SURFACE CHEMISTRY

CHEMISTRY

	Single Correct Answer Type				
1.	For adsorption of gas on solid surface, the plots of lo	$\log x/m vs$. $\log P$ is linear with	ith a slope equal to :		
	a) <i>K</i> b) log <i>K</i>	c) l/nK	d) l/n (n being integer)		
2.	Which is not correct for catalyst? It :				
	a) Enhances the rate of reaction in both directions				
	b) Changes enthalpy of reaction				
	c) Reduces activation energy of reaction				
_	d) Specific in nature				
3.	The magnitude of colligative properties in all colloid	al dispersions isthan so	olution :		
	a) Higher b) Lower	c) Both (a) and (b)	d) None of these		
4.	Which one is hydrophobic in nature?	c) Changh	d) Durata in		
-	a) Gelatin b) Sulphur	c) Starch	d) Protein		
э.	$2SO_2(g)+O_2(g)$ is an example for				
	a) Neutralization reaction	b) Homogeneous catalysi	S		
	c) Heterogeneous catalysis	d) Irreversible reaction			
6.	Decomposition of urea into NH ₃ and CO ₂ is followed	l by the action of enzyme :			
	a) Urease b) Pepsin	c) Trypsin	d) None of these		
7.	Adsorption is accompanied by the evolution of heat.	So, according to Le-Chate	lier principle the amount of		
	substance adsorbed should				
	a) Increase with decrease in temperature	b) Increase with increase	in temperature		
	c) Decrease with decrease in temperature	d) Decrease with increase	e in temperature		
8.	Which one of the following equation represents Free	undlich adsorption isother	n?		
	a) $\frac{x}{m} = kp$ b) $\frac{x}{m} = kp^n$	c) $\log \frac{x}{m} = kp^n$	d) $\log \frac{x}{m} = kn \log p$		
9.	The number of moles of lead nitrate needed to coagu	ulate 2 moles of colloidal [A	\gI]I [−] is		
	a) 2 b) 1	c) 1/2	d) 2/3		
10.	Surfactant molecules or ions cluster together as mice	elles which			
	a) Due to their hydrophilic tails tend to congregate				
	b) Due to their hydrophobic heads provide protection	on			
	c) Are colloid sized clusters of molecules				
11	a) None of the above				
11.	a) Critical temperature	curs is :			
\mathbf{C}	b) Charles' temperature				
	c) Inversion temperature				
	d) Kraft's temperature				
12.	By dividing the catalyst into fine powder there will h	be increase in			
	a) Surface area b) Free valancies	c) Active centres	d) All of these		
13.	Washing soap can be prepared by saponifying alkali	with oil of :	, - · · · · ·		
	a) Rose oil b) Paraffin oil	c) Ground nut oil	d) kerosene		
14.	Platinum is used as a catalyst in :				
	a) Oxidation of ammonia to form nitric acid				

- b) Hardening of oils
- c) Production of synthetic rubber
- d) Synthesis of methanol
- 15. A colloidal solution always has at least :
 - a) One phase
 - b) More than two phases
 - c) A true solution
 - d) Two phases
- 16. Milk can be preserved by adding a few drops of :
 - a) Formic acid solution
 - b) Formaldehyde solution
 - c) Acetic acid solution
 - d) Acetaldehyde solution
- 17. Addition of FeCl₃ to K₄[Fe(CN)₆] in dilute and cold solution gives :
 a) Prussian blue sol
 b) Fe₄[Fe(CN)₆]₃ sol
 c) Positive sol
- 18. Colloidal solution commonly used in treatment of skin diseases is :a) Colloidal sulphurb) Colloidal silverc) Colloidal gold
- 19. The substance that gets adsorbed on the surface of solid is called
 - a) Adsorbate b) Adsorbent c) Micelle
- 20. Which of the following is not correct?
 - a) Enthalpy of physical adsorption is less compared to enthalpy of chemical adsorption
 - b) Milk is an example of emulsion
 - c) Physical adsorption increases with the increase in temperature
 - d) Smoke is an aerosol
- 21. Which of the following characteristics is not correct for physical adsorption?
 - a) Adsorption on solids is reversible
 - b) Adsorption increases with increase in temperature
 - c) Adsorption is spontaneous
 - d) Both enthalpy and entropy of adsorption are negative
- 22. Which of the following statements is incorrect?
 - a) Physical adsorption occurs at very low temperature and chemisorptions occur at all temperature
 - b) The magnitude of chemisorption decreases with rise in temperature and physisorption increases with rise in temperature
 - c) Chemisorption is irreversible and physisorption is reversible
 - d) In physisorption, the activation energy of desorption is very low and in chemisorption, the activation energy of desorption is very high
- 23. Which of the following has maximum coagulation power with ferric hydroxide sol?

a) Cryolite b)
$$K_2C_2O_4$$
 c) $K_3[Fe(CN)]_6$ d) $K_4[Fe(CN)_6]$
The critical micelle concentration (CMC) is

- 24. The critical micelle concentration (CMC) is
 - a) The concentration at which micellisation starts
 - b) The concentration at which the true solution is formed
 - c) The concentration at which one molar electrolyte is present per 1000 g of the solution
 - d) The concentration at which $\Delta H = 0$
- 25. A dilute solution of litmus becomes colourless on shaking with charcoal. This is due to :
- a) Absorption b) Adsorption c) Chemical reaction d) Both (a) and (b)
- 26. Which of the following is an example for heterogeneous catalysis reaction?

a)
$$2SO_2(g) + O_2(g) \xrightarrow{NO(g)} 2SO_3(g)$$

- b) Hydrolysis of aqueous sucrose solution in the presence of aqueous mineral acid
- c) $_{2H_2O_2(l)} \xrightarrow{pt(s)} _{2H_2O(l)} + O_2(g)$
- d) Hydrolysis of liquid in the presence of aqueous mineral acid

d) All of these

d) Absorbent

d) Colloidal antimony

27.	Which of the following is true in respect of	adsorption?	
	a) $\Delta G < 0$; $\Delta S > 0$; $\Delta H < 0$	b) $\Delta G < 0$; $\Delta S < 0$; $\Delta H <$	< 0
	c) $\Delta G > 0$; $\Delta S > 0$; $\Delta H < 0$	d) $\Delta G < 0$; $\Delta S < 0$; $\Delta H >$	> 0
28.	Which is a homogeneous system?	-	
	a) A solution of sugar in water		
	b) Concrete		
	c) Muddy water		
	d) Bread		
29.	Which of the following is the most effective	in the coagulation of gold sol?	
	a) NaNO ₃ b) MgCl ₂	c) Na ₃ PO ₄	d) K_4 [Fe(CN) ₆]
30.	Which of the following is not a characterist	ic of chemisorption?	
	a) ΔH is the order of 400 kJ	b) Adsorption is irrevers	sible
	c) Adsorption may be multimolecular layer	d) Adsorption is specific	
31.	Select wrong statement.		
	, If a very small amount of AlCl ₃ is added t	o gold sol, coagulation occurs, but i	f a large quantity of AlCl ₃ is
	added, there is no coagulation.		\mathbf{X}^{-1}
	b) Organic ions are more strongly adsorbe	d on charged surfaces in compariso	n to inorganic ions.
	c) Both emulsifier and peptising agents sta	bilise colloids but their actions are	different.
	d) Colloidal solutions are thermodynamica	lly stable.	
32.	The size of colloidal particles is in between		
	a) $10^{-7} - 10^{-9}$ cm b) $10^{-9} - 10^{-11}$	cm c) $10^{-5} - 10^{-7}$ cm	d) 10 ⁻² – 10 ⁻³ cm
33.	The Brownian movement occurs in :		
	a) Colloidal solution		
	b) True solution	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	c) Suspension having size $< 500 \text{ m}\mu$	\rightarrow \rightarrow	
	d) All of the above	c >	
34.	Dyeing of fibre involves the process of :		
	a) Adsorption b) Absorption	c) Sorption	d) All of these
35.	Which adsorption takes place at low tempe	erature?	
	a) Physical b) Chemical	c) Both (a) and (b)	d) None of these
36.	Term catalyst was given by	N 447 1 1	
27	a) Rutherford b) Berzilius	c) Wohler	d) Kolbe
37.	I ne cotterells precipitator is used to :		
	a) Neutralize charge on carbon particles in	air in smoke	
	b) Coagulate cal boll atomis of smoke		
	d) All of the above	, ,	
28	A catalyst is a substance which		
50.	a) Is always in the same phase as in the rea	octions	
	h) Alters the equilibrium in a reaction		
	c) Does not participate in the reaction but	alters the rate of reaction	
	d) Participates in the reaction and provide	an easier pathway for the same	
39.	Multimolecular colloids are present in		
	a) Soap solution b) Sol of protein	s c) Sol of gold	d) All of these
40.	The rate of a certain biochemical reaction	catalysed by an enzyme in human	body is 10 ⁴ times faster than
	when it carried out in the laboratory. The a	ctivation energy of this reaction :	
	a) Is zero		
	b) Is different in two cases		
	c) Is the same in both the cases		
	d) None of the above		

41. At CMC (critical micelle concentration), the surfactant molecules undergo

b) Micelle formation a) Dissociation c) Both (a) and (b) d) None of these

- 42. Activated charcoal is used to remove colouring matter from pure substances. It works by a) Oxidation b) Reduction c) Bleaching d) Adsorption
- 43. Lyophobic colloids are :
 - a) Reversible colloids b) Irreversible colloids c) Protective colloids d) Gum, proteins
- 44. The size of the colloid particles is :
 - a) > suspension particles
 - b) < suspension particles
 - c) < true solution particles
 - d) None of these
- 45. Emulsions can be destroyed by
 - a) The addition of an emulsifier which tend to form an emulsion of the same type
 - b) Freezing
 - c) Both (a) and (b)
 - d) None of the above
- 46. Which characteristic of adsorption is wrong?
 - a) Physical adsorption in general decreases with temperature
 - b) Physical adsorption in general increases with temperature
 - c) Physical adsorption is a reversible process
 - d) Adsorption is limited to the surface only
- 47. Gelatin is often used as an ingredient in the manufacture of ice-cream. The reason for this is :
 - a) To prevent the formation of a colloid
 - b) To stabilize the colloid and prevent crystal growth
 - c) To cause the mixture to solidify
 - d) To improve the flavour
- 48. Blood contains :
 - a) Positively charged particles
 - b) Negatively charged particles
 - c) Neutral particles
 - d) Negatively as well as positively charged particles
- 49. The curve showing the variation of pressure with temperature for a given amount of adsorption is called

Temperature →		Ċ
	Pressure 🗕 🗕	

- d) Adsorption isochore a) Adsorption isobar b) Adsorption isotherm c) Adsorption isostere 50. When white light is passed through a colloidal solution containing fine suspended particles of gold, then the scattered light seen in a direction different from that of the incident light is :
- a) Yellow coloured b) Blue coloured

b) Latex paints

- c) Green coloured d) Red coloured
- 51. Emulsions of polyvinylacetate are used in :

a) Polishes

c) Fire works d) Rayons

- 52. Peptization denotes
 - a) Digestion of food
 - c) Breaking and dispersion into colloidal state
- b) Hydrolysis of proteins
- d) Precipitation of solid from colloidal dispersion
- 53. Which characteristic is the most important factor in giving rise to peculiar properties of colloids?
 - a) Large size
 - b) Small size
 - c) High charge density
 - d) High ratio of surface are to the volume

