THE P-BLOCK ELEMENTS

CHEMISTRY

Single Correct Answer Type

1.	The Minerals having silicates chains are collectively	called	
	a) Olivine b) Zircon	c) Pyroxenes	d) Natrolite
2.	Pyrex glass is a mixture of :		
	a) Sodium borosilicate and barium borosilicate		\sim \sim
	b) Sodium silicate and calcium silicate		
	c) Sodium silicate and lead silicate		
	d) Sodium silicate and aluminium borosilicate		
3.	Amorphous boron on burning in air forms:		
0.	a) B(OH) ₂	4	
	b) Mixture of $B_2 O_2$ and BN		X
	c) Only B_2O_2		
	d) Only BN		7
4.	What is the state of hybridization of carbon in fuller	ene?	
	a) sn^2 b) sn^3	c) sp	d) sn^3d
5.	Boron was isolated by:	o) op	
0.	a) Moseley b) Davy	c) Rutherford	d) Moisson
6.	Which reaction cannot give anhydrous AlCl ₂ ?		
-	a) Heating of AlCl ₂ \cdot 6H ₂ O		
	b) Passing dry HCl over heated aluminium powder	X	
	c) Passing dry Cl ₂ over heated aluminium powder		
	d) Heating a mixture of alumina and coke in a curren	nt of dry Cl ₂	
7.	An aqueous solution of potash alum gives	5 2	
	a) Two types of ions b) Only one type of ion	c) Four types of ion	d) Three types of ions
8.	Which is neutral to litmus?		
	a) ZnO b) SnO	c) CO	d) SiO
9.	Electrolytic reduction of alumina to aluminium by H	lall-Heroult process is carri	ed out:
	a) In the presence of NaCl		
	b) In the presence of fluorite		
	c) In the presence of cryolite which forms a melt wi	th lower melting temperati	are
	d) In the presence of cryolite which forms a melt wi	th higher melting temperat	ure
10.	The type of glass used in making lenses and prism is	5	
	a) Pyrex glass b) Quartz glass	c) Jena glass	d) Flint glass
11.	Solid CO ₂ is used as :		
	a) Poison b) Fire extinguisher	c) Refrigerant	d) Artificial respirant
12.	Coke is obtained from coal by:		
	a) Cracking		
~	b) Fractional distillation		
	c) Destructive distillation		
	d) None of these		
13.	The liquid field metal expanding on solidification is		
	a) Cu b) Ga	c) Al	d) Zn
14.	Solder is an alloy of		
	a) $Pb + Sn$ b) $Pb + Sn + Zn$	c) Pb+ Zn	d) Sn+ Zn
15.	Graphite is used in nuclear reactors:		

	a) As a lubricant	b) As a fuel	c) As moderator	d) None of these		
16.	BF ₃ is an example of Lew	is acid because it behaves a	is:			
	a) Nucleophile	b) Electrophile	c) Free radical	d) lyophilic		
17.	What is the number of fre	ee electrons present on eac	h carbon atom in graphite?			
	a) 0	b) 3	c) 2	d) 1		
18.	CCl ₄ does not show hydro	olysis but SiCl₄ is readily hy	drolysed because:	-		
	a) Carbon cannot expand	its octet but silicon can exp	pand			
	b) Electronegativity of ca	rbon is higher than of silico	'n			
	c) IP of carbon is higher than of silicon					
	d) Carbon forms double a	nd triple bonds but not sili	con	\sim		
19.	Lead pipes are corroded	auickly by				
	a) dil. H₂SO₄	b) Acetic acid	c) conc. H_2SO_4	d) Water		
20.	Purification of alumina is	essential because:	2-4			
	a) Impure alumina is a ve	erv poor conductor of election	ricity			
	b) Impure alumina has a	very high melting point				
	c) Impure alumina canno	t react with the oxidizing a	gent			
	d) It is difficult to purify a	aluminium metal				
21.	Structure of boric acid (H	(BO_2) is:				
	a) Trigonal	3				
	b) Tetragonal					
	c) Laver structure in whi	ch BO ₂ units are linked wit	h oxygen			
	d) Laver structure in whi	ch BO ₂ units are linked by 1	H-bonding			
22.	Producer gas is a mixture	e of:				
	a) $CO + N_2$	b) $CO + H_2$	c) N ₂ + CH ₄	d) CO + H ₂ + N ₂		
23.	Which statement is false?		2 2 · · · ·			
	a) Water gas is a mixture of hydrogen and carbon monoxide					
	b) Producer gas is a mixt	ure of carbon monoxide and	d nitrogen			
	c) Water gas is a mixture	of water vapour and hydro	ogen			
	d) Natural gas consists of	methane, ethane and gase	ous hydrocarbons			
24.	Bauxite ore is made up of	$\operatorname{Al}_2O_3 + \operatorname{SiO}_2 + \operatorname{TiO}_2 + \operatorname{Fe}_2$	$_2O_3$. This ore is treated with	n conc. NaOH solution at		
	500K and 35 bar pressure	e for few hours and filtered	hot. In the filtrate the spec	ies present, are		
	a) NaAl(OH) ₄ only		b) Na ₂ Ti(OH) ₆ only			
	c) NaAl(OH) ₄ and Na ₂ SiC) ₃ both	d) Na ₂ SiO ₃ only			
25.	An element A dissolves b	oth in acid and alkali. It is a	n example of			
	a) Amorphous nature of A	4	b) Allotropic nature of A			
	c) Amphoteric nature of	A	d) Dimorphic nature of A			
26.	Which melts in boiling wa	ater?				
	a) Gun metal	b) Wood's metal	c) Monel metal	d) Bell metal		
27.	Hardest element of III A g	group of gp.13 is:				
	a) B	b) Ga	c) Al	d) In		
28.	Tin cry refers to :					
\mathbf{C}	a) Conversion of white to	grey tin				
	b) Tin plating					
÷	c) Conversion of white te	trahedral tin to white rhon	nbohedral tin			
	d) Emission of sound whi	le bending a tin rod				
29.	The method of zone refin	ing of metals is based on th	e principle of			
	a) Greater noble characte	er of the solid metal than th	at of the impurity			
	b) Greater solubility of th	e impurity in the molten st	ate than in the solid			
	c) Greater mobility of the	e pure metal than that of im	purity			
	d) Higher melting point o	t the impurity than that of	the pure metal			
30.	The hybridization of borc	on atom in orthoboric acid	is:			

	a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) sp^3d
31.	Which is not an allotrope	of carbon?		
	a) Graphite	b) Diamond	c) Soot	d) Carborundum
32.	Alum are used as mordan	it in dyeing because		
	a) Dye is adsorbed on Al((OH) ₃ which is deposited of	n fibre in the hydrolysis pro	ocess
	b) Dye is adsorbed on KO	H formed due to hydrolysis	S	
	c) Both of the above			
	d) None of the above			
33.	Observe the following sta	tements regarding purifica	tion of bauxite	× •
	I. During Hall's process	, silica is removed as Si (va	pour).	
	II. Bauxite ore contamin	ated with Fe_2O_3 is purified	in Baeyer's process.	
	III. During Serpeck's pro	cess, AlN is formed.		
	The correct answer is			
	a) I, II and III are correct		b) Only I and II are correc	ct state of the st
	c) Only I and III are corre	ect	d) Only II and III are corr	ect
34.	Aluminium is not used		•	X
	a) In silvery paints		b) As oxidizer in metallur	зу
~ =	c) For making utensils		d) As a reducing agent	7
35.	Molecular weight of anhy	drous aluminium chloride	is:	
	a) 133.5	b) 267.0	c) 241.5	d) 483.0
36.	Mg_2C_3 has the following of	characteristics:		
a) It is called magnesium allylide				
	b) It contains Mg ²⁺ and C	.3 10NS		
	c) It on hydrolysis gives p	propyne		
27	u) All of the above			
57.	a) Bi Sn Ph	h) Bi Fe Cr	c) Bi Sn (d	d) Ph Sn Cd
38	In III A group (thalium) s	how ± 1 oxidation state wh	ile other members show +	- 3 oxidation state why?
50.	a) Presence of lone pair of	of electron in Tl	b) Large ionic radius of T	l ion
	c) Inert pair effect		d) None of the above	
39.	The protective film of oxi	de on the surface of Al met	al may be strengthened by:	
	a) Galvanizing	b) Cathodizing	c) Sheradizing	d) Anodizing
40.	Which of the following is	only acidic in nature?	,,	, ,
	a) $Mg(OH)_2$	b) $Be(OH)_2$	c) Al(OH) ₃	d) $B(OH)_3$
41.	Which poisonous gas is p	resent in the exhaust of car	?	
	a) Methane	b) Carbon monoxide	c) Acetylene	d) Ethane
42.	A metallic oxide which im	parts purple colour to pot	tery is:	
	a) Lead oxide	b) Copper oxide	c) Sodium oxide	d) Manganese dioxide
43.	The cryolite is:			
	a) NaAlO ₃	b) Na ₃ AlF ₆	c) Na ₃ AlO ₃	d) Na ₂ AlF ₅
44.	Quartz is made of silicon	and oxygen joined in a net	work arrangement that is s	imilar to :
C	a) Diamond	b) Graphite	c) 0 ₂	d) None of these
45.	Solid CO ₂ is known as dry	/ ice, because		
	a) It evaporates at 40°C		b) It melts at 0°C	
	c) Its boiling points is mo	ore than 199°C	d) It evaporates at '-' 78°	C without melting
46.	Aluminium chloride exist	is as dimer, Al_2Cl_6 in solid	state as well as in solution	ot non-polar solvents such
	as benzene. When dissolv 13^{-1}	ved in water, it gives	13+ $00-$	
	a) $[AI(OH)_6]^{3-}$ + 3HCl	b) $AI_2U_3 + 6HCI$	$c_J AI^{3+} + 3CI^{-}$	a) $[AI(H_2 0)_6]^{3+} + 3CI^-$
47.	Hot conc HNU ₃ converts g	graphite into		::-]
	a) Graphite oxide		bJ Benzene hexacarboxyl	ic acia

	c) Both (a) and (b)		d) None of the above	
48.	Which is correct oxidation	n state of lead?		
	a) +3, +4	b) +4	c) +1, +2	d) +2, +4
49.	Which of the following is	a three dimensional silicate	e?	
	a) Mica	b) Spodumene	c) Zeolite	d) None of these
50.	Which of the following is	a gas?		
	a) BF ₃	b) BCl ₃	c) BBr ₃	d) BI ₃
51.	Plumbo-solvency means of	dissolution of lead in:		
	a) Hot water	b) Acids	c) Ordinary water	d) Alkalies
52.	On doping Ge metal with	a little of ln, one gets:		
	a) <i>p</i> -type semiconductor			
	b) <i>n</i> -type semiconductor			
	c) Insulator			
	d) Rectifier			
53.	Vapour density of which g	gas is near to air?		
	a) CO	b) CO ₂	c) NH ₃	d) SO ₂
54.	Muddy water can be puri	fied through coagulation by	v using	*
	a) Common salt	b) Alums	c) Sand	d) Lime
55.	The most abundant gas in	ordinary air among the fo	llowing is:	
	a) Argon	b) Helium	c) Carbon dioxide	d) Carbon monoxide
56.	Corundum is:			
	a) SiO ₂	b) Al_2O_3	c) CaF ₂	d) Cr_2O_3
57.	Tin dissolves in dilute HN	0_3 forming :		
	a) Metastannic acid	b) Nitrous oxide	c) Ammonium nitrate	d) Stannic nitrate
58.	The core of a non-lumino	us Bunsen burner flame is o	observed to be yellow in co	lour. This is because of:
	a) Contamination from th	e metal of the burner		
	b) Impurities in the fuel			
	c) Incomplete combustion	n		
	d) None of the above			
59.	The correct order of decre	easing ionic nature of lead	dihalides is :	
	a) $PbF_2 > PbCl_2 > PbBr_2$	$> PbI_2$		
	b) $PbF_2 > PbBr_2 > PbCl_2$	$> PbI_2$		
	c) $PbF_2 < PbCl_2 > PbBr_2$	< PbI ₂		
	d) $PbI_2 < PbBr_2 < PbCl_2 <$	< PbF ₂		
60.	The correct Lewis acid or	der for boron halides is:		
	a) $BF_3 > BCl_3 > BBr_3 >$	BI ₃		
	b) $BCl_3 > BF_3 > BBr_3 >$	BI ₃		
	c) $BI_3 > BBr_3 > BCl_3 > B$	3F ₃		
	d) $BBr_3 > BCl_3 > BI_3 > BI_3$	3F ₃		
61.	Incomplete combustion o	f petrol or diesel oil in auto	mobile engines can be bes	t detected by testing the
	fuel gases for the presenc	e of :		
C	a) CO + H ₂ O	b) CO	c) NO ₂	d) SO ₂
62.	Alum is not used:			
-	a) As a mordant in dyeing	5		
	b) As an insecticide			
	c) In the purification of w	vater		
	d) In tanning of leather			
63.	$BCl_3 + H_2O \rightarrow X$, the prod	lucts formed in the reactior	n are	
	a) $B_2O_3 + HOCl$	b) $H_3BO_3 + HCl$	c) $B_2H_6 + HCl$	d) No reaction
64.	Boric acid on heating at 1	50 °C gives:		
	a) B_2O_3	b) $H_2B_4O_7$	c) HBO ₂	d) H_2BO_3

65. Which one of the following orders presents the correct sequence of the increasing basic nature of the given oxides?

a) $Al_2O_3 < MgO < Na_2O < K_2O$ b) $MgO < K_2O < Al_2O_3 < Na_2O$ c) $Na_2 0 < K_2 0 < Mg 0 < Al_2 0_3$ d) $K_2 0 < Na_2 0 < Al_2 0_3 < Mg 0$ 66. Which fuel has the highest calorific value? a) Coal gas b) Water gas c) Producer gas d) Carbon dioxide gas 67. Anodising can be done by electrolyzing dilute H_2SO_4 with Al an anode, this result is b) The formation of $Al_2(SO_4)_3$ and SO_2 gas a) The formation of protective oxide layer d) The formation of $Al(HSO_3)$ and H_2 gas c) The formation of AlH₃ and SO₂ gas 68. Tin reacts with conc. H_2SO_4 to give: a) α - stannic acid. b) Stannous sulphate c) β – stannic acid d) Stannic sulphate 69. The chemical formula of sindhur is d) SnCl₂ a) PbO c) Zn0 b) $Pb_{3}O_{4}$ 70. Aluminium oxide is not reduced by chemical reactions since b) Reducing agents contaminate a) Aluminium oxide is reactive d) The process pollutes the environment c) Aluminium oxide is highly stable 71. Aluminium reacts with caustic soda to form a) Aluminium hydroxide b) Aluminium oxide d) Sodium tetra aluminate c) Sodium meta-aluminate 72. PbO_2 on reaction with HNO_3 gives gas: c) N_2 d) N_20 a) NO_2 b) 0_2 73. When orthoboric acid (H_3BO_3) is heated the residue left is: a) Boron b) Metaboric acid c) Boric anhydride d) borax 74. Which is a correct statement about diborane structure? a) All HBH bond angles are equal b) All H – B bond lengths are equal c) It has two three-centre-2 electron bonds d) All hydrogen and boron atoms are in one plane 75. Thermite is a mixture of c) $Fe_2O_3 + Al_2O_3$ a) $Cr_2O_3 + Al_2O_3$ b) Fe_2O_3 d) $Al_2O_3 + 2Cr$ 76. White lead or basic lead carbonate is: a) $Pb(OH)_2 \cdot 2PbCO_3$ b) $Pb(OH)_2 \cdot Pb(CH_3COO)_2$ c) $PbCO_3$ d) $PbCO_3 \cdot Pb(OH)_2$ 77. Cane sugar reacts with conc. HNO_3 to give : a) CO_2 and H_2O b) Oxalic acid c) CO and H_2O d) H_2CO_3 78. Man dies in an atmosphere of carbon monoxide, because it: a) Combines with the O_2 present in the body to form CO_2 b) Reduces the organic matter of tissues c) Combines with haemoglobin of blood, making it incapable of absorbing O₂ d) Dries up the blood 79. Which has highest b.p.? a) Diamond b) Graphite c) Charcoal d) Lamp black 80. Carbon cannot be used in the reduction of Al_2O_3 because a) It is an expensive proposition b) The enthalpy of formation of CO_2 is more than that of Al_2O_3 c) Pure carbon is not easily available d) The enthalpy of formation of Al₂O₃ is too high 81. Which of the following has most density? a) Pb b) B c) Cu d) Fe

82.	Which of the following ox	ides is amphoteric in chara	cter?	
	a) SnO ₂	b) SiO ₂	c) CO ₂	d) CaO
83.	Water gas is produced by	:		
	a) Passing steam through	a red hot coke bed		
	b) Saturating hydrogen w	ith moisture		
	c) Mixing oxygen and hyd	rogen in the ratio of 1 : 2		
	d) Heating a mixture of CO	D_2 and CH_4 in petroleum re	fineries	
84	CO forms a volatile compo	ound with:		
011	a) Nickel	h) Copper	c) Sodium	d) Aluminium
85	Red lead is	b) dopper	ej sourani	
05.	a) PhO	\mathbf{h}) $\mathbf{P}\mathbf{h}_{\mathbf{r}}\mathbf{O}_{\mathbf{r}}$	c) Ph().	d) Has
86	The order of acidic streng	th of boron tribalides	cj 100 ₂	
00.	a) $BE \subset BC \subset BBr \subset BBr$	RI	b) $BI \subset BBr \subset BC$	RE
	a) $D\Gamma_3 < DC\Gamma_3 < DD\Gamma_3 <$ c) $PC\Gamma < PRr < P\Gamma < \Gamma$		d) $BPr < BCl < PE <$	
07	$\bigcup DU_3 \smallsetminus DDI_3 \smallsetminus DI_3 \smallsetminus I$	οr ₃ Ion of aluminium chlorida t	$U \int DDI_3 \subset DCI_3 \subset DF_3 \subset$	<i>D</i> 1 ₃
07.	neating an aqueous soluti		a) AL O	
00	a) $AICI_3$	$DJAI_2 CI_6$	$CJ AI_2 U_3$	u) AI(UH)CI ₂
88.	Buckminster fullerene is			
00	a) Pure graphite	b) C-60	c) Diamond	a) L-90
89.	Lead (IV) oxide is obtaine	d by :		
	a) Heating lead (II) oxide	strongly in air		
	b) Heating lead strongly in	n pure oxygen		
	c) Oxidizing lead with cor	nc. HNO ₃		
	d) Heating Pb_3O_4 with con	nc. HNO ₃		
90.	Graphite is a soft solid lub	ricant extremely difficult t	o melt. The reason for this	anomalous behaviour is
	that, graphite		X	
	a) Is a non-crystalline sub	stance		
	b) Is an allotropic from of	diamond		
	c) Has molecules of varial	ole molecular masses like p	olymers	
	d) Has carbon atoms arra	nged in large plates of ring	s of strongly bound carbon	atoms with weak
	interplate bonds			
91.	The composition of the co	mmon glass is		
	a) Na ₂ O. CaO. $6SiO_2$	b) $Na_2O.Al_2O_3.SiO_2$	c) CaO. Al_2O_3 . SiO ₂	d) $Na_2O. CaO. 6SiO_2$
92.	Aluminium becomes pass	ive in nitric acid because it	:	
	a) Is a noble metal	Y		
	b) Forms a thin film of oxi	ide		
	c) Positive reduction pote	ential		
	d) None of the above			
93.	Among the following subs	tituted silanes the one whi	ch will give rise to cross lir	nked silicone polymer on
	hydrolysis is			
	a) R ₄ Si	b) RSiCl ₃	c) R_2 SiCl ₂	d) R ₃ SiCl
94.	The thermal stability of C	F ₄ is		
C	a) Less than SiF_4	b) More than SiF ₄	c) Less than CCl ₄	d) Less than SiCl ₄
95.	An oxide of an element is	a gas and dissolves in wate	r to give an acidic solution.	The element belongs to
	a) II group	b) IV group	c) VIII group	d) Zero group
96.	The C— X bond energy or	der for carbon tetra halide	s is:	
	a) $CF_4 > CCl_4 > CBr_4 > C$	Π_{4}		
	b) $CCl_4 > CBr_4 > CI_4 > C$	F ₄		
	c) $CI_4 > CBr_4 > CCl_4 > C$	F ₄		
	d) None of the above	•		
97.	An example of a major air	pollutant is:		
	a) Oxygen	b) Carbon dioxide	c) Carbon monoxide	d) Helium
		-	-	-

	98.	Pewter is an alloy of :			
		a) Pb and Sn	b) Pb, Sb and Sn	c) Pb, Bi and Sn	d) Pb, Bi, Sn and Cd
	99.	Rose metal is an alloy of.			
		a) Sn + Pb + Bi	b) Sn + Cu	c) Sn + Sb + Cu	d) None of these
	100.	An insulator is:	2	2	2
		a) Silicon	b) Graphite	c) Aluminium	d) Diamond
	101.	Boron nitride on reacting	with caustic alkali gives:		
		a) NH ₂	h) N_{a}	c) $Na_{a}BO_{a}$	d) NO ₂
	102	The different layers in gra	nhite are held together hy	6) 1143203	
	102.	a) Metallic honding	b) Covalent honding	c) Ionic honding	d) Van der Waals' forces
	103	Colemanite is a mineral of	:	c) tollic boliding	uj van der waars forees
	105.	a) Mg	הופ	c) Al	d) Mn
	104	a) Mg Which of the following is a	miyod ovido?	C) AI	
	104.	which of the following is a		-) D-O	
	105	a) Fe_2O_3	$DJPDU_2$	$CJBaU_2$	d) PD_3O_4
	105.	In the sale of diamonds the	e unit of weight is carat. On	ie carat is equal to:	11 2 2 2
		a) 100 mg	b) 300 mg	c) 400 mg	d) 200 mg
	106.	Which gas present in atmo	sphere darkens the surfac	e painted by white lead?	
		a) SO ₂	b) NH ₃	c) CO ₂	d) H ₂ S
	107.	Which of the following is r	nost abundant in the earth	crust?	
		a) In	b) Ga	c) B	d) Al
	108.	Which form of carbon has	a two-dimensional sheet-li	ike structure?	
		a) Coal	b) Coke	c) Diamond	d) Graphite
	109.	Extraction of metal from t	he ore cassiterite involves		
		a) Carbon reduction of an	oxide ore	b) Self-reduction of a sulp	hide ore
		c) Removal of copper imp	urity	d) Removal of iron impuri	ty
	110.	An alumina-silica clay, call	ed bentonite is dropped fr	om aeroplanes in the slurry	y form for:
		a) Fertilizing the soil			
		b) Spreading water over fi	res		
		c) Cooling the soil			
		d) Fumigation			
	111	Gun shots are made of lead	d with a little arsenic. The f	function of As is to increase	
		a) Range of fire	h) Power of fire	c) Brittleness	d) Weight of fire
	112	The colour of blue glass is	due to the presence of ovic	le of	
	112.	a) (r	b) Co		d) Ag
	112	a) U	0,00	cj Au	uj Ag
	115.	a) Soda lima glass	b) Soft glass	a) Safatu glaga	d) Dumou alaga
	111	a) soua nine glass	DJ SOIL glass	c) salety glass	u) Pyrex glass
	114.	Carborundum is obtained	when shica is neated at hig	in temperature with	
	445	a) Carbon	b) Carbon monoxide	c) Carbon dioxide	d) Calcium carbonate
	115.	R_3 SiCI on hydrolysis form:	S:		
		a) R_3 SiOH	b) $R_3 Si - 0 - Si R_3$	c) $R_2 Si = 0$	d) None of these
	116.	Tin plague is the:			
(a) Conversion of stannous	to stannic		
	7	b) Conversion of white tin	to grey tin		
		c) Emission of sound whil	e bending a tin rod		
		d) Atmospheric oxidation	of tin		
	117.	Water glass is:			
		a) Calcium silicate			
		b) Sodium, calcium silicate	9		
		c) Sodium silicate			
		d) Magnesium silicate			
	118	If a person is injured by th	e shot of a gun and all the r	pellets could not be remove	ed. it may cause poisoning
	01	r	a set a set a set and an and p		,,

by:								
a) Hg		b) Pb	c) Fe	d) As				
119. Which	property is commo	on in diamond and graphite	e?					
a) Elec	trical conductivity							
b) Rela	tive atomic weight	t						
c) Crys	c) Crystal structure							
d) Den	sity							
120. Carbor	dioxide is used fo	r extinguishing fire becaus	e:					
a) It ha	is a relatively high	critical temperature		· · ·				
b) In so	olid state, it is calle	d dry ice						
c) It is	neither combustib	le nor a supporter of comb	ustion					
d) It is	a colourless gas							
121. In whic	ch of the following	the inert pair effect is most	t prominent?					
a) Si		b) Ge	c) Pb	d) C				
122. One re	cently discovered a	allotrope of carbon (e.g.,C	C_{60}) is known as	\sim				
a) Fluc	rine	b) Fullerene	c) Flourene	d) Freon				
123. Which	oxide has three dir	mensional structure?						
a) CO		b) CO ₂	c) SiO ₂	d) SO ₂				
124. Diamo	nd and graphite ar	e:						
a) Ison	iers	b) Isotopes	c) allotropes	d) Polymers				
125. CO_2 is	called dry ice or dr	ikold because:						
a) It w	ets the surface							
b) It do	es not melt							
c) At a	tmospheric pressu	re solid CO ₂ changes direct	tly into the gas and the liqu	id phase is not formed and				
d) It is	s not wet the surface	ce						
UJIUS 126 Miniun	gaseous in nature	C						
a) PhO	.1 13.	h Ph.O.	c) PhO ₂	d) All of these				
127 Which	of the following is	called alum?	c) 1002	a) fin of these				
a) NaA	$ \Omega_2 $							
b) Na_2	$SO_4 \cdot Al_2(SO_4)_2 \cdot 2$	24H ₂ 0						
c) KCl	\cdot MgCl ₂ \cdot 6H ₂ O							
d) FeS	$O_4 \cdot (NH_4)_2 SO_4 \cdot 6I_4$	H ₂ 0						
128. The ca	rbon of microphon	es used in public address s	ystems is :					
a) Graj	ohite 🚺	b) Charcoal	c) Coke	d) Lamp black				
129. Alumir	ium is extracted b	y the electrolysis of						
a) Alur	nina		b) Bauxite					
c) Mol	ten cryolite		d) Alumina mixed with m	olten cryolite				
130. In Gold	Schmidt reaction,	certain metallic oxides are	e reduced to the metallic sta	ate by-heating with:				
a) Met	allic magnesium	b) Metallic aluminium	c) Metallic iron	d) Sodium metal				
131. Formu	la for agate is							
a) Na ₂	SiO ₃	b) $K_2 0. Si O_2. Al_2 O_3$	c) SiO ₂	d) CaF ₂				
132. Pure C	0 can be obtained	from:						
a) Sodi	um oxalate							
b) Nicł	el tetracarbonyl							
c) Fori	nic acid							
d) Carl	d) Carbon dioxide and hydrogen							
133. Which	is used for the mar	nutacture of optical instrum	nents?					
a) Wat	er glass	b) Pyrex glass	c) Flint glass	d) Jena glass				
134. Red lie	juor is :							
a) (CH	₃ COO) ₃ AI	DJ AI(UH) ₃	$CJ AI_2(CU_3)_3$	a) $AI_2(5U_4)_3$				

