 0$ and $5x^2 + 6x + 12 = 0$ have a common root where a, b and c are sides of a triangle ABC, then
a) ΔABC is not use angled
b) ΔABC is acute angled
c) ΔABC is right angled
b) ΔABC is acute angled
c) ΔABC is right angled
b) ΔABC is acute angled
c) ΔABC is right angled
b) ΔABC is acute angled
c) $5x^2 + 6x + 12 = 0$

sol: $5x^2 + 6x + 12 = 0$ (has complex roots only)

79. (L-1)If 0 < a < 5, 0 < b < 5 and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for atleast one real x, then value of a + b may be equal to

Math	ematics			Quadratic Equat	ions & Theory of Equa
	a) π	b) $\frac{\pi}{2}$	c) 3π	d) 4π	
Key :	a				
sol :	$\cos(a + bx)$	$x) = -1 - \frac{(x-1)^2}{4}$	2 – exists only wl	hen $x = 1$	
	at $x = 1$; a				
		$x = \frac{-(x^2 - 2x + 4)}{4}$	$+5) = -1 - \frac{(x - x)}{4}$	$\frac{1)^2}{1}$	
	\Rightarrow x = 1				
	\Rightarrow a + b =	= 5			
80. (L·	-1)Number o	f integral values	of x satisfying	$3x^2 + 8x < 2\sin^{-1}\sin^{-1}$	$14 - \cos^{-1}\cos 4$ is
	a) one			b) two	0
	c) three			d) inf	inite
Key :	а			. C	X
Sol :	$3x^2 + 8x < 3x^2 + 8x^2 < 3x^2 + 8x^2 + $	$< 2\sin^{-1}\sin 4 - $	$\cos^{-1}\cos 4$		
	$3x^2 + 8x < 3x^2 + 8x^2 < 3x^2 < 3x^2 + 8x^2 < 3x^2 < 3x^2 + 8x^2 + 8x^2 < 3x^2 + 8x^2 < 3x^2 + 8x^2 $	$< 2(\pi - 4) - (2\pi)$	$\mathfrak{r}\!-\!4)$	0/11.	
	$< 2\pi - 8 -$	$-2\pi + 4$			
	< -4		c		
	$\Rightarrow 3x^2 + 8$	3x + 4 < 0 has o	ne solution	•	
81.				uadratic equation large as the other, is	
	(A) $\frac{2}{3}$	(B)	$-\frac{2}{3}$	(C) $\frac{1}{3}$	(D) $-\frac{1}{3}$
Key.	А	<i>N</i> ,			
Sol.		ots are $lpha$ and 2 $lpha$			
		$+2\alpha = \frac{1-3a}{a^2-5a}$	-		
Ĉ	$\Rightarrow 2$	$\frac{1}{9} \frac{(1-3a)^2}{(a^2-5a+3)^2}$	$\left[\frac{1}{a^2-5a+3}\right] = \frac{2}{a^2-5a+3}$	3	
	⇒ 9a	² – 6a + 1 = 9a ² –	- 45a + 27		
		a = 26			
	$\Rightarrow \frac{2}{3}$				
	3				

82. (L-1)If a, b and c are each positive, and a + b + c = 6 then the minimum value of

$$\left(a+\frac{1}{b}\right)^{2} + \left(b+\frac{1}{c}\right)^{2} + \left(c+\frac{1}{a}\right)^{2} \text{ is}$$
a) $\frac{75}{2}$
b) $\frac{75}{4}$
c) $\frac{65}{4}$
d) $\frac{65}{2}$

Key: b

Sol: Using the AM ≥ HM of
$$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$$
 we get, $\frac{\frac{1}{a}, \frac{1}{b}, \frac{1}{c}}{3} \ge \frac{3}{a+b+c} = \frac{3}{6} = \frac{1}{2}$
So, $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{3}{2}$
Now,
 $\frac{\left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2}{3} \ge \left(\frac{a + \frac{1}{b} + b + \frac{1}{c} + c + \frac{1}{a}}{3}\right)^2 \ge \left(\frac{6 + \frac{3}{2}}{3}\right)^2 = \left(\frac{5}{2}\right)^2 = \frac{25}{4}$
 $\therefore \left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \ge \frac{75}{4}$

83. (L-2)Given positive real numbers a, b and c such that a + b + c = 1, then maximum value of

$$a^{a}b^{b}c^{c} + a^{b}b^{c}a^{a} + a^{c}b^{a}c^{b}$$
 is
a) 1 b) 2 c) 3 d) 4

Key:

a

Sol: Using the weighted AM – GM in equality we get,

$$\frac{c.a+a.b+b.c}{c+a+b} \ge \left(a^{c}b^{a}c^{b}\right)^{\frac{1}{a+b+c}}$$
$$\frac{b.a+c.b+a.c}{b+c+a} \ge \left(a^{b}.b^{c}.c^{a}\right)^{\frac{1}{a+b+c}}$$
$$\frac{a.a+b.b+c.c}{a+b+c} \ge \left(a^{a}b^{b}c^{c}\right)^{\frac{1}{a+b+c}}$$

Adding these inequalities together we get,

$$\frac{a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)}{a + b + c} \ge (a^{a} \cdot b^{b} \cdot c^{c}) + (a^{c} b^{a} c^{b}) + (a^{b} b^{c} c^{a}) [::a + b + c = 1]$$

$$l = \frac{(a + b + c)^{2}}{a + b + c} \ge (a^{a} \cdot b^{b} \cdot c^{c}) + (a^{c} \cdot b^{a} \cdot c^{b}) + (a^{b} b^{c} c^{a})$$
84. (1.-2)The solution of $\left|\frac{x^{2} - 5x + 4}{x^{2} - 4}\right| \le 1$ is

$$a) \left[0, \frac{8}{5}\right] \cup \left[\frac{5}{2}, +\infty\right) \qquad b) \left[0, \frac{5}{8}\right] \cup \left[\frac{5}{2}, +\infty\right) \qquad c) \left[0, \frac{5}{8}\right] \cup \left[\frac{8}{5}, \infty\right) \qquad d) \text{ None}$$
of these
Key:A
Hint: $-1 \le \frac{x^{2} - 5x + 4}{x^{2} - 4} + 1 \ge 0$

$$\frac{2x^{2} - 5x + 4}{x^{2} - 4} + 1 \ge 0$$

$$\frac{x^{2} - 5x + 4}{x^{2} - 4} - 1 \le 0$$

$$x(x - \pi_{2})(x - 2)(x + 2) \ge 0$$

$$\frac{x^{2} - 5x + 4 - x^{2} + 4}{x^{2} - 4} \le 0$$

$$\frac{8x + 5x}{x^{2} + 4} = 0$$

$$\frac{8x + 5x}{x^{2} + 4} = 0$$

$$(8 - 5x)(x^{2} - 4) \le 0$$

$$(x + 2)(5x - 8)(x - 2) \ge 0$$
85. (L-2)Complete solution set of the inequation $\sqrt{x - 1} \ge 3 - x$ is

a) $2 \le x \le 5$ b) $2 \le x \le 3$ c) $1 \le x \le 3$ d) $x \le 2$

Key: B

86. (L-2) The least value of k such that the equation $(\ln x) + k = e^{x-k}$ has a solution is

a) e b)
$$\frac{1}{e}$$

Key: c

Sol:
$$f(x) = e^{x-k}$$
 then inverse of $f(x)$; $f^{-1}(x) = (\ln x) + k$

and also both functions are increasing, therefore

$$f(x) = f^{-1}(x)$$
 is equivalent to $f(x) = f^{-1}(x) = x$

- $\Rightarrow \ln x + k = x$ should have a solution
- \Rightarrow k = x ln x

Now, let $g(x) = x - \ln x$

has least value 1 as
$$g'(x) = 1 - \frac{1}{x}$$
 has a minimum at $x = 1$

and
$$\lim_{x\to 0^+} g(x)$$
, $\lim_{x\to\infty} g(x)$ both approach to ∞ .

