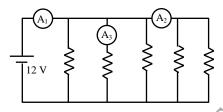
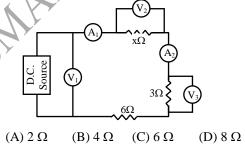

PHYSICS

Q.4

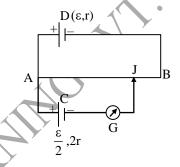

Q.1 A, B and C are voltmeters of resistances R, 1.5 R and 3 R respectively. When some potential difference is applied between X and Y, the voltmeter readings are V_A , V_B and V_C respectively -

- (A) $V_A = V_B = V_C$
- (B) $V_A \neq V_B = V_C$
- (C) $V_A = V_B \neq V_C$
- (D) $V_B \neq V_A = V_C$

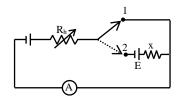
[A]


Q.2 In the circuit, each resistance is 20 Ω . The readings of A₁, A₂ and A₃ are respectively -

- (A) 3A, 1.8A, 1.2 A
- (B) 3A, 1.2 A, 0.6A
- (C) 3A, 0.6 A, 1.2 A
- (D) 3A, 0.6 A, 0.6 A

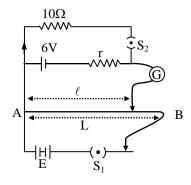

[B]

Q.3 In the electric circuit shown in figure, the reading of voltmeter V_1 is 26 volt, and the reading of ammeter A_1 is 2 ampere. The value of resistance x is –

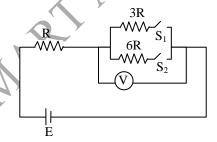


[B]

In the figure, the potentiometer wire AB of length L and resistance 9r is joined to the cell D of emf ϵ and internal resistance r. The cell C's emf is $\epsilon/2$ and its internal resistance is 2r. The galvanometer G will show no deflection when the length AJ is-

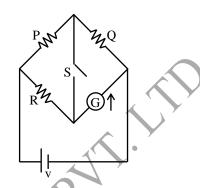

- (A) $\frac{4L}{9}$
- (B) $\frac{5L}{9}$
- (C) $\frac{7L}{18}$
- (D) $\frac{11L}{18}$ [B]
- Q.5 In the circuit shown the variable resistance R_h is so adjusted that ammeter reads the same in both positions of the key. The reading of ammeter is I. The emf of the cell in series with x is E, the value of x is -

- (A) $\frac{2E}{I}$
- (B) $\frac{1}{1}$
- (C) EI
- (D) 2EI


[B]

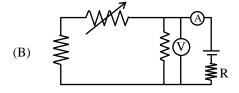
Q.6 In the arrangement shown in figure when the switch S_2 is open, the galvanometer shows no deflection for $\ell = L/2$. When the switch S_2 is closed, the galvanometer shows no deflection for $\ell = 5L/12$. The internal resistance (r) of 6 V cell, and the emf E of the other battery are respectively-

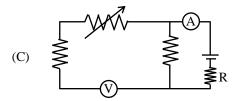
- (A) 3Ω , 8V
- (B) 2Ω , 12V
- (C) 2Ω , 24V
- (D) 3Ω, 12V [B]


Q.7 In the circuit shown in figure reading of voltmeter is V_1 when only S_1 is closed, reading of voltmeter is V2 when only S2 is closed and reading of voltmeter is V_3 when both S_1 and S_2 are closed. Then-

- (A) $V_3 > V_2 > V_1$

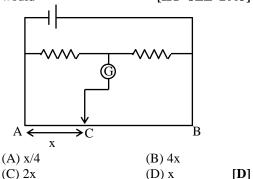
- (C) $V_3 > V_1 > V_2$ (D) $V_1 > V_2 > V_3$


Q.8 In the circuit $P \neq R$, the reading of the galvanometer is same with switch S open or [IIT- JEE 99] closed. Then -

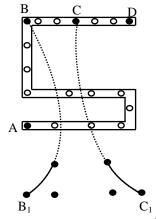


- (A) $I_R = I_G$
- (B) $I_P = I_G$
- $(C) I_Q = A_C$
- (D) $I_Q = I_R$ [A]

Which of the following circuit is correct for Q.9 verification of ohms law-[IIT- JEE 2003]



[B]


[B]

Q.10 In this given circuit, no current is passing through the galvanometer. If the cross-sectional diameter of the wire AB is doubled then for null point of galvanometer the value of AC would—