135. Which element has a limited coordination number of four? a) Sn b) C c) Si d) Ge 136. Aqueous ammonia is used as a precipitating reagent for Al³⁺ ions as AI(OH)₃ rather than aqueous NaOH, because: a) NH_4^+ is a weak base b) NaOH is a very strong base c) NaOH forms $[Al(OH)_4]^-$ ions d) NaOH forms [Al(OH)₂]⁺ ions 137. In Goldschmidt aluminothermic process, thermite contains b) 3 parts of Fe_2O_3 and 2 parts of Al a) 3 part of Al_2O_3 , and 4 part of Al c) 3 parts of Fe_2O_3 and 1 part of Al d) 1 parts of Fe_2O_3 and 1 part of Al 138. During the electrolysis of cryolite, aluminium and fluorine are formed in molar ratio b) 2:3 c) 1:1 d) 1:3 a) 1:2 139. Suppose you have to determine the percentage of carbon dioxide in a sample of a gas available in a container. Which is the best absorbing material for the carbon dioxide? b) Cold, solid calcium chloride a) Heated copper oxide c) Cold, solid calcium hydroxide d) Heated charcoal 140. The dissolution of $Al(OH)_3$ by a solution of NaOH results in the formation of: a) $[Al(H_20)_4(OH)]^{2+}$ b) $[Al(H_2O)_2(OH)_4]^$ c) $[Al(H_2O)_3(OH)_3]$ d) $[Al(H_2O)_6(OH)_3]$ 141. Prussic acid is the name of : d) HNC a) PH₃ b) HPO_3 c) HCN 142. Which gas is used in airated water? a) CO_2 c) CO b) SO_2 d) Water vapours 143. Which is not an ore of lead? a) Galena b) Anglesite c) Calamine d) Cerussite 144. Borax on heating with cobalt oxide forms a blue bead of: a) $Co(BO_2)_2$ b) CoBO₂ c) $Co_3(BO_3)_2$ d) $Na_3Co(BO_3)_2$ 145. Inorganic benzene is: a) BN b) BF₄ c) B_2H_6 d) $B_3N_3H_6$ 146. The correct formula of borax is: a) $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$ b) $Na_2B_4O_7 \cdot 4H_2O$ c) $Na_2[B_4O_5(OH)_4] \cdot 10H_2O_5(OH)_4]$ d) $Na_2B_4O_7 \cdot 8H_2O$ 147. The formula of mineral borax is a) $Na_2B_4O_7$ b) $Na_2B_4O_7$. $4H_2O$ c) $Na_2B_4O_7$. $5H_2O$ d) $Na_2B_4O_7$. $10H_2O$ 148. The hardest compound of boron is: a) Boron oxide b) Boron nitride c) Boron carbide d) Boron hydride 149. For purification of alumina, the modern processes most useful when (i) the impurity present is a lot iron oxides and (ii) the impurity present is a lot of silica, are a) For (i) the Hall's process; for (ii) Baeyer's process b) For (i) Serpeck's process; for (ii) Baeyer's process c) For (i) Hall' process; for (ii) Serpeck's process d) For (i) Baeyer's process; for (ii) Serpeck's process 150. Carbon reacts with conc. H_2SO_4 to give : a) CO_2 , SO_2 , H_2O b) SO_2 , H_2O , COc) CO, H_2O d) CO_2 , H_2O 151. Massicot is prepared by: a) Heating tin in air all about 300°C b) Heating litharge

c) Heating red lead						
d) Heating lead nitrate	d) Heating lead nitrate					
152. Animal charcoal is used for decolourisation of sugar	because:					
a) It oxidizes coloured material						
b) It reduces coloured material						
c) It converts coloured material into colourless						
d) It adsorbs coloured material						
153. Which is used as disinfectant?						
a) Boric acid b) Sulphuric acid	c) Phosphorus acid	d) Phosphoric acid				
154. Which gas is liberated when Al_4C_3 is hydrolysed?						
a) CH_4 b) C_2H_2	c) C ₂ H ₆	d) CO ₂				
155. The coal form containing maximum percentage of ca	arbon is:					
a) Lignite b) Anthracite	c) Bituminous	d) Peat				
156. Water softner is						
a) Borax b) Zeolite	c) Both (a) And (b)	d) None of these				
157. Carbon dioxide is a gas but silica is a solid because :		N T				
, Carbon dioxide is composed of discrete covalent	CO ₂ molecules whereas sili	ca has continuous				
a) tetrahedral structure						
b) CO ₂ molecules are lighter than SiO ₂ molecules						
c) CO_2 is more acidic than SiO_2						
d) Melting point of silica is very high						
158. Alums are used for						
a) Tanning of leather b) Coagulation of blood	c) Purification of water	d) All of these				
159. On heating Al at 800°C in air, Al_2O_3 is formed. The re	eaction is:	2				
a) An endothermic reaction	$\mathbf{\nabla}$					
b) An exothermic reaction	>					
c) Reduction of aluminium	Y					
d) None of the above						
160. White lead is						
a) $PbCO_2PbO$ b) $PbCO_2$	c) $Ph(OH)_{2}$ $2Ph(O_{2})_{3}$	d) $PhSO_{\ell}$ PhO_{ℓ}				
161 Hot and conc HNO _{α} react with carbon to form:	c) i b(oii)/i = bdo3	aj 1 500 4.1 50				
a) $(0_2$ b) $(0$	c) C2H=COOH	d) $NO_2 + CO_2$				
162 Anodised aluminium is:	c) a ₆ 11500011					
a) Al obtained at anode						
h) Al prepared electrolyfically						
c) Alloy of Al containing 95% Al						
d) Al electrolytically coated with aluminium oxide						
163 AlCla is						
a) Anhydrous and ionic	h) Covalent and basic					
c) Anhydrous and covalent	d) Co-ordinate and acidic					
164 The variety of glass used for the preservation of egg	vs is [,]					
a) Jena glass h) Safety glass	c) Water glass	d) Bottle glass				
165 Which of the following is used for making ontical in	cj water glass	uj bottic glass				
a) SiO.	c) SiH.	d) SiC				
166 Tincel is	cj 5111 ₄					
(100, 100, 100, 100, 0) b) NaNO.	c) Na B_{10} 10H 0	d) NaCl				
167 Tin (II) fluoride (anhydrous) can be obtained by	cj ma2D407.101120	uj 11001				
a) Treating tin with \mathbf{F} b) Treating tin with $\mathbf{U}\mathbf{F}$	c) Dissoluting SnO in UE	d) None of these				
a) frequing an white r_2 b) frequing an with r_2 168 Which of the following is the correct statement for r	الا تانان ماند والمنافعة من المعالمة مع المعالمة مع المعالمة مع المعالمة مع المعالمة مع المعالمة مع المعالمة م	uj none of ulese				
a) It is an active form of lead	h) It decomposes into Dh	and CO.				
a) Its molecular formula is Db. O	d) It decomposes into Pb	and O_2				
c_j is more than tormula is i $b_2 O_3$	aj naccomposes mu r D	0 unu 02				

169. Potash alu	n dissolves in	water to give a/an		
a) Acidic s	olution of H ₂ S	04	b) Alkaline solution	
c) Acidic s	olution of HCl		d) Neutral solution	
170. Which is th	e least pure fo	orm of carbon?	-	
a) Graphit	9	b) Lamp black	c) Wood charcoal	d) Animal charcoal
171. The calorif	ic value of car	bon is about kcal.	,	,
a) 7.8		b) 15.6	c) 47	d) 94
172. Aluminium	metal is refir	ied by	-) -:	
a) Serneck	's process	b) Baever's process	c) Hall's process	d) Hoope's process
173 The metal	which does no	t form ammonium nit	cate by reaction with dil HN(Da is
a) Al		h) Fe	c) Ph	d) Mg
174 Which one	of the followi	ng metals work as a re	duction in smelting process	
2) (of the followi	h) Al	c) 7n	d) None of these
175 The incorr	act statement	/s among the following	tis/are	uj None of these
IV NCL d	bos not ovist w	vhilo DCl doos		
V Load n	refers to form	totravalent compound		
V. Leau p		de ave not equal in the	lS.	~ X
VI. The un	ee C = 0 bond	us are not equal in the	carbonate ion.	
	$\frac{1}{2}$ and NO are	paramagnetic.		
a) I, III and	IV			
b) I and IV				
c) II and II	l			
d) I and III				
176. Which of t	ie following is	known as inorganic b	enzene?	
a) Borazin	5 2	b) Phosphonitrilicac	id c) Boron nitride	d) <i>p</i> - dichlorobenzene
177. Which eler	nent does not	exhibit allotropy?		
a) C		b) Sn	c) Si	d) Pb
178. Carbon mo	noxide will no	ot reduce:		N =
a) Litharge		b) Cupric oxide	c) Zinc oxide	d) Ferric oxide
179. Graphite is	made by heat	ting coke with silica for	r many hours in a :	
a) Blast fu	nace			
b) Blast of	steam under p	oressure		
c) In prese	nce of air	ΔV		
d) High ele	ctric arc furna	ice		
180. When carb	on monoxide	is passed over solid ca	ustic soda heated to 200°C, i	t forms
a) Na ₂ CO ₃		b) CH ₃ COONa	c) NaHCO ₃	d) HCOONa
181. In purifica	ion of bauxite	by hall's process		
a) Bauxite	ore is fused w	rith Na ₂ CO ₃		
b) Bauxite	ore is heated	with NaOH solution at	50°C	
c) Bauxite	ore is heated	with NaHCO ₃		
d) Bauxite	ore is fused w	ith coke and heated at	1800°C in a current of nitro	gen
182. Which of t	ie following is	not a Lewis acid?		
a) SiF ₄		b) FeCl ₃	c) BF ₃	d) C_2H_4
183. Sapphire is	a mineral of:			
a) Cu		b) Zn	c) Al	d) Hg
184. Which is/a	re fire extingu	iishers?		
a) Dry pov	der containin	g sand + NaHCO ₃		
b) NaHCO ₃	$+ H_2SO_4$			
c) Foamite	extinguishers	s containing NaHCO ₃ +	$+ \operatorname{Al}_2(\operatorname{SO}_4)_3$	
d) All of th	ese			
185. Boron nitr	de has the str	ucture of the type		
a) Graphit	e type		b) Diamond type	

c) Both diamond and graphite type 186. The structure and hybridization of Si(CH ₂) ₄ is :	d) NaCl type	
a) bent, sn b) trigonal, sn ²	c) octahedral sn^3d	d) tetrahedral. sn^3
$187. Al_2O_2$ can be converted to anhydrous AlCl ₂ by h	leating:	,
a) A mixture of Al ₂ O ₂ and carbon in dry Cl ₂ gas		
b) Al ₂ O ₂ with Cl ₂ gas		
c) Al_2O_2 with HCl gas		
d) Al_2O_2 with NaCl in solid state		
188. Eka aluminium is:		\frown
a) Gallium b) Germanium	c) Indium	d) Scandium
189. Elements of group IV used in semiconductors a	re	
a) C. Si. Ge b) Si. Ge. Sn	c) Si. Ge	d) B. Si. Ge
190. The acid used for etching the glass is:	-, -,	
a) Sulphuric acid b) Perchloric acid	c) Hydrofluoric acid	d) Aqua-regia
191. The greatest percentage of CO is in:	ej nijarenaone acta	u)quu rogiu
a) Coal gas b) Producer gas	c) Water gas	d) Oil gas
192. The process used for purification of bauxite are	containing iron oxide impuri	ty is known as:
a) Hoope's process b) Serpeck's process	c) Baever's process	d) Electrolytic process
193. Which statement is correct?		
a) BCl ₂ and AlCl ₂ are both Lewis acids and BCl ₂	is stronger than AlCla	
b) BCl ₂ and AlCl ₂ are both Lewis acids and AlCl ₂	is stronger than BCla	
c) BCl_2 and $AlCl_2$ are both equally strong Lewis	acids	
d) Both BCl ₂ and AlCl ₂ are not Lewis acids		
194. In the electrolysis of alumina, cryolite is added	to:	
a) Lower the melting point of alumina		
b) Increase the electrical conductivity		
c) Both (a) and (b)	· ·	
d) Remove impurities from alumina		
195. Which is true for an element <i>R</i> present in III gro	oup of the periodic table?	
a) It has oxidation state of + 4	b) It is gas at room tem	perature
c) It forms R_2O_3	d) It forms RX_2	
196. In III A group, Tl (thalium,) shows +1 oxidation	state while other members s	how +3 oxidation state, why?
a) Presence of lone electron in Tl	b) Insert pair effect	-
c) Large ionic radius of Tl ion	d) None of the above	
197. Which of the following elements is a metalloid?	-	
a) C b) Ge	c) Bi	d) Sn
198. Hydrogen forms a bridge in the chemical struct	ure of:	
a) Hydrogen peroxide b) Lithium hydride	c) Diborane	d) Sodium peroxide
199. Which of the following is a use of alum?		
a) Making explosives b) Bleaching clothes	c) Water softening	d) All of these
200. Red lead in an example of a/anoxide		
a) Basic b) Mixed	c) Super	d) Amphoteric
201. Carbon monoxide on heating with sulphur gives	S:	
a) COS b) SO ₂	c) SO ₃	d) None of these
202. Crystalline varieties of carbon is :		
a) Graphite b) Coke	c) Peat	d) Gas carbon
203. Formula of felspar is		
a) $K_2 O. Al_2 O_3. 6SiO_2$	b) K ₂ O ₃ . Al ₂ O ₃ . 6Si ₂ O ₂ .	2H ₂ O
c) Al_2O_3 . $2SiO_2$. $2H_2O_3$	d) 3Mg0. 4SiO ₂ . H ₂ O	
204. The ratio of Fe_2O_3 and Al, in thermite is		

a) 1:3	b) 1:2	c) 3:1	d) None of these
205. The relative Lew	is acid character of boron triha	ides is in the order	
a) BI ₃ > <i>BB</i> r ₃ >	$BF_3 > BCl_3$	b) $BI_3 > BBr_3 > BCl_3 >$	> <i>B</i> F ₃
c) $BF_3 > BCl_3 >$	$BBr_3 > BI_3$	d) $BCl_3 > BF_3 > BI_3 >$	BBr ₃
206. Alum is added to	muddy water because		
a) It acts as disin	fectant		
b) It results in co	agulation of clay and sand		
c) Clay is soluble	in alum, hence removes it		
d) It makes wate	r alkaline which is good for hea	lth	· · ·
207. The reducing age	ent in thermite process is		
a) MnO ₂	b) BaO ₂	c) Mg	d) Al
208. There are two H-	bridge bonds in diborane mole	cule because there are:	
a) Only 12 electr	ons		
b) 14 electrons			
c) 2 electrons les	s than required for bonding		
d) Two electrons	more than required for bondin	g	X
209. Name of structur	e of silicates in which three oxy	gen atoms of [SiO ₄] ^{4–} are sha	ared is
a) Pyrosilicate		b) Sheet silicate	S
c) Linear chain s	ilicate	d) Three dimensional si	licate
210. Pb reacts with di	lute HNO ₃ produces		
a) NO	b) NH ₄ NO ₃	c) N ₂ O ₅	d) NO ₂
211. Aluminium appe	ars like gold when it is mixed w	ith:	
a) 90% Cu	b) 50% Ni	c) 90% Sn	d) 50% Co
212. Purification of all	uminium done by electrolytic re	efining is known as	
a) Hoope's proce	ss b) Serpeck's process	c) Hall's process	d) Baeyer's process
213. Which of the follo	owing is used in making printer	's ink, shoe polish, black varn	ish and paint?
a) Lamp black	b) Bone black	c) Carbon black	d) None of these
214. The nottest part	of the Bunsen burner flame is:	-	
a) Top of the out	er zone		
c) A nucle below (
d) Blue zone			
215 In the alumino-th	permic process aluminium acts	25'	
a) An oxidizing a	gent b) A flux	c) A reduction agent	d) A solder
216 Diborane reacts	with water to form.	ej meddelon agene	uj n soluci
a) HBO ₂	b) H ₂ BO ₂	c) $H_2BO_2 + H_2$	d) H ₂
217. The chief impurit	ty present in red bauxite is	0) 1132 03 1 112	~) <u>/</u>
a) SiO ₂	b) Fe ₂ O ₃	c) K_2SO_4	d) NaF
218. Be and Al exhibit	s many properties which are si	milar but the two elements di	iffer is:
a) Exhibiting am	photeric nature in their oxides		
b) Forming polyr	neric hydrides		
c) Forming coval	ent halides		
d) Exhibiting max	ximum covalency in compound	S	
219. Borax bead test i	s responded by:		
a) Divalent meta	ls		
b) Heavy metals			
c) Light metals			
d) Metal which fo	orms coloured metaborates		
220. A fibrous minera	l which can withstand red hot f	lames without any damage is	
a) Talc	b) Glass wool	c) Soap stone	d) Asbestos

221	. Lead may be replaced fron	n its salt solution by:		
	a) Cu	b) Au	c) Ag	d) Mg
222	. Unstable lead compounds	are		
	a) PbCl ₄ , PbBr ₄ and PbI ₄		b) PbCl ₂ , PbBr ₂ and PbI ₂	
	c) PbO, PbO ₂ and Pb ₃ O ₄		d) $PbCl_4^{2-}$, $PbCl_6^{2-}$	
223	. Which acid is formed when	n SiF ₄ reacts with water?		
	a) H₂SO₄	b) $H_2 SiF_4$	c) H₂SiF₄	d) None of these
224	. Which of the following rea	ctions occurs at the cathod	le during the charging of le	ad accumulator?
	a) $Ph^{2+} + 2e \rightarrow Ph$			\sim
	h) $Ph^{2+} + SO_{2-}^{2-} \rightarrow PhSO_{2-}$			
	c) Ph \rightarrow Ph ²⁺⁺ 2 <i>a</i>			
	d) $PhSO \pm 2H O \longrightarrow PhO$	$\pm 4H^{+} \pm 50^{2-} \pm 2a$		
225	$1000_4 + 211_20 \rightarrow 100_2$	$2 \pm 411 \pm 304 \pm 26$	nd	
223	a) Ionic	b) Coordinato	c) Hydrogon bridgo	d) None of these
226	Which one shows most pro	b) coordinate	cj nyurogen briuge	uj None of these
220	a) Si	b) Sn	c) Dh	a) c
227	a) 51 Which of the following is a	uj sli	C) FD	u) c
221	. Which of the following is a	h) Calamina	a) Malachita	d) Delemite
220	a) Galella Coldiore of Nonoloon ormu	DJ Calalille	c) Malacille	a) Dolollite
220	the tim buttone of their uni	forme Mile at Alps during freez	ing winter suffered a serio	us problem as regards to
	the un buttons of their unit	iorms. while metallic un d	outions got converted to gr	ey powder. This
	transformation is related			
	a) An interaction with nitr	ogen of the air at very low	to temperatures	
	b) A change in the partial p	bressure of oxygen in the a		
	c) A change in the crystall	ine structure of tin		
220	a) An interaction with wat	er vapour contained in the	e numia air	
229	$\sim \ln SiF_6^2$ and $SiCl_6^2$ which c	one is known and wny?	$1 > C(T^2 = 1)$	
	a) SIF_6^2 because of small s	ize of F	b) SIF_6^2 because of large s	lize of F
	c) SiCl ₆ ^{$-$} because of small s	size of Cl	d) SiCl ₆ ² because of large $\frac{1}{2}$	size of Cl
230	. Which of the following has	s structure similar to graph	iite?	
	a) BN	b) B	c) B ₄ C	d) B ₂ H ₆
231	. Tin(II) chloride (anhydrou	is) can be obtained :		
	a) By melting tin in an atm	osphere of Cl ₂		
	b) By treating tin with con	c. HCI and heating the proc	luct to dryness	
	c) By treating tin with dil.	HCl and heating the produ	ct to dryness	
	d) By treating tin with HCl	(gas)		
232	. Which statement is not tru	ie about potash alum?		
	a) Its empirical formula is	$KAI(SO_4)_2 \cdot 12H_2O$		
	b) Its aqueous solution is b	oasic in nature		
	c) It is used in dyeing indu	istries		
	d) On heating it melts and	loses its water of crystalliz	zation	
233	. Solder is an alloy of :			
	a) Pb, Sb and Sn	b) Pb and Sn	c) Pb, Bi and Sn	d) Sn, Sb and Cu
234	The thermal stability orde	r for group 14 halides is:		
	a) GeX $_2 < \text{Si}X_2 < \text{Sn}X_2 <$	PbX_2		
	b) Si X_2 < Ge X_2 < Pb X_2 <	$\lesssim \text{Sn}X_2$		
	c) Si X_2 < Ge X_2 < Sn X_2 <	PbX ₂		
	d) PbX $_2 < \text{Sn}X_2 < \text{GeX}_2 < $	$<$ Si X_2		
235	. Mica is chemically:			
	a) Potassium alumino silic	ate having sheet structure		
	b) Calcium alumino silicate	e having fibrous structure		

c) Calcium magnesium silicate having three dimens	ional network	
d) Hydrated sodium alumino silicate having three d	imensional network	
236. When tin is treated with concentrated nitric acid		
a) It is converted into stannous nitrate	b) It is converted into sta	nnic nitrate
c) It is converted into metastannic acid	d) It becomes passive	
237. An element 'X' which occurs in the first short period	d has an outer electronic sti	ructure $s^2 p^1$. What is the
formula and acid-base character of its oxides?		-
a) XO_3 , basic b) X_2O_3 , basic	c) $X_2 O_3$, acidic	d) XO_2 , acidic
238. Pb and Sn are extracted from their Chief ores by:	· - ·	
a) Carbon reduction and self reduction		\sim
b) Self reduction and carbon reduction		
c) Electrolysis and self reduction		
d) Self reduction and electrolysis		
239. Boron readily dissolves in:		
a) Conc. HCl		
b) Fused NaOH at 673 K	A	
c) Fused Na ₂ CO ₃ at 1173K	Ċ	
d) A mixture of conc. HNO ₃ and conc. $H_2SO_4(1:2)$		
240. The borax bead is chemically:		
a) B_2O_3 b) $Na_2B_4O_7$	c) Na_3BO_3	d) $B_2O_3 + NaBO_2$
241. Inorganic benzene is		, , , , , , , , , , , , , , , , , , , ,
a) $B_3H_3N_3$ b) BH_3NH_3	c) $B_3H_6N_3$	d) $H_3B_3N_6$
242. Boric acid is prepared from borax by the action of:		, , , , , , , , , , , , , , , , , , , ,
a) Hydrochloric acid b) Sodium hydroxide	c) Carbon dioxide	d) Sodium carbonate
243. Which of the following does not contain silicon?	$\mathbf{\nabla}'$	-
a) Kaoline b) Agate	c) Ruby	d) Quartz
244. Which one of the following statements about the ze	olites is false?	
a) They are used as cation exchangers.		
b) They have open structure which enables them to	take up small molecules.	
c) Zeolites are aluminosilicates having three dimen	sional network.	
d) Some of the SiO ₄ ⁴⁻ units are replaced by AlO ₄ ⁵⁻ and	1 AlO_6^{9-} ions in zeolites.	
245. Least stable hydride is :	0	
a) Methane b) Plumbane	c) Silane	d) Stibine
246. Which member of group 13 is liquid at 30°C?		-
a) B b) Al	c) Ga	d) Tl
247. Which fuel has the highest calorific value (kJ/kg)?	-	-
a) Charcoal b) Kerosene	c) Wood	d) Cow dung
248. Lead sulphate is soluble in :		
a) conc. HNO_3 b) $KMnO_4/H^+$	c) K ₂ Cr ₂ O ₇ /H ⁺	d) None of these
249. Dry ice is		
a) Solid H_2O b) Solid CO_2	c) Solid N ₂ O ₄	d) Solid NH ₃
250. Each B – H – B bridge in B_2H_6 is formed by the share	ring of	
a) 2 electrons b) 4 electrons	c) 1 electrons	d) 3 electrons
251. Which one of the following ores is best concentrated	d by froth-floatation metho	d?
a) Magnetite b) Cassiterite	c) Galena	d) Malachite
252. Which metal is powdered, suspended in oil and use	d as paint?	
a) Fe b) Sn	c) Ag	d) Al
253. Aqueous solution of potash alum is:		
a) Alkaline b) Acidic	c) Neutral	d) Soppy
254. In alumino thermic process, Al is used as		

 255. Coal gas: a) Burns with a smoky flame b) Burns with non-smoky flame c) Is not used for lighting purpose d) Is not a good fuel 256. Which halide is least stable and has doubtful existence? a) Cl₄ b) Gel₄ c) Snl₄ d) Pbl₄ 257. Carbon suboxide C₃O₂ has a) Linear structure c) Trigonal planar structure d) Distorted tetrahedral structure 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 259. All₃, when react with CCl₄, gives a) AlCl₂ b) Cl₄ c) Al₄C₂ c) Al₄C₂ c) Al₄C₂ c) Al₄C₂ 				
 a) Burns with a smoky flame b) Burns with non-smoky flame c) Is not used for lighting purpose d) Is not a good fuel 256. Which halide is least stable and has doubtful existence? a) Cl₄ b) GeI₄ c) SnI₄ d) PbI₄ 257. Carbon suboxide C₃O₂ has a) Linear structure c) Trigonal planar structure d) Distorted tetrahedral structure 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 				
b) Burns with non-smoky flame c) Is not used for lighting purpose d) Is not a good fuel 256. Which halide is least stable and has doubtful existence? a) CI_4 b) GeI_4 c) SnI_4 d) PbI_4 257. Carbon suboxide C_3O_2 has a) Linear structure c) Trigonal planar structure c) Trigonal planar structure d) Distorted tetrahedral structure 258. On strong heating lead nitrate gives: a) PbO, NO, O_2 b) PbO, NO, NO_2 c) PbO_2 , PbO , NO_2 d) PbO , NO_2 , O_2 259. AlI ₃ , when react with CCI_4 , gives a) AlCl ₂ b) Cl ₄ c) Al ₄ C ₂ d) Al ₂ O ₂				
c) Is not used for lighting purpose d) Is not a good fuel 256. Which halide is least stable and has doubtful existence? a) CI_4 b) GeI_4 c) SnI_4 d) PbI_4 257. Carbon suboxide C_3O_2 has a) Linear structure b) Bent structure c) Trigonal planar structure d) Distorted tetrahedral structure 258. On strong heating lead nitrate gives: a) PbO, NO, O_2 b) PbO, NO, NO_2 c) PbO_2 , PbO , NO_2 d) PbO , NO_2 , O_2 259. AlI ₃ , when react with CCI_4 , gives a) AlCl ₂ b) Cl ₄ c) Al ₄ C ₂ d) Al ₂ O ₂				
d) Is not a good fuel 256. Which halide is least stable and has doubtful existence? a) CI_4 b) GeI_4 c) SnI_4 d) PbI_4 257. Carbon suboxide C_3O_2 has a) Linear structure b) Bent structure c) Trigonal planar structure d) Distorted tetrahedral structure 258. On strong heating lead nitrate gives: a) PbO, NO, O_2 b) PbO, NO, NO_2 c) PbO_2 , PbO , NO_2 d) PbO , NO_2 , O_2 259. AII_3 , when react with CCI_4 , gives a) $AICI_2$ b) CI_4 c) AI_4C_2 d) AI_2O_2				
 256. Which halide is least stable and has doubtful existence? a) CI₄ b) GeI₄ c) SnI₄ d) PbI₄ 257. Carbon suboxide C₃O₂ has a) Linear structure c) Trigonal planar structure d) Bent structure d) Distorted tetrahedral structure 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 259. AlI₃, when react with CCl₄, gives a) AlCl₂ b) Cl₄ c) Al₄C₂ c) Al₄C₂ 				
 a) CI₄ b) GeI₄ c) SnI₄ d) PbI₄ 257. Carbon suboxide C₃O₂ has a) Linear structure c) Trigonal planar structure b) Bent structure d) Distorted tetrahedral structure 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 259. All₃, when react with CCl₄, gives a) AlCl₂ b) Cl₄ c) Al₄C₂ c) Al₄C₂ 				
 257. Carbon suboxide C₃O₂ has a) Linear structure b) Bent structure c) Trigonal planar structure 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 259. All₃, when react with CCl₄, gives a) AlCl₂ b) Cl₄ c) Al₄C₂ d) Al₂O₂ 				
 a) Linear structure b) Bent structure c) Trigonal planar structure 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 259. All₃, when react with CCl₄, gives a) AlCl₂ b) Cl₄ c) Al₄C₂ d) Al₂O₂ 				
 c) Trigonal planar structure 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 259. All₃, when react with CCl₄, gives a) AlCl₂ b) Cl₄ c) Al₄C₂ d) Al₂O₂ 				
 258. On strong heating lead nitrate gives: a) PbO, NO, O₂ b) PbO, NO, NO₂ c) PbO₂, PbO, NO₂ d) PbO, NO₂, O₂ 259. All₃, when react with CCl₄, gives a) AlCl₂ b) Cl₄ c) Al₄C₂ d) Al₂O₂ 				
a) PbO, NO, O_2 b) PbO, NO, NO_2 c) PbO_2, PbO, NO_2 d) PbO, NO_2, O_2 259. AlI_3 , when react with CCl_4 , gives a) $AlCl_2$ b) Cl_4 c) Al_4C_2 d) Al_2O_2				
259. All ₃ , when react with CCl_4 , gives a) AlCl ₂ b) Cl ₄ c) Al ₄ C ₂ d) Al ₂ O ₂				
a) $A C _2$ b) $C _4$ c) $A _4C_2$ d) $A _5O_2$				
260. All alums contain:				
a) One monovalent and one trivalent metal				
b) Both monovalent metal				
c) One divalent and one monovalent metal				
d) Both divalent metal				
261. Moderate electrical conductivity is shown by				
a) Silica b) Graphite c) Diamond d) Carborundum				
262. The molecules of aluminium chloride in vapour state:				
a) Have no shape				
b) Are shaped like a plane triangle				
c) Are round				
d) Are like randomly broken bricks				
263. The correct order of increasing atomic radii, is				
a) $B < Al < Ga$ b) $Ga < Al < B$ c) $Al < B < Ga$ d) $B < Ga < Al$				
264. Identify the statement that is not correct as far as structure of diborane is concerned				
a) Each boron atom forms four bonds in diborane				
b) There are two bridging hydrogen atoms in diborane				
c) The hydrogen atoms are not in the same plane in diborane				
d) All B–H bonds in diborane are similar				
265. Which of the following is not an ionic trihalide?				
a) AIF_3 b) BF_3 c) InF_3 d) GaF_3				
266. Identify B in the following reaction,				
$H_4SiO_4 \xrightarrow{1000 \text{ C}} A \xrightarrow{\text{carbon}} B + CO$				
$-H_2O$ Δ				
a) Corundum b) Quartz c) Silica d) Carborundum				
267. The stability of hydrides of carbon family is in the order				
a) $CH_4 > SiH_4 > GeH_4 > SnH_4 > PbH_4$ b) $CH_4 < SiH_4 < GeH_4 < SnH_4 < PbH_4$				
\sim c) CH ₄ > SnH ₄ > GeH ₄ > SiH ₄ > PbH ₄ d) None of the above				
268. The number of electrons present in the valency shell of group 13:				
a) One b) Two c) Three d) Zero				
269. The straight chain polymer is formed by:				
a) Hydrolysis of $(CH_2)_2$ SiCl ₂ followed by condensation polymerisation				
a) Hydrolysis of $(CH_3)_2$ SiCl ₂ followed by condensation polymerisation				
a) Hydrolysis of (CH ₃) ₂ SiCl ₂ followed by condensation polymerisation b) Hydrolysis of (CH ₃) ₃ SiCl followed by condensation polymerisation				
 a) Hydrolysis of (CH₃)₂ SiCl₂ followed by condensation polymerisation b) Hydrolysis of (CH₃)₃ SiCl followed by condensation polymerisation c) Hydrolysis of CH₃SiCl₃ followed by condensation polymerisation 				