87. (L-2)f(x) be a polynomial of degree n and
$$f(x) = x^n f\left(\frac{1}{x}\right)$$
 then $f(x) = 0$

a) a reciprocal equation of second typeb) not a reciprocal equationc) a reciprocal equation of first typed) nothing can be say.

Key: c

Sol: Let
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$

Then $x^n f\left(\frac{1}{x}\right) = x^n \left(\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + a_n\right)$
 $= a_0 + a_1 x + \dots + a_n x^n$

Mathematics
Since,
$$f(x) = x^n f(\frac{1}{x})$$
.
 $\therefore a_0 = a_n \cdot a_1 = a_{n-1} \dots a_n = a_0$
 $\therefore f(x) = 0$ is a reciprocal equation of first type.
88. (1-2)Reduced the equation $3x^6 + x^5 - 27x^4 + 27x^2 - x - 3 = 0$ in standard reciprocal form is
 $a) 3x^4 + x^3 - 24x^2 + x + 3 = 0$ b) $3x^4 + x^3 + 24x^2 + x + 3 = 0$
 $c) 3x^4 - x^3 + 24x^2 - x + 3 = 0$ d) none of these
Key : a
Sol: $\therefore 3x^6 + x^5 - 27x^4 + 27x^2 - x - 3 = 0$
This can be written as,
 $3(x^6 - 1) + x(x^4 - 1) - 27x^2(x^2 - 1) = 0$
 $or, (x^2 - 1) \{3(x^4 + x^2 + 1) + x(x^2 + 1) - 27x^2\} = 0$
 $or, (x^2 - 1) \{3x^4 - 24x^2 + x^3 + x + 3\} = 0$
So, $3x^4 + x^3 - 24x^2 + x + 3x + 3 = 0$
So, $3x^4 + x^3 - 24x^2 + x + 3x = 0$ is a reciprocal equation of even degree (i.e. 4) and first type
Hence it is standard form of reciprocal equation.
89. (L-2)The polynomial $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - \alpha)^2(x - \beta)$ if value of c
is
 $a) 5$ b) $\cdot 7$ c) 25 d) 27
Key: d
Sol: The polynomial $x^3 - 3x^2 - 9x + c$ can be written in the form of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c$ can be written in the form of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c$ end be written in the form of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c$ end be written in the form of $(x - \alpha)^2(x - \beta)$ if the
equation $x^3 - 3x^2 - 9x + c = 0$ has two equal roots. Let these be α, α, β .
We have $\alpha + \alpha + \beta = 3$ or $2\alpha + \beta = 3$ (1)
 $\alpha + \alpha + \alpha + \alpha + \beta = -9$ or $2\alpha + \alpha^2 = -9$ (2)
Putting value of β in (2) we get
 $2\alpha(3 - 2\alpha) + \alpha^2 = -9$

 $\Rightarrow \alpha^2 - 2\alpha - 3 = 0$ $\Rightarrow (\alpha - 3)(\alpha + 1) = 0 \Rightarrow \alpha = -1,3$ When $\alpha = -1, \beta = 5$ and when $\alpha = 3, \beta = -3$. We also have $\alpha^2 \beta = -c$ When $\alpha = -1.\beta = 5.c = -5$ when $\alpha = 3.\beta = -3.c = 27$ 90. (L-1)The smallest positive value of p for which the equation $\cos(p \sin \alpha) = (p \cos \alpha)$ has a solution $\forall \alpha \in [0, 2\pi]$ is c) $\frac{\pi\sqrt{2}}{4}$ a) $\frac{\pi}{\sqrt{2}}$ b) $\pi\sqrt{2}$ Key : с $\sin\left(\pi + \frac{\pi}{4}\right) = 1 \Longrightarrow P$ is minimum Sol: $\Rightarrow P = \frac{\pi}{2\sqrt{2}}$ The number of real roots of $\left(\frac{5}{13}\right)^x + \frac{21}{13} = 2^x$ is 91. (A) Two (B) Infinitely many (D) zero (C) only one Key. С $v = 2^x$ $\left(\frac{5}{3}\right)^{\times}\frac{21}{13}$ (0 34/1)(0, 1)Sol. Both graphs cut at only one point 92. For a non zero polynomial P, the equation $|P(x)| = e^x$ has (A) At least one solution (B) No solution (C) Exactly 2 solution (D) Exactly 1 solution Key. $\text{Lime}^{-x} | \mathbf{P}(x) | = 0$ Sol. and Lt $e^{-x} |P(x)| = \infty$ consequently there is an $x_0 \in \mathbb{R}$ such that $e^{-x_0} | \mathbb{P}(x_0) | = 1$ Number of rational roots of the equation $\left|x^2 - 2x - 3\right| + 4x = 0$ is 93. a) 0 b) 1 c)2 d) 4 Key. В $x^2 - 2x - 3 \ge 0 \Longrightarrow x^2 - 2x - 3 = 0 \Longrightarrow x = -3$ Sol. $x^2 - 2x - 3 < 0 \Longrightarrow x^2 - 6x - 3 = 0$ no rational root

Mathematics

94.	If the equations $2x^2 - 7x + 1 = 0$ and $ax^2 + bx + 2 = 0$ have a common root, then		
	a) a=2,b=-7 b) $a = \frac{-7}{2}, b = 1$	c) a = 4, b = -14 d) a = -4, b = 1	
Key. Sol. 95.	C First equation has irrational roots both roots If p,q,r I R and the quadratic equation px^2 +		
	a) $p(p+q+r) > 0$	b) $p(p+q+r) < 0$	
	c) $q(p+q+r) > 0$	d) $q(p+q+r) < 0$	
Key. Sol.	A $p(px^2+qx+r) > 0$ for $x \in R$. Take x=1	ov.	
96.	For $x^2 - (\alpha + 2) x + 9 = 0$ to have real solutions, (A) $(-\infty, 4]$ (C) $(-\infty, 7] \cup [11, \infty)$	the range of ' α ' is (B) [4, ∞) (D) [-4, ∞)	
Key.	B		
Sol.	$\alpha = \frac{x^2 + 9}{ x } - 2 = x + \frac{9}{ x } - 2$		
$\alpha \ge 4.$			
97.	The number of solution(s) of the equations e ^x = (A) 1 and 2 (C) 3 and 2	x ² and e ^x = x ³ are respectively (B) 1 and 0 (D) 2 and 1	
Key. Sol.	A Let $f(x) = e^{-x} x^k$, $f'(x) = e^{-x} x^{k-1} (k-x)$ For $k = 2$, $f'(x) : - + + =$		

