Parabola

Single Correct Answer Type

1. A straight line through $\mathrm{A}(6,8)$ meets the curve $2 \mathrm{x}^{2}+\mathrm{y}^{2}=2$ at B and C. P is a point on BC such that $\mathrm{AB}, \mathrm{AP}, \mathrm{AC}$ are in H.P, then the minimum distance of the origin from the locus of ' P ' is
A) $\frac{1}{\sqrt{52}}$
B) $\frac{5}{\sqrt{52}}$
C) $\frac{10}{\sqrt{52}}$
D) $\frac{15}{\sqrt{52}}$

Key. A
Sol. $\quad(6+r \cos \theta, 8+r \sin \theta)$ lies on $2 x^{2}+y^{2}=2$
$\Rightarrow\left(2 \cos ^{2} \theta+\sin ^{2} \theta\right) r^{2}+2(12 \cos \theta+8 \sin \theta) r+134=0$
$\mathrm{AB}, \mathrm{AP}, \mathrm{AC}$ are in $\mathrm{H} \cdot \mathrm{P} \Rightarrow \frac{2}{\mathrm{r}}=\frac{\mathrm{AB}+\mathrm{AC}}{\mathrm{AB} \cdot \mathrm{AC}} \Rightarrow \frac{1}{\mathrm{r}}=-\frac{(6 \cos \theta+4 \sin \theta)}{67} \Rightarrow 6 \mathrm{x}+4 \mathrm{y}-1=0$
Minimum distance from ' $\mathrm{O}^{\prime}=\frac{1}{\sqrt{52}}$
2. Let $\mathrm{A}(0,2), \mathrm{B}$ and C are points on parabola $\mathrm{y}^{2}=\mathrm{x}+4$ and such that $\mathrm{CBA}=\frac{\Pi}{2}$, then the range of ordinate of C is
A) $(-\infty, 0) \cup(4, \infty)$
B) $(-\infty, 0] \cup[4, \infty)$
C) $[0,4]$
D) $(-\infty, 0) \cup[4, \infty)$

Key. B
Sol. $\mathrm{A}(0,2)$,

$$
\mathrm{B}=\left(\mathrm{t}_{1}^{2}-4, \mathrm{t}_{1}\right) \quad \mathrm{C}=\left(\mathrm{t}^{2}-4, \mathrm{t}\right)
$$

$\frac{2-t_{1}}{4-t_{1}^{2}} \cdot \frac{t_{1}-t}{t_{1}^{2}-t^{2}}=-1 \Rightarrow \frac{1}{2+t_{1}} \cdot \frac{1}{t+t_{1}}=-1 \Rightarrow t_{1}^{2}+(2+t) t_{1}+(2 t+1)=0$
For real $\mathrm{t}_{1}, \Rightarrow(2+\mathrm{t})^{2}-4(2 \mathrm{t}+1)=0 \Rightarrow \mathrm{t}^{2}-4 \mathrm{t} \geq 0 \Rightarrow \mathrm{t} \in(-\alpha, 0] \cup[4, \alpha)$
3. If $2 p^{2}-3 q^{2}+4 p q-p=0$ and a variable line $p x+q y=1$ always touches a parabola whose axis is parallel to X -axis, then equation of the parabola is
A) $(y-4)^{2}=24(x-2)$
B) $(y-3)^{2}=12(x-1)$
C) $(y-4)^{2}=12(x-2)$
D) $(y-2)^{2}=24(x-4)$

Key. C
Sol. The parabola be $(y-a)^{2}=4 b(x-c)$

Equation of tangent is $(y-a)=-\frac{p}{q}(x-c)-\frac{b q}{p}$
Comparing with $\mathrm{px}+\mathrm{qy}=1$, we get $\mathrm{cp}^{2}-\mathrm{bq}^{2}+\mathrm{apq}-\mathrm{p}=0$
$\therefore \frac{\mathrm{c}}{2}=\frac{\mathrm{b}}{3}=\frac{\mathrm{a}}{4}=1 \Rightarrow$ the equation is $(\mathrm{y}-4)^{2}=12(\mathrm{x}-2)$
4. Consider the parabola $\mathrm{x}^{2}+4 \mathrm{y}=0$. Let $\mathrm{p}=(\mathrm{a}, \mathrm{b})$ be any fixed point inside the parabola and let ' S ' be the focus of the parabola. Then the minimum value at $S Q+P Q$ as point Q moves on the parabola is
A) $|1-a|$
B) $|a b|+1$
C) $\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
D) $1-\mathrm{b}$

Key. D
Sol. Let foot of perpendicular from Q to the directrix be N
$\Rightarrow \mathrm{SQ}+\mathrm{PQ}=\mathrm{QN}+\mathrm{PQ}$ is minimum it $\mathrm{P}, \mathrm{Q} \& \mathrm{~N}$ are collinear
So minimum value of $\mathrm{SQ}+\mathrm{PQ}=\mathrm{PN}=1-\mathrm{b}$
5. The locus point of intersection of tangents to the parabola $y^{2}=4 a x$, the angle between them being always 45° is
A) $x^{2}-y^{2}+6 a x-a^{2}=0$
B) $x^{2}-y^{2}-6 a x+a^{2}=0$
C) $x^{2}-y^{2}+6 a x+a^{2}=0$
D) $x^{2}-y^{2}-6 a x-a^{2}=0$

Key. C
Sol. Equation of tangent is $y=m x+\frac{a}{m}$

$$
\begin{aligned}
& \Rightarrow \mathrm{m}^{2} \mathrm{x}-\mathrm{my}+\mathrm{a}=0 \Rightarrow \mathrm{~m}_{1}+\mathrm{m}_{2}=\frac{\mathrm{y}}{\mathrm{x}}, \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{x}} \\
& \tan 45^{\circ}=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right| \Rightarrow\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{2}-4\left(\frac{\mathrm{a}}{\mathrm{x}}\right)=\left(1+\frac{\mathrm{a}}{\mathrm{x}}\right)^{2}
\end{aligned}
$$

$$
\Rightarrow x^{2}-y^{2}+6 a x+a^{2}=0
$$

6. The coordinates of the point on the parabola $y=x^{2}+7 x+2$, which is nearest to the straight line $y=3 x-3$ are
1) $(-2,-8)$
2) $(1,10)$
3) $(2,20)$
4) $(-1,-4)$

Key. 1
Sol. Hint: Any point on the parabola is $\left(x, x^{2}+7 x+2\right)$
Its distance from the line $y=3 x-3$ is given by
$P=\left|\frac{3 x-\left(x^{2}+7 x+2\right)-3}{\sqrt{9+1}}\right|=\left|\frac{x^{2}+4 x+5}{\sqrt{10}}\right|=\frac{x^{2}+4 x+5}{\sqrt{10}}\left(\right.$ as $\left.x^{2}+4 x+5>0 \forall x \in R\right)$
$\frac{d p}{d x}=0 \Rightarrow x=-2$ the required point $=(-2,-8)$
7. The point P on the parabola $y^{2}=4 a x$ for which $|P R-P Q|$ is maximum, where $R=(-a, 0), Q=(0, a)$. is

1) $(a, 2 a)$
2) $(a,-2 a)$
3) $(4 a, 4 a)$
4) $(4 a,-4 a)$

Key. 1
Sol. We know that any side of the triangle is more than the difference of the remaining two sides so that $|P R-P Q| \leq R Q$
The required point P will be the point of intersection of the line $R Q$ with parabola which is $(a, 2 a)$ as PQ is a tangent to the parabola
8. The number of $\operatorname{point}(\mathrm{s})(x, y)$ (where x and y both are perfect squares of integers) on the parabola $y^{2}=p x, \mathrm{p}$ being a prime number, is

1) zero
2) one
3) two
4) infinite

Key. 2
Sol. If x is a perfect square, then $p x$ will be a perfect square only if p is a perfect square, which is not possible as p is a prime number. Hence y cannot be a perfect square. So number of such points will be only one $(0,0)$
9. The locus of point of intersection of any tangent to the parabola $y^{2}=4 a(x-2)$ with a line perpendicular to it and passing through the focus, is

1) $x=2$
2) $y=0$
3) $x=a$
$x=a+2$
Key. 1
Sol. It is well known property of a parabola that a tangent and normal to it from focus intersect at tangent at vertex
10. If the parabola $y=(a-b) x^{2}+(b-c) x+(c-a)$ touches the x-axis then the line $a x+b y+c=0$
1) Always passes through a fixed point
2) represents the family of parallel lines
3) always perpendicular to x-axis 4) always has negative slope

Key. 1
Sol. Solving equation of parabola with x -axis ($\mathrm{y}=0$)
We get $(a-b) x^{2}+(b-c) x+(c-a)=0$, which should have two equal values of x , as x axis touches the parabola $\Rightarrow(b-c)^{2}-4(a-b)(c-a)=0$
$\Rightarrow(b+c-2 a)^{2}=0 \Rightarrow-2 a+b+c=0 \Rightarrow a x+b y+c=0$ always passes through $(-2,1)$
11. If one end of the diameter of a circle is $(3,4)$ which touches the x-axis then the locus of other end of the diameter of the circle is

1) Circle
2) parabola
3) ellipse
4) hyperbola

Key. 2
Sol. Let other end of diameter (h, k)
Hence centre is $\sqrt{\left(\frac{3+h}{2}-3\right)^{2}+\left(\frac{k+4}{2}-4\right)^{2}}$ gives the equation of parabola
12. The point $(1,2)$ is one extremity of focal chord of parabola $y^{2}=4 x$. The length of this focal chord is

1) 2
2) 4
3) 6
4) none of these

Key. 2

Sol.

The parabola $y^{2}=4 x$, here $a=1$ and focus is $(1,0)$
The focal chord is ASB. This is clearly latus rectum of parabola, its value $=4$
13. If AFB is a focal chord of the parabola $y^{2}=4 a x$ and $A F=4, F B=5$ then the latus-rectum of the parabola is equal to

1) $\frac{80}{9}$
2) $\frac{9}{80}$
3) 9
4) 80

Key. 1

Sol.
$F A=4, F B=5$
We know that $\frac{1}{a}=\frac{1}{A F}+\frac{1}{F B}$

$$
\Rightarrow a=\frac{20}{9} \Rightarrow 4 a=\frac{80}{9}
$$

14. If at $x=1, y=2 x$ tangent to the parabola $y=a x^{2}+b x+c$, then respective values of a,b,c possible are
1) $\frac{1}{2}, 1, \frac{1}{2}$
2) $1, \frac{1}{2}, \frac{1}{2}$
3) $\frac{1}{2}, \frac{1}{2}, 1$
4) $\frac{-1}{2}, 1, \frac{3}{2}$

Key. 1
Sol. for $\mathrm{x}=1, \mathrm{y}=a+b+c$
Tangent at $(1, a+b+c) i s \frac{1}{2}(y+a+b+c)=a x+\frac{b}{2}(x+1)+c$

Comparing with $y=2 x, c=a, b=2(1-a)$
Which are true for choice (1) only
15. The number of focal chords of length $4 / 7$ in the parabola $7 y^{2}=8 x$ is

1) one
2) zero
3) two
4) infinite

Key. 2
Sol. \quad since length of latus -rectum $=\frac{8}{7}$
Latus-rectum is the smallest focal chord
Hence focal chord of length $\frac{4}{7}$ does not exist.
16. The length of the chord of the parabola $x^{2}=4 y$ passing through the vertex and having slope $\cot \alpha$ is
(1) $4 \cos \alpha \cdot \cos ^{2} c^{2} \alpha$
(2) $4 \tan \alpha \sec \alpha$
(3) $4 \sin \alpha \cdot \sec ^{2} \alpha$
(4) none of these

Key. 1
Sol. Let $A=$ vertex, $\mathrm{AP}=$ chord of $x^{2}=4 y$ such that slope of AP is $\cot \alpha$
Let $P=\left(2 t, t^{2}\right)$
Slope of $A P=\frac{1}{2} \Rightarrow \cot \alpha=\frac{1}{2} \Rightarrow t=2 \cot \alpha$
Now, $A P=\sqrt{4 t^{2}+t^{4}}=t \sqrt{4+t^{2}}$
$=4 \cot \alpha \operatorname{cosec} \alpha$
$=4 \cos \alpha \cdot \operatorname{cosec}{ }^{2} \alpha$
17. Slope of tangent to $x^{2}=4 y$ from $(-1,-1)$ can be

1) $\frac{-1 \pm \sqrt{5}}{2}$
2) $\frac{-3-\sqrt{5}}{2}$
3) $\frac{1-\sqrt{5}}{2}$
4) $\frac{1+\sqrt{5}}{2}$

Key. 1
Sol. $y^{1}=\frac{x}{2}=m$
$\Rightarrow x=2 m \Rightarrow y=m^{2}$
So equation of tangent is $y-m^{2}=m(x-2 m)$ which passes through $(-1,-1)$
$\Rightarrow-1-m^{2}=m(-1-2 m)$
$\Rightarrow m^{2}+m-1=0 \Rightarrow m=\frac{-1 \pm \sqrt{5}}{2}$
18. If line $y=2 x+\frac{1}{4}$ is tangent to $y^{2}=4 a x$, then a is equal to

1) $\frac{1}{2}$
2) 1
3) 2
4) None of these

Key. 1

Sol. $\quad c=\frac{a}{m} \Rightarrow a=2\left(\frac{1}{4}\right)=\frac{1}{2}$
19. The Cartesian equation of the curve whose parametric equations are $x=t^{2}+2 t+3$ and $y=t+1$ is

1) $y=(x-1)^{2}+2(y-1)+3$
2) $x=(y-1)^{2}+2(y-1)+5$
3) $x=y^{2}+2$
4) none of these

Key. 3
Sol. $\quad x=t^{2}+2 t+3=(t+1)^{2}+2=y^{2}+2$
20. If the line $y-\sqrt{3} x+3=0$ cuts the parabola $y^{2}=x+2$ at A and B , then PA . PB is equal to (where $P \equiv(\sqrt{3}, 0)$)

1) $\frac{4(\sqrt{3}+2)}{3}$
2) $\frac{4(2-\sqrt{3})}{3}$
3) $\frac{4 \sqrt{3}}{2}$
4) $\frac{2(\sqrt{3}+2)}{3}$

Key. 1
Sol. $y-\sqrt{3} x+3=0$ can be rewritten as
$\frac{y-0}{\frac{\sqrt{3}}{2}}=\frac{x-\sqrt{3}}{\frac{1}{2}}=r$
Solving (1)
with
the
parabola
$y^{2}=x+2$
$\frac{3 r^{2}}{4}-\frac{r}{2}-\sqrt{3}-2=0 \Rightarrow P A \cdot P B=r_{1} r_{2}=\frac{4(\sqrt{3}+2)}{3}$
21. The equation of the line of the shortest distance between the parabola $y^{2}=4 x$ and the circle $x^{2}+y^{2}-4 x-2 y+4=0$ is.

1) $x+y=3$
2) $x-y=3$
3) $2 x+y=5$
4) none of these

Key. 1
Sol. Line of shortest distance is normal for both parabola and circle
Centre of circle is $(2,1)$
Equation of normal to circle is $y-1=m(x-2) \Rightarrow y=m x+(1-2 m)$
Equation of normal for a parabola is $y=m x-2 a m-a m^{3}$
Comparing (1) and (2)
$a m^{3}=-1 \Rightarrow m^{3}=-1 \Rightarrow m=-1 \quad(a=1)$
Equation is $y-1=-x+2 \Rightarrow x+y=3$
22. If $x+k=0$ is equation of directrix to parabola $y^{2}=8(x+1)$ then $k=$

1) 1
2) 2
3) 3
4) 4

Key. 3
Sol. Focus is $(1,0)$ third vertex is $(-1,0)$. Hence directrix is $x+3=0$
23. If t is the parameter for one end of a focal chord of the parabola $y^{2}=4 a x$, then its length is

1) $a\left(t+\frac{1}{t}\right)^{2}$
2) $a\left(t-\frac{1}{t}\right)^{2}$
3) $a\left(t+\frac{1}{t}\right)$
4) $a\left(t-\frac{1}{t}\right)$

Key. 1
Sol. Conceptual
24. The ends of the latus rectum of the conic $x^{2}+10 x-16 y+25=0$ are
(1) $(3,-4),(13,4)$
(2) $(-3,-4),(13,-4)$
(3) $(3,4),(-13,4)$
(4) $(5,-8),(-5,8)$

Key. 3
Sol. $\quad(x+5)^{2}=16 y$ comparing it with $x^{2}=4 a y$,
25. If the lines $(y-b)=m_{1}(x+a)$ and $(y-b)=m_{2}(x+a)$ are the tangents of $y^{2}=4 a x$ then

1) $\left.m_{1}+m_{2}=02\right) m_{1} m_{2}=1$
2) $m_{1} m_{2}=-1$
3) $m_{1}+m_{2}=1$

Key. 3
Sol. $y=m x+\frac{a}{m}$
$\Rightarrow m^{2} x-3 y+a=0, m_{1} \cdot m_{2}=-1$
26. The equation of a parabola is $y^{2}=4 x \cdot \operatorname{Let} P(1,3)$ and $Q(1,1)$ are two points in the $x y$ plane. Then, for the parabola

1) P and Q are exterior points
2) P is an interior point while Q is an exterior point
3) P and Q are interior points
4) P is an exterior point while Q is an interior point

Key. 4
Sol. Here, $S \equiv y^{2}-4 x=0$
$S(1,3)=3^{2}-4.1>0$
$\Rightarrow P(1,3)$ is an exterior point $S(1,1)=1^{1}-4.1<0$
$\Rightarrow Q(1,1)$ is an interior point
27. If the focus of a parabola is $(-2,1)$ and the directrix has the equation $x+y=3$, then the vertex is:

1) $(0,3)$
2) $\left(-1, \frac{1}{2}\right)$
3) $(-1,2)$
4) $(2,-1)$

Key. 3
Sol. The vertex is the middle point of the perpendicular dropped from the focus to the directrix.
28. The length of the latus-rectum of the parabola $169\left\{(x-1)^{2}+(y-3)^{2}\right\}=(5 x-12 y+17)^{2}$ is

1) $\frac{12}{13}$
2) $\frac{14}{13}$
3) $\frac{28}{13}$
4) $\frac{31}{13}$

Key. 3
Sol. $\quad(x-1)^{2}+(y-3)^{2}=\left(\frac{5 x-12 y+17}{13}\right)^{2}$
Length of latus rectum $=4 a$

Perpendicular distance from $(1,3)$ to the line $5 x-12 y+17=0$ is
$2 a=\frac{|5 \times 1-12 \times 3+17|}{\sqrt{169}}=\frac{14}{13}$
29. The co-ordinates of a point on the parabola $y^{2}=8 x$ whose focal distance is 4 is

1) $(2,4)$
2) $(4,2)$
3) $(2,-6)$
4) $(4,-2)$

Key. 1
Sol. $\quad a+x=4 \Rightarrow 2+x=4 \Rightarrow x=2, y=4$
30. Co-ordinate of the focus of the parabola $x^{2}-4 x-8 y-4=0$ are

1) $(0,2)$
2) $(2,1)$
3) $\left(-3, \frac{-71}{10}\right)$
4) $(2,-1)$

Key. 2
Sol. $\quad(x-2)^{2}=8(y+1)$
Focus $x-2=0, y+1=2 \Rightarrow x=2, y=1$
Focus $(2,1)$
31. If focal distance of a point on the parabola $y=x^{2}-4$ is $\frac{25}{4}$ and points are of the form $(\pm \sqrt{a}, b)$ Then $a+b$ is equal to

1) 8
2) 4
3) 2
4) 0

Key. 1
Sol. $y+4=x^{2}$
$x^{2}=4 \cdot \frac{1}{4}(y+4)$
Focal distance $=\frac{25}{4}$
Distance from directrix $\left(y=\frac{-15}{4}\right)$
Ordinate of points on the parabola whose focal distance is $\frac{25}{4}$
$=\frac{-17}{4}+\frac{25}{4}=2 \quad$ points are $(\pm \sqrt{6}, 2) \quad \Rightarrow a+b=8$
32. Length of side of an equilateral triangle inscribed in a parabola $y^{2}-2 x-2 y-3=0$ whose one angular point is vertex of the parabola is

1) $2 \sqrt{3}$
2) $4 \sqrt{3} 3)-\sqrt{3}$
3) $\sqrt{3}$

Key. 2
Sol. Length of side $=8 \sqrt{3} a=8 \sqrt{3} \frac{1}{2}=4 \sqrt{3}$
33. Length of latus rectum of the parabola whose parametric equations are $x=t^{2}+t+1, y=t^{2}-t+1$ where $t \in R$, is equal to

1) 4
2) +1
3) $\sqrt{2}$
4) 3

Key. 3
Sol. $x+y=2\left(t^{2}+1\right) \& x-y=2 t$
$\therefore(x+y-2)=2\left(\frac{x-y}{2}\right)^{2} \Rightarrow\left(\frac{x-y}{\sqrt{2}}\right)^{2}=\sqrt{2}\left(\frac{x+y-2}{\sqrt{2}}\right)$
Length of latusrectum $=\sqrt{2}$
34. In the parabola, $y^{2}-2 y+8 x-23=0$, the length of double ordinate at a distance of 4 units from its vertex is

1) $4 \sqrt{2}$
2) $8 \sqrt{2}$
3) 6
4) 4

Key. 2
Sol. Length of double ordinate $=8 \sqrt{2}$
35. If any point $P(x, y)$ satisfies the relation
$(5 x-1)^{2}+(5 y-2)^{2}=\lambda(3 x-4 y-1)^{2}$, represents parabola, then

1) $\lambda=1$
2) $\lambda<1$
3) $\lambda>1$
4) $\lambda>2$

Key. 1
Sol. Conceptual
36. The locus of the vertex of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ (a is parameter) is
(A) $x y=\frac{105}{64}$
(B) $x y=\frac{3}{4}$
(C) $x y=\frac{35}{16}$
(D) $x y=\frac{64}{105}$

Key. A
Sol. $\quad y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$
$y=\frac{2 a^{3}}{6}\left(x^{2}+\frac{3}{2 a} x-\frac{12 a}{2 a^{3}}\right)$
$y=\frac{2 a^{3}}{6}\left(x^{2}+2 \cdot \frac{3}{4 a} x+\frac{9}{16 a^{2}}-\frac{9}{16 a^{2}}-\frac{12 a}{2 a^{3}}\right)$
$y=\frac{2 a^{3}}{6}\left(\left(x+\frac{3}{4 a}\right)^{2}-\frac{1059}{16 a^{3}}\right)$
$\left(y+\frac{1059}{48}\right)=\frac{2 a^{3}}{6}\left(x+\frac{3}{4 a}\right)^{2}$
$x=\frac{-1059}{48}$
$y=\frac{-3}{49}$
$x y=\frac{1059}{48} \times \frac{3}{49}=\frac{105}{64}$
37. Tangents are drawn from the point $(-1,2)$ to the parabola $y^{2}=4 x$. The length of the intercept made by the line $x=2$ on these tangents is
(A) 6
(B) $6 \sqrt{2}$
(C) $2 \sqrt{6}$
(D) none

Key. B
Sol. Equation of pair of tangent is
$S S_{1}=T^{2}$
$\Rightarrow\left(y^{2}-4 x\right)(8)=4(y-x+1)^{2}$
$\Rightarrow y^{2}-2 y(1-x)-\left(x^{2}+6 x+1\right)=0$
Put $x=2$
$\Rightarrow y^{2}+2 y-17=0$
$\Rightarrow\left|y_{1}-y_{2}\right|=6 \sqrt{2}$
38. The given circle $x^{2}+y^{2}+2 p x=0, p \in R$ touches the parabola $y^{2}=4 x$ externally, then
(A) $\mathrm{p}<0$
(B) $\mathrm{p}>0$
(C) $0<$ p <1
(D) $\mathrm{p}<-1$

Key. B
Sol. Centre of the circle is $(-\mathrm{p}, 0)$, If it touches the parabola, then according to figure only one case is possible.
Hence $\mathrm{p}>0$
39. The triangle PQR of area A is inscribed in the parabola $y^{2}=4 a x$ such that P lies at the vertex of the parabola and base QR is a focal chord. The numerical difference of the ordinates of the points $\mathrm{Q} \& \mathrm{R}$ is
(A) $\frac{A}{2 a}$
(B) $\frac{A}{a}$
(C) $\frac{2 A}{a}$
(D) $\frac{4 A}{a}$

Key. C
Sol. QR is a focal chord
$\Rightarrow R\left(a t^{2}, 2 a t\right) \& Q\left(\frac{a}{t^{2}},-\frac{2 a}{t}\right)$
$\Rightarrow d=\left|2 a t+\frac{2 a}{t}\right|=2 a\left|t+\frac{1}{t}\right|$
Now $\quad A=\frac{1}{2}\left|\begin{array}{ccc}a t^{2} & 2 a t & 1 \\ \frac{a}{t^{2}} & -\frac{2 a}{t} & 1 \\ 0 & 0 & 1\end{array}\right|=a^{2}\left|t+\frac{1}{t}\right|$
$\Rightarrow 2 a\left|t+\frac{1}{t}\right|=\frac{2 A}{a}$
40. Through the vertex O of the parabola $y^{2}=4 a x$ two chords $O P \& O Q$ are drawn and the circles on $O P \& O Q$ as diameter intersect in R. If
$\theta_{1}, \theta_{2} \& \phi$ are the inclinations of the tangents at $\mathrm{P} \& \mathrm{Q}$ on the parabola and the line through O, R respectively, then the value of $\cot \theta_{1}+\cot \theta_{2}$ is
(A) $-2 \tan \phi$
(B) $-2 \tan (\pi-\phi)$
(C) 0
(D) $2 \cot \phi$

Key. A
Sol. Let $P\left(t_{1}\right) \& Q\left(t_{2}\right)$
\Rightarrow Slope of tangent at $\mathrm{P}\left(\frac{1}{t_{1}}\right) \&$ at $\mathrm{Q}\left(\frac{1}{t_{2}}\right) \quad \Rightarrow \cot \theta_{1}=t_{1}$ and $\cot \theta_{2}=t_{2}$
Slope of $\mathrm{PQ}=\frac{2}{t_{1}+t_{2}}=\tan \phi$
$\Rightarrow \tan \phi=-\frac{1}{2}\left(\cot \theta_{1}+\cot \theta_{2}\right) \quad \Rightarrow \cot \theta_{1}+\cot \theta_{2}=-2 \tan \phi$
41. AB and AC are tangents to the parabola $y^{2}=4 a x . p_{1}, p_{2} \& p_{3}$ are perpendiculars from $A, B \& C$ respectively on any tangent to the curve (otherthan the tangents at $\mathrm{B} \& \mathrm{C}$), then $p_{1}, p_{2} \& p_{3}$ are in
(A) A.P.
(B) G.P.
(C) H.P
(D) none