270. Moissan boron is		
a) Amorphous boron of ultra purity	b) Crystalline boron of u	ltra purity
c) Amorphous boron of low purity	d) Crystalline boron of lo	ow purity
271. Which of the boron compound is optically active?		
a) Boron trifluoride b) Boron anhydride	c) Borosalicylic acid	d) Sodium tetraborate
272. Extraction of lead by reduction methods is done by	7	2
a) Adding more galena into reverberatory furnace		
b) Adding more galena and coke into the reverbera	atory furnace	
c) Self reduction of oxide from sulphide present in	the furnace	\frown
d) Adding more lead sulphate into reverberatory fu	urnace	
273. Foramtion of in-numberable compounds of carbon	is due to its	
a) High reactivity	b) Catenation tendency	
c) Covalent and ionic tendency	d) Different valency	
274. Moissan boron is		
a) Amorphous boron of low purity	b) Crystalline boron of lo	ow nurity
c) Amorphous boron ultra purity	d) Crystalline boron of u	ltra nurity
275 Boric acid is used in carom boards for smooth glidi	ing of nawns because	licita partey
a) $H_2 BO_2$ molecules are loosely chemically honded	and hence soft	
b) Its low density makes it fluffy	and hence sole	
c) It can be nowered to a very small grain size		
d) H-bonding in H-BO, gives it a layered structure		
276 Jodine is decolourised by:		
270.100111111111111111111111111111111111	c) SnCl	
277 Ouartz is an example of	cj sha <u>z</u>	u) Alci3
277. Qual tz is all example of	h) Shoot cilicato	
a) Cuclic cilicato	d) Three dimensional ne	twork silicato
278 In aluminates coordination number of Al is:	a) Three unnensional ne	stwork sincate
270. In automates coordination number of A13.	c) 3	d) 1
279 Water as is	c) 5	u) I
275. Water as is a) $CO \pm N$ b) $CO \pm CO \pm CH$	c) $(0 \pm N)$	4) CO + H
280 The inert form of carbon is:	$C_{1} C_{2} + N_{2}$	$u_{1}^{2} c_{0} + n_{2}^{2}$
a) Diamond b) Cranbite		d) Charcoal
281 Calorific value of producer gas is low because of	c) coai	u) charcoar
2) High per cent of N b) I ow per cent of CO	c) High per cent of CO	d) Low per cent of N
292 Droducor gas is the mixture of	c) high per cent of co	$u_1 \text{ Low per cent of } W_2$
202.110 ducter gas is the mixture of $b = b = 0$	c) $(0 \pm water warpour)$	d) N \pm CH
202 Which of the following has the minimum heat of di	cj co + water vapour	$u_1 u_2 + c u_4$
203. which of the following has the minimum heat of the $205.$	5500100011	
a) $[(CH_3)_3 N \rightarrow B(CH_3)_3]$ b) $[(CH_3) N \rightarrow B(CH_3)_5]$		
$P(CH_3) = P(CH_3) = P(CH$		
$C = [(CH_3)_3 N \longrightarrow D(CH_3)_2 F]$		
u) $[(\Box \Pi_3)_3 N \rightarrow D(\Box \Pi_3)_3]$		
284. The most reactive form of carbon is:		d) Characal
a) Diamonu D) Graphite		d) Charcoal
285. Which of the following compounds has peroxide in	nkage?	
a) PD_2U_3 D) UU_2	$CJ PDU_2$	uJ SIO ₂
286. Which is not used as pigment in paints?		
a) Lead dioxide b) White lead	cJ Lead chromate	aj Pb ₃ U ₄
287. Aluminium does not react with:		
a) NaUH b) HCl	cj N ₂	aj hnu ₃
288. Thallium shows different oxidation states because:		
a) Of its high reactivity		

	b) Of inert pair of electron	n		
	c) Of its amphoteric nature	re		
	d) It is a transition metal			
289.	. The soldiers of Napolean to the tin buttons of their	army while at Alps during f uniform. White metallic tin	reezing winter suffered a s buttons got converted to	serious problem as regards grey powder. This
	transformation is related	to		
	a) A change in the crystal	line structure of tin	b) An interaction with nit temperature	rogen of the air at very low
	c) A change in the partial air	pressure of oxygen in the	d) An interaction with wa humid air	ter vapour contained in the
290.	. The structure of BF ₃ is			
	a) Planar triangular	b) Pyramidal	c) Tetrahedral	d) T-shaped
291.	. Name the type of the stru	cture of silicate in which or	he oxygen atom of $[SiO_4]^{4-}$	is shared:
	a) Three dimensional	b) Linear chain silicate	c) Sheet silicate	d) Pyrosilicate
292.	. The IUPAC name of comp	lex $K_3[Al(C_2O_4)_3]$ is:	,	
	a) Potassium alumino-ox	alate		
	b) Potassium trioxalatoal	uminate (III)	Ċ	
	c) Potassium aluminium	(III) oxalate		
	d) Potassium trioxalatoal	uminate (VI)		·
293	. CO behaves as			
_,	a) Lewis acid	h) Lewis base	c) Amphoteric oxide	d) None of these
294	Addition of excess of sodi	um hydroxide solution to s	tannous chloride solution.	we obtain:
_ ,	a) $Sn(OH)_{2}$	b) $SnO_2 \cdot H_2O$	c) Na $_{\rm SnO}_{\rm 2}$	d) $Na_2 SnO_2$
295	Ammonical CuCl absorbs:			
2,0		h SO_{2}	c) H ₂ SO.	d) CO
296	Aluminium hydroxide is s	soluble in excess at sodium	hydroxide forming the ion	
2,00	a) $A O_{3}^{3+}$	h) AlO_{2}^{-}	c) AlO_3^{3-}	d) Al ₂ O _{$\overline{2}$}
297	The refractive index of di	amond is highest among so	lids Its value is	a) m203
L)//.	a) 2 225	h) 3 235	c) 2 15	d) 2 417
298	The correct statement wit	th respect to carbon monox	ride is:	a) 2.117
270	a) It combines with water	r to give carbonic acid		
	b) It reacts with haemogle	obin in red blood cells.		
	c) It is a powerful oxidizi	ng agent.		
	d) It is used to prepare ae	rated drinks.		
299	. SiF₄ gets hydrolysed givir	ng		
	a) SiO ₂	b) Si(OH)₄	c) Si(OH) ₂ F ₂	d) H₂SiF₄
300	. Highest electronegativity	among the following is for:	-) - (-) 2 2	5 2 0
	a) C	b) Si	c) Sn	d) Pb
301	Addition of SnCl ₂ to HgCl ₂	gives precipitate	0) 011	
	a) White turning to red	2 8 FF	b) White turning to grev	
	c) Black turning to white		d) None of the above	
302	The stability of dihalides	of Si. Ge. Sn and Pb increase	es steadily in the sequence	
	a) GeX ₂ $< SiX_2 < SnX_2 <$	CPbX ₂	b) Si $X_2 < GeX_2 < PbX_2 <$	$\leq SnX_{2}$
	c) Si $X_2 < GeX_2 < SnX_2 <$	PhX_{2}	d) $PhX_2 < SnX_2 < GeX_2$	$< SiX_2$
303	PbO is	·Z		· - · · · 2
550	a) Acidic	b) Amphoteric	c) Basic	d) Neutral
304	Among the following the	maximum covalent charact	er is shown by the compou	ind:
551	a) FeCl ₂	b) SnCl ₂	c) AlCl ₂	d) MgCl ₂
305	Ashestos is chemically	~; 511012	<i>cj</i> 11013	~, ····································
505	a) Silicate of calcium and	magnesium		
	, sincure of culture and			

	b) Calcium alumino silicate		
	c) Magnesium alumino silicates		
	d) Calcium silicate + calcium aluminates		
306	. Living in the atmosphere of CO is dangerous becaus	se :	
	a) It reduces organic matter of tissues		
	b) Dries up the blood		
	c) Combines with O_2 present inside to form CO_2		
	d) Combines with haemoglobin and makes it incapa	able to absorb O_2	
307	. The structure of diborane contains:		
	a) four $2C-2e$ bonds and two $3C-2e$ bonds		
	b) two $2C-2e$ bonds and two $2C-2e$ bonds		
	c) two $2C-2e$ bonds and two $3C-2e$ bonds		
	d) four $2C-2e$ bonds and two $2C-2e$ bonds		
308	. Borax is:		
	a) Na $_2B_4O_7$ b) Na $_2B_4O_7 \cdot 4H_2O$	c) $Na_2B_4O_7 \cdot 7H_2O$	d) $Na_2B_4O_7 \cdot 10H_2O$
309	. Heating an aqueous solution of aluminium chloride	to dryness will give	
	a) $AI(OH)CI_2$ b) AI_2O_3	c) Al ₂ Cl ₆	d) AlCl ₃
310	. Hoope's process is used for the purification of the n	netal	F
~ · · ·	a) Cu b) Al	c) Zn	d) Ag
311	. Which of the following is the electron deficient mol	ecule?	
	a) PH_3 b) C_2H_6	c) SiH ₄	d) B_2H_6
312	Which is false in case of boric $acid(H_3BO_3)$?		
	a) It is soluble in hot water		
	b) It acts as a tribasic acid		
	c) It has a planer structure		
040	d) It acts as a monobasic acid		
313	Bleaching powder on treatment with CO_2 gives :		
214	a) O_2 b) O_2	C) HCI	d) H_2
314	A gas does not turn lime water milky, supports the	compustion of burning mag	nesium. It has no smell and
	is colourless. It extinguisnes a glowing splint but un	ider some circumstances rea	acts with oxygen and
	hydrogen. It is not poisonous. The gas is likely to be) Carbon diavida	d) Halium
215	a) water vapour b) Nitrogen	c) Carbon dioxide	a) Hellum
315	. Carbon burns in air and iorms two oxides CO and C	O_2 . This shows that carbon	nas:
	a) Two anoti opic for fils		
	c) Two isotopos		
	d) A electrons in valency shell		
216	Which compound is colid?		
510	a) CO	c) PH	d) SiO
217	a) CO_2 b) NII_3 The first LD of Al is smaller than that of Mg because	CJ F II3	u) 310 ₂
517	The first i.f. of Ai is smaller than that of Mg because a	5.	
	a) Atomic size of $Ai > Mg$		
	c) Atomic size of $AI < Mgs$		
~	d) Not known		
210	Which two of forces hind together the carbon atom	s in diamond?	
510	a) Coulombic forces bill together the carbon atom	c) Van der Waals' forcos	d) Covalant forces
210	Ordinary glass is:	cj vali del waals loices	uj covalent lorces
519	a) Sodium silicata		
	a) Source silicate		
	c) Calcium silicate		
	d) A mixture of calcium and sodium cilicates with a	ilica	
	a mixture of calcium and soutum sincates with s	inca	

320.	Fluorine is more electron	egative than either boron o	or phosphorus. What conclu	ision can be drawn from
	the fact that BF ₃ has no d	ipole moment but PF ₃ has?		
	a) BF ₃ is spherically sym	metrical, PF ₃ is not		
	b) BF ₃ molecule must be	linear		
	c) The atomic radius of P	is larger than the atomic ra	adius of B	
	d) The BF ₃ molecule mus	t be planar triangular		
321.	The materials for manufa	cture of ordinary glass are	:	
	a) Gypsum, sand and sod	ium carbonate		
	b) Sodium carbonate and	sand		\sim
	c) Sodium carbonate . lim	e stone and sand		\sim
	d) Potassium carbonate.	sand and lime stone		
322	The common semiconduc	tor is :		
0	a) Fe	b) Se	c) Ge	d) C 🔨
323	Alumina is	5,55		
020	a) Acidic	h) Amphoteric	c) Basic	d) None of these
324	In aqueous solution of Ga	Cl disproportionates to	cj basic	a) None of these
527.	a) CaCl and CaCl	b) Co and CoCl	c) CoCl and Co	d) CaCl and CaCl
325	Which of the following do	b) da allu da dig	c) daci ₂ and da	
525				d) ppr
226	aj Dr ₃ Sadium avalata an haatin	$UJ D\Pi_3$	CJ DUI3	u) bbi ₃
320.	a) CO ambr	g with conc. $\Pi_2 SO_4$ gives:		d) for and for
227	a) CO only	$D_{\rm J}$ CO allu CO ₂	$C_{1} C_{2} OIIIy$	0.50_2 and 50_3
327.	. In context with the indust	trial preparation of hydrog	en from water gas $(CO+H_2)$), which of the following is
	the correct statement?			
	a) CO is oxidised to $CO_2 v$	vith steam in the presence (of a catalyst followed by ab	sorption of CO_2 in alkali
	b) CO and H_2 are fraction	ally separated using differe	ences in their densities.	
	c) CO is removed by abso	rption in aqueous Cu_2Cl_2 s	olution	
	d) H_2 is removed through	occlusion with Pd		
328.	In the reaction $B_2O_3 + C$	$+ \operatorname{Cl}_2 \rightarrow A + \operatorname{CO}$. The A is		
	a) CCl ₂	b) BCl ₃	c) BCl ₂	d) B_2Cl_2
329	In electrolysis of aluminit	im oxide which of the follow	wing is added to accelerate	the process
	a) Silica	b) Silicate	c) Cryolite	d) Nickel
330	Silicon react with hot solu	ition of NaOH forming		
	a) Si(OH) ₄	b) Si(OH) ₂	c) SiO ₂	d) Na ₂ SiO ₄
331	. Silicon is usually found in			
	a) Sand	b) Coal	c) Lime	d) Lime stone
332	Synthetic gas is a mixture	of:		
	a) Steam and carbon mor	oxide		
	b) Carbon monoxide and	nitrogen		
	c) Hydrogen and carbon	monoxide		
	d) Hydrogen and methan	е		
333.	Lead pipes can be used fo	r:		
	a) Soft water			
	b) Hard water			
\checkmark	c) Both hard and soft wat	ter		
	d) None of the above			
334	Aluminium is not present	in which of the following r	nineral?	
	a) Crvolite	b) Felspar	c) Fluorspar	d) Mica
335	Diborane does not under	go cleavage reaction with	-) - mor open	,
200	a) Trimethyl amine	b) Ammonia	c) CO	d) CO ₂
336	Stannous oxide can be ob	tained by:	-,	,2
200	a) Heating tin strongly in	air		

b) Heating meta-stannic acid c) Heating tin(II) oxalate d) None of the above 337. Sugar of lead is d) (CH₃COO)₂Pb a) 2PbSO₄ · PbO b) $PbCO_3 \cdot Pb(OH)_2$ c) PbCO₃ 338. The fraction by volume of carbon monoxide in producer gas is about: a) 1/2 b) 1/3 c) 1/4 d) 2/3 339. The mass of carbon anode consumed (giving only carbon dioxide) in production of 270 kg of aluminium metal from bauxite by the Hall process is (Atomic mass of Al=27) d) 90 kg a) 180 kg b) 270 kg c) 540 kg 340. Carbon dioxide dissolves under pressure in water to give: a) An alkaline solution b) An acidic solution c) A neutral solution d) A highly alkaline solution 341. NaBH₄ is used in organic chemistry to convert: ≻снон =0 to a) $\sim C = 0$ to $> CH_2$ C=0 to -NC=0 to -NHOH 342. AlCl₃ exists in dimer because: b) Al has larger radius a) Al has greater I.P. c) High charge nucleus d) Incomplete *p* –orbital 343. Which of the following is not correct? a) SiO₂ is used as acidic flux b) The distance between the layers in graphite is 3.35×10^{-3} cm c) SiO₂ reacts with Na₂CO₃ and liberates CO d) The hybridisation of C in graphite is sp^2 344. When sand is heated with hydrofluoric acid and a wet rod is brought in contact with vapours evolving a white deposit is due to a) SiF₄ b) SiF₂ c) H_4SiO_4 d) None of these 345. Which is not a characteristic property of carbon? a) Catenation b) Multiple bond formation c) Availability of *d*-orbitals for bonding d) Highest electronegativity in the group 346. Which of the following is more stable? a) Pb⁴⁺ b) Sn^{4+} c) Ge⁴⁺ d) Si⁴⁺ 347. In diborane the two H - B - H angles are nearly a) 95°, 120° b) 60°, 120° c) 120°,180° d) 95°, 150° 348. Among the various allotropes of carbon : a) Diamond is the hardest and graphite is the softest b) Diamond is the hardest and coke is the softest c) Diamond is the hardest and lamp black is the softest. d) Coke is hardest and diamond is softest

349. Oxides of silicon are:

a) Liquids	b) Solids	c) Gases	d) None of these
350. Which metal is prot	ected by a layer of its own oxi	.de?	
a) Fe	b) Au	c) Ag	d) Al
351. Which one of the fol	lowing statements about the	zeolite is false?	
a) They are used as	cation exchangers		
b) Some of the SiO_4^4	units are replaced by AlO ₄ ^{5–}	and AlO_6^{9-} ions in zeolite	
c) They have open s	structure which enables them	to take up small molecules	
d) Zeolites are alum	inosilicates having three dime	ensional structure	
352. Alane is chemically:			
a) AlH ₃	b) $(AIH_3)_n$	c) LiAIH ₄	d) None of these
353. Which of the followi	ing form dimeric halides?		
a) Al	b) Mg	c) In	d) Ca
354. Pure H ₂ S gas can be	obtained by the action of wat	ter on:	
a) CuS	b) FeS	c) Flower of sulphur	d) Al_2S_3
355. BF_3 acts as acid acco	ording to:		
a) Lewis	b) Bronsted	c) Arrhenius	d) None of these
356. Which is used to pro	oduce smoke screens?	, C	A Y
a) Calcium phosphic	de b) Sodium carbonate	c) Zinc sulphide	d) Zinc phosphide
357. Alumino-thermy is a	a process involving :		
a) Reduction of oxid	le of a metal by heating with s	sodium	
b) Exothermic reduc	ction of metal oxides by heating	ng with sodium	
c) Reduction of oxid	les of a metal by heating with	carbon	
d) None of the above	e		
358. In extraction of alun	ninium the electrolyte is		
a) Fused cryolite wi	th felspar 🗸	b) Pure alumina in molt	en state
c) Fused cryolite wi	th fluorspar 🛛 🔺	d) Pure alumina with ba	auxite and molten cryolite
359. Nickeloy is an alloy	containing:		
359. Nickeloy is an alloy a) Ni + Cu + Cr	containing: b) Al + Cu + Cr	c) Ni + Al + Cu	d) None of these
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb 	containing: b) Al + Cu + Cr oon disulphide with chlorine i	c) Ni + Al + Cu n presence of aluminium chl	d) None of these loride, we get:
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 	containing: b) Al + Cu + Cr oon disulphide with chlorine i oride b) Chloroform	c) Ni + Al + Cu n presence of aluminium chl c) Chloral	d) None of these loride, we get: d) Methylene chloride
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which the second sec	containing: b) Al + Cu + Cr oon disulphide with chlorine i oride b) Chloroform forms neutral as well as acidio	c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is:	d) None of these oride, we get: d) Methylene chloride
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which to a) Sn 	containing: b) Al + Cu + Cr oon disulphide with chlorine i oride b) Chloroform forms neutral as well as acidio b) Si	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C 	d) None of these loride, we get: d) Methylene chloride d) P
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which the a) Sn 362. Carborundum is the 	containing: b) Al + Cu + Cr oon disulphide with chlorine i oride b) Chloroform forms neutral as well as acidio b) Si e commercial name of :	c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C	d) None of these loride, we get: d) Methylene chloride d) P
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which the alloy a) Sn 362. Carborundum is the alloy a) Al₂O₃ 	containing: b) Al + Cu + Cr oon disulphide with chlorine i oride b) Chloroform forms neutral as well as acidio b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ 	d) None of these loride, we get: d) Methylene chloride d) P d) SiC
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which f a) Sn 362. Carborundum is the a) Al₂O₃ 363. Which is amphoterial 	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound?	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ 	d) None of these loride, we get: d) Methylene chloride d) P d) SiC
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which t a) Sn 362. Carborundum is the a) Al_2O_3 363. Which is amphoteria a) Cr_2O_3	containing: b) Al + Cu + Cr bon disulphide with chlorine i bride b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which f a) Sn 362. Carborundum is the a) Al_2O_3 363. Which is amphoteria a) Cr_2O_3 364. Which of the followi	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash al	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ lum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which t a) Sn 362. Carborundum is the a) Al_2O_3 363. Which is amphoteria a) Cr_2O_3 364. Which of the followin a) Its aqueous solut	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash al ion is basic	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
 359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which t a) Sn 362. Carborundum is the a) Al₂O₃ 363. Which is amphoteria a) Cr₂O₃ 364. Which of the followit a) Its aqueous solut b) It is used in dyein 	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash al ion is basic ng industries	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ lum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which t a) Sn 362. Carborundum is the a) Al_2O_3 363. Which is amphoteria a) Cr_2O_3 364. Which of the followia a) Its aqueous solut b) It is used in dyein c) On heating it meli	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ hum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which t a) Sn 362. Carborundum is the a) Al_2O_3 363. Which is amphoteria a) Cr_2O_3 364. Which of the followia a) Its aqueous solut b) It is used in dyein c) On heating it mel d) Its empirical form	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash al ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H_3PO_4 c) Al_2O_3 lum?	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which the a) Sn 362. Carborundum is the a) Al ₂ O ₃ 363. Which is amphoteria a) Cr ₂ O ₃ 364. Which of the followin a) Its aqueous solut b) It is used in dyein c) On heating it mel d) Its empirical form 365.	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ hum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which t a) Sn 362. Carborundum is the a) Al_2O_3 363. Which is amphoteria a) Cr_2O_3 364. Which of the followia a) Its aqueous solut b) It is used in dyein c) On heating it mel d) Its empirical form 365.	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ lum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which f a) Sn 362. Carborundum is the a) Al ₂ O ₃ 363. Which is amphoteria a) Cr ₂ O ₃ 364. Which of the followin a) Its aqueous solution b) It is used in dyein c) On heating it mell d) Its empirical form 365.	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ hum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which is a) Sn 362. Carborundum is the a) Al_2O_3 363. Which is amphoteria a) Cr_2O_3 364. Which of the followin a) Its aqueous solut b) It is used in dyein c) On heating it mel d) Its empirical form 365.	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ lum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which f a) Sn 362. Carborundum is the a) Al ₂ O ₃ 363. Which is amphoteria a) Cr ₂ O ₃ 364. Which of the followi a) Its aqueous solut b) It is used in dyein c) On heating it mel d) Its empirical form 365.	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ hum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which is a) Sn 362. Carborundum is the a) Al ₂ O ₃ 363. Which is amphoteria a) Cr ₂ O ₃ 364. Which of the followin a) Its aqueous solut b) It is used in dyein c) On heating it mel d) Its empirical form 365.	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ hum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which f a) Sn 362. Carborundum is the a) Al ₂ O ₃ 363. Which is amphoteria a) Cr ₂ O ₃ 364. Which of the followi a) Its aqueous solut b) It is used in dyein c) On heating it mell d) Its empirical form 365. Silicate structure un c) $(Ci = O_{1})^{-6n}$	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ lum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which f a) Sn 362. Carborundum is the a) Al ₂ O ₃ 363. Which is amphoteria a) Cr ₂ O ₃ 364. Which of the followin a) Its aqueous solution b) It is used in dyein c) On heating it mell d) Its empirical form 365. Silicate structure un a) $(Si_4O_{11})_n^{-6n}$	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ hum? 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃ d) (SiO₄)⁻⁴
359. Nickeloy is an alloy a) Ni + Cu + Cr 360. By chlorinating carb a) Carbon tetrachlo 361. The element which is a) Sn 362. Carborundum is the a) Al ₂ O ₃ 363. Which is amphoteria a) Cr ₂ O ₃ 364. Which of the followin a) Its aqueous solut b) It is used in dyein c) On heating it mell d) Its empirical form 365. Silicate structure un a) $(Si_4O_{11})_n^{-6n}$ 366. Which of the followin	containing: b) Al + Cu + Cr b) Al + Cu + Cr b) Al + Cu + Cr b) Chloroform forms neutral as well as acidid b) Si commercial name of : b) Ca(H ₂ PO ₄) ₂ c compound? b) Mn ₂ O ₃ ing is not true about potash all ion is basic ng industries ts in its water of crystallization nula is KAl(SO ₄) ₂ · 12H ₂ O int of b) (Si ₂ O ₁₁) _n ⁻²ⁿ ing gives propyne on hydrolys	 c) Ni + Al + Cu n presence of aluminium chl c) Chloral c oxides is: c) C c) H₃PO₄ c) Al₂O₃ hum? on 	 d) None of these loride, we get: d) Methylene chloride d) P d) SiC d) Fe₂O₃ d) (SiO₄)⁻⁴

367. Which has highest bond	energy?		
a) F—F	b) C—C	c) N—N	d) 0—0
368. Which is not correct?			
a) Ge(OH) ₂ is amphoter	ic		
b) GeCl ₂ is more stable t	han GeCl ₄		
c) GeO ₂ is weakly acidic			
d) GeCl₄in HCl forms [Ge	eCl_2 ²⁻ ion		
369. The purest form of coal	is		
a) Peat	b) Anthracite	c) Bituminous	d) Lignite
370. On the addition of miner	ral acid to an aqueous solut	ion of borax, the compound	l formed is:
a) Borodihydride	b) Orthoboric acid	c) Metaboric acid	d) Pyroboric acid
371. Bell metal is an alloy of :		,	
a) Sn + Pb	b) Cu + Sn	c) Sn + Sb	d) None of these
372. The anhydride of carbor	nic acid H_2CO_3 is:	,	
a) $C_2 O_2$	b) CO_2	c) CO	d) Na_2CO_3
373. In Al_2Cl_6 , which stateme	ent is incorrect?	,	
a) Four Al–Cl bonds are	of same length and two of	different length	
b) Six Al–Cl bonds are o	of same length and two of di	fferent length	
c) The angle $Cl-Al-Cl$ is	s 110° and 93°		
d) The angle $Al-Cl-Al$ is	s 87°		
374. Carbon tetrachloride has	s zero dipole moment beca	use of:	
a) Planar structure			
b) Smaller size of C and	Cl atoms		
c) Regular tetrahedral s	tructure	G. XY	
d) None of the above	4		
375. Pyrosilicate ion is:		$\mathbf{\mathcal{Y}}$	
a) SiO_2^{2-}	b) SiO_4^{2-}	c) $Si_2 0_7^{6-}$	d) $Si_2O_6^{7-}$
376. Diaspora is:			
a) Al ₂ O ₃ .2H ₂ O	b) Al ₂ O ₃ . 3H ₂ O	c) Al ₂ O ₃	d) Al_2O_3 . H_2O
377. The main constituents o	f coal gas are:		
a) $CH_4 + CO + H_2$	b) $CO_2 + CO + H_2$	c) $CO + CO_2$	d) $CO + N_2$
378. Melting point is highest	for:		
a) B	b) Al	c) Ga	d) In
379. Producer gas, a fuel and	also a source of nitrogen is	obtained by:	
a) Passing steam over in	ncandescent coke		
b) Restricted supply of a	air through a bed of incande	escent coke	
c) Passing a mixture of s	steam and air over incandes	scent coke	
d) Spraying oil into hot r	retorts		
380. CO_2 and N_2 are non-supp	porters of combustion. How	vever, for putting out fires (CO_2 is preferred over N_2
because CO_2 :			
a) Does not burn			
b) Forms non-combustil	ble products with burning s	ubstances	
C) Is denser than nitroge	en		
d) Is a more reactive gas	5		
381. Solder is an alloy of lead	with		
a) Copper	b) Zinc	c) Nickel	d) Tin
382. CeO ₂ is present in :			
a) Crookes glass	b) Pyrex glass	c) Flint glass	d) All of these
383. The formula of potash al	lum is		
a) K_2SO_4 . $Al_2(SO_4)_3$. 241	H ₂ 0	b) K ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 18H	I ₂ 0

c) K ₂ SO ₄ . (NH ₄) ₂ SO ₄ .18H ₂ O	d) Na_2SO_4 . $Al_2(SO_4)_3$. 24	H ₂ O
384. In diborane the two $H - B - H$ angles are nearly		
a) 60°, 120° b) 95°, 120°	c) 95°, 150°	d) 120°, 180°
385. Aluminium chloride exists as dimer, Al ₂ Cl ₆ , in so	lid state as well as in solution	of non-polar solvents such
as benzene. When dissolved in water, it gives		
a) $Al^{3+} + 3Cl^{-}$ b) $[Al(H_2O)_6]^{3+} + 3Cl^{-}$	$(1^{-} c) [Al(OH)_{6}]^{3-} + 3HCl$	d) $Al_2O_3 + 6HCl$
386. Which is correct for SiO_2 ?		
a) Linear, acidic b) Linear, basic	c) Tetrahedral, acidic	d) Angular, disc
387. H ₃ BO ₃ is		
a) Monobasic and weak Lewis acid	b) Monobasic and weak	Bronsted acid
c) Monobasic and strong Lewis acid	d) Tribasic and weak Bro	onsted acid
388. CO_2 is bubbled into an aqueous solution of Na ₂ C	O_2 , to give:	
a) NaOH b) HCO ₂	c) H_2O	d) 0H-
389. The composition of the common glass is	-, -2-	
a) Na ₂ O, CaO, $6SiO_2$ b) Na ₂ O, Al ₂ O ₂ , SiO_2	c) $CaO_{1}AI_{2}O_{2}$, SiO_{2}	d) Na $_{2}$ O. CaO. 6SiO $_{2}$
390 Feldspar is:	0) 00011120310102	
a) Potassium sodium alumino silicate	C	
b) A mixture of potassium, aluminium and silicor	n oxides	
c) Hydrated calcium silicate		
d) None of the above		
391. Tungsten carbides is an example of:		
a) A substitutional solid solution		
b) Passive solid solution		
c) Sandwich solid solution		
d) Interstitial solid solution		
392. Carbogen is:		
a) Mixture of $0_2 + 5 - 10\% CO_2$	Y	
b) Used by pneumonia patients for respiration)	
c) Used by victims of CO for respiration		
d) All of the above		
393. The compound used in lead accumulators is:		
a) PbO b) Pb_2O_3	c) Pb_3O_4	d) PbO_2
394. Which of the following is pseudoalum?	J J I	5 2
a) $(NH_{4})_{2}SO_{4} \cdot Fe_{2}(SO_{4})_{3} \cdot 24H_{2}O_{4}$		
b) $K_2SO_4 \cdot Al_2(SO_4)_2 \cdot 24H_2O_4$		
c) MnSO ₄ · Al ₂ (SO ₄) ₂ · 24H ₂ O		
d) None of the above		
395. One that marks the paper like lead is:		
a) Ga	c) B	d) Tl
396. Which of the following undergoes sublimation?	2	
a) AlCl ₃ b) NH ₄ Cl	c) Dry ice	d) All of these
397. Which is used as mordant?	5	
a) AlCl ₃ b) Al ₂ (SO ₄) ₃	c) Alum	d) Al_2O_3
398. Which statement regarding H ₃ BO ₃ is not correct	?	2 2 3
a) It is a strong tribasic acid		
b) It is prepared by acidifying an aqueous solutic	on of borax	
c) It has a layer structure in which planar BO ₂ ur	nits are joined by H-bonds	
d) It does not act as proton donor but acts on Lev	wis acid by accepting OH ⁻ ion	S
399. The elements of IV A group or group 14 have 4 e	lectrons in their outermost or	bit. They:
a) Form M^{4+} ions		-