[IIT -JEE 2003]

Q.11 In the given post office box. Unknown resistance should be connected[IIT- JEE 2004]

- (A) Between A & D
- (B) Between A & C
- (C) Between C & D
- (D) Between B₁ & C₁

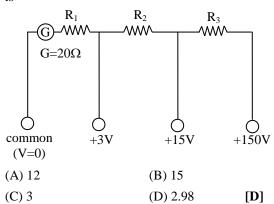
[A]

- Q.12 A galvanometer gives a full deflection when a current of 0.2 mA is passed through it. The resistance of the galvanometer is 1000 Ω . To convert it to an ammeter of range 2 amp, the shunt resistance required is
 - (A) $0.1~\Omega$
- (B) 0.01Ω
- (C) 1Ω

Q.13

- (D) 0.2Ω
- A galvanometer of resistance $100~\Omega$ gives a full scale deflection for a current to 10^{-6} amp. To convert it into an ammeter capable of measuring up to one ampere, the shunt resistance should
- (A) $10^{-5} \Omega$

be-


- (B) 0.0001Ω
- (C) 0.01Ω
- (D) 1Ω
- [B]

[A]

- Q.14 If the positions of an ideal voltmeter and the ammeter are interchanged in a D.C. circuit, then-
 - (A) the voltmeter reads the emf of the source and the ammeter reading is zero
 - (B) the voltmeter reads the emf of the source and the ammeter shows of maximum current
 - (C) the voltmeter reading is zero and the ammeter reading is also zero
 - (D) voltmeter reading is zero and the ammeter current is infinite [A]
- Q.15 A galvanometer is used in circuit of 9 volt. The value of current for full scale deflection is 2 mA if the resistance of the coil is 50Ω , then the value of necessary resistance in series for the full scale deflection in ohm is -
 - (A) 2450
- (B) 3450
- (C) 4450
- (D) 5450

[C]

Internal electric connections of a multi range voltmeter are shown in the figure. The terminals are marked 3 volt, 5 volt, 150 volt, resistance of the galvanometer is 20 Ω and the value of current is 1 mA for the full scale deflection of the galvanometer. The resistance of R_1 in $K\Omega$ is-

- Q.17 The resistance of galvanometer coil is 0.1 K Ω . The current for full scale deflection is 100 μ A. The value of the resistance put in series to convert it into a voltmeter of range 0.1 volt is-
 - (A) 1000Ω
- (B) 100Ω
- (C) 10Ω
- (D) 900 Ω
- [**D**]

Q.18	The resistance of 100 Ω and 200 Ω are connected in series with the 220 V mains. When a voltmeter of 1000 Ω resistance is connected in parallel to 100 Ω , then the reading of voltmeter is –			Q.25	20 Ω . It requires 0 scale deflection. T	moving coil galvanometer .01 ampere current for the value of resistance the term of range 20 volt v	full to
	(A) 68.75 volt	(B) 6.87 volt			(A) 198 Ω	(B) 1980 Ω	
	(C) 587.5 volt	(D) 58.75 volt	[A]		(C) 20Ω	(D) 0Ω	B]
Q.19	If only one hundredth part of total current flowing in the circuit is to be passed through a galvanometer of resistance G Ω , then the value of shunt resistance required will be -			Q.26	The range of a voltmeter of resistance G Ω is V volt. The resistance required to be connected in series with it in order to convert it into a voltmeter of range nV volt, will be - (A) $(n-1)$ G (B) G/n		
	(A) $\frac{G}{10}$	(B) $\frac{G}{100}$			(C) nG	(D) $G/(n-1)$	A]
	(C) $\frac{G}{99}$	(D) $\frac{G}{999}$	[C]	Q.27	reduces to half on s	moving coil galvanome	
Q.20	The shunt required for 10% of main current to					ce of galvanometer is -	
	be sent through the moving coil galvanometer				(A) 30 Ω	(B) 120 Ω	
	of resistance 99 W, will be -				(C) 60 Ω	(D) 15 Ω	[C]
	(A) 0.9Ω	(B) 11 Ω		Q.28	When the current fl	owing in a galvanometer	is
	(C) 90Ω	(D) 9.9 Ω	[B]			arrent, the resistance of	
Q.21	A galvanometer of resistance 100Ω gives full scale deflection for 10 mA current. What should be the shunt required, so that it can measure			1	shunt will be -		
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(A) G/n	(B) $(n-1)$ G	~-
				Y	(C) $G / (n-1)$	(D) $G/(n^2-1)$	[C]
	100 mA -		2	Q.29	A galvanometer	can be converted into	a
	(A) 11.11 Ω	(B) 9.9 Ω	X		voltmeter by connec	ting a –	
	(C) 1.1 Ω	(D) 4.4 Ω	[A]		(A) high resistance i	=	
Q.22	A galvanometer of resistance 100Ω gives full				(B) low resistance in		
	scale deflection for a current of 10 ⁻⁵ A. The				(C) high resistance is		
	shunt required to convert in into an ammeter of				(D) low resistance in	n parallel [[C]
	1 ampere range will be - (A) $10^{-2}\Omega$ (B) 1Ω			Q.30	Potentiometer is s	such an apparatus who	ose
	(A) $10^{-1}\Omega$				effective resistance i	S -	
0.22		, ,			(A) zero		
Q.23	A galvanometer of resistance 100 ohm gives a full scale deflection for a current of 10μA. To				(B) infinite		
	convert in into an ammeter of one ampere				(C) uncertain		
	range, required shunt resistance would be -				(D) depending on ex	ternal resistance	B]
	(A) $10^{-2}\Omega$	(B) 1 Ω		Q.31	In every experimen	t with potentiometer in	the
	(C) $10^{-1}\Omega$	(D) $10^{-3}\Omega$	[D]		null point state,	the potential differen	ice
Q.24	The deflection in the galvanometer is				between the ends of	the galvanometer is -	
-	reduced from 50 to 20 divisions when it is				(A) zero		
	shunted by a resistance of 12 ohm. The				(B) infinite		
	resistance of galvanometer will be -				(C) equal to the p.d.	of the cell	
	(A) 18 Ω (C) 30 Ω	(B) 24 Ω (D) 36 Ω	[A]		(D) unknown	[A]