Key. B
Sol. Let any tangent is tangent at vertex $\mathrm{x}=0$ and
Let $\quad B\left(t_{1}\right) \& C\left(t_{2}\right)$
$\Rightarrow A\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$
$\Rightarrow p_{1}=a t_{1}^{2} ; p_{2}=a t_{2}^{2} \& p_{3}=a t_{1} t_{2}$
$\Rightarrow p_{1}, p_{2} \& p$ are in G.P.
42. A tangent to the parabola $x^{2}+4 a y=0$ at the point T cuts the parabola $x^{2}=4 b y$ at $\mathrm{A} \& \mathrm{~B}$. Then locus of the mid point of AB is
(A) $(b+2 a) x^{2}=4 b^{2} y$
(B) $(b+2 a) x^{2}=4 a^{2} y$
(C) $(a+2 b) y^{2}=4 b^{2} x$
(D) $(a+2 b) x^{2}=4 b^{2} y$

Key. D
Sol. Let mid point of $A B$ is $M(h, k)$
Then equation of AB is $\quad h x-2 b(y+k)=h^{2}-4 b k$
Let T(2at,-at $\left.{ }^{2}\right)$
\Rightarrow Equation of $\operatorname{tangent}(\mathrm{AB})=\mathrm{x}(2 a t)=-2 a\left(y-a t^{2}\right)$
Compare these two equations, we get $\frac{h}{2 a t}=\frac{-2 b}{2 a}=\frac{h^{2}-2 b k}{2 a^{2} t^{2}}$
By eliminating t and Locus (h, k), we get $(a+2 b) x^{2}=4 b^{2} y$
43. A parabola $y=a x^{2}+b x+c$ crosses the x -axis at $\mathrm{A}(\mathrm{p}, 0) \& \mathrm{~B}(\mathrm{q}, 0)$ both to the right of origin. A circle also passes through these two points. The length of a tangent from the origin to the circle is
(A) $\sqrt{\frac{b c}{a}}$
(B) $a c^{2}$
(C) b / a
(D) $\sqrt{\frac{c}{a}}$

Key. D
Sol. Use power of point for the point O
figure

$$
\begin{aligned}
& \Rightarrow O T^{2}=O A \cdot O B=p q=\frac{c}{a} \\
& \Rightarrow O T=\sqrt{\frac{c}{a}}
\end{aligned}
$$

44. The equation of the normal to the parabola $y^{2}=8 x$ at the point t is
45. $y-x=t+2 t^{2}$
46. $y+t x=4 t+2 t^{3}$
47. $x+t y=t+2 t^{2}$
48. $y-x=2 t-3 t^{3}$

Key. 2
Sol. Equation of the normal at ' t ' is $y+t x=2(2) t+(2) t^{3} \Rightarrow y+t x=4 t+2 t^{3}$
45. The slope of the normal at $\left(a t^{2}, 2 a t\right)$ of the parabola $y^{2}=4 a x$ is

1. $\frac{1}{t}$
2. t
3. $-t$
4. $-\frac{1}{t}$

Key. 3
Sol. Slope of the normal at ' t ' is $-t$.
46. If the normal at the point ' t ' on a parabola $y^{2}=4 a x$ meet it again at t_{1}, then $t_{1}=$

1. t
2. $-t-1 / t$
3. $-t-2 / t$
4. None

Key. 3
Sol. Equation of the normal at t is $t x+y=2 a t+a t^{3} \rightarrow(1)$

Equation of the chord passing through t and t_{1} is $y\left(t+t_{1}\right)=2 x+2 a t t_{1} \rightarrow(2)$

Comparing (1) and (2) we get $\frac{t}{-2}=\frac{1}{t+t_{1}} \Rightarrow t+t_{1}=-\frac{2}{t} \Rightarrow t_{1}=-\frac{2}{t}-t$
47. If the normal at t_{1} on the parabola $y^{2}=4 a x$ meet it again at t_{2} on the curve, then

$$
t_{1}\left(t_{1}+t_{2}\right)+2=
$$

1. 0
2. 1
3. t_{1}
4. t_{2}

Key. 1
Sol. Equation of normal at t_{1} is $t_{1} x+y=2 a t_{1}+a t_{1}^{3}$

It passes through $t_{2} \Rightarrow a t_{1} t_{2}^{2}+2 a t_{2}=2 a t_{1}+a t_{1}^{3}$
$\Rightarrow t_{1}\left(t_{2}^{2}-t_{1}^{2}\right)=2\left(t_{1}-t_{2}\right) \Rightarrow t_{1}\left(t_{1}+t_{2}\right)=-2 \Rightarrow t_{1}\left(t_{1}+t_{2}\right)+2=0$
48. If the normal at $(1,2)$ on the parabola $y^{2}=4 x$ meets the parabola again at the point $\left(t^{2}, 2 t\right)$, then the value of t is

1. 1
2. 3
3. -3
4. -1

Key. 3
Sol. $\quad \operatorname{Let}(1,2)=\left(t_{1}^{2}, 2 t_{1}\right) \Rightarrow t_{1}=1$
$t=-t_{1}-\frac{2}{t_{1}}=-1-\frac{2}{1}=-3$
49. If the normal to parabola $y^{2}=4 x$ at $P(1,2)$ meets the parabola again in Q, then $Q=$

1. $(-6,9)$
2. $(9,-6)$
3. $(-9,-6)$
4. $(-6,-9)$

Key. 2
Sol. $\quad P=(1,2)=\left(t^{2}, 2 t\right) \Rightarrow t=1$
$Q=\left(t_{1}^{2}, 2 t_{1}\right) \Rightarrow t_{1}=-t-2 / t=-1-2=-3 \Rightarrow Q=(9,-6)$.
50. If the normals at the points t_{1} and t_{2} on $y^{2}=4 a x$ intersect at the point t_{3} on the parabola, then $t_{1} t_{2}=$

1. 1
2. 2
3. t_{3}
4. $2 t_{3}$

Key. 2
Sol. Let the normals at t_{1} and t_{2} meet at t_{3} on the parabola.

The equation of the normal at t_{1} is $y+x t_{1}=2 a t_{1}+a t_{1}^{3} \rightarrow(1)$

Equation of the chord joining t_{1} and t_{3} is $y\left(t_{1}+t_{3}\right)=2 x+2 a t_{1} t_{3} \rightarrow(2)$
(1) and (2) represent the same line.
$\therefore \quad \frac{t_{1}+t_{3}}{1}=\frac{-2}{t_{1}} \Rightarrow t_{3}=-t_{1}-\frac{2}{t_{1}}$. Similarly $t_{3}=-t_{2}-\frac{2}{t_{2}}$
$\therefore-t_{1}-\frac{2}{t_{1}}=-t_{2}-\frac{2}{t_{2}} \Rightarrow t_{1}-t_{2}=\frac{2}{t_{2}}-\frac{2}{t_{1}} \Rightarrow t_{1}-t_{2}=\frac{2\left(t_{1}-t_{2}\right)}{t_{1} t_{2}} \Rightarrow t_{1} t_{2}=2$
51. The number of normals thWSat can be drawn to the parabola $y^{2}=4 x$ form the point $(1,0)$ is
1.0
2. 1
3. 2
4. 3

Key. 2
Sol. $\quad(1,0)$ lies on the axis between the vertex and focus \Rightarrow number of normals $=1$.
52. The number of normals that can be drawn through $(-1,4)$ to the parabola

$$
y^{2}-4 x+6 y=0 \text { are }
$$

1. 4
2. 3
3. 2
4. 1

Key. 4
Sol. Let $S \equiv y^{2}-4 x+6 y . S_{(-1,4)}=4^{2}-4(-1)+6(4)=16+4+24=44>0$
$\therefore \quad(-1,4)$ lies out side the parabola and hence one normal can be drawn from $(-1,4)$ to the parabola.
53. If the tangents and normals at the extremities of a focal chord of a parabola intersect at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively, then

1. $x_{1}=x_{2}$
2. $x_{1}=y_{2}$
3. $y_{1}=y_{2}$
4. $x_{2}=y_{1}$

Key. 3
Sol. Let $A\left(t_{1}\right) B\left(t_{2}\right)$ the extremiues of a focal chard of $y^{2}=4 a x$
$\therefore t_{1} t_{2}=-1$
$\left(x_{1}, y_{1}\right)=\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right] ;\left(x_{2}, y_{2}\right)=\left[a\left(t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}+2\right), a t_{1} t_{2}\left(t_{1}+t_{2}\right)\right]$
$y_{2}=-a t_{1} t_{2}\left(t_{1}+t_{2}\right)=-a(-1)\left(t_{1}+t_{2}\right)=a\left(t_{1}+t_{2}\right)=y_{1}$
54. The normals at three points P, Q, R of the parabola $y^{2}=4 a x$ meet in (h, k). The centroid of triangle $P Q R$ lies on

1. $x=0$
2. $y=0$
3. $x=-a$
4. $y=a$

Key. 2
Sol. Let $P\left(t_{1}\right), Q\left(t_{2}\right) \& R\left(t_{3}\right)$

Equation of a normal to $y^{2}=4 a x$ is $y+t x=2 a t+a t^{3}$

This passes through $(h, k) \Rightarrow k+t h=2 a t+a t^{3} \Rightarrow a t^{3}+(2 a-h) t-k=0$
t_{1}, t_{2}, t_{3} are the roots of this equation $t_{1}+t_{2}+t_{3}=0$

Centroid of $\triangle P Q R$ is $G\left[\frac{a}{3}\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right), \frac{2 a}{3}\left(t_{1}+t_{2}+t_{3}\right)\right]$
$t_{1}+t_{2}+t_{3}=0 \Rightarrow \frac{2 a}{3}\left(t_{1}+t_{2}+t_{3}\right)=0 \Rightarrow G$ lies on $y=0$.
55. The ordinate of the centroid of the triangle formed by conormal points on the parabola $y^{2}=4 a x$ is

1. 4
2. 0
3. 2
4. 1

Key. 2
Sol. Let $t_{1}, t_{2} \& t_{3}$ be the conormal points drawn from $\left(x_{1}, y_{1}\right)$ to $y^{2}=4 a x$

Equation of the normal at point ' t ' to $y^{2}=4 a x$ is $y+t x=2 a t+a t^{3}$

This passes through $\left(x_{1}, y_{1}\right) \Rightarrow y_{1}+t x_{1}=2 a t+a t^{3} \Rightarrow a t^{3}+\left(2 a-x_{1}\right) t-y_{1}=0$
t_{1}, t_{2}, t_{3} are the roots of the equation. $\therefore t_{1}+t_{2}+t_{3}=0$

The ordinate of the centroid of the triangle formed by the points $t_{1}, t_{2} \& t_{3}$ is $\frac{2 a}{3}\left(t_{1}+t_{2}+t_{3}\right)=0$
56. The normals at two points P and Q of a parabola $y^{2}=4 a x$ meet at $\left(x_{1}, y_{1}\right)$ on the parabola. Then $P Q^{2}=$

1. $\left(x_{1}+4 a\right)\left(x_{1}+8 a\right)$
2. $\left(x_{1}+4 a\right)\left(x_{1}-8 a\right)$
3. $\left(x_{1}-4 a\right)\left(x_{1}+8 a\right)$
4. $\left(x_{1}-4 a\right)\left(x_{1}-8 a\right)$

Key. 2
Sol. \quad Let $P=\left(a t_{1}^{2}, 2 a t_{1}\right), Q=\left(a t_{2}^{2}, 2 a t_{2}\right)$

Since the normals at P and Q meet on the parabola, $t_{1} t_{2}=2$.
Point of intersection of the normals $\left(x_{1}, y_{1}\right)=\left(a\left[t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}+2\right],-a t_{1} t_{2}\left[t_{1}+t_{2}\right]\right)$
$\Rightarrow x_{1}=a\left(t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}+2\right)=a\left(t_{1}^{2}+t_{2}^{2}+4\right) \Rightarrow a\left(t_{1}^{2}+t_{2}^{2}\right)=x_{1}-4 a$
$P Q^{2}=\left(a t_{1}^{2}-a t_{2}^{2}\right)^{2}+\left(2 a t_{1}-2 a t_{2}\right)^{2}=a^{2}\left(t_{1}-t_{2}\right)^{2}\left[\left(t_{1}+t_{2}\right)^{2}+4\right]$
$=a\left(t_{1}^{2}+t_{2}^{2}-4\right) a\left(t_{1}^{2}+t_{2}^{2}+8\right)=\left(x_{1}-8 a\right)\left(x_{1}+4 a\right)$
57. If a normal subtends a right angle at the vertex of the parabola $y^{2}=4 a x$, then its length is

1. $\sqrt{5} a$
2. $3 \sqrt{5} a$
3. $6 \sqrt{3} a$
4. $7 \sqrt{5} a$

Key. 3
Sol. Leta $\left(a t_{1}^{2}, 2 a t_{1}\right), B\left(a t_{2}^{2}, 2 a t_{2}\right)$.

The normal at A cuts the curve again at B. $\quad \therefore t_{1}+t_{2}=-\frac{2}{t_{1}} \ldots \ldots$. (1)

Again AB subtends a right angle at the vertex $0(0,0)$ of the parabola.

Slope $O A=\frac{2 a t_{1}}{a t_{1}^{2}}=\frac{2}{t_{1}}$, slope of $O B=\frac{2}{t_{2}}$
$O A \perp O B \Rightarrow \frac{2}{t_{1}} \cdot \frac{2}{t_{2}}=-t_{1} t_{2}=-4$.
Slope of AB is $\frac{2 a\left(t_{2}-t_{1}\right)}{a\left(t_{2}^{2}-t_{1}^{2}\right)}=\frac{2}{t_{1}+t_{2}}=-t_{1}$.

Again from (1) and (2) on putting for t_{2}, we get $t_{1}=\frac{4}{t_{1}}=-\frac{2}{t_{1}} . \quad \therefore \quad t_{1}^{2}=2$ or
$t_{1} \pm \sqrt{2}$
$t_{2}=\frac{-4}{t_{1}}=\frac{-4}{(\pm \sqrt{2})}= \pm 2 \sqrt{2} . \quad \therefore \quad A=(2 a, \pm 2 a \sqrt{2}), B=(8 a, \pm 4 \sqrt{a})$
$A B=\sqrt{(2 a-8 a)^{2}+(2 a \sqrt{2}+4 \sqrt{2} a)^{2}}=\sqrt{36 a^{2}+72 a^{2}}=\sqrt{108 a^{2}}=6 \sqrt{3} a$.
58. Three normals with slopes m_{1}, m_{2}, m_{3} are drawn from any point P not on the axis of the parabola $y^{2}=4 x$. If $m_{1} m_{2}=a$, results in locus of P being a part of parabola, the value of 'a' equals

1. 2
2. -2
3. 4
4. -4

Key. 1
Sol. Equation of normal to $y^{2}=4 x$ is $y=m x-2 m-m^{3}$

It passes through $(\alpha, \beta) \quad \therefore m_{1} m_{2} m_{3} \beta=m \alpha-2,-m^{3}$
$\Rightarrow m^{3}+(2-\alpha) m+\beta=0$
(Let m_{1}, m_{2}, m_{3} are roots)
$\therefore \quad m_{1} m_{2} m_{3}=-\beta \quad\left(\right.$ as $\left.\quad m_{1} m_{2}=a\right) \Rightarrow m_{3}=-\frac{\beta}{a}$

Now $-\frac{\beta^{3}}{a^{3}}-(2-\alpha) \times \frac{\beta}{a}+\beta=0$
$\Rightarrow \beta^{3}+(2-\alpha) a^{2} \beta-\beta a^{3}=0$
\Rightarrow locus of P is $y^{3}+(2-x) y a^{2}-y a^{3}=0$

As P is not the axis of parabola
$\Rightarrow y^{2}=a^{2} x-2 a^{2}+a^{3}$ as it is the part of $y^{2}=4 x$
$\therefore a^{2}=4$ or $-2 a^{2}+a^{3}=0, a= \pm 2$ or $a^{2}(a-2)=0$
$a= \pm 2$ or $a=0, a=2$
$\Rightarrow a=2$ is the required value of a

59. The length of the normal chord drawn at one end of the latus rectum of $y^{2}=4 a x$ is

1. $2 \sqrt{2} a$
2. $4 \sqrt{2} a$
3. $8 \sqrt{2} a$
4. $10 \sqrt{2} a$

Key. 2
Sol. One end of the latus rectum $=(a, 2 a)$
Equation of the normal at $(a, 2 a)$ is $2 a(x-a)+2 a(y-2 a)=0 \Rightarrow x+y-3 a=0$
Solving; $y^{2}=4 a x, x+y-3 a=0$ we get the ends of normal chord are $(a, 2 a),(9 a,-6 a)$.
Length of the chard $=\sqrt{(9 a-a)^{2}+(-6 a-2 a)^{2}}=\sqrt{64 a^{2}+64 a^{2}}=8 \sqrt{2} a$.
60. If the line $y=2 x+k$ is normal to the parabola $y^{2}=4 x$, then value of k equals

1. -2
2. -12
3. -3
4. $-1 / 3$

Key. 1
Sol. Conceptual
61. The normal chord at a point ' t ' on the parabola $y^{2}=4 a x$ subtends a right angle at the vertex. Then $t^{2}=$

1. 4
2. 2
3.1
3. 3

Key. 2
Sol. Equation of the normal at point ' t ' is $y+t x=2 a t+a t^{3} \Rightarrow \frac{y+t x}{2 a t+a t^{3}}=1$
Homoginising $y^{2}=4 a x\left(\frac{y+t x}{2 a t+a t^{3}}\right) \Rightarrow\left(2 a t+a t^{3}\right) y^{2}-4 a x(y+t x)=0$
These lines re $\perp 1 r \Rightarrow 2 a t+a t^{3}-4 a t=0 \Rightarrow a t\left(t^{2}-2\right)=0 \Rightarrow t^{2}=2$
62. A is a point on the parabola $y^{2}=4 a x$. The normal at A cuts the parabola again at B . If AB subtends a right angle at the vertex of the parabola, then slope of $A B$ is

1. $\sqrt{2}$
2.2
2. $\sqrt{3}$
3. 3

Key. 1
Sol. Let $A\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $B\left(a t_{2}^{2}, 2 a t_{2}\right)$.

The normal at A cuts the curve again at B. $\quad \therefore t_{1}+t_{2}=-2 / t_{1} \ldots$.(1)

Again AB subtends a right angle at the vertex $O(0,0)$ of the parabola.

Slope of $O A=\frac{2 a t_{1}}{a t_{1}^{2}}=\frac{2}{t_{1}}$, Slope of $O B=\frac{2}{t_{2}}$
$O A \perp O B \Rightarrow \frac{2}{t_{1}} \cdot \frac{2}{t_{2}}=-1 \Rightarrow t_{1} t_{2}=-4 \ldots$.

Slope of AB is $\frac{2 a\left(t_{2}-t_{1}\right)}{a\left(t_{2}^{2}-t_{1}^{2}\right)}=\frac{2}{t_{1}+t_{2}}=-t_{1}$ by

Again from (1) and (2) on putting for t_{2} we get $t_{1}-\frac{4}{t_{1}}=\frac{2}{t_{1}} . \therefore \quad t_{1}^{2}=2 \Rightarrow t_{1}= \pm \sqrt{2}$.
\therefore Slope $= \pm \sqrt{2}$.
63. If the normal at P meets the axis of the parabola $y^{2}=4 a x$ in G and S is the focus, then $\mathrm{SG}=$

1. $S P$
2. $2 S P$
3. $\frac{1}{2} S P$
4. None

Key. 1
Sol. Equation of the normal at $P\left(a t^{2}, 2 a t\right)$ is $t x+y=2 a t+a t^{3}$

Since it meets the axis, $y=0 \Rightarrow t x=2 a t+a t^{3} \Rightarrow x=2 a+a t^{2}$
$\therefore G=\left(2 a+a t^{2}, 0\right)$, Focus $S=(a, 0)$
$S G=\sqrt{\left(2 a+a t^{2}-a\right)^{2}+(0-0)^{2}}=\sqrt{\left(a+a t^{2}\right)^{2}}=a+a t^{2}=a\left(1+t^{2}\right)$
$S P=\sqrt{\left(a t^{2}-a\right)^{2}+(2 a t-0)^{2}}=\sqrt{\left(a t^{2}-a\right)^{2}+4 a^{2} t^{2}}=\sqrt{\left(a t^{2}+a\right)^{2}}=a t^{2}+a=a\left(t^{2}+1\right)$
$\therefore S G=S P$
64. The normal of a parabola $y^{2}=4 a x$ at $\left(x_{1}, y_{1}\right)$ subtends right angle at the

1. Focus
2. Vertex
3. End of latus rectum
4. None of these

Key.
1
Sol. Conceptual
65. The normal at P cuts the axis of the parabola $y^{2}=4 a x$ in G and S is the focus of the parabola. If $\triangle S P G$ is equilateral then each side is of length

1. a
2. $2 a$
3. $3 a$
4. $4 a$

Key. 4
Sol. Let $P\left(a t^{2}, 2 a t\right)$

Equation of the normal at $P(t)$ is $y+t x=2 a t+a t^{3}$

Equation to y-axis is $x=0$. Solving $G\left(2 a+a t^{2}, 0\right)$

Focus $s(a, 0)$
$\triangle S P G$ is equilateral $\Rightarrow P G=G S \Rightarrow \sqrt{4 a^{2}+4 a^{2} t^{2}}=\sqrt{a^{2}\left(1+t^{2}\right)^{2}}$
$\Rightarrow 4 a^{2}\left(1+t^{2}\right)=a^{2}\left(1+t^{2}\right)^{2} \Rightarrow 4=1+t^{2} \Rightarrow t^{2}=3$

Length of the side $=S G=a\left(1+t^{2}\right)=a(1+3)=4 a$
66. If the normals at two points on the parabola $y^{2}=4 a x$ intersect on the parabola, then the product of the abscissa is

1. $4 a^{2}$
2. $-4 a^{2}$
3. $2 a$
4. $4 a^{4}$

Key. 1
Sol. Let $P\left(a t_{1}^{2}, 2 a t_{1}\right) ; Q\left(a t_{2}^{2}, 2 a t_{2}\right)$

Normals at $P \& Q$ on the parabola intersect on the parabola $\Rightarrow t_{1} t_{2}=2$
$a t_{1}^{2} \times a t_{2}^{2}=a^{2}\left(t_{1} t_{2}\right)^{2}=a^{2}(2)^{2}=4 a^{2}$
67. If the normals at two points on the parabola intersects on the curve, then the product of the ordinates of the points is

1. $8 a$
2. $8 a^{2}$
3. $8 a^{3}$
4. $8 a^{4}$

Key. 2
Sol. Let the normals at $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ intersect on the parabola at $R\left(t_{3}\right)$.

Equation of any noemal is $t x+y=2 a t+a t^{3}$

Since it passes through Q we get $t \cdot a t_{3}^{2}+2 a t_{3}=2 a t+a t^{3}$
$\Rightarrow a t^{3}+\left(2 a-a t_{3}^{2}\right) t-2 a t_{3}=0$, which is a cubic equation in t and hence its roots are t_{1}, t_{2}, t_{3}.

Product of the roots $=t_{1} t_{2} t_{3}=\frac{-\left(-2 a t_{3}\right)}{a}=2 t_{3} \Rightarrow t_{1} t_{2}=2$

Product of the absisson of P and $Q=a t_{1}^{2} \cdot a t_{2}^{2}=a^{2}\left(t_{1} t_{2}\right)^{2}=a^{2}(2)^{2}=4 a^{2}$.

Product of the ordinates of P and $Q=2 a t_{1} .2 a t_{2} 4 a^{2} \cdot t_{1} t_{2}=4 a^{2}(2)=8 a^{2}$
68. The equation of the locus of the point of intersection of two normals to the parabola $y^{2}=4 a x$ which are perpendicular to each other is

1. $y^{2}=a(x-3 a)$
2. $y^{2}=a(x+3 a)$
3. $y^{2}=a(x+2 a)$
4. $y^{2}=a(x-2 a)$

Key. 1
Sol. Let $P\left(x_{1}, y_{1}\right)$ be the point of intersection of the two perpendicular normals at $A\left(t_{1}\right), B\left(t_{2}\right)$ on the parabola $y^{2}=4 a x$.

Let t_{3} be the foot of the third normal through P.

Equation of a normal at t to the parabola is $y+x t=2 a t+a t^{3}$

If this normal passes through P then $y_{1}+x_{1} t=2 a t+a t^{3} \Rightarrow a t^{3}+\left(2 a-x_{1}\right) t-y_{1}=0 \rightarrow(1)$

Now t_{1}, t_{2}, t_{3} are the roots of (1). $\therefore t_{1} t_{2} t_{3}=y_{1} / a$

Slope of the normal at t_{1} is $-t_{1}$

Slope of the normal at t_{2} is $-t_{2}$.

Normals at t_{1} and t_{2} are perpendicular $\Rightarrow\left(-t_{1}\right)\left(-t_{2}\right)=-1 \Rightarrow t_{1} t_{2}=-1 \Rightarrow t_{1} t_{2} t_{3}=-t_{3}$
$\Rightarrow \frac{y_{1}}{a}=-t_{3} \Rightarrow t_{3}=-\frac{y_{1}}{a}$
t_{3} is a root of $(1) \Rightarrow a\left(-\frac{y_{1}}{a}\right)^{3}+\left(2 a-x_{1}\right)\left(-\frac{y_{1}}{a}\right)-y_{1}=0 \Rightarrow-\frac{y_{1}^{3}}{a^{2}}-\frac{\left(2 a-x_{1}\right) y_{1}}{a}-y_{1}=0$
$\Rightarrow y_{1}^{2}+a\left(2 a-x_{1}\right)+a^{2}=y_{1}^{2}=a\left(x_{1}-3 a\right)$.
\therefore The locus of P is $y^{2}=a(x-3 a)$
69. The three normals from a point to the parabola $y^{2}=4 a x$ cut the axes in points, whose distances from the vertex are in A.P., then the locus of the point is

1. $27 a y^{2}=2(x-2 a)^{3}$
2. $27 a y^{3}=2(x-2 a)^{2}$
3. $9 a y^{2}=2(x-2 a)^{3}$
4. $9 a y^{3}=2(x-2 a)^{2}$

Key. 1
Sol. Let $P\left(x_{1}, y_{1}\right)$ be any point.

Equation of any normal is $y=m x-2 a m-a m^{3}$

If is passes through P then $y_{1}=m x_{1}-2 a m-a m^{3}$
$\Rightarrow a m^{3}+\left(2 a-x_{1}\right) m_{1}+y_{1}=0$, which is cubic in m .