	$\tau \Delta - \cdot$		
b) Form M^+ and M	⁺ ions		
c) Exhibit oxidation	n state of $+4$ and $+2$		
d) Exhibit oxidation	a state of + 4		
400. Orthoboric acid wh	en heated to red hot gives:		
a) Metaboric acid	b) Pyroboric acid	c) Boron and water	d) Boric anhydride
401. Elements showing	the phenomenon of allotrop	by is	
a) lead	b) copper	c) tin	d) aluminium
402. The function of fluo	orspar in the electrolytic red	luction of alumina dissolved ir	n fused cryolite (Na ₃ AlF ₆) is
a) To decrease the	rate of oxidation of carbona	ite the anode	
b) To lower the ten	aperature of the melt and to	make the fused mixture very	conducting
c) As a catalyst			
d) None of the abov	ve		
403. Which can be direc	tly brought into solid state f	from gaseous state?	
a) CO	b) CO ₂	c) PH ₃	d) CO + H_2
404. AlCl ₃ on hydrolysis	gives:		
a) $Al_2O_3 \cdot H_2O$	b) Al(OH) ₃	c) Al_2O_3	d) $AlCl_3 \cdot 6H_2O$
405. Al reduces most of	the metallic oxides due to it	s greater affinity for:	
a) Oxygen	b) Metals	c) Electrons	d) Protons
406. Annealing of glass	is done to:		
a) Make it more br	ittle		
b) Make it opaque			
c) Check it from be	coming brittle		
d) Make it transpar	ent		
407. Boron carbide,B₄C	is widely used for:		
a) Making acetylen	e		
b) Making plaster of	of Paris		
c) As a hardest sub	stance after diamond		
d) Making horic aci	id bio	\mathcal{I}	
408 Mark the correct st	atement.	7	
a) Water gas is use	d in the manufacture of met	hyl alcohol	
h) Water gas has th	e highest calorific value		
c) Water gas hurns	with luminous flame		
d) The production	of water gas is exothermic r	nocess	
409 Butter of tin is	of water gas is exother fine p	100035.	
a) $SnCl_{1}$, $5H_{2}O_{2}$	b) $SnCl_{2} + 2H_{2}O$	c) $Sn(1 \cdot 4H \cdot 0)$	d) $Sp(1, \cdot, 5H, 0)$
410 In Jahoratory silico	n can be prepared by the re	action	uj 511014 51120
a) Silica with magn	li cali de prepareu dy tile re	action	
b) By besting carbo	on in electric furnace		
c) By heating callo	on in electric furnate		
d) None of the above	ssium nuosincate with potas	stun	
411 Derig gold is polym	/e		
411. Bolic acid is polyin	eric because of:		
a) its actuic nature	ragan handa		
b) Presence of fiyu	rogen bonus		
c) its monopasic na	ature		
ujits geometry	dan dan serie da la companya da serie d	n	
412. Which of the follow	ing snows variable valency	(-) TI	
		CJ II	a) None of these
413. Which statement is	correct with respect to the	property of the elements with	increase in atomic number in
the carbon family?			
a) Their metallic cl	laracter decreases		

	b) The stability of $+2$ oxid	dation state increases		
	c) Their ionization energ	y increases		
	d) Their atomic size decre	eases		
414	4. Among the halides:			
	1. BCl ₃ 2. AlCl ₃			
	3. $GaCl_3$ 4. $InCl_3$			
	The order of decreasing L	ewis acid character is:		
	a) 1. 2. 3. 4	b) 4. 3. 2. 1	c) 3. 4. 2. 1.	d) 2. 3. 4. 1
415	5. Carbon is soluble in :		-) -/ / / /	
	a) Conc. HCl	b) dil. HNO2	c) H₂SO₄	d) dil. HCl
416	6. Which cannot be prepare	d by B_2H_2 ?	-)24	
	a) NaBH₄	b) H_2BO_2	c) $B_2(CH_2)_c$	d) $2(CH_2)_2N$, B_2H_2
417	7. In feldspar and zeolite. Si	⁴⁺ ions are replaced by whi	ich ions?	
	a) Oxide ion	b) Hydroxide ion	c) Aluminium ion	d) Potassium ion
418	3. Diamond and Emerald ar	e :	•) • • • • • • • • • • •	
	a) C. C	b) C. Al ₂ O ₂	c) C. Si	d) Si, Al
419	A. Carborundum is	5) 0,11203	0, 0, 01	
11.	a) SiC	h) Al ₂ O ₂ H ₂ O	c) $Al_{\alpha}(SQ_{4})_{\alpha}$	d) AlCla
42() Which is not an alloy of a	luminium?		
120	a) Magnalism	h) Duralumin	c) German silver	d) Aluminium bronze
42	Purification of alumina ta	kes place by	ej dermansnver	
14.	a) Rosch process	h) Hall's process	c) Hoope's process	d) Quartation process
423	2 Thermite a mixture used	for welding is:	cj noope s process	a) Quartation process
144	a) Fe and Al	ior weiding is.		
	h) Ferric oxide and alumi	nium nowder	\mathbf{X}	
	c) Barium perovide and r	nagnesium nowder) ^Y	
	d) Cu and aluminium	nagnesium powder		
423	Which of the following on	hydrolysis with water give	es CH. ?	
12.	a) Re-C	h) Al.C.	c) Mn ₂ (d) All of these
4.27	4. The basic structural unit i	is silicates is		a) fin of these
72-	a) SiO	b) [Si \cap 1 ²	c) SiO tetrahedron	d) [Si 0] ²
121	a) 5102 5 Cood conductor of boot of	bj [51207] nd current is:	cj 510 ₄ tetraneuron	u) [51 ₂ 0 ₅]
42.	a) Anthracite	h) Diamond	c) Charcoal	d) Craphite
120	The structure of diherance	(B H) contains	C) Gliarcoal	u) or aprinte
420	a) Four $2c = 2a^2$ bonds a	$(D_2 \Pi_6)$ contains	b) Two $2c - 2a^{-}$ bonds a	nd two $2c - 2a^{-}$ honds
	a) Two $2c - 2e^{-1}$ bonds a	nd four $3c - 2e^{-1}$ bonds	d) Four $2c - 2a^{-}$ bonds a	and two $3c - 3e^{-1}$ bonds
12	CJ I WO ZC – Ze DOIIUS a. 7 Which alamant of group 1	110 1001 3c – 2e Donus 14 forms only one hydride?	$u_j rou z = z e bollus a$	1111 two 3t - 2e bollas
42	a) C	b) Si	c) Sn	d) Ph
120	a) C The stability of ± 1 ovidation	tion state increases in the s		u) i b
420	a) $C_2 < \ln < \Lambda < T$	b) Al \sim Ca \sim In \sim Tl	c) $T \sim In \sim C_2 \sim A$	d) In \subset TI \subset Ca \subset AI
120	Aluminium is extracted fr	O A = O A	$c_{J} = 11 < 11 < 0.0 < A_{J}$	u = u = u = u = u = u
74.	a) Al $\Omega \perp Na$ AlF $\perp Cal$	$rac{1}{1}$	etrorysis of a monen mixtu	
	b) Al $O \pm KE \pm N_2$ AlE	^r 2		
	c) Al O + UE + NaAlE			
	d) Al O + CoE + NoAlE	4		
121	$UJAI_2U_3 + CdF_2 + NdAIF_2$	4 llowed to page through		
430	a) Flint close	h) Crown glass	a) Croakes alace	d) Safatu glass
104	aj riilit glass 1. Motol protoctod by a l	uj ul uwil glass	CJ CI OUKES glass	uj salety glass
43.	a) Al	b) Ag	a) Au	d) Cu
4.27	aj Al	UJ Ag	CJ = A O (T + 4 O (T + 4 C O (T	
434	2. The fuel gas naving volun	ie composition equal to 34	״₀ Ⴑп₄ + 4ờ‰Π₂ + 15‰᠐·	2 + 3 % LU IS:

a) Oil gas	b) Water gas	c) Coal gas	d) Petrol gas
433. Glass having higher refrae	ctive index is prepared of c	oxide of	
a) NiO	b) CoO	c) PbO	d) CaO
434. The colour of copper met	aborate and chromium me	taborates are respectively:	
a) Blue, green	b) Green, blue	c) Red, green	d) Brown, blue
435. Which gas is essential cor	nstituent of almost all fuel g	gases?	
a) CO ₂	b) N ₂	c) Co	d) H ₂ O
436. When SnCl ₂ reacts with H	IgCl ₂ , the product formed a	are :	
a) Sn + HgCl ₄	b) $Sn + Cl_2 + Hg_2Cl_2$	c) SnCl ₄ and Hg ₂	d) None of these
437. The precious stone aquar	narine is:		A V
a) Mg-Al silicate	b) Be-Al silicate	c) Na-Al silicate	d) Fluoro silicate of Al
438. $B(OH)_3$ + NaOH \rightleftharpoons NaBO	$_{2} + Na[B(OH)_{4}] + H_{2}O$		
How can this reaction is r	nade to proceed in forward	l direction?	
a) Addition of <i>cis</i> -1, 2-dic	ol	b) Addition of borax	
c) Addition of <i>trans</i> -1, 2-	diol	d) Addition of Na ₂ HPO ₄	
439. CO reacts with chlorine in	n presence of sunlight to give	ves:	X
a) COCl ₂	b) CO ₂	c) CCl ₄	d) CHCl ₃
440. Silicon is			
a) Semiconductor	b) Insulator	c) Conductor	d) None of these
441. Aluminium vessels should	d not be washed with mate	rials containing washing so	da since
a) Washing soda reacts w	rith aluminium to form solu	uble aluminate	
b) Washing soda reacts w	vith aluminium to form inso	oluble aluminium oxide	
c) Washing soda is expen	sive		
d) Washing soda is easily	decomposed		
442. When a mixture of sand a	nd KNO ₃ is heated strongly	y the product(s) is/are:	
a) NO ₂	b) 0 ₂	c) $K_2 SiO_3$	d) All of these
443. Aluminium deposited as	vaporous on glass forms a g	good mirror, essentially bec	cause:
a) It has better shine than	n Ag		
b) It does not scratch			
c) Coating is much smoot	her		
d) It does not tarnish in a	ir		
444. CO is poisonous gas, antic	lote for CO poisoning is		
a) Carborundum	b) Carbogen	c) Carbonic acid	d) Pure oxygen
445. When CO is heated with N	NaOH under pressure, we g	et:	
a) Sodium benzoate	b) Sodium acetate	c) Sodium formate	d) Sodium oxalate
446. Glass is a			
a) Micro crystalline solid		b) Gel	
c) Super cooled liquid]]	d) Polymeric mixture	
447. Difference between diam	ond and graphite is due to:	· :	
a) Graphite combines wit	n oxygen to form carbon a	loxide but diamond does no	Dt
b) The atoms in each nav	e different masses		
c) The crystal structure in	n diamond is different from	i that in graphite	
d) All of the above			
448. Which element is used for	r making a transistor?	-) C'	
a) Sn	DJ SD	CJ SI	a) Mg
449. Which one of the followin	ig compounds, is not a prot	conic acia?	
a) $SU(UH)_2$	$UJSU_2(UH)_2$	CJ B(UH) ₃	$u_{\rm J}$ PU(UH) ₃
450. Aluminium reacts with ni	b) Al N		
aj AIN	$DJ AI_2 N_3$	CJ AI ₂ N	$u_J AI_4 N_6$
451. Silica is a/an			

٠

	c) Basic flux only		d) Both gangue and acidic	flux	
452.	2. Which one of the following is the correct statement?				
	a) Boric acid is a protonic acid				
	b) Beryllium exhibits coordination number of six				
	c) Chlorides of both beryl	lium and aluminium have b	oridged chloride structure i	n solid phase	
	d) B_2H_6 . 2NH ₃ is known a	s inorganic benzene	-	-	
453.	Which of the following is a	a mixed oxide?			
	a) Fe_2O_3	b) PbO ₂	c) Pb_3O_4	d) BaO_2	
454.	Which metal burn in air at	t high temperature with the	e evolution of much heat?		
	a) Cu	b) Pb	c) Hg	d) Al	
455.	Which is a true acid anhvo	lride?	-)8	.,	
	a) Al_2O_2	b) CO	c) CaO	d CO ₂	
456	Roasted tin stone ore after	r washing with water is kno	own as		
100.	a) Block tin	h) White tin	c) Black tin	d) Granulated tin	
457	Compound of lead used in	match industry is	c) black th	a) drahated thi	
157.	a) PhO	b) PhO_{1}	c) Ph(].	d) None of these	
458	Which gas has more nerce	$b_1 b_2$		u) None of these	
450.	$_{\rm a}$ $_{\rm co}$	ы ц		4) CH	
450	A particular alamante hale	UJ II	cj II ₂	in the second se	
439.	A particular elements beit	h) Liquid motallia	a) Solid new motallie	15: d) Calid laga matallia	
100	a) Gas, slightly metallic	b) Liquid, metamic	cj sonu, non-metainc	u) sonu, less metanic	
460.	. In graphite, the sheets are	h) Complement formers		d) Matallia famaa	
1(1	a) Ionic forces	b) Covalent forces	c) van der waals forces	d) Metallic forces	
461.	Silicones have the general	formula	2 (210) - 2n		
	a) $(S10_4)^4$	$b) SiO_6'$	c) $(S_1 O_3)_n^{2n}$	a) $(R_2 SIO)_n$	
462.	Water gas cannot be prep	ared by a continuous proce	ess because:		
	a) More coke must be add	ed from time to time			
	b) The furnace must be all	lowed to cool occasionally			
	c) It cannot be manufactu	red without producer gas			
	d) The reaction ceases wh	en coke is too cool			
463.	In silica (SiO ₂), each silico	n atom is bonded to			
	a) Two oxygen atoms		b) Four oxygen atoms		
	c) One silicon and two oxy	ygen atoms	d) One silicon and four ox	ygen atoms	
464.	. Glass reacts with HF to pr	oduce			
	a) H_2SiO_3	b) SiF ₄	c) Na ₃ AlF ₆	d) H ₂ SiF ₆	
465.	. Which glass has the highe	st percentage of lead?			
	a) Soda glass	b) Flint glass	c) Jena glass	d) Pyrex glass	
466.	Diamond and graphite bo	th are made of carbon atom	is. Diamond is extremely h	ard whereas graphite is	
	soft. This is because :				
	a) The chemical bonds be	tween any two carbon aton	ns in diamond are stronger		
	b) Diamond is ionic where	eas graphite is covalent			
	c) Each carbon atom in di	amond is chemically bonde	ed to a greater number of n	eighbouring carbon atoms	
\mathbf{C}	d) Certain atoms in diamond are smaller in size				
467.	is the byproduct obtain	ned in the Serpeck's proces	S.		
	a) Oxygen	b) Ammonia	c) Nitrogen dioxide	d) Nitric oxide	
468.	An ionic compound is:				
	a) CCl ₄	b) SnCl ₂	c) SiCl ₄	d) CeCl ₄	
469.	Which one of the followin	g is correct statement?			
	a) The hydroxide of Alum	inium is more acidic than t	hat of boron		
	b) The hydroxide of boror	n is basic, while that of Alui	minium is amphoteric		
	c) The hydroxide of boror	n is acidic, while that of Alu	minium is amphoteric		

d) The hydroxide of boro	n and Aluminium are amp	hoteric	
470. Density is highest for :			
a) Si	b) Ge	c) Sn	d) Pb
471. If the flame of a gas stove	e burns with yellow tips, the	e burner must be adjusted t	o provide:
a) More gas	b) More air	c) Less air	d) None of these
472. Purification of Al by elect	rolysis method is called		
a) Hall's process	b) Baeyer process	c) Ostwald process	d) Hoope's process
473. Which element shows me	ore pronounced inert pair e	effect?	
a) N	b) Sn	c) Pb	d) C
474. Teflon is:			
a) Fluorocarbon	b) Hydrocarbon	c) Pesticide	d) Insecticide
475. CO_2 in water behaves as	· ·	-	
a) Weak dibasic acid H_2	203	b) Weak monobasic acid	но-соон
c) Weak diacid base CO(OH) ₂	d) Weak monoacid base I	ю—соон
476. The tendency for catenat	ion in Group 14 elements v	aries in the order	
a) C >> Si > Ge = Sn >	Pb	b) C < < Si < Ge = Sn <	Pb
c) C >> Si < Ge < Sn <	Pb	d) C >> $Si = Ge = Sn >$	Pb
477. Coordination number of	aluminium is		
a) 8	b) 6	c) 12	d) 4
478 The approximate compo	sition of soda glass is		
a) SiO ₂ 75% Na $_2$ 0.15%	$C_{2} \cap 8\% Al_{-} \cap 2\%$		
b) SiO ₂ 45% Na ₂ O 4% C	20.3% K $0.4%$ PhO 44%		
c) SiO ₂ 43% , Na ₂ O 4% C	ao 5 %, K ₂ o 4 %, I bo 44 %	20% 41 0.3%	
d) None of the above	ao 0.570, 120 0.570, 1203 1	1270, H1203370	
470 Load pipes are readily so	rradad by		
479. Lead pipes are readily co	h) UC		d) Duna watan
$A_2 = A_2 $	DJ TU	C $C \Pi_3 C U U \Pi$	u) Pule water
480. Monoshane on coming in	contact with all burns wit	n a lummous name produci	lig voltex lings. These lings
		-) ()	
a) SIO_2		CJ SI	$d H_2 S I O_3$
481. A colourless gas which b	urns with blue flame and re		
a) N_2	bjcu	$c_{1}C_{2}$	$dJ NO_2$
482. Lapis lazuli is	\sim		
a) Sodium alumino silica	te	b) Copper sulphate	
c) Zinc sulphate		d) Ferrous sulphate	
483. Bone black is an allotrop	e of :		
a) P	b) C	c) S	d) Bone
484. The use of diamond as a	gem depends on its:		
a) Hardness	b) High refractive index	c) Purest form of carbon	d) Chemical inertness
485. PbO isoxide.			
a) Basic	b) Acidic	c) Amphoteric	d) Neutral
486. Common alum is			
a) $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24$	H ₂ 0	b) $(NH_4)_2SO_4 \cdot FeSO_4 \cdot 6H_4$	H ₂ O
c) $K_2SO_4 \cdot Cr_2(SO_4)_3 \cdot 24$	H ₂ 0	d) $K_2SO_4 \cdot Fe_2(SO_4)_3 \cdot 24$	H ₂ 0
487. In silicon dioxide			
a) There are double bond	ls between silicon and oxyg	gen atoms	
b) Silicon atom is bonded	l to two oxygen atoms		
c) Each silicon atom is su	ırrounded by two oxygen a	toms and each oxygen aton	ı is bounded to two silicon
atoms		terrered 1 · ·	
d) Each silicon atom is su	irrounded by four oxygen a	itoms and each oxygen ator	n is bounded to two silicon
atoms			

488. Aqueous solution of sodium silicate is:

a) Acidic b) Alkaline	c) Neutral	d) Insoluble
489. Boron cannot form which one of the follo	owing anions?	
a) BF_6^{3-} b) BH_4^{-}	c) B(OH) ₄	d) BO ₂
490. During day time plants absorb:		
a) Carbon dioxide b) Carbon mo	noxide c) Nitrogen	d) Oxygen
491. Diamond is hard because		
a) All the four valence electrons are bond	led to each carbon atom by coval	lent bonds
b) It is a giant molecule		
c) It is made up of carbon atoms		
d) It cannot be burnt		$\langle \cdot \rangle$
492. The process used for purification of baux	tite ore containing high silica con	tent as impurity is:
a) Baeyer's process b) Hall's proce	ess c) Hoope's process	d) Serpeck's process
493. The geometry and the hybridisation pres	sent about the central atom in BF	3 is:
a) Linear, <i>sp</i> b) Trigonal pla	anar, sp^2 c) Tetrahedral, sp^3	d) Pyramidal, <i>sp</i> ³
494. Aluminium is mainly extracted from:		
a) Magnetite b) Bauxite	c) Alumina	d) Haematite
495. A metal, M forms chlorides in its +2 and	+4 oxidation states. Which of the	e following statements about
these chlorides is correct?		\mathbf{O}
a) <i>M</i> Cl ₂ is more volatile than <i>M</i> Cl ₄		
b) <i>M</i> Cl ₂ is more soluble in the anhydrous	s ethanol than <i>M</i> Cl ₄	7
c) <i>M</i> Cl ₂ is more ionic than <i>M</i> Cl ₄		
d) <i>M</i> Cl ₂ is more easily hydrolysed than <i>M</i>	1Cl ₄	
496. Which is not a crystalline form of silica?		
a) Quartz b) Azurite	c) Crystobalite	d) Tridymite
497. Which is likely to show inert-pair effect?		
a) K b) Mg	c) Al	d) Pb
498. A potter wishes to make a deep blue glaz	e. Which one of these available c	hemicals should be mixed?
a) Iron oxide b) Cuprous ox	tide c) Cobalt oxide	d) Nickel oxide
499. Specify the coordination geometry aroun	id and hybridization of N and B-a	toms in a 1 : 1 complex of
BF_3 and NH_3 :		
a) N : Tetrahedral, <i>sp</i> 3 ; B : Tetra	hedral, sp ³	
b) N : Pyramidal, <i>sp</i> 3 ; B : Pyran	nidal, sp ³	
c) N : Pyramidal, <i>sp</i> 3 ; B :Planar	r, sp ³	
d) N : Pyramidal, <i>sp</i> 3 ; B :Tetrał	nedral, sp^3	
500. The bonds present in borazole are:		
a) 12σ, 3π b) 9σ, 6π	c) 6σ, 6π	d) 9σ, 9π
501. Tin, a silvery white metal exists in:		
a) Four allotropic forms		
b) Three allotropic forms		
c) Five allotropic forms		
d) Two allotropic forms		
502. Carbon suboxide C_3O_2 has		
) Bent structure	b) Trigonal planar s	tructure
c) Linear structure	d) Distorted tetrahe	edral structure
503. Which of the following oxide is amphoten	ric?	
a) CaO b) CO_2	c) SiO ₂	d) SnO ₂
504. In graphite, electrons are:		
a) Localized on each carbon atom		
b) Spread out between the sheets		
c) Localized on every third carbon atom		

d) Present in antibond	ing orbital		
505. Which is formed when	SiCl ₄ vapours are passed over	er hot Mg?	
a) SiCl ₂ + MgCl ₂	b) Si + MgCl ₂	c) $Mg_2Si + Cl_2$	d) MgSiCl ₆
506. Which of the following	does not have a tetrahedral	structure?	
a) BH ₃	b) NH4	c) BH ₄	d) CH ₄
507. Which of the following	oxides is strongly basic?		
a) Tl ₂ O	b) B ₂ O ₃	c) Al_2O_3	d) Ga_2O_3
508. Aluminium metal is co	rroded in coastal places near	to the sea, because protect	ive oxide film:
a) Is removed by seaw	ater		
b) Reacts with seawate	er		
c) Is attacked by salt p	resent in seawater		
d) Reacts with sand pa	rticles		
509. The most abundant me	etal in the earth crust		
a) Al	b) Ca	c) Fe	d) Na
510. Which mixed sulphate	is not an alum?	,	
a) $K_2SO_4 \cdot Al_2(SO_4)_3$	· 24H ₂ 0	4	
b) $K_2SO_4 \cdot Cr_2(SO_4)_3$	· 24H ₂ 0	Ć	
c) Na ₂ SO ₄ · Fe ₂ (SO ₄).	· 24H ₂ O		
d) CuSO ₄ · Al ₂ (SO ₄) ₂	· 24H ₂ O		
511. (Me) ₂ SiCl ₂ on hydroly	sis will produce		
a) $(Me)_2Si(OH)_2$	F	b) (Me) ₂ Si = 0	
c) $[-0 - (Me)_2 Si - 0]$	—]"	d) Me_SiCl(OH)	
512. In the aluminothermic	process. Al acts as a/an		
a) Solder	b) Oxidizing agent	c) Reducing agent	d) Flux
513. Which is used as contr	ol rods in nuclear reactors?		
a) Al	b) Ga	<i>c</i>) T]	d) B
514. Potash alum is water s	oluble and ionises in aqueous	s solution to give:	
a) One type of ions	b) Two types of ions	c) Three types of ions	d) Four types of ions
515. Which is covalent com	nound?	ej milee ejpes er tene	
a) Aluminium oxide	b) Aluminium fluoride	c) Aluminium chloride	d) Aluminium sulphate
516 Lead sugar is:	b) indiminant indefine	ej mannan enterae	aj manimum baipnate
a) PhCl _a	h) $Pb(NO_{2})_{2}$	$c) PhSO_{4}$	d) $(CH_2COO)_2Ph$
517 Which does not exist?	5,15(103)2	0) 10004	
a) $[SnC]_2^{2-}$	b) $[GeCl_2]^{2-}$	c) $[SiC]_2^{2-}$	d) $[CC]_{2}^{2-}$
518 Which form of carbon	is used in making hoot polish	nrinting ink naint and hla	ck varnish?
a) Bone black	h) Granhite	c) Gas carbon	d) Lamp black
519 Which of the following	shows hond in silicone?	c) das carbon	uj bump black
a) Si_C_Si_O_Si	h) Si_C_Si_C_Si		d) si— si— si — si
	b) 51—c—51—c—51	c) $-si-o-si-o-si-o-si-o-si-o-si-o-si-o-si-$	uj 51— 51— 51— 51
520. Which of the following	organo-silicon compound or	n hydrolysis will give a thre	e dimensional silicone?
a) R ₃ SiCl	b) <i>R</i> SiCl ₃	c) SiCl ₄	d) R_2 SiCl ₂
521. Which type of silicate i	s shown in the given figure?		
Å			
V V			
- V			
Ó No til til t	י יוי תול	a) Mata all'act	

522. Tin sulphide is:					
a) Yellow solid	a) Yellow solid				
b) Soluble in yellow amn	b) Soluble in yellow ammonium sulphide				
c) Precipitated by H_2S in	c) Precipitated by H ₂ S in acidic medium				
d) All of the above					
523. CO_2 is liberated during :					
a) Combustion of coke	b) Fermentation	c) Respiration	d) All of these		
524. Which of the following g	lass is used in making wind	screen of automobiles?			
a) Saftey	b) Jena	c) Crook's	d) Pyrex		
525. Lead pipes are not suital	ole for drinking water becau	ise			
a) A layer of lead dioxide	e is deposited over pipes				
b) Lead forms basic lead	carbonate				
c) Lead reacts with wate	er containing air to form Pb	(OH) ₂			
d) Lead reacts with air to	o form litharge				
526. When sodium or potassi	um oxide is heated in a curi	rent of CO_2 at 360°C, we get			
a) Sodium formate	b) Sodium oxalate	c) Sodium acetate	d) Sodium carbonate		
527. Aluminium forms:					
a) Electrovalent compou	nds only				
b) Covalent compounds	oniy alant commounda bath				
d) Coordinate compound	alent compounds both				
E29 Chrome vellow is	is only				
328. Chi onie yenow is.	b) K_1 (r. 0-	c) PhMoO	d) Ph ₂ O ₂		
529 Which oxidation states a	re the most characteristics	of lead and tin respectively	2 2		
32.9. Which oxidation states a a) $+2 +4$	b) $+4 +4$	(1 + 2 + 2)	d) +4 +2		
530. The alloy used in prepar	ation of balance beam:	c, + 2, + 2	aj + 1, + 2		
a) Magnalium	b) Duralumin	c) Aluminium bronze	d) Nickelov		
531. The substance used to in	npart green colour to glass i	is:	, <u>,</u>		
a) Cu_2O	b) CdS	c) MnO ₂	d) Cr_2O_3		
532. In the reaction: $BF_3 + 3I_2$	$A_{4} \rightarrow 3LiF + X; X is:$, <u> </u>	2 2		
a) B_4H_{10}	b) B_2H_6	c) BH ₃	d) B ₃ H ₈		
533. Which metal powder if s	pread in air, becomes hazar	dous?			
a) Al	b) B	c) Ca	d) K		
534. Crystalline silicon was ol	otained by:				
a) Berzelius	b) Wöhlar	c) Deville	d) Winkler		
535. Aluminium is more react	tive than iron but aluminiur	n is less easily corroded tha	an iron because:		
a) Aluminium is a noble	metal				
b) Oxygen forms a prote	ctive oxide layer				
c) Iron undergoes reacti	on easily with water				
d) Iron forms both mono	and divalent ions				
536. An aqueous solution of a	substance gives a white pr	ecipitate on treatment with	dil HCl, which dissolved on		
heating. On passing H_2S	in hot acidic solution a blac	k precipitate is formed. The	e substance is:		
a) Hg_2^+ salt	b) Cu ²⁺ salt	c) Ag ⁺ salt	d) Pb ²⁺ salt		
537. Silicon hydrides are nam	ed as:				
a) Silicones	b) Silicates	c) Silicols	d) Silanes		
538. H_2SU_4 is not used for the	e preparation of CO ₂ from n	iarble chips because:			
a) It does not react	a avalva d				
DJ Huge amount of heat i	is evolved				
c) The reaction is Vigoro	us	posited on markle shine a	d atona the reaction		
uj Calcium sulphate is sp	ai ingly soluble and gets de	posited on marble chips an	u stops the reaction		