Mathematics If a,b,c,d are four positive numbers in G.P. then the minimum value of $\frac{c+d}{r}$ is 98. (B) $\frac{3(bc)^{\frac{1}{3}} - 2a^{2/3}}{a^{2/3}}$ (D) $\frac{3b^{\frac{1}{3}}c^{\frac{1}{3}} - a^{2/3}}{a^{2/3}}$ (A) $\frac{3b^{\frac{1}{3}}c^{\frac{1}{3}} + a^{2/3}}{a^{2/3}}$ (C) $\frac{3(bc)^{\frac{1}{3}} + 3a^{2/3}}{a^{2/3}}$ Key. Let b = ar, $c = ar^2$, $d = ar^3$ Sol. $\frac{c+d}{b} = r + r^2$ $\frac{3b^{\frac{1}{3}}c^{\frac{1}{3}}-a^{2/3}}{c^{2/3}}=3r-1$ Since $(r-1)^2 \ge r^2 - 2r + 1 \ge 0 \Longrightarrow r^2 + r \ge 3r - 1 \Longrightarrow \frac{c+d}{b} \ge \frac{3b^3 c}{c}$ Three distinct positive real numbers a, b, c are in H.P. then for the quadratic equation 99. $x^{2} - kx + 2b^{101} - a^{101} - c^{101} = 0, k \in R$ has (a) roots of same sign (b) roots of opposite sign (d) roots are real and equal (c) roots of imaginary Key. В IF α , β ARE ROOTS SOL. THEN $\alpha\beta = 2B^{101} - A^{101} - C^{101}$ NOW $\frac{a^{101} + c^{101}}{2} \ge (\sqrt{ac})^{101} \ge b^{101}$ $2B^{101} - A^{101} - C^{101} <$ $\Rightarrow \alpha\beta < 0$ roots are opposite in sign. 100. If α and β , α and γ , α and δ are the roots of the equations $ax^2 + 2bx + c = 0$, $2bx^2 + cx + a = 0$ and $cx^2 + ax + 2b = 0$ respectively where a, b, c are positive real numbers, then $\alpha + \alpha^2 =$ a) -1 b) 1 c) 0 d) abc Key. $a\alpha^2 + 2b\alpha + c = 0$ Sol. $a+2b\alpha^2+c\alpha=0$ then $(a+2b+c)(1+\alpha+\alpha^2)=0$ $a\alpha + 2b + c\alpha^2 = 0$ \therefore a, b, c $\in R^+$ then $\alpha + \alpha^2 = -1$ 101. If a, b, c are in geometric progression and the roots of the equations $ax^2 + 2bx + c = 0$ are α and β and those of $cx^2 + 2bx + a = 0$ are γ and δ then a) $\alpha \neq \beta \neq \gamma \neq \delta$ b) $\alpha \neq \beta$ and $\gamma \neq \delta$ c) $a\alpha = a\beta = c\gamma = c\delta$ d) $\alpha = \beta; \gamma \neq \delta$ Key. С

 $\therefore b^2 = ac$; the roots of both the equations are equal. Sol.

 $\therefore \alpha = \beta$; and $\gamma = \delta$. But $\gamma = \frac{1}{\alpha}$: $\delta = \frac{1}{\beta}$ as the given equations are reciprocal to each

other

$$\begin{array}{ll} \therefore y \vartheta = \frac{a}{c} \text{ then } cy = a\beta \\ a\alpha = a\beta = c\gamma = c\delta \\ \end{array}$$
102. If $f(x) = (x^2 + 3x + 2)(x^2 - 7x + a)$ and $g(x) = (x^2 - x - 12)(x^2 + 5x + b)$ then the values of a and b, If $(x + 1)(x - 4)$ is HCF of $f(x)$ and $g(x)$
a) $a = 10; b = 5$ b) $a = 4; b = 12$
c) $a = 12; b = 4$ d) $a = 6; b = 10$
Key. C
Sol. $x^2 - 7x + a$ is divisible by $x - 4\& x^2 + 5x + b$ is divisible by $x + 1$
 $\therefore a = 12; b = 4$
103. The equation $(x^2 + 3x + 4)^2 + 3(x^2 + 3x + 4) + 4 = x$ has
a) all its solutions real but not all positive b) only two of its solutions real
c) two of its solutions positive and two negative d) none of solutions real.
Key. D
Sol. $f(x) = ax^2 + bx + c:$ If $f(x) = x$ has no real solution then $f(f(x)) = x$ also has no real
solution:
104. Let A be a square Matrix all of whose entries are integers. Then which of the following is
True?
a) If det $A = \pm 1$, then A^{-1} exists and all it entries are non integers.
b) If det $A = \pm 1$, then A^{-1} exists and all it entries are non integers.
c) If det $A = \pm 1$, then A^{-1} exists and all it entries are non integers.
b) If det $A = \pm 1$, A^{-1} need not exist.
Key. C
Sol. Conceptual
105. The values of a for which the roots of the equation $(a + 1)x^2 - 3ax + 4a = 0(a \neq -1)$ are
real and greater than T
a) $\left[-\frac{10}{-7}, 1\right]$ b) $\left[-\frac{12}{-7}, 0\right]$ c) $\left[-\frac{16}{-7}, -1\right]$ d) $\left(-\frac{16}{-7}, 0\right)$
Key. C
Sol. $D = 9a^2 - 16a(a + 1) \ge 0, x_1 > 1, x_2 > 1$
Where $x_1 + x_2 = \frac{3a}{a+1}, x_1x_2 = \frac{4a}{a+1} \Rightarrow x_1 + x_2 - 1 > 0 \& (x_1 - 1)(x_2 - 1) > 0$
 $\Rightarrow a(7a + 16) \le 0$ (1)
 $\frac{a - 2}{a + 1} > 0$ (2)
 $\frac{2a + 1}{a + 1} > 0$ (2)
 $\frac{2a + 1}{a + 1} > 0$ (3)
Solving $-\frac{16}{-7} \le a < -1$.
106. If the equation $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ has four positive roots then (a, b) is given by
(A) (4, 6) (B) (6, -4)