Let m_{1}, m_{2}, m_{3} be its roots. Then $m_{1}+m_{2}+m_{3}=0, m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{2 a-x_{1}}{a}$
Normal meets the axis $(y=0)$, where $0=m x-2 a m-a m^{3} \Rightarrow x=2 a+a m^{2}$
\therefore Distances of points from the vertex are $2 a+a m_{1}^{2}, 2 a+a m_{2}^{2}, 2 a+a m_{3}^{2}$

If these are in A.P., then $2\left(2 a+a m_{2}^{2}\right)=\left(2 a+a m_{1}^{2}\right)+\left(2 a+a m_{3}^{2}\right) \Rightarrow 2 m_{2}^{2}=m_{1}^{2}+m_{3}^{2}$
$\Rightarrow 3 m_{2}^{2}=m_{1}^{2}+m_{2}^{2}=\left(m_{1}+m_{2}+m_{3}\right)^{2}-2\left(m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}\right)=-2\left(2 a-x_{1}\right) / a$
$\therefore m_{2}^{2}=2\left(x_{1}-2 a\right) / 3 a$

But $y_{1}=m_{2}\left(x_{1}-2 a-a m_{2}^{2}\right) \Rightarrow y_{1}^{2}=m_{2}^{2}\left(x_{1}-2 a-a m_{2}^{2}\right)^{2}=2\left(x_{1}-2 a\right)^{3} / 27 a$ Locus of P is $27 a y^{2}=2(x-2 a)^{3}$
70. If the normals from any point to the parabola $x^{2}=4 y$ cuts the line $y=2$ in points whose abscissae are in A.P., then the slopes of the tangents at the 3 conormal points are in

1. AP
2. GP
3. HP
4. None

Key. 1
Sol. A point on $x^{2}=4 y$ is $\left(2 t, t_{2}\right)$ and required point be $P\left(x_{1}, y_{1}\right)$
Equation of normal at $\left(2 t, t^{2}\right)$ is $x+t y=2 t+t^{3}$
Given line equation is $y=2$.
Solving (1) \& (3) $x+t(2)=2 t+t^{3} \Rightarrow x=t^{3}$
This passes through $P\left(x_{1}, y_{1}\right) \Rightarrow t^{3}=x_{1}$.

Let $\left(2 t, t_{1}^{2}\right)\left(2 t_{2}, t_{2}^{2}\right),\left(2 t_{3}, t_{3}^{2}\right)$ be the co-normal points form P.

$$
2 t_{1}, 2 t_{2}, 2 t_{3} \text { in A.P. } \Rightarrow 4 t_{2}=2\left(t_{1}+t_{3}\right) \Rightarrow t_{2}=\frac{t_{1}+t_{3}}{2}
$$

\therefore slopes of the tangents $t_{1}, t_{2} \& t_{3}$ are in A.P.
71. The line $l x+m y+n=0$ is normal to the parabola $y^{2}=4 a x$ if

1. $a l\left(l^{2}+2 m^{2}\right)+m^{2} n=0$
2. $a l\left(l^{2}+2 m^{2}\right)=m^{2} n$
3. $a l\left(2 l^{2}+m^{2}\right)+m^{2} n=0$
4. $a l\left(2 l^{2}+m^{2}\right)=2 m^{2} n$

Key. 1
Sol. Conceptual
72. The feet of the normals to $y^{2}=4 a x$ from the point $(6 a, 0)$ are

1. $(0,0)$
2. $(4 a, 4 a)$
3. $(4 a,-4 a)$
4. $(0,0),(4 a, 4 a),(4 a,-4 a)$

Key. 4
Sol. Equation of any normal to the parabola $y^{2}=4 a x$ is $y=m x-2 a m-a m^{3}$

If passes through $(6 a, 0)$ then $0=6 a m-2 a m-a m^{3} \Rightarrow a m^{3}-4 a m=0 \Rightarrow a m\left(m^{2}-4\right)=0$
$\Rightarrow m=0, \pm 2$.
\therefore Feet of the normals $=\left(a m^{2},-2 a m\right)=(0,0),(4 a,-4 a),(4 a, 4 a)$.
73. The condition that parabola $y^{2}=4 a x \& y^{2}=4 c(x-b)$ have a common normal other than x axis is $(a \neq b \neq c)$

1. $\frac{a}{a-c}<2$
2. $\frac{b}{a-c}>2$
3. $\frac{b}{a-c}<1$
4. $\frac{b}{a-c}>1$

Key. 2
Sol. Conceptual
74. Locus of poles of chords of the parabola $y^{2}=4 a x$ which subtends 45^{0} at the vertex is $(x+4 a)^{2}=\lambda\left(y^{2}-4 a x\right)$ then $\lambda=$ \qquad
1.1
2. 2
3. 3
4. 4

Key.
Sol. Parabola is $y^{2}=4 a x \rightarrow$ (1)
Polar of a pole $\left(x_{1} y_{1}\right)=y y_{1}-2 a x=2 a x_{1} \rightarrow$ (2)
Making eq (1) homogeneous w.r.t (2)
$y^{2}-4 a x\left(\frac{y y_{1}-2 a x}{2 a x_{1}}\right)=0$
$x_{1} y^{2}-2 x y y_{1}+4 a x^{2}=0$

Angle between these pair of lines is 45°
$\therefore \tan 45^{\circ}=\frac{2 \sqrt{y_{1}^{2}-4 a x_{1}}}{\left(x_{1}+4 a\right)}$
Locus of $\left(x_{1} y_{1}\right)$ is
$\Rightarrow(x+4 a)^{2}=4\left(y^{2}-4 a x\right)$
$\Rightarrow \lambda=4$
75. Length of the latus rectum of the parabola $\sqrt{x}+\sqrt{y}=\sqrt{a}$

1. $a \sqrt{2}$
2. $\frac{a}{\sqrt{2}}$
3. a
4. 2 a

Key. 1
Sol. $\sqrt{x}=\sqrt{a}-\sqrt{y}$
$x=a+y-2 \sqrt{a y}$
$(x-y-a)^{2}=4 a y$
$x^{2}+(y+a)^{2}-2 x(a+y)=4 a y$
$x^{2}+y^{2}-2 x y+2 a y+a^{2}-2 a x=4 a y$
$x^{2}+y^{2}-2 x y=2 a x+2 a y-a^{2}$
$(x-y)^{2}=2 a\left(x+y-\frac{a}{2}\right)$
Axis is $x-y=0$

$$
\begin{aligned}
& \left(\frac{x-y}{\sqrt{2}}\right)^{2}=\frac{2 a}{2}\left(\frac{x+y-\frac{a}{2}}{\sqrt{2}}\right) \times \sqrt{2} \\
& \left(\frac{x-y}{\sqrt{2}}\right)^{2}=a \sqrt{2}\left(\frac{x+y-\frac{a}{2}}{\sqrt{2}}\right)
\end{aligned}
$$

\therefore lengthy $L . R=a \sqrt{2}$
76. Equation of common tangent to $x^{2}=32 y$ and $y^{2}=32 x$

1. $x+y=8$
2. $x+y+8=0$
3. $x-y=8$
4. $x-y+8=0$

Key. 2
Sol. Common tangets $y^{2}=4 a x$ and $x^{2}=4 a y$ is $x a^{\frac{1}{3}}+y b^{\frac{1}{3}}+a^{\frac{2}{3}} b^{\frac{2}{3}}=0$
Here $a=8, b=8$
77. The angle subtended at the focus by the normal chord of the point $(\lambda, \lambda), \lambda \neq 0$ on the parabola $y^{2}=4 a x$ is
A) $\frac{\pi}{4}$
B) $\frac{\pi}{3}$
C) $\frac{\pi}{2}$
D) $\frac{\pi}{6}$

Key. C
Sol. Putting (λ, λ) in $y^{2}=4 a x$, gives $\lambda=4 a$
Slope of normal at $(4 a, 4 a)$ is $-{ }^{n} C_{2}$
Equation of normal at $(4 a, 4 a)$ is $y-4 a=-2(x-4 a) \Rightarrow y+2 x-12 a=0$
The coordinates of intersection points of the above normal,
$y+2 \sum_{k=2}^{n}(k-1)-12 a=0 \Rightarrow y^{2}+2 a y-24 a^{2}=0$
$y=4 a-6 a$ and $x=4 a, 9 a$,
Then slope of $S A, m_{1}=\frac{n(n-1)}{2}={ }^{n} C_{2}$
And slope of $S B, m_{2}=\frac{6 a}{8 a}=\frac{-3}{4} \quad m_{1} m_{2}=-1$
78. A circle with its centre at the focus of the parabola $y^{2}=4 a x$ and touching its directrix intersects the parabola at points A, B. Then length $A B$ is equal to
A) $4 a$
B) $2 a$
C) a
D) $7 a$

Key. A

Sol. Centre of circle $(a, 0)$ and radius $2 a$
Equation of circle $(x-a)^{2}+y^{2}=4 a^{2}$
$x^{2}+y^{2}-2 a x-3 a^{2}=0$ and $y^{2}=4 a x$ solving $x^{2}+4 a x-2 a x-3 a^{2}=0$
$x^{2}+2 a x-3 a^{2}=0$
$x=-3 a, a$ and $y= \pm 2 a$
\therefore Length of $A B=4 a$

79. Tangents are drawn to $y^{2}=4 a x$ from a variable point P moving on $x+a=0$, then the locus of foot of perpendicular drawn from P on the chord of contact of P is
A) $y=0$
B) $(x-a)^{2}+y^{2}=a^{2}$ C)
$(x-a)^{2}+y^{2}=0$ D) $\quad y(x-a)=0$

Key. C
Sol. Portion of tangent intercepted between parabola and directrix subtends a right angle at the focus.
80. Three normals are drawn to the curve $y^{2}=x$ from a point ($c, 0$). Out of three one is always on x - axis. If two other normals are perpendicular to each other , then the value of c
a) $3 / 4$
b) $1 / 2$
c) $3 / 2$
d) 2

Key. A
Sol. Normal at $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ is $\mathrm{y}+\mathrm{tx}=2 \mathrm{at}+\mathrm{at}^{3}\left(a=\frac{1}{4}\right)$
If this passes through ($c, 0$)
We have $\mathrm{ct}=2$ at $+\mathrm{at}^{3}=\frac{\mathrm{t}}{2}+\frac{\mathrm{t}^{3}}{4}$
$\Rightarrow \mathrm{t}=0$ or $\mathrm{t}^{2}=4 c-2$
If $t=0$, the point at which the normal is drawn is $(0,0)$ if $t \neq 0$, then the two values of t represents slope of normals through (c, 0)
If these normals are perpendicular
then $\left(-t_{1}\right)\left(-t_{2}\right)=-1 \Rightarrow t_{1} t_{2}=-1 \Rightarrow(\sqrt{4 c-2})(-\sqrt{4 c-2})=-1$
$C=\frac{3}{4}$
81. If area of Triangle formed by tangents fom the point $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ and their chord of contact is
a) $\frac{\left(y_{1}{ }^{2}-4 a x_{1}\right)^{3 / 2}}{2 a^{2}}$
b) $\frac{\left(y_{1}{ }^{2}-4 a x_{1}\right)^{3 / 3}}{a^{2}}$
c) $\frac{\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2}}{2 a}$
d) none of these

Key. C
Sol. Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be any point outside the parabola and $\mathrm{B}(\alpha, \beta), \mathrm{C}\left(\alpha^{1}, \beta^{1}\right)$ be the points of contact of tangents from point A eq of chord $B C, Y Y_{1}=2 a\left(x+x_{1}\right)$
Lengths of \perp from A to $B C$
$=\frac{2 a\left(x_{1}+x\right)-y_{1} y}{\sqrt{y^{2}+4 a^{2}}}=\frac{y_{1}^{2}-4 a x}{\sqrt{y_{1}^{2}+4 a^{2}}}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \mathrm{AL} \times \mathrm{BC}$
We get $\frac{\left(\mathrm{y}_{1}^{2}-4 \mathrm{ax}_{1}\right)^{3 / 2}}{2 a}$
82. Let ' P ' be $(1,0)$ and Q be any point on the parabola $y^{2}=8 x$. The locus of mid point of $P Q$ must be
a) $y^{2}-4 x+2=0$
b) $y^{2}+4 x+2=0$
c) $x^{2}-4 y+2=0$
d) $x^{2}+4 y+2=0$

Key. A
Sol. Let Q be $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$, (for $\left.\mathrm{a}=2\right) \mathrm{Q}$ be $\left(2 \mathrm{t}^{2}, 4 \mathrm{t}\right)$
Then locus will be eliminant of
$\mathrm{x}=\frac{1+2 \mathrm{t}^{2}}{2}, \mathrm{y}=\frac{0+4 \mathrm{t}}{2}$
We easily get $y^{2}-4 x+2=0$
$\Rightarrow(\mathrm{a})$ is correct
83. Coordinates of the focus of the parabola $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$ is
A. $\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$
B. $\left(\frac{a b^{2}}{a^{2}+b^{2}}, \frac{a^{2} b}{a^{2}+b^{2}}\right)$
C. $\left(\frac{a^{2} b}{a+b}, \frac{a b^{2}}{a+b}\right)$
D. (a, b)

Key. B
Sol. $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$

For this parabola x is a tangent at $\mathrm{P}(\mathrm{a}, 0)$

Y -axis a tangent $\mathrm{Q}(0, \mathrm{~b})$
$\therefore \mathrm{O}(0,0)$ is point if inter section perpendicular tagents
\therefore directrix passing through this point

Clearly $\underline{O S P}=90^{\circ}$

Hence circle on OP as diameter passing though S
i.e., $x^{2}+y^{2}-a x=0$ passing through S .
lly, $\mid O S Q=90^{\circ} \quad \therefore x^{2}+y^{2}-b x=0$ passing through S .

Point of intersecting above circle is focus.
$x^{2}+y^{2}-a x=0$
$x^{2}+y^{2}-b x=0$
$a x-b y=0$
$y=\frac{a x}{b} \quad \Rightarrow x^{2}+\frac{a^{2} x^{2}}{b^{2}}=a x$

$$
x\left(\frac{b^{2}+a^{2}}{b^{2}}\right)=a
$$

$$
x=\frac{a b^{2}}{a^{2}+b^{2}}
$$

Ily, $y=\frac{a^{2} b}{a^{2}+b^{2}}$

Focus $S=\left(\frac{a b^{2}}{a^{2}+b^{2}}, \frac{a^{2} b}{a^{2}+b^{2}}\right)$.
84. The Length of Latusrectum of the parabola $x=t^{2}+t+1, y=t^{2}+2 t+3$ is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2 \sqrt{2}}$
D. $\frac{1}{8}$

Key. C
Sol. $\left.\quad \begin{array}{l}x=t^{2}+t+1 \Rightarrow t^{2}+t+1-x=0 \\ y=t^{2}+2 t+3 \Rightarrow t^{2}+2 t+3-u=0\end{array}\right\}$ eliminate t

$$
\begin{array}{llll}
1 & 1-x & 1 & 1 \\
2 & 3-y & 1 & 1
\end{array}
$$

$$
\frac{t^{2}}{3-y-2+2 x}=\frac{t}{1-x-3+y}=\frac{1}{1}
$$

$$
\left.\begin{array}{l}
t=-x+y-2 \\
t=\frac{1-y+2 x}{-x+y-2}
\end{array}\right\}(x-y+2)^{2}=(2 x-y+1)
$$

$$
(x-y)^{2}+4(x-y)+4=(2 x-y+1)
$$

$$
(x-y)^{2}=-2 x+3 y-3
$$

$$
\therefore(x-y+\lambda)^{2}=-2 x+3 y-3+2 \lambda(x-y)+\lambda^{2}
$$

$$
(x-y+\lambda)^{2}=x(2 \lambda-2)+y(-2 \lambda+3)+\lambda^{2}-3
$$

\therefore slope of $x-y+1=0$ is slope line on RHS is $\left.\frac{2-2 \lambda}{3-2 \lambda}\right\} \frac{2-2 \lambda}{3-2 \lambda}=-1$

$$
\begin{aligned}
& 2-2 \lambda=-3+2 \lambda \\
& 4 \lambda=5 \Rightarrow \lambda=\frac{5}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon \text { of parabola is }\left(x-y+\frac{5}{4}\right)^{2}=\frac{x}{2}+\frac{y}{2}+\frac{25}{16}-3 \\
& \left(x-y+\frac{5}{4}\right)^{2}=\frac{1}{2}\left(x+y-\frac{23}{16}\right) \\
& \left(\frac{x-y+\frac{5}{4}}{\frac{1}{\sqrt{2}}}\right)^{2}=\frac{1}{2 \sqrt{2}}\left(\frac{x+y-\frac{23}{16}}{\sqrt{2}}\right) \quad \text { LR }=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

85. For different values of k and l the two parabolas $y^{2}=16(x-k), x^{2}=16(y-l)$ always touch each other then locus of point of contact is
A. $x^{2}+y^{2}=64$
B. $x y=8$
C. $y^{2}=8 x$
D. $x y=64$

Key. D
Sol. $\quad y^{2}=16(x-k)$

$$
x^{2}=16(y-l)
$$

$$
\begin{array}{ll}
2 y \frac{d y}{d x}=16 & 2 x=16 \frac{d y}{d x} \\
\frac{d y}{d x}=\frac{8}{y}=m_{1} & \frac{d y}{d x}=\frac{x}{8}=m_{2}
\end{array}
$$

Since two circle touch each other $m_{1}=m_{2} \Rightarrow \frac{8}{y}=\frac{x}{8} \Rightarrow x y=64$
86. TP and TQ are any two tangents of a parabola $y^{2}=4 a x$ and T is the point of intersection of two tangents. If the tangent at a third point on the parabola meets the above two tangents at P^{1} and Q^{1}. Then $\frac{T P^{1}}{T P}+\frac{T Q^{1}}{T Q}$
A. (-1)
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. 2

Key. A

Sol. $\quad T=\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$

$$
\begin{aligned}
& P^{1}=\left(\begin{array}{ll}
a t_{1} t_{3} & a\left(t_{1}+t_{3}\right)
\end{array}\right) \\
& Q^{1}=\left(\begin{array}{ll}
a t_{2} t_{3} & a\left(t_{2}+t_{3}\right)
\end{array}\right) \\
& T P^{1}: T P=\lambda: 1 \\
& \lambda=\frac{a t_{1} t_{3}-a t_{1} t_{2}}{a t_{1} t_{2}-a t_{1}^{2}} \\
& =\frac{t_{3}-t_{2}}{t_{2}-t_{1}} \\
& \therefore \frac{T P^{1}}{T P}=\frac{t_{3}-t_{2}}{t_{2}-t_{1}}
\end{aligned}
$$

Hy, Let $T Q^{1}: T Q=\mu: 1$

$$
\begin{aligned}
& \frac{T Q^{1}}{T Q}=\frac{a t_{2} t_{3}-a t_{1} t_{2}}{a t_{1} t_{2}-a t_{2}^{2}}=\frac{t_{3}-t_{1}}{t_{1}-t_{2}} \\
& \therefore \frac{T P^{1}}{T P}+\frac{T Q^{1}}{T Q}=\frac{t_{3}-t_{2}}{t_{2}-t_{1}}+\frac{t_{3}-t_{1}}{t_{1}-t_{2}}=\frac{t_{1}-t_{2}}{t_{2}-t_{1}}=-1
\end{aligned}
$$

87. The locus of the Orthocentre of the triangle formed by three tangents of the parabola $(4 x-3)^{2}=-64(2 y+1)$ is
A) $y=\frac{-5}{2}$
B) $y=1$
C) $x=\frac{7}{4}$
D) $y=\frac{3}{2}$

Key. D
Sol. The locus is directrix of the parabola
88. A pair of tangents with inclinations α, β are drawn from an external point P to the parabola $y^{2}=16 x$. If the point P varies in such a way that $\tan ^{2} \alpha+\tan ^{2} \beta=4$ then the locus of P is a conic whose eccentricity is
A) $\frac{\sqrt{5}}{2}$
B) $\sqrt{5}$
C) 1
D) $\frac{\sqrt{3}}{2}$

Key. B
Sol. Let $m_{1}=\tan \alpha, m_{2}=\tan \beta$, Let $P=(h, k)$
m_{1}, m_{2} are the roots of $K=m h+\frac{4}{m} \Rightarrow h m^{2}-K m+4=0$
$m_{1}+m_{2}=\frac{K}{h} ; \quad m_{1} m_{2}=\frac{4}{h}$
$m_{1}^{2}+m_{2}^{2}=\frac{K^{2}}{h^{2}}-\frac{8}{h}=4$
Locus of P is $y^{2}-8 x=4 x^{2} \Rightarrow y^{2}=4(x+1)^{2}-4 \Rightarrow \frac{(x+1)^{2}}{1}-\frac{y^{2}}{4}=1$
89. The length of the latusrectum of a parabola is $4 a$. A pair of perpendicular tangents are drawn to the parabola to meet the axis of the parabola at the points A, B. If S is the focus of the parabola then $\frac{1}{|S A|}+\frac{1}{|S B|}=$
A) $2 / a$
B) $4 / a$
C) $1 / a$
D) $2 a$

Key. C
Sol. Let $y^{2}=4 a x$ be the parabola
$y=m x+\frac{a}{m}$ and $y=\left(-\frac{1}{m}\right) x-a m$ are perpendicular tangents
$S=(a, 0), A=\left(-\frac{a}{m^{2}}, 0\right), B=\left(-a m^{2}, 0\right)$
$|S A|=a\left(1+\frac{1}{m^{2}}\right)=\frac{a\left(1+m^{2}\right)}{m^{2}}$
$|S B|=a\left(1+m^{2}\right)$
90. Length of the focal chord of the parabola $(y+3)^{2}=-8(x-1)$ which lies at a distance 2 units from the vertex of the parabola is
A) 8
B) $6 \sqrt{2}$
C) 9
D) $5 \sqrt{3}$

Key. A
Sol. Lengths are invariant under change of axes
consider $y^{2}=8 x$. Consider focal chord at $\left(2 t^{2}, 4 t\right)$
Focus $=(2,0)$. Equation of focal chord at t is $\left.y=\frac{2 t}{t^{2}-1} 9 x-2\right) \Rightarrow 2 t x+\left(1-t^{2}\right) y-4 t=0$
$\frac{4|t|^{2}}{\sqrt{4 t^{2}+\left(1-t^{2}\right)^{2}}}=2 \Rightarrow(|t|-1)^{2}=0$
Length of focal chord at ' $\mathrm{t}^{\prime}=2\left(t+\frac{1}{t}\right)^{2}=\frac{2\left(t^{2}+1\right)^{2}}{t^{2}}=8$
91. The slope of normal to the parabola $y=\frac{x^{2}}{4}-2$ drawn through the point $(10,-1)$
A) -2
B) $-\sqrt{3}$
C) $-1 / 2$
D) $-5 / 3$

Key. C
Sol. $x^{2}=4(y+2)$ is the given parabola
Any normal is $x=m(y+2)-2 m-m^{3}$. If $(10,-1)$ lies on this line then
$10=+m-2 m-m^{3} \Rightarrow m^{3}+m+10=0 \Rightarrow m=-2$
Slope of normal $=1 / m$.
92. $\quad m_{1}, m_{2}, m_{3}$ are the slope of normals $\left(m_{1}<m_{2}<m_{3}\right)$ drawn through the point $(9,-6)$ to the parabola $y^{2}=4 x . A=\left[a_{i j}\right]$ is a square matrix of order 3 such that $a_{i j}=1$ if $i \neq j$ and $a_{i j}=m_{i}$ if $i=j$. Then $\operatorname{det} \mathrm{A}=$
A) 6
B) -4
C) -9
D) 8

Key. D
Sol. $y=m x-2 m-m^{3} .(9,-6)$ lies on this
$\therefore-6=9 m-2 m-m^{3} \Rightarrow m^{3}-7 m-6=0$
Roots are $-1,-2,3 \therefore|A|=\left|\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3\end{array}\right|=(-2)(-4)-(3-1)+2=8$
93. If parabola of latusrectum ' u ' touches a fixed equal parabola, the axes of two curves being parallel, then the locus of the vertex of the moving curve is
(a) A parabola of latusrectum ' $2 u^{\prime}$
(b) A parabola of latusrectum ' u '
(c) An ellipse whose major axis is ' $2 u^{\prime}$
(d) An ellipse whose minor axis is ' $2 u^{\prime}$

Key. A
Sol. Let (α, β) be the vertex of the moving parabola and its equation is
$(y-\beta)^{2}=-4 a(x-\alpha)$
Let the equation of fixed parabola be $y^{2}=4 a x$--------- (2) (Here $4 \mathrm{a}=\mathrm{u}$)
From (1) \& (2) $(y-\beta)^{2}=-4 a\left(\frac{y^{2}}{4 a}-\alpha\right)$
$\Rightarrow 2 y^{2}-2 \beta y+\beta^{2}-4 a \alpha=0$
The above is a quadratic equation in y having same roots
$\Rightarrow \Delta=0 \quad \Rightarrow \beta^{2}=8 a \alpha$
Hence locus is $y^{2}=8 a x$ i.e., $y^{2}=2 u x$
94. A ray of light moving parallel to the x-axis gets reflected form a parabolic mirror whose equation is $(y-2)^{2}=4(x+1)$. After reflection, the ray must pass through the point \qquad
(a) $(0,2)$
(b) $(2,0)$
(c) $(0,-2)$
(d) $(-1,2)$

Key. A
Sol. The equation of the axis of the parabola $y-2=0$
Which is parallel to the x-axis so, a ray parallel to x-axis of parabola. W.K.T any ray parallel to the axis of a parabola passes through this focus after reflection. Here $(0,2)$ is the focus.

95. If the normal to the parabola $y^{2}=4 a x$ at $\left(a t^{2}, 2 a t\right)$ cuts the parabola again at $\left(a T^{2}, 2 a T\right)$ then
(a) $-2 \leq T \leq 2$
(b) $T \in(-\infty,-8) \cup(8, \infty)$
(c) $T^{2}<8$
(d) $T^{2} \geq 8$

Key. D
Sol. $T=-t-\frac{2}{t}$
$|T|=\left|t+\frac{2}{t}\right| \geq 2 \sqrt{2}$
$T^{2} \geq 8$
96. Let α is the angle which a tangent to $y^{2}=4 a x$ makes with its axis, the distance between the tangent and a parallel normal will be
(a) $a \sin ^{2} \alpha \cos ^{2} \alpha$
(b) $a \operatorname{cosec} \alpha \cdot \sec ^{2} \alpha$
(c) $a \tan ^{2} \alpha$
(d)
$a \cos ^{2} \alpha \cdot \operatorname{cosec}{ }^{5} \alpha$

Key. B
Sol. Equation of Tangent is $y t=x+a t^{2}$
\therefore Tan $\alpha=\frac{1}{t} ; t=\cot \alpha$
Equation of parallel normal is $y t=x+K$
$a \cdot 1^{3}+2 a \cdot 1 \cdot(-t)^{2}+(-t)^{2} \cdot K=0$
$K=\frac{-\left(a+2 a t^{2}\right)}{t^{2}}$

Distance $=\frac{a t^{2}+\frac{a+2 a t^{2}}{t^{2}}}{\sqrt{1+t^{2}}}=\frac{a t^{4}+2 a t^{2}+a}{t^{2} \sqrt{1+t^{2}}}=\frac{a\left(t^{2}+1\right)^{3 / 2}}{t^{2}}$
97. If the normal at a point P on $y^{2}=4 a x(a>0)$ meet it again at Q in such a way that PQ is of minimum length. If ' O ' is vertex then $\triangle O P Q$ is
(a) a right angled triangle (b) an obtuse angled triangle
(c) an equilateral triangle (d) right angled isosceles triangle

Key. A
Sol. $P Q=6 a \sqrt{3} ; O P=2 a \sqrt{3} ; O Q=4 a \sqrt{6}$
98. Coordinates of the focus of the parabola $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$ is
A. $\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$
B. $\left(\frac{a b^{2}}{a^{2}+b^{2}}, \frac{a^{2} b}{a^{2}+b^{2}}\right)$
C. $\left(\frac{a^{2} b}{a+b}, \frac{a b^{2}}{a+b}\right)$
D. (a, b)

Key. B
Sol. $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$

For this parabola x is a tangent at $\mathrm{P}(\mathrm{a}, 0)$
Y-axis a tangent $Q(0, b)$
$\therefore \mathrm{O}(0,0)$ is point if inter section perpendicular tagents
\therefore directrix passing through this point

Clearly $\left\lfloor O S P=90^{\circ}\right.$

Hence circle on OP as diameter passing though S
i.e., $x^{2}+y^{2}-a x=0$ passing through S .