539. Which compound can ma	ake fire proof clothes?		
a) Aluminium sulphate	b) Ferrous sulphate	c) Magnesium sulphate	d) Cuprous sulphate
540. B—F bond order in BF_3 i	is:		
a) 1	b) 2	c) 3	d) 4/3
541. A kettle which becomes	furred-up in use has inside	it a deposit composed main	nly of:
a) Calcium carbonate			
b) Magnesium bicarbona	ite		
c) Magnesium sulphate			
d) Sodium sulphate			
542. Among the following the	hardest substance is :		\sim
a) Peat	b) Lignite	c) Graphite	d) Anthracite
543. Aluminium is obtained b	у		
a) Reducing Al_2O_3 with c	coke	b) Electrolysing Al ₂ O ₃ dis	ssolved in Na_3AlF_6
c) Reducing Al_2O_3 with o	chromium	d) Heating alumina with	cryolite
544. Which of the following is	not correct in case of boro	n nitride?	
a) It is also called borazo	on	A	
b) It is chemically unread	ctive	Ć	
c) It is hard because it ha	as diamond like structure		
d) It has magnetic prope	rties		
545. When sugar is treated w	ith conc. H ₂ SO ₄ , we get a pu	re form of :	
a) Carbon	b) Hydrogen	c) Oxygen	d) None of these
546. Borazole is obtained by r	reaction of:		
a) $NH_3 + B_2H_6$ in 2 : 1 ra	ntio		
b) $NH_3 + B_2H_6$ in 1 : 2 ra	ntio	G XY	
c) $NH_3 + B_2H_6$ in 1 : 4 ra	ntio 🔺	\mathbf{V}	
d) $NH_3 + B_2H_6$ in 4 :1 ra	tio		
547. Percentage of lead in lea	d pencil is	Y	
a) 20	b) 80	c) 70	d) Zero
548. In B ₂ H ₆ :			
a) There is a direct boro	n-boron bond		
b) The structure is simila	ar to that of C_2H_6		
c) The boron atoms are l	linked through hydrogen br	ridges	
d) All the atoms are in or	ne plane		
549. Zn on heating with bariu	m carbonate gives :		
a) BaO	b) ZnO	c) CO	d) All of these
550. Covalency and hybridiza	tion of B in BF ₄ is:		
a) 5, <i>sp</i>	b) 4, <i>sp</i> ³	c) 3, <i>sp</i> ³	d) 2, <i>sp</i> ²
551. Hybridisation of boron in	n diborane is:		
a) <i>sp</i>	b) <i>sp</i> ²	c) <i>sp</i> ³	d) sp^3d^2
552. When tin is treated with	concentrated nitric acid		
a) It is converted into sta	annous nitrate	b) It becomes passive	
c) It converted into stan	nic nitrate	d) It is converted into me	etastannic acid
553. The ability of a substance	e to assume two or more cr	ystalline structures is calle	d:
a) Isomerism	b) Amorphism	c) Polymorphism	d) Isomorphism
554. Glass is soluble in:			
a) HF	b) H ₂ SO ₄	c) HClO ₄	d) Aqua-regia
555. Al_2O_3 formation involves	s large quantity of heat evol	lution which makes its use	in:
a) Deoxidizer	b) Confectionary	c) Indoor photography	d) Thermite welding
556. Duralumin is an alloy of:			
a) Al and Mg	b) Mg and Cu	c) Al, Mg, Mn and Cu	d) Al and Cu

a) Bituminous coalb) Coal-tarc) Coal gasd) Graphite558. Which of the following anion is present in chain structure of silicate?a) $[Si_2O_5^{2-}]_n$ b) $[SiO_3^{2-}]_n$ c) SiO_4^{4-} d) $Si_2O_7^{6-}$ 559. Tin reacts with:					
558. Which of the following anion is present in chain structure of silicate?a) $[Si_2O_5^{2-}]_n$ b) $[SiO_3^{2-}]_n$ c) SiO_4^{4-} d) $Si_2O_7^{6-}$ 559. Tin reacts with:					
a) $[Si_2O_5^{2-}]_n$ b) $[SiO_3^{2-}]_n$ c) SiO_4^{4-} d) $Si_2O_7^{6-}$ 559. Tin reacts with:					
559. Tin reacts with:					
a) Hot conc. HCl b) Conc. HNO ₃ c) HgCl ₂ on heating d) All of these					
560. Which gas is responsible for green house effect?					
a) CO_2 b) SO_2 c) CO d) SO_3					
561. Al and Ga have the same covalent radii because of:					
a) Greater sheilding power of <i>s</i> -electrons of Ga atoms					
b) Poor sheilding power of <i>s</i> -electrons of Ga atoms					
c) Poor shielding power of <i>d</i> -electrons of Ga atoms					
d) Greater shielding power of <i>d</i> -electrons of Ga atoms					
562. BCl ₃ does not exist as dimer but BH ₃ exist as dimer (B_3H_6) because:					
a) Chlorine is more electronegative than hydrogen					
b) There is $p\pi - p\pi$ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding					
c) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen					
atoms get fitted between boron atoms					
d) None of the above					
563. Magnalium contains					
a) $Al + Mg$ b) $Mg + Cu$ c) $Mg + Fe$ d) $Mg + Ag$					
564. Crystalline form of silica is called					
a) Crystalline silicon b) Quartz c) Rock d) Talc					
565. Borax is prepared by treating colemanite with:					
a) NaNO ₃ b) NaCl c) Na ₂ CO ₃ d) NaHCO ₃					
566. Which is not the property of diamond?					
a) It is insoluble in all solvents					
b) It is an isomer of graphite					
c) It is purest form of carbon					
d) It is oxidized with a mixture of $K_2Cr_2O_7$ and H_2SO_4 at 200° C					
567. What happens when steam is passed over red hot carbon?					
a) $C + 2H_2O \rightarrow CO_2 + 2H_2$					
b) $C + H_2 O \rightarrow Co + H_2$					
c) Water vapour dissociates into H_2 and O_2					
d) None of the above					
568. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in					
order to					
a) Minimize the heat loss due to radiation					
b) Protect aluminium produced from oxygen					
c) Dissolve bauxite and render it conductor of electricity					
d) Lower the melting point of bauxite					
569. Boric acid when burnt with ethyl alcohol gives a green edged flame due to the combustion of:					
a) Boric anhydrideb) Metaboric acidc) Ethyl borated) Orthoboric acid					
570. Purest form of silica is :					
a) Quartz b) Flint c) Sandstone d) Keiselguhr					
571. Alzeimer's disease is caused due to Al interaction with internal organs of the body if food is contaminated					
with Al. This disease					
a) Induces senility in young persons b) Causes memory loss					
c) Both (a) and (b) d) None of the above					
572. In the reaction, LiH + AlH ₃ \rightarrow LiAlH ₄ , AlH ₃ and LiH act as:					

	a) Lewis acid and Lewis	base				
	b) Lewis base and Lewis acid					
	c) Bronsted base and Bronsed acid					
	d) None of the above	d) None of the above				
5	573. Metalloid among the foll	owing is:				
	a) Si	b) C	c) Ge	d) Pb		
5	574. The most abundant meta	al in the earth crust is				
	a) Na	b) Al	c) Ca	d) Fe		
5	575. Alumina may be convert	ed into anhydrous aluminit	um chloride by:			
	a) Heating it with conc. I	HCI				
	b) Heating in a current o	of dry chlorine				
	c) Heating it with rock s	alt				
	d) Mixing it with carbon	and heating the mixture in	a current of dry chlorine			
5	576. Which metal is an impor	tant component of transist	ors?			
	a) Ag	b) Ge	c) Os	d) Ra		
5	577. When Al is added to pota	assium hydroxide solution:		X		
	a) No reaction takes place	ce		×		
	b) Oxygen is evolved			>		
	c) Water is produced					
	d) Hydrogen is evolved					
5	578. An acid among the follow	wing is:				
	a) B(OH) ₃	b) Al(OH) ₃	c) Fe(OH) ₃	d) None of these		
5	579. Which is not used as a re	efrigerant?				
	a) NH ₃	b) CO ₂	c) CCl_2F_2	d) CO		
5	580. Which is used in high ter	mperature thermometry?				
	a) Na	b) Tl	c) Ga	d) Hg		
5	581. Which ore is best concer	ntrated by froth floatation p	process?			
	a) Malachite	b) Cassiterite	c) Galena	d) Magnetite		
5	582. Buckminster-fullerene is	s a variety of				
	a) Boron	b) Carbon	c) Ammonia	d) Fluorine		
5	583. Commercially important	t ore of lead is:				
	a) Haematite	b) Sphalerite	c) Siderite	d) Galena		
5	584. $(CH_3)_2$ SiCl ₂ undergoes h	nydrolysis but (CH ₃) ₂ CCl ₂ d	loes not why?	-		
	a) Low lying d -orbitals p	present in Si but not in C	b) Only 3p orbital is invo	lved in C		
	c) Silicon is more acidic	>	d) Si – Cl bond is more p	olar than C — Cl bond		
5	585. The state of hybridizatio	on of boron and oxygen ator	ns in boric acid (H_3BO_3) are	e respectively:		
	a) sp^3 and sp^3	b) sp^2 and sp^3	c) sp^3 and sp^2	d) sp^2 and sp^2		
5	586. Al-Bronze contains Al ar	nd:				
	a) Zn	b) Sb	c) Cu	d) Ni		
5	587. Which one of the followi	ing is used as an acid flux in	metallurgy?	2		
	a) CaO	b) SiO ₂	c) Na_2CO_3	d) SO_2		
5	588. In the electrolytic metho	od of obtaining aluminium f	rom purified bauxite, cryoli	te is added to the charge in		
	order to	0	1 , 5	0		
	a) Minimise the heat los	s due to radiation				
	b) Protect aluminium pr	oduced from oxygen				
	c) Dissolve hauxite and render it conductor of electricity					
	d) Lower the melting point of bauxite					
5	$589. CO_2$ is not used in :	01 20011100				
5	a) Making Na $_2$ CO $_2$	b) Fire extinguishers	c) Making aerated water	d) Disinfecting water		
5	590. Boron when heated with	carbon forms	- J - mang all all a mater	., 2		
0	······································					

a) B ₄ C	b) BC ₄	c) B ₄ C ₃	d) B_2C_3		
591. Activation of charco	bal:				
a) Can be achieved	only with charcoal from nut sh	ells			
b) Increases the ads	sorbing power of the charcoal				
c) Is accomplished	c) Is accomplished by giving powdered charcoal an electrical charge				
d) Is achieved by he	eating the charcoal in air				
592 Stable compounds i	n + 1 oxidation state are forme	d hv			
a) R	b) Al	c) Ca	d) TI		
593 Which of the follow	ing is a good conductor of heat	and electricity?			
a) Diamond	h) Craphito	c) Anthracito	d) Charcoal		
a) Diamonu	of BCl_is:	cj Antinacite	u) charcoar		
a) Week eaid	$\frac{1101 \text{ DOI}_3 15}{\text{ b) Weak hass}}$	a) Noutral	d) Strong baga		
a) weak actu	b) weak base	cj neutral	u) sti olig base		
595. Which element occi	urs in free state?				
	DJ SI	c) Ge	d) Sn		
596. C and Si belong to I	V group or group 14. The maxim	mum coordination numbe	er of carbon in commonly		
occurring compoun	ds is 4, whereas that of silicon	is 6. This is due to :			
a) Large size of silic	con				
b) Availability of va	cant <i>d</i> -orbitals in silicon				
c) More electroposi	itive nature of silicon				
d) Silicon being vul	nerable to attack by nucleophil	ic			
597. Pyrene (a fire extin	guisher) is:				
a) SiCl ₄	b) CCl ₄	c) GeCl ₄	d) SbCl ₅		
598. Which does not exis	st?				
a) B ³⁺	b) Al ³⁺	c) Ga ³⁺	d) In ³⁺		
599. The reducing powe	r of divalent species decreases	in the order :	-		
a) Ge $>$ Sn $>$ Pb	b) Sn > Ge > Pb	c) Pb > Sn > Ge	d) None of these		
600. The hardest substa	nce amongst the following				
a) Be ₂ C	h) Tritonium	c) B ₄ C	d) Graphite		
601 The hybridization of	f carbon in carbon monoxide is	c) D ₄ 0	aj diaplite		
a) cn^3	b) cn^2	ດີເກ	d) dsn^2		
a) sp 602 Nowly shaped glass	articles when cooled suddenly	cj sp zbocomo brittlo thorofor	a those are cooled slowly this		
002. Newly sliapeu glass	a ticles when cooled suddenly		e these are cooled slowly, this		
process is known as	b) Appending	a) Quanching	d) Calvaniaina		
a) rempering	b) Anneaning	c) Quenching	u) Galvanisnig		
603. Aluminium carbide	reacts with dil. HCl to give:				
a) C_2H_2	bJC_2H_4		$dJ L_2 H_6$		
604. The blue coloured r	nineral Lapis Lazuli used as se	emiprecious stone is:			
a) Sodium alumino	silicate				
b) Zinc cobaltate					
c) Prussian blue					
d) Basic copper car	bonate				
605. The correct order o	f decreasing hardness of the fo	llowing compounds is:			
a) Diamond > Bora	zon > Carborundum > Corund	lum			
b) Borazon > Diam) Borazon > Diamond > Carborundum > Corundum				
c) Corundum > Car	borundum > Borazon > Diam	ond			
d) None of the abov	re				
606. It is impossible to fu	use strips of copper, silver or ir	on into soda glass becaus	e of a difference in the		
properties of glass a	and the metal. The property co	ncerned is:			
a) Coefficient of exp	bansion				
b) Melting point					
c) Ignition point					
- , G Point					

d) Heat of fusion					
607. The catalyst used in Frie	07. The catalyst used in Friedel-Craft's reaction is:				
a) Finely divided nickel	a) Finely divided nickel				
b) Finely divided platinu	b) Finely divided platinum				
c) Anhydrous aluminiun	n chloride				
d) Pt					
608. The metal used in acid st	orage batteries is :				
a) Copper	b) Tin	c) Magnesium	d) Lead		
609. In Hall's process, the ore	is mixed with:	, ,			
a) Coke	b) Calcium carbonate	c) Sodium hydroxide	d) Sodium carbonate		
610. Sesquioxide of lead is:	2	,			
a) PbO	b) PbO_2	c) Pb_2O	d) Pb_2O_3		
611. Tin (IV) chloride (anhyd	rous) can be obtained :				
a) By action of molten ti	n and Cl ₂				
b) By heating tin and cor	nc. HCl and dehydrating the	product in an atmosphere	of HCl(g)		
c) By treating tin with di	l. HCl and heating the prod	uct to dryness			
d) None of the above		Ċ			
612. What product is formed	on heating lead nitrate?				
a) PbO + NO + O_2	b) Pb0 + N0 ₂ + 0 ₂	c) Pb + NO ₂	d) PbO + N_2		
613. Which of the following in	nparts green colour to flam	ie:			
a) $B(OMe)_3$	b) Na(OMe)	c) Al(OBr ₂) ₃	d) Sn(OH) ₂		
614. Which among CH_4 , SiH_4 ,	GeH_4 and SnH_4 is most vola	atile?			
a) CH ₄	b) SiH ₄	c) GeH ₄	d) SnH ₄		
615. Destructive distillation o	f coal does not gives:	G.XY			
a) C_2H_2	b) C ₂ H ₄	c) Carbides	d) Coal gas		
616. Red lead is an example o	f				
a) Basic oxide	b) Super oxide	c) Mixed oxide	d) Amphoteric		
617. Which of the following st	tatements about H ₃ BO ₃ is n	not correct?			
a) It is prepared by acidi	fying an aqueous solution o	of borax			
b) It has a layer structur	b) It has a layer structure in which planar BO $_3$ units are joined by hydrogen bonds				
c) It does not act as prot	c) It does not act as proton donor but acts as Lewis acid by accepting hydroxyl ion				
d) It is a strong tribasic a	ncid				
618. Cassiterite is an ore of	$\lambda \gamma'$				
a) Iron	b) Lead	c) Mercury	d) Tin		
619. Hoope's process is used	in the refining of:				
a) Al	b) Zn	c) Ag	d) Cu		
620. B_2O_3 is:					
a) Ionic	b) Basic	c) Acidic	d) Amphoteric		
621. Boron compounds behav	ve as Lewis acid because of	their:			
a) Acidic nature	b) Covalent nature	c) Electron deficiency	d) Ionization property		
622. Which is pseudo solid?					
a) Glass	b) Diamond	c) Sodium chloride	d) CaCO ₃		
623. The number of carbon co	ompounds is very large bec	ause it:			
a) Is tetravalent					
b) Forms double and trip	ole bonds				
c) Is non-metal					
d) shows catenation					
624. Which species does not e	exist?				
a) [BF ₆] ^{3–}	b) [AlF ₆] ^{3–}	c) [GaF ⁶] ³⁻	d) [InF ₆] ³⁻		
625. Boron halides behave as	Lewis acids because of the	ir nature.			

a) Proton donor b) Covalent	c) Electron deficient	d) Ionising			
26. Boron differs from the other members of group 13 because it:					
a) Has much lesser radius					
b) Is non-metal					
c) Is covalent in its compounds					
d) Has maximum covalency of $6(B_2H_6)$					
627. The purification method used for mineral $Al_2O_3 \cdot 2l_3$	H ₂ O is:				
a) Froth floatation b) Leaching	c) Liquation	d) Magnetic separation			
628. Anhydrous $AlCl_3$ is obtained from		× ·			
a) Aluminium and chlorine gas	b) Hydrogen chloride gas	s and Aluminium metal			
c) Both of the above	d) None of the above				
629. Colour is imparted to glass by mixing:					
a) Synthetic dyes b) Metal oxides	c) Oxides of non-metal	d) Coloured salt			
630. Mineral of aluminium that does not contain oxygen	is:				
a) Corundum b) Diaspore	c) Bauxite	d) Cryolite			
631. When Al is added to KOH solution		X			
a) Hydrogen is evolved	b) Oxygen is evolved				
c) Oxygen is evolved	d) No action takes place	7			
632. The composition of mica is:					
a) NaAlSiO ₄ . $3H_2O$ b) K_2O . $3Al_2O_3$. $6SiO_2$. $2H_3$	I_2 (c) K_2 HAI(SiO ₄) ₃	d) NaK. SiO ₄ . $10H_2O$			
633. Lead chromate isin colour.	3 T T T T				
a) Red b) Yellow	c) White	d) Black			
634. Pure boron is best prepared by					
a) Heating $B_2 U_3$ with H_2	b) Heating $B_2 U_3$ with Na	and K			
c) Heating KBF_4 with Na Or K	d) Heating BBr_3 with H_2	is presence of a catalyst			
discolved in fused envelte (Na AIE6) is:	quantities in the electroly	uc reduction of alumina			
a) As a catalyst					
a) As a catalyst					
c) To increase the temperature of the melt					
d) To decrease the rate of oxidation of carbon at the	anode				
636 Litharge is not commonly used in :	anoue				
a) Manufacture of special glasses					
b) Glazing pottery					
c) Preparing paints					
d) Lead storage battery					
637. The precious Ruby stone is:					
a) Alumina					
b) Aluminium silicate					
c) Sodium aluminium silicate					
d) Sodium silicate					
638. Wood charcoal is used in gas masks because it:					
a) Is poisonous b) Liquefies gas	c) Is porous	d) Adsorbs gases			
639. CO_2 is obtained by heating :					
a) Na_2CO_3 b) K_2CO_3	c) NaHCO ₃	d) None of these			
640. Which is not correct?					
a) Al acts as a reducing agent.					
b) Al does not react with steam even at higher temp	erature				
c) Al forms a number of alloys with other metals	c) Al forms a number of alloys with other metals				
d) Al is ionic in all its compounds					
641. On controlled hydrolysis and condensation, R_3 SiCl y	<i>r</i> ields				

a) R_3 Si – O – Si R_3		b) $(-R_3 \text{Si} - 0 - \text{Si}R_3 -)_r$ R $R $ $ $	1
c) R ₃ SiOH		$-Si - O - Si$ $d) \begin{vmatrix} I & I \\ O & O \\ I & I \\ -Si - O - Si - I \end{vmatrix}$	
642 Semi water gas is mixtur.	e of ·	I I	
a) Water gas and produc	er gas		Y
b) Water gas and CO_2			
c) Producer gas and CO_2			
d) Producer gas and oil g	as		
643. Borax bead test is not giv	en by:		
a) An aluminium salt	b) A cobalt salt	c) A copper salt	d) A nickel salt
644. In the preparation of amo	orphous silicon, HF acid is u	ised to remove	>
a) Mg	b) SiO ₂	c) Si	d) None of these
645. Boric acid is not used:			
a) As an antiseptic			
b) As a flux in soldering			
c) In making optical glass	ses		
d) In making enamels and	d pottery glazes		
646. Which of the following is	amphoteric?		
a) CO_2	b) PbO_2	c) $S10_2$	d) GeO_2
647. Which of the following ca	innot liberate H ₂ with acids	с) Т:	ם (ף
a) Al	DJ III	CJ II PCL is treated with water	иј в -2
$3 B O \pm HCl$	b B H + HCl	r_{3} IS treated with water	: d) None of these
649 Which of the following n	$D_2 D_2 D_6 + D D_2 D_2 D_6$	$c_{113}DO_{3} + HCI$	uj None of these
a) Thermite process	b) Ostwald process	c) Contact process	d) Haber process
650. The metal which does no	t form a polynuclear carbor	nyl is :	
a) Sodium	b) Manganese	c) Iron	d) Cobalt
651. What is formed when oxa	alic acid is dehydrated by co	onc. H_2SO_4 ?	-
a) $C + CO_2$	b) CO	c) CO ₂	d) $CO + CO_2$
652. Tetra ethyl lead is used a	S:		
a) Fire extinguisher	b) Antiknock compound	c) Pain killer	d) Mosquito killer
653. Lead is not affected by di	lute HCl in cold, because :		
a) Pb is less electronegat	ive than H		
b) PbO film is formed wh	ich resists chemical attack	by acid	
c) A protective coating of	$PbCl_2$ is formed on Pb surf	tace	
d) PbU_2 film is always pr	esent on Pb surface, which	resists chemical attack	
654. Which of the following st	atement is correct with res	pect to the property of eler	nents in the carbon family
a) Atomic size decreases		b) Stability of ±2 ovidation	on state increases
c) Metallic character dec	reases	d) Ionization energy incre	
655. The chemical formula of	phosgene or carbonyl chlor	ide is:	
a) PH ₂	b) COCl ₂	c) POCl ₃	d) PCl₃
656. Carbon in CO ₂ is:	, 2	, <u>,</u>	
a) <i>sp</i> -hybridized	b) <i>sp</i> ² -hybridized	c) <i>sp</i> ³ -hybridized	d) <i>dsp</i> ³ -hybridized

657. Ordinary sand (SiO	$_2$) is attacked by:		
a) conc. HCl	b) conc. HBr	c) hot KOH	d) None of these
658. Which is not a mine	ral of aluminium?		
a) Anhydrite	b) Bauxite	c) Corundum	d) Diaspora
659. Graphite is soft soli	d lubricant extremely diffic	ult to melt. The reason for	this anomalous behaviour is that
graphite.			
a) Has molecules of	variable molecular masses	like polymers	
b) Has carbon atom	s arranged in large plates o	f rings of strongly bound c	arbon atoms with weak
interplate bonds			
c) Is a non-crystalli	ne substance		
d) Is an allotropic fo	orm of diamond		
660. Which does not rea	ct with water?		
a) B_2S_3	b) B ₄ C	c) Al_4C_3	d) Al ₂ S ₃
661. Which of the follow	ing is obtained on heating,	potassium ferrocyanide wi	th H_2SO_4 ?
a) CO_2	b) CO	c) C_2H_2	d) (CN) ₂
662. The metallic charac	ter of the elements of IV A g	group or group 14 :	
a) Decreases from t	op to bottom		
b) Has no significan	ce		
c) Does not change			
d) Increases from to	op to bottom		
663. When a solution of	sodium hydroxide is added	in excess to the solution of	potash alum, we obtain:
a) A white precipita	ite		
b) Bluish white pre	cipitate		
c) A clear solution	_		
a) A crystalline mas	S		
a) Solid	h) Liquid		d) Somi solid
aj soliu 665. Eluvis usod to	b) Liquid) C) Gaseous	uj senn sona
a) Remove silica		h) Romovo silica un	desirable metal ovide
c) Remove all impu	rities from ores	d) Reduce metal oxi	
666 Al dissolves in molt	en NaOH with the formatio	n of	
a) Sodium aluminat	$re(Na_2A O_2)$		
b) Sodium meta-alu	minate (NaAlO ₂)		
c) Aluminium hydr	oxide		
d) Alumina			
667. Silicon carbide is us	ed as:		
a) Dehydrating age	nt b) Abrasive	c) Solvent	d) Catalyst
668. Electrolytic reducti	on of pure alumina is not po	ossible because:	
a) It is amphoteric			
b) It dissociates on	fusion		
c) It melts at very h	igh temperature		
d) None of the abov	e		
669. The main factor res	ponsible for weak acidic na	ture of B—F bonds in BF ₃	is:
a) Large electroneg	ativity of F		
b) Three centred tw	o electorn bonds in BF ₃		
c) $p\pi - d\pi$ back box	nding		
d) $\rho\pi$ – $\rho\pi$ back bor	ding		
670. The correct order o	f increasing C—O bond lens	gth in CO, CO_3^{2-} and CO_2 is:	
a) $CO_3^{2-} < CO_2 < CO_2$	b) $\overline{CO} < CO_3^{2-} < CO_2^{2-}$	c) $CO_2^2 < CO_3^{2-} < CO_3^{2-}$	d) $CO < CO_2 < CO_3^{2-}$
671. A solution of a salt i	n water on addition of dilu	te HCl gives a white ppt. so	luble in hot water. The salt

b) Pb ²⁺	c) H ²⁺	d) Fe ²⁺
ent oxidation sates because		
ta;		
naracter		
I		
h) Fos	c) Granhite	d) Ph
5) I C5	c) drapinte	
;;		
don		
uei		
: - for		la la dia dan dilaria a se?
, is formed when aluminiun	n oxide and carbon is strong	ly neated in dry chlorine gas?
	b) Hydrate Aluminium	chloride
ium chloride	d) None of the above	•
with hot H_2SO_4 and also d	ecolourises acidified KMnO ₄	on warming is:
b) CO_3^{2-}	c) Oxalate	d) acetate
ane (B_2H_6) contains		
nd two 3c-2e bonds	b) Two 2c-2e bonds and	l four 3c-2e bonds
nd two 3c-3e bonds	d) Four 2c-2e bonds and	d four 3c-3e bonds
form oxides of the general f	formula:	
b) <i>MO</i>	c) M_2O_3	d) <i>M</i> ₂ O ₄
n		
tz	b) Silica coating on the	numbers
s an essential component	d) A coating of quartz of	n the outer body
th carbon in nitrogen atmo	sphere gives:	
b) Al + CO ₂	c) AlN + CO	d) Al + CO + N ₂
ong electropositive metal o	oxides to form:	
b) Carbonate	c) Hydroxide	d) Oxide
oup of group 14 elements a	are:	-
b) Covalent	c) Polar	d) Coordinate covalent
oon is least in :		2
b) Grev cast iron	c) Wrought iron	d) Steel
red in container of:		
b) Al	c) Zn	d) Sn
~)	•) =	
c b) Sodium silicate	c) Calcium formate	d) Pyrex glass
n is strongest in	ej saleralli formate	aj i yren glass
h) f	c) N	d) Si
hydroxide solution to Al_{e}	(aa)	
nyuroxide solution to m2(e in excess of ammonium by	drovide
and which does not dissolv	e in excess of ammonia solut	tion
med which uses hot dissolv	e in excess of animonia solu	hon
lileu		
do on the formation of		
h) Deres metal	a) Matal at also and	
UJ BOFON METAL	c) Metal metaborates	uj Ali ol tnese
actor of current but diamor	iu is non-conductor because	::
u graphite is soft		
	b) Pb^{2+} ent oxidation sates because ta; b) FeS ? der der der is formed when aluminium ium chloride with hot H_2SO_4 and also d b) CO_3^{2-} ane (B_2H_6) contains nd two 3c-2e bonds form oxides of the general f b) MO n tz s an essential component th carbon in nitrogen atmo- b) $Al + CO_2$ ong electropositive metal of b) Carbonate oup of group 14 elements a b) Covalent bon is least in : b) Grey cast iron red in container of: b) Al c) Sodium silicate n is strongest in: b) O hydroxide solution to Al_2 (ned which does not dissolv med ds on the formation of: b) Boron metal actor of current but diamor d graphite is soft	b) Pb^{2+} c) H^{2+} ent oxidation sates because: ta; arracter b) FeS c) Graphite c) formed when aluminium oxide and carbon is strong b) FeS c) Graphite c? der the stronged when aluminium oxide and carbon is strong b) Hydrate Aluminium ium chloride d) None of the above with hot H_2SO_4 and also decolourises acidified KMnO ₄ b) CO_3^{2-} c) Oxalate ane (B_2H_6) contains and two 3c-2e bonds b) Two 2c-2e bonds and d two 3c-3e bonds d) Four 2c-2e bonds and form oxides of the general formula: b) MO c) M_2O_3 n tz b) MO c) M_2O_3 n tz b) $Al + CO_2$ c) $AlN + CO$ ong electropositive metal oxides to form: b) Carbonate c) Hydroxide oup of group 14 elements are: b) Cayalent c) Polar non is least in : b) Grey cast iron c) Wrought iron red in container of: b) Al c) Zn to b) Sodium silicate c) Calcium formate n is strongest in: b) O c) N hydroxide solution to $Al_2(SO_4)_3$ (aq): ned which does not dissolve in excess of ammonium hy ned which does not dis

- b) Graphite and diamond have different atomic configuration
- c) Graphite is composed of positively charged carbon ions
- d) Graphite has hexagonal layer structure with mobile π -electrons while diamond has continuous tetrahedral covalent structure with no free electrons

690. When Sn (IV) chloride is treated with excess of conc. HCl, the complex $[SnCl_6]^{2-}$ is formed. The oxidation state of Sn in this complex is:

d) $Al_2 O_3$

a) +6 b) +4 c) -2 d) +2 691. SiH₄ + O_2 mixture on bubbling through water and bubbles coming in contact with air:

a) Burns with a luminous flame

b) Vortex rings of finely divided silica are formed

c) $SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$, reaction occurs

d) All of the above

692. The main component of glass which gives heat resistance to laboratory glassware is

a) PbO b) MgO c) B₂O₃

693. An element *R* is in group 13. Which is true with respect of?

a) It is a gas at room temperature

b) It has an oxidation state of +4

c) It forms an oxide of the type R_2O_3

d) It forms a halide of the type RX_2

694. Bucky ball or buck minster fullerene is:

a) An allotrope of carbon

b) It is referred as C – 60

c) It has sp^2 -hybridized nature and resembles with soccer ball

d) All of the above

THE P-BLOCK ELEMENTS

CHEMISTRY

						ANS	W	ER K	ΕY	,					
1)	С	2)	а	3)	b	4)	а	177)	d	178)	С	179)	d	180)	d
5)	b	6)	а	7)	d	8)	С	181)	а	182)	d	183)	С	184)	d
9)	С	10)	d	11)	С	12)	С	185)	а	186)	d	187)	а	188)	a
13)	b	14)	а	15)	С	16)	b	189)	С	190)	С	191)	С	192)	С
17)	d	18)	а	19)	b	20)	d	193)	а	194)	С	195)	c	196)	b
21)	d	22)	a	23)	С	24)	а	197)	b	198)	С	199)	С	200)	b
25)	С	26)	b	27)	а	28)	d	201)	а	202)	а	203)	a	204)	С
29)	b	30)	b	31)	d	32)	а	205)	b	206)	b	207)	ď	208)	С
33)	d	34)	b	35)	b	36)	d	209)	b	210)	а	211)	а	212)	а
37)	а	38)	С	39)	d	40)	d	213)	а	214)	b	215)	С	216)	С
41)	b	42)	d	43)	b	44)	а	217)	b	218)	d	219)	d	220)	d
45)	d	46)	d	47)	b	48)	d	221)	d	222)	a	223)	С	224)	d
49)	С	50)	а	51)	С	52)	а	225)	С	226)	С	227)	а	228)	С
53)	а	54)	b	55)	а	56)	b	229)	а	230)	а	231)	d	232)	b
57)	С	58)	С	59)	а	60)	С	233)	b	234)	С	235)	а	236)	С
61)	b	62)	b	63)	b	64)	b	237)	C	238)	b	239)	d	240)	d
65)	a	66)	а	67)	а	68)	d	241)	C	242)	а	243)	C	244)	d
69) ==>	b	70)	С	71)	С	72)	b	245)	b	246)	С	247)	b	248)	d
73)	С	7 4)	С	75)	b	76)	a	249)	b	250)	а	251)	C	252)	d
77)	b	78)	С	79)	а	80)	d	253)	b	254)	a	255)	b	256)	d
81)	a	82)	а	83)	а	84)	a	257)	a	258)	d	259)	a	260)	a
85)	D J	86)	a	87)	C	88)	b b	261)	b h	262)	D J	263)	a	264)	a
89J 02)	a L	90J	a L	91) 05)	a L	92)	D	265)	D	266J	a	267)	a	268)	C
93J 07)	D	94J 09)	D	95)	D	796J	a d	209)	a h	270J 274)	C	2/1) 275)	C d	272)	a
97J 101)	C Q	90J 102)	a d	99J 102)	a k	100)	u d	273)	d d	2/4J 270)	d h	275)	u d	270)	C
101)	d d	102)	u d	105)	d	104)	u d	2//J 201)	u	270J 292)	U a	2/9J 202)	u d	200J 294)	d d
103)	u a	100)	d	1075	u c	100)	u h	201)	a	202)	a a	203) 287)	u d	204)	u h
117)	a d	110)	u a	115)	c h	112)	h	203)	с а	200)	a	207)	u d	200)	h
117)	u C	118)	h	119)	h	120)	C	293)	h	290) 294)	d	295)	d	296)	h
121)	c	122)	b	123)	c	124)	c	297)	d	298)	b	299)	d	300)	a
125)	c	126)	ی۔ b	127)	b	128)	a	301)	b	302)	c	303)	b	304)	c
129)	d	130)	b	, 131)	С	132)	b	305)	a	306)	d	307)	а	308)	d
133)	с	134)	а	135)	b	136)	С	309)	b	310)	b	311)	d	312)	b
137)	С	138)	b	139)	С	140)	b	313)	b	314)	b	315)	b	316)	d
141)	С	142)	а	143)	С	144)	а	317)	b	318)	d	319)	d	320)	d
145)	d	146)	а	147)	d	148)	С	321)	С	322)	С	323)	b	324)	b
149)	d	150)	а	151)	d	152)	d	325)	b	326)	b	327)	а	328)	b
153)	а	154)	а	155)	b	156)	С	329)	С	330)	d	331)	а	332)	С
157)	а	158)	d	159)	b	160)	С	333)	b	334)	С	335)	d	336)	С
161)	d	162)	d	163)	с	164)	С	337)	d	338)	b	339)	d	340)	b
165)	а	166)	С	167)	С	168)	d	341)	а	342)	d	343)	С	344)	С
169)	a	170)	d	171)	a	172)	d	345)	С	346)	d	347)	а	348)	С
173)	С	174)	b	175)	С	176)	а	349)	b	350)	d	351)	b	352)	b