54.	Alum helps in purifying water by :
	a) Forming Si complex with clay particles
	b) Sulphate part which combines with the dirt and removes it
	c) Aluminium which coagulates the mud particles
	d) Making mud water soluble
55.	If the dispersed phase is a liquid and the dispersion medium is a solid, the colloid is known as :
	a) A sol b) An emulsion c) A gel d) A foam
56.	In physical adsorption gas molecules are bound on the solid surface by
	a) Chemical forces b) Electrostatic forces c) Graphical forces d) Van der Waals' forces
57.	On adding 1 mL solution of 10% NaCl to 10 mL gold solution in the presence of 0.25 g of starch, the
	coagulation is just prevented. Starch has the gold number equal to :
	a) 0.25 b) 2.5 c) 250 d) 0.025
58.	Hardy-Schulze rule states that :
	a) Non-electrolytes have better coagulating action on colloids than electrolytes
	b) Sols are coagulated by effective ions whose charge is opposite to that of sol and the ions of higher
	charge are much more effective than the ions of lower charge
	c) Charge of the ions has no effect on the coagulation of a sol
	d) Sols are coagulated only by those ions whose charge is similar to that of the sol
59.	In homogeneous catalytic reactions, the rate of reaction :
	a) Depends upon the concentration of catalyst
	b) Independent of the concentration of catalyst
	c) Depends upon the free energy change
	d) Depends upon physical state of the catalyst
60.	Catalysts are generally used in finely divided state because
	a) It avoids wastage of catalyst
	b) We can see its reaction
	c) It has more surface
	d) It has no effect on reaction rate
61.	Which among the following statements is false?
	a) Adsorption may be monolayered or multilayered
	b) Particle size of adsorbent will not effect the amount of adsorption
	d) Increase of temperature may degreese the amount of adsorption
62	Which of the following processes does not involve a catalyst?
02.	a) Octwald process b) Contact process could be a catalyst:
63	Whinned cream is an example of .
05.	Disnersed nhase Disnersion medium
	a) Liquid gas
	b) Gas liquid
	c) Liquid liquid
	d) Solid liquid
64.	Alloy is an example of
	a) Gel b) Solidified emulsion c) Solid solution d) Sol
65.	Which of the following statements is correct about Langmuir's adsorption isotherm?
	a) It forms monolayer b) It is reversible in nature
	c) It occurs at low temperature d) None of the above
66.	Zeolites :
	a) Are microporous aluminosilicates
	Have general formula
	^{DJ} $M_{x/n}[(AlO_2)_x(SiO_2)_4] \cdot mH_2O$

	c) Have pore sizes betw	een 260 pm to 740 pm			
	d) All of the above				
67.	Which of the following of	loes not contain hydrophob	oic structure?		
	a) Linseed oil	b) Linolin	c) Glycogen	d) Rubber	
68.	An increase in the conc	entration of adsorbate at the	he surface relative to its c	oncentration in bulk phase is	
	called :				
60	a) Adsorption	b) Enthalpy	c) Absorption	d) None of these	
69.	Which will not form coll	oidal solution?	1		
	(Where DP = Dispersion)	n phase and DM = Dispersio	on medium)		
-	a) DP-gas, DM-liq.	b) DP-liquid DM-solid	c) DP-gas, DM-gas	d) DP-solid, DM-solid	
70.	In Langmuir's model of	adsorption of a gas on a sol	id surface		
	a) The rate of dissociation	on of adsorbed molecules fr	om the surface does not d	epend on the surface covered	
	b) The adsorption at a s	ingle site on the surface ma	y involve multiple molecul	es at the same time	
	c) The mass of gas strik	ing a given area of surface i	s proportional to the press	sure of the gas	
	d) The mass of gas strik	ing a given area of surface i	s independent of the press	ure of the gas	
71.	The velocity of oxidation	on of oxalic acid by acidif	ied KMnO ₄ increase as th	e reaction progress. It is an	
	example of				
	a) Promoters	b) Catalytic poisons	c) Autocatalysis	d) Inhibitors	
72.	Which electrolyte is leas	st effective in causing coagu	lation of +ve ferric hydrox	tide sol?	
-0	a) KBr	b) K_2SO_4	c) K_2CrO_4	d) $K_2[Fe(CN)_6]$	
73.	A colloidal system in wh	iich gas bubbles are dispers	ed in a liquid is known as		
	a) Foam	b) Aerosol	c) Sol	d) Emulsion	
74.	The false statement for	hydrophilic sols is :			
	a) They do not require electrolytes for stability				
	b) Coagulation is revers	ible			
	c) Viscosity is of the ord	ler of that of water			
	d) Surface tension is low	ver than that of dispersion r	nedium		
75.	When a catalyst is added to a system the:				
	a) Equilibrium concentr	ations are increased			
	b) Equilibrium concentr	ations are unchanged		, ,	
	c) The rate of forward r	eaction is increased and that	at of backward reaction is o	lecreased	
	d) Value of equilibrium	constant is decreased			
/6.	I ne simplest way, to che	eck whether a system is a co	DIIOIA, IS DY		
	a) Tyndall effect	У́	b) Brownian movement		
	c) Electrodialysis		d) Finding out particle s	lze	
//.	Micelles nave	outry on that of common	h) I arwar aalligatiwa mra	north as that of some on	
	colloidal solution	lefty as that of common	colloidal solution	perty as that of common	
	c) Higher colligative pro	porty as that of common	d) None of the above		
	colloidal solution	perty as that of common	a) None of the above		
78.	Which of the following r	epresent homogeneous cat	alvsis?		
6	a) oil + U ^{Ni}	1 U	fe	2 2 NUL (~)	
	$a_1 \text{ OII} + \Pi_2 \longrightarrow \text{ satura}$	H ⁺	d) All of the above	$\rightarrow 2Nn_3(g)$	
	$CH_3COOH + C_2H_5OH$	$\xrightarrow{\text{H}_{3}\text{SO}_{4}} \text{CH}_{3}\text{COOC}_{2}\text{H}_{5}$	uj Ali ul ule abuve		
	c) + H ₂ ()			
79.	Detergent action of synt	hetic detergents is due to th	heir:		
	a) Interfacial area				

- b) High molecular weightc) Ionisation
- d) Emulsifying properties

80. Ultramicroscope works on the principle of : a) Light reflection b) Light absorption c) Light scattering d) Light polarization 81. The catalyst iron, employed in the Haber's process, contains molybdenum, the function of which is : a) To increase the rate of combination of gases b) To counterbalance for the presence of impurities in the gases c) To act as a catalyst promoter and increase activity of catalyst d) To make up for the adverse temperature and pressure conditions 82. An emulsifier is a substance which a) Stabilises the emulsion b) Homogenises the emulsion d) Accelerates the dispersion of liquid in liquid c) Coagulates the emulsion 83. The example(s) of anionic surfactants is/are c) $R - C_6 H_4 - SO_3 Na$ d) C₆H₃₃N(CH₃)₃Cl a) $C_{18}H_{37}NH_{3}Cl$ b) C₁₅H₃₁COONa 84. For adsorption of a gas on a solid, the plot of $\log \frac{x}{m} vs \log p$ is linear with slope equal to (*n* being whole number) a) *K* b) log *k* c) n 85. A substance which promotes the activity of a catalyst is known as : d) Auto-catalyst a) Initiator b) Catalyst c) Promoter 86. Adsorption of a gas on solid metal surface is spontaneous and exothermic, then : a) H increases b) *S* increases c) G increases d) S decreases 87. Freundlich adsorption isotherm is b) $x = mkp^{1/n}$ a) $\frac{x}{m} = kp^{1/n}$ d) All of these c) $x/m = kp^{-n}$ 88. Which of the following forms cationic micelles above certain concentration? a) Urea b) Sodium dodecyl sulphate c) Sodium acetate d) Cetyltrimethylammonium bromide 89. Catalyst in a reaction a) Lowers the activation energy b) Increase the rate of reaction c) Both (a) and (b) d) Initiates the reaction 90. The average size of the colloids is of the order : a) 10^{-12} m to 10^{-19} m b) 10^{-7} m to 10^{-9} m c) 10^{-9} m to 10^{-12} m d) 10^{-6} m to 10^{-9} m 91. If (x/m) is the mass of adsorbate adsorbed per unit mass of adsorbent. *p* is the pressure of the adsorbate gas and *a* and *b* are constants, which of the following represents "Langmuir adsorption isotherm"? a) $\log\left(\frac{x}{m}\right) = \log\left(\frac{a}{b}\right) + \frac{1}{a}\log p$ ~ 1 + bpb) $\frac{x}{m} = \frac{b}{a} + \frac{1}{ap}$ c) $\frac{x}{m} = \frac{1+bp}{ap}$ d) $\frac{1}{(x/m)} = \frac{b}{a} + \frac{1}{ap}$ 92. Tanning of leather is : a) Colouring of leather by chemicals b) Drying process to make the leather hard c) Polishing of leather to make it look attractive d) Coagulative hardening of the leather by chemicals 93. In a chemical reaction, catalyst a) Decrease the energy of activation b) Increases the energy of activation c) Does not change energy of activation d) None of the above 94. Which one of the following methods is commonly used for destruction of colloid? a) Dialysis b) Condensation c) Filtration by animal membrane d) By adding electrolyte 95. In multimolecular colloidal solutions, atoms or molecules are held together by :

96.	a) H-bonding In autocatalysis	b) van der waals' forces	c) Ionic bonding	d) Covalent bonding
	a) Reactant act as catalyst	t	b) One of the product acts	s as catalyst
	c) Vessel acts as catalyst		d) All of the above are inc	correct
97.	One of the reasons for gre	eater reactivity of finely div	rided platinum catalyst is th	nat it has :
	a) Particles which are alm	nost atomic in dimensions	1 9	
	b) Particle size which can	spread easily through who	ole reactants	
	c) Much larger surface ar	ea		
	d) A physical state only in	which it can react quickly		
98.	The potential difference b	between the fixed charged	layer and the diffused laye	er having opposite charge is
	called :			
	a) Zeta potential	b) Streaming potential	c) Dorn potential	d) Colloidal potential
99.	The protecting power of l	yophilic colloidal sol is exp	ressed in terms of :	
	a) Critical miscelle concer	ntration		
	b) Oxidation number			
	c) Coagulation value			$\boldsymbol{\mathcal{A}}$
	d) Gold number			Y
100.	Rate of physical adsorption	on increase with		P
	a) Decrease in surface are	ea	b) Decrease in temperatu	re
	c) Decrease in pressure		d) Increase in temperatur	re
101.	Size of colloidal particles	is in the range		N
	a) 0.05 mµ-0.1 mµ	b) 25 μ – 30 μ	c) $0.1 \mu - 1 m \mu$	d) 10 μ – 20 μ
102	Brownian motion of sol pa	article is theproperty of	t sol :	
100	a) Electrical	b) Optical	c) Kinetic	d) Colligative
103.	Which of the following sta	itements is correct for Tyn	dall effect?	L.11
	a) Scattering and polarizi	ng of light by small suspen	ded particles is called Tync	lall effect
	b) Tyndall effect of colloic	al particles is due to dispe	rsion of light	
	d) Zig and motion of a	refraction of light		
104	$u_j z_{lg} - z_{ug} \text{ motion of st}$ Which is an emulsion?	ispended particles		
104	a) Root polich	h) Linctic	c) Shampoo	d) All of those
105	The process which is cata	by Lipsuc	ts formed during the reacti	on is known as :
105	a) Autocatalysis	h) Anticatalysis	c) Negative catalysis	d) Acid catalysis
106	Lyonhilic sols are more st	able than lyonhobic sols be	ecause the narticles	uj nelu catalysis
100	a) Are positively charged	uble than ly ophoble sols be	b) Are negatively charged	1
	c) Are solvated		d) Repel each other	-
107.	Which is the property of h	ydrophilic sols?	y 1	
	a) High concentration of o	dispersed phase can be eas	ily attained	
	b) Coagulation is reversib	le		
	c) The charge on particles	s depends on the pH of the	medium and it may be pos	itive, negative
	d) All of the above			
108	Which is not a colloidal so	olution of a liquid in anothe	er liquid?	
	a) Photographic emulsion	IS		
	b) Soap in water			
	c) Homogenised milk			
	d) Latex			
109	. Gold numbers is associate	ed with		
	a) Electrophoresis	b) Protective colloids	c) Tyndall effects	d) Isotonic solutions
110	Which of the following wi	ll be the most effective in t	he coagulation of $Fe(OH)_3$	sol?
	a) KCN	b) BaCl ₂	c) NaCl	d) $Mg_3(PO_4)_2$
111.	Which of the following sta	atement(s) is/are true?		

- a) Gelatin molecules (hydrophilic sol) are attracted to water molecules by London forces and hydrogen bonding
- b) In hydrophobia sols, there is a lack of attraction between the dispersed phase and the continuous phase
- c) Hydrophobia sols are basically unstable
- d) All of the above
- 112. Which can adsorb larger volume of hydrogen gas?
 - a) Colloidal solution of palladium
 - b) Finely divided nickel
 - c) Finely divide platinum
 - d) Colloidal Fe(OH)₃
- 113. Which graph is correct for critical micelle concentration (CMC)?