Ily, $\mid O S Q=90^{\circ} \quad \therefore x^{2}+y^{2}-b x=0$ passing through S.

Point of intersecting above circle is focus.

$$
\begin{aligned}
& x^{2}+y^{2}-a x=0 \\
& x^{2}+y^{2}-b x=0
\end{aligned}
$$

$$
a x-b y=0
$$

$$
y=\frac{a x}{b} \quad \Rightarrow x^{2}+\frac{a^{2} x^{2}}{b^{2}}=a x
$$

$$
x\left(\frac{b^{2}+a^{2}}{b^{2}}\right)=a
$$

$$
x=\frac{a b^{2}}{a^{2}+b^{2}}
$$

Ily, $y=\frac{a^{2} b}{a^{2}+b^{2}}$
Focus $S=\left(\frac{a b^{2}}{a^{2}+b^{2}}, \frac{a^{2} b}{a^{2}+b^{2}}\right)$.
99. The Length of Latusrectum of the parabola $x=t^{2}+t+1, y=t^{2}+2 t+3$ is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2 \sqrt{2}}$
D. $\frac{1}{8}$

Key.
Sol.

$$
\left.\begin{array}{l}
x=t^{2}+t+1 \Rightarrow t^{2}+t+1-x=0 \\
y=t^{2}+2 t+3 \Rightarrow t^{2}+2 t+3-u=0
\end{array}\right\} \text { eliminate } t
$$

$$
\begin{array}{llll}
1 & 1-x & 1 & 1 \\
2 & 3-y & 1 & 1
\end{array}
$$

$\frac{t^{2}}{3-y-2+2 x}=\frac{t}{1-x-3+y}=\frac{1}{1}$
$\left.\begin{array}{l}t=-x+y-2 \\ t=\frac{1-y+2 x}{-x+y-2}\end{array}\right\}(x-y+2)^{2}=(2 x-y+1)$
$(x-y)^{2}+4(x-y)+4=(2 x-y+1)$
$(x-y)^{2}=-2 x+3 y-3$
$\therefore(x-y+\lambda)^{2}=-2 x+3 y-3+2 \lambda(x-y)+\lambda^{2}$
$(x-y+\lambda)^{2}=x(2 \lambda-2)+y(-2 \lambda+3)+\lambda^{2}-3$
\therefore slope of $x-y+1=0$ is 1 slope line on RHS is $\left.\frac{2-2 \lambda}{3-2 \lambda}\right\} \frac{2-2 \lambda}{3-2 \lambda}=-1$

$$
\begin{aligned}
& 2-2 \lambda=-3+2 \lambda \\
& 4 \lambda=5 \Rightarrow \lambda=\frac{5}{4}
\end{aligned}
$$

ε of parabola is $\left(x \rightarrow y+\frac{5}{4}\right)^{2}=\frac{x}{2}+\frac{y}{2}+\frac{25}{16}-3$

$$
\begin{aligned}
& \left(x-y+\frac{5}{4}\right)^{2}=\frac{1}{2}\left(x+y-\frac{23}{16}\right) \\
& \left(\frac{x-y+\frac{5}{4}}{\frac{1}{\sqrt{2}}}\right)^{2}=\frac{1}{2 \sqrt{2}}\left(\frac{x+y-\frac{23}{16}}{\sqrt{2}}\right)
\end{aligned} \quad \mathrm{LR}=\frac{1}{2 \sqrt{2}} .
$$

100. For different values of k and l the two parabolas $y^{2}=16(x-k), x^{2}=16(y-l)$ always touch each other then locus of point of contact is
A. $x^{2}+y^{2}=64$
B. $x y=8$
C. $y^{2}=8 x$
D. $x y=64$

Key. D
Sol. $\quad y^{2}=16(x-k)$

$$
x^{2}=16(y-l)
$$

$$
\begin{array}{ll}
2 y \frac{d y}{d x}=16 & 2 x=16 \frac{d y}{d x} \\
\frac{d y}{d x}=\frac{8}{y}=m_{1} & \frac{d y}{d x}=\frac{x}{8}=m_{2}
\end{array}
$$

$$
\text { Since two circle touch each other } m_{1}=m_{2} \Rightarrow \frac{8}{y}=\frac{x}{8} \Rightarrow x y=64
$$

101. TP and TQ are any two tangents of a parabola $y^{2}=4 a x$ and T is the point of intersection of two tangents. If the tangent at a third point on the parabola meets the above two tangents at P^{1} and Q^{1}. Then $\frac{T P^{1}}{T P}+\frac{T Q^{1}}{T Q}$
A. (-1)
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. 2

Key. A
Sol. $\quad T=\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$

$$
T P^{1}: T P=\lambda: 1
$$

$$
\lambda=\frac{a t_{1} t_{3}-a t_{1} t_{2}}{a t_{1} t_{2}-a t_{1}^{2}}
$$

$$
=\frac{t_{3}-t_{2}}{t_{2}-t_{1}}
$$

$$
\therefore \frac{T P^{1}}{T P}=\frac{t_{3}-t_{2}}{t_{2}-t_{1}}
$$

$\| y$, Let $T Q^{1}: T Q=\mu: 1$

$$
\begin{aligned}
& P^{1}=\left(a t_{1} t_{3} \quad a\left(t_{1}+t_{3}\right)\right) \\
& Q^{1}=\left(a t_{2} t_{3} \quad a\left(t_{2}+t_{3}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{T Q^{1}}{T Q}=\frac{a t_{2} t_{3}-a t_{1} t_{2}}{a t_{1} t_{2}-a t_{2}^{2}}=\frac{t_{3}-t_{1}}{t_{1}-t_{2}} \\
& \therefore \frac{T P^{1}}{T P}+\frac{T Q^{1}}{T Q}=\frac{t_{3}-t_{2}}{t_{2}-t_{1}}+\frac{t_{3}-t_{1}}{t_{1}-t_{2}}=\frac{t_{1}-t_{2}}{t_{2}-t_{1}}=-1
\end{aligned}
$$

102. A normal, whose inclination is 30°, to a parabola cuts it again at an angle of
a) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
b) $\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
c) $\tan ^{-1}(2 \sqrt{3})$
d) $\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)$

Key. D
Sol. The normal at $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ is $y+x t_{1}=2 a t_{1}+a t_{1}^{3}$ with slope say $\tan \alpha=-t_{1}=\frac{1}{\sqrt{3}}$. If it meets curve at $Q\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$ then $t_{2}=-t_{1}-\frac{2}{t_{1}}=\frac{7}{\sqrt{3}}$. Then angle θ between parabola (tangent at Q) and normal at P is given by $\tan \theta=\frac{-t_{1}-\frac{1}{t_{2}}}{1-\frac{t_{1}}{t_{2}}}=\frac{1}{2 \sqrt{3}}$

$$
\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)
$$

103. The locus of vertices of family of parabolas, $y=a x^{2}+2 a^{2} x+1$ is $(a \neq 0)$ a curve passing through
a) $(1,0)$
b) $(1,1)$
c) $(0,1)$
d) $(0,0)$

Key. C
Sol.

$$
\begin{aligned}
& y=a x^{2}+2 a^{2} x+1 \Rightarrow \frac{y-\left(1-a^{3}\right)}{a}=(x+a)^{2} \\
& \therefore \text { Vertex }=(\alpha, \beta)=\left(-a, 1-a^{3}\right) \\
& \Rightarrow \beta=1+\alpha^{3} \\
& \Rightarrow \text { curve is } y=1+x^{3}
\end{aligned}
$$

104. Equation of circle of minimum radius which touches both the parabolas $y=x^{2}+2 x+4$ and $x=y^{2}+2 y+4$ is
a) $2 x^{2}+2 y^{2}-11 x-11 y-13=0$
b) $4 x^{2}+4 y^{2}-11 x-11 y-13=0$
c) $3 x^{2}+3 y^{2}-11 x-11 y-13=0$
d) $x^{2}+y^{2}-11 x-11 y-13=0$

Key. B
Sol. Circle will be touching both parabolas. Circles centre will be on the common normal
105. An equilateral triangle $S A B$ is inscribed in the parabola $y^{2}=4 a x$ having it's focus at ' S '. If the chord $A B$ lies to the left of S, then the length of the side of this triangle is :
a) $3 \mathrm{a}(2-\sqrt{3})$
b) $4 \mathrm{a}(2-\sqrt{3})$
c) $2 \mathrm{a}(2-\sqrt{3})$
d) $8 \mathrm{a}(2-\sqrt{3})$

Key. B

Sol.

$$
\mathrm{A}\left(\mathrm{a}-1 \cos 30^{\circ}, 1 \sin 30^{\circ}\right)
$$

Point ' A^{\prime} lies on $y^{2}=4 a x$
\Rightarrow a quadratic in ' 1 '
106. Let the line $\mathrm{lx}+\mathrm{my}=1$ cuts the parabola $y^{2}=4 \mathrm{ax}$ in the points $\mathrm{A} \& B$. Normals at A \& B meet at a point C. Normal from C other than these two meet the parabola at a point D, then D $=$
a) $(a, 2 a)$
b) $\left(\frac{4 \mathrm{am}}{1^{2}}, \frac{4 \mathrm{a}}{1}\right)$
c) $\left(\frac{2 \mathrm{am}^{2}}{\mathrm{l}^{2}}, \frac{2 \mathrm{a}}{1}\right)$
d) $\left(\frac{4 \mathrm{am}^{2}}{\mathrm{l}^{2}}, \frac{4 \mathrm{am}}{1}\right)$

Key. D
Sol. Conceptual
107. The normals to the parabola $y^{2}=4 a x$ at points Q and R meet the parabola again at P. If T is the intersection point of the tangents to the parabola at Q and R, then the locus of the centroid of $\triangle T Q R$, is
a) $y^{2}=3 a(x+2 a)$
b) $y^{2}=a(2 x+3 a)$
c) $y^{2}=a(3 x+2 a)$
d) $y^{2}=2 a(2 x+3 a)$

Key. C

Sol. Let $\mathrm{Q}=\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right)$
$\mathrm{R}=\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right)$
Normals at Q \& R meet on parabola
Also $\mathrm{T}=\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
Let (α, β) be centroid of $\Delta \mathrm{QRT}$
Then $3 \alpha=\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}+\mathrm{t}_{1} \mathrm{t}_{2}\right) \& \beta=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
Eliminate $\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
108. The normal at a point P of a parabola $y^{2}=4 a x$ meets its axis in G and tangent at its vertex in H. If A is the vertex of the parabola and if the rectangle $A G Q H$ is completed, then equation to the locus of vertex Q is
a) $y^{2}(y-2 a)=a x^{2}$
b) $y^{2}(y+2 a)=a x^{2}$
c) $x^{2}(x-2 a)=a y^{2}$
d) $x^{2}(x+2 a)=a y^{2}$

Key. C
Sol. $\quad A=(a, 0), H=\left(0,2 a t+a t^{3}\right), G=\left(2 a t+a t^{2}, 0\right), Q=(h, k)$
$(h, k)=\left(2 a+a t^{2}, 2 a t+a t^{3}\right)$
eliminating ' t ', $x^{3}=2 a x^{2}+a y^{2}$
109. If the focus of the parabola $(y-\beta)^{2}=4(x-\alpha)$ always lies between the lines $x+y=1$ and $x+y=3$, then,
a) $3<\alpha+\beta<4$
b) $0<\alpha+\beta<3$
c) $0<\alpha+\beta<2$
d) $-2<\alpha+\beta<2$

Key. C
Sol. origin \& focus line on off side of $x+y=1 \Rightarrow \alpha+\beta>0$
origin $\&$ focus line on same side of $x+y=3 \Rightarrow \alpha+\beta<2$.
110. Consider the two parabolas $y^{2}=4 a(x-\alpha) \& x^{2}=4 a(y-\beta)$, where ' a ' is the given constant and α, β are variables. If α and β vary in such a way that these parabolas touch each other, then equation to the locus of point of contact
a) circle
b) Parabola
c) Ellipse
d) Rectangular hyperbola

Key. D
Sol. Let POC be (h, k). Then, tangent at (h, k) to both parabolas represents same line.
111. The points on the axis of the parabola $3 y^{2}+4 y-6 x+8=0$ from where 3 distinct normals can be drawn is given by
(A) $\left(a, \frac{4}{3}\right) ; a>\frac{19}{9}$
(B) $\left(a,-\frac{2}{3}\right) ; a>\frac{19}{9}$
(C) $\left(a,-\frac{2}{3}\right) ; a>\frac{16}{9}$
(D) $\left(a,-\frac{2}{3}\right) ; a>\frac{7}{9}$

Key. B
Sol. $\quad 3 y^{2}+4 y=6 x-8$
$\Rightarrow 3\left(y^{2}+\frac{4}{3} y\right)=6 x-8 \quad \Rightarrow\left(y+\frac{2}{3}\right)^{2}=2 x-\frac{8}{3}+\frac{4}{9} \quad \Rightarrow\left(y+\frac{2}{3}\right)^{2}=2\left(x-\frac{10}{9}\right)$
Let any point on the axis $\left(a,-\frac{2}{3}\right)$

$y+\frac{2}{3}=m\left(x-\frac{10}{9}\right)-m-\frac{1}{2} m^{3}$
$\Rightarrow 0=m\left[a-\frac{10}{9}-1-\frac{1}{2} m^{2}\right]$
$\Rightarrow a-\frac{19}{9}=\frac{1}{2} m^{2} \Rightarrow m^{2}=2\left(a-\frac{19}{9}\right) \quad \therefore a>\frac{19}{9}$
112. Tangents $\overline{P A}$ and $\overline{P B}$ are drawn to $y^{2}=4 a x$. If $m_{\overline{P A}} \& m_{\overline{P B}}$ are the slopes of the tangents satisfying $\left(m_{\overline{P A}}\right)^{2}+\left(m_{\overline{P B}}\right)^{2}=4$ then the locus of P is
(A) $y^{2}=2 x(2 x+a)$
(B) $y^{2}=2 x(2 x-a)$
(C) $y^{2}=x(x-a)$
(D) None of these

Key. A
Sol. Let $P \equiv(h, k)$
$y=m x+\frac{a}{m}$
$k=m h+\frac{a}{m} \Rightarrow m^{2} h+a-m k=0 \quad \Rightarrow m_{P A}+m_{P B}=\frac{k}{h}$
$m_{\overline{P A}} \cdot m_{P B}=\frac{a}{h}$
$\frac{k^{2}}{h^{2}}-\frac{2 a}{h}=4$
$\Rightarrow k^{2}-2 a h=4 h^{2}$
$\therefore y^{2}=2 a x+4 x^{2}=2 x(2 x+a)$
113. Minimum distance between $y^{2}=4 x$ and $x^{2}+y^{2}-12 x+31=0$.
(A) $\sqrt{21}$
(B) $\sqrt{26}-\sqrt{5}$
(C) $\sqrt{20}-\sqrt{5}$
(D) $\sqrt{28}-\sqrt{5}$

Key. C
Sol. $y+t x=2 t+t^{3}$

$$
6 t=2 t+t^{3}
$$

$\begin{array}{ll}\Rightarrow & t^{2}+2-6=0 \\ & t= \pm 2 \\ \therefore & A \equiv(4,4)\end{array}$
$\therefore \quad$ Minimum distance $\sqrt{4+16}-\sqrt{5}=\sqrt{20}-\sqrt{5}$.
114. The triangle formed by the tangent to the parabola $y^{2}=4 x$ at the point whose abscissa lies in the interval $\left[a^{2}, 4 a^{2}\right.$], the ordinate and the x-axis has the greatest area equal to

(A) $12 a^{3}$
(B) $8 a^{3}$
(C) $16 a^{3}$
(D) None

Key. C
Sol. $P \equiv\left(h^{2}, 2 h\right)$
$\tan \theta=\frac{1}{h}$
And $\triangle P T M=\frac{1}{2} \times 2 h \times 2 h \cot \theta=2 h^{3}$
$a^{2} \leq h^{2} \leq 4 a^{2}$
\therefore maximum area $=2(2 a)^{3}=16 a^{3}$
115. Minimum distance between $y^{2}-4 x-8 y+40=0$ and $x^{2}-8 x-4 y+40=0$
(A) 0
(B) $\sqrt{3}$
(C) $2 \sqrt{2}$
(D) $\sqrt{2}$

Key. D
Sol. since two parabolas are symmetrical about $y=x$.
Solving $y=x \& y^{2}-4 x-8 y+40=0$

$$
\Rightarrow x^{2}-12 x+40=0
$$

has no real solution
\therefore They don't intersect

Point on $(x-4)^{2}=4(y-6)$ is $(6,7)$ and the corresponding point on $(y-4)^{2}=4(x-6)$ is $(7,6)$ minimum distance is $\sqrt{2}$.
116. Minimum distance between the parabolas $y^{2}-4 x-8 y+40=0$ and $x^{2}-8 x-4 y+40=0$ is
(A) 0
(B) $\sqrt{3}$
(C) $2 \sqrt{2}$
(D) $\sqrt{2}$

Key. D
Sol. Since two parabolas are symmetrical about
$y=x$
Minimum distance is distance between tangents to the parabola parallel to $\mathrm{y}=\mathrm{x}$.
Differentiating $x^{2}-8 x-4 y+40=0$ w.r.t x, we get $2 x-8-4 y^{\prime}=0$
$y^{\prime}=\frac{x-4}{2}=1$
$\mathrm{x}=6$ and $\mathrm{y}=7$
Corresponding point on $(y-4)^{2}=4(x-6)$
is $(7,6)$ so minimum distance $=\sqrt{2}$.
117. If $(-2,5)$ and $(3,7)$ are the points of intersection of the tangent and normal at a point on a parabola with the axis of the parabola, then the focal distance of that point is
(A) $\frac{\sqrt{29}}{2}$
(B) $\frac{5}{2}$
(C) $\sqrt{29}$
(D) $\frac{2}{5}$

Key. A

Sol.

118. The locus of the Orthocentre of the triangle formed by three tangents of the parabola $(4 x-3)^{2}=-64(2 y+1)$ is
A) $y=\frac{-5}{2}$
B) $y=1$
C) $x=\frac{7}{4}$
D) $y=\frac{3}{2}$

Key. D
Sol. The locus is directrix of the parabola
119. A pair of tangents with inclinations α, β are drawn from an external point P to the parabola $y^{2}=16 x$. If the point P varies in such a way that $\tan ^{2} \alpha+\tan ^{2} \beta=4$ then the locus of P is a conic whose eccentricity is
A) $\frac{\sqrt{5}}{2}$
B) $\sqrt{5}$
C) 1
D) $\frac{\sqrt{3}}{2}$

Key. B
Sol. Let $m_{1}=\tan \alpha, m_{2}=\tan \beta$, Let $P=(h, k)$
m_{1}, m_{2} are the roots of $K=m h+\frac{4}{m} \Rightarrow h m^{2}-K m+4=0$
$m_{1}+m_{2}=\frac{K}{h} ; \quad m_{1} m_{2}=\frac{4}{h}$
$m_{1}^{2}+m_{2}^{2}=\frac{K^{2}}{h^{2}}-\frac{8}{h}=4$
Locus of P is $y^{2}-8 x=4 x^{2} \Rightarrow y^{2}=4(x+1)^{2}-4 \Rightarrow \frac{(x+1)^{2}}{1}-\frac{y^{2}}{4}=1$
120. The length of the latusrectum of a parabola is $4 a$. A pair of perpendicular tangents are drawn to the parabola to meet the axis of the parabola at the points A, B. If S is the focus of the parabola then $\frac{1}{|S A|}+\frac{1}{|S B|}=$
A) $2 / a$
B) $4 / a$
C) $1 / a$
D) $2 a$

Key. C
Sol. Let $y^{2}=4 a x$ be the parabola
$y=m x+\frac{a}{m}$ and $y=\left(-\frac{1}{m}\right) x-a m$ are perpendicular tangents
$S=(a, 0), A=\left(-\frac{a}{m^{2}}, 0\right), B=\left(-a m^{2}, 0\right)$
$|S A|=a\left(1+\frac{1}{m^{2}}\right)=\frac{a\left(1+m^{2}\right)}{m^{2}}$
$|S B|=a\left(1+m^{2}\right)$
121. Length of the focal chord of the parabola $(y+3)^{2}=-8(x-1)$ which lies at a distance 2 units from the vertex of the parabola is
A) 8
B) $6 \sqrt{2}$
C) 9
D) $5 \sqrt{3}$

Key. A
Sol. Lengths are invariant under change of axes
consider $y^{2}=8 x$. Consider focal chord at $\left(2 t^{2}, 4 t\right)$
Focus $=(2,0)$. Equation of focal chord at t is $\left.y=\frac{2 t}{t^{2}-1} 9 x-2\right) \Rightarrow 2 t x+\left(1-t^{2}\right) y-4 t=0$
$\frac{4|t|^{2}}{\sqrt{4 t^{2}+\left(1-t^{2}\right)^{2}}}=2 \Rightarrow(|t|-1)^{2}=0$

Length of focal chord at ' t ' $=2\left(t+\frac{1}{t}\right)^{2}=\frac{2\left(t^{2}+1\right)^{2}}{t^{2}}=8$
122. The slope of normal to the parabola $y=\frac{x^{2}}{4}-2$ drawn through the point $(10,-1)$
A) -2
B) $-\sqrt{3}$
C) $-1 / 2$
D) $-5 / 3$

Key. C
Sol. $\quad x^{2}=4(y+2)$ is the given parabola
Any normal is $x=m(y+2)-2 m-m^{3}$. If $(10,-1)$ lies on this line then $10=+m-2 m-m^{3} \Rightarrow m^{3}+m+10=0 \Rightarrow m=-2$
Slope of normal $=1 / \mathrm{m}$.
123. m_{1}, m_{2}, m_{3} are the slope of normals $\left(m_{1}<m_{2}<m_{3}\right)$ drawn through the point $(9,-6)$ to the parabola $y^{2}=4 x . A=\left[a_{i j}\right]$ is a square matrix of order 3 such that $a_{i j}=1$ if $i \neq j$ and $a_{i j}=m_{i}$ if $i=j$. Then $\operatorname{det} \mathrm{A}=$
A) 6
B) -4
C) -9
D) 8

Key. D
Sol. $y=m x-2 m-m^{3} .(9,-6)$ lies on this
$\therefore-6=9 m-2 m-m^{3} \Rightarrow m^{3}-7 m-6=0$
Roots are $-1,-2,3 \therefore|A|=\left|\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3\end{array}\right|=(-2)(-4)-(3-1)+2=8$
124. $P Q$ is any focal chord of the parabola $y^{2}=32 x$. The length of $P Q$ can never be less than
(A) 8 unit
(B) 16 unit
(C) 32 unit
(D) 48 unit

Key. C
Sol. Length of focal chord is $a\left(t+\frac{1}{t}\right)^{2}$, if $\left(a t^{2}, 2 a t\right)$ is one extremity of the parabola $y^{2}=4 a x$.
$\therefore \mathrm{t}+\frac{1}{\mathrm{t}} \geq 2(\mathrm{AM} \geq \mathrm{GM})$
$\Rightarrow a\left(t+\frac{1}{t}\right)^{2} \geq 4 a$
Here, $4 \mathrm{a}=32$
125. PN is the ordinate of any point P on $y^{2}=4 x$. The normal at P to the curve meets the axis at G, then
(A) $\mathrm{NG}=1$
(B) $\mathrm{NG}=2$
(C) $\mathrm{NG}=4$
(D) $N G=6$

Key. B

Sol. Let P be $\left(t^{2}, 2 t\right)$, then the normal at P, is $y+t x=2 t+t^{3}$ which meets x-axis at $G\left(2+t^{2}\right.$, $0)$. Now as N is $\left(\mathrm{t}^{2}, 0\right)$.
$\therefore \mathrm{NG}=2$
126. The coordinates of the focus of the parabola $y^{2}=4(x+y)$, are
(A) $(-1,1)$
(B) $(0,2)$
(C) $(2,1)$
(D) $(2,-1)$

Key. B
SOL. $\quad y^{2}=4 x+4 y$
$\Rightarrow(\mathrm{y}-2)^{2}=4(\mathrm{x}+1)$
focus $(0,2)$
127. The straight line $y=m x+c$ touches the parabola $y^{2}=4 a(x+a)$, if
(A) $c=a m-a / m$
(B) $\mathrm{c}=\mathrm{m}-\mathrm{a} / \mathrm{m}$
(C) $c=a m+a / m$
(D) $c=m+a m$

Key. C
Sol. Putting $y=m x+c$ in parabola $y^{2}=4 a(x+a)$
$\Rightarrow(\mathrm{mx}+\mathrm{c})^{2}=4 \mathrm{a}(\mathrm{x}+\mathrm{a})$
$\Rightarrow \mathrm{m}^{2} \mathrm{x}^{2}+2(\mathrm{mc}-2 \mathrm{a}) \mathrm{x}+\left(\mathrm{c}^{2}-4 \mathrm{a}^{2}\right)=0$
If roots are equal i.e., $D=0$
$\Rightarrow 4(m c-2 a)^{2}-4 m^{2}\left(c^{2}-4 a^{2}\right)=0$
$\Rightarrow-m c+a+a m^{2}=0 \Rightarrow c=a m+a / m$
Alternative
Equation of any tangent to the parabola $y=m(x+a)=a / m$
comparing with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
$\mathrm{c}=\mathrm{am}+\mathrm{a} / \mathrm{m}$.
128. Three normals are drawn to the curve $y^{2}=x$ from a point $(c, 0)$. Out of three one is always on x-axis. If two other normals are perpendicular to each other, then the value of c is
(A) $3 / 4$
(B) $1 / 2$
(C) $3 / 2$
(D) 2

Key. A
SOL. Normal at $\left(a t^{2}, 2 a t\right)$ is $y+t x=2 a t+a t^{3}\left(a=\frac{1}{4}\right)$
if this passes through $(\mathrm{c}, 0)$, we have
$c t=2 a t+a t^{3}=\frac{t}{2}+\frac{t^{3}}{4}$
$\Rightarrow \mathrm{t}\left[\mathrm{t}^{2}+2-4 \mathrm{c}\right]=0$
$\Rightarrow t=0$ or $\mathrm{t}^{2}=4 \mathrm{c}-2$
if $t=0$ the point at which the normal is drawn is $(0,0)$.
if $t \neq 0$ then the two values of t represents slope of normals through $(c, 0)$.
if these normals are perpendicular then $\left(-t_{1}\right)\left(-t_{2}\right)=-1$
$\Rightarrow \mathrm{t}_{1} \mathrm{t}_{2}=-1$
$\Rightarrow(\sqrt{4 c-2})(-\sqrt{4 c-2})=-1$

$$
\Rightarrow \quad \mathrm{c}=\frac{3}{4}
$$

129. Let $\mathrm{y}^{2}=4 \mathrm{ax}$ be a parabola and PQ be a focal chord of parabola. Let T be the point of intersection of tangents at P and Q . Then
(A) area of circumcircle of $\triangle \mathrm{PQT}$ is $\left(\frac{\pi(\mathrm{PQ})^{2}}{4}\right)$
(B) orthocenter of $\triangle \mathrm{PQT}$ will lie on tangent at vertex
(C) incenter of $\triangle \mathrm{PQT}$ will be vertex of parabola
(D) incentre of $\triangle \mathrm{PQT}$ will lie on directrix of parabola