matn	ematics	Quadratic Equations & Theory of Equations
	(C) (-4, -6)	(C) (2, 3)
Key.	В	
Sol.	Let the roots of the equation be x_1, x_2, x_3	x_3 , x_4 then $x_1 + x_2 + x_3 + x_4 = 4$
	and $x_1 x_2 x_3 x_4 = 1$	only when numbers are equal
	As A.M \ge G.M and equality sign holds only when numbers are equal.	
	We have $1 = \frac{x_1 + x_2 + x_3 + x_4}{4} \ge (x_1 x_2)$	$(x_3 x_4)^{\overline{4}} = 1$
	\Rightarrow $x_1 = x_2 = x_3 = x_4 = 1$	
	$\Rightarrow x^4 - 4x^3 + ax^2 + bx + 1 = (x - 1)^4 =$	a = 6, b = -4.
107.	If roots of the equation $ar^2 + br + c =$	0; $a, b, c \in R^+$ be non-real numbers, lying inside the
	unit circle, centered at origin, then	$0, u, v, v \in \mathbb{N}$ be non-real numbers, typing inside the
	(A) $b > 0$	(B) $b < a$
• •	(C) $c < a$	(D) none of these
Key.	C	react is =
Sol.	Let z ₁ be one of the root, then the othe	
	$ z_1 ^2 = \frac{c}{a} \Rightarrow \frac{c}{a} < 1 \Rightarrow c < a$	
100	u u	$h_{\rm eff}$ $(h^2 - (h^2 + (h^2 - (h$
108.	belongs to $x^2 + 2$	bx + $\log_3 (b^2 - 4b + 4) = 0$ are of opposite sign then 'b'
	(A) (1, 3)	(B) $(-\infty, 1) \cup (3, \infty)$
	(C) [1, 3]	$(D) (1, 2) \cup (2, 3)$
Key.	D	
Sol.	Let $f(x) = x^2 + 2bx + \log_3 (b^2 - 4b + 4)$	
	For both roots to be of opposite sign	
	$f(0) < 0 \Longrightarrow \log_3 (b^2 - 4b + 4) < 0$)
	$\Rightarrow b^2 - 4b + 4 < 1$	
	$\Rightarrow b^2 - 4b + 3 < 0$	
	$\Rightarrow (b-1) (b-3) < 0 \Rightarrow 1 < b < 3$ But $b \neq 2$	
	But b ≠ 2 ∴ b∈ (1, 2) ∪ (2, 3).	
109.	Let $f(x) = x^3 + ax^2 + bx + c$ and x ₁ .	x ₂ be the roots of $\ f'(x)$ = 0 , if $\ x_1 < x_2$ then
	f(x) = 0 will have	
	a) No real root if $f(x_1) < 0$ or $f(x_2)$	> 0
	b) Only one real root if $f(x_1) < 0$ or	$f(x_2) > 0$
	c) Three real roots if $f(x_1) < 0$ or $f(x_2) < 0$	$(x_2) > 0$
	d) cannot say any thing	
Key.	В	
Sol.	Since coefficient of x ³ is Positive .	
	al maximum is at x_1 and local minimum is	at x ₂ , case (i): If $f(x_1) < 0$ then
$f(x_2)$	$) < f(x_1) < 0$ then the only real root wil	I be in (x_2,∞) case (ii) : If $f(x_2) > 0$ then
$f(x_1)$	$) \! > \! f \left(x_{\!_2} ight) \! > \! 0$ then equation will have o	nly one real root in the interval $(-\infty, x)$.
v (1	, • (2)	

110.	Let $f_1(x)$ and $f_2(x)$ be continuous and differentiable functions. If				
	$f_1(0) = f_1(2) = f_1(4), f_1(1) + f_1(3) = f_2(0) = f_2(2) = f_2(4) = 0 \text{ and if } f_1(x) = 0 \text{ and }$				
	$f_2^1(x) = 0$ do not have common root, then the minimum number of zeros of,				
	$f_1^1(x)f_2^1(x)$ + $f_1(x)f_2^{11}(x)$ in $[0,4]$, is				
	a) 2	b) 4	c) 5	d) 3	
Key.	D				
Sol.	$f_1(x) = 0$ has mini two sols in $[0, 4]$				
	$f_2(x) = 0$ has mini 3 sols in [0,4]			\sim	
	$f_2^1(x) = 0$ has min	i 2 sol in [0,4]		\times \checkmark	
	$f_1(x)f_2^1(x) = 0$ has	s minimum 4 sols in [0,4]			
	$\frac{d}{dx}(f_1(x)f_2^1(x)) =$	± 0 has mini 3 sols in [0.4]	\sim		
111.	For $x^2 - (\alpha + 2) x + 1$	9 = 0 to have real solutions	s, the range of ' α ' is		
	(A) [<i>−∞</i> , 4]		(B) [4, ∞)		
Key.	(C) (−∞, 7] ∪ [11, ∞) B		(D) [−4, ∞)		
, Sol.	$x = \frac{x^2 + 9}{2} = 2 = x $	9_2			
501.	$\alpha = \frac{x^2 + 9}{ x } - 2 = x $				
	$\Rightarrow \alpha \ge 4.$				
112.		β are roots of equation cx^2	- · ·	non real then	
	(A) $\frac{ \alpha + \beta }{2} = \alpha $	β1	(B) $\frac{2}{ \alpha } = \frac{1}{ \beta }$		
	$(C) \frac{1}{ \alpha } + \frac{1}{ \beta } < 2$		(D) $ \alpha + \frac{1}{ \alpha } < 2$		
V	$ \alpha \beta $		$ \beta $		
Key.	a a				
SOL.	$\alpha\beta = \frac{\alpha}{c} > 1$				
$ \alpha \beta > 1$ $\Rightarrow \alpha ^2 > 1$					
$\Rightarrow \alpha ^{2} > 1$ $\Rightarrow \alpha > 1$ $\Rightarrow \beta > 1$ $\Rightarrow \frac{1}{ \alpha } + \frac{1}{ \beta } < 2$					
	$\Rightarrow \beta > 1$ 1 1	2			
	$\Rightarrow \frac{ \alpha }{ \beta } = \frac{ \alpha }{ \beta }$	2			
			. 2	,	
112	If two roots of the or	uption $(\mathbf{P}-1)(\mathbf{x}^2 + \mathbf{x} +$	$(1)^{2} - (n+1)(x^{4} + x)$	$x^2 \pm 1 = 0$ are real	

113. If two roots of the equation $(P-1)(x^2 + x + 1)^2 - (p+1)(x^4 + x^2 + 1) = 0$ are real and distinct and $f(x) = \frac{1-x}{1+x}$ then $f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right)$ is equal to _____ a) P b) -P c) 2P d) -2P

Key. A

Sol.
$$\frac{p+1}{p-1} = \frac{x^2 + x + 1}{x^2 - x + 1} \implies \frac{2p}{2} = \frac{2(x^2 + 1)}{2x} \implies p = x + \frac{1}{x}$$
As $f(x) = \frac{1-x}{1+x} \implies f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right) = x + \frac{1}{x}$

$$\implies f\left(f(x)\right) + f\left(f\left(\frac{1}{x}\right)\right) = p$$
114. If $\alpha_{1,r} \alpha_{2,r} \dots \alpha_n$ are roots of the equation $x^n + ax + b = 0$, then $(\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) (\alpha_3 - \alpha_4) \dots$
 $(\alpha_1 - \alpha_n)$ is equal to
(A) n
(B) $n \alpha_1^{n-1}$
(C) $n\alpha_1 + b$
(D) $n \alpha_1^{n-1} + a$
Key. D
Sol. $x^n + ax + b = (x - \alpha_1) (x - \alpha_2) \dots (x - \alpha_n)$
differentiate both sides w.r.t. x
 $nx^{n-1} + a = (x - \alpha_2) \dots (x - \alpha_n) + (x - \alpha_1) (\frac{d}{dx} (x - \alpha_2) \dots (x - \alpha_n))$
put $x = \alpha_1$
 $n \alpha_1^{n-1} + a = (\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) \dots (\alpha_1 - \alpha_n)$
115. ω is a non real complex cube root of unity and $a, b \in R$. If ω, ω^2 are roots of
 $\frac{1}{a+x} + \frac{1}{b+x} = \frac{3}{x}$ then a, b are roots of
(a) $3x^2 - 6x + 2 = 0$
(b) $6x^2 - 3x + 2 = 0$
(c) $2x^2 - 3x + 6 = 0$

Key. B

Sol. The given equation simplifies $x^2 + 2x(a+b) + 3ab = 0$, whose roots are given table ω, ω^2

Hence
$$a+b = \frac{1}{2}$$
, $ab = \frac{1}{3}$. So a, b are roots of $x^2 - x(\frac{1}{2}) + \frac{1}{3} = 0$

If the function $f(x) = x^3 + 3(a-7)x^2 + 3(a^2-9)x - 1$ has a point of maximum at positive 116. values of x then

(a)
$$a \in \left(-\infty, \frac{29}{7}\right)$$

(b) $a \in \left(-\infty, 7\right)$
(c) $a \in \left(-\infty, -3\right) \cup \left(3, \frac{29}{7}\right)$
(d) $a \in \left(3, \infty\right) \cup \left(-\infty, -3\right)$
ey. C

Key.