								1						
353)	а	354)	d	355)	а	356)	а	557)	d	558)	b	559)	d	560) a
357)	b	358)	d	359)	С	360)	а	561)	С	562)	b	563)	а	564) b
361)	С	362)	d	363)	С	364)	d	565)	С	566)	b	567)	b	568) d
365)	а	366)	d	367)	b	368)	b	569)	С	570)	а	571)	С	572) a
369)	b	370)	b	371)	b	372)	b	573)	С	574)	b	575)	d	576) b
373)	а	374)	С	375)	С	376)	d	577)	d	578)	а	579)	d	580) c
377)	а	378)	а	379)	b	380)	а	581)	С	582)	b	583)	d	584) a
381)	d	382)	а	383)	а	384)	b	585)	b	586)	С	587)	b	588) d
385)	b	386)	С	387)	а	388)	b	589)	d	590)	а	591)	b	592) d
389)	d	390)	а	391)	d	392)	d	593)	b	594)	а	595)	а	596) b
393)	d	394)	С	395)	d	396)	d	597)	b	598)	а	599)	a	600) c
397)	С	398)	а	399)	С	400)	d	601)	С	602)	b	603)	С	604) a
401)	С	402)	b	403)	b	404)	b	605)	а	606)	а	607)	С	608) d
405)	а	406)	С	407)	С	408)	а	609)	d	610)	d	611)	a	612) b
409)	d	410)	а	411)	b	412)	С	613)	а	614)	а	615)	с	616) c
413)	b	414)	b	415)	С	416)	С	617)	d	618)	d	619)	а	620) c
417)	С	418)	b	419)	а	420)	С	621)	С	622)	a	623)	d	624) a
421)	b	422)	b	423)	d	424)	С	625)	С	626)	b	627)	b	628) c
425)	d	426)	d	427)	d	428)	b	629)	b	630)	d	631)	а	632) b
429)	а	430)	С	431)	а	432)	С	633)	b	634)	d	635)	b	636) d
433)	с	434)	а	435)	с	436)	С	637)	а	638)	d	639)	С	640) d
437)	b	438)	а	439)	а	440)	а	641)	а	642)	а	643)	а	644) b
441)	a	442)	d	443)	d	444)	b	645)	b	646)	b	647)	d	648) c
, 445)	С	446)	С	447)	С	, 448)	С	649)	a	650)	а	651)	d	652) b
449)	c	450)	a	451)	d	452)	C	653)	C	654)	b	655)	b	656) a
453)	C	454)	d	455)	d	456)	С	657)	C	658)	a	659)	b	660) a
457)	b	458)	C	459)	c	460)	C	661)	b	662)	d	663)	c	664) c
461)	d	462)	d	463)	b	464)	b	665)	b	666)	а	667)	b	668) c
465)	h	466)	C	467)	b.	468)	b	669)	d	670)	d	671)	b	672) h
469)	C	470)	d	471)	b	472)	d	673)	C	674)	С	675)	c	676) c
473)	c	474)	a	475)	a	476)	a	677)	a	678)	c	679)	c	680) c
477)	b	478)	a	479)	c	480)	a	681)	a	682)	b	683)	c	684) b
481)	b	482)	a	483)	b	484)	b	685)	b	686)	a	687)	a	688) c
485)	C	486)	a	487)	d	488)	b	689)	d	690)	b	691)	d	692) c
489)	a	490)	a	491)	а	492)	d	693)	C	694)	d	,	-	, <u>,</u>
493)	b	494)	b	495)	c	496)	b	,	•	<i>。</i> ,	-			
497)	d	498)	c	499)	а	500)	а							
501)	h	502)	C	503)	a	504)	h							
505)	b	506)	a	507)	a	508)	c							
509)	ā	510)	d	511)	c	512)	c							
513)	d	514)	C	515)	c	516)	d							
517)	d	518)	d	519)	c	520)	h							
521)	ď	522)	d	523)	d	524)	a							
525)	c	526)	d	527)	c	528)	a							
529)	c	520)	a	531)	d	532)	h							
533)	a	534)	c c	535)	h	536)	d							
537)	d	538)	d	539)	a	540)	d d							
541)	a	542)	d	543)	h	544)	d							
545)	a	546)	a	547)	ď	548)	c c							
549)	d	550)	h	551)	C	552)	ď							
553)	c c	554)	a	555)	d	556)	c c							
5555	-	551	u	0000	**	0000	-	I						

THE P-BLOCK ELEMENTS

CHEMISTRY

	: HINTS AND	SO	LUTIONS :
2	(a)		Graphite has a two dimensional structure. In this
	It is a fact.		case, only three of the four valence electrons of
3	(b)		each carbon atom are involved in bonding. Thus,
			each carbon atom makes use of sp^2 -hybrid
	$3B + \frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow B_2O_3 + BN$		orbitals. Hence, the fourth valence of each carbon
4	(a)		atom remains unsatisfied <i>ie</i> , the fourth valence
	The state of hybridization of carbon in fullerene is		electron remains unpaired or free. This free
	<i>sp</i> ² hybridised		electron can easily move from one carbon to
5	(b)		another under the influence of applied potential.
	Davy isolated boron		So, in structure of graphite only one electron is
6	(a)		free on each carbon atom.
	Rest all are the methods to prepare anhydrous	18	(a)
	AlCl ₃ .		It is a reason for given fact.
	$2\text{AlCl}_3 \cdot 6\text{H}_2\text{O} \xrightarrow{\Delta} \text{Al}_2\text{O}_3 + 6\text{HCl} + 9\text{H}_2\text{O}$	19	(b)
7	(d)		Organic acids dissolve lead in presence of oxygen
	Potash alum is double salt. Its chemical		$Pb+2CH_3COOH + \frac{1}{2}O_2 \rightarrow Pb(CH_3COO)_2 + H_2O$
	composition is	20	(d) ²
	K_2SO_4 , $Al_2(SO_4)_2$, 24H ₂ O	X	It is a fact.
	K_2SO_4 . Al ₂ (SO ₄) ₃ . 24H ₂ O	21	(d)
	$\rightarrow 2K^{+} + 2Al^{3+} + 4SO_{4}^{2-} + 24H_{2}O$		H_3BO_3 has layer structure with H-bonding.
	\therefore It gives three types of ions on dissociation		
	K^+ , Al^{3+} and SO_4^{2-}		Н
8	(c)		0
	CO is neutral oxide of carbon,		
9	(c)		O O H
	Addition of cryolite makes the fused melt at lower		(H bonds)
	melting temperature as well as good conductor of		H H (H bonds)
	current.		$\dot{\mathbf{O}}$ \mathbf{O}
11	(c)		H [×] B [×]
	Solid CO_2 directly sublimes to gas by taking heat		Ó
	from surroundings to bring in cooling.		H (H bonds)
12	(c)		
	Destructive distillation of coal (heated to nearly	22	(a)
	1270 K) gives coke (solid residue 70%) and hot		Producer gas (a mixture of $CO + N_2$) is prepared
C 10	vapours and gases.		by incomplete combustion of coal in restricted
13			supply of air.
	Liquified Ga expand on solidification , because it is	23	(c)
	less electropositive in nature and has the weak	.	Water gas is $CO + H_2$.
15	metallic bond	24	(a)
12	(U) To slow down the speed of noutrons		In bauxite ore, only Al_2O_3 reacts with conc. NaOH
16	(h)		and forms sodium meta aluminate.
10	(9) BE ₂ is electron deficient compound		THIS IUITHER DISSOIVES IN WATER. 500 K
17	(d)		$Al_2O_3 + 2H_2O + 2NaOH \xrightarrow{35 \text{ bar}} 2NaAlO_2 + 3H_2O$
1/	(")		55 bui

	$NaAlO_2 + 2H_2O \rightarrow NaAl(OH)_4$	42	(d)
0F			MnO ₂ imparts purple colour to glass.
25		43	(b)
	Amphoteric substance can react with both acid		Cryolite (Na_3AlF_6) is added to Al_2O_3 before
	and base		electrolysis to lower the fusion temperature of
26	(b)		bauxite in order to dissolve it and making good
	Wood's metal an alloy of Bi (50%), Pb (25%), Sn		conductor of current.
	(12.5%) and Cd (12.5%) has m.p. 71°C.	44	(a)
27	(a)		Both possess giant molecular structure.
	The hardness progressively decreases with	45	(d)
	increase in at. no. in gp.13.		Solid CO_2 is known as dry ice because it
28	(d)		evaporates at -78° C without changing in the
	It is a reason for given fact.		liquid state
29	(b)	47	
	The method of zone refining of metals is based on		Graphite converts into benzene hexa carboxylic
	the principle of greater solubility of the impurity		acid heating with hot conc HNO ₂
	in the molten state than in the solid. Elements	48	(d)
	which are used as semiconductors like Si, Ge, Ga,	10	Lead shows $+2$ $+4$ oxidation state due to inert
	etc are refined by this method.		nair effect
30	(b)	49	(c)
	In H_3BO_3 boron atom is sp^2 -hybridised.	17	Zeolite (permutit) is a three-dimensional silicate
31	(d)		It is used in removing hardness of water
	Carborundum is SiC.	50	(a)
33	(d)	50	BE is gas
	Red bauxite which contains Fe_2O_3 as the main	51	(c)
	impurity, is refined either by Baeyer's process or		It is a fact.
	by Hall's process. White bauxite containing SiO_2	52	(a)
	impurity is refined by Serpeck's method. In	_	Doping of gp.13 element (In) with Ge (gp.14
	Serpeck's method, following reactions take place		element) causes <i>n</i> -type semiconductor. Doping of
	Al ₂ O ₂ , 2H ₂ O + 3C + N ₂ $\xrightarrow{1800^{\circ}C}$ 2AlN + 3CO		gp.15 element (As) with Ge (gp.14 element)
	$+ 2H_{2}0$		causes <i>n</i> -type semiconductor.
	$AIN + 3H_0O \rightarrow AI(OH)_0 + NH_0$	53	(a)
			Both CO and air have nearly same mol. wt. of CO.
25	$2\text{AI}(\text{OH})_3 \longrightarrow \text{AI}_2\text{O}_3 + 3\text{H}_2\text{O}$		is 28; of air it is \approx 29.
35		54	(b)
26	Alc I_3 exists as Al ₂ Cl ₆ .		Muddy water can be purified through coagulation
36	(\mathbf{u}) $M_{\mathbf{x}} = C + A\mathbf{U} = C + 2\mathbf{M}_{\mathbf{x}}(\mathbf{O}\mathbf{U}) + C\mathbf{U} = C + C + C + C + C + C + C + C + C + C$		by using alums.
27	$\operatorname{Mg}_2\operatorname{C}_3 + \operatorname{4n}_2\operatorname{O} \to 2\operatorname{Mg}(\operatorname{On})_2 + \operatorname{Cn}_3\operatorname{C} = \operatorname{Cn}$	55	(a)
37	(a)		The composition of dry air is: $N_2 = 78.08\%$; $O_2 =$
20			20.95%; Ar = 0.93%; CO ₂ =0.03%; Ne =
39			0.0018%; He = $0.0005%$; Kr = $0.0001%$ and Xe =
	$4AI + 3O_2 \rightarrow 2AI_2O_3$ involves oxidation and the		0.00001%. In addition to these it also contains
5	process of anodising will favour formation of		water vapours hydrocarbons, H_2O_2 , sulphur
10	AI_2U_3 .		compounds.
40	(U) Emport D(OII) all there have a line of the state of t	56	(b)
	Expect $B(OH)_3$ all other hydroxide are of metallic		Diamond is an allotropic form of carbon,
	nyuroxide naving the basic nature, $B(UH)_3$ are the		carborundum is SiC, corundum is Al_2O_3 , borazon
41	nyur oxide or non-metal snowing the acidic nature		is BN.
41	(U)	57	(c)
	formation of CO		$4\text{Sn} + 10\text{HNO}_3 \rightarrow 4\text{Sn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3\text{H}_2\text{O}$
		58	(c)

Incomplete combustion of gases leaves carbon residue to develop yellow colour.

59 (a)

Larger anion are more easily deformed to produce covalent nature. Also note decreasing ionic nature and not increasing.

60 **(c)**

The Lewis acid order for boron halides are explained in terms of back-bonding.

61 **(b)**

Incomplete combustion of petrol gives out CO from exhaust of auto vehicle.

62 **(b)**

Alum is antibacterial and not insecticide.

63 **(b)** $BCl_3 + 3H_2O \rightarrow B(OH)_3 + 3HCl$ Thus the products are $B(OH)_3$ or H_2O

Thus, the products are $B(OH)_3$ or H_3BO_3 and HCl. 64 **(b)**

 $4H_3BO_3 \rightarrow H_2B_4O_7 + 5H_2O_7$

65 **(a)**

As metallic character of element attached to oxygen atom increases, the difference between the electronegativity values of element and oxygen increases and thus basic character of oxides increases and *vice-versa*. Hence the increasing correct order of basic nature is $Al_2O_3 < Mgo < Na_2O < K_2O$.

66 **(a)**

Calorific values are: Coal gas = $450-560 \text{ BTU/ft}^3$ (British thermal unit per cubic feet); water gas = 310 BTU/ft^3 ; producer gas = 103 BTU/ft^3 ; CO₂= 0.

68 **(d)**

 $Sn + 4H_2SO_4(Conc.) \rightarrow Sn(SO_4)_2 + 2SO_2 + 4H_2O$ 69 **(b)**

The chemical formula of sindhur is Pb_3O_4 . It is also called red lead or trilead tetraoxide. Red lead is used as a red pigment in making antirust and also as an oxidising agent in glass and match industries.

70 **(c)**

Aluminium oxide is highly stable therefore, it is not reduced by chemical reaction

71 **(c)**

Aluminium reacts with caustic soda to form sodium meta aluminate.

 $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2 \uparrow$ sodium meta aluminate

72 **(b)**

 $PbO_2 + 2HNO_3 \rightarrow Pb(NO_3)_2 + H_2O + \frac{1}{2}O_2$

- 73 (c) $2H_3BO_3 \rightarrow B_2O_3 + 3H_2O_3$
- 75 **(b)** Thermite is a mixture of $Fe_2O_3 + Al$.
- 76 (a)

It is a fact; also known as white lead.

77 **(b)**

$$C_{12}H_{22}O_{11} + 18[0] \rightarrow 6H_2C_2O_4 + 5H_2O_4$$

78 **(c)** It is a reason for given fact.

79 **(a)**

Diamond possesses the highest b.p. among all due to giant molecular structure. It does not melt and directly vaporise at 3773K.

80 **(d)**

The enthalpy of formation of Al_2O_3 is very high and hence, it is not possible to reduce it by carbon.

82 **(a)**

A species is amphoteric if it is soluble in acid (behaves as a base) as well as in base (behaves as an acid).

 SnO_2 is an amphoteric oxide.

 $\text{SnO}_2 + 4\text{HCl} \rightarrow \text{SnCl}_4 + 2\text{H}_2\text{O}$

$$SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$$

83 **(a)**

 $\mathrm{H_2O} + \mathrm{C} \longrightarrow \mathrm{CO} + \mathrm{H_2}$

84 **(a)**

 $Ni(CO)_4$ is volatile gas at room temperature.

85 **(b)**

It is also known as minium or sindhur.

86 **(a)**

Boron trihalides are Lewis acid. The order of their acidic strength is as

 $BF_3 < BCl_3 < BBr_3 < BI_3$

In the boron halides, a $p\pi$ - $p\pi$ back bonding arises due to empty orbital of boron and filled orbitals of halogen.

This $p\pi$ - $p\pi$ back bonding has maximum effect in BF₃ as the size of B and F-atoms are comparative

and this effect decreases as the size of halogen Carbon element belongs to IV A group. $C + O_2 \rightarrow CO_2$ increases. Due to this effect, tendency of accepting $CO_2 + H_2O \rightarrow H_2CO_3$ lone pair of electron of boron decreases *i.e.*, Lewis acid character decreases. carbonic acid 87 (c) 96 (a) On heating AlCl₃ (*aq*) to dryness, Al₂O₃ is formed. The C—X bond energy in CF₄, CCl₄, CBr₄ and $2\text{AlCl}_3 + 6\text{H}_2\text{O} \rightarrow 2\text{Al}(\text{OH})_3 + 6\text{HCl}$ CI₄ are 116, 81, 68 and 51 respectively. 97 $Al(OH)_3 \rightarrow Al_2O_3 + 3H_2O_3$ (c) 88 **(b)** CO and CO₂ are major air pollutant. However, CO_2 is used in photosynthesis and CO is left to pollute C-60 is called Buckminster fullerene. It is discovered in 1990 as a constituent of soot. Its air. 98 shape is like a soccer ball. (a) 89 (d) It is a fact. $Pb_3O_4 + 4HNO_3 \xrightarrow{\Delta} Pb(NO_3)_2 + 2H_2O + 2PbO_2$ 99 (a) Rose metal contains Sn + Pb + Bi used in electric 90 (d) fuses. C-atoms form covalently bonded plates (layers). 28% 22% 50% Layers are bonded weakly together, that's why 100 (d) one layer can slide over other cause lubricacy. Diamond is bad conductor of current. Cannot be melted easily as large number of atoms 101 (a) being bonded strongly in the layer form big entity. $BN + 3NaOH \rightarrow Na_3BO_3 + NH_3$ 91 (a) 102 (d) The simplest glass is soda glass which is also Graphite has two dimensional sheet like structure called soft glass. Glass is super-cooled liquid in which the various layers are held together by mixture. The composition of soft glass is weak van der Waals' forces Na₂O. CaO. 6SiO₂. 103 (b) 92 (b) Colemanite is $Ca_2B_6O_{11} \cdot 5H_2O$. Surface of Al forms Al_2O_3 in nitric acid and 104 (d) becomes passive. Pb_3O_4 is a mixed oxide. It can be represented as 93 **(b)** $2PbO - PbO_2$ RSiCl₃ gives cross linked silicon polymer on 105 (d) hydrolysis. It is a fact. OH. 106 (d) Polymerisation Due to formation of PbS (black). 107 (d) Abundance in earth crust in ppm: B (10), Al (81300), Ga (15), In (1), Tl (0.3). 108 (d) Graphite possesses sp^2 -hybridization. 109 (a) The important ore of tin is cassiterite (SnO_2) . Tin is extracted from cassiterite ore by carbon reduction method in a blast furnace. $SnO_2 + 2C \rightarrow Sn + 2CO$ The product often contain traces of iron which is 94 **(b)** removed by blowing air through the melt to CF₄ has more ionic character than oxidise to FeO which then floats to the surface. CCl₄, SiF₄ and SiCl₄. $2Fe + O_2 \rightarrow 2FeO.$ Hence, it has more lattice energy and thermal

110 (d)

stability.

(b)

95

Bentonite is spread to destroy the bacteria,

insects and other pests by exposure to poisonous	$2AI + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe; \Delta H = -ve;$
gas or smoke. This is called fumigation.	The heat given out is used in welding. This is also
111 (c)	called Gold Schmidt alumino thermic process.
Addition of As in lead makes it brittle.	131 (c)
113 (d)	Agate is SiO_2 .
It is therefore used to prepare laboratory glass	132 (b)
apparatuses.	$N_{1}(CO) \xrightarrow{\Delta} N_{1} + 4CO$
114 (a)	$NI(CU)_4 \rightarrow NI+4CU$
Silica on heating with carbon at high temperature	155 (C)
gives carborundum (silicon carbide)	Flint glasses are clear, transparent, potasn lead
α	glass.
$SIO_2 + 3C \longrightarrow SIC + 2CO$	
carborundum	Carbon cannot expand its octet due to
Carborundum is very hard substance.	inavailability of <i>a</i> -subshell in 2nd shell.
115 (b)	136 (c)
R_3 SICI + HOH $\rightarrow R_3$ SIOH + HCI	$AICI_3 + 3NaOH \rightarrow AI(OH)_3 + 3NaCI$
$R_3 \text{SIOH} + \text{HOSI}R_3 \rightarrow R_3 \text{SI} - 0 - \text{SI}R_3$	$AI(OH)_3 + OH^- \rightarrow AI(OH)_4^-$ (soluble)
116 (b)	137 (c)
White tin converts to grey tin a low temperature.	Goldschmidt in 1905 discovered a method for the
117 (c)	reduction of haematite (Fe_2O_3) with aluminium
Water glass is sodium silicate.	metal. The process is known as aluminothermic
118 (b)	process, as in this process, large heat is produced.
Bullet of gun possesses lead in it.	In this, Fe_2O_3 and aluminium are taken in 3:1 ratio
119 (b)	and this mixture, known as thermite, is ignited to
Both have at. wt. equal to 12.	initiate the reaction, when Fe_2O_3 is reduced to
121 (c)	molten Fe.
The inert pair effect is most prominent in Pb	$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe + 3230 \text{ kJ}$
The inert pair effect is most prominent in Pb because from top to bottom due to increase in	$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe + 3230 \text{ kJ}$ molten
The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells	$2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe + 3230 \text{ kJ}$ molten 138 (b)
The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b)	✓ $2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe + 3230 \text{ kJ}$ molten 138 (b) Electrolysis of cryolite can be explained as
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C –60 (allotrope of	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C –60 (allotrope of carbon). 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ ≈ 3NaF + AlF ₃ 4AlF ₃ ≈ 4Al ³⁺ + 12F ⁻ +12e ⁻ 4Al 6E
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ ≈ 3NaF + AlF ₃ 4AlF ₃ ≈ 4Al ³⁺ + 12F ⁻ +12e ⁻ ↓ -12e ⁻ 4Al 6F ₂ (at satheda) (at satheda)
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So the moler ratio of Al and F is 4:6=2:2
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} ↓ -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al $6F_2$ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO get absorbed by Ca(OH) to form insoluble
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C – 60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ ≈ 3NaF + AlF ₃ 4AlF ₃ ≈ 4Al ³⁺ + 12F ⁻ +12e ^{-↓} ↓ -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} ↓ -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b)
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al $6F_2$ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) \downarrow OH ⁻ \rightarrow [Al(OH) ⁻]
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ ⇒ 3NaF + AlF ₃ 4AlF ₃ ⇒ 4Al ³⁺ + 12F ⁻ +12e ^{-↓} ↓ -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ₄]. Coordination no is give thus, it exists as
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al $6F_2$ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ₄ ⁻]. Coordination no. is six thus, it exists as [Al(U O) (OU)] ⁻
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M'''₂(SO₄)₃ · 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al $6F_2$ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ₄]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ .
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M'''₂(SO₄)₃ · 24H₂O 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ₄ ⁻]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ . 142 (a)
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M'''₂(SO₄)₃ · 24H₂O 128 (a) 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ ≈ 3NaF + AlF ₃ 4AlF ₃ ≈ 4Al ³⁺ + 12F ⁻ +12e ^{-↓} ↓ -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ⁻ ₄]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ . 142 (a) Carbon dioxide gas remains present in airated water and soft driver
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M'''₂(SO₄)₃ · 24H₂O 128 (a) Graphite is good conductor of current. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 k] molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ⁻ ↓ ↓ -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ₄]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ . 142 (a) Carbon dioxide gas remains present in airated water and soft-drinks.
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C –60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M'''₂(SO₄)₃ · 24H₂O 128 (a) Graphite is good conductor of current. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ⁴ ₄]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ . 142 (a) Carbon dioxide gas remains present in airated water and soft-drinks. 143 (c) Calamino is an ora of Zr.
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C -60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M'''₂(SO₄)₃ · 24H₂O 128 (a) Graphite is good conductor of current. 129 (d) Alumina is mixed with molten cryolite to lower its 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 kJ molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} \downarrow -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ⁴ ₄]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ . 142 (a) Carbon dioxide gas remains present in airated water and soft-drinks. 143 (c) Calamine is an ore of Zn.
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C −60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M''₂ (SO₄)₃ · 24H₂O 128 (a) Graphite is good conductor of current. 129 (d) Alumina is mixed with molten cryolite to lower its melting point and to make it good conductor of 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 k] molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ^{-↓} ↓ -12e ⁻ 4Al 6F ₂ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ₄ ⁻]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ . 142 (a) Carbon dioxide gas remains present in airated water and soft-drinks. 143 (c) Calamine is an ore of Zn. 144 (a)
 The inert pair effect is most prominent in Pb because from top to bottom due to increase in number of shells 122 (b) Buckminster fullerene is C −60 (allotrope of carbon). 123 (c) SiO₂ has giant molecular structure. 124 (c) Diamond and graphite are crystalline allotropes of carbon. 125 (c) It is a reason for given fact. 126 (b) Minium is also known as red lead. 127 (b) General formula of alum is, M'₂SO₄ · M'''₂(SO₄)₃ · 24H₂O 128 (a) Graphite is good conductor of current. 129 (d) Alumina is mixed with molten cryolite to lower its melting point and to make it good conductor of electricity. 	2Al + Fe ₂ O ₃ → Al ₂ O ₃ + 2Fe + 3230 k] molten 138 (b) Electrolysis of cryolite can be explained as Na ₃ AlF ₆ \rightleftharpoons 3NaF + AlF ₃ 4AlF ₃ \rightleftharpoons 4Al ³⁺ + 12F ⁻ +12e ⁻¹ \downarrow -12e ⁻ 4Al $6F_2$ (at cathode) (at anode) So, the molar ratio of Al and F ₂ is 4:6=2:3 139 (c) CO ₂ get absorbed by Ca(OH) ₂ to form insoluble CaCO ₃ 140 (b) Al(OH) ₃ + OH ⁻ → [Al(OH) ₄ ⁻]. Coordination no. is six thus, it exists as [Al(H ₂ O) ₂ (OH) ₄] ⁻ . 142 (a) Carbon dioxide gas remains present in airated water and soft-drinks. 143 (c) Calamine is an ore of Zn. 144 (a) Na ₂ B ₄ O ₇ → 2NaBO ₂ + B ₂ O ₃ Na ₂ B ₄ O ₇ → 2NaBO ₂ + B ₂ O ₃

(Blue bead)

145 **(d)**

Inorganic benzene is borazole or $B_3N_3H_6$ having structure similar to C_6H_6 , *i.e.*,

146 **(a)**

Borax is Na₂B₄O₇ \cdot 10H₂O or Na₂[B₄O₅(OH)₄] \cdot 8H₂O

147 **(d)**

The mineral borax is $Na_2B_4O_7$. $10H_2O$. It is used to detect coloured basic radicals in inorganic salt analysis.

148 **(c)**

Boron carbide also called **norbide** is hardest boron compound.

149 **(d)**

Iron oxide impurity – Baeyer's process Silica impurity – Serpeck's process

150 (a)

 $C + 2H_2SO_4 \longrightarrow CO_2 + 2SO_2 + 2H_2O$ (Conc.)

151 **(d)**

Massicot is PbO

 $Pb(NO_3)_2 \rightarrow PbO + 2NO_2 + \frac{1}{2}$

152 **(d)**

A characteristic of charcoal.

153 **(a)**

Boric acid is used as disinfectant in eye wash under the name boric lotion.

154 **(a)**

 $Al_4C_3 + 12H_2O \rightarrow 3CH_4 + 4Al(OH)_3$ 155 **(b)**

The purest variety of coal is anthracite. 156 **(c)**

Boron and zeolite are used as water softner 157 (a)

It is a reason for given fact.

158 **(d)**

Potash alum is used for tanning of leather, as mordant in dyeing and calico printing, for sizing paper, as a styptic to stop bleeding and purification of water.

159 **(b)**

Each combustion is exothermic.

160 **(c)**

Basic lead carbonate is generally known as white lead.