Key. A
Sol. Equation of tangent at $\mathrm{P} \rightarrow \mathrm{ty}=\mathrm{x}+\mathrm{at}^{2}$
Equation of tangent at $\mathrm{Q} \rightarrow \frac{-1}{\mathrm{t}} \mathrm{y}=\mathrm{x}+\frac{\mathrm{a}}{\mathrm{t}^{2}}$

$\Rightarrow \mathrm{x}=-\mathrm{a}$.
$\therefore \mathrm{t}$ lies on the directrix and thus $\triangle \mathrm{PTQ}$ is right angled triangle. thus circle passing through
P, Q and T must have P and Q are end points of diameter. thus area of required circle is $\frac{\pi(\mathrm{PQ})^{2}}{4}$
130. Axis of a parabola is $y=x$ and vertex and focus are at a distance $\sqrt{2}$ and $2 \sqrt{2}$ respectively from the origin. Then equation of the parabola is
(A) $(x-y)^{2}=8(x+y-2)$
(B) $(x+y)^{2}=2(x+y-2)$
(C) $(x-y)^{2}=4(x+y-2)$
(D) $(x+y)^{2}=2(x-y+2)$

Key. A
Sol. $\quad \mathrm{PM}^{2}=4 \mathrm{a}(\mathrm{PN})$

$$
\frac{(x-y)^{2}}{2}=4 \sqrt{2} \frac{(x+y-2)}{\sqrt{2}}
$$

131. If m_{1}, m_{2} are slopes of tangents drawn from $(1,4)$ to the parabola $y^{2}=4 x$, then
(A) $m_{1}+m_{2}=4$
(B) $\left|\mathrm{m}_{1}-\mathrm{m}_{2}\right|=2 \sqrt{3}$
(C) $\mathrm{m}_{1} \cdot \mathrm{~m}_{2}=-1$
(D) $\mathrm{m}_{1}=\mathrm{m}_{2}$

Key. A
Sol. Any tangent of the parabola $y=m x+\frac{a}{m}$

$$
\begin{aligned}
& \Rightarrow 4=\mathrm{m}+\frac{1}{\mathrm{~m}} \quad \Rightarrow 4 \mathrm{~m}=\mathrm{m}^{2}+1 \\
& \Rightarrow \mathrm{~m}^{2}-4 \mathrm{~m}+1=0 \\
& \Rightarrow \mathrm{~m}_{1}+\mathrm{m}_{2}=4 \text { and } \mathrm{m}_{1} \mathrm{~m}_{2}=1
\end{aligned}
$$

132. The locus of point of intersection of two tangents to the parabola $y^{2}=4 x$ such that their chord of contact subtends a right angle at the vertex is
A) $x+4=0$
B) $y+4=0$
C) $x-4=0$
D) $y-4=0$

Key: A
Sol. Chord of contact of $\left(t_{1} t_{2}, t_{1}+t_{2}\right)$ with respect to $y^{2}=4 x$ is $\left(t_{1}+t_{1}\right) y=2\left(x+t_{1} t_{2}\right)$

$$
\Rightarrow \frac{\left(t_{1}+t_{2}\right) y-2 x}{2 t_{1} t_{2}}=1=y^{2}=4 x .1 \Rightarrow t_{1} t_{2}+4=0 \Rightarrow t_{1} t_{2}=-4
$$

$x=-4 \Rightarrow x+4=0$
133. If the line $y=x+2$ does not intersect any member of family of parabolas $y^{2}=a x,\left(a \in R^{+}\right)$ at two distinct point, then maximum value of latus rectum of parabola is
(A) 4
(B) 8
(C) 16
(D) 32

KEY : B
HINT

$$
\begin{aligned}
& y^{2}=a x \\
& y=x+2 \\
& (x+2)^{2}-a x=0 \\
& x^{2}+x(4-a)+4=0 \\
& D \leq 0 \\
& a \leq 8
\end{aligned}
$$

134. Equation of the circle of minimum radius which touches both the parabolas $y=x^{2}+2 x+4$ and $x=y^{2}+2 y+4$ is
A) $2 x^{2}+2 y^{2}-11 x-11 y-13=0$ B) $4 x^{2}+4 y^{2}-11 x-11 y-13=0$
C) $\left.3 x^{2}+3 y^{2}-11 x-11 y-13=0 D\right) x^{2}+y^{2}-11 x-11 y-13=0$

KEY:B

HINT : Given parabolas are symmetric about the line $y=x$ so they have a common normal with slope -1 it meets the parabolas at $\left(\frac{-1}{2}, \frac{13}{4}\right),\left(\frac{13}{4}, \frac{-1}{2}\right)$ hence the req circles is $x^{2}+y^{2}$ $-\frac{11}{4} x-\frac{11}{4} y-\frac{13}{4}=0$
135. The slope of the line which belongs to family of these $(1+\lambda) x+(\lambda-1) y+2(1-\lambda)=0$ and makes shortest intercept on $x^{2}=4 y-4$
(A) $\frac{1}{2}$
(B) 1
(C) 0
(D) 2

Key: C
Hint : Family of lines passes through focus hence latus rectum will makes shortest intercept.
136. If the tangents at two points $(1,2)$ and $(3,6)$ as a parabola intersect at the point $(-1,1)$, then the slope of the directrix of the parabola is
(A) $\sqrt{2}$
(B) -2
(C) -1
(D) none of these

Key: C
Hint : If the tangents at P and Q intersect at T, then axis of parabola is parallel to $T R$, where R is the mid point of P and Q. So, slope of the axis is 1 .
\therefore slope of the directrix $=-1$.
137. A variable chord $P Q$ of the parabola $y=4 x^{2}$ substends a right angle at the vertex. Then the locus of points of intersection of the tangents at P and Q is
a) $4 y+1=16 x^{2}$
b) $y+4=0$
c) $4 y+4=4 x^{2}$
d) $4 y+1=0$

Key: D

Hint: $\quad \operatorname{Let} P\left(t_{1}, 4 t_{1}^{2}\right), Q\left(t_{2}, 4 t_{2}^{2}\right)$
Slope of OP x slope of $O Q=-1$
$\Rightarrow 4 t_{1} \cdot 4 t_{2}=-1$
Eq of tangent at $\left(t_{1}, 4 t_{1}^{2}\right)$ is
$y-4 t_{1}^{2}=8 t_{1}\left(x-t_{1}\right) \Rightarrow y+4 t_{1}^{2}=8 t_{1} x$
Eq of tangent at $\left(t_{2}, 4 t_{2}^{2}\right)$ is $y+4 t_{2}^{2}=8 t_{2} x$
Let $\left(x_{1}, y_{1}\right)$ is the point of intersection
$e q(1)-e q(2) \Rightarrow x_{1}=\frac{t_{1}+t_{2}}{2}$
$y_{1}=8 t_{1}\left(\frac{t_{1}+t_{2}}{2}\right)-4 t_{1}^{2}=4 t_{1} t_{2}=\frac{-1}{4}$
$\Rightarrow 4 y_{1}+1=0$
138. Let $A \equiv(9,6), B(4,-4)$ be two points on parabola $y^{2}=4 x$ and $P\left(t^{2}, 2 t\right), t \in[-2,3]$ be a variable point on it such that area of $\triangle P A B$ is maximum, then point P will be
(A) $(4,4)$
(B) $(3,-2 \sqrt{3})$
(C) $(4,1)$
(D) $\left(\frac{1}{4}, 1\right)$

Key: D
Hint: Let P be $\left(t^{2}, 2 t\right)$ area of $\triangle P A B$
$\frac{1}{2}\left|\begin{array}{ccc}t^{2} & 2 t & 1 \\ 9 & 6 & 1 \\ 4 & -4 & 1\end{array}\right|=\left|5 t^{2}-5 t-30\right|$
it is maximum at $t=1 / 2$.
139. Let $(2,3)$ be the focus of a parabola and $x+y=0$ and $x-y=0$ be its two tangents, then equation of its directrix will be
(A) $2 x-3 y=0$
(B) $3 x+4 y=0$
(C) $x+y=5$
(D) $12 x-5 y+1=0$

Key: A

Hint: Mirror image of focus in the tangent of parabola lie on its directrix.
140. The line $x+y=6$ is a normal to the parabola $y^{2}=8 x$ at the point
(a) $(18,-12)$
(b) $(4,2)$
(c) $(2,4)$
(d) $(3,3)$

Key: c
Hint: Slope of the normal is given to be -1 . We know that, foot of the normal is ($a m^{2},-2 a m$). Here $a=2, m=-1$. Hence the required point is $(2,4)$.
141. The tangent and normal at the point $P(4,4)$ to the parabola, $y^{2}=4 x$ intersect the x-axis at the points Q and R respectively. Then the cirucm centre of the $\triangle \mathrm{PQR}$ is
(A) $(2,0)$
(B) $(2,1)$
(C) $(1,0)$
(D) $(1,2)$

Key: C
Sol : Eq. of tangent $2 y=x+4$

$$
\therefore \quad \mathrm{Q} \equiv(-4,0)
$$

Eq. of normal is $y-4=-2(x-4)$

$$
\Rightarrow y+2 x=12
$$

Clearly $Q R$ is diameter of the required circle.

$$
\begin{aligned}
& \Rightarrow(x+4)(x-6)+y^{2}=0 \\
& \Rightarrow x^{2}+y^{2}-2 x-24=0
\end{aligned}
$$

centre $(1,0)$

142. The mirror image of the parabola $y^{2}=4 x$ in the tangent to the parabola to the point $(1,2)$ is
(A) $\quad(x-1)^{2}=4(y+1)$
(B) $(\mathrm{x}+1)^{2}=4(\mathrm{y}+1)$
(C) $\quad(x+1)^{2}=4(y-1)$
(D) $(\mathrm{x}-1)^{2}=4(\mathrm{y}-1)$

Key: C

Sol : Any point on the given parabola is $\left(t^{2}, 2 t\right)$. The equation of the tangent at $(1,2)$ is $x-y+1=0$.
The image (h, k) of the point $\left(\mathrm{t}^{2}, 2 \mathrm{t}\right)$ in $\mathrm{x}-\mathrm{y}+1=0$ is
given by $\frac{h-t^{2}}{1}=\frac{k-2 t}{-1}=\frac{-2\left(t^{2}-2 t+1\right)}{1+1}$
$\therefore \quad \mathrm{h}=\mathrm{t}^{2}-\mathrm{t}^{2}+2 \mathrm{t}-1=2 \mathrm{t}-1$
and $\quad \mathrm{k}=2 \mathrm{t}+\mathrm{t}^{2}-2 \mathrm{t}+1=\mathrm{t}^{2}+1$
Eliminating t from $\mathrm{h}=2 \mathrm{t}-1$ and $\mathrm{k}=\mathrm{t}^{2}+1$
we get, $(\mathrm{h}+1)^{2}=4(\mathrm{k}-1)$
The required equation of reflection is $(x+1)^{2}=4(y-1)$
143. $\operatorname{Min}\left\{\left(x_{1}-x_{2}\right)^{2}+\left(12+\sqrt{1-x_{1}^{2}}-\sqrt{4 x_{2}}\right)^{2}\right\} \forall x_{1}, x_{2} \in R$ is
A. $4 \sqrt{5}-1$
B. $4 \sqrt{5}+1$
C. $\sqrt{5}+1$
D. $\sqrt{5}-1$

Key. A
Sol. Let $y_{1}=12+\sqrt{1-x_{1}^{2}}$ and $y_{2}=\sqrt{4 x_{2}}$
$\left(y_{1}-12\right)^{2}=1-x_{1}^{2} \Rightarrow x_{1}^{2}+\left(y_{1}-12\right)^{2}=1 ; y_{2}^{2}=4 x_{2}$
Required answer is shortest distance between two curves $x^{2}+(y-12)^{2}=1$ and $y^{2}=4 x$
144. The radius of largest circle which passes through focus of parabola $y^{2}=4(x+y)$ and also contained in it is
A. 4
B. 1
C. 3
D. 2

Key. A
Sol. Parabola is $y^{2}-4 y=4 x \Rightarrow(y-2)^{2}=4(x+1)$
Focus $=(0,2)$
Let radius of circle $=r$ then centre $=(r, 2)$
Circle is $(x-r)^{2}+(y-2)^{2}=r^{2}$
$\Rightarrow(x-r)^{2}+4(x+1)=r^{2}$ has equal roots $\Delta=0 \Rightarrow r=4$
145. Length of the latus rectum of the parabola $\sqrt{x}+\sqrt{y}=\sqrt{a}$

1. $a \sqrt{2}$
2. $\frac{a}{\sqrt{2}}$
3. a
4. $2 a$

Key. 1
Sol. $\quad \sqrt{x}=\sqrt{a}-\sqrt{y}$
$x=a+y-2 \sqrt{a y}$
$(x-y-a)^{2}=4 a y$
$x^{2}+(y+a)^{2}-2 x(a+y)=4 a y$
$x^{2}+y^{2}-2 x y+2 a y+a^{2}-2 a x=4 a y$
$x^{2}+y^{2}-2 x y=2 a x+2 a y-a^{2}$
$(x-y)^{2}=2 a\left(x+y-\frac{a}{2}\right)$
Axis is $x-y=0$

$$
\begin{aligned}
& \left(\frac{x-y}{\sqrt{2}}\right)^{2}=\frac{2 a}{2}\left(\frac{x+y-\frac{a}{2}}{\sqrt{2}}\right) \times \sqrt{2} \\
& \left(\frac{x-y}{\sqrt{2}}\right)^{2}=a \sqrt{2}\left(\frac{x+y-\frac{a}{2}}{\sqrt{2}}\right)
\end{aligned}
$$

\therefore lengthy $L . R=a \sqrt{2}$
146. Equation of common tangent to $x^{2}=32 y$ and $y^{2}=32 x$

1. $x+y=8$
2. $x+y+8=0$
3. $x-y=8$
4. $x-y+8=0$

Key. 2
Sol. Common tangets $y^{2}=4 a x$ and $x^{2}=4 a y$ is $x a^{\frac{1}{3}}+y b^{\frac{1}{3}}+a^{\frac{2}{3}} b^{\frac{2}{3}}=0$
Here $a=8, b=8$
147. Locus of poles of chords of the parabola $y^{2}=4 a x$ which subtends 45° at the vertex is
$(x+4 a)^{2}=\lambda\left(y^{2}-4 a x\right)$ then $\lambda=$ \qquad

1. 1
2. 2
3.3
3. 4

Key. 4
Sol. Parabola is $y^{2}=4 a x \rightarrow{ }^{(1)}$
Polar of a pole $\left(x_{1} y_{1}\right)=y y_{1}-2 a x=2 a x_{1} \rightarrow$ (2)
Making eq (1) homogeneous w.r.t ${ }^{(2)}$
$y^{2}-4 a x\left(\frac{y y_{1}-2 a x}{2 a x_{1}}\right)=0$
$x_{1} y^{2}-2 x y y_{1}+4 a x^{2}=0$
Angle between these pair of lines is 45^{0}
$\therefore \tan 45^{\circ}=\frac{2 \sqrt{y_{1}^{2}-4 a x_{1}}}{\left(x_{1}+4 a\right)}$
Locus of $\left(x_{1} y_{1}\right)$ is
$\Rightarrow(x+4 a)^{2}=4\left(y^{2}-4 a x\right)$
$\Rightarrow \lambda=4$
148. The equation of the normal to the parabola $y^{2}=8 x$ at the point t is

1. $y-x=t+2 t^{2}$
2. $y+t x=4 t+2 t^{3}$
3. $x+t y=t+2 t^{2}$
4. $y-x=2 t-3 t^{3}$

Key. 2
Sol. Equation of the normal at ' t ' is $y+t x=2(2) t+(2) t^{3} \Rightarrow y+t x=4 t+2 t^{3}$
149. The slope of the normal at $\left(a t^{2}, 2 a t\right)$ of the parabola $y^{2}=4 a x$ is

1. $\frac{1}{t}$
2. t
3. $-t$
4. $-\frac{1}{t}$

Key. 3
Sol. Slope of the normal at ' t ' is $-t$.
150. If the normal at the point ' t ' on a parabola $y^{2}=4 a x$ meet it again at t_{1}, then $t_{1}=$

1. t
2. $-t-1 / t$
3. $-t-2 / t$
4. None

Key. 3
Sol. Equation of the normal at t is $t x+y=2 a t+a t^{3} \rightarrow(1)$
Equation of the chord passing through t and t_{1} is $y\left(t+t_{1}\right)=2 x+2 a t t_{1} \rightarrow(2)$
Comparing (1) and (2) we get $\frac{t}{-2}=\frac{1}{t+t_{1}} \Rightarrow t+t_{1}=-\frac{2}{t} \Rightarrow t_{1}=-\frac{2}{t}-t$.
151. If the normal at t_{1} on the parabola $y^{2}=4 a x$ meet it again at t_{2} on the curve, then $t_{1}\left(t_{1}+t_{2}\right)+2=$
1.0
2.1
3. t_{1}
4. t_{2}

Key. 1
Sol. Equation of normal at t_{1} is $t_{1} x+y=2 a t_{1}+a t_{1}^{3}$

It passes through $t_{2} \Rightarrow a t_{1} t_{2}^{2}+2 a t_{2}=2 a t_{1}+a t_{1}^{3}$
$\Rightarrow t_{1}\left(t_{2}^{2}-t_{1}^{2}\right)=2\left(t_{1}-t_{2}\right) \Rightarrow t_{1}\left(t_{1}+t_{2}\right)=-2 \Rightarrow t_{1}\left(t_{1}+t_{2}\right)+2=0$
152. If the normal at $(1,2)$ on the parabola $y^{2}=4 x$ meets the parabola again at the point $\left(t^{2}, 2 t\right)$, then the value of t is

1. 1
2. 3
3. -3
4. -1

Key. 3
Sol. $\operatorname{Let}(1,2)=\left(t_{1}^{2}, 2 t_{1}\right) \Rightarrow t_{1}=1$
$t=-t_{1}-\frac{2}{t_{1}}=-1-\frac{2}{1}=-3$
153. If the normal to parabola $y^{2}=4 x$ at $P(1,2)$ meets the parabola again in Q, then $Q=$

1. $(-6,9)$
2. $(9,-6)$
3. $(-9,-6)$
4. $(-6,-9)$

Key. 2
Sol. $\quad P=(1,2)=\left(t^{2}, 2 t\right) \Rightarrow t=1$
$Q=\left(t_{1}^{2}, 2 t_{1}\right) \Rightarrow t_{1}=-t-2 / t=-1-2=-3 \Rightarrow Q=(9,-6)$.
154. If the normals at the points t_{1} and t_{2} on $y^{2}=4 a x$ intersect at the point t_{3} on the parabola, then $t_{1} t_{2}=$

1. 1
2. 2
3. t_{3}
4. $2 t_{3}$

Key. 2
Sol. Let the normals at t_{1} and t_{2} meet at t_{3} on the parabola.

The equation of the normal at t_{1} is $y+x t_{1}=2 a t_{1}+a t_{1}^{3} \rightarrow(1)$

Equation of the chord joining t_{1} and t_{3} is $y\left(t_{1}+t_{3}\right)=2 x+2 a t_{1} t_{3} \rightarrow(2)$
(1) and (2) represent the same line.
$\therefore \quad \frac{t_{1}+t_{3}}{1}=\frac{-2}{t_{1}} \Rightarrow t_{3}=-t_{1}-\frac{2}{t_{1}} . \quad$ Similarly $t_{3}=-t_{2}-\frac{2}{t_{2}}$
$\therefore-t_{1}-\frac{2}{t_{1}}=-t_{2}-\frac{2}{t_{2}} \Rightarrow t_{1}-t_{2}=\frac{2}{t_{2}}-\frac{2}{t_{1}} \Rightarrow t_{1}-t_{2}=\frac{2\left(t_{1}-t_{2}\right)}{t_{1} t_{2}} \Rightarrow t_{1} t_{2}=2$
155. The number of normals thWSat can be drawn to the parabola $y^{2}=4 x$ form the point $(1,0)$ is

1. 0
2. 1
3. 2
4. 3

Key. 2
Sol. $\quad(1,0)$ lies on the axis between the vertex and focus \Rightarrow number of normals $=1$.
156. The number of normals that can be drawn through $(-1,4)$ to the parabola $y^{2}-4 x+6 y=0$ are

1. 4
2. 3
3. 2
4. 1

Key. 4
Sol. Let $S \equiv y^{2}-4 x+6 y . S_{(-1,4)}=4^{2}-4(-1)+6(4)=16+4+24=44>0$
$\therefore \quad(-1,4)$ lies out side the parabola and hence one normal can be drawn from $(-1,4)$ to the parabola.
157. If the tangents and normals at the extremities of a focal chord of a parabola intersect at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively, then

1. $x_{1}=x_{2}$
2. $x_{1}=y_{2}$
3. $y_{1}=y_{2}$
4. $x_{2}=y_{1}$

Key. 3
Sol. Let $A\left(t_{1}\right) B\left(t_{2}\right)$ the extremiues of a focal chard of $y^{2}=4 a x$
$\therefore t_{1} t_{2}=-1$
$\left(x_{1}, y_{1}\right)=\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right] ;\left(x_{2}, y_{2}\right)=\left[a\left(t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}+2\right), a t_{1} t_{2}\left(t_{1}+t_{2}\right)\right]$
$y_{2}=-a t_{1} t_{2}\left(t_{1}+t_{2}\right)=-a(-1)\left(t_{1}+t_{2}\right)=a\left(t_{1}+t_{2}\right)=y_{1}$
158. The normals at three points P, Q, R of the parabola $y^{2}=4 a x$ meet in (h, k). The centroid of triangle $P Q R$ lies on

1. $x=0$
2. $y=0$
3. $x=-a$
4. $y=a$

Key. 2
Sol. Let $P\left(t_{1}\right), Q\left(t_{2}\right) \& R\left(t_{3}\right)$

Equation of a normal to $y^{2}=4 a x$ is $y+t x=2 a t+a t^{3}$

This passes through $(h, k) \Rightarrow k+t h=2 a t+a t^{3} \Rightarrow a t^{3}+(2 a-h) t-k=0$
t_{1}, t_{2}, t_{3} are the roots of this equation $t_{1}+t_{2}+t_{3}=0$

Centroid of $\triangle P Q R$ is $G\left[\frac{a}{3}\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right), \frac{2 a}{3}\left(t_{1}+t_{2}+t_{3}\right)\right]$
$t_{1}+t_{2}+t_{3}=0 \Rightarrow \frac{2 a}{3}\left(t_{1}+t_{2}+t_{3}\right)=0 \Rightarrow G$ lies on $y=0$.
159. The ordinate of the centroid of the triangle formed by conormal points on the parabola $y^{2}=4 a x$ is

1. 4
2. 0
3. 2
4. 1

Key. 2
Sol. Let $t_{1}, t_{2} \& t_{3}$ be the conormal points drawn from $\left(x_{1}, y_{1}\right)$ to $y^{2}=4 a x$

Equation of the normal at point ' t ' to $y^{2}=4 a x$ is $y+t x=2 a t+a t^{3}$

This passes through $\left(x_{1}, y_{1}\right) \Rightarrow y_{1}+t x_{1}=2 a t+a t^{3} \Rightarrow a t^{3}+\left(2 a-x_{1}\right) t-y_{1}=0$
t_{1}, t_{2}, t_{3} are the roots of the equation. $\therefore t_{1}+t_{2}+t_{3}=0$

The ordinate of the centroid of the triangle formed by the points $t_{1}, t_{2} \& t_{3}$ is $\frac{2 a}{3}\left(t_{1}+t_{2}+t_{3}\right)=0$
160. The normals at two points P and Q of a parabola $y^{2}=4$ ax meet at $\left(x_{1}, y_{1}\right)$ on the parabola. Then $P Q^{2}=$

1. $\left(x_{1}+4 a\right)\left(x_{1}+8 a\right)$
2. $\left(x_{1}+4 a\right)\left(x_{1}-8 a\right)$
3. $\left(x_{1}-4 a\right)\left(x_{1}+8 a\right)$
4. $\left(x_{1}-4 a\right)\left(x_{1}-8 a\right)$

Key. 2
Sol. Let $P=\left(a t_{1}^{2}, 2 a t_{1}\right), Q=\left(a t_{2}^{2}, 2 a t_{2}\right)$

Since the normals at P and Q meet on the parabola, $t_{1} t_{2}=2$.

Point of intersection of the normals $\left(x_{1}, y_{1}\right)=\left(a\left[t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}+2\right],-a t_{1} t_{2}\left[t_{1}+t_{2}\right]\right)$
$\Rightarrow x_{1}=a\left(t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}+2\right)=a\left(t_{1}^{2}+t_{2}^{2}+4\right) \Rightarrow a\left(t_{1}^{2}+t_{2}^{2}\right)=x_{1}-4 a$
$P Q^{2}=\left(a t_{1}^{2}-a t_{2}^{2}\right)^{2}+\left(2 a t_{1}-2 a t_{2}\right)^{2}=a^{2}\left(t_{1}-t_{2}\right)^{2}\left[\left(t_{1}+t_{2}\right)^{2}+4\right]$
$=a\left(t_{1}^{2}+t_{2}^{2}-4\right) a\left(t_{1}^{2}+t_{2}^{2}+8\right)=\left(x_{1}-8 a\right)\left(x_{1}+4 a\right)$
161. If a normal subtends a right angle at the vertex of the parabola $y^{2}=4 a x$, then its length is

1. $\sqrt{5} a$
2. $3 \sqrt{5} a$
3. $6 \sqrt{3} a$
4. $7 \sqrt{5} a$

Key. 3
Sol. $\quad \operatorname{Leta}\left(a t_{1}^{2}, 2 a t_{1}\right), B\left(a t_{2}^{2}, 2 a t_{2}\right)$.