Sol.
$$f(x) = x^3 + 3(a-7)x^2 + 3(a^2-9)x - 1$$

 $f'(x) = 3x^2 + 6(a-7)x + 3(a^2-7)$
The roots of $f'(x) = 0$ positive and distinct which is possible if
(i) $b^2 - 4ac > 0 \Longrightarrow 6(a-7)^2 - 4(3)(3)(a^2-9) > 0$

 $\Rightarrow a < \frac{29}{7}$ (ii) Product of Roots > 0 $a^2 - 9 > 0$ (iii) Sum of Roots > 0 a - 7 < 0*a* < 7 \Rightarrow From i, ii, iii $a \in (-\infty, -3) \cup (3, \frac{29}{7})$ 117. If α, β are the roots of $x^2 - px + q = 0$ then value of $\frac{\alpha^2 + \beta^2}{\alpha^{-2} + \beta^{-2}} =$ (A) p (C) p^2 (B) q Key. D $\alpha^2 \beta^2 = a^2$ Sol. For p > 0 and $3x^2 + px + 3 = 0$ one root of above equation is square of the other 118. then p is (A) – 6 (C) 2 (B) 10 (D) 3 Key. D $\alpha + \alpha^2 = \frac{-1}{3}; \alpha^3 = 1$ Sol. $\alpha = 1, \omega, \omega^2$ If $\alpha = 1$ P=-6 as P>0 neglected if $\alpha = \omega; P = 3$ 2x+k=0 is 1+2i and $k\in R$ then the value of k is If one root or the equation x^2 119. (A) -3 (B) (C) 5 (D) 3 Key. C $b^2 = 4ac \Longrightarrow 4m^2 = 4(8m-15)$ Sol. $m^2 - 8m + 15 = 0; m = +3,$ $\left|\frac{12x}{4x^2+9}\right| \le 1 \text{ then}$ 120. (A) $x \in R$ (B) $x \in \phi$ (C) $x \in \{1\}$ (D) $x \in C$ where C is set of complex numbers Key. A $12|x| \le 4x^2 + 9$ Sol. $(2x-3)^2 \ge 0$; $x \in R$

121. If α, β are roots of $3x^2 + 2bx + c = 0$ whose descriminant is $\Delta_1; \alpha + \delta, \beta + \delta$ are roots of $9x^2 + 2Bx + C = 0$ whose descriminant is Δ_2 then $\frac{\Delta_1}{\Delta_2}$ is (A) $\frac{1}{9}$ (B) 9 (C) 3 (D) $\frac{1}{3}$

Key. A Sol. $\alpha - \beta = \frac{\sqrt{\Delta_1}}{2}$ $(\alpha + \delta) - (\beta + \delta) = \frac{\sqrt{\Delta_2}}{\Omega}$ $\frac{\Delta_1}{9} = \frac{\Delta_2}{81}; \frac{\Delta_1}{\Lambda_2} = \frac{1}{9}$ If the sum of the roots of the equation $5x^2 - 4x + 2 + k(4x^2 - 2x - 1) = 0$ is 6, then k = 122. (B) 17/13 (A) 13/17 (C) -17/13(D) -13/11 D Key. sum of the roots =6 Sol. $\frac{2k+4}{5+4k} = 6 \Longrightarrow k = \frac{-13}{11}$ If $\tan \alpha$, $\tan \beta$, $\tan \gamma$ are the roots of the equation $x^3 - px^2 - r = 0$ then the value of 123. $(1+\tan^2 \alpha)(1+\tan^2 \beta)(1+\tan^2 \gamma)$ is equal to b) $1 + (p - r)^2$ c) 1–(*p* a) $(p-r)^2$ d) none Key. Sol. $(1 + \tan^2 \alpha)(1 + \tan^2 \beta)(1 + \tan^2 \gamma)$ $=1+\left(\tan^{2}\alpha+\tan^{2}\beta+\tan^{2}\gamma\right)+\left(\tan^{2}\alpha\tan^{2}\beta+\tan^{2}\beta\tan^{2}\gamma+\tan^{2}\gamma\tan^{2}\alpha\right)+\tan^{2}\alpha\tan^{2}\beta\tan^{2}\gamma$ $\therefore x^2y^2 + y^2z^2 + z^2x^2$ $=1-(p-r)^{2}$ $= (xy + yz + zx)^2 - 2xyz(x + y + z)$ If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of x and y then 124. A) $x \in [1,3], y \in [1,3]$ B) $x \in [1,3], y \in \left|\frac{-1}{3}, \frac{1}{3}\right|$ D) $x \in \left| \frac{-1}{3}, \frac{1}{3} \right|, y \in \left| \frac{-1}{3}, \frac{1}{3} \right|$ $\frac{-1}{3}, \frac{1}{3}$, $y \in [1,3]$ C) $x \in [$ Key. (B)Given equation is $x^2 + 9y^2 - 4x + 3 = 0$ Sol. ...(i) $x^2 - 4x + 9y^2 + 3 = 0.$ Or. Since x is real $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$ $16-4(9y^2+3) \ge 0$ or, $4-9y^2-3 \ge 0$ Or, $9y^2 - 1 \le 0$ or, $9y^2 \le 1$ or, $y^2 \le \frac{1}{2}$ Or, Now $y^2 \leq \frac{1}{9} \Leftrightarrow -\frac{1}{3} \leq y \leq \frac{1}{3}$...(ii)

Equation (i) can also be written as $9v^2 + 0v + x^2 - 4x + 3 = 0$...(iii) Since y is real : $0^2 - 4.9(x^2 - 4x + 3) \ge 0$ $x^2 - 4x + 3 \le 0$ Or, $\Rightarrow x \in [1,3]$

The equation $a_8x^8 + a_7x^7 + a_6x^6 + ... + a_0 = 0$ has all its roots positive and real The equation a_8 . (where $a_8 = 1, a_7 = -4, a_0 = 1/2^8$), then A) $a_1 = \frac{1}{2^8}$ B) $a_1 = -\frac{1}{2^4}$ C) $a_2 = \frac{7}{2^5}$ D) $a_2 = \frac{1}{2^5}$ B (B) Let the roots be $\alpha_1, \alpha_2, ..., \alpha_8$ $\Rightarrow \qquad \alpha_1 + \alpha_2 + ... + \alpha_8 = 4$ $\alpha_1 \alpha_2 \alpha_8 = \frac{1}{2^8}$ $1 \quad \alpha_1 + \alpha_2 + ... + \alpha_8$ 125.