Formula of compound Name of the compound PbCO₃. PbOPbCO₃ Cerussite $Pb(OH)_2$. $2PbCO_3$ White lead PbSO₄. PbO Lanarkite 161 **(d)** $C + 4HNO_3 \rightarrow CO_2 + 4NO_2 + 2H_2O$ 162 (d) Al \rightarrow Al³⁺ + 3e. 164 (c) Water glass is sodium silicate. 165 (a) Silica (SiO_2) is used for making optical instruments. 166 (c) Naturally occurring crude borax is called tincal. Thus, it is chemically $Na_2B_4O_7$. $10H_2O$. 167 (c) $SnO + HF \rightarrow SnF_2 + H_2O$ 168 (d) Generally red lead decompose into PbO and O_2 169 (a) $K_2(SO_4)$. $Al_2(SO_4)_3$. 24H₂O gives $K_2SO_4 + Al_2(SO_4)_3 + 24H_2O_4$ $Al_2(SO_4)_3$ undergoes hydrolysis to give H_2SO_4 $Al_2(SO_4)_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2SO_4$ due to which aqueous solution of potash alum is acidic. 170 (d) It is a fact. 171 (a) Calorific value is the heat liberated by burning 1g fuel = $\frac{94}{12}$ = 7.8 kcal /g. Heat of combustion of $carbon = 94 \text{ kcal mol}^{-1}$ 172 (d) Aluminium metal is refined by Hoope's electrolytic process. 173 (c) Lead form nitric oxide and lead nitrate with dil HNO₃ $3Pb + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 4H_2O$ 174 **(b)** In smelting, carbon is used as a reducing agent but it is a non-metal. Al is also used as reducing agent and it is a metal. $2Al + Fe_2O_3 \rightarrow 2Fe + Al_2O_3$ 175 (c) 1.In nitrogen *d*-orbitals are absent, so it does not

form NCl₅. Thus, NCl₅ does not exist but PCl₅ does.

2. Pb^{2+} is more stable than Pb^{4+} , due to inert pair effect.

3.In carbonate ion (CO_3^{2-}) all the three C – O bonds are identical due to resonance.

4.

5.
$$O_2^+(8+8-1=15) = \sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma *$$

 $2s^2, \sigma 2p_s^2, \pi 2p_y^2 \approx \pi 2p_z^2, \pi^2 2p_y^1$

NO (7+8=15)

Hence, bo0th O_2^+ and NO contains one unpaired electrons, so paramagnetic.

176 (a)

Borazine $B_3N_3H_6$ is isoelectronic to benzene and hence, is called inorganic benzene. Some physical properties of benzene and borazine are also similar

177 (d)

Only lead in group 14 does not have allotropes. 178 **(c)**

Zn is stronger oxidant than carbon.

179 **(d)**

It is a method for preparation of graphite

$$SiO_2 + 3C_{Coke} \xrightarrow{\text{Furface}} SiC + 2CC$$

 $SiC \rightarrow Si + C_{Graphite}$

180 **(d)**

 $CO + NaOH \xrightarrow{200^{\circ}C} HCOONa$ sodium formate

181 **(a)**

In Hall's process

$$Al_{2}O_{3} \cdot 2H_{2}O + Na_{2}CO_{3}$$

$$\rightarrow 2NaAlO_{2} + CO_{2} + 2H_{2}O$$

$$2NaAlO_{2} + 3H_{2}O + CO_{2} \xrightarrow{333K} 2Al(OH)_{3}$$

$$\downarrow + Na_{2}CO_{3}$$

$$2Al(OH)_3 \xrightarrow{1473K} Al_2O_3 + 3H_2O$$
182 (d)

In C_2H_4 , each carbon has complete octet and cannot expand it.

183 (c)

Sapphire is a natural crystalline form of blue transparent corundum (alumina, Al_2O_3); The colour being due to traces of cobalt and other metals.

184 **(d)**

All are used as fire extinguishers.

186 **(d)**

It is a fact.

187 **(a)**

$$Al_2O_3 + 3Cl_2 + 3C \rightarrow 2AlCl_3 + 3CO$$

188 (a)

Gallium when was not discovered, its properties were predicted by Mendeleef under the name eka aluminium.

190 (c)

HF reacts with silica present in glass and dissolves it to give marking on surface.

191 **(c)**

Water gas contains about 40% of CO.

192 **(c)**

This process is mainly used when bauxite contains Fe_2O_3 as main impurity.

193 **(a)**

BCl₃ and AlCl₃ both are electron deficient compounds and can accept lone pair to act as Lewis acid. Also BCl₃ involves smaller boron atom and thus, attracts electron pair more easily.

194 **(c)**

Cryolite (Na_3AlF_6) is added to Al_2O_3 before electrolysis to lower the fusion temperature of bauxite in order to dissolve it and making good conductor of current.

195 **(c)**

Al + III group \rightarrow forms Al₂O₃

196 **(b)**

In III group, Tl (thalium) show+1 oxidation state due to inert pair effect. The outer shell's' electrons (ns^2) penetrate to (n - 1)d electrons and thus, become closer to nucleus and are more effectively pulled towards the nucleus. This results in less availability of ns^2 electron pair for bonding or ns^2 electron pair becomes inert.

198 **(c)**

Diborane possesses four B–H covalent bonds and two three centred (two electrons) B–H–B or hydrogen bridge bonds. These bonds are also known as **banana bonds**.

199 **(c)**

Alums are used as water-softener. These are also used in tanning of leather, as mordant in dyeing and to stop bleeding.

201 (a)

 $CO + S \xrightarrow{Heat} COS$ (Carbonyl sulphide)

203 (a)

Felspar is an ore of Al. Its composition is $KAlSi_3O_8$ or K_2O . Al_2O_3 . $6SiO_2$.

204 **(c)**

Thermite is the mixture of Fe_2O_3 and Al. Due to great affinity of aluminium towards oxygen, it readily combines with oxygen. Hence, Goldshmidt used Al to reduce metal oxides in extraction. In thermite, the ratio of Fe_2O_3 and Al is taken 3:1 by weight.

$$Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$$

(2 × 56 + 3 × 16 = 160) (2 × 27 = 54)

205 **(b)**

 $BI_3 > BBr_3 > BCl_3 > BF_3$

This order can be easily explained on the basis of the tendency of the halogen atom to back donate its lone pair of electrons to the empty *p*-orbital of the boron atom through $p\pi - p\pi$ bonding.

206 **(b)**

Alum acts as coagulating agent, so it is used to purify water and separate mud from it.

207 **(d)**

Al is used as reducing agent in thermite process. $Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3$

208 **(c)**

Diborane possesses four B—H covalent bonds and two three centred (two electrons) B—H—B or hydrogen bridge bonds. These bonds are also known as **banana bonds**.

209 **(b)**

The structure of silicates has been found with the help of X-ray diffraction technique. All silicates have tetrahedral SiO_4^{4-} ion as a basic building unit *i. e.*, all silicates are composed of many units. Tetrahedral shape of $[SiO_4]^{4-}$ ion is due to sp^{3-} hybridisation of Si-atom. Sheet silicates are formed when three oxygen atoms (bridging O-

atoms) of each $(SiO_4)^{4-}$ unit are shared. Hence, the general formula of sheet silicates is $(Si_2O_5)^{2n-}$

210 (a)

Pb reacts with dilute HNO₃ and produces NO. $3Pb + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 4H_2O$ dil.

211 (a)

It is a fact. The alloy is called Rolled gold.

213 (a)

Lamp black is used for all these purposes. Carbon black is used in making tyres. Bone black is used for decolourisation of sugar.

- 214 **(b)**
- It is a fact.
- 215 **(c)**
 - 2Al $+ Cr_2O_3 \rightarrow Al_2O_3 + 2Cr$; $\Delta H = -ve$ Reductant Oxidant

216 **(c)**

$$B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2$$

217 **(b)**

The main impurity in red bauxite is ferrite (Fe_2O_3) and the main impurity in white bauxite is silica (SiO_2) .

218 (d)

Al shows maximum covalency of six whereas as boron shows four.

219 **(d)**

Metals forming coloured bead can be identified by boras bead test.

220 (d)

Asbestos can withstand red hot flames without any damage.

221 **(d)**

Mg is placed above lead in electrochemical series. 222 **(a)**

Lead is found to be stable in +2 oxidation state, due to inert pair effect hence,

 $PbCl_4$, $PbBr_4$ and PbI_4 are less stable compounds 223 (c)

 $SiF_4 + 4H_2O \rightarrow Si(OH)_4 + 4HF$ Alum form acidic solution on dissolution in water $SiF_4 + 2HF \rightarrow H_2SiF_6$ due to hydrolysis of Al³⁺ ions. 224 (d) 233 (b) H₂SO₄ is regenerated during charging. Solder is used in welding purposes. 225 (c) 234 (c) Diborane possesses four B-H covalent bonds and The stability of group 14 tetrahalides decreases two three centred (two electrons) B-H-B or down the group whereas of dihalides increases hydrogen bridge bonds. These bonds are also down the group. known as banana bonds. 235 (a) 226 (c) Mica is a group of minerals, the most important of The reluctance of the *s*-electrons of the valence which are muscotive $H_2KAl_3(SiO_4)_3$ and shell to take part in bonding is called inert pair phlogopite H₂KMg₃Al(SiO₄)₃ having sheet effect. It increases on moving down in a group. structure. Hence, Pb shows most pronounced inert pair 236 (c) effect. Tin is oxidised to meta stannic acid when it is 227 (a) treated with nitric acid. $\text{Sn} + 4\text{HNO}_3 \rightarrow \text{H}_2\text{SnO}_3 + 4\text{NO}_2 + \text{H}_2\text{O}$ Galena (PbS) is the ore of lead. Malachite is an ore of copper while dolomite is an ore of magnesium 237 (c) and calamine is an ore of zinc. The outer electronic structure of 'X' is s^2p^1 , 228 (c) hence, element 'X' belongs to third group. It will Grey tin is very brittle and easily crumbles down be non-metal because it is present in the first to a powder in very cold climates Grey tin = white short period of third group. Its valency is +3tin because it belongs to third group. (cubic) (tetragonal) Hence, formula of its oxide will be X_2O_3 . The oxide 229 (a) will be acidic in nature because it is oxide of non-In SiF $_6^{2-}$ and SiCl $_6^{2-}$, SiF $_6^{2-}$ is known due to the metal. 239 (d) small size of F atoms. The small six F atoms can be easily accommodated around Si atom to form Boron is oxidized to H₃BO₃ by mixture of SiF_6^{2-} while in $SiCl_6^{2-}$, six large Cl atoms cannot e HNO_3 and H_2SO_4 . accommodated around Si atom. 230 (a) Boron nitride has similar structure to graphite. 231 (d) $Sn(s) + HCl(g) \rightarrow SnCl_2 + H_2$ 232 (b) 240 (d) Borax on heating forms a glassy mass called borax bead. $Na_2B_4O_7 \cdot 10H_2O \longrightarrow Na_2B_4O_7 \xrightarrow{740^{\circ}C} NaBO_2 + B_2O_3$ 241 (c) Borazine, $B_3N_3H_6$ is also known as inorganic benzene due to its resemblance in structure and properties with benzene.

242 (a)

 $Na_2B_4O_7 + 2HCl + 5H_2O \rightarrow 2NaCl + 4H_3BO_3$ 243 (c)

Ruby is mineral of aluminium ie, Al_2O_3 . It does not contain silicon.

244 (d)

Zeolites are aluminosilicates having three dimensional open structure in which four or six membered rings predominates.

Thus, due to open chain structure, they have cavities and can take up water and other small molecules.

245 **(b)**

The stability and basic character of hydrides decreases down the group.

Al

T1

303°C

Ga

29.8°C

246 (c)

The m.p. are В 2300°C 660°C

247 (b)

- It is a fact.
- 248 (d)

 $PbSO_4$ is insoluble compound.

249 **(b)**

Solid CO₂ sublimes directly to the vapour state (without converting into liquid) at -78° C under atmospheric pressure, hence used as a refrigerant and called dry ice or cardice. It is used to freeze metals, ice-cream and in laboratory as a coolant.

251 (c)

Froth-floatation is used to concentrate sulphide ores [Galena (PbS)].

252 (d)

It is an use of Al which on coating prevents corrosion of surface coated.

253 **(b)**

Due to hydrolysis of Al³⁺ ions.

254 (a)

In alumino thermic process, aluminium is used as

reducing agent.

$$e. g., Fe_2 O_3 + 2Al \xrightarrow{3000^{\circ}C} Al_2 O_3 + 2Fe + 185kcal$$

It is a fact.

256 (d)

Pb⁴⁺ is strong oxidant and I⁻ is strong reductant and thus, PbI₄ does not exist.

257 (a)

Carbon suboxide (C_3O_2) is anhydride of malonic acid. It has linear structure. C - C bond length is 130 Å and C - O bond length is 120 Å.

$$Pb(NO_3)_2 \rightarrow PbO + 2NO_2 + \frac{1}{2}O_2$$

259 (a)

 All_3 , on reaction with CCl_4 , gives the $AlCl_3$ $4\text{AlI}_3 + 3\text{CCl}_4 \rightarrow 4\text{AlCl}_3 + 3\text{CI}_4$

260 (a)

General formula of alum is, M'_2 SO₄ · M''_2 (SO₄)₃ · 24H₂0

261 (b)

In graphite carbon atom is sp^2 hybridised and has a delocalised π -electron cloud responsible for its high electrical conductivity.

262 **(b)**

Al atom in AlCl₃ is sp^2 -hybridised which lead for equilateral triangle geometry.

263 (d)

Atomic size increases in a group from top to bottom. But in IIIA group, gallium (Ga,1.35 Å) has size smaller than aluminium (1.43 Å). The reason is that in gallium *d*-electrons shield nuclear charge poorly and hence, due to greater effective nuclear charge (Z_{eff}) it has smaller size.

264 (d)

 B_2H_6 has two types of B – H bonds

265 **(b)**

BF₃ is covalent molecule.

266 (d)

Orthosilicic acid (H_4SiO_4) , on heating at high temperature, loses two water molecules and gives silica (SiO_2) which on reduction with carbon gives carborundum (SiC) and CO.

$$H_4SiO_4 \xrightarrow[-2H_2O]{1000^{\circ}C} SiO_2 \xrightarrow[\Delta]{C} SiC + CO$$

carborundum

267 **(a)**

The stability of hydrides of carbon family decreases down the group, hence order is $CH_4 > SiH_4 > GeH_4 > SnH_4 > PbH_4$

268 (c)

Gp. III A (Mendeleef's periodic table) or gp. 13th (Long form) elements possess 3 electrons in their valence shell having ns^2np^1 configuration.

270 (c)

Moissan boron is amorphous boron. It has 95-98% boron and is black in colour. It is prepared by reduction of B_2O_3 with Na or Mg.

271 (c)

It is a fact.

273 **(b)**

Generally IV group element shows catenation tendency and carbon has more catenation power

274 **(a)**

Moissan boron is a morphous boron, obtained by reduction of B_2O_3 with Na or Mg. It has 95.98% boron and black in colour

275 (d)

Boric acid is used in carom boards for smooth gliding of pawns because H-bonding in H_3BO_3 gives it a layered structure.

276 **(c)**

- $SnCl_2 + I_2 + 2HCl \rightarrow SnCl_4 + 2HI$
- 277 **(d)**

Quartz is an example of three dimensional network of $(SiO_2)_n$ silicate.

278 **(b)**

Coordination no. of Al is six in complex state, e.g., $Al(H_2O)_6^{3+}$; $[Al(H_2O)_4(OH)_2]^+$

279 **(d)**

Water gas is a mixture of carbon monoxide and hydrogen. It is obtained by passing steam over red-hot coke. It is a good fuel gas.

 $C + H_2O \rightarrow CO + H_2$ water gas $C + H_2O \longrightarrow \underbrace{CO + H_2}_{water gas}$

280 **(a)**

Diamond is most inert form of carbon.

281 **(a)**

Producer gas is a mixture of $CO + N_2$. Its calorific value is low due to high percentage of nitrogen.

282 (a)

Producer gas is a mixture of $CO + N_2$.

283 (d) The tendency of trimethyl boron to act as Lewis acid decreases due to + IE of CH₃ gp. and thus, coordination becomes weaker. 284 (d) Charcoal is most reactive form of carbon. 286 (a) It is a fact. Rest all are used in pigments. 287 (d) It becomes passive in HNO₃ due to formation of oxide film on the surface. 288 (b) Inert pair effect is the phenomenon in which outer shell (ns^2) electrons penetrate t (n-1)delectrons and thus, becomes closer to nucleus and are more effectively pulled towards nucleus. This results in less availability of ns electrons for bonding. The inert pair effect begins when $n \ge 4$ and increases with increasing value of n. 289 (a) As temperature decreases, white tin (β -form) changes to grey tin (α -form). $\alpha - \operatorname{Sn} \stackrel{15.2^{\circ}}{\longrightarrow} \beta - \operatorname{Sn}$ (grey) α -Sn has a much lower density. 292 (b) Follow the IUPAC rules for nomenclature of complexes. 294 (d) $SnCl_2 + 2NaOH \rightarrow Sn(OH)_2 + 2NaCl$ $Sn(OH)_2 + 2NaOH \rightarrow Na_2SnO_2 + 2H_2O$ 295 (d) CuCl (Amm.sol.) + $CO \rightarrow CuCl \cdot CO$ 297 (d) It is a fact. 298 (b) It is a reason for given fact. 299 (d) It is hydrolysed with water to form a H₂SiF₆ 300 (a) Electronegativity decreases down the group. 301 (b) Stannous chloride (SnCl₂) is a good reducing agent. It reduces HgCl₂ into Hg (grey precipitate), in two steps. $SnCl_2 + 2HgCl_2 \rightarrow SnCl_4 + Hg_2Cl_2 \downarrow$ $SnCl_2 + Hg_2Cl_2 \rightarrow SnCl_4 + 2Hg \downarrow$

grey

302	(c) Due to inert pair effect, the stability of +2		In CO states
	oxidation state increases as we move down this group.	316	(d) SiO ₂ p
	$\therefore \mathrm{Si}X_2 < \mathrm{Ge}X_2 < \mathrm{Sn}X_2 < \mathrm{Pb}X_2$		netwo
303	(b)	317	(b)
004	It react with alkali as well as acid		Mg:1
304	(C)		۸l · 1
	Alc $_3$ will show maximum covalent character on		Remo
	because of its higher positive charge and smaller		thus l
	size (Faian's rule)	318	(d)
305	(a)	010	Diamo
505	It is a variety of fibrous silicate minerals mainly	319	(d)
	calcium, magnesium silicates.		It is a
307	(a)	320	(d)
	B_2H_6 has 4B—H bond (i.e., 2 centre-2 electron		This g
	bonds) and two 3 centre-2 electron bone <i>i.e.</i> , B—		BF ₃ . B
	H—B bonds.	322	(c)
308	(d)		Ge, Si
	Borax or tincal is chemically sodium tetraborate	323	(b)
	decahydrate, i.e., $Na_2B_4O_7 \cdot 10H_2O$.		Alumi
309	(b)		well a
	Aqueous solution of $AlCl_3$ is acidic due to	325	(b)
	hydrolysis		Boror
	AlCl ₃ + 3H ₂ 0 \rightleftharpoons Al(OH) ₃ + 3HCl	226	$B_n H_n$
	On strongly heating $AI(OH)_3$ is converted into	320	(D) Sodiu
	$AI_2O_3.$		and C
210	$2Al(OH)_3 \longrightarrow Al_2O_3 + 3H_2O$	328	(b)
510	Hoope's process \Rightarrow Purification of Al		$B_{2}O_{3}$
	Hall and Heroult process \Rightarrow reduction of Al ₂ O ₂	329	(c)
	Baever's and Serpeck's process \Rightarrow concentration		Cryoli
	of bauxite ore		alumi
311	(d)	331	(a)
	B ₂ H ₆	222	Sand
	Empty sp 2 orbital of B	332	(C)
		333	(h)
		555	Hard
			surfac
~			dissol
	Empty sp 2 orbital of B	334	(c)
312	(b)		Fluors
	H ₃ BO ₃ is monobasic Lewis acid;	335	(d)
o : -	$H_3BO_3 + H_2O \longrightarrow B(OH)_4^- + H^+$		B_2H_6
313			and C
244	$caUcl_2 + CU_2 \rightarrow CaCU_3 + Cl_2$		B_2H_6
314	(D) These are characteristics of N		I
315	These are characteristics of N_2 .	22.5	\sim
515		336	(C)

and CO_2 , carbon has +2 and +4 oxidation respectively.

ossesses giant molecular, three dimensional ork solid structure.

 $1s^2, 2s^2 \xrightarrow{\text{Removal of } 2s'e'} \text{Mg}^+ : 1s^2, 2s^1$

 $s^2, 2s^2 2p^1 \xrightarrow{\text{Removal of } 2p'e'} \text{Al}^+ : 1s^2, 2s^2$ val of electron is easier from 2*p*-subshel lower IP for Al.

ond is *sp*³-hybridized covalent molecule.

fact.

give rise to net dipole moment zero in $3F_3(sp^2 - hybridization) PF_3(sp^3).$

are used as semiconductors.

ina is amphoteric oxide, which reacts acid as s base

n from different hydride of general formula $_{+4}$ and $B_n H_{n+6}$ but BH_3 is unknown

m oxalate react with conc. H₂SO₄ to form CO 0_2 gas

$$B_2O_3 + 3C + 3Cl_2 \rightarrow 2BCl_3 + 3CO$$

ite added to lower the melting point of ina and to increase the electrical conductivity

contains silicates having silicon.

lesis gas is $CO + 3H_2$.

water deposits a protective film on the inner ce of lead pipes which resists further lution of Pb in water.

spar is CaF₂.

form addition product with (CH₃)₃N, NH₃ 0 as:

$$\begin{split} B_2H_6 + 2N(CH_3)_3 &\rightarrow [2H_3B \leftarrow N(CH_3)_3] \\ B_2H_6 + 2NH_3 &\rightarrow [BH_2(NH_3)_2]^+[BH_4]^- \\ B_2H_6 + 2CO &\rightarrow 2[BH_3 \cdot CO] \end{split}$$

 $\operatorname{SnC}_2O_4 \xrightarrow{\Delta} \operatorname{SnO} + \operatorname{CO} + \operatorname{CO}_2$ 338 (b) CO in producer gas is 33%. 339 (d) In Hall and Heroult process $2Al_2O_3 \rightarrow 4Al + 3O_2$ $4C + 3O_2 \rightarrow 2CO_2 + 2CO \uparrow$ $2\mathrm{Al}_2\mathrm{O}_3 + 4\mathrm{C} \rightarrow 4\mathrm{Al} + 2\mathrm{CO}_2 + 2\mathrm{CO}$ Only for removal of CO₂, following equation is possible $2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$ 3×12 4×27 =36 g =108 g: For 108 g of Al, 36 g of C is required in above reaction. \therefore For 270 \times 10³g of Al, required amount of C $=\frac{36}{108}\times 270\times 10^3$ $= 90 \, \text{kg}$ 340 (b) $CO_2 + H_2O \rightarrow H_2CO_3$ (An acid) 342 (d) Al has six electrons in AlCl₃ and thus, acquires electron pair from Cl atom of another AlCl₃ molecule to exist as Al_2Cl_6 . 343 (c) Silica reacts with metal carbonate forming silicate with the evolution of CO_2 . $Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_2$ sodium silicate 344 (c) Sand, on heating with HF, give silicon tetrafluoride vapours, which form silicic acid (H_4SiO_4) , on coming in contact with water. $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$ $3SiF_4 + 4H_2O \rightarrow 2H_2SiF_6 + H_4SiO_4$ 345 (c) 2nd-orbital has no d-subshell. 346 (d) Inert pair effect increases down the gp. and thus, +4 ionic valence is not shown by lower elements. 347 (a) Dilthey in 1921 proposed a bridge structure for diborane. Four hydrogen atoms, two on the left and two on the right known as terminal hydrogens and two boron atoms lie in the same plane. Two hydrogen atoms forming bridges, one above and other below, lie in a perpendicular to the rest of molecule

348 **(c)**

It is a fact. 349 **(b)**

Silicon oxides are solids.

350 **(d)**

The thin protective layer of oxide, Al_2O_3 is formed which protects the metal form further attack if air and water and thus stable in air

351 **(b)**

Zeolite have SiO_4 and AlO_4 tetrahedrons linked together in a three dimensional open structure in which four or six membered ring predominate Due to open chain structure they have cavities and can take up water and other small molecules

352 **(b)**

Alane is polymeric hydride of aluminium.

353 **(a)**

$$Al_2Cl_6$$
, In_2Cl_6 , Ca_2Cl_6

354 (d)

Al₂S₃ + 6H₂O \rightarrow 2Al(OH)₃ + 3H₂S(pure). 355 (a)

It can accept lone pair of electron.

359 **(c)**

The alloy of Ni + Al + Cu is called nickeloy.

360 **(a)**

$$CS_2 + 3Cl_2 \xrightarrow{AICl_3} CCl_4 + S_2Cl_2$$

361 **(c)**

CO is neutral; CO₂ is acidic.

362 **(d)**

Carborundum is chemically silicon carbide.

```
363 (c)
```

 Al_2O_3 although an oxide of metal but reacts with acids and alkalies both and thus, amphoteric.

365 **(a)**

Chain silicates Double chain silicates can be formed when two simple chains are joined together by shared oxygens. These minerals are called amphiboles, and they are well known. The most numerous and best known amphiboles are the asbestos minerals. These are based on the structural unit $(Si_4O_{11})_n^{6n-}$. The structure of amphiboles is

Stricture of amphiboles $(Si_4O_{11})_n^{6n-1}$

366 (d)

Propyne can be prepared by the hydrolysis of magnesium carbide

367 (b)

C—C bond energy is maximum as catenation is maximum in carbon.

368 **(b)**

Ge possesses more tendency to show +4 oxidation state.

370 **(b)**

 $\mathrm{Na_2B_4O_7} + \mathrm{H_2SO_4} + \mathrm{5H_2O} \longrightarrow \mathrm{Na_2SO_4} + \mathrm{4H_3BO_3}$

- 371 **(b)**
 - Bell metal has Cu 80% + Sn 20%.
- 372 **(b)**

Carbon in CO_2 and H_2CO_3 bot has +4 oxidation state.

373 (a)

Cl

Cl

110^o (A1)93^o

Al₂Cl₆ has the structure given below:

A1

374 **(c)**

The resultant vector sum of all the four C—Cl bonds is zero in regular tetrahedral geometry.

- 375 **(c)**
- It is a fact. 376 **(d)**

Diaspora is $Al_2O_3 \cdot H_2O.It$ is an ore of Al. 377 (a)

Coal gas contains mainly CH_4 (23%), CO (11%), H_2 (56%) and some other gases H_2 , CO_2 , etc.

 $n_2 (30\%)$ and some other gases n_2, CO_2 , 378 (a)

Melting point order: B > Al > ln > Ga 2453K 953K 430K

303K 379 **(b)** Producer gas (a mixture of $CO + N_2$) is prepared by incomplete combustion of coal in restricted supply of air.

380 **(a)**

 CO_2 is more denser than air and N_2 and thus, covers igniting materials more.

381 **(d)**

Solder is an alloy of tin and lead. Its melting point is quite low, hence, it is very useful in stitching in ICs in various electrical instruments.

382 **(a)**

 CeO_2 is used to cut off UV radiations when passed through glass.

383 (a)

Alum is a double salt having general formula M_2 SO₄ M'_2 (SO₄)₃. 24H₂O where *M* is monovalent metal and *M'* is trivalent metal. Potash alum has potassium (K) as monovalent metal. Potash alum is

$$K_2SO_4$$
. $Al_2(SO_4)_3$. $24H_2O$.

384 **(b)**

In diborane, H - B - H (H-terminal) and H - B - H(H-bridged) bond angles are 120° and 97° respectively.

385 **(b)**

 $AlCl_3$ is covalent but in water, it becomes ionic due to large hydration energy of Al^{3+} .

 $AlCl_3 + 6H_20 \rightleftharpoons [Al(H_20)_6]^{3+} + 3Cl^{-}$ 386 (c)

 SiO_2 is acidic oxide having sp^3 -hybridisation and thus tetrahedral.

387 **(a)**

Central boron atom in H_3BO_3 is electron deficient, therefore it accepts a pair of electron, hence it is weak Lewis acid. There is no *d*-orbital of suitable energy in boron atom. So, it can accommodate only one additional electron pair in its outermost shell. Thus, H_3BO_3 is a monobasic weak Lewis acid.

 $H_2O + B(OH)_3 \rightarrow [B(OH)_4]^- + H^+$ base acid

base 388 **(b)**

 $Na_2CO_3 + H_2O \rightarrow 2NaHCO_3$

389 **(d)**

Common glass–Na₂O. CaO. 6SiO₂

390 (a)

Feldspar is pot. sod. alumino silicate.

391 **(d)**

Small carbon atoms are present interstitial sites in lattice of tungsten atoms.

392 (d)

These are characteristics of carbogen.

202	(d)	417	(c)
575	Flectrodes of lead accumulators are made up of	117	Conorally
	load anode and load packed with load diovide as		dononde o
	cathodo		cubetituti
201			the Si^{4+} ic
394	Conoral formula of alum is $M'SO = M'''(SO)$		$h_{\rm M}$ $\Lambda 1^{3+}$ (a)
	$24 \text{ H} \ \Omega$	110	Uy Al (a)
205	(d)	419	(d) When cili
393	(u) The marking nature		furnaça it
206	(d)		furfiace, it
390	(u) All can be directly converted from solid state to		carbine.
	an can be unectly converted from solid state to	120	$310_2 +$
207	gas with.	420	(C)
397	(C)	401	German si
200	(c)	421	(D)
398	(a)		Hall's pro
200	H_3BU_3 is monopasic acid.	400	Hoope s p
399	(c) $(1 + 1) + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	422	(D)
	+4 due to ns^2np^2 -configuration and +2 due to		$ZAI + Fe_2$
400	inert pair effect.		The heat g
403	(b)	400	called Gol
404	U_2 is known as dry ice, <i>i.e.</i> , $U_2(g) \rightarrow U_2(s)$.	423	
404			Although .
405	$AICI_3 + 3H_2 O \rightarrow AI(OH)_3 + 3HCI$	\sim	Mn_3C, Be_2
405		474	$Mn_3C + 6$
100	$2AI + Cr_2O_3 \rightarrow AI_2O_3 + 2Cr; \Delta H = -Ve$	424	(C)
406	(C)		The basic
	I ne pnenomenon of very slow regulated		tetranear
	nonlogeneous cooling of glass to reneve stram is	425	to four ox
407	called annealing.	425	(a) Cuanhita i
407	(C) D. C is northandest to diamond		Graphite
400	B_4C is next hardest to diamond.		presence (
408	(a) It is a use of water god	120	after spI
	Catalyst	420	(u)
	$CO + H_2 + H_2 \xrightarrow{\text{data} J \to CH_3OH} CH_3OH$		(B_2H_6) na
410	(a)		н , , , , , , , , , , , , , , , , , , ,
	$SiO_2 + 2Mg \rightarrow Si + 2MgO$		
412	(c)		B
	Due to inert pair effect.		H
413	(b)	407	(J)
	Due to inert pair effect which increases down the	427	
5	group.		PD IOrms (
414	(b)		two nyari
	The acidic character of chlorides increases down	420	number of
	the gp.BCl ₃ is weak acid to show $p\pi - p\pi$ back	428	(D)
	bonding.	420	Due to lon
415	(c)	429	(a) Extraction
	$C + 2H_2SO_4(Conc.) \rightarrow 2H_2O + 2SO_2 + CO_2$		Extraction
	$C + 4HNO_3(Conc.) \rightarrow 2H_2O + 4NO_2 + CO_2$		reduction
416	(c)		ciyonte(N

It is a fact.