123. Silver iodide is used for producing artificial rain be	ecause AgI :	
a) Is easy to spray at high altitudes		
b) Is easy to synthesize		
c) Has crystal structure similar to ice		
d) Is insoluble in water		
124. Shape selective catalysts are so called because of		
a) The shape of the catalyst		
b) The specificity of the catalyst		
c) The size of the pores of catalyst which can trap	selective molecules only	· · ·
d) Their use for only some selected reaction		
125. Which one of the following is a property of physiso	orption?	
a) None-specific nature b) High specificity	c) Irreversibility	d) All of these
126. Medicines are more effective if they are used in :		
a) Colloidal state b) Solid state	c) Solution state	d) None of these
127. Catalyst used in Friedel-Craft's reaction is		
a) Iron	b) Finally divided nickel	X
c) V ₂ O ₅	d) Anhydrous AlCl ₃	A A A A A A A A A A A A A A A A A A A
128. Milk contains a protein that is very good for health	. The protein is :	>
a) Caffeine b) Calciferol	c) Keratin	d) Casein
129. Which statement is not correct?		
a) Physical adsorption is due to van der Waals' for	ces	
b) Physical adsorption decreases at high temperat	ure and low pressure	
c) Physical adsorption is reversible		
d) Adsorption energy for a chemical adsorption is	generally lesser than that of	f physical adsorption
130. Identify the gas which is readily adsorbed by activ	ated charcoal	
a) N_2 b) SO_2	c) H ₂	d) 0 ₂
a) N ₂ b) SO ₂ 131. Which one of the following will have highest coagu	c) H_2 lating power for As_2S_3 colle	d) O ₂ pid?
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagual Al³⁺ b) PO₄³⁻ 	c) H_2 lating power for As_2S_3 colle c) SO_4^{2-}	d) O ₂ pid? d) Na ⁺
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagu a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification) 	 c) H₂ llating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles 	d) O ₂ bid? d) Na ⁺ of molecular dimensions is
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagual Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification with the separation with t	c) H_2 llating power for As_2S_3 colle c) SO_4^{2-} tion of sol) from particles	d) O ₂ oid? d) Na ⁺ of molecular dimensions is
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagu a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification with the separation of colloidal particles (or purification of the separation of the separ	 c) H₂ llating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles c) Pyrolysis 	d) O ₂ bid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagual Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification known as : a) Photolysis b) Dialysis 133. Dust storm is : 	 c) H₂ llating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles c) Pyrolysis 	d) O ₂ oid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagual (a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification (or purification)) a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas 	 c) H₂ llating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles c) Pyrolysis 	d) O ₂ pid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagual Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification known as: a) Photolysis b) Dialysis 133. Dust storm is: a) Dispersion of solid in gas b) Dispersion of a gas in solid 	 c) H₂ llating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles c) Pyrolysis 	d) O ₂ oid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagual (a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification (or purification)) a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of solid in solid 	c) H ₂ llating power for As ₂ S ₃ colle c) SO ₄ ^{2–} tion of sol) from particles c) Pyrolysis	d) O ₂ pid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagu a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification with the separation of colloidal particles (or purification with the separation of solid in particles (or purification with the separation of solid in gas b) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of solid in solid d) Dispersion of a gas in liquid 	c) H ₂ llating power for As ₂ S ₃ colle c) SO ₄ ^{2–} tion of sol) from particles c) Pyrolysis	d) O ₂ pid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagu a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification with the separation of collidation with the separation w	 c) H₂ llating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : 	d) O ₂ pid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagu a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification with the separation of solid in gas b) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo 	 c) H₂ llating power for As₂S₃ collection of SO²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ 	d) O ₂ pid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagu a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification known as: a) Photolysis b) Dialysis 133. Dust storm is: a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of solid in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 	 c) H₂ ilating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ 	d) O ₂ oid? d) Na ⁺ of molecular dimensions is d) Peptization
 a) N₂ b) SO₂ 131. Which one of the following will have highest coagu a) Al³⁺ b) PO₄³⁻ 132. The separation of colloidal particles (or purification with the separation of solid in gas b) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 	 c) H₂ llating power for As₂S₃ colle c) SO₄²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ c) Colloidal solution 	 d) O₂ pid? d) Na⁺ of molecular dimensions is d) Peptization d) Fe d) Fe d) Precipitate
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of log x/m against log p is a straight line incli	 c) H₂ llating power for As₂S₃ collection of SO²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ c) Colloidal solution ned at an angle of 45°. Whe 	 d) O₂ pid? d) Na⁺ of molecular dimensions is d) Peptization d) Fe d) Fe d) Precipitate n the pressure is 0.5 atm and
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of log x/m against log p is a straight line inclin Freundlich parameter. k is 10. the amount of	 c) H₂ llating power for As₂S₃ collection of SO²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gram 	 d) O₂ pid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and n of adsorbent will be (log
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of log x/m against log p is a straight line inclif Freundlich parameter, k is 10, the amount of 5=0.6990)	c) H_2 llating power for As_2S_3 colle c) SO_4^{2-} tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V_2O_5 c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gran	 d) O₂ bid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and n of adsorbent will be (log
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of log x/m against log p is a straight line inclif Freundlich parameter, k is 10, the amount of 5=0.6990) a) 1 g b) 2 g	c) H_2 lating power for As_2S_3 colle c) SO_4^{2-} tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V_2O_5 c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gran c) 3 g	 d) O₂ bid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and an of adsorbent will be (log d) 5 g
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of log x/m against log p is a straight line incli Freundlich parameter, k is 10, the amount of 5=0.6990) a) 1 g b) 2 g 137. On adding few drops of dil HCl to freshly precipita	 c) H₂ llating power for As₂S₃ collection of SO²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gram c) 3 g 	 d) O₂ pid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and n of adsorbent will be (log d) 5 g coloured solution is obtained.
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of $\log x/m$ against $\log p$ is a straight line inclif Freundlich parameter, k is 10, the amount of 5=0.6990) a) 1 g b) 2 g 137. On adding few drops of dil HCl to freshly precipital This phenomenon is known as	c) H_2 llating power for As_2S_3 colle c) SO_4^{2-} tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V_2O_5 c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gram c) 3 g ted ferric hydroxide, a red of	 d) O₂ bid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and an of adsorbent will be (log d) 5 g coloured solution is obtained.
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of $\log x/m$ against $\log p$ is a straight line inclif Freundlich parameter, k is 10, the amount of 5=0.6990) a) 1 g b) 2 g 137. On adding few drops of dil HCl to freshly precipital This phenomenon is known as a) Peptisation b) Dialysis	 c) H₂ llating power for As₂S₃ collection of sol) from particles c) SO₄²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gram c) 3 g ted ferric hydroxide, a red of c) Protective action 	 d) O₂ pid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and an of adsorbent will be (log d) 5 g coloured solution is obtained. d) Dissolution
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in solid d) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of log x/m against log p is a straight line incli Freundlich parameter, k is 10, the amount of 5=0.6990) a) 1 g b) 2 g 137. On adding few drops of dil HCl to freshly precipital This phenomenon is known as a) Peptisation b) Dialysis 138. At CMC, the surfactant molecules undergoes :	 c) H₂ llating power for As₂S₃ collection of sol) from particles c) SO₄²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gram c) 3 g ted ferric hydroxide, a red of c) Protective action 	 d) O₂ bid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and an of adsorbent will be (log d) 5 g coloured solution is obtained. d) Dissolution
a) N_2 b) SO_2 131. Which one of the following will have highest coagu a) Al^{3+} b) PO_4^{3-} 132. The separation of colloidal particles (or purifical known as : a) Photolysis b) Dialysis 133. Dust storm is : a) Dispersion of solid in gas b) Dispersion of a gas in solid c) Dispersion of a gas in liquid 134. The catalyst used in the manufacture of nitric acid a) Mo b) Pt 135. Tyndall effect would be observed in a) Solvent b) Solution 136. Plot of $\log x/m$ against $\log p$ is a straight line inclic Freundlich parameter, k is 10, the amount of 5=0.6990) a) 1 g b) 2 g 137. On adding few drops of dil HCl to freshly precipital This phenomenon is known as a) Peptisation b) Dialysis 138. At CMC, the surfactant molecules undergoes : a) Association b) Aggregation	 c) H₂ llating power for As₂S₃ collection of sol) from particles c) SO₄²⁻ tion of sol) from particles c) Pyrolysis by Ostwald's process is : c) V₂O₅ c) Colloidal solution ned at an angle of 45°. Whe solute adsorbed per gram c) 3 g ted ferric hydroxide, a red of c) Protective action c) Micelle formation 	 d) O₂ bid? d) Na⁺ of molecular dimensions is d) Peptization d) Peptization d) Fe d) Precipitate n the pressure is 0.5 atm and an of adsorbent will be (log d) 5 g coloured solution is obtained. d) Dissolution d) All of these

a) An amino acid	b) A carbohydrate	
c) The nitrogen molecule	d) An enzyme	
140. An example of dispersion of a liquid in a gas is		
a) Milk b) Vegetable oil	c) Foam	d) Mist
141. Which of the following is not correct?		
a) Milk is a naturally occurring emulsion	b) Gold sol is a lyophilic s	sol
c) Physical adsorption decreases with rise in	d) Chemical adsorption is	s unilayered
temperature		
142. In contact process of manufacture of H_2SO_4 , the cat	alyst used is	
a) Iron b) V_2O_5	c) Chromium	d) Oxides of nitrogen
143. The catalyst used in the chamber process of sulphus	ric acid is :	
a) Platinum b) Nitric oxide	c) Nickel	d) Vanadium pentoxide
144. Isoelectric point refers to the H ⁺ ion concentration	at which the colloidal parti	cles :
a) Coagulate		
b) Become electrically neutral		
c) Can move to either electrode when subjected to a	an electric field	$\boldsymbol{\mathcal{A}}$
d) Reverse their electrical charge		Y
145. The Langmuir adsorption isotherm is deduced using	g the assumption :	7
a) The adsorption sites are equivalent in their abilit	y to adsorb the particles	
b) The heat of adsorption varies with coverage		
c) The adsorbed molecules interact with each other		
d) The adsorption takes place in multilayers		
146. Sedimentation potential is the reverse of		
a) Electroosmosis	b) Electrophoresis	
c) Electrokinetic potential	d) Dorn potential	
147. During the adsorption of krypton on activated chard	coal at low temperature	
a) $\Delta H > 0$ and $\Delta S < 0$	b) $\Delta H < 0$ and $\Delta S < 0$	
c) $\Delta H > 0$ and $\Delta S > 0$	d) $\Delta H < 0$ and $\Delta S > 0$	
148. A catalyst in finely divided state is more efficient be	cause in this state	
a) In has larger activation energy		
b) It can react with one of the reactants more efficie	ntly	
c) It has large surface area		
d) All of the above		
149. Cow milk, an example of natural emulsion is stabilis	sed by	
a) Fat b) Water	c) Casein	d) Mg ²⁺ ions
150. Identify the correct statements regarding enzymes.		
Enzymes are specific biological catalysts that can a) $(T \sim 1000 \text{ K})$	normally function at very	high temperatures
b) Enzymes are normally heterogeneous catalysts t	hat are very specific in thei	r action.
c) Enzyme are specific biological catalysts that can	not be poisoned	
d) Enzyme are specific biological catalysts that poss	ess well defined active site	S
151. BaSO ₄ acts asfor Pd in Rosenmund's reaction:		-
a) Promoter b) Poison	c) Autocatalyst	d) None of these
152. Which is not shown by sols?	,,	,
a) Adsorption b) Tyndall effect	c) Flocculation	d) Paramagnetism
153. Bredig arc method cannot be used to prepare colloi	dal solution of :	, U
a) Pt b) Fe	c) Ag	d) Au
154. The reaction between alkali and fat is called :	, .	,
a) Saponification b) Hydrolysis	c) Distillation	d) dehydration
155. A colloidal system involves :	-	

a) A state of dissolution	b) A state of dispersion	c) A state of suspension	d) None of these
156. Conversion of milk into c	urd is made by the enzyme	:	
a) Diastase	b) Invertase	c) Micoderma bacilli	d) Lactic bacilli
157. Identify the gas which is i	readily adsorbed by activat	ted charcoal	
a) H ₂	b) N ₂	c) SO ₂	d) 0 ₂
158. Which is not correct for h	eterogeneous catalysis?		
a) The catalyst decreases	the energy of activation		
b) The surface of catalyst	plays an important role		
c) The catalyst actually fo	orms a compound with read	ctants	
d) There is no change in t	he energy of activation		\sim
159. The phenomenon observe	ed when a beam of light is	passed through a colloidal s	solution is
a) Cataphoresis	b) Delectrophoresis	c) Coagulation	d) Tyndall effect
160. Isoelectric point is the pH	at which colloidal particle	es .	
a) Become electrically ch	arged	b) Can move towards res	pective electrodes
c) Coagulate		d) None of the above	
161. In homogeneous catalysis	5		X
a) The reactant, catalyst a	and products are in the san	ne phase	
b) The catalyst and reacta	ants are in the same phase		7
c) The catalyst and produ	icts are in the same phase		
d) The reactants and proc	lucts are in the same phase	e	
162. The enzyme which can ca	talyse the conversion of gl	ucose of ethanol is :	
a) Zymase	b) Invertase	c) Maltase	d) diastase
163. The addition of alcohol to	a saturated aqueous solut	tion of calcium acetate first	forms a sol and then sets to
a gelatinous mass called s	solid alcohol which is a :		
a) Solid sol	b) Aerosol	c) Solid form	d) gel
164. Colloidal solution commo	only used in treatment of ey	/e disease is :	
a) Colloidal sulphur	b) Colloidal silver	c) Colloidal gold	d) Colloidal antimony
165. In Zeigler-Natta polymeri	sation of ethylene, the acti	ve species is :	
a) AlCl ₃	b) Et ₃ Al	c) CH ₂ CH ₂	d) Ti ^m
166. If liquid is dispersed in sc	lid medium, this is called		
a) Sol	b) Emulsion	c) Liquid aerosol	d) gel
167. In which of these process	es platinum is used as a ca	talyst?	
a) Oxidation of ammonia	to form HNO ₃	b) Hardening of oils	
c) Protection of synthetic	rubber	d) Synthesis of methanol	
168. Which is the characteristi	ic of catalyst?		
a) It changes equilibrium	point	b) It initiates the reaction	
c) It alters the rate of rea	ction	d) It increases average Kl	E of molecules
169. Which one of the followin	ig graphs represents Freun	idlich adsorption isotherm	2
a) <u>x</u>		b) \underline{x}	
log m		$\log m$	
$\log P$		log <i>P</i>	
I			
A		A	
$\log \frac{x}{m!}$		$\log \frac{x}{m}$	
170 7CM 5 1 2 2 1		log A	
1/U. ZSM-5 is used to convert	:		