Key.

Sol. (B) Let the roots be
$$\alpha_1, \alpha_2, ..., \alpha_8$$

$$\alpha_1 + \alpha_2 + \dots + \alpha_8 = 4$$
$$\alpha_1 \alpha_2 \dots \alpha_8 = \frac{1}{2^8}$$

$$\Rightarrow \qquad (\alpha_1 \alpha_2 \dots \alpha_8)^{1/8} = \frac{1}{2} = \frac{\alpha_1 + \alpha_2 + \dots + \alpha_8}{8}$$

 $AM=GM \Longrightarrow$ all the roots are equal to \Rightarrow

$$\Rightarrow \qquad a_1 = -{}^8 C_7 \left(\frac{1}{2}\right)^7 = -\frac{1}{2^4}$$
$$a_2 = {}^8 C_6 \left(\frac{1}{2}\right)^6 = -\frac{7}{2^4}$$
$$a_3 = -{}^8 C_5 \left(\frac{1}{2}\right)^5$$

126. If *a*, *b*, *c* are positive numbers such that a>b>c and the equation $(a+b-2c)x^2+(b+c-2a)x+(c+a-2b)=0$ has a root in the interval (-1,0), then A) b cannot be the G.M. of a, c B) b may be the G.M. of a, c C) b is the G.M. of a, c D) none of these Key. A Let $f(x) = (a+b-2c)x^2 + (b+c-2a)x + (c+a-2b)$ Sol. According to the given condition, we have f(0)f(-1) < 0

i.e.
$$(c+a-2b)(2a-b-c) < 0$$

i.e. $(c+a-2b)(a-b+a-c) < 0$
i.e. $c+a-2b < 0$ $[a > b > c, given \Rightarrow a-b > 0, a-c > 0]$
i.e. $b > \frac{a+c}{2}$
 \Rightarrow b cannot be the G.M. of a, c , since G.M < A.M. always.

127.	Let α , β (a < b) be the roots of the equation $ax^2 + bx + c = 0$. If $\lim_{x \to m} \frac{ ax^2 + bx + c }{ax^2 + bx + c} = 1$, then			
	then			
	A) $\frac{ a }{a} = -1, m < \alpha$ B) $a > 0, \alpha < m < \beta$ C) $\frac{ a }{a} = 1, m > \beta$ D) $a < 0, m > \beta$			
Key. Sol.	C According to the given condition, we have			
	$\left am^2+bm+c\right = am^2+bm+c$			
	i.e. $am^2 + bm + c > 0$			
	\Rightarrow if <i>a</i> < 0, the <i>m</i> lies in (α, β)			
	and if <i>a>0</i> , then <i>m</i> does not lies in (α, β)			
	Hence, option (c) is correct, since			
	$\frac{ a }{a} = 1 \Longrightarrow a > 0$			
	And in that case m does not lie in $(lpha,eta)$.			
128.	Let $f(x)$ be a function such that $f(x) = x - [x]$, where $[x]$ is the greatest integer less			
	than or equal to x. Then the number of solutions of the equation $f(x) + f\left(\frac{1}{x}\right) = 1$ is (are)			
Key.	A) 0 B) 1 C) 2 D) infinite			
Sol.	Given, $f(x) = x - [x], x \in R - \{0\}$			
	Now $f(x) + f\left(\frac{1}{x}\right) = 1$ \therefore $x - [x] + \frac{1}{x} - \left[\frac{1}{x}\right] = 1$			
	$\Rightarrow \left(x + \frac{1}{x}\right) - \left(\left[x\right] + \left[\frac{1}{x}\right]\right) = 1 \qquad \Rightarrow \left(x + \frac{1}{x}\right) = \left[x\right] + \left[\frac{1}{x}\right] + 1 \qquad \dots (i)$			
	Clearly ,R.H.S is an integer L. H. S. is also an integer			
	Let $x + \frac{1}{x} = k$ an integer $\Rightarrow x^2 - kx + 1 = 0$			
	$\therefore x = \frac{k \pm \sqrt{k^2 - 4}}{2}$			
	For real values of x, $k^2 - 4 \ge 0 \Longrightarrow k \ge 2$ or $k \le -2$			
C	We also observe that $k=2$ and -2 does not satisfy equation (i)			
The equation (i) will have solutions if $k > 2$ or $k < -2$, where $k \in z$. Hence equation (i) has infinite number of solutions.				
129.	If both the roots of $(2a-4)9^x - (2a-3)3^x + 1 = 0$ are non-negative, then			
	A) $0 < a < 2$ B) $2 < a < \frac{5}{2}$ C) $a < \frac{5}{4}$ D) $a > 3$			
Key.	B Dutting $2^x = 3^x$ we have			
Sol.	Putting $3^x = y$, we have $(2a - 4)y^2 - (2a - 3)y + 1 = 0$			
	$(2a-4)y^2 - (2a-3)y + 1 = 0$ This equation must have real solution			
	This equation must have real solution			

$$\Rightarrow (2a-3)^{2}-4(2a-4) \ge 0$$

$$\Rightarrow 4a^{2}-20a+25 \ge 0$$

$$\Rightarrow (2a-5)^{2} \ge 0. \text{ This is true.} \\ y=1 \text{ satisfies the equation}$$
Since 3' is positive and 3' \ge 3'', y \ge 1
Product of the roots = 1 × y > 1

$$\Rightarrow \frac{1}{2a-4} > 1$$

$$\Rightarrow 2a-4 < 1 \Rightarrow a < \frac{5}{2}$$
Sum of the roots $= \frac{2a-3}{2a-4} > 1$

$$\Rightarrow \frac{(2a-3)-(2a-4)}{2a-4} > 0$$

$$\Rightarrow \frac{1}{2a-4} > 0 \Rightarrow a > 2$$

$$\Rightarrow 2 < a < \frac{5}{2}$$
130. Let α and β be the roots of $x^{2}-6x-2=0$ with $\alpha > \beta$ if $a_{n} = \alpha^{n} - \beta^{n}$ for $n \ge 1$ then the value of $\frac{a_{10}-2a_{8}}{3a_{9}} =$

$$1) 1 2 2 3) 3 4) 4$$
Key. 2
Sol. $\alpha^{2} - 6\alpha^{2} - 2a^{8} = 0$

$$\Rightarrow \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = \beta^{10} - 6\beta^{9} - 2\beta^{8} = 0$$

$$(2a-3)^{-1}(2a-4) = 0$$

$$(2a-4)^{-1}(2a-4) = 0$$

132. The range of values of '*a*' for which all the roots of the equation $(a-1)(1+x+x^2)^2 = (a+1)(1+x^2+x^4)$ are imaginary is