1

the ion exchange tendency of a material on the extent of isomorphous on in the tetrahedral framework. Thus, ons of feldspar and zeolite are replaced luminium ion).

ca is heated with carbon in electric is reduced to carborundum or silicon

 $-3C \rightarrow SiC + 2CO$

ilver contains Cu, Zn and Ni.

cess is used for purification of alumina. process is used for refining of alumina.

 $\rightarrow Al_2O_3 + 2Fe; \Delta H = -ve;$ 0_3 given out is used in welding. This is also d-schmidt alumino thermic process.

Mn₃C is not real methanide but All C and Al_4C_3 on hydrolysis gives CH_4 . $H_2O \rightarrow 3Mn(OH)_2 + CH_4 + H_2$

structural unit in silicates is SiO₄ on. In SiO₄^{4–} unit, silicon atom is bonded ide ions tetrahedrally.

is good conductor of current due to the of mobile π -electron left on carbon hybridization.

is structure - Terminal (2c - 2e) -Bridging (3c - 2e) bond

only one hydride as PbH₄. Sn forms only des as SnH₄ and Sn₂H₆. Rest all forms f hydrides.

ne pair effect.

n of Al from Al₂O₃ is made by electrolytic of molten mixture of alumina (Al_2O_3) , cryolite(Na₃AlF₆) and fluorspar CaF₂ in the ratio

of 20:40:20 respectively. 430 (c) Crookes glass contains CeO₂ which cuts off radiations. 431 (a) Surface of Al forms Al_2O_3 on exposure to air and becomes passive. 432 (c) These are the compositions of gases present in coal gas. 434 (a) $Cu(BO_2)_2$ is blue and chromium metaborate is green. 435 (c) Most of the fuel gases contain CO as one of the component. 436 (c) $SnCl_2 + HgCl_2 \longrightarrow SnCl_4 + Hg_2Cl_2_{(Black)}$ $SnCl_2 + HgCl_2 \rightarrow SnCl_4 + Hg_2$ 437 (b) It is a fact. 438 (a) $B(OH)_3 + NaOH$ \Rightarrow NaBO₂ + Na⁺[B(OH)₄]⁻ + H₂O This reaction is reversible reaction because sodium metaborate, $Na^{+}[B(OH)_{4}]^{-}$ formed by the reaction between B(OH)₃ and NaOH gets hydrolysed to regenerate $B(OH)_3$ and NaOH. $Na^{+}[B(OH)_{4}]^{-} \xrightarrow{Hydrolysis} NaOH + B(OH)_{3}$

If some quantity of polyhydroxy compounds like cis-1, 2-diol, catechol, glycerol etc is added to the reaction mixture then the B(OH)₃ combines with such polyhydroxy compounds to give chelated complex compound. Due to complex compound formation, stability increases and due to higher stability of complex, reaction moves in forward direction.

439 **(a)**

CO

$$CO + Cl_2 \rightarrow COCl_2$$
 (Phosgene)
440 (a)

Semiconductors are bad conductors of electricity at room temperature but become conductor of electricity at high temperature or when some impurities are added to them.

: Si and Ge are semiconductors.

442 (d)

 $4KNO_3 + 2SiO_3 \rightarrow K_2SiO_3 + 4NO_2 + O_2$

444 (b) Antidote for CO poisoning is carbogen. Carbogen is a mixture of 90% oxygen and 5-10% carbon dioxide.

447 (c)

Diamond has tetrahedral structure (sp^3 hybridization).

Graphite has flatlayer structure (sp^2) .

448 (c)

Si is used in making transistor. It is a semiconductor.

449 (c)

 $B(OH)_3$ is not protonic acid because it does not give proton on ionisation directly while it acts as Lewis acid due to a acceptance of OH⁻from water and forms a hydrated species. $B(OH)_3 + H_2O \rightarrow [B(OH)_4]^- + H^+$

450 (a)

 $2Al + N_2 \rightarrow 2AlN$

451 (d)

When SiO_2 (silica) is present as earthly impurity in an ore, it is called gangue and when it is added to remove basic impurities like CaO, FeO etc. It is called an acidic flux.

452 (c)

Chlorides of both beryllium and aluminium have bridged structures in solid phase.

Boric acid is not a protonic acid

Borazole, inorganic benzene contains $B_3N_3H_6$. 453 (c)

 Pb_3O_4 is a mixed oxide. It can be represented as 2PbO. PbO₂.

454 (d)

Aluminium metal burn in air at high temperature. This reaction is highly exothermic

 $4Al + 3O_2 \rightarrow 2Al_2O_3$

CO₂ is acid anhydride of H₂CO₃.

456 (c)

Tin stone after roasting and washing is called

black tin.

457 **(b)**

- It acts as an oxidant.
- 458 **(c)**

Coal gas contains 56% $\rm H_2.$

459 **(c)**

The element is boron.

460 **(c)**

It is a fact.

461 **(d)**

Silicones one organosilicon compounds having the general formula $(R_2 \text{SiO})_n$ which contain repeated $R_2 \text{SiO}$ units held by Si -O-Si linkages

462 **(d)**

The reaction equilibrium for preparation of water gas is endothermic.

 $CO_2 + H_2 \longrightarrow CO + H_2O$; $\triangle H = 9$ kcal

463 **(b)**

In silica, silicon has large size, so the 3p-orbitals of Si does not overlap effectively with 2p –orbitals of oxygen. Therefore, Si=O are not formed. The tetravalency of Si is satisfied by the formation of Si – O bonds, thus it is surrounded by four oxygen atoms.

464 **(b)**

 $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$ 465 **(b)**

Flint glass or lead glass has composition of K_2O . PbO. 6SiO₂.

It is used in making electric bulb and optical instruments.

466 **(c)**

It is a reason for given fact.

467 **(b)**

Serpeck's process involves:

$$Al_{2}O_{3} + 3C + N_{2} \longrightarrow 2AlN + 3CO$$

$$AlN + 3H_{2}O \longrightarrow Al(OH)_{3} \downarrow + NH_{3} \uparrow$$

$$2Al(OH)_{3} \bigtriangleup Al_{2}O_{3} + 3H_{2}O$$

The tendency of elements of *p*-block to show lower (+2) oxidation state, (*i. e.*, ionic) increases down the gp.due inert pair effect.

469 **(c)**

 $B(OH)_3 \implies H_3BO_3$ boric acid $Al(OH)_3 \implies amphoteric$

470 **(d)**

Density of gp. 14 elements are: C (3.51); Si(2.34); Ge (5.32); Sn (7.26) and Pb (11.34) in g/cm³.

471 **(b)**

To provide sufficient air for complete combustion.

- 472 **(d)**
 - 1. Ostwald process: It is used to manufacture HNO_3 .
 - 2. Hoope's process It is the method used to purify aluminium. Pure Al makes anode and impure aluminium makes cathode in this reaction.
 - 3. Hall's process It is used to purify bauxite having no specific impurity.

Baeyer's process It is used to purify bauxite having chief impurity of iron.

∴ Hoope's process is correct answer.

473 **(c)**

The inert pair effect increases with increase in no. of outermost shell down the group.

474 **(a)**

Teflon is a polymer of C_2F_4 .

$$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{H}_2\mathrm{CO}_3$$

476 **(a)**

47

The correct decreasing order of catenation property of group 14 elements is as follows C >> Si > Ge = Sn > Pb

Catenation property is directly proportional to the bond energy.

 $Al(13) = 1s^2, 2s^2 2p^6, 3s^2 3p^1$

∴ It can have maximum coordination number as 6.478 (a)

It is a fact.

479 (c)

Water containing organic acids corrodes lead.

480 **(a)**

Monosilane $(e. g., SiH_4)$ on coming in contact with air burns with a luminous flame producing vortex ring. These rings are of silica.

$SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$	This process is used when silica is present in
481 (b)	considerable amount in bauxite ore.
CO burns with blue flame.	493 (b)
482 (a)	Boron atom in BF_3 is sp^2 -hybridised and
Lapis lazuli is a rock composed mainly of the	possesses trigonal planar structure.
following mineral, lazurite, hauynite sodalite,	494 (b)
nosean, calcite pyrite. Lapis lazuli is actually	Bauxite is $Al_2O_3 \cdot 2H_2O_3$.
sulphur containing, sodium aluminium silicate	495 (c)
having chemical composition	MCl_2 oxidation state of $M=+2$
$3Na_2O \cdot 3Al_26SiO_2 \cdot 2Na_2S$	MCl_4 oxidation state of $M=+4$
483 (b)	Higher the oxidation state, smaller the size.
Bone black is amorphous form of carbon.	Greater the polarizing power, greater the covalent
484 (b)	characteristics.
The property of diamond which makes its use as	Hence, <i>MCl</i> ₄ is more covalent and <i>MCl</i> ₂ is more
precious stone.	ionic.
485 (c)	496 (b)
PbO reacts with acids and alkalies both.	Azurite is basic copper carbonate; $2CuCO_3 \cdot$
488 (b)	$Cu(OH)_2$; intense blue colour used as gemstone.
$Na_2SiO_3 + 2H_2O \rightarrow 2NaOH + H_2SiO_3$	497 (d)
Strong alkali Weak acid	In the heavier elements of group IIIA, IVA and VA
489 (a)	the ns^2 electrons have extra stability and hence,
$1s^2$ $2s^2$ $2p^1$	do not take part in bond formation. The
1 Ground state	reluctancy of s-electron pair to take part in bond
$2s1$ $2p^2$	iormation is known as the inert pair effect. The
1 1 Excited state	inerconsect in the group
	I and I
Fourth lone pair is accomodated	it shows inert pair effect hence for lead
in this empty orbital	$compounds \pm 2$ ovidation state is more
Maximum covalency = 4	predominant
Due to absence of 2 <i>d</i> -orbital, maximum covalency	498 (c)
is four.	CoO imparts blue colour to glass.
Thus BF_6^{3-} is not formed,	499 (a)
Thus (a) is not formed.	In complex $[H_2 N \rightarrow BF_2]$, both N and B attains
$BH_4(BH_3 + H^-)$	sp^2 -hybridisation and acquires tetrahedral
$B(OH)_4 (B(OH)_3 + OH)$	geometry.
and BO_2 are formed.	500 (a)
490 (a)	Inorganic benzene is borazole or $B_3N_3H_6$ having
A01 (a)	structure similar to C_6H_6 , i.e.,
491 (d)	1/BH∖
ather carbon atoms by sigma hand. Each $\sigma \in C$	
bend is formed by the overlapping of cr^3 by brid	
orbitals of each carbon atom. Each carbon atom is	↓
 Orbitals of each carbon atom. Each carbon atom is present at the centre of a regular tetrahedron 	HB BH
Each carbon atom is surrounded by four other	`₩NH∕
carbon atoms present at the corners of a regular	501 (b)
tetrahedron. Structure of diamond is a rigid three	
	Sn exists in grey, white, rhombic forms.
dimensional network. This explain high density	Sn exists in grey, white, rhombic forms. 502 (c)
dimensional network. This explain high density and hardness of diamond.	Sn exists in grey, white, rhombic forms. 502 (c) Carbon suboxide has linear structure with C–C
dimensional network. This explain high density and hardness of diamond. 492 (d)	Sn exists in grey, white, rhombic forms. 502 (c) Carbon suboxide has linear structure with C–C bond length equal to 130 Å and C–O bond length

equal to 120 Å $0 = C = C = C = 0 \iff 0 - C \equiv C - C \equiv 0^+$ 503 (a) SnO₂, ZnO, BeO, As₂O₃, Al₂O₃ are amphoteric oxides. 504 (b) Due to sp^2 -hybridization one *p*-electron on each carbon forms π -bond. 505 (b) $SiCl_4 + 2Mg \rightarrow Si + 2MgCl_2$ 506 (a) BH_3 has sp^3 -hybridized boron but it exists as B_2H_6 . 507 (a) As we move down the group, the basic nature of the oxides of group 13 elements increases. Tl_2O in aqueous solution gives TIOH which is as strong a base as alkali metal hydroxides $Tl_2O + H_2O \rightarrow 2TIOH$ 508 (c) It is a reason for given fact. 509 (a) The most abundant metal in the earth crust is aluminium. 510 (d) General formula of alum is, M'_2 SO₄ · M'''_2 (SO₄)₃ · 24H₂O, Cu is bivalent. 511 (c) Me₂SiCl₂ on hydrolysis will produce Me₂Si(OH)₂ as follows Me + 2HCl MeSi(OH)₂ is unstable compound and it loses water molecule to give Me₂SiO. But silicon atom because of its very large size in comparison to oxygen, is unable to form π -bond. Thus, the product of hydrolysis is polymeric in nature. Me $= O + H_2O$ Me HO Polymerisation но Me Me Me 523 (d) Ó Ó 525 (c) Me Ńе Ńе |n|

512 (c) Aluminium reduces Fe_2O_3 or Cr_2O_3 to respective metals and acts as a reducing agent $Fe_2O_3 + 2Al \rightarrow Al_2O_3 + 2Fe$ 513 (d) Boron absorbs neutrons. $_{5}B^{10} + _{0}n^{1} \rightarrow _{5}B^{11} + \gamma$ 514 (c) K^+ , Al^{3+} and SO_4^{2-} ions. 515 (c) $AlCl_3$ is covalent and exists as Al_2Cl_6 . 516 (d) $(CH_3COO)_2$ Pb is called lead sugar. 517 (d) Carbon cannot expand its octet due to absence of d –orbital in 2nd shell. 518 (d) These are use of lamp black. 519 (c) It is a fact. 520 (b) $\xrightarrow{3H_2O} RSi(OH)_3 + 3HCl$ RSiCl₃ Polymerization RSi(OH)₃ R R R S Si റ S Ŕ Ŕ R Three dimensional structure of silicon.

521 (d)

When two oxygen of each SiO_4^{4-} tetrahedron are shared with others, cyclic or ring structures are obtained. These silicates are known as cyclosilicates or cyclic silicates.

 $[Si_6O_{18}]^{12-}$ is an example of cyclosilicate. In this silicate six SiO₄ tetrahedra linked together.

522 (d)

These are facts about SnS. SnS+ $(NH_4)_2S_2$ Yellow amm.sulphide

 $\rightarrow (NH_4)_2 SnS_3$

These are facts.

Lead react with water to form lead hydroxide $Pb(OH)_2$ hence, lead pipes are not suitable for

drinking purpose It has no unpaired electrons. 545 (a) 526 (d) $C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12C + 11H_2O$ $CO_2 + Na_2O \rightarrow Na_2CO_3$ 527 (c) 549 (d) $AlCl_3$ is covalent whereas AlF_3 is ionic. $Zn + BaCO_3 \xrightarrow{\Delta} ZnO + BaO + CO$ 528 (a) 550 (b) Chrome yellow is lead chromate. B in BF_4^- is sp^3 -hybridised having four hybrid 529 (c) orbitals. Due to inert pair effect. 551 (c) 530 (a) *sp*³ hybridisation, but four bonds are neither Magnalium is Al + Mg + Cu. linear nor in one plane. 531 (d) 552 (d) Chromium oxide imparts green colour to glass. Tin is oxidized to meta stannic acid when it is 532 **(b)** treated with nitric acid $BF_3 + 3LiBH_4 \rightarrow 3LiF + 2B_2H_6$ $Sn + 4HNO_3 \rightarrow H_2SnO_3 + 4NO_2 + H_2O_3$ 533 (a) 553 (c) Al powder (larger surface area) having more This phenomenon for a substance is called affinity for oxygen gives Al_2O_3 with highly polymorphism and also in case, an element does exothermic reaction. so it is called allotropy. 534 (c) 554 (a) It is a fact. The SiO₂ present in glass reacts with HF 535 (b) $SiO_2 + 6HF \rightarrow H_2SiF_6 + 2H_2O$ The formation of oxide film on Al surface prevents it from further corrosion. 556 (c) 536 (d) It is a fact. PbCl₂ is soluble in hot water but insoluble in cold 557 (d) water. Among these, graphite is purest form. $Pb^{2+} + 2HCl \xrightarrow{\Delta} PbCl_2 \xrightarrow{H_2S} PbS$ 558 (b) Anions in chain silicate is $[SiO_3^{2-}]_n$ or $[Si_4O_{11}^{6-}]_n$. soluble black 537 (d) 559 (d) Like alkanes, these are called silanes. $Sn + 2HCl \rightarrow SnCl_2 + H_2$ $\text{Sn} + 4\text{HNO}_3 \rightarrow \text{SnO}_2 + 4\text{NO}_2 + 2\text{H}_2\text{O}$ 538 (d) It is a reason for given fact. $Sn + 2HgCl_2 \rightarrow SnCl_2 + Hg_2Cl_2$ 539 (a) 560 (a) It is an use of $Al_2(SO_4)_3$. CO_2 is major contributor to green house effect. 540 (d) This controls the earth's climate. Due to back bonding $(p\pi - p\pi)$ giving resonance, 561 (c) bond order in BF_3 is 1.33. It is a reason for given fact. 563 (a) 541 (a) Magnalium is an alloy of Al and Mg. Kettle involves continuous use of boiling water in which if water is hard Ca, Mg bicarbonates are 564 **(b)** decomposed to Ca and Mg carbonates. Crystalline form of silica is called quartz. 565 (c) 543 (b) Aluminium is obtained by electrolysing alumina $Ca_2B_6O_{11} + 2Na_2CO_3 \rightarrow 2CaCO_3$ dissolved in cryolite (Na₃AlF₆) \downarrow + Na₂B₄O₇ + 2NaBO₂ $4Na_3AlF_6 \rightleftharpoons 12 Na^+ + 4Al^{3+} + 12F^-$ 566 (b) $4Al^{3+} + 12e^- \rightarrow 4Al$ (at cathode) Diamond is not isomer but allotrope of graphite. 567 (b) $12F^- \rightarrow 6F_2 + 12e^-$ (at anode) $2Al_2O_3 + 6F_2 \rightarrow 4AlF_3 + 3O_2$ A method to prepare water gas $(CO + H_2)$. 568 (d) 544 (d)

	In the electrolytic method, for the purification of	589	(d)
	bauxite, cryolite is added to lower the melting	500	CO_2 does not possess disinfectant nature.
F 70		590	(a) It Forms house could be The male color formula of
570	(a)		It Form boron carbide. The molecular formula of
	Quartz is purest form of silica.		boron carbide is $B_{12}C_3$
571			$4B + C \xrightarrow{\Delta} B_4C$
	It causes senility and loss of memory	591	(b)
572	(a)		Activated charcoal possesses more adsorption
	LiH has H ^{$-$} ion which donates electron pair (<i>i.e.</i> ,		power.
	acts as Lewis base) to AlH_3 (a Lewis acid).	592	(d)
573	(c)		The influence of inert pair effect, (<i>i.e.</i> , non-
	C and Si are non-metals; Pb is metal.		availability of <i>ns</i> electron pair for bonding)
575	(d)		increases down the group.
	$Al_2O_3 + 3C + 3Cl_2 \rightarrow 2AlCl_3 + 3CO$	593	(b)
576	(b)		Graphite is a good conductor of heat and
	Germanium chips are used in transistors.		electricity.
577	(d)	594	
	$2AI + 2KOH + 2H_2O \rightarrow 2KAIO_2 + 3H_2$		$BCl_2 + 3H_2O \rightarrow H_2BO_2 + 3HCl$
578	(a)	595	(a)
	It is H_3BO_3 a monobasic Lewis acid (boric acid).	0,00	Coal deposits are found very commonly.
580	(c)	596	(h)
	It is a fact.	0,0	Silicon can expand its octet by using $3d$ -orbitals
581	(c)	597	(b)
	Galena (PbS) is sulphide ore. Froth floatation		Pyrene is chemically CCL
	method is usually used for sulphide ores.	598	(a)
582	(b)	570	Boron being non-metal does not form cation
	A recently discovered family of carbon allotropes	599	(a)
	is buckminster fullerene. The most common	577	The stability of ± 2 ovidation state shows the
	fullerene has the formula C ₆₀ and contains		order
	hexagonal and pentagonal rings of carbon atoms.		$C_{0}^{2+} < S_{0}^{2+} < D_{0}^{2+}$
	Hence, in ketones the two valencies of carbonyl	600	
	group are satisfied by alkyl groups.	000	B C is the hardest substance along with diamond
583	(d)	601	b ₄ C is the hardest substance along with diamond
	Galena is PbS.	001	(c) CO has so hybridization
584	(a)	602	(h)
	(CH ₃) ₂ SiCl ₂ undergoes hydrolysis but (CH ₃) ₂ CCl ₂	002	(b) The phenomenon of vory slow regulated
	does not because in Si, low lying <i>d</i> -orbital is		homogonoous cooling of glass to relieve strain is
	present but in C, it does not present.		called appealing
585	(b)	602	(c)
	In H ₃ BO ₃ , B is sp^2 -hybridized and oxygen is sp^2 -	003	(c)
	hybridized having two lone pair on it.		$\begin{array}{c} \text{Al}_4\text{C}_3 + 12\text{I}_2\text{O} \longrightarrow 4\text{Al}(\text{OH})_3 + 5\text{CH}_4\\ \text{(Dil.HCl)} \end{array}$
586	(C)		$Al(OH)_3 + 3HCl \rightarrow AlCl_3 + 3H_2O$
5	Al-bronze is an alloy containing Al-Cu.	604	(a)
587	(b)		Lapis Lazuli is a name for sodium alumino silicate.
-	SiO_2 (silica) is used as an acid flux in metallurgy.	605	(a)
	It reacts with gangue to form slag.		Diamond is an allotropic form of carbon,
588	(d)		carborundum is SiC, corundum is Al ₂ O ₃ , borazon
	Cryolite (Na ₃ AlF ₆) is added to alumina for its		is BN.
	electrolysis to decrease its melting point and also	606	(a)
	increase its conductivity.		It is a reason for given fact.
		607	(c)
		1	

It is a fact. accept a lone pair of electron, are called acids. 608 (d) Boron halides, being electron deficient Electrodes of Pb (anode) and $Pb + PbO_2$ compounds, can accept a lone pair of electrons, so (cathode) are used in batteries. termed as Lewis acid. 609 (d) 626 (b) Hall's process involves: It is the only non-metal in gp.13. $Al_2O_3 + Na_2 CO3 \rightarrow 2NaAlO_2 + CO_2$ 627 (b) $2NaAlO_2 + CO_2 + 3H_2O \rightarrow 2Al(OH)_3 + Na_2CO_3$ Leaching involves washing out of soluble $2Al(OH)_3 \xrightarrow{\Delta} Al_2O_3 + 3H_2O$ components from ore. 628 (c) 610 (d) $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$ It is plumbus plumbate, *i. e.*, $PbO \cdot PbO_2$. $2Al + 3Cl_2 (dry gas) \rightarrow 2AlCl_3$ 611 (a) 629 (b) $Sn(l) + 2Cl_2(g) \rightarrow SnCl_4(g)$ Metal oxides or some salts are fused with glass to 612 (b) impart colour to glass. $2Pb(NO_3)_2 \xrightarrow{\Delta} 2PbO + 4NO_2 + O_2$ 630 (d) 613 (a) Cryolite is Na_3AlF_6 . Boron compound on heating form B_2O_3 which 631 (a) imparts green flame. $2\text{KOH} + 2\text{Al} + 2\text{H}_2\text{O} \rightarrow 2\text{KAlO}_2 + 3\text{H}_2$ 614 (a) 632 (b) CH₄ having lowest mol. wt. has lowest b.p. It is a fact. 615 (c) 633 (b) Destructive distillation of coal (heated to nearly Due to the yellow colour of chromate ion. 1270 K) gives coke (solid residue 70%) and hot 635 (b) vapours and gases. Addition of CaF₂ to alumina dissolved in Na₃AlF₆ 616 (c) makes it more conducting. Red lead (Pb_3O_4) is a mixed oxide. Its structure is 636 (d) 2PbO. PbO₂. PbO₂ and not PbO is used in batteries. 617 (d) 637 (a) H_3BO_3 ie, $B(OH)_3$ is weak non basic acid. Ruby stone is name for alumina (Al_2O_3) . 618 (d) 638 (d) Cassiterite is an ore of tin (SnO₂). It is also called A property of wood charcoal to remove poisonous tin stone. gases from surrounding. 619 (a) 639 (c) It is a method for refining of Al. $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$ 620 (c) 640 (d) B is non-metal and oxide of non-metals are acidic. Al too forms covalent compounds, e.g., AlCl₃. 621 (c) 641 (a) Boron in its compounds has incomplete octet and R_3 SiCl on hydrolysis can only form a dimer. $R_{3}\text{SiOH} \xrightarrow{\text{H}_{2}\text{O}} R_{3}\text{SiOH}$ $R_{3}\text{SiOH} + R_{3}\text{SiOH} \xrightarrow{\text{H}_{2}\text{O}} R_{3}\text{Si} - 0 - \text{Si}R_{3}$ thus, acts as Lewis acid. 622 (a) Glass is super cooled liquid. 642 (a) 623 (d) It is a fact. Catenation is the property of an element to unite 643 (a) with its atoms forming a long open or closed Borax bead test is given by elements which form chain. coloured ion. 624 (a) 644 **(b)** $[BF_6]^{3-}$ does not exist because boron does not Amorphous silicon is prepared by the reduction of have vacant *d*-subshells. silica (rocks). Extra pure silicon is obtained by the 625 (c) removal of SiO₂ by HF. According to Lewis, the compound which can

undesirable metal oxide. $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$ 645 **(b)** 666 (a) Rest all are uses of boric acid. 646 (b) Fused CO_2 , SiO₂ and GeO₂ are acidic oxides. 668 (c) 647 (d) Boron does not react with acids. 669 (d) 648 (c) BCl₃ is completetely hydrolysed by water yielding boric acid and hydrochloric acid $BCl_3 + 3H_2O \rightarrow H_2BO_3 + 3HCl$ 649 (a) 670 (d) The reaction itself occurs violently. 650 (a) Alkali metals do not form carbonyls. 652 (b) Antiknocks are used to increase octane no. of gasoline. 653 (c) It is a reason for given fact. 654 **(b)** In carbon family stability of +2 oxidation state increases on moving down the group in the Periodic Table with an increase in atomic number maximum in CO_3^{2-} . due to screening effect 671 (b) 655 **(b)** Phosgene is carbonyl chloride, , e., COCl₂ 672 **(b)** 656 (a) CO₂ is linear and *sp*-hybridized. 657 (c) $SiO_2 + 2KOH \xrightarrow{\Delta} K_2SiO_3 + H_2O$ 658 (a) Anhydrite is naturally occurring CaSO₄. 659 **(b)** 674 (c) A fact about graphite due to sp^2 -hybridisation. 660 (a) 676 (c) Rest all react with water. 661 **(b)** $K_4 Fe(CN)_6 + 6H_2 SO_4 + 6H_2 O \rightarrow$ $2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 +$ 677 (a) 6C0 662 (d) The metallic character in each gp. increases down the gp. 678 (c) 663 (c) Al(OH)₃ formed as white precipitate gets 680 (c) dissolved in excess of NaOH to form soluble NaAlO₂. 681 (a) 665 **(b)** Flux is mostly used in removal of silica and

 $2Al + 6NaOH \rightarrow 2Na_3AlO_3 + 3H_2$

Melting point of Al_2O_3 is about 2000°C.

It is $p\pi - p\pi$ bonding involving B and F atom responsible for the acidic nature of boron halides as $BF_3 < BCl_3 < BBr_3 < BI_3$ smaller atom shows more back bonding.

Structures of CO_2 , CO and CO_3^2 are

$$c = c = 0, c = 0; c = 0; c = 0$$

Bond multiplicity decreases the bond length. Thus, CO with a triple bond will have shortest C— O bond length. CO₂ with a double bond will have a larger C—O band length. CO_3^{2-} is a resonance hybrid of three structure with a C-O length of more than a C—O double bond but less than a C— O single bond. Thus, C—O bond length is

PbCl₂ is soluble in hot water.

Inert pair effect is the phenomenon in which outer shell (ns^2) electrons penetrate to (n-1)delectrons and thus, becomes closer to nucleus and are more effectively pulled towards nucleus. This results in less availability of ns electrons for bonding. The inert pair effect begins when $n \ge 4$ and increases with increasing value of *n*.

It is used as explosive.

Oxalates are strong reducing agent and give CO_2 with conc. H_2SO_4 .

$$3c - 2e; B - H - B, 2c - 2e; H - B - H$$

Each has three electrons in its outer shell.

$$Al_2O_3 + 3C + N_2 \rightarrow 2AlN + 3CO$$

 $2Al_2O_3 + 9C \xrightarrow{2000^{\circ}C} Al_4C_3 + 6CO$

682 **(b)**

+4 oxidation state of carbon family is covalent in nature.

683 **(c)**

Wrought iron is purest form of carbon.

684 **(b)**

Al becomes passive in conc. HNO_3 and thus, conc. HNO_3 can be stored in Al vessels.

685 **(b)**

Water gas is sodium silicate Na₂SiO₃.

686 (a)

Bond energy for C—C is maximum.

687 **(a)**

 $Al_2(SO_4)_3 + 6NH_4OH$

 \rightarrow 2Al(OH)₃ + 3 (NH₄)₂SO₄ Al(OH)₃ is insoluble in NH₄OH but soluble in NaOH.

688 **(c)**

SMAR

Borax on heating forms a glassy mass called borax bead.

$Na_2B_4O_7 \cdot 10H_2O \xrightarrow{\Delta} Na_2B_4O_7 \xrightarrow{740^{\circ}C} \underbrace{NaBO_2 + B_2O_3}_{Bead}$

689 **(d)**

It is a reason for given fact.

- 690 **(b)**
 - $a + 6 \times (-1) = -2; \quad \therefore a = +4$

691 **(d)** All these are characteristics noted during the process.

693 **(c)**

, th

Gp. III A or gp.13 members have ns^2np^1 configuration.

694 **(d)** These are characteristics of bucky ball.