	c) Micelles look like flatte	ered spherical structure at	СМС	
104	d) None of the above			
184	The cementation process			
105	a) Gel formation	b) Emulsion formation	c) Either of them	d) None of them
185	. In which of the following,	Tyndall effect is not obser	ved?	
	a) Smoke	b) Emulsion	c) Sugar solution	d) Gold sol
186	. Enzymes are			
	a) Microorganism		b) Proteins	
	c) Inorganic compounds		d) Moulds	
187	. Adsorption is multilayer i	n the case of		
	a) Physical adsorption	b) Chemisorption	c) Both (a) and (b)	d) None of these
188	. There is formation of an e	electrical double layer of op	oposite charges on the surfa	ace of colloidal particles, so
	a potential develops whic	h is known as		
	a) Electrokinetic potentia	l	b) Zeta potential	
	c) Streaming potential		d) Colloidal potential	
189	. Which of the following is	wrong?		
	a) A catalyst remain unch	anged at the end of chemic	cal reaction	Y
	b) A catalyst is specific in	action		>
	c) A catalyst does not cha	nges the state of equilibriu	im in a chemical reaction	
	d) A catalyst can start a re	eaction		
190	. Which requires catalyst :			
	a) $S + O_2 \rightarrow SO_2$	b) $2SO_2 + O_2 \rightarrow 2SO_2$	c) $C + O_2 \rightarrow CO_2$	d) All of these
191	. Which of the following im	purities present in colloid	al solution cannot be remov	ve by electrodialysis?
	a) Sodium chloride	b) Potassium sulphate 🔺	c) Urea	d) Calcium chloride
192	. The minimum energy leve	el necessary to permit a rea	action to occur is :	
	a) Internal energy	b) Threshold energy	c) Activation energy	d) Free energy
193	. The movement of sol part	ticles under an applied elec	ctric field is called :	
	a) Electrodeposition	b) Electrodialysis	c) Electroosmosis	d) Electrophoresis
194	. The arsenious sulphide so	ol has negative charge. The	maximum coagulating pov	ver for precipitating it is of :
	a) $0.1 N Zn(NO_3)_2$	b) 0.1 <i>N</i> Na₃PO₄	c) $0.1 N \text{ZnSO}_{4}$	d) 0.1 N AlCl ₃
195	. Among the electrolytes N	a_2SO_4 , CaCl ₂ , Al ₂ (SO ₄) ₃ and	$1 \text{ NH}_{4}\text{Cl}$, the most effective	coagulation agent for Sb_2S_3
	sol is		1 /	0 0 23
	a) Na ₂ SO ₄	b) CaCl ₂	c) Al ₂ (SO ₄) ₃	d) NH₄Cl
196	. An example of solid-solid	system is :	J 2 TJ J	, <u>,</u>
	a) Smoke	b) Cake	c) Synthetic gems	d) Pumice stone
197	. The volume of a colloidal	particle. V_c as compared to	the volume of a solute par	ticle in a true solution $V_{\rm c}$.
	could be		1	· ·
	V _C	$V_{\rm C}$	$V_{\rm C}$	V_{C}
	a) $\frac{c}{V_c} \approx 10^3$	b) $\frac{a}{V_c} \approx 10^{-3}$	c) $\frac{d}{V_c} \approx 10^{23}$	d) $\frac{c}{V_c} \approx 1$
198	. The volume of colloidal p	articles V _c as compared to	the volume of solute partic	cles in true solution V could
	he :			
	a) ~1	h) ~ 10^3	c) ~ 10^2	d) ~ 10^{-3}
199	Mention the type of react	ion to obtain Au(sol)	c) 10	
1))	Reaction	ion to obtain Ma(301).		
	$2\Lambda_{11}C$ $\pm 3HCHO \pm 3H$ O	$\rightarrow 2\Lambda_{11}(col) \pm 3HCOOH \pm$	ሪዝርነ	
	2) Hydrolycic	2Au(301) + 51100011 +	h) Ovidation	
	a) Injuicitysis		d) Double decomposition	
200	On addition of 1mL coluti	on of 100% NoCl to 10ml a	a) Double decomposition	of 0 025 g of starsh the
200	coogulation is prevented	because starsh has the fall	one solution in the presence	. 01 0.025 g 01 Stattli, life
	a) 25	because startinings the 1010	c) 0.25	d) 2 5
201	aj 2J	UJ U.U4J Darticlos towards the	UJ U.4J	uj 4.J
201	. The movement of colloida	a particles towards their re	espective electrodes in the	presence of an electric field

is known as		
a) Electrolysis	b) Brownian movement	
c) Dialysis	d) Electrophoresis	
202. Lyophilic sols are	-)	
a) Irreversible sols	b) They are prepared fro	m inorganic compounds
c) Coagulated by adding electrolytes	d) Self-stabilising	
203. Clouds, mist, fog and aerosols are colloidal solution	ons of :	
a) Solid in a gas b) Gas in a solid	c) Liquid in a gas	d) Gas in a liquid
204. Protons accelerate the hydrolysis of esters. This i	s an example of :	
a) A heterogeneous catalysis		
b) An acid-base catalysis		
c) A promoter		
d) A negative catalyst		
205. In the titration between oxalic acid and acidifie	d potassium permanganate,	the manganous salt formed
during the reaction catalyses the reaction. The m	anganous salt acts as :	
a) A promoter b) A positive catalyst	c) An autocatalyst	d) None of these
206. In Freundlich Adsorption isotherm, the value of 1	/n is :	×
a) 1 in case of physical adsorption		
b) 1 in case of chemisorption		
c) Between 0 and 1 in all cases		
d) Between 2 and 4 in all cases		
207. Purple of cassius is		
a) Colloidal solution of Au		
b) Colloidal solution of Pt		
c) Colloidal solution of Ag		
d) Colloidal solution of As		
208. Freundlich equation for adsorption of gases (in a	mount of <i>X g)</i> on a solid (in ar	nount of <i>m g</i>)at constant
<i>x</i> 1	<i>X</i> 1	
a) $\log \frac{n}{m} = \log p + \frac{1}{n} \log k$	b) $\log \frac{\pi}{m} = \log k + \frac{1}{n} \log k$	D
	$X \qquad 1$	
$c) = \frac{m}{m} \propto p^n$	a) $\frac{m}{m} = \log p + \frac{1}{n} \log k$	
209. Which acts as poison to finely divided Fe in Habe	r's process for the manufactu	re of NH ₃ ?
a) CO_2 b) NO	c) CO	d) N ₂
210. The fresh precipitate can be transformed in collo	idal state by	
a) Peptization b) Coagulation	c) Diffusion	d) None of these
211. The curve showing the variation of adsorption w	th pressure at constant temp	erature is called
a) An isostere b) Adsorption isother	n c) Adsorption isobar	d) None of these
212. Tyndall effect shown by colloids is due to		
a) Scattering of light by the particles	b) Movement of particles	5
c) Reflection of light by the particles	d) Coagulation of particle	es
215. Negative catalyst of minibitor is one:		
b) Takes the reaction in forward direction		
c) Promotes the side reaction		
d) None of the above		
214 Which is not a colloid?		
a) Chlorophyll b) Egg white	c) Ruby glass	d) Milk
215. Which forms micelles in aqueous solution above	certain concentration?	
a) Glucose		
b) Dodecyl trimethyl ammonium chloride		
•		

c) Urea			
a) Pyriainium chioride			
216. Cod liver oll is :			
a) Fat dispersed in wate	+		
b) Water dispersed in a	1		
d) Eat dispersed in fat	1		
u) Fat uispei seu ili iat	d on which of the factors?		
217. Colour of colloids depen	b) Mass	c) Charge	d) Natura
a) size	UJ Mass	cj charge	uj Nature
a) Disinfectant	y injection to act as	h) Anticancer agent	
a) Corm killer		d) Tonic to raise vitality	of human systems
210 The outcome of internal	liquid of gels on shear is ca	lled .	or numan systems
a) Synerisis	h) Thiyotrony	c) Swelling	d) None of these
220 A catalyst in the finely d	ivided form is most effectiv	e hecause ·	uj None or these
a) Less surface area is a	vailable	e beeddae .	\mathbf{Q}
b) More active centres a	re formed	Ć	
c) More energy gets stor	red in the catalyst		
d) None of the above			
221. Gold numbers of protect	tive colloids A.B.C and D a	re 0.50, 0.01, 0.10, and 0.00	5. respectively. The correct
order of their protective	e powers is		, , , , , , , , , , , , , , , , , , ,
a) $D < A < C < B$	b) <i>C</i> < <i>B</i> < <i>D</i> < <i>A</i>	c) $A < C < B < D$	d) <i>B</i> < <i>D</i> < <i>A</i> < <i>C</i>
222. The coagulation of 10 cr	n ³ of gold sol is completely	prevented by addition of 0	.025 g of starch to it. The
gold number of starch is	i generative providence providenc		
a) 0.025	b) 0.25	c) 2.55	d) 25
223. 50 mL of 1 M oxalic acid	is shaken with 0.5g wood o	harcoal. The final concent	ration of the solution after
adsorption is 0.5 M. Wh	at is the amount of oxalic a	cid absorbed per gram of ca	arbon?
a) 3.15 g	b) 3.45 g	c) 6.30 g	d) None of these
224. Colloidal sol is :			
a) True solution	b) Suspension	c) Heterogeneous sol	d) Homogeneous sol
225. The blue colour of the w	rater of the sea is due to :		
a) Refraction of the blue	e light by the impurities in s	ea water	
b) Reflection of blue ligh	nt by sea water		
c) Scattering of blue ligh	nt by sol paricles		
d) Absorption of other c	olours except the blue colo	ur by water molecules	
226. The spontaneous outcom	ne of internal liquid from ge	els is called :	
a) Synerisis	b) Thixotropy	c) Swelling	d) None of these
227. Solid aerosol is an exam	ple of colloidal system of :		
a) Liquid dispersed in g	as		
b) Gas dispersed in gas			
c) Solid dispersed in gas	5		
d) Solid dispersed in liqu	uid	11 - 10	
228. Which is more powerful	to coagulate the negative c	olloid?	
a) $2nSU_4$	DJ Na ₃ PU ₄	CJ AICI ₃	aj $K_4[Fe(UN)_6]$
229. which is used as catalys	t to retard the oxidation of	chioroform?	4) IT CO
a) $\Pi_2 U$	$UJ U_2 \Pi_5 UH$	cj Glycerol	иј п ₂ з0 ₄
250. MICEILE IS a LEFT USED IO	i the aggregates formed in	b) Colloidal non alastral	uto
a) Contract electronyle	de	d) None of the above	yı c
231 Which reaction character	us pristics are changing by the	addition of a catalyst to a r	eaction at constant
	instice are changing by the	addition of a catalyst to a l	caccion at constant