Q.32	The specific resistance per unit area of cross section of a wire is equivalent to -	Q.38	The length of a potentiometer wire is 10 m and a p.d. of 2 volt is applied to its ends. If the	
	(A) charge/current		length of its wire is increased by 1 m, the value	
	(B) resistance/length		of potential gradient in volt/m will be -	
	(C) potential gradient		(A) 0.18 (B) 0.22	
	(D) current/area [B]		(C) 1.3 (D) 0.9 [A]	
Q.33	If the length of the potentiometer wire is	Q.39	If the specific resistance of a potentiometer is	
	doubled, the sensitivity for obtaining null point will -		(p) area of cross-section is A, and the current	
	(A) increase		flowing in the wire is (I) then the potential	
	(B) remain unchanged		gradient is -	
	(C) decrease		(A) $IA\rho$ (B) IA/ρ	
	(D) uncertain [A]		(C) Ip/A (D) p/IA [C]	
Q.34	The potential gradient of the potentiometer wire	Q.40	The potentiometer is an ideal apparatus for	
Q.34	depends on -	-	measuring potential differences because -	
	(A) only on the current that flows		(A) it's resistance is low	
	(B) only the resistance per unit length of the		(B) at null position its resistance is zero	
	wire		(C) it's range is adjustable	
	(C) both the above mentioned		(D) it does not draw any current when	
	(D) none of the above [C]		measuring p.d. [D]	
Q.35	The potentiometer wire is replaced by another	Q.41	A potentiometer is based on the principle -	
	wire whose length thickness and specific		(A) of wheatstone bridge	
	resistance are double the previous one. The current strength flowing through it is also) ((B) that the fall of potential along a wire is	
	doubled. How many times will the potential		proportional to its lengths	
	gradient becomes ?		(C) that the resistance of potentiometer wire is	
	(A) 1 (B) 2		large	
	(C) 4 (D) 8 [A]		(D) of post office box [B]	
Q.36	If the current in a potentiometer increases, the			
Que	position of the null point will -	Q.42	If the length of the potentiometer wire is increased, the sensitivity will -	
	(A) be obtained at a larger then the previous		(A) increase	
	One		(B) decrease	
	(B) be equal to the previous length		(C) be same	
	(C) be obtained at a smaller length than the previous		(D) none of the above [A]	
	(D) none of the above [C]		(D) none of the doore	
76.		Q.43	In an ammeter calibration experiment, the	
Q.37	A battery of negligible internal resistance is connected to the ends of a potentiometer wire.	potentiometer is used to measure in the		
	The potential gradient can be changed by		secondary circuit, the -	
Q.37	(r = R' = 0 for wire) -		(A) resistance	
	(A) increasing the length of wire			
	(B) increasing the thickness of wire		(B) potential difference	
	(C) changing the direction of the current		(C) current	
	(D) increasing its resistance [A]		(D) power [B]	
			-	