The normal at A cuts the curve again at B.
Again AB subtends a right angle at the vert
Slope $O A=\frac{2 a t_{1}}{a t_{1}^{2}}=\frac{2}{t_{1}}$, slope of $O B=\frac{2}{t_{2}}$
$O A \perp O B \Rightarrow \frac{2}{t_{1}} \cdot \frac{2}{t_{2}}=-t_{1} t_{2}=-4$
Slope of AB is $\frac{2 a\left(t_{2}-t_{1}\right)}{a\left(t_{2}^{2}-t_{1}^{2}\right)}=\frac{2}{t_{1}+t_{2}}=-t_{1}$. [By (1)]

Again from (1) and (2) on putting for t_{2}, we get $t_{1}=\frac{4}{t_{1}}=-\frac{2}{t_{1}} . \quad \therefore t_{1}^{2}=2$ or
$t_{1} \pm \sqrt{2}$
$t_{2}=\frac{-4}{t_{1}}=\frac{-4}{(\pm \sqrt{2})}= \pm 2 \sqrt{2} . \quad \therefore \quad A=(2 a, \pm 2 a \sqrt{2}), B=(8 a, \pm 4 \sqrt{a})$
$A B=\sqrt{(2 a-8 a)^{2}+(2 a \sqrt{2}+4 \sqrt{2} a)^{2}}=\sqrt{36 a^{2}+72 a^{2}}=\sqrt{108 a^{2}}=6 \sqrt{3} a$.
162. Three normals with slopes m_{1}, m_{2}, m_{3} are drawn from any point P not on the axis of the parabola $y^{2}=4 x$. If $m_{1} m_{2}=a$, results in locus of P being a part of parabola, the value of ' a ' equals

1. 2
2. -2
3.4
3. -4

Key. 1
Sol. Equation of normal to $y^{2}=4 x$ is $y=m x-2 m-m^{3}$
It passes through $(\alpha, \beta) \quad \therefore m_{1} m_{2} m_{3} \beta=m \alpha-2,-m^{3}$
$\Rightarrow m^{3}+(2-\alpha) m+\beta=0$
(Let m_{1}, m_{2}, m_{3} are roots)
$\therefore \quad m_{1} m_{2} m_{3}=-\beta \quad\left(\right.$ as $\left.\quad m_{1} m_{2}=a\right) \quad \Rightarrow \quad m_{3}=-\frac{\beta}{a}$
Now $-\frac{\beta^{3}}{a^{3}}-(2-\alpha) \times \frac{\beta}{a}+\beta=0$
$\Rightarrow \beta^{3}+(2-\alpha) a^{2} \beta-\beta a^{3}=0$
\Rightarrow locus of P is $y^{3}+(2-x) y a^{2}-y a^{3}=0$

As P is not the axis of parabola
$\Rightarrow y^{2}=a^{2} x-2 a^{2}+a^{3}$ as it is the part of $y^{2}=4 x$
$\therefore a^{2}=4$ or $-2 a^{2}+a^{3}=0, a= \pm 2$ or $a^{2}(a-2)=0$
$a= \pm 2$ or $a=0, a=2$
$\Rightarrow a=2$ is the required value of a

163. The length of the normal chord drawn at one end of the latus rectum of $y^{2}=4 a x$ is

1. $2 \sqrt{2} a$
2. $4 \sqrt{2} a$
3. $8 \sqrt{2} a$
4. $10 \sqrt{2} a$

Key. 3
Sol. One end of the latus rectum $=(a, 2 a)$

Equation of the normal at $(a, 2 a)$ is $2 a(x-a)+2 a(y-2 a)=0 \Rightarrow x+y-3 a=0$

Solving; $y^{2}=4 a x, x+y-3 a=0$ we get the ends of normal chord are $(a, 2 a),(9 a,-6 a)$.
Length of the chard $=\sqrt{(9 a-a)^{2}+(-6 a-2 a)^{2}}=\sqrt{64 a^{2}+64 a^{2}}=8 \sqrt{2} a$.
164. If the line $y=2 x+k$ is normal to the parabola $y^{2}=4 x$, then value of k equals

1. -2
2. -12
3. -3
4. $-1 / 3$

Key. 2
Sol. Conceptual
165. The normal chord at a point ' t ' on the parabola $y^{2}=4 a x$ subtends a right angle at the vertex. Then $t^{2}=$

1. 4
2. 2
3. 1
4. 3

Key. 2
Sol. Equation of the normal at point ' t ' is $y+t x=2 a t+a t^{3} \Rightarrow \frac{y+t x}{2 a t+a t^{3}}=1$
Homoginising $y^{2}=4 a x\left(\frac{y+t x}{2 a t+a t^{3}}\right) \Rightarrow\left(2 a t+a t^{3}\right) y^{2}-4 a x(y+t x)=0$

These lines re $\perp 1 r \Rightarrow 2 a t+a t^{3}-4 a t=0 \Rightarrow a t\left(t^{2}-2\right)=0 \Rightarrow t^{2}=2$
166. A is a point on the parabola $y^{2}=4 a x$. The normal at A cuts the parabola again at B. If $A B$ subtends a right angle at the vertex of the parabola, then slope of $A B$ is

1. $\sqrt{2}$
2. 2
3. $\sqrt{3}$
4. 3

Key. 1
Sol. Let $A\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $B\left(a t_{2}^{2}, 2 a t_{2}\right)$.

The normal at A cuts the curve again at B. $\quad \therefore t_{1}+t_{2}=-2 / t_{1} \ldots$.(1)

Again AB subtends a right angle at the vertex $O(0,0)$ of the parabola.

Slope of $O A=\frac{2 a t_{1}}{a t_{1}^{2}}=\frac{2}{t_{1}}, \quad$ Slope of $O B=\frac{2}{t_{2}}$
$O A \perp O B \Rightarrow \frac{2}{t_{1}} \cdot \frac{2}{t_{2}}=-1 \Rightarrow t_{1} t_{2}=-4 \ldots$ (2)

Slope of AB is $\frac{2 a\left(t_{2}-t_{1}\right)}{a\left(t_{2}^{2}-t_{1}^{2}\right)}=\frac{2}{t_{1}+t_{2}}=-t_{1} \quad$ by

Again from (1) and (2) on putting for t_{2} we get $t_{1}-\frac{4}{t_{1}}=\frac{2}{t_{1}} . \therefore \quad t_{1}^{2}=2 \Rightarrow t_{1}= \pm \sqrt{2}$.
\therefore Slope $= \pm \sqrt{2}$.
167. If the normal at P meets the axis of the parabola $y^{2}=4 a x$ in G and S is the focus, then $\mathrm{SG}=$

1. $S P$
2. $2 S P$
3. $\frac{1}{2} S P$
4. None

Key. 1
Sol. Equation of the normal at $P\left(a t^{2}, 2 a t\right)$ is $t x+y=2 a t+a t^{3}$

Since it meets the axis, $y=0 \Rightarrow t x=2 a t+a t^{3} \Rightarrow x=2 a+a t^{2}$
$\therefore G=\left(2 a+a t^{2}, 0\right)$, Focus $S=(a, 0)$
$S G=\sqrt{\left(2 a+a t^{2}-a\right)^{2}+(0-0)^{2}}=\sqrt{\left(a+a t^{2}\right)^{2}}=a+a t^{2}=a\left(1+t^{2}\right)$
$S P=\sqrt{\left(a t^{2}-a\right)^{2}+(2 a t-0)^{2}}=\sqrt{\left(a t^{2}-a\right)^{2}+4 a^{2} t^{2}}=\sqrt{\left(a t^{2}+a\right)^{2}}=a t^{2}+a=a\left(t^{2}+1\right)$
$\therefore S G=S P$
168. The normal of a parabola $y^{2}=4 a x$ at $\left(x_{1}, y_{1}\right)$ subtends right angle at the

1. Focus
2. Vertex
3. End of latus rectum 4. None of these

Key. 1
Sol. Conceptual
169. The normal at P cuts the axis of the parabola $y^{2}=4 a x$ in G and S is the focus of the parabola. If $\triangle S P G$ is equilateral then each side is of length

1. a
2. $2 a$
3. $3 a$
4. $4 a$

Key. 4
Sol. Let $P\left(a t^{2}, 2 a t\right)$

Equation of the normal at $P(t)$ is $y+t x=2 a t+a t^{3}$

Equation to y-axis is $x=0$. Solving $G\left(2 a+a t^{2}, 0\right)$

Focus $s(a, 0)$
$\triangle S P G$ is equilateral $\Rightarrow P G=G S \Rightarrow \sqrt{4 a^{2}+4 a^{2} t^{2}}=\sqrt{a^{2}\left(1+t^{2}\right)^{2}}$
$\Rightarrow 4 a^{2}\left(1+t^{2}\right)=a^{2}\left(1+t^{2}\right)^{2} \Rightarrow 4=1+t^{2} \Rightarrow t^{2}=3$

Length of the side $=S G=a\left(1+t^{2}\right)=a(1+3)=4 a$
170. If the normals at two points on the parabola $y^{2}=4 a x$ intersect on the parabola, then the product of the abscissa is

1. $4 a^{2}$
2. $-4 a^{2}$
3. $2 a$
4. $4 a^{4}$

Key. 1
Sol. Let $P\left(a t_{1}^{2}, 2 a t_{1}\right) ; Q\left(a t_{2}^{2}, 2 a t_{2}\right)$

Normals at $P \& Q$ on the parabola intersect on the parabola $\Rightarrow t_{1} t_{2}=2$
$a t_{1}^{2} \times a t_{2}^{2}=a^{2}\left(t_{1} t_{2}\right)^{2}=a^{2}(2)^{2}=4 a^{2}$
171. If the normals at two points on the parabola intersects on the curve, then the product of the ordinates of the points is

1. $8 a$
2. $8 a^{2}$
3. $8 a^{3}$
4. $8 a^{4}$

Key. 2
Sol. Let the normals at $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ intersect on the parabola at $R\left(t_{3}\right)$.

Equation of any noemal is $t x+y=2 a t+a t^{3}$

Since it passes through Q we get $t \cdot a t_{3}^{2}+2 a t_{3}=2 a t+a t^{3}$
$\Rightarrow a t^{3}+\left(2 a-a t_{3}^{2}\right) t-2 a t_{3}=0$, which is a cubic equation in t and hence its roots are t_{1}, t_{2}, t_{3}.

Product of the roots $=t_{1} t_{2} t_{3}=\frac{-\left(-2 a t_{3}\right)}{a}=2 t_{3} \Rightarrow t_{1} t_{2}=2$

Product of the absisson of P and $Q=a t_{1}^{2} \cdot a t_{2}^{2}=a^{2}\left(t_{1} t_{2}\right)^{2}=a^{2}(2)^{2}=4 a^{2}$.

Product of the ordinates of P and $Q=2 a t_{1} \cdot 2 a t_{2} 4 a^{2} \cdot t_{1} t_{2}=4 a^{2}(2)=8 a^{2}$
172. The equation of the locus of the point of intersection of two normals to the parabola $y^{2}=4 a x$ which are perpendicular to each other is

1. $y^{2}=a(x-3 a)$
2. $y^{2}=a(x+3 a)$
3. $y^{2}=a(x+2 a)$
4. $y^{2}=a(x-2 a)$

Key. 1
Sol. Let $P\left(x_{1}, y_{1}\right)$ be the point of intersection of the two perpendicular normals at $A\left(t_{1}\right), B\left(t_{2}\right)$ on the parabola $y^{2}=4 a x$.

Let t_{3} be the foot of the third normal through P.

Equation of a normal at t to the parabola is $y+x t=2 a t+a t^{3}$

If this normal passes through P then $y_{1}+x_{1} t=2 a t+a t^{3} \Rightarrow a t^{3}+\left(2 a-x_{1}\right) t-y_{1}=0 \rightarrow(1)$

Now t_{1}, t_{2}, t_{3} are the roots of (1). $\therefore t_{1} t_{2} t_{3}=y_{1} / a$

Slope of the normal at t_{1} is $-t_{1}$

Slope of the normal at t_{2} is $-t_{2}$.

Normals at t_{1} and t_{2} are perpendicular $\Rightarrow\left(-t_{1}\right)\left(-t_{2}\right)=-1 \Rightarrow t_{1} t_{2}=-1 \Rightarrow t_{1} t_{2} t_{3}=-t_{3}$
$\Rightarrow \frac{y_{1}}{a}=-t_{3} \Rightarrow t_{3}=-\frac{y_{1}}{a}$
t_{3} is a root of (1) $\Rightarrow a\left(-\frac{y_{1}}{a}\right)^{3}+\left(2 a-x_{1}\right)\left(-\frac{y_{1}}{a}\right)-y_{1}=0 \Rightarrow-\frac{y_{1}^{3}}{a^{2}}-\frac{\left(2 a-x_{1}\right) y_{1}}{a}-y_{1}=0$
$\Rightarrow y_{1}^{2}+a\left(2 a-x_{1}\right)+a^{2}=y_{1}^{2}=a\left(x_{1}-3 a\right)$.
\therefore The locus of P is $y^{2}=a(x-3 a)$
173. The three normals from a point to the parabola $y^{2}=4 a x$ cut the axes in points, whose distances from the vertex are in A.P., then the locus of the point is

1. $27 a y^{2}=2(x-2 a)^{3} 2$
2. $27 a y^{3}=2(x-2 a)^{2} 3$
3. $9 a y^{2}=2(x-2 a)^{3}$
4. $9 a y^{3}=2(x-2 a)^{2}$

Key. 1
Sol. Let $P\left(x_{1}, y_{1}\right)$ be any point.
Equation of any normal is $y=m x-2 a m-a m^{3}$

If is passes through P then $y_{1}=m x_{1}-2 a m-a m^{3}$
$\Rightarrow a m^{3}+\left(2 a-x_{1}\right) m_{1}+y_{1}=0$, which is cubic in m.
Let m_{1}, m_{2}, m_{3} be its roots. Then $m_{1}+m_{2}+m_{3}=0, m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}=\frac{2 a-x_{1}}{a}$
Normal meets the axis $(y=0)$, where $0=m x-2 a m-a m^{3} \Rightarrow x=2 a+a m^{2}$
\therefore Distances of points from the vertex are $2 a+a m_{1}^{2}, 2 a+a m_{2}^{2}, 2 a+a m_{3}^{2}$

If these are in A.P., then $2\left(2 a+a m_{2}^{2}\right)=\left(2 a+a m_{1}^{2}\right)+\left(2 a+a m_{3}^{2}\right) \Rightarrow 2 m_{2}^{2}=m_{1}^{2}+m_{3}^{2}$
$\Rightarrow 3 m_{2}^{2}=m_{1}^{2}+m_{2}^{2}=\left(m_{1}+m_{2}+m_{3}\right)^{2}-2\left(m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}\right)=-2\left(2 a-x_{1}\right) / a$
$\therefore m_{2}^{2}=2\left(x_{1}-2 a\right) / 3 a$

But $y_{1}=m_{2}\left(x_{1}-2 a-a m_{2}^{2}\right) \Rightarrow y_{1}^{2}=m_{2}^{2}\left(x_{1}-2 a-a m_{2}^{2}\right)^{2}=2\left(x_{1}-2 a\right)^{3} / 27 a$ Locus of P is
$27 a y^{2}=2(x-2 a)^{3}$
174. If the normals from any point to the parabola $x^{2}=4 y$ cuts the line $y=2$ in points whose abscissae are in A.P., then the slopes of the tangents at the 3 conormal points are in

1. AP
2. GP
3. HP
4. None

Key. 1

Sol. A point on $x^{2}=4 y$ is $\left(2 t, t_{2}\right)$ and required point be $P\left(x_{1}, y_{1}\right)$
Equation of normal at $\left(2 t, t^{2}\right)$ is $x+t y=2 t+t^{3}$
Given line equation is $y=2$. \qquad

Solving (1) \& (3) $x+t(2)=2 t+t^{3} \Rightarrow x=t^{3}$
This passes through $P\left(x_{1}, y_{1}\right) \Rightarrow t^{3}=x_{1}$
Let $\left(2 t, t_{1}^{2}\right)\left(2 t_{2}, t_{2}^{2}\right),\left(2 t_{3}, t_{3}^{2}\right)$ be the co-normal points form P.
$2 t_{1}, 2 t_{2}, 2 t_{3}$ in A.P. $\Rightarrow 4 t_{2}=2\left(t_{1}+t_{3}\right) \Rightarrow t_{2}=\frac{t_{1}+t_{3}}{2}$
\therefore slopes of the tangents $t_{1}, t_{2} \& t_{3}$ are in A.P.
175. The line $l x+m y+n=0$ is normal to the parabola $y^{2}=4 a x$ if

1. $a l\left(l^{2}+2 m^{2}\right)+m^{2} n=0$
2. $a l\left(l^{2}+2 m^{2}\right)=m^{2} n$
3. $a l\left(2 l^{2}+m^{2}\right)+m^{2} n=0$
4. $a l\left(2 l^{2}+m^{2}\right)=2 m^{2} n$

Key. 1
Sol. Conceptual
176. The feet of the normals to $y^{2}=4 a x$ from the point $(6 a, 0)$ are

1. $(0,0)$
2. $(4 a, 4 a)$
3. $(4 a,-4 a)$
4. $(0,0),(4 a, 4 a),(4 a,-4 a)$

Key. 4
Sol. Equation of any normal to the parabola $y^{2}=4 a x$ is $y=m x-2 a m-a m^{3}$

If passes through $(6 a, 0)$ then $0=6 a m-2 a m-a m^{3} \Rightarrow a m^{3}-4 a m=0 \Rightarrow a m\left(m^{2}-4\right)=0$
$\Rightarrow m=0, \pm 2$.
\therefore Feet of the normals $=\left(a m^{2},-2 a m\right)=(0,0),(4 a,-4 a),(4 a, 4 a)$.
177. The condition that parabola $y^{2}=4 a x \& y^{2}=4 c(x-b)$ have a common normal other than x-axis is $(a \neq b \neq c)$

1. $\frac{a}{a-c}<2$
2. $\frac{b}{a-c}>2$
3. $\frac{b}{a-c}<1$
4. $\frac{b}{a-c}>1$

Key. 2
Sol. Conceptual
178. Tangents are drawn from the point $(-1,2)$ to the parabola $y^{2}=4 x$. The length of the intercept made by the line $\mathrm{x}=2$ on these tangents is
(A) 6
(B) $6 \sqrt{2}$
(C) $2 \sqrt{6}$
(D) none

Key. B
Sol. Equation of pair of tangent is
$S S_{1}=T^{2}$
$\Rightarrow\left(y^{2}-4 x\right)(8)=4(y-x+1)^{2}$
$\Rightarrow y^{2}-2 y(1-x)-\left(x^{2}+6 x+1\right)=0$
Put $x=2$
$\Rightarrow y^{2}+2 y-17=0$
$\Rightarrow\left|y_{1}-y_{2}\right|=6 \sqrt{2}$
179. The given circle $x^{2}+y^{2}+2 p x=0, p \in R$ touches the parabola $y^{2}=4 x$ externally, then
(A) $\mathrm{p}<0$
(B) $\mathrm{p}>0$
(C) $0<$ p <1
(D) $\mathrm{p}<-1$

Key. B
Sol. Centre of the circle is $(-p, 0)$, If it touches the parabola, then according to figure only one case is possible.
Hence $\mathrm{p}>0$
180. The triangle $P Q R$ of area A is inscribed in the parabola $y^{2}=4 a x$ such that P lies at the vertex of the parabola and base QR is a focal chord. The numerical difference of the ordinates of the points $Q \& R$ is
(A) $\frac{A}{2 a}$
(B) $\frac{A}{a}$
(C) $\frac{2 A}{a}$
(D) $\frac{4 A}{a}$

Key. C
Sol. QR is a focal chord
$\Rightarrow R\left(a t^{2}, 2 a t\right) \& Q\left(\frac{a}{t^{2}},-\frac{2 a}{t}\right)$
$\Rightarrow d=\left|2 a t+\frac{2 a}{t}\right|=2 a\left|t+\frac{1}{t}\right|$
Now $\quad A=\frac{1}{2}\left|\begin{array}{ccc}a t^{2} & 2 a t & 1 \\ \frac{a}{t^{2}} & -\frac{2 a}{t} & 1 \\ 0 & 0 & 1\end{array}\right|=a^{2}\left|t+\frac{1}{t}\right|$
$\Rightarrow 2 a\left|t+\frac{1}{t}\right|=\frac{2 A}{a}$
181. Through the vertex O of the parabola $y^{2}=4 a x$ two chords OP \& OQ are drawn and the circles on OP \& OQ as diameter intersect in R. If $\theta_{1}, \theta_{2} \& \phi$ are the inclinations of the tangents at $\mathrm{P} \& \mathrm{Q}$ on the parabola and the line through O, R respectively, then the value of $\cot \theta_{1}+\cot \theta_{2}$ is
(A) $-2 \tan \phi$
(B) $-2 \tan (\pi-\phi)$
(C) 0
(D) $2 \cot \phi$

Key. A
Sol. Let $P\left(t_{1}\right) \& Q\left(t_{2}\right)$
\Rightarrow Slope of tangent at $\mathrm{P}\left(\frac{1}{t_{1}}\right) \&$ at $\mathrm{Q}\left(\frac{1}{t_{2}}\right) \quad \Rightarrow \cot \theta_{1}=t_{1}$ and $\cot \theta_{2}=t_{2}$
Slope of $\mathrm{PQ}=\frac{2}{t_{1}+t_{2}}=\tan \phi$
$\Rightarrow \tan \phi=-\frac{1}{2}\left(\cot \theta_{1}+\cot \theta_{2}\right) \quad \Rightarrow \cot \theta_{1}+\cot \theta_{2}=-2 \tan \phi$
182. AB and AC are tangents to the parabola $y^{2}=4 a x . p_{1}, p_{2} \& p_{3}$ are perpendiculars from $A, B \& C$ respectively on any tangent to the curve (otherthan the tangents at $\mathrm{B} \& \mathrm{C}$), then $p_{1}, p_{2} \& p_{3}$ are in
(A) A.P.
(B) G.P.
(C) H.P
(D) none

Key. B
Sol. Let any tangent is tangent at vertex $x=0$ and
Let $\quad B\left(t_{1}\right) \& C\left(t_{2}\right)$
$\Rightarrow A\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$
$\Rightarrow p_{1}=a t_{1}^{2} ; p_{2}=a t_{2}^{2} \& p_{3}=a t_{1} t_{2}$
$\Rightarrow p_{1}, p_{2} \& p$ are in G.P.
183. A tangent to the parabola $x^{2}+4 a y=0$ at the point T cuts the parabola $x^{2}=4 b y$ at $\mathrm{A} \& \mathrm{~B}$. Then locus of the mid point of AB is
(A) $(b+2 a) x^{2}=4 b^{2} y$
(B) $(b+2 a) x^{2}=4 a^{2} y$
(C) $(a+2 b) y^{2}=4 b^{2} x$
(D) $(a+2 b) x^{2}=4 b^{2} y$

Key. D
Sol. Let mid point of $A B$ is $M(h, k)$
Then equation of AB is $\quad h x-2 b(y+k)=h^{2}-4 b k$
Let $T\left(2 a t,-a t^{2}\right)$
\Rightarrow Equation of $\operatorname{tangent}(\mathrm{AB})=\mathrm{x}(2 a t)=-2 a\left(y-a t^{2}\right)$
Compare these two equations, we get $\frac{h}{2 a t}=\frac{-2 b}{2 a}=\frac{h^{2}-2 b k}{2 a^{2} t^{2}}$
By eliminating t and Locus (h, k), we get $(a+2 b) x^{2}=4 b^{2} y$
184. A parabola $y=a x^{2}+b x+c$ crosses the x -axis at $\mathrm{A}(\mathrm{p}, 0) \& \mathrm{~B}(\mathrm{q}, 0)$ both to the right of origin. A circle also passes through these two points. The length of a tangent from the origin to the circle is
(A) $\sqrt{\frac{b c}{a}}$
(B) $a c^{2}$
(C) b / a
(D) $\sqrt{\frac{c}{a}}$

Key. D
Sol. Use power of point for the point O figure
$\Rightarrow O T^{2}=O A . O B=p q=\frac{c}{a}$
$\Rightarrow O T=\sqrt{\frac{c}{a}}$
185. The locus of the vertex of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ (a is parameter) is
(A) $x y=\frac{105}{64}$
(B) $x y=\frac{3}{4}$
(C) $x y=\frac{35}{16}$
(D) $x y=\frac{64}{105}$

Key. A
Sol. $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$
$y=\frac{2 a^{3}}{6}\left(x^{2}+\frac{3}{2 a} x-\frac{12 a}{2 a^{3}}\right)$
$y=\frac{2 a^{3}}{6}\left(x^{2}+2 \cdot \frac{3}{4 a} x+\frac{9}{16 a^{2}}-\frac{9}{16 a^{2}}-\frac{12 a}{2 a^{3}}\right)$
$y=\frac{2 a^{3}}{6}\left(\left(x+\frac{3}{4 a}\right)^{2}-\frac{1059}{16 a^{3}}\right)$
$\left(y+\frac{1059}{48}\right)=\frac{2 a^{3}}{6}\left(x+\frac{3}{4 a}\right)^{2}$
$x=\frac{-1059}{48}$
$y=\frac{-3}{49}$
$x y=\frac{1059}{48} \times \frac{3}{49}=\frac{105}{64}$
186. Equation of a common tangent to the curves $y^{2}=8 x$ and $x y=-1$ is
(a) $3 y=9 x+2$ (b) $y=2 x+1$
(c) $2 y=x+8$
(d) $y=x+2$

Key. D
Sol. $\quad y^{2}=8 k, x y=-1$
Let $P\left(t, \frac{-1}{t}\right)$ be any point on $\mathrm{xy}=-1$
Equation of the tangent to $x y=-1$ at $P\left(t, \frac{-1}{t}\right)$ is

$$
\begin{align*}
& \frac{x y_{1}+y x_{1}}{2}=-1 \\
& \frac{-x}{t}+y t=-2 \\
& y=\frac{x}{t^{2}}+\left(\frac{-2}{t}\right) . . \tag{1}
\end{align*}
$$

If (1) is tangent to the parabola $y^{2}=8 x$ then
$\frac{-2}{t}=\frac{2}{1 / t^{2}} \Rightarrow t^{3}=-1$
$t=-1$
\therefore Common tangent is $\mathrm{y}=\mathrm{x}+2$
187. The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix

1. $x=-a$
2. $x=-a / 2$
3. $x=0$
4. $x=a / 2$

Key. 3
Sol. The focus of the parabola $y^{2}=4 a x$ is $S(a, 0)$, Let $P\left(a t^{2}, 2 a t\right)$ be any point on the parabola then coordinates of the mid-point of SP are given by
$x=\frac{a\left(t^{2}+1\right)}{2}, y=\frac{2 a t+0}{2}$
Eliminating ' t ' we get the locus of the mid-point
As $y^{2}=2 a x-a^{2}$ or $y^{2}=2 a(x-a / 2)$
Which is a parabola of the form $Y^{2}=4 A X$
Where $Y=y, X=x-a / 2$ and $A=a / 2$

Equation of the directrix of (2) is $X=-A$
So equation the directrix of (1) is $x-a / 2=-a / 2$

$$
\Rightarrow \quad x=0
$$

188. The tangent at the point $P\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=4 a(x+b)$ at Q and R , then the coordinates of the mid-point of QR are
189. $\left(x_{1}-a, y_{1}+b\right)$
190. $\left(x_{1}, y_{1}\right)$
191. $\left(x_{1}+b, y_{1}+a\right)$
192. $\left(x_{1}-b, y_{1}-b\right)$

Key. 2
Sol. Equation of the tangent at $P\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ is

$$
\begin{equation*}
y y_{1}=2 a\left(x+x_{1}\right) \text { Or } 2 a x-y_{1} y+2 a x_{1}=0 \tag{i}
\end{equation*}
$$