Mathematics		Quadratic Equations & Theory of Equations	
	1) (−∞,−2]	2) (2,∞)	
	3) (-2,2)	4) [2,∞)	
Key.	3		
Sol.	The given equation can be wr	itten as $(x^2+x+1)(x^2-ax+a)(x^2-a$	(1) = 0
133.	If α , β are the roots of the equation $ax^2 + bx + c = 0$ and $S_n = \alpha^n + \beta^n$ then		
	$aS_{n+1} + bS_n + cS_{n-1} = (n \ge 2)$	2)	
	1) 0	2) $a + b + c$	
	3) $(a+b+c)n$	4) $n^2 abc$	
Key.	1		
Sol.	$S_{n+1} = \alpha^{n+1} + \beta^{n+1}$		
	$=(\alpha+\beta)(\alpha^n+\beta^n)-\alpha_n$	$etaig(lpha^{n-1}+eta^{n-1}ig)$	
	$= -\frac{b}{a}.S_n - \frac{c}{a}.S_{n-1}$		
134.	A group of students decided to buy a Alarm Clock priced between Rs. 170 to Rs 195. But		
		lents backed out of the decision	<u> </u>
	shares, the price of the Alarr	more than they had planned n Clock is	. If the students paid equal
	1) 190	2) 196	
	3) 180	4) 171	
Key.	3		
Sol.	Let cost of clock = x number of students = n		
	then $\frac{x}{n-2} = \frac{x}{n} + 1 \Longrightarrow x = \frac{n^2}{n}$	$\frac{-2n}{2}$	
		2	
	$\Rightarrow 170 \le \frac{n^2 - 2n}{2} \le 195$		
135.	If tan A, tan B are the roots	of $x^2 - Px + Q = 0$ the value	of $\sin^2(A+B) =$
	(where $P, Q \in R$)		
	P^2		2) $\frac{P^2}{P^2 + Q^2}$
6	$P^{2} + (1-Q)^{2}$		$P^2 + Q^2$
	3) $\frac{Q^2}{P^2 + (1-Q)^2}$		4) $\frac{P^2}{(P+Q)^2}$
	$P^2 + (1-Q)^2$		$\left(P+Q\right)^{2}$

Key. 1

Sol.
$$\tan(A+B) = \frac{P}{1-Q}$$
 then $\sin^2(A+B) = \frac{\tan^2(A+B)}{1+\tan^2(A+B)}$

136. The number of solutions of |[x]-2x|=4 where [x] is the greatest integer $\leq x$ is 1) 2 2) 4 3) 1 4) Infinite

Key. 2 If $x = n \in \mathbb{Z}$, $|n-2n| = 4 \Longrightarrow n = \pm 4$ Sol. If x = n + K where 0 < K < 1 then |n - 2(n + k)| = 4, it is possible if $K = \frac{1}{2}$ $\Rightarrow |-n-1| = 4$ $\therefore n = 3, -5$ Let *a*, *b* and *c* be real numbers such that a+2b+c=4 then the maximum value of 137. ab+bc+ca is 1)1 2) 2 3) 3 4 Kev. Let ab+bc+ca=xSol. $\Rightarrow 2b^2 + 2(c-2)b - 4c + c^2 + x = 0$ Since $b \in R$, $\therefore c^2 - 4c + 2x - 4 \le 0$ Since $c \in R$ $\therefore x \le 4$ For the equation $3x^2 + px + 3 = 0$, p > 0, if one root is the square of the other then value 138. of P is 1) $\frac{1}{3}$ 3) 3 4) $\frac{2}{3}$ Kev. Sol. $\alpha + \alpha^2$ $\alpha^3 =$ If the equations $2x^2 + kx - 5 = 0$ and $x^2 - 3x - 4 = 0$ have a common root, then the 139. value of k is 1) -2 2) - 33) $\frac{27}{4}$ 4) $-\frac{1}{4}$ Key. 2 If ' α ' is the common root then $2\alpha^2 + k\alpha - 5 = 0$, $\alpha^2 - 3\alpha - 4 = 0$ solve the equations. Sol. If α and β are the roots of the equation $x^2 - x + 1 = 0$ then $\alpha^{2009} + \beta^{2009} =$ 140. 1)1 2) 2 3) -1 (4) - 2Key. 1

Mathematics		Quadratic Equations & Theory of Equat
Sol.	$x = \frac{1 \pm i\sqrt{3}}{2}$	
	$\therefore \alpha = -\omega, \ \beta = -\omega^2$	
141.	If $P(Q-r)x^2 + Q(r-P)$.	$x + r(P - Q) = 0$ has equal roots then $\frac{2}{Q} =$
	(where $P, Q, r \in R$)	
	1) $\frac{1}{P} + \frac{1}{r}$	$2) \frac{1}{P} - \frac{1}{r}$
	3) $P + r$	4) <i>Pr</i>
Key.	1	
Sol.	Product of the roots $=1$	
142.	The solution of the differen	ntial equation $y_1 y_3 = 3y_2^2$ is
	1) $x = A_1 y^2 + A_2 y + A_3$	2) $x = A_1 y + A_2$
	3) $x = A_1 y^2 + A_2 y$	4)none of these
Key.	1	
Sol.	$y_1 y_3 = 3y_2^2$	
	$\frac{y_3}{y_2} = 3\frac{y_2}{y_1} \Longrightarrow \ln y_2 = 3\ln y_1$	$+\ln c$
	$y_2 = cy_1^3$	
	$\frac{y_2}{y_1^2} = cy_1$	
	• •	
	$-\frac{1}{y} = cy + c_2$	
	$\frac{y_1}{dx}$	
	$\frac{d}{dy} = -cy - c_2$	
	cy ²	
	$x = -\frac{1}{2} - c_2 y + c_3$	
	$\therefore x = A_1 y^2 + A_2 y + A_3$	
143.	If $(1+K)\tan^2 x - 4\tan x -$	$1 + K = 0$ has real roots $\tan x_1$ and $\tan x_2$ then
	1) $k^2 \le 5$	2) $k^2 \ge 6$
	3) <i>k</i> = 3	4) <i>k</i> > 10
Key.	1	
Sol.	Discriminate ≥ 0	
144.	Let $f(x)$ be a real valued	function satisfying $a f(x) + b f(-x) = px^2 + qx + r, \forall x \in R$
	Where $p, q, r \in \mathbb{R} - \{0\}$ at	nd $a, b \in \mathbb{R}$ such that $ a \neq b $. Then the condition that

Where $p,q,r \in R - \{0\}$ and $a,b \in R$ such that $|a| \neq |b|$. Then the condition that f(x) = 0 will have real roots is