temperature? (i)activation energy (ii)Equilibrium constant (iii)Reaction entropy (iv)Reaction enthalpy a) (i) only b) (iii) only c) (i) and (ii) only d) All of these 232. The colour of sky is due to a) Transmission of light b) Wavelength of scattered light c) Adsorption of light by atmospheric gases d) All of the above 233. Egg albumin is : a) Reversible colloid b) Lyophilic colloid c) Protective colloid d) All of these 234. How many layers are adsorbed in chemical adsorption? a) One b) Two c) Many d) Zero 235. Blood may be purified by a) Dialysis b) Electro-osmosis c) Coagulation d) Filtration 236. Who coined the term catalysis and awarded Nobel Prize? b) Kolbe d) Rutherford a) Berzelius c) Wholer 237. The sky looks blue due to c) Transmission effect d) Scattering effect a) Dispersion effect b) Reflection effect 238. Fermentation of starch to give alcohol takes place in presence of : d) N_2 a) Enzymes b) CO_2 c) Air 239. Efficiency of catalyst depends on a) Concentration b) Molecular mass c) Size of particles d) None of these 240. The amount of gas adsorbed physically on charcoal increases with : a) Temperature and pressure b) Temperature and decreases with pressure c) Pressure and decreases with temperature d) None of the above 241. Which statement is wrong? a) The catalyst does not alter the equilibrium of a reaction b) Reaction with higher activation energy has higher rate constant c) In the endothermic reaction, the activation energy of the reaction is higher than that of heat of reaction d) Half-life period of a first order reactions is independent of initial concentration 242. During hydrogenation of oils, catalyst commonly used is : a) Pd or $CuCl_2$ b) Finely divided Ni d) $V_2 O_5$ c) Fe 243. Which of the following reactions is an example of heterogeneous catalysis? a) $0_3 + 0 \xrightarrow{\text{Cl}} 20_2$ (gas phase) b) $2CO(g) + O_2(g) \xrightarrow{NO} 2CO_2(g)$ $OC_2H_5(I) + H_2O(I)$ c) •OH (/) + C₂H₅OH (/) d) $\operatorname{CO}(g) + 2\operatorname{H}_2(g) \xrightarrow{\operatorname{Cu,ZnO-Cr_2O_3}} \operatorname{CH_3OH}(l)$ 244. Which is not a macromolecule? a) Palmitate b) Starch c) DNA d) Insulin 245. Physical adsorption increases when a) Temperature increases b) Temperature decreases c) Temperature remains constant d) Temperature increases above 60°C 246. Soap removes grease by : a) Adsorption b) Emulsification c) Coagulation d) None of these 247. Which of the following is correct according to adsorption isotherm?

a)
$$\frac{\pi}{m} \propto p^{0}$$
 b) $\frac{\pi}{m} \propto p^{1}$ c) $\frac{\pi}{m} \propto p^{1/n}$ d) All of these
248. Which of the following statements is incorrect regarding physisorptions?
a) It occurs because of van der Waals' forces
b) More cessily liquéfiable gass ara adsorbed readily
c) Under high pressure it results into multimolecular layer on adsorbent surface
d) Enthalpy of adsorption (Ad_{adsorption}) is slow and positive
249. In which process, a catalyst is not used?
a) Deacon's process
b) Solvay's process
c) Chamber process
d) Haber's process
c) Biochemical catalysis
c) Biochemical catalysis
c) Biochemical catalysis
c) Biochemical catalysis
d) Zeo14 $\frac{\pi}{2} \propto \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
b) Cato 4 $\frac{N_{0.0}}{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
c) So₂ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
c) So₂ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
d) So₂ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
c) So₃ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
c) So₃ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
d) So₂ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
c) So₃ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
c) So₃ + $\frac{1}{2} O_{2} = \frac{N_{0.0}}{N_{0.0}} \leq 0.1$
c) Fat dispersed in matr
c) Fat dispersed in fat
d) Water dispersed in milk
c) Fat dispersed in fat
d) Water dispersed in milk
c) Fat dispersed in fat
d) Cu + Hg(1) = CuCl₃ + Hg
d) Cu + Hg(2) = CuCl₃ + Hg
d) Cu + Lg(2) = 2CuCl₃ + Hg
d) Cataphoresis
d) Cataphoresis
d) Cataphoresis
d) Cataphoresis
d) Combination of So₁ in the comater process
d) Formation of So₁ in the comater process
d) Formation of So₁ in the comater process
d) Convertive currents
d) Oxidation of No 1 No No No
d) Sindation of So₂ is to So₃
d) Sindation of So₂ is the convertion iso

Page | 18

b) Every solid substance	a) Every solid substance can be brought in colloidal state b) Every solid substance can be made to behave like a lyophobic colloid									
c) Addition of electrolyt	c) Addition of electrolytes coagulates the sol									
d) Colloidal particles car	rry charges									
286. Which of the following t	ypes of catalysis can be exp	lained by the adsorption the	eory?							
a) Homogeneous catalys	sis									
b) Acid-Base catalysis										
c) Heterogeneous cataly	/sis									
d) Enzyme catalysis										
287. Which type of metals for	h) Transition motals	c) Alkaling parth motals	d) Padioactivo motale							
a) Alkali illetais	b) ITalisition metals	cj Alkanne earth metals	uj Kauloacuve metais							
a) True solution	h) Gel	c) Suspension	d) Emulsion							
289. The decomposition of H	H_2O_2 may be checked by	adding a small quantity of	phosphoric acid. This is an							
example of :		addining a binian quantity of								
a) Neutralization	b) Negative catalysis	c) Positive catalysis	d) Catalytic poisoning							
290. Zeolites are :										
a) Water softener	b) Catalyst	c) Both (a) and (b)	d) None of these							
291. Which one of the follow	ing is a lyophilic colloidal s	olution?								
a) Smoke		b) Gold sol								
c) Starch aqueous soluti	ion	d) Cloud								
292. In temporary poisoning,	, catalytic poisons act by :									
a) Coagulating the cataly	yst									
b) Chemically combining	g with any one of the reacta	ints								
c) Chemically combining	g with the catalyst									
d) Getting physically add	sorbed on the active centre	s of the catalyst	wing valations is valated to							
293. If x is amount of adsorbate and m is amount of adsorbent, which of the following relations is related to										
adcorption process?	\sim	,	0							
adsorption process?	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
adsorption process? a) $\frac{x}{m} = P \times T$	TER	,								
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at consta	ant T									
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant	ant T ant P									
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant	ant T ant P (x/m)									
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into a	ant T ant P (x/m) maximum amount by active	ated charcoal?								
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into an a) N ₂	ant T ant P (x/m) maximum amount by activa b) CO ₂	nted charcoal? c) Cl ₂	d) 0 ₂							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into many N ₂ 295. Fog is a colloidal solution a) Solid in gap	ant T ant P (x/m) maximum amount by activa b) CO ₂ n of	ated charcoal? c) Cl_2	d) O_2							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into man a) N ₂ 295. Fog is a colloidal solution a) Solid in gas	ant T ant P (x/m) maximum amount by active b) CO ₂ n of b) Liquid in gas	nted charcoal? c) Cl ₂ c) Gas in liquid	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into management a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium	ant T ant P (x/m) maximum amount by activa b) CO ₂ n of b) Liquid in gas which :	ated charcoal? c) Cl_2 c) Gas in liquid	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into man a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibrium	ant T ant P (x/m) maximum amount by active b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc of reaction	nted charcoal? c) Cl ₂ c) Gas in liquid	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into management a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibrium c) Shortens the time to p	ant T ant P (x/m) maximum amount by activa b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction reach equilibrium	nted charcoal? c) Cl ₂ c) Gas in liquid	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into management 295. Fog is a colloidal solution a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibric c) Shortens the time to management d) Supplies the energy of the second s	ant T ant P (x/m) maximum amount by activa b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction reach equilibrium of the reaction	nted charcoal? c) Cl ₂ c) Gas in liquid	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into management a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibrium c) Shortens the time to management d) Supplies the energy of 297. Ferric chloride is applied	ant T ant P (x/m) maximum amount by activa b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because	nted charcoal? c) Cl ₂ c) Gas in liquid	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into management 295. Fog is a colloidal solution a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibric c) Shortens the time to management d) Supplies the energy of 297. Ferric chloride is applied a) Fe ³⁺ ions coagulate management b) Changes the substance of the sub	ant T ant P (x/m) maximum amount by activation b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because negatively charged blood so	nted charcoal? c) Cl ₂ c) Gas in liquid	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into an a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibri c) Shortens the time to and d) Supplies the energy of 297. Ferric chloride is applied a) Fe ³⁺ ions coagulate and b) Fe ³⁺ ions coagulate and constant constant const	ant T ant P (x/m) maximum amount by activa b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because negatively charged blood sol	nted charcoal? c) Cl ₂ c) Gas in liquid lution	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constation c) $x/m = f(T)$ at constantion d) $P = f(T)$ at constantion 294. Which is adsorbed into the formation of the formati	ant T ant P (x/m) maximum amount by activation b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because negatively charged blood solution sitively charged blood solution	nted charcoal? c) Cl ₂ c) Gas in liquid lution ution	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into a a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibri c) Shortens the time to a d) Supplies the energy of 297. Ferric chloride is applied a) Fe ³⁺ ions coagulate n b) Fe ³⁺ ions coagulate n c) Cl ⁻ ions coagulate nergy d) Cl ⁻ ions coagulate nergy	ant <i>T</i> ant <i>P</i> (<i>x/m</i>) maximum amount by activa b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because negatively charged blood solu sitively charged blood solu gatively charged blood solu	nted charcoal? c) Cl ₂ c) Gas in liquid lution ution tion	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constation c) $x/m = f(T)$ at constantion d) $P = f(T)$ at constantion 294. Which is adsorbed into the formal set of the forma	ant T ant P (x/m) maximum amount by activation b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because negatively charged blood solution sitively charged blood solution gatively charged blood solution from suspension is	ated charcoal? c) Cl ₂ c) Gas in liquid lution ution tion	d) O ₂ d) Gas in solid							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into many 295. Fog is a colloidal solution a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibric c) Shortens the time to many d) Supplies the energy of 297. Ferric chloride is applied a) Fe ³⁺ ions coagulate many b) Fe ³⁺ ions coagulate many c) Cl ⁻ ions coagulate many 298. The formation of colloid a) Peptisation	ant T ant P (x/m) maximum amount by activa b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because negatively charged blood solution sitively charged blood solution sitively charged blood solution from suspension is b) Condensation	ated charcoal? c) Cl ₂ c) Gas in liquid lution ution tion tion	 d) O₂ d) Gas in solid d) Fragmentation 							
adsorption process? a) $\frac{x}{m} = P \times T$ b) $x/m = f(P)$ at constant c) $x/m = f(T)$ at constant d) $P = f(T)$ at constant 294. Which is adsorbed into many 295. Fog is a colloidal solution a) N ₂ 295. Fog is a colloidal solution a) Solid in gas 296. A catalyst is a substance a) Increases equilibrium b) Changes the equilibriant c) Shortens the time to many d) Supplies the energy of 297. Ferric chloride is applied a) Fe ³⁺ ions coagulate many b) Fe ³⁺ ions coagulate por d) Cl ⁻ ions coagulate nergy 298. The formation of colloidal solution a) Peptisation 299. Which is not a colloidal solution	ant T ant P (x/m) maximum amount by activation b) CO ₂ n of b) Liquid in gas which : n constant of reaction um conc.of reaction um conc.of reaction reach equilibrium of the reaction d to stop bleeding because the gatively charged blood solution sitively charged blood solution gatively charged blood solution from suspension is b) Condensation solution of gas in liquid?	etted charcoal? c) Cl ₂ c) Gas in liquid lution ution tion tion c) Sedimentation	 d) 0₂ d) Gas in solid d) Fragmentation 							