If $M(h, k)$ is the mid-point of QR , then equation of QR a chord of the parabola $y^{2}=4 a(x+b)$ in terms of its mid-point is $k y-2 a(x+h)-4 a b=k^{2}-4 a(h+b)$
(using $T=S^{\prime}$) or $2 a x-k y+k^{2}-2 a h=0$

Since (i) and (ii) represent the same line, we have
$\frac{2 a}{2 a}=\frac{y_{1}}{k}=\frac{2 a x_{1}}{k^{2}-2 a h} \Rightarrow k=y_{1}$ and $k^{2}-2 a h=2 a x_{1}$
$\Rightarrow \quad y_{1}^{2}-2 a h=2 a x_{1} \Rightarrow 4 a x_{1}-2 a x_{1}=2 a h$
(as $P\left(x_{1}, y_{1}\right)$ lies on the parabola $\mathrm{y}^{2}=4 a x$)
$\Rightarrow h=x_{1}$ so that $h=x_{1} \quad k=y_{1}$ and the midpoint of QR is $\left(x_{1}, y_{1}\right)$
189. Equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above the x-axis is

1. $\sqrt{3} y=3 x+1$
2. $\sqrt{3} y=-(x+3)$
3. $\sqrt{3} y=x+3$
4. $\sqrt{3} y=-(3 x+1)$

Key. 3
Sol. Equation of a tangent to the parabola $y^{2}=4 x$ is $y=m x+1 / m$. it will touch the circle
$(x-3)+y^{2}=9$ whose centre is $(3,0)$ and radius is 3 if $\left|\frac{0+m(3)+(1 / m)}{\sqrt{1+m^{2}}}\right|=3$

Or if $\quad(3 m+1 / m)^{2}=9\left(1+m^{2}\right)$

Or if $\quad 9 m^{2}+6+1 / m^{2}=9+9 m^{2}$

Or if

$$
m^{2}=1 / 3, \text { i.e. } m= \pm 1 / \sqrt{3}
$$

As the tangent is above the x-axis, we take $m=1 / \sqrt{3}$ and thus the required equation is

$$
\sqrt{3} y=x+3
$$

190. If the normal chord at a point ' t ' on the parabola $y^{2}=4 a x$ subtends a right angle at the vertex, then the value of t is
191. 4
192. $\sqrt{3}$
193. $\sqrt{2}$
194. 1

Key. 3
Sol. Equation of the normal at ' t ' to the parabola $y^{2}=4 a x$ is $y=-t x+2 a t+a t^{3}$

The joint equation of the lines joining the vertex (origin)to the points of intersection of the parabola and the line (i) is $y^{2}=4 a x\left[\frac{y+t x}{2 a t+a t^{3}}\right]$

$$
\begin{aligned}
& \Rightarrow \quad\left(2 t+t^{3}\right) y^{2}=4 x(y+t x) \\
& \Rightarrow \quad 4 t x^{2}-\left(2 t+t^{3}\right) y^{2}+4 x y=0
\end{aligned}
$$

Since these lines are at right angles co efficient of $x^{2}+$ coefficient of $y^{2}=0$

$$
\Rightarrow \quad 4 t-2 t-t^{3}=0 \quad \Rightarrow \quad t^{2}=2
$$

For $t=0$, the normal line is $y=0$, i.e. axis of the parabola which passes through the vertex $(0,0)$.
191. If the focus of a parabola divides a focal chord of the parabola in segments of length 3 and 2, then the length of the latus rectum of the parabola is

1. $3 / 2$
2. $6 / 5$
3. $12 / 5$
4. $24 / 5$

Key. 4
Sol. Let $y^{2}=4 a x$ be the equation of the parabola, then the focus is $S(a, 0)$. Let $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ be vertices of a focal chord of the parabola, then $t_{1} t_{2}=-1$. Let $S P=3 \quad S Q=2$

$$
\begin{equation*}
S P=\sqrt{a^{2}\left(1-t_{1}^{2}\right)+4 a^{2} t_{1}^{2}}=a\left(1+t_{1}^{2}\right)=3 \tag{i}
\end{equation*}
$$

And

$$
\begin{equation*}
S Q=a\left(1+\frac{1}{t_{1}^{2}}\right)=2 \tag{ii}
\end{equation*}
$$

From (i) and (ii) we get $t_{1}^{2}=3 / 2$ and $a=6 / 5$

Hence the length of the latus rectum $=24 / 5$.
192. The common tangents to the circle $x^{2}+y^{2}=a^{2} / 2$ and the parabola $y^{2}=4 a x$ intersect at the focus of the parabola

1. $x^{2}=4 a y$
2. $x^{2}=-4 a y$
3. $y^{2}=-4 a x$
4. $y^{2}=4 a(x+a)$

Key. 3
Sol. Equation of a tangent to the parabola $y^{2}=4 a x$ is $y=m x+a / m$. If it touches the circle $x^{2}+y^{2}=a^{2} / 2$

$$
\begin{aligned}
& \frac{a}{m}=\left(\frac{a}{\sqrt{2}}\right) \sqrt{1+m^{2}} \Rightarrow 2=m^{2}\left(1+m^{2}\right) \\
\Rightarrow & m^{4}+m^{2}-2=0 \Rightarrow\left(m^{2}-1\right)\left(m^{2}+2\right)=0 \\
\Rightarrow & m^{2}=1 \Rightarrow m= \pm 1
\end{aligned}
$$

Hence the common tangents are $y=x+a$ and $y=-x-a$ which intersect at the point $(-a, 0)$ which is the focus of the parabola $y^{2}=-4 a x$.
193. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the point of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then

1. $d^{2}+(2 b-3 c)^{2}=0$ 2. $d^{2}+(3 b+2 c)^{2}=0$ 3. $d^{2}+(2 b+3 c)^{2}=04 \cdot d^{2}+(3 b-2 c)^{2}=0$

Key. 3
Sol. The pints of intersection of the two parabolas are $(0,0)$ and $(4 a, 4 a)$. If the given line passes through these two points then $d=0$ and $2 b+3 c=0$ (As $a \neq 0$) so that $d^{2}(2 b+3 c)^{2}=0$.
194. If $P Q$ is a focal chord of the parabola $y^{2}=4 a x$ with focus at S, then $\frac{2 S P \cdot S Q}{S P+S Q}$

1. a
2. $2 a$
3. $4 a$
4. a^{2}

Key. 2
Sol. Let the coordinates of P be $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and of Q be $\left(a t_{2}^{2}, 2 a t_{2}\right)$. Since $P Q$ is a focal chord,

$$
t_{1} t_{2}=-1
$$

Focus is $S(a, 0) \Rightarrow S P=\sqrt{a^{2}\left(1-t_{1}^{2}\right)^{2}+4 a^{2} t_{1}^{2}}=a\left(1+t_{1}^{2}\right)$
And $\quad S Q=a\left(1+1 / t_{1}^{1}\right)=\frac{a\left(1+t_{1}^{2}\right)}{t_{1}^{2}}$
So that $\frac{2 S P \cdot S Q}{S P+S Q}=\frac{2 a^{2}\left(1+t_{1}^{2}\right)^{2}}{t_{1}^{2} a\left[\left(1+t_{1}^{2}\right)+\left(1+\frac{1}{t_{1}^{2}}\right)\right]}=2 a$
195. If the tangents at the extremities of a chord $P Q$ of a parabola intersect at T, then the distances of the focus of the parabola from the points P, T, Q are in

1. A.P
2. G.P
3. H.P
4. None of these

Key. 2
Sol. Let the equation of the parabola be $y^{2}=4 a x$ and $P\left(a t_{1}^{2}, 2 a t_{1}\right), Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ be the extremities of the chord $P Q$. The coordinates of T, the point of intersection of the tangents at P and Q are $\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$

Now

$$
\begin{aligned}
& S P=a\left(1+t_{1}^{2}\right) \\
& S Q=a\left(1+t_{2}^{2}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
S T^{2}= & \left(a t_{1} t_{2}-a\right)^{2}+\left[a\left(t_{1}+t_{2}\right)-0\right]^{2} \\
& =a^{2}\left(t_{1}^{2}+t_{2}^{2}+t_{1}^{2} t_{2}^{2}+1\right)
\end{aligned}
$$

$$
=a^{2}\left(1+t_{1}^{2}\right)\left(1+t_{2}^{2}\right)=S P \cdot S Q
$$

So that $S P, S T, S Q$ are in G.P.
196. If perpendiculars are drawn on any tangent to a parabola $y^{2}=4 a x$ from the points $(a \pm k, 0)$ on the axis. The difference of their squares is

1. 4
2. $4 a$
3. $4 k$
4. $4 a k$

Key. 4
Sol. Any tangent is $y=m x+a / m$. Required difference is

$$
\begin{aligned}
& {\left[\frac{m(a+k)+a / m}{\sqrt{1+m^{2}}}\right]^{2}-\left[\frac{m(a-k)+a / m}{\sqrt{1+m^{2}}}\right]^{2} } \\
= & \frac{1}{1+m^{2}} \times 4(m a+a / m) m k=4 a k .
\end{aligned}
$$

197. Which of the following parametric equations does not represent a parabola
198. $x=t^{2}+2 t+1, y=2 t+2$
199. $x=a\left(t^{2}-2 t+1\right), y=2 a t-2 a$
200. $x=3 \sin ^{2} t, y=6 \sin t$
201. $x=a \sin t, y=2 a \cos t$

Key. 4
Sol. $\quad x=a T^{2}, y=2 a T$ Represents a parabola.

In (a) $a=1, T=t+1$, in (b) $a=a, T=(t-1)$

In (c) $a=3, T+\sin t$ But in (d) if $2 a T=2 a \cos t$
$\Rightarrow T=\cos t$ Which does not satisfy $x=a T^{2}$.
198. $y=-2 x+12 a$ is a normal to the parabola $y^{2}=4 a x$ at the point whose distance from the directrix of the parabola is

1. $4 a$
2. $5 a$
3. $4 \sqrt{2} a$
4. $8 a$

Key. 2
Sol. $y=-2 x+12 a$ is a normal at the point $\left(a(-2)^{2},-2 a(-2)\right) i, e .,(4 a, 4 a)$ whose distance from $x=-a$ is $5 a$.
199. If the area of the triangle inscribed in the parabola $y^{2}=4 a x$ with one vertex at the vertex of the parabola and other two vertices at the extremities of a focal chord is $5 a^{2} / 2$, then the length of the focal chord is

1. $3 a$
2. $5 a$
3. $25 a / 4$
4. None
of these

Key. 3
Sol. Let the vertices be $\mathrm{O}(0,0), A\left(a t^{2}, 2 a t\right), B\left(\frac{a}{t^{2}}, \frac{-2 a}{t}\right)$ then
$\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ a t^{2} & 2 a t & 1 \\ \frac{a}{t^{2}} & \frac{-2 a}{t} & 1\end{array}\right|=\frac{5 a^{2}}{2} \Rightarrow 2 t^{2}-5 t+2=0$
$\Rightarrow \quad t=2$ or $1 / 2$ so the vertices of a focal chord are $(4 a, 4 a)$ and $(a / 4,-a)$ (Taking
$t=2$) and length of this focal chord is $25 a / 4$.
200. If the tangents at the extremities of a focal chord of the parabola $x^{2}=4$ ay meet the tangent at the vertex at points whose abcissae are x_{1} and x_{2} then $x_{1} x_{2}=$

1. a^{2}
2. $a^{2}-1$
3. $a^{2}+1$
4. $-a^{2}$

Key. 4
Sol. One extremity of the focal chord be $\left(2 a t, a t^{2}\right)$. Equation of the tangent is $t x=y+a t^{2}$ which meets the tangent at the vertex, $y=0$ at $x=a t$ so $x_{1}=a t$ and $x_{2}=a\left(-\frac{1}{t}\right)$ thus $x_{1} x_{2}=-a^{2}$.
201. Area of a trapezium whose vertices lie on the parabola $y^{2}=4 x$ and its diagonals pass through $(1,0)$ and having length $\frac{25}{4}$ units each is
(A) $\frac{75}{4}$ sq.units
(B) $\frac{625}{16}$ sq.units
(C) $\frac{25}{4}$ sq.units
(D) $\frac{25}{8}$ sq.units

Key. 1
Sol. Focus of parabola is $(1,0) \Rightarrow$ diagonals are focal chords

$$
\begin{aligned}
& A S=1+t^{2}=C E \quad \frac{1}{C}+\frac{1}{\frac{25}{4}-c}=1 \quad C=\frac{5}{4}, 5 \\
& \\
& \text { For } C=\frac{5}{4} \quad t= \pm \frac{1}{2} \\
& C=5 \quad t= \pm 2 \\
& \Rightarrow A=\left(\frac{1}{4}, 1\right) \quad B=(4,4) \quad C=(4,-4) \quad D=\left(\frac{1}{4},-1\right)
\end{aligned}
$$

$A D=2 \& B C=8$ distance between $A D \& B C=\frac{15}{4}$
Area of trapezium $=\frac{75}{4}$ sq.units
202. Maximum number of common normals of $y^{2}=4 a x \& x^{2}=4 b y$ may be equal to
(A) 2
(B) 4
(C) 5
(D) 3

Key. 3
Sol. Equation of normal to $y^{2}=4 a x$ is $y=m x-2 a m-a m^{3} \&$ for $x^{2}=4 b y$ is

$$
y=m x+2 b+\frac{b}{m^{2}}
$$

We get $2 b+\frac{3}{m^{2}}+4 m+a m^{3}=0$

$$
a m^{5}+2 a m^{3}+2 b m^{2}+b=0
$$

Max 5 normals
203. If the normal to the parabola $y^{2}=4 a x$ at a point t_{1} cuts the parabola again at t_{2}, then
(A) $2 \leq t_{2}^{2} \leq 8$
(B) $t_{2}^{2} \leq 2$
(C) $t_{2}^{2} \geq 8$
(D) $t_{2}^{2} \leq 1$

Key. 3
Sol. As $t_{2}=-t_{1}-\frac{2}{t_{1}} \quad t_{1} \in R \Rightarrow t_{2}^{2} \geq 8$
204. The normal at a point P of a parabola $y^{2}=4 a x$ meets its axis in G and tangent at its vertex in H . If A is the vertex of the parabola and if the rectangle AGQH is completed, then equation to the locus of vertex Q is
a) $y^{2}(y-2 a)=a x^{2}$
b) $y^{2}(y+2 a)=a x^{2}$
c) $x^{2}(x-2 a)=a y^{2}$
d) $x^{2}(x+2 a)=a y^{2}$

Key. C
Sol. $\quad A=(a, 0), H=\left(0,2 a t+a t^{3}\right), G=\left(2 a t+a t^{2}, 0\right), Q=(h, k)$ $(h, k)=\left(2 a+a t^{2}, 2 a t+a t^{3}\right)$
eliminating ' t ', $x^{3}=2 a x^{2}+a y^{2}$
205. If the focus of the parabola $(y-\beta)^{2}=4(x-\alpha)$ always lies between the lines $x+y=1$ and $x+y=3$, then,
a) $3<\alpha+\beta<4$
b) $0<\alpha+\beta<3$
c) $0<\alpha+\beta<2$
d) $-2<\alpha+\beta<2$

Key. C
Sol. origin \& focus line on off side of $x+y=1 \Rightarrow \alpha+\beta>0$
origin \& focus line on same side of $x+y=3 \Rightarrow \alpha+\beta<2$.
206. Consider the two parabolas $y^{2}=4 a(x-\alpha) \& x^{2}=4 a(y-\beta)$, where ' a ' is the given constant and α, β are variables. If α and β vary in such a way that these parabolas touch each other, then equation to the locus of point of contact
a) circle
b) Parabola
c) Ellipse
d) Rectangular hyperbola

Key. D
Sol. Let POC be (h, k). Then, tangent at (h, k) to both parabolas represents same line.
207. A parabola $y=a x^{2}+b x+c$ crosses x-axis at $(\alpha, 0)$ and $(\beta, 0)$ both right of origin. A circle passes through these two points. The length of tangent from origin to the circle is
(a) $\sqrt{\frac{b c}{a}}$
(b) $a c^{2}$
(c) $\frac{b}{a}$
(d) $\sqrt{\frac{c}{a}}$

Key. D
SOL. ROOTS OF AX ${ }^{2}+\mathrm{BX}+\mathrm{C}=0$ ARE α, β

$$
\alpha+\beta=-\frac{\mathrm{b}}{\mathrm{a}}, \alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}
$$

EQUATION OF CIRCLE THROUGH $(\alpha, 0)$ AND $(\beta, 0)$

$$
S \equiv(X-\alpha)(X-\beta)+Y^{2}+\lambda Y=0
$$

LENGTH OF TANGENT FROM ORIGIN IS
$=\sqrt{\alpha \beta}=\sqrt{\frac{c}{\mathrm{a}}}$
208. Equation of the line passing through (α, β), cutting the parabola $y^{2}=4 \mathrm{a} x$ at two distinct points A and B such that $A B$ subtends right angle at the origin is
(A) $\beta x+(4 a-\alpha) y-4 a \beta=0$
(B) $2 \beta x+(\alpha-4 a) y-2 a \beta=0$
(C) $\beta x+(\alpha-4 a) y-2 a \beta=0$
(D) none of these

Key. A
Sol. Any line through (α, β)

$$
\begin{equation*}
y-\beta=m(x-\alpha) \tag{i}
\end{equation*}
$$

Solving equation (i) with equation of the parabola.

$$
\begin{aligned}
& \Rightarrow \quad 2 a t-\beta=m\left(a t^{2}-\alpha\right) \\
& \Rightarrow a m t^{2}-2 a t+\beta-m \alpha=0 \\
& \Rightarrow t_{1} t_{2}=\frac{\beta-m \alpha}{a m}=-4 \\
& \Rightarrow m=\left(\frac{\beta}{\alpha-4 a}\right)
\end{aligned}
$$

Hence required equation

$$
\begin{aligned}
& y-\beta=\frac{\beta}{\alpha-4 a}(x-\alpha) \\
\Rightarrow & y(\alpha-4 a)-\alpha \beta+4 a \beta=\beta x-\alpha \beta \\
\Rightarrow & \beta x+(4 a-\alpha) y-4 a \beta=0
\end{aligned}
$$

209. Let $3 x-y-8=0$ be the equation of tangent to a parabola at the point $(7,13)$. If the focus of the parabola is at $(-1,-1)$. Its directrix is
(A) $x-8 y+19=0$
(B) $8 x+y+19=0$
(C) $8 x-y+19=0$
(D) $x+8 y+19=0$

Key. D

Sol. Foot of perpendicular from focus upon tangent is say (α, β). So $\frac{\alpha+1}{3}=\frac{\beta+1}{-1}=\frac{-(-3+1-8)}{3^{2}+(-1)^{2}}=1$
$\Rightarrow(\alpha, \beta) \equiv(2,-2)$.
Images of $(7,13)$ and $(-1,-1)$ w.r.t. $(2,-2)$ will lie on respectively the axis and the directrix of the parabola. The two points are respectively $(-3,-17)$ and $(5,-3)$. Slope of axis $=\frac{-1+17}{-1+3}=$ 8. So equation of directrix: $y+3=-\frac{1}{8}(x-5)$
i.e., $x+8 y+19=0$.
210. A parabola having focus at $(2,3)$ touches both the axes then the equation of its directrix is
a) $2 x+3 y=0$
b) $3 x+2 y=0$
c) $2 x-3 y=0$
d) $3 x-2 y=0$

Key. B
Sol. The foot of the perpendicular from focus $(2,3)$ to the axes are $(2,0),(0,3)$ lie on the tangent at the vertex hence it's slopes $\frac{-3}{2} . \therefore$ Equation of directory is $3 x+2 y=0$
211. Equation of the circle of minimum radius which touches both the parabolas $y=x^{2}+2 x+4$ and $x=y^{2}+2 y+4$ is
a) $2 x^{2}+2 y^{2}-11 x-11 y-13=0$ b) $4 x^{2}+4 y^{2}-11 x-11 y-13=0$
c) $3 x^{2}+3 y^{2}-11 x-11 y-13=0$ d) $x^{2}+y^{2}-11 x-11 y-13=0$

Key. B
Sol. Given parabolas are symmetric about the line $y=x$ so they have a common normal with slope -1 it meets the parabolas at $\left(\frac{-1}{2}, \frac{13}{4}\right),\left(\frac{13}{4}, \frac{-1}{2}\right)$ hence the req circles is $x^{2}+y^{2}$ $-\frac{11}{4} x-\frac{11}{4} y-\frac{13}{4}=0$
212. If $a_{1} x+b y+c=0$
$a_{2} x+b y+c=0$ are two tangents to $y^{2}=8 a(x-2 a)$, then
(A) $\left(\frac{a_{1}}{b}\right)+\frac{a_{2}}{b}=0$
(B) $1+\frac{\mathrm{a}_{1}}{\mathrm{~b}}+\frac{\mathrm{a}_{2}}{\mathrm{~b}}=0$
(C) $a_{1} a_{2}+b^{2}=0$
(D) $a_{1} a_{2}-b^{2}=0$

Key. C
Sol. The tangents are drawn from $\left(0,-\frac{\mathrm{c}}{\mathrm{b}}\right)$ on. Y -axis which is directrix of the given parabola.

$$
\Rightarrow \quad\left(-\frac{a_{1}}{b}\right)\left(-\frac{a_{2}}{b}\right)=-1 \Rightarrow a_{1} a_{2}+b^{2}=0
$$

213. A normal, whose inclination is 30°, to a parabola cuts it again at an angle of
a) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
b) $\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
c) $\tan ^{-1}(2 \sqrt{3})$
d) $\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)$

Key. D

Sol. The normal at $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ is $y+x t_{1}=2 a t_{1}+a t_{1}^{3}$ with slope say $\tan \alpha=-t_{1}=\frac{1}{\sqrt{3}}$. If it meets curve at $Q\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$ then $t_{2}=-t_{1}-\frac{2}{t_{1}}=\frac{7}{\sqrt{3}}$. Then angle θ between parabola (tangent at Q) and normal at P is given by $\tan \theta=\frac{-t_{1}-\frac{1}{t_{2}}}{1-\frac{t_{1}}{t_{2}}}=\frac{1}{2 \sqrt{3}}$

$$
\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)
$$

214. The locus of vertices of family of parabolas, $y=a x^{2}+2 a^{2} x+1$ is $(a \neq 0)$ a curve passing through
a) $(1,0)$
b) $(1,1)$
c) $(0,1)$
d) $(0,0)$

Key. C

$$
y=a x^{2}+2 a^{2} x+1 \Rightarrow \frac{y-\left(1-a^{3}\right)}{a}=(x+a)^{2}
$$

Sol. $\quad \therefore$ Vertex $=(\alpha, \beta)=\left(-a, 1-a^{3}\right)$
$\Rightarrow \beta=1+\alpha^{3}$
\Rightarrow curve is $y=1+x^{3}$
215. The locus of the Orthocentre of the triangle formed by three tangents of the parabola $(4 x-3)^{2}=-64(2 y+1)$ is
A) $y=\frac{-5}{2}$
B) $y=1$
C) $x=\frac{7}{4}$
D) $y=\frac{3}{2}$

Key. D
Sol. The locus is directrix of the parabola
216. A pair of tangents with inclinations α, β are drawn from an external point P to the parabola $y^{2}=16 x$. If the point P varies in such a way that $\tan ^{2} \alpha+\tan ^{2} \beta=4$ then the locus of P is a conic whose eccentricity is
A) $\frac{\sqrt{5}}{2}$
B) $\sqrt{5}$
C) 1
D) $\frac{\sqrt{3}}{2}$

Key. B
Sol. Let $m_{1}=\tan \alpha, m_{2}=\tan \beta$, Let $P=(h, k)$
m_{1}, m_{2} are the roots of $K=m h+\frac{4}{m} \Rightarrow h m^{2}-K m+4=0$
$m_{1}+m_{2}=\frac{K}{h} ; \quad m_{1} m_{2}=\frac{4}{h}$
$m_{1}^{2}+m_{2}^{2}=\frac{K^{2}}{h^{2}}-\frac{8}{h}=4$
Locus of P is $y^{2}-8 x=4 x^{2} \Rightarrow y^{2}=4(x+1)^{2}-4 \Rightarrow \frac{(x+1)^{2}}{1}-\frac{y^{2}}{4}=1$
217. The length of the latusrectum of a parabola is $4 a$. A pair of perpendicular tangents are drawn to the parabola to meet the axis of the parabola at the points A, B. If S is the focus of the parabola then $\frac{1}{|S A|}+\frac{1}{|S B|}=$
A) $2 / a$
B) $4 / a$
C) $1 / a$
D) $2 a$

Key. C

Sol. Let $y^{2}=4 a x$ be the parabola
$y=m x+\frac{a}{m}$ and $y=\left(-\frac{1}{m}\right) x-a m$ are perpendicular tangents
$S=(a, 0), A=\left(-\frac{a}{m^{2}}, 0\right), B=\left(-a m^{2}, 0\right)$
$|S A|=a\left(1+\frac{1}{m^{2}}\right)=\frac{a\left(1+m^{2}\right)}{m^{2}}$

$$
|S B|=a\left(1+m^{2}\right)
$$

218. Length of the focal chord of the parabola $(y+3)^{2}=-8(x-1)$ which lies at a distance 2 units from the vertex of the parabola is
A) 8
B) $6 \sqrt{2}$
C) 9
D) $5 \sqrt{3}$

Key. A
Sol. Lengths are invariant under change of axes
consider $y^{2}=8 x$. Consider focal chord at $\left(2 t^{2}, 4 t\right)$
Focus $=(2,0)$. Equation of focal chord at t is $\left.y=\frac{2 t}{t^{2}-1} 9 x-2\right) \Rightarrow 2 t x+\left(1-t^{2}\right) y-4 t=0$
$\frac{4|t|^{2}}{\sqrt{4 t^{2}+\left(1-t^{2}\right)^{2}}}=2 \Rightarrow(|t|-1)^{2}=0$
Length of focal chord at ' t ' $=2\left(t+\frac{1}{t}\right)^{2}=\frac{2\left(t^{2}+1\right)^{2}}{t^{2}}=8$
219. The slope of normal to the parabola $y=\frac{x^{2}}{4}-2$ drawn through the point $(10,-1)$
A) -2
B) $-\sqrt{3}$
C) $-1 / 2$
D) $-5 / 3$

Key. C
Sol. $\quad x^{2}=4(y+2)$ is the given parabola
Any normal is $x=m(y+2)-2 m-m^{3}$. If $(10,-1)$ lies on this line then
$10=+m-2 m-m^{3} \Rightarrow m^{3}+m+10=0 \Rightarrow m=-2$
Slope of normal $=1 / \mathrm{m}$.
220. m_{1}, m_{2}, m_{3} are the slope of normals $\left(m_{1}<m_{2}<m_{3}\right)$ drawn through the point $(9,-6)$ to the parabola $y^{2}=4 x . A=\left[a_{i j}\right]$ is a square matrix of order 3 such that $a_{i j}=1$ if $i \neq j$ and $a_{i j}=m_{i}$ if $i=j$. Then $\operatorname{det} A=$
A) 6
B) -4
C) -9
D) 8

Key. D
Sol. $y=m x-2 m-m^{3} .(9,-6)$ lies on this
$\therefore-6=9 m-2 m-m^{3} \Rightarrow m^{3}-7 m-6=0$
Roots are $-1,-2,3 \therefore|A|=\left|\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3\end{array}\right|=(-2)(-4)-(3-1)+2=8$
221. A line L passing through the focus of the parabola $y^{2}=4(x-1)$ intersects the parabola in two distinct points. If ' m ' be the slope of the line L, then
A) $m \in(-1,1)$
B) $m \in(-\infty,-1) \cup(1, \infty)$
C) $m \in R$
D) $m \in R-\{0\}$

Key. D
Sol. Focus $(2,0)$
$y-0=m(x-2) \Rightarrow \frac{y}{m}+2=x \Rightarrow y^{2}-\frac{4 y}{m}-1=0$
$B^{2}-4 A C>0$
$\frac{1+m^{2}}{m^{2}}>0 \Rightarrow m \in R-\{0\}$
222. Equation of circle of minimum radius which touches both the parabolas $y=x^{2}+2 x+4$ and $x=y^{2}+2 y+4$ is
a) $2 x^{2}+2 y^{2}-11 x-11 y-13=0$ b) $4 x^{2}+4 y^{2}-11 x-11 y-13=0$
c) $3 x^{2}+3 y^{2}-11 x-11 y-13=0$ d) $x^{2}+y^{2}-11 x-11 y-13=0$

Key. B
Sol. Circle will be touching both parabolas. Circles centre will be on the common normal
223. If the normal at $\mathrm{P}(8,2)$ on the curve $\mathrm{xy}=16$ meets the curve again at Q . Then angle subtended by $P Q$ at the origin is
a) $\tan ^{-1}\left(\frac{15}{4}\right)$
b) $\tan ^{-1}\left(\frac{4}{15}\right)$
c) $\tan ^{-1}\left(\frac{261}{55}\right)$
d) $\tan ^{-1}\left(\frac{55}{261}\right)$

Key. A
Sol. If a normal cuts the hyperbola at point $\left(\mathrm{t}, \frac{\mathrm{l}}{\mathrm{t}}\right)$ meets the curve again at $\left(\mathrm{ct}^{1}, \frac{\mathrm{C}}{\mathrm{t}^{1}}\right)$ then $\mathrm{t}^{3} \mathrm{t}^{1}=-1$
224. An equilateral triangle $S A B$ is inscribed in the parabola $y^{2}=4 a x$ having it's focus at ' S '. If the chord $A B$ lies to the left of S, then the length of the side of this triangle is :
a) $3 \mathrm{a}(2-\sqrt{3})$
b) $4 a(2-\sqrt{3})$
c) $2 \mathrm{a}(2-\sqrt{3})$
d) $8 \mathrm{a}(2-\sqrt{3})$

Key. B

Sol.