Quadratic Equations & Theory of Equations

Mathematics	Quaaratic Equations & Theory of Equati
$\mathbf{A})\left(\frac{a+b}{a-b}\right)^2 \le \frac{q^2}{4pr}$	$\mathbf{B})\left(\frac{a+b}{a-b}\right)^2 \le \frac{4pr}{q^2}$
C) $\left(\frac{a+b}{a-b}\right)^2 \ge \frac{q^2}{4pr}$	D) $\left(\frac{a+b}{a-b}\right)^2 \ge \frac{4pr}{q^2}$
Key. D	
Sol. Using hypothesis we get $f(x) - f(-x) = f(x) - f(-x)$	u - v
145. The number of solutions of the equ	hations $n^{- x } \cdot m - x = 1$ (where $m, n > 1 \& n > m$) is
A) 0 B) 1 Key. C	C) 2 D)4
$ \xrightarrow{y} n^{ x } \\ m- x \\ -m 0 m \rightarrow x $	
Sol. $\bullet + \bullet = two solutions$	
common root	ation $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a
A) 2 B) -2 Key. B Sol. Let α be a common root	C) 0 D) 1
Then $\alpha^3 + a\alpha + 1 = 0 - (1)$ And $\alpha^4 = a\alpha^2 + 1 = 0 - (2)$ $\alpha \times (1) - (2) \Rightarrow \alpha - 1 = 0 \Rightarrow \alpha = 1$	
So, from $x^3 + ax + 1 = 0 \Longrightarrow 1 + a + 1 =$	
147. If the roots of the equation $ax^2 + bx$ value of $(a+b+c)^2$ is	$\alpha + c = 0$ are of the form $\frac{\alpha}{\alpha - 1}$ and $\frac{\alpha + 1}{\alpha}$, then
value of $(a+b+c)^2$ is A) $2b^2 - ac$ B) $b^2 - 2ac$ Key. C	D) $b^2 - 4ac$ D) $4b^2 - 2ac$
Sol. By hypothesis $\frac{\alpha}{\alpha-1} + \frac{\alpha+1}{\alpha} = -\frac{b}{\alpha}$ as	nd $\frac{\alpha}{\alpha-1} \cdot \frac{\alpha+1}{\alpha} = \frac{c}{a}$
$\Rightarrow \frac{2\alpha^2 - 1}{\alpha^2 - \alpha} = -\frac{b}{a} \text{ and } \alpha = \frac{c + a}{c - a}$ $\Rightarrow (c + a)^2 + 2b(c + a) + b^2 = b^2 - 4a$	
148. The value of a , for which one root of smaller than 1 and the other greater	of the equation $(a-5)x^2-2ax+(a-4)=0$ is than 2 is
	$\begin{array}{c} \begin{array}{c} \text{main 2 is} \\ \text{main 2 is} \\ \end{array} \\ \begin{array}{c} \text{main 2 is} \\ \text{C)} \\ a \in (5, \infty) \end{array} \\ \begin{array}{c} \text{D)} \\ a \in (-\infty, \infty) \end{array}$
Key. A	
Sol. (i) $D > 0$ $4a^2 - 4(a-5)(a-4) > 0$	

$$9a - 20 > 0 \Rightarrow a > \frac{20}{9} \Rightarrow a \in \left(\frac{20}{9}, \infty\right) \longrightarrow (1)$$
(ii) $(a - 5)f(1) < 0; (a - 5)f(2) < 0$
 $\Rightarrow (a - 5)(a - 5 - 2a + a - 4) < 0$
 $\Rightarrow a > 5 \Rightarrow a \in (5, \infty) \longrightarrow (2)$
and $(a - 5)\{(a - 5).4 - 4a + a - 4\} < 0$
 $\Rightarrow (a - 5)(a - 24) < 0 \Rightarrow 5 < a < 24$
 $\Rightarrow a \in (5, 24) \longrightarrow (3)$
Using (1), (2) & (3)
The common condition is $a \in (5, 24)$
149. If the equations $ax^2 - 2bx + c = 0, bx^2 - 2cx + a = 0$ and $cx^2 - 2ax + b = 0$ have only
positive roots then
A) $a > b > c$ B) $a < b < c$ C) $a = b = c$ D) $a > b; b < c$
Key. C
Sol. Roots of equation $ax^2 - 2bx + c = 0$ are +ve then discriminent $\ge 0 \Rightarrow b^2 \ge ac$
Sum of roots $= \frac{b}{a} > 0$, product of roots $= \frac{c}{a} > 0$
Similarly for other two equations, we get $c^2 \ge ab \Rightarrow \frac{c}{b} > 0, \frac{a}{b} > 0$ and
 $a^2 \ge bc \Rightarrow \frac{a}{c} > 0 \& \frac{b}{c} > 0$
Using above conditions a, b, c are all +ve (or) all are -ve.
Multiplying we get $c^2a^2 \ge ab^2c$
 $\Rightarrow ac(b^2 - ac) \le 0 \& c^2 - ab \le 0$
And all, we get $a^2 + bx^2 + c^2 - ab - bc - ca \le 0$
 $\Rightarrow \frac{1}{2} [(a - b)^2 + (b - c)^2 + (c - a)^2] = 0$
 $3i^2 + pi^{-1} = 0p^{-1}(c)$ (or) \clubsuit
150. If a_i is a root of $ax^2 + bx + c = 0; \beta$ is a root fo $-ax^2 + bx + c = 0$ and γ is a root of $ax^2 + 2bx + 2c = 0$ then
A) $\gamma < \alpha < \beta$ B) $\alpha < \beta < \gamma$ C) $\alpha < \gamma < \beta$ D) $\frac{\alpha}{\beta} < \gamma < \frac{\beta}{\alpha}$
Key. C
Sol. Let $f(x) = ax^2 + 2bx + 2c$

Then, we have $f(\alpha) = a\alpha^2 + 2b\alpha + 2c = -a\alpha^2 + 2(a\alpha^2 + b\alpha + c)$ $= -a\alpha^2 [\because \alpha \text{ is a root of } ax^2 + bx + c = 0. \because a\alpha^2 + b\alpha + c = 0]$ Also we have, $f(\beta) = a\beta^2 + 2b\beta + 2c = 3a\beta^2 + 2(-a\beta^2 + b\beta + c)$ $= 3a\beta^2 [\because \beta \text{ is a root of } -ax^2 + bx + c = 0. \because a^2\beta - b\beta - c = 0]$

Quadratic Equations & Theory of Equations

Now. $f(\alpha)f(\beta) = -3a^2\alpha^2\beta^2 < 0$ which implies that $f(\alpha)$, $f(\beta)$ are of opposite signs and hence, proves that the curve represented by y = f(x) cuts the X-axis somewhere between α and β .

In other words f(x) = 0 has a root lying between α and β .

 $D \le 0 \Longrightarrow (n+6)^2 - 40 \le 0 \Longrightarrow -\sqrt{40} - 6 \le n \le \sqrt{40} - 6 - (1)$ Similarly $\frac{x^2 + nx - 2}{x^2 - 3x + 4} + 1 \ge 0 \Longrightarrow 2x^2 + (x-3)x + 2 \ge 0$

 $\Rightarrow D \le 0 \Rightarrow (n-3)^2 - 16 \le 0 \Rightarrow -1 \le n \le 7 \quad \dots \quad (2)$ Combined (1) & (2) we get $n \in \left[-1, \sqrt{40} - 6\right]$

RACHIN

151. If for any real
$$x$$
, we have $-1 \le \frac{x^2 + nx - 2}{x^2 - 3x + 4} \le 2$ then the value of n is
A) $n \in [-1, \sqrt{40} - 6]$ B) $n \in [-1, 3)$ C) $n \in [-\sqrt{40} - 6, -1]$ D)
 $n \in [1, \sqrt{40} + 6]$
Key. A
Sol. $\frac{x^2 + nx - 2}{x^2 - 3x + 4} - 2 \le 0$
 $\Rightarrow x^2 - (n+6)x = 10 \ge 0$, true $\forall x \in R$ then