- b) Foams with tiny bubbles c) Mist d) Whipped cream 300. In chemical reaction, catalyst a) Alters the amount of the products b) Lowers the activation energy c) Decreases the ΔH of forward reaction d) Increases the ΔH of forward reaction 301. Which equation represents Freundlich adsorption isotherm (physical adsorption is basis of this theory)? a) $\frac{x}{m} = K(P)^{1/n}$ where x is amount of gas adsorbed on mass 'm' at pressure P b) $\log \frac{x}{m} = \log K + \frac{1}{n} \log P$ c) $\frac{x}{m} = KP$ at low pressure and $\frac{x}{m} = K$ at high pressure d) All of the above 302. The catalyst used in the contact process of sulphuric acid is : a) Copper b) Iron c) Vanadium pentoxide or Pt (asbestos) d) Ni 303. When adsorption of oxalic acid is carried out on activated charcoal, the activated charcoal is known as a) Adsorbate b) Adsorbent c) Adsorber d) All of these 304. The basic principal of cottrell's precipitator is a) Le-Chatelier's principle b) Peptisation c) Neutralisation of charge on colloidal particles d) Scattering of light 305. The equation for Freundlich adsorption isotherm is a) $\frac{x}{m} = kp^{1/n}$ d) All of these b) $x = mkp^{1/n}$ c) $x/m = kp^{-n}$ 306. Butter is a colloid form in which : a) Fat is dispersed in solid casein b) Fat globules are dispersed in water c) Water is dispersed in fat d) Suspension of casein is in water 307. Peptization involves a) Precipitation of colloidal particles b) Disintegration of colloidal aggregates c) Evaporation of dispersion medium d) Impact of molecules of the dispersion medium on the colloidal particles 308. In negative catalysis a) The speed of chemical reaction slows down b) Speed of the chemical reaction remain the same c) Speed of the chemical reaction increases d) None of the above 309. Gold number : a) May be defined as the milligram of the dry material of which the hydrophilic sol is prepared and which when added to 10 mL of red gold sol, will prevent it from coagulation on the addition of 1 mL of 10 per cent sodium chloride solution b) May be defined as the milligram of the dry material of which the hydrophilic sol is prepared and which when added to 1 mL of red gold sol will prevent it from coagulation on the addition of 10 mL of 10 per cent sodium chloride solution
 - c) May be defined as the milligram of the dry material of which the hydrophilic sol is prepared and which when added to 1 mL of red gold sol will prevent it from coagulation on the addition of 1 mL of 1 per cent sodium chloride solution
 - d) None of the above

on?										
a) Heterogeneity b) Particle size > 100 mm										
c) Tyndall effect d) Brownian movement										
311. Lyophilic sols are more stable than lyophobic sols because :										
negatively charged coll	oidal particles									
ol in the presence of 0	.25g of starch, the									
S	N A									
.5	d) 250									
ellulose	d) Sodium stearate									
MnO_2 is added the	reaction goes much faster									
	X i									
. C 4										
to the cathode dependent	ding upon the positively or									
ge of a solution										
oying an emulsion										
wards the electrodes w	when electric field is									
ie to										
iere										
cid catalyst	d) None of these									
oil or fat. It has the for	rmula									
nd COO ⁻ K ⁺ .										
yophilic colloid										
ssociated colloid or mi	icelle									
hide decreases in orde	er									
$l > SO_4^{2+} > PO_4^{3-}$	d) $Al^{3+} > Ba^{2+} > Na^{+}$									
n amino acid	d)									
ie in water?										
	on? article size > 100 mm rownian movement e: hegatively charged coll ol in the presence of 0 s 5 ellulose e MnO ₂ is added the e MnO ₂ is added the ge of a solution oying an emulsion vards the electrodes w he to ere cid catalyst oil or fat. It has the for nd COO ⁻ K ⁺ . yophilic colloid ssociated colloid or mini- hide decreases in order $\overline{I} > SO_4^{2+} > PO_4^{3-}$ n amino acid he in water?									

٠

c)		
d) _{Cl}		
322. In colloid particles, range of diameter is a) 1 to 100 nm b) 1 to 1000 cm	c) 1 to 1000 mm d) 1 to 100 km	
323. Catalysis is a phenomenon in which		1.
a) A substance alters the speed of the chemic	al reaction	\mathbf{V}
b) Heat is evolved in a chemical reaction		
c) The reaction is induced by light		
d) None of the above		
324. Among the following, the surfactant that will concentration at ambient conditions, is	form micelles in aqueous solution at the lowest molar	
a) $CH_3(CH_2)_{15}N^+(CH_3)_3Br^-$	b) $CH_3(CH_2)_{11}OSO_3^-Na^+$	
c) $CH_3(CH_2)_6COO^-Na^+$	d) $CH_3(CH_2)_{11}N^+(CH_3)_3Br^-$	
325. When a sulphur sol is evaporated sulphur is c	obtained. On mixing with water sulphur sol is not formed.	The
sol is		
a) Lyophilic b) Reversible	c) Hydrophobic d) Hydrophilic	
326. Which is correct in the case of van der Waals	adsorption?	
a) High temperature, low pressure	b) Low temperature, high pressure	
227 Sulphur colloid is propared by	u) All of the above	
a) Mechanical dispersion	h) Ovidation	
c) Electrical dispersion	d) Reduction	
328 The precipitate of Fe(OH), in presence of wat	ter containing some FeCl, becomes colloidal on gentle	
shaking This is an example of	concentration growthe really becomes contrate on genere	
a) Electroosmosis b) Coagulation	c) Peptization d) Electrophoresis	
329. Cod liver oil is		
a) An emulsion b) Solution	c) Colloidal solution d) Suspension	
330. Animal charcoal is used in decolourising color	ur of liquids because it is a good	
a) Adsorbate b) Adsorbent	c) Oxidising agent d) Reducing agent	
331. Which of the following electrolyte will have m	naximum flocculation value for Fe(OH) ₃ sol?	
a) NaCl b) Na ₂ S	c) $(NH_4)_3PO_4$ d) K_2SO_4	
332. Which of the following is a lyophobic colloida	l solution?	
a) Aqueous starch solution	b) Aqueous protein solution	
c) Gold sol	d) Polymer solutions in some organic solvents	
333. Which is an example of auto-catalyst?		
a) Hydrolysis of methyl acetate		
b) Decomposition of TNG		
c) Oxidation of oxalic acid by KMnO ₄		
d) All of the above		
334. Pd can adsorb in the space between its atoms	, 900 times its volume of hydrogen. This process is called	l
a) Absorption b) Desorption	CJ Adsorption dJ Chemisorptions	
protective actions will be in order	sourum acetate are 0.005, 0.05 and 0.7 respectively. The	!
a) Gelatin < haemoglobin < sodium acetate	b) Gelatin > haemoglobin > sodium acetate	
c) Haemoglobin > gelatin > sodium acetate	d) Sodium acetate > gelatin > haemoglobin	
336. A catalyst is a substance which		
a) Increases the equilibrium constant of the r	reaction	

b) Increases equilibrium concentration of products		
c) Does not alter the reaction mechanism		
d) Changes the activation energy of the reaction		
337. The extent of adsorption of a gas on a solid depends	s on	
a) Nature of the gas	b) Pressure of the gas	
c) Temperature of the gas	d) All of these	
338. Which of the following statements is false for enzymeter enzymeters and the following statements is false for enzymeters and the following statements is false for enzymeters and the following statements are statements as a statement of the following statements are statements as a statement of the following statements are statements as a statement of the following statements are statements as a statement of the following statements are statements as a statement of the following statement of the following statements are st	ne?	
a) pH affects their work	b) Temperature affect t	heir work
c) They always increase E_a	d) Their reactivity is sp	ecific
339. Fog is a colloidal solution of		
a) Liquid particles dispersed in gas	b) Gaseous particles dis	persed in a liquid
c) Solid particles dispersed in liquid	d) Solid particles disper	rsed in gas
340. The activity and selectivity of zeolites as catalyst is	based on :	· · ·
a) Their pore size		
b) Size of their cavities on the surface		
c) Both (a) and (b)		
d) None of the above		4 ×
341. Gold number gives		<i>J</i> .
a) The amount of gold present in the colloid		
b) The amount of gold required to protect the collo	id	
c) The amount of gold required to break the colloid		
d) None of the above		
342. Amongst the following chemical reaction, the one re	epresenting homogeneous	s catalysis is
a) $N_2(g) + 3H_2(g) \xrightarrow{\text{re}} 2NH_3(g)$	b) $2SO_2(g) + O_2(g) - \frac{2F}{V}$	$\xrightarrow{\text{NO}} 2\text{SO}_3(g) + 2\text{NO}(g)$
c) $CO(g) + 3H_2(g) \xrightarrow{INI} CH_4(g) + H_2O$	d) $2SO_2(g) + O_2(g) - \frac{v_2}{2}$	$\xrightarrow{20_5} 2SO_3(g)$
343. Which of the following represents the phenomenon	of syneresis?	
a) Formation of a sol from a gel	b) Migration of colloid i	n an electric field
c) Separation of the dispersed phase from the gel	d) Process of converting	g gel into true solution
344. Silica get is commonly used as :		
a) Wetting agent b) Drying agent	c) Solvent	d) catalyst
345. Which has least gold number?		
a) Gelatin b) Starch	c) Albumin	d) Blood
346. The disperse phase in colloidal iron (III) hydroxide	and colloidal gold is posit	ively and negatively charged,
respectively. Which of the following statements is n	ot correct?	
a) Coagulation in both sols can be brought about by	electrophoresis	
b) Mixing the sols has no effect		
c) Sodium sulphate solution causes coagulation in b	ooth sols	
d) Magnesium chloride solution coagulates the gold	sol more readily than the	iron (III) hydroxide sol
347. Which is not correct regarding the adsorption of a g	as on surface of a solid?	
a) Enthalpy and entropy change is negative		
b) Adsorption is more for some specific substance		
c) On increasing temperature, adsorption increase	progressively	
\sim d) It is a reversible reaction		
348. Efficiency of a catalyst depends on its:		
a) Particle size b) Solubility	c) Molecular weight	d) None of these
349. Choose the incorrect statement		
 a) If the mutual affinity between the dispersed phase be lyophobic 	se and the dispersion med	ium is small, the system will
b) If the mutual affinity between the dispersed phas	se and dispersion medium	is great, the system will be
ij opinite		

c) In a system, when water is the dispersion medium d) Ionic surfactant molecules cluster together in clus	n, the system may be hydrophobic or hydrophilic mps
350. The colloidal system of a solid dispersed in liquid mo	edium, is called
a) Aerosol b) Sol	c) Gel d) Foam
351. Which of the following statements is incorrect?	
a) Emulsions are prepared by shaking two liquid con emulsifying agent	nponents, say oil and water and adding some
b) Water-in-oil emulsions are formed when the emu	lsifying agent at the interface is chiefly in the water
phase	
c) Water-in-oil emulsions are formed when the emu	lsifying agent at the interface is chiefly in the oil phase
d) Gems and gels mixed together to give emulsion	
352. Hydrolysis of cane sugar is catalysed by :	
a) H ⁺ b) Mineral acids	c) Enzymes d) All of these
353. When a catalyst increases the rate of a chemical read	ction, the rate constant :
a) Increases b) Decreases	c) Remains constant d) Becomes infinite
354. The charge on As_2S_3 sol is due to the adsorption of :	
a) H ⁺ b) OH ⁻	c) 0_2^- d) S^{2-}
355. Platinum is not used as a catalyst in the :	
a) Oxidation of CH_3OH to HCHO	
b) Oxidation of SO_2 to SO_3	
c) Combination of H_2 and I_2 to form HI	
d) Synthesis of NH_3 from N_2 and H_2	
356. A catalyst alter the rate of reaction by	
a) Altering enthalpy	b) Altering internal energy
c) Altering energy of activation	d) All of the above
357. The name aquadag refers for :	
a) Cu in water sol b) Pt in water sol	c) Graphite in water sol d) None of these
358. Active charcoal is a good catalyst because	
a) Made up of carbon atoms	b) Is very reactive
c) Has more adsorption power	d) Has inert nature toward reagent
359. An aerosol is a	
a) Dispersion of a solid or liquid in a gas	b) Dispersion of a solid in a liquid
c) Dispersion of a liquid in a liquid	d) Solid solution
360. Which of the following reaction is an example for no	Mogeneous catalysis?
a) $2H_2O_2(l) \xrightarrow{MIO_2(s)} 2H_2O(l) + O_2(g)$	b) $2SO_2(g) + O_2(g) \xrightarrow{V_2O_5(s)} 2SO_3(g)$
$C_{j} 2CO(g) + O_{2}(g) \longrightarrow 2CO_{2}(g)$	$C_2H_2(g) + C_2H_4(g) \longrightarrow C_2H_6(g)$
361. The correct statement in case of milk :	
a) Milk is an emulsion of fat in water	
b) Milk is an emulsion of protein in water	
c) Milk is stabilized by protein	
d) Milk is stabilized by fat	
362. Which of the following acts as protective colloid?	
a) Silica gei b) Gelatin	c) Sodium acetate d) None of these
363. When dilute aqueous solution of $AgNO_3(excess)$ is	added to KI solution, positively charged sol of Agl is
formed due to adsorption of of	
a) NU_3 b) U_2^-	c) Ag' d) K ⁺
364. Colloidal solution of arsenious sulphide can be prepa	ared by :
a) Electrodispersion method	
b) Peptization	
c) Double decomposition	