$\mathrm{A}\left(\mathrm{a}-1 \cos 30^{\circ}, 1 \sin 30^{\circ}\right)$
Point ' A ' lies on $y^{2}=4 \mathrm{ax}$
\Rightarrow a quadratic in ' 1 '
225. Let the line $l x+m y=1$ cuts the parabola $y^{2}=4 a x$ in the points $A \& B$. Normals at $A \& B$ meet at a point C. Normal from C other than these two meet the parabola at a point D, then D =
a) $(a, 2 a)$
b) $\left(\frac{4 \mathrm{am}}{\mathrm{l}^{2}}, \frac{4 \mathrm{a}}{1}\right)$
c) $\left(\frac{2 \mathrm{am}^{2}}{\mathrm{l}^{2}}, \frac{2 \mathrm{a}}{\mathrm{l}}\right)$
d) $\left(\frac{4 \mathrm{am}^{2}}{\mathrm{l}^{2}}, \frac{4 \mathrm{am}}{1}\right)$

Key. D
Sol. Conceptual
226. The normals to the parabola $y^{2}=4 a x$ at points Q and R meet the parabola again at P. If T is the intersection point of the tangents to the parabola at Q and R, then the locus of the centroid of $\triangle T Q R$, is
a) $y^{2}=3 a(x+2 a)$
b) $y^{2}=a(2 x+3 a)$
c) $y^{2}=a(3 x+2 a)$
d) $y^{2}=2 a(2 x+3 a)$

Key. C
Sol. Let $\mathrm{Q}=\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right)$
$\mathrm{R}=\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right)$
Normals at Q \& R meet on parabola
Also $\mathrm{T}=\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
Let (α, β) be centroid of $\triangle Q R T$
Then $3 \alpha=\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}+\mathrm{t}_{1} \mathrm{t}_{2}\right) \& \beta=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
Eliminate $\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
227. The line $x-y=1$ intersects the parabola $y^{2}=4 x$ at A and B. Normals at A and B intersect at C. If D is the point other that A and B at which $C D$ is normal to the parabola then the coordinate of D are
A) $(4,4)$
B) $(4,-4)$
C) $(1,2)$ D) $(16,-8)$

Key. B
Sol. A , B , C be respectively $\left(t_{1}{ }^{2}, 2 t_{1}\right),\left(t_{2}{ }^{2}, 2 t_{2}\right),\left(t_{3}{ }^{2}, 2 t_{3}\right)$ since AB lie on $x-y=1$ $t_{1}^{2}-2 t_{1}=1, t_{2}^{2}-2 t_{2}=1$ subtracting $t_{1}+t_{2}-2=0 \quad$ Now $t_{1}+t_{2}+t_{3}=0 \Rightarrow t_{3}=-2$ so $D(4,-4)$
228. Radius of the largest circle which passes through the focus of the parabola $x^{2}-2 x-4 y+5=0$ and contained in it is
A) $\sqrt{2}+1$
B) $4 \sqrt{3}+1$
C) $\sqrt{3}-1$
D) 4

Key. D
Sol. The parabola is $(x-1)^{2}=4(y-1)$
equation of circle $(x-1)^{2}+(y-r-2)^{2}=r^{2}$
solving with one $y^{2}+\{4-2(r+2)\} y+4 r=0$

It has equal roots $D=0 \Rightarrow r=4$
229. The length of the normal chord at any point on the parabola $y^{2}=4 a x$ which subtends a right angle at the vertex of the parabola is
A) $6 \sqrt{3} a$
B) $2 \sqrt{3} a$
C) $\sqrt{3} a$
D) 2 a

Key. A
Sol. $\quad P\left(a t^{2}, 2 a t\right), Q\left(a t_{1}{ }^{2}, 2 a t_{1}\right)$
So $t_{1}=-t-\frac{2}{t} \quad \angle P O Q=\frac{2}{t} \cdot \frac{2}{t_{1}}=-1 \Rightarrow t_{1} t=-4 \Rightarrow\left(-t-\frac{2}{t}\right) t+4=0 \Rightarrow t^{2}=2 \Rightarrow t=\sqrt{2}$
$t_{1}=-\frac{4}{t}=-2 \sqrt{2} \quad \Rightarrow \quad P Q=\sqrt{a^{2}\left(t^{2}-t_{1}^{2}\right)^{2}+4 a^{2}\left(t-t_{1}\right)^{2}}=6 \sqrt{3} a$

230. If P is a point $(2,4)$ on the parabola $y^{2}=8 x$ and $P Q$ is a focal chord, the coordinate of the mirror image of Q with respect to tangent at P are given by
A) $(6,4)$
B) $(-6,4)$
C) $(2,4)$ D) $(6,2)$

Key. B
Sol. Tangent at extremities of focal chord intersect at right angle at directrix (let R)
$P\left(2 t^{2}, 4 t\right) \Rightarrow t=1$
PQ is focal chord $t_{1} t_{2}=-1 \Rightarrow t_{1}=-1 \Rightarrow Q(2,-4)$
Equation of tangent at ' P ' $\mathrm{ty}=\mathrm{x}+\mathrm{at}^{2} \Rightarrow \mathrm{y}=\mathrm{x}+2$
Coordinate of $R($ put $x=-2 \Rightarrow y=0) \Rightarrow(-2,0)$
R is the mid point of $Q \& Q^{1}$ (mirror image of $\left.Q\right) \Rightarrow Q^{1}=(-6,4)$
231. The locus of the mid point of chord of the circle $x^{2}+y^{2}=9$ such that segment intercepted
by the chord on the curve $y^{2}-4 x-4 y=0$ subtends the right angle at the origin.
A) $x^{2}+y^{2}-4 x-4 y=0$
B) $x^{2}+y^{2}+4 x+4 y=0$
C) $x^{2}+4 x+4 y-9=0$
D) None of these

Key. A
Sol. Let the mid point of chord of circle $x^{2}+y^{2}=9$ is h, k
equation of chord of circle $h x+k y=h^{2}+k^{2}$
equation of pair of lines joining the point of intersecting of chord and the parabola

$$
\text { with origin is } y^{2}-4(x+y) \cdot \frac{(h x+k y)}{\left(h^{2}+k^{2}\right)}=0
$$

Since the angle between these lines is 90° required locus is $x^{2}+y^{2}=4(x+y)$
232. The locus of the centre of the circle passing through the vertex and the mid points of perpendicular chords from the vertex of the parabola $y^{2}=4 a x$
A) $y^{2}=4 a(x-2 a)$ B) $y^{2}=a(x-2 a)$
C) $y^{2}=4 a(x-a)$
D) $(x-a)^{2}+y^{2}=a^{2}$

Key. B

Sol. $\quad t_{1} t_{2}=-4 \quad A\left(a t_{1}{ }^{2}, 2 a t_{1}\right) B\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$
$P\left(\frac{a t_{1}{ }^{2}}{2}, a t_{1}\right) \quad Q\left(\frac{a t_{2}{ }^{2}}{2}, a t_{2}\right)$
$C(h, k)$
$h=\frac{a}{4}\left(t_{1}^{2}+t_{2}{ }^{2}\right), k=\frac{a}{2}\left(t_{1}+t_{2}\right)$
$k^{2}=\frac{a^{2}}{4}\left(t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2}\right)=a \cdot \frac{a}{4}\left(t_{1}^{2}+t_{2}{ }^{2}\right)-2 a^{2}$

$B\left(t_{2}\right)$
$k^{2}+2 a^{2}=a . h \Rightarrow y^{2}=a(x-2 a)$
233. Tangents PA and PB are drawn to circle $(x+3)^{2}+(y-2)^{2}=1$ from point P lying on $y^{2}=4 x$, then the locus of circumcentre of $\triangle P A B$ is
A) $(y-1)^{2}=2 x-3$
B) $(y+1)^{2}=2 x+3$
C) $(y+1)^{2}=2 x-3$
D) $(y-1)^{2}=2 x+3$

Key. D
Sol. $\quad p\left(t^{2}, 2 t\right), C(-3,2)$
APBC is a cyclic quadrilateral : Circum centre of $\triangle P A B$ is the midpoint of $C P$
$h=\frac{t^{2}-3}{2} \Rightarrow t^{2}=2 h+3 ; \quad k=\frac{2 t+2}{2} \Rightarrow t=k-1 ; \quad$ locus $(y-1)^{2}=2 x+3$ Q
234. From any point P on the straight line $x=1$ a tangent PQ is drawn to the parabola $y^{2}-8 x+24=0$, then the obcissae of N where N is the foot of the perpendicular drawn from $A(5,0)$ to $P Q$ is
A) 1
B) 2
C) 3
D) 4

Key. C
Sol. $\angle \mathrm{QNS}=90^{\circ}$
x-coordinate of $\mathrm{N}=3$

235. If $P(-3,2)$ is one end of the focal chord $P Q$ of the parabola $y^{2}+4 x+4 y=0$ then the slope of the normal at Q is
A) $-1 / 2$
B) $1 / 2$
C) 2
D) -2

Key. A
Sol. The equation of the tangent at $(-3,2)$ to the parabola $y^{2}+4 x+4 y=0$ is
$2 y+2(x-3)+2(y+2)=0 \Rightarrow x+2 y-1=0$
The tangent at one end of the focal chord is parallel to the normal at the other end.
\Rightarrow slope of normal at $Q=$ slope of tangent at $P=-1 / 2$
236. The locus of the focus of the family of parabolas having directrix of slope m and touching the lines $x=a$ and $y=b$ is
(a) $y+m x=a m+b$
(b) $y+m x=a m-b$
(c) $y-m x=a m+b$
(d)
$y-m x=a m-b$

Key. A
Sol. Let the focus be (h, k)
Feet of the $\perp \operatorname{ar}$ from (h, k) on to targets are $(a, k)(h, b)$

Slope of directrix $=\frac{b-k}{h-a}$
$\Rightarrow \frac{b-k}{h-a}=m$
The locus is $y+m x=a m+b$
237. A circle drawn on any focal chord of the parabola $y^{2}=4 a x$ as diameter cuts the parabola and two points t and t^{1} (other than exstremity of a focal chord). Then the value of $t t^{1}=$
(a) 2
(b) 3
(c) 1
(d) 4

Key. B
Sol. The circle whose diameter ends as $\left(a t^{2}, 2 a t\right)\left(\frac{a}{t^{2}},-\frac{2 a}{t}\right)$ is

$$
\left(x-a t^{2}\right)\left(x-\frac{a}{t^{2}}\right)+(y-2 a t)\left(y+\frac{2 a}{t}\right)=0 \quad \rightarrow(1)
$$

Let $t_{1}, t_{2}, t_{3}, t_{4}$ be the points of intersection of (1) and parabola $y^{2}=4 a x$ where t_{1}, t_{2} are the ends of
diameter then $t_{1} t_{2} t_{3} t_{4}=\frac{-3 a^{2}}{a^{2}}$
$t_{3} t_{4}=3$
238. Let S be the set of all possible values of the parameter "a" for which the points of intersection of the parabolas $y^{2}=3 a x$ and $y=\frac{1}{2}\left(x^{2}+a x+5\right)$ are concyclic. Then S contains interval
(a) $(-\infty, 2)$
(b) $(-2,0)$
(c) $(0,2)$
(d) $(2, \infty)$

Key. D
Sol. The family of curves passing through
The prints of intersection of two parabolas is
$y^{2}-3 a x+\lambda\left(x^{2}+a x+5-2 y\right)=0 \rightarrow(1)$
Since (1) is circle

$$
a \in(-\infty,-2) \cup(2, \infty)
$$

239. The line $x-y=1$ intersects the parabola $y^{2}=4 x$ at A and B. Normals at A and B intersect at C. If D is the point other that A and B at which $C D$ is normal to the parabola then the coordinate of D are
A) $(4,4)$
B) $(4,-4)$
C) $(1,2)$ D) $(16,-8)$

Key. B
Sol. A , B , C be respectively $\left(t_{1}{ }^{2}, 2 t_{1}\right),\left(t_{2}{ }^{2}, 2 t_{2}\right),\left(t_{3}{ }^{2}, 2 t_{3}\right)$ since AB lie on $x-y=1$ $t_{1}{ }^{2}-2 t_{1}=1, t_{2}{ }^{2}-2 t_{2}=1$ subtracting $t_{1}+t_{2}-2=0 \quad$ Now $t_{1}+t_{2}+t_{3}=0 \Rightarrow t_{3}=-2$ so $D(4,-4)$
240. Radius of the largest circle which passes through the focus of the parabola $x^{2}-2 x-4 y+5=0$ and contained in it is
A) $\sqrt{2}+1$
B) $4 \sqrt{3}+1$
C) $\sqrt{3}-1$
D) 4

Key. D
Sol. The parabola is $(x-1)^{2}=4(y-1)$
equation of circle $(x-1)^{2}+(y-r-2)^{2}=r^{2}$
solving with one $y^{2}+\{4-2(r+2)\} y+4 r=0$

It has equal roots $D=0 \Rightarrow r=4$

241. The length of the normal chord at any point on the parabola $y^{2}=4 a x$ which subtends a right angle at the vertex of the parabola is
A) $6 \sqrt{3} a$
B) $2 \sqrt{3} a$
C) $\sqrt{3} a$
D) 2 a

Key. A
Sol. $\quad P\left(a t^{2}, 2 a t\right), Q\left(a t_{1}{ }^{2}, 2 a t_{1}\right)$
So $t_{1}=-t-\frac{2}{t} \quad \angle P O Q=\frac{2}{t} \cdot \frac{2}{t_{1}}=-1 \Rightarrow t_{1} t=-4 \Rightarrow\left(-t-\frac{2}{t}\right) t+4=0 \Rightarrow t^{2}=2 \Rightarrow t=\sqrt{2}$
$t_{1}=-\frac{4}{t}=-2 \sqrt{2} \quad \Rightarrow \quad P Q=\sqrt{a^{2}\left(t^{2}-t_{1}^{2}\right)^{2}+4 a^{2}\left(t-t_{1}\right)^{2}}=6 \sqrt{3} a$
242. If P is a point $(2,4)$ on the parabola $y^{2}=8 x$ and $P Q$ is a focal chord, the coordinate of the mirror image of Q with respect to tangent at P are given by
A) $(6,4)$
B) $(-6,4)$
C) $(2,4)$ D) $(6,2)$

Key. B
Sol. Tangent at extremities of focal chord intersect at right angle at directrix (let R)

$$
P\left(2 t^{2}, 4 t\right) \Rightarrow t=1
$$

PQ is focal chord $t_{1} t_{2}=-1 \Rightarrow t_{1}=-1 \Rightarrow Q(2,-4)$
Equation of tangent at ' P ' ty $=x+a t^{2} \Rightarrow y=x+2$
Coordinate of R (put $x=-2 \Rightarrow y=0) \Rightarrow(-2,0)$
R is the mid point of $Q \& Q^{1}$ (mirror image of $\left.Q\right) \Rightarrow Q^{1}=(-6,4)$
243. The locus of the mid point of chord of the circle $x^{2}+y^{2}=9$ such that segment intercepted
by the chord on the curve $y^{2}-4 x-4 y=0$ subtends the right angle at the origin.
A) $x^{2}+y^{2}-4 x-4 y=0$
B) $x^{2}+y^{2}+4 x+4 y=0$
C) $x^{2}+4 x+4 y-9=0$
D) None of these

Key. A
Sol. Let the mid point of chord of circle $x^{2}+y^{2}=9$ is h, k
equation of chord of circle $h x+k y=h^{2}+k^{2}$
equation of pair of lines joining the point of intersecting of chord and the parabola with
origin is $y^{2}-4(x+y) \cdot \frac{(h x+k y)}{\left(h^{2}+k^{2}\right)}=0$
Since the angle between these lines is 90° required locus is $x^{2}+y^{2}=4(x+y)$
244. The locus of the centre of the circle passing through the vertex and the mid points of perpendicular chords from the vertex of the parabola $y^{2}=4 a x$
A) $y^{2}=4 a(x-2 a)$ B) $y^{2}=a(x-2 a)$
C) $y^{2}=4 a(x-a)$
D) $(x-a)^{2}+y^{2}=a^{2}$

Key. B
Sol. $\quad t_{1} t_{2}=-4 \quad A\left(a t_{1}{ }^{2}, 2 a t_{1}\right) B\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$
$P\left(\frac{a t_{1}{ }^{2}}{2}, a t_{1}\right) \quad Q\left(\frac{a t_{2}{ }^{2}}{2}, a t_{2}\right)$
$C(h, k)$
$h=\frac{a}{4}\left(t_{1}^{2}+t_{2}^{2}\right), k=\frac{a}{2}\left(t_{1}+t_{2}\right)$
$k^{2}=\frac{a^{2}}{4}\left(t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2}\right)=a \cdot \frac{a}{4}\left(t_{1}^{2}+t_{2}^{2}\right)-2 a^{2}$
$k^{2}+2 a^{2}=a . h \Rightarrow y^{2}=a(x-2 a)$

245. Tangents PA and PB are drawn to circle $(x+3)^{2}+(y-2)^{2}=1$ from point P lying on $y^{2}=4 x$, then the locus of circumcentre of $\triangle P A B$ is
A) $(y-1)^{2}=2 x-3$
B) $(y+1)^{2}=2 x+3$
C) $(y+1)^{2}=2 x-3$
D) $(y-1)^{2}=2 x+3$

Key. D
Sol. $\quad p\left(t^{2}, 2 t\right), C(-3,2)$
APBC is a cyclic quadrilateral : Circum centre of $\triangle P A B$ is the midpoint of $C P$
$h=\frac{t^{2}-3}{2} \Rightarrow t^{2}=2 h+3 ; \quad k=\frac{2 t+2}{2} \Rightarrow t=k-1 ; \quad$ locus $(y-1)^{2}=2 x+3$
Q

246. From any point P on the straight line $x=1$ a tangent $P Q$ is drawn to the parabola $y^{2}-8 x+24=0$, then the obcissae of N where N is the foot of the perpendicular drawn from $A(5,0)$ to $P Q$ is
A) 1
B) 2
C) 3
D) 4

Key. C
Sol. $\angle Q N S=90^{\circ}$
x-coordinate of $\mathrm{N}=3$
247. If $P(-3,2)$ is one end of the focal chord $P Q$ of the parabola $y^{2}+4 x+4 y=0$ then the slope of the normal at Q is
A) $-1 / 2$
B) $1 / 2$
C) 2
D) -2

Key. A
Sol. The equation of the tangent at $(-3,2)$ to the parabola $y^{2}+4 x+4 y=0$ is
$2 y+2(x-3)+2(y+2)=0 \Rightarrow x+2 y-1=0$
The tangent at one end of the focal chord is parallel to the normal at the other end.
\Rightarrow slope of normal at $Q=$ slope of tangent at $P=-1 / 2$
248. A normal whose inclination is 30° to a parabola cuts it again at an angle of
(A) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(B) $\tan ^{-1}\left(\frac{7}{\sqrt{3}}\right)$
(C) $\tan ^{-1}(2 \sqrt{3})$
(D)
$\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)$
Key. D

Sol. The normal at $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ is $y+x t_{1}=2 a t_{1}+a t_{1}^{3}$ with slope say $\tan \alpha=-t_{1}=\frac{1}{\sqrt{3}}$. If it meets curve at $Q\left(a t_{2}{ }^{2}, 2 a t_{2}\right)$ then $t_{2}=-t_{1}-\frac{2}{t_{1}}=\frac{7}{\sqrt{3}}$. Then angle θ between parabola (tangent at Q) and normal at P is given by $\tan \theta=\frac{-t_{1}-\frac{1}{t_{2}}}{1-\frac{t_{1}}{t_{2}}}=\frac{1}{2 \sqrt{3}}$

$$
\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)
$$

249. The locus of the Orthocentre of the triangle formed by three tangents of the parabola $(4 x-3)^{2}=-64(2 y+1)$ is
(A) $y=\frac{-5}{2}$
(B) $y=1$
(C) $x=\frac{7}{4}$
(D)
$y=\frac{3}{2}$
Key. D
Sol. The locus is directrix of the parabola
250. Minimum distance between the curves $y^{2}=x-1$ and $x^{2}=y-1$ is equal to
(A) $\frac{3 \sqrt{2}}{4}$
(B) $\frac{5 \sqrt{2}}{4}$
(C) $\frac{7 \sqrt{2}}{4}$
(D)
$\frac{\sqrt{2}}{4}$
Key. A
Sol. Both curves are symmetrical about the line $y=x$. If line $A B$ is the line of shortest distance then at A and B slopes of curves should be equal to one. For $y^{2}=x-1 \Rightarrow \frac{d y}{d x}=\frac{1}{2 y}=1$ $\Rightarrow y=\frac{1}{2}, x=\frac{5}{4}$
(
$\Rightarrow \mathrm{B}=\left(\frac{1}{2}, \frac{5}{4}\right), \mathrm{A}=\left(\frac{5}{4}, \frac{1}{2}\right)$
Hence minimum distance $A B=\sqrt{\left(\frac{5}{4}-\frac{1}{2}\right)^{2}+\left(\frac{5}{4}-\frac{1}{2}\right)^{2}}=\frac{3 \sqrt{2}}{4}$ units
251. If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are the feet of the three normals drawn from a point to the parabola $y^{2}=4 a x$ then $\frac{x_{1}-x_{2}}{y_{3}}+\frac{x_{2}-x_{3}}{y_{1}}+\frac{x_{3}-x_{1}}{y_{2}}=$
(A) $4 a$
(B) 2 a
(C) a
(D) 0

Key. D
Sol. $y_{1}+y_{2}+y_{3}=0$
252. Consider $y^{2}=8 x$. If the normal at a point P on the parabola meets it again at a point Q , then the least distance of Q from the tangent at the vertex of the parabola is.
(A) 16
(B) 8
(C) 4
(D)

2
Key. A
Sol. Let $P\left(t_{1}\right) \& Q\left(t_{2}\right)$ be points on $y^{2}=8 x$. Here $4 a=8$ or $a=2$
Required distance $=\mathrm{z}=\mathrm{at}_{2}^{2}=\mathrm{a}\left(\mathrm{t}_{1}^{2}+\frac{4}{\mathrm{t}_{1}^{2}}+4\right) \quad\left(\mathrm{Q} \mathrm{t}_{2}=-\mathrm{t}_{1}-\frac{2}{\mathrm{t}_{1}}\right)$
Z is least if $\frac{\mathrm{dz}}{\mathrm{dt}_{1}}=0$ or $\mathrm{t}_{1}^{2}=2 \quad$ Least value of $\mathrm{Z}=16$
253. A parabola of latusrectum ' $4 a$ ' touches a fixed equal parabola, the axes of the two curves being parallel; the locus of the vertex of moving curve is parabola of latusrectum K then $\mathrm{k}=$
(A) 2 a
(B) 4 a
(C) 8 a
(D) 16 a

Key. C
Sol. Let the given parabola be $y^{2}=4 a x$
If the vertex of moving parabola (α, β) its equation is
$(y-\beta)^{2}=-4 a(x-\alpha)----(2)$
Solving 1 and $22 y^{2}-2 \beta y+\beta^{2}-4 a \alpha=0$
Since curve touch each other discriminant $=0$
$\Rightarrow \beta^{2}=8 a \alpha$ locus is $y^{2}=8 a x$.
$\therefore L R=8 a$
254. The locus of an end of latus rectum of all ellipses having a given major axis is
(A) A straight line
(B) A parabola
(C) An ellipse
(D) A circle

Key. B
Sol. Let the given major axis have vertices $(-a, 0),(a, 0)$. If $P(x, y)$ is an end of the latusrectum then
$y=\frac{b^{2}}{a}=a\left(1-e^{2}\right), \quad \mathrm{x}=\mathrm{ae}$
Now eliminate ' e '
255. Given the base of a triangle and the product of the tangents of base angles. Then the locus of the

Third vertex of the triangle is
(A) A straight line
(B) A circle
(C) A parabola
(D) An ellipse

Key. D
Sol. Take base vertices $A(-a, 0) B(a, 0)$ and vertex $C(x, y)$ given $\tan A \tan B=k$

$$
\Rightarrow \frac{y}{a+x} \cdot \frac{y}{a-x}=k \Rightarrow \frac{y^{2}}{a^{2}-x^{2}}=k .
$$

256. The eccentricity of the conic defined by $\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3$
A) $5 / 2$
B) $5 / 3$
C) $\sqrt{2}$
D) $\sqrt{11} / 3$

Key. B
Sol. Hyperbola for which $(1,2)$ and $(5,5)$ are foci and length of transverse axis 3.

$$
2 a e=5 \text { and } 2 a=3 \quad \therefore e=5 / 3
$$