ELECTRICAL INSTRUMENT 5

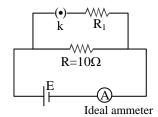
- **Q.44** In potentiometer the potential gradient is -
 - (A) resistance across the unit length of the wire
 - (B) current across the unit length of the wire
 - (C) potential difference across the unit length of the wire
 - (D) power across the unit length of the wire [C]
- Q.45 If the potentiometer wire having resistance ρ ohm/m and I amp. current is allowed to pass through it. The potential gradient produced on the potentiometer wire will be -
 - (A) I/ρ
- (B) Ip
- (C) p/I
- (D) $I^2\rho$
- **Q.46** The principal of a potentiometer is
 - (A) to compare two unknown resistances
 - (B) to compare two known resistance
 - (C) to find out unknown p.d. by comparing it with known p.d.
 - (D) to calibrate a voltmeter
- [C]

[A]

[D]

[B]

ARMINGRATI


- **Q.47** The wire of potentiometer is made of
 - (A) copper
- (B) steel
- (C) manganin
- (D) aluminium [C]
- Q.48 If the current in the primary circuit of a potentiometer wire of specific resistance is $40 \times 10^{-8} \Omega$ -m and area of cross-section $8 \times 10^{-6} \text{m}^2$ is 0.5 amp. Then potential gradient of wire is -
 - (A) 25 mV/m
- (B) 2.5mV/m
- (C) 2.5 mV/m
- (D) 25V/m
- Q.49 A cell of emf E and internal resistance r is balanced at length of a potentiometer wire. If another resistance R is connected in parallel with this, the new balancing length will be -
 - (A) $\frac{R}{R-r}$
- (B) $\frac{R-r}{R}$
- (C) $\frac{R}{r}$
- (D) $\frac{R}{R+r}\ell$
- Q.50 The balancing length for a 1.2 volts cell of 5 ohm internal resistance is 900 cm. If a resistance of 10 ohm is connected to the terminals of the cell, the p.d. and balancing length at the ends of resistance will be -
 - (A) 0.8 volt, 600 cm
- (B) 0.3 volt, 300 cm
- (C) 0.24 volt, 130 cm
- (D) 0.12 volt, 90 cm

[A]

PHYSICS

Q.1 The internal resistance of the cell shown in the figure is negligible, on closing the key k, the ammeter reading changes from 0.25 amp to

 $\frac{5}{12}$ amp, then –

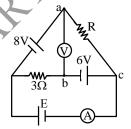
- (A) $R_1 = 10 \Omega$
- (B) $R_1 = 15 \Omega$
- (C) power drawn from the cell increases
- (D) the current through R decreases by 40%
- Sol. [B,C]

When k was open

Reading of (A) = $\frac{E}{10}$ amp = 0.25,

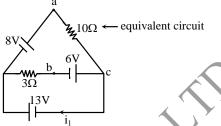
When k was closed

Reading of (A) =
$$\frac{E(10 + R_1)}{10R_1} = \frac{5}{12}$$


$$\Rightarrow$$
 12 (5 + 0.5R₁) =10R₁

 $R_1 = 15 \Omega$, Power drawn = $\frac{V^2}{R_{eq}}$ as R_{eq} decrease

Power = $\frac{V^2}{R_{aa}}$ will increases, current through


R = 0.25 amp (initially) after k is closed current through R = 0.25 amp.

 $R = 10\Omega$ and E = 13 V and voltmeter and **Q.2** ammeter are ideal, then -

- (A) Reading of ammeter is 2.4 A
- (B) Reading of ammeter is 8.4 A
- (C) Reading of voltmeter is 8.4 V
- (D) Reading of voltmeter is 27 V

[B,D]Sol.

Using Kirchoff law solve the circuit.

Q.3 A voltmeter of resistance R₁ and an ammeter of R₂ are connected in series across a battery negligible internal resistance. When a resistance R is connected in parallel to the voltmeter reading of ammeter increases three times while that of voltmeter reduces to one third. The value

(A)
$$R_1$$
 is $\frac{8R}{3}$
(C) R_2 is $\frac{8R}{3}$

(B)
$$R_1$$
 is $8R$

(C)
$$R_2$$
 is $\frac{8R}{3}$