d) hydrolysis		
365. Chemisorption is :		
a) Multimolecular in nature		
b) Reversible		
c) Often highly specific and directional		
a) Not very specific	haut anguna aataluaia?	
366. Which one of the following statements is incorrect a	ibout enzyme catalysis?	
a) Enzymes are denaturated by ultraviolet rays and	at nigh temperature	
b) Enzymes mostly proteinous in nature	ure	
d) Enzyme action is specific		
267 Alum purify muddy water by		
a) Dialweis	h) Advantian	
a) Dialysis	d) Forming a true colutio	*
260 The continuous phase contains the dispersed phase	throughout oxamplo is	
a) Water in milk	h) Fat in milk	\bigcirc
c) Water dronlets in mist	d) Oil in water	
369 A catalyst is used	uj on in water	
a) To balance the reaction	h) To vaporise the comp	ound
c) To alter the velocity of reaction	d) To kill the enzymes	Sund
370 In the formation of SO_2 by SO_2 and O_2 using NO as c	atalyst the catalytic action	of NO is evidenced by :
a) Green vanours b) Violet vanours	c) Brown vanours	d) None of these
371. A catalytic poison is	cj brown vapours	uj none or these
a) Heterogeneous catalyst	b) Autocatalyst	
c) Induced catalyst	d) An inhibitor	
372. Which does not show Tyndall effect?		
a) Emulsion b) Blood	c) Milk	d) Sugar solution
373. Catalytic poisoners act by :	-)	
a) Coagulating the catalyst		
b) Getting adsorbed on the active centres on the sur	face of catalyst	
c) Chemical combination with any one of the reacta	nts	
d) None of the above		
374. Peptization is a process of :		
a) Precipitating colloidal particles		
b) Purifying colloidal particles		
c) Dispersing the precipitate into colloidal state		
d) None of the above		
375. Gas masks containing activated charcoal to remove	poisonous gases from atmo	osphere acts on the principle
of :		
a) Adsorption b) Absorption	c) Sorption	d) All of these
376. Pick out the statement which is not relevant in the c	liscussion of colloids.	
a) Sodium aluminium silicate is used in the softenin	g of hard water	
b) Potash alum is used in shaving rounds and as a st	cyptic in medicine	
c) Artificial rain is caused by throwing electrified sa	nd on the clouds from an a	eroplane
d) Deltas are formed at place where the river pours	its water into the sea	
377. Some types of gels like gelatin liquefy on shaking, th	ereby changing into sols. T	The sols on standing changes
back into gel. The process is known as :		
a) Synerisis b) Thixotropy	c) Peptisation	d) Imbibition
378. Which is an example of negative catalysis?	Ea	
a) $2H_2O_2 \xrightarrow{H_2} 2H_2O + O_2$	b) $N_2 + 3H_2 \xrightarrow{re} 2NH_3$	

c) $2KCIO_2 \xrightarrow{MnO_2} 2KCI + 3O_2$	d) 4CHCl ₂ + 30 ₂ $\frac{C_2H_5}{$	$\xrightarrow{OH} 4COCl_{2} + 2Cl_{2} + 2H_{2}O$
379. The decomposition of hydrogen peroxide can be sl	owed by the addition of a	cetamide. The latter acts as a
a) Detainer h) Stonner	c) Promoter	d) Inhibitor
380. Catalyst :	ej i romotor	
a) Lowers activation energy		
b) Increase activation energy		
c) May increase or may decrease activation energy	I	
d) Brings out equilibrium		
381. If dispersion medium is water, the colloidal system	n is called :	× · ·
a) Sol b) Aerosol	c) Organosol	d) Aquasol
382. The phenomenon in which adsorption and absorption	tion takes place simultane	ously is called:
a) Desorption	•	
b) Sorption		
c) Both (a) and (b)		
d) None of these		
383. Adsorption is accompanied by		
a) ΔS of system is negative	b) Decrease in enthalp	y of system
c) $T\Delta S$ for the process is negative	d) All of the above	
384. Which is not a property of hydrophilic sols?		
a) High concentrations of dispersed phase can be e	easily attained	
b) Coagulation is reversible		
c) Viscosity and surface tension are about the sam	e as of dispersion medium	1
d) The charge of the particle depends on the pH va negative	lues of the dispersion med	lium; it may be positive,
385. Which one of the following does not involve coagu	lation?	
a) Formation of delta regions	b) Peptization	
c) Treatment of drinking water by potash alum	d) Clotting of blood by	the use of ferric chloride
386. Which is the wrong pair?	, , ,	
(i) Starch solution : sol (ii) Aq. NaCl : true solution	(iii) milk : emulsion (iv) A	Aq. BaSO ₄ : true solution
a) (i) b) (iii)	c) (iv)	d) (ii)
387. Which reaction gives colloidal solution?		
a) $Cu + HgCl_2 \rightarrow CuCl_2 + Hg$		
b) $2HNO_3 + 3H_2S \rightarrow 3S + 4H_2O + 2NO$		
c) $2Mg + CO_2 \rightarrow 2MgO + C$		
d) $Cu + CuCl_2 \rightarrow Cu_2Cl_2$		
388. Which is universally correct for catalyst?		
a) A catalyst remains unchanged chemically at the	end of chemical reaction	
b) A catalyst takes part in a chemical reaction		
c) All kinds of catalysts undergo catalytic poisonin	g	
d) A catalyst physically changes at the end of react	ion	
389. A catalyst		
a) Lowers the activation energy	b) Changes the rate con	nstant
\checkmark c) Changes the product	d) Itself destroys in the	e reaction
390. Hydrolysis of maltose $(C_{12}H_{22}O_{11})$ by maltase give	2S :	
a) Glucose b) Fructose	c) Both (a) and (b)	d) None of these
391. Platinized asbestos used as a catalyst in the manuf	acture of H ₂ SO ₄ is an exam	nple of :
a) Heterogeneous catalyst		
b) Autocatalyst		
c) Homocatalyst		
d) Induced catalyst		

392. In Haber's process for manufacture of ammonia, the reaction is usually carried at about 500°C. If a temperature of about 250°C was used then a) A catalyst would be of no use at all at this temperature b) The rate of formation of ammonia would be too slow c) No ammonia would be formed at all d) The percentage of ammonia in the equilibrium mixture would be too low 393. Solvent hating colloids are : a) Lyophobic b) Hydrophilic c) Lyophilic d) None of these 394. The gold numbers of some colloidal solutions are given below Colloidal Gold solution number 0.01 А 2.5 В С 20 The protective nature of these colloidal solutions follow the order a) C > B > Ab) A > B > Cc) A = B = Cd) B >395. A catalyst increases the rate of reaction because it : a) Increases the activation energy b) Decrease the energy barrier for reaction c) Decreases the collision diameter d) Increase the temperature coefficient 396. Pick out the wrong statement. a) Micelles are formed by surfactant molecules above the Critical Micelle Concentration (CMC) b) The conductivity of a solution having surfactant molecules decreases sharply at the (CMC) c) Lower is the CMC of detergent, more is its detergency d) Cleansing action is not related to micelles 397. Catalyst only a) Decreases activation energy b) Increases activation energy c) Bring about equilibrium d) None of the above 398. A precipitate is changed to colloidal solution by the following process b) Ultrafiltration a) Dialysis c) Peptization d) Electrophoresis 399. The Brownian movement is due to a) Enthalpy change during the formation of colloids b) Attractive forces between the colloidal particles and the molecules of dispersion medium c) The impact of molecules of the dispersion medium on the colloidal particles d) The movement of positively charged colloidal particle to negatively charged particle 400. Catalyst used in Haber's process is a) Nickel powder b) Iron and molybdenum powder c) Black lead d) Iodine 401. The capacity of an ion to coagulate a colloidal solution depends on : a) Its shape b) Amount of its charge c) The sign of charge d) Both amount and sign of the charge 402. The ion that is more effective for the coagulation of As_2S_3 sol is a) Ba²⁺ b) Na⁺ c) PO_{4}^{3-} d) Al³⁺ 403. The reaction rate at a given temperature is slower when : a) The energy of activation is higher b) The energy of activation is lower c) Entropy changes d) Initial concentration of the reactants remains constant

404. Hardy-Schulze law states that

- a) Higher the charge of the coagulating ions, greater its coagulating power, having opposite sign of solution
- b) Solution must have zero gold number
- c) Disperse phase and dispersion medium must be of the same sign
- d) Micelles coagulate in presence of surfactants
- 405. Choose the intrinsic colloids among the following
- a) Sulphur b) Arsenic sulphide c) Egg albumen
- 406. Enzymes are :
 - a) Substances made by chemists to activate washing powder
 - b) Very active vegetable catalysts
 - c) Catalysts found in organisms
 - d) Synthetic catalysts

407. Whenever, gels are placed with their dispersed phase, they :

- a) Swells up
- b) Show intake of the dispersed phase
- c) Develops imbibition
- d) All of the above
- 408. Which forms multi molecular layers during adsorption?
 - a) Physical adsorption
 - b) van der Waals' adsorption
 - c) Freundlich adsorption
 - d) All of the above
- 409. Enzyme catalysts are :
 - a) Highly specific in nature
 - b) Non-specific
 - c) Solids
 - d) Always liquid
- 410. A catalyst :
 - a) Increases the average kinetic energy of the reacting molecules
 - b) Increases the activation energy
 - c) Alters the reaction mechanism
 - d) Increases the frequency of collisions of the reacting species
- 411. Micelle systems are used in

	a) Gums		b) Magnetic separation process				
	c) Petroleum recovery		d) All of the above				
412	Enzymes are known to in	crease the rate of reaction	by :				
	a) 10 ² times	b) 10 ⁻² times	c) 10 ⁵ times	d) 10 ¹² times			
413	A catalyst promoter						
	a) Increases the speed of	the reaction	b) Activates the action of a catalyst				
	c) Starts a chemical react	tion	d) None of the above				
414	Soaking of water by a spo	onze is an example of :					
	a) Physical adsorption	b) Chemical adsorption	c) Absorption	d) None of these			
415	Indicate the correct state	ment					
	a) In chemisorptions, the	re is no disruption of bond	ing in an adsorbed molecul	le			
	b) The rate of decomposi	tion of the substance adsor	bed on a surface depends o	on the surface coverage			
	c) In heterogeneous catal	action occurs					
	d) Increase in surface are	ea of catalyst reduces the su	Irface phase reactions				

- 416. Cellulose dispersed in ethanol is called
 - a) Emulsion b) Collodion c) Micelle d) Hydrophilic sol

d) Ferric hydroxide

- 417. A liquid aerosol is a colloidal system of :
 - a) A liquid dispersed in a solid
 - b) A liquid dispersed in a gas
 - c) A gas dispersed in a liquid
 - d) A solid dispersed in a gas

418. The disperse phase, dispersion medium and nature of colloidal solution (lyophilic or lyophobic) of 'gold sol' respectively are

- a) Solid, Solid, lyophobic
- c) Solid, Liquid, Lyophobic
- 419. An emulsion is a colloidal dispersion of
 - a) A liquid in a gas b) A liquid in a liquid
- 420. Blue colour of water in sea is due to
 - a) Refraction of blue light by impurities
 - c) Scattering of light by water
- 421. Which of the following is an example of biochemical catalyst?
 - b) Oxides of Nitrogen

d) None of the above

c) A solid in a liquid

b) Liquid, Liquid, Lyophobic d) Solid, Liquid, Lyophilic

b) Refraction of blue sky by water

d) A gas in a solid

c) Zymase

a) Platinium gauze

d) $V_2 O_5$ 422. Which one of the following statements is incorrect?

a) Adsorption always leads to a decrease in enthalpy and entropy of the system

- b) Adsorption arises due to unsaturation of valence forces of atoms or molecules on the surface
- c) Adsorption increases with rise in the temperature
- d) Adsorption decreases the surface energy

423. In emulsion the dispersed phase and dispersion medium are :

a) Both solids b) Both liquids c) A solid and liquid d) A liquid and solid 424. Which graph represents auto catalysis?

- 425. The Rubin number which was proposed by Ostwald as an alternative to the Gold number in order to measure the protective efficiency of a lyophilic colloid may be defined as the
 - a) Mass in milligrams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 0.16 g eq. KCl is added to it
 - b) Mass in grams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 0.1 M KCl is added to it
 - c) Mass in grams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 0.2 M KCl is added to it
 - d) Mass in grams of a colloid per 100 cc of solution which just prevents the colour change of standard sol of dye Congo-Rubin from red to violet when 1 M KCl is added to it
- 426. Which of the following is applicable to chemisorption?
 - a) It occurs at high temperature
 - b) There is formation monomolecular layer
 - c) It involves the formation of chemical bonds between adsorbent and adsorbate
 - d) All of the above
- 427. Which of the following is used to provide smoke screens :

a) Calcium phosphide b) Zinc sulphate d) Zinc phosphide c) Sodium carbonate

- 428. The process of froth floatation and chromatography are based on :
 - a) Emulsification b) Adsorption c) Absorption d) Either of them

29. The efficiency of enzyme catalysis is due to its capacity to									
a) From a strong enzyme-substrate complex									
b) Change the shape of the substrate									
c) Lower the activation energy of the reaction	c) Lower the activation energy of the reaction								
d) Form a colloidal solution in water									
430. Which acts as a promoter for nickel in the hydrogen	ation of oils?								
a) Cu b) Mo	c) Fe	d) Pt							
431. In Langmuir's model of adsorption of a gas on a solid	d surface								
a) The rate of dissociation of adsorbed molecules from	om the surface does not dep	pend on the surface covered							
b) The adsorption at a single site on the surface may	involve multiple molecule	s at the same time							
c) The mass of gas striking a given area of surface is	proportional to the pressu	re of the gas							
d) The mass of gas striking a given area of surface is	independent of the pressu	re of the gas							
432. Cloud bursts due to :									
a) Attraction towards the electrical charges on the e	arth								
b) Large amount of water present in the cloud									
c) Dense clouds are present in the upper atmospher	'e	X [*]							
d) Mutual discharge of oppositely charged clouds re	sulting in the coagulation	Y							
433. Bleeding due to a cut can be stopped by applying fer	ric chloride solution in the	laboratory. This is due to							
Coagulation of negatively charged blood particles	Coagulation of positive	ly charged blood particles							
by Fe^{3+} ions.	by Cl ⁻ ions.								
c) Reaction taking place between ferric ions and the	, Common element, iron	, in both FeCl ₃ amd							
haemoglobin forming a complex	haemoglobin								
434. Surface tension of lyophilic sols is :									
a) Lower than H_2O b) More than H_2O	c) Equal to H ₂ O	d) None of these							
435. Which is used in the Haber's process for the manufa	cture of NH ₃ ?								
a) Al_2O_3 b) Fe + Mo	c) CuO	d) Pt							
436. Tails of comets are visible due to :									
a) Tyndall effect b) Reflection	c) Brownian motion	d) None of these							
437. The minimum flocculation power of KCl, MgCl ₂ , CrCl	3 and SnCl ₄ for a positively	charged sol are in the							
order of									
a) KCl < MgCl ₂ < CrCl ₃ < SnCl ₄	b) $KCl = MgCl_2 = CrCl_3 =$	= SnCl ₄							
c) $MgCl_2 < KCl < CrCl_3 < SnCl_4$	d) $SnCl_4 < CrCl_3 < MgCl_2$	$_{2} < KCl$							
438. Smoke (a negatively charged colloid) is an example	of:								
a) Gas dispersed in liquid									
b) Gas dispersed in solid									
c) Solid dispersed in gas									
d) Solid dispersed in solid									
439. Which one of the following is an example for homog	eneous catalysis?								
a) Manufacture of sulphuric acid by Contact process									
b) Manufacture of ammonia by Haber's process									
c) Hydrolysis of sucrose in presence of dilute hydro	chloric acid								
d) Hydrogenation of oil									
440. Which is not true in case of catalyst?									
a) The catalyst is unchanged chemically at the end o	a) The catalyst is unchanged chemically at the end of a reaction								
b) The catalyst accelerates the reaction									
c) In a reversible reaction, the catalyst alters the equ	uilibrium position								
d) A small amount of catalyst is often sufficient to b	ing about a large change in	reaction							
441. Which of the following is not the property of hydrop	hilic sol.?								
a) Coagulation is reversible	b) Viscosity and surface t water	ension are equal to that of							

- c) Charge on the particle depends upon pH of the medium. It may be positive, negative or zero
- d) Dispersed phase acquires higher concentration easily

d) Mustard oil

- 442. Point out the false statement
 - a) The size range of colloidal particles is 10 2000Å
 - b) Colloidal solutions are homogeneous systems
 - c) Colloids carry charge
 - d) Colloids show Tyndall effect
- 443. Soaps are generally prepared from :
- a) Linseed oil b) Coconut oil 444. Which of the following is not a surfactant :

a)
$$CH_2(CH_2)_{15}$$
 H_3 H_3 CH_3Br

b) $CH_3(CH_2)_{14}CH_2NH_2$

- c) $CH_3(CH_2)_{16}CH_2OSO_2^-Na^+$
- d) Decyl pyridinium chloride
- 445. A catalyst for a reversible reaction is a substance that :
 - a) Supplies energy to the reaction
 - b) Decreases the time to reach equilibrium
 - c) Increases the equilibrium concentration of the products
 - d) Change the equilibrium constant of the reaction
- 446. In a reversible reaction, a catalyst
 - a) Increases the rate of forward reaction only
 - b) Increases the rate of forward reaction and decreases that of backward reaction
 - c) Increases the rate of forward and backward reaction equally
 - d) Increases the rate of forward reaction to great extent than that of backward reaction
- 447. The concentration of electrolyte required to coagulate a given amount of As₂S₃ sol is minimum in the case of
- a) Magnesium nitrate b) Potassium nitrate c) Potassium sulphate d) Aluminium nitrate 448. Paste is
 - a) Suspension of solid in a liquid
 - c) Colloidal solution of a solid in solid
 - 449. Which of the following is not an emulsion?
 - a) Butter b) Ice cream
 - 450. Emulsifying agents generally used are :
 - a) Ions with negative charge
 - b) Surface active agents
 - c) Ions with a positive charge
 - d) Lyophobic substances
- 451. The catalyst used in lead chamber process of H_2SO_4 manufacture is
 - a) Platinum
 - c) Nickel

b) Oxides of nitrogend) Vanadium compounds

d) None of the above

c) Milk

- 452. Hydrolysis of sucrose $(C_{12}H_{22}O_{11})$ by invertase gives : a) Glucose b) Fructose c
 - c) Both(a) and (b) d) None of these

b) Mechanical dispersion of a solid in liquid

d) Clouds

- $453. \ Which one of the following characteristics is not correct for physical adsorption?$
 - a) Adsorption on solids is reversible
 - b) Adsorption increases with increase in temperature
 - c) Adsorption is spontaneous
 - d) Both enthalpy and entropy of adsorption are negative

c) Groundnut oil

454. Which of the following curves do not correspond to adsorption isotherms?

466. Which one of the following methods, does not give the sol?

a) Electrophoresis b) Peptization

c) Electrodispersion

d) Solvent exchange

SURFACE CHEMISTRY

CHEMISTRY

						ANS	W	ER K	EY						
1)	d	2)	b	3)	b	4)	b	169)	С	170)	а	171)	С	172)	а
5)	С	6)	а	7)	а	8)	b	173)	d	174)	b	175)	а	176)	а
9)	b	10)	С	11)	d	12)	d	177)	а	178)	а	179)	c	180)	С
13)	С	14)	а	15)	d	16)	b	181)	а	182)	d	183)	d	184)	а
17)	d	18)	а	19)	а	20)	С	185)	С	186)	b	187)	a	188)	а
21)	b	22)	b	23)	d	24)	а	189)	d	190)	b	191)	С	192)	b
25)	b	26)	d	27)	b	28)	а	193)	d	194)	d	195)	С	196)	С
29)	b	30)	d	31)	а	32)	С	197)	а	198)	b	199)	С	200)	а
33)	d	34)	d	35)	а	36)	b	201)	d	202)	d	203)	С	204)	b
37)	d	38)	С	39)	С	40)	b	205)	С	206)	С	207)	а	208)	b
41)	b	42)	С	43)	b	44)	b	209)	С	210)	а	211)	b	212)	а
45)	С	46)	b	47)	b	48)	b	213)	a	214)	а	215)	b	216)	С
49)	С	50)	b	51)	b	52)	С	217)	a	218)	d	219)	b	220)	b
53)	d	54)	С	55)	С	56)	d	221)	С	222)	d	223)	С	224)	С
57)	С	58)	b	59)	а	60)	С	225)	С	226)	а	227)	С	228)	С
61)	b	62)	С	63)	b	64)	С	229)	b	230)	а	231)	а	232)	b
65)	а	66)	d	67)	d	68)	a	233)	d	234)	а	235)	а	236)	а
69)	С	70)	С	71)	С	72)	а	237)	d	238)	а	239)	С	240)	С
73)	а	74)	С	75)	b	76)	a	241)	b	242)	b	243)	С	244)	а
77)	b	78)	С	79)	d	80)	С	245)	b	246)	b	247)	d	248)	d
81)	С	82)	а	83)	b	84)	d	249)	b	250)	С	251)	d	252)	а
85)	С	86)	d	87)	a	88)	d	253)	а	254)	b	255)	d	256)	b
89)	С	90)	b	91)	d	92)	d	257)	а	258)	С	259)	а	260)	d
93)	а	94)	d	95)	b	96)	b	261)	d	262)	d	263)	b	264)	d
97)	С	98)	a	99)	d	100)	b	265)	d	266)	С	267)	d	268)	d
101)	С	102)	С	103)	а	104)	d	269)	а	270)	b	271)	С	272)	С
105)	а	106)	b	107)	d	108)	b	273)	С	274)	d	275)	а	276)	d
109)	b	110)	d	111)	d	112)	а	277)	С	278)	а	279)	d	280)	С
113)	b	114)	а	115)	а	116)	b	281)	а	282)	а	283)	b	284)	С
117)	d	118)	b	119)	С	120)	b	285)	b	286)	С	287)	b	288)	d
121)	С	122)	а	123)	С	124)	С	289)	b	290)	С	291)	С	292)	d
125)	a	126)	а	127)	d	128)	d	293)	a	294)	b	295)	b	296)	С
129)	d	130)	b	131)	а	132)	b	297)	a	298)	а	299)	С	300)	b
133)	а	134)	b	135)	С	136)	d	301)	d	302)	С	303)	b	304)	С
137)	а	138)	d	139)	d	140)	d	305)	d	306)	С	307)	b	308)	а
141)	b	142)	b	143)	b	144)	b	309)	a	310)	b	311)	С	312)	d
145)	а	146)	b	147)	b	148)	С	313)	d	314)	d	315)	d	316)	b
149)	C	150)	d	151)	b	152)	d	317)	С	318)	d	319)	d	320)	d
153)	b	154)	a	155)	b	156)	d	321)	a	322)	а	323)	а	324)	а
157)	С	158)	d	159)	d	160)	C	325)	С	326)	b	327)	b	328)	С
161)	b	162)	a	163)	d	164)	b	329)	a	330)	b	331)	а	332)	С
165)	d	166)	d	167)	а	168)	С	333)	d	334)	d	335)	b	336)	d

337)	d	338)	С	339)	а	340)	c 405)	С	406)	С	407)	d	408)	d
341)	b	342)	b	343)	С	344)	b 409)	а	410)	С	, 411)	С	412)	d
345)	а	346)	С	347)	С	348)	a 413)	b	414)	С	415)	b	416)	b
349)	d	350)	b	351)	d	352)	d 417)	b	418)	С	419)	b	420)	С
353)	а	354)	d	355)	d	356)	c 421)	С	422)	С	423)	b	424)	b
357)	С	358)	С	359)	а	360)	c 425)	а	426)	d	427)	а	428)	d
361)	а	362)	b	363)	С	364)	c 429)	С	430)	а	431)	С	432)	d
365)	С	366)	b	367)	С	368)	c 433)	а	434)	а	435)	b	436)	а
369)	С	370)	С	371)	d	372)	d 437)	b	438)	С	439)	С	440)	С
373)	b	374)	С	375)	а	376)	a 441)	b	442)	b	443)	а	444)	b
377)	а	378)	С	379)	d	380)	a 445)	b	446)	С	447)	d	448)	а
381)	d	382)	b	383)	d	384)	c 449)	d	450)	b	451)	b	452)	С
385)	b	386)	С	387)	b	388)	a 453)	b	454)	С	455)	С	456)	а
389)	b	390)	a	391)	a	392)	b 457)	d	458)	d	459)	C	460)	С
393)	a	394)	b	395)	b	396)	d 461)	C	462)	d	463)	d	464)	a
397J 401)	a d	398J 402)	C d	399J 402)	C	400) 404)	D 465)	a	400J	a	X			
401)	u	404J	u	403J	d	404J	a			1	4			
									Θ_{λ}					
								X7						
							$\mathbf{x} \mathbf{X}$							
							\mathcal{N}							
						$\langle x, y \rangle$								
			X											
	~													
	\mathcal{T}	7												
C	~													
)														

SURFACE CHEMISTRY

CHEMISTRY

	: HINTS AND	SO	LUTIONS :
1	(d)		Colloidal systems are heterogeneous, <i>i.e.</i> , $P \ge$
	$\log \frac{x}{K} = \log K + \frac{1}{2} \log P$; this is freundlich		2, <i>i. e.</i> , dispersion of one phase in other.
	isotherm	16	(b)
	Thus, slope = $1/n$.		Formalin acts as preservative for milk.
2	(b)	17	(d)
	Catalyst does not make the reaction more		$Fe_4[Fe(CN)_6]_3$ is Prussian blue sol of +ve charge.
	exothermic or endothermic.	18	(a)
3	(b)		Because of larger surface area in colloidal state,
	The no. of particles in sol form is less than true	10	adsorption is more, also it acts as germ killer.
	solution.	19	(a)
4	(b)		I he substance which gets adsorbed on the surface
	Inorganic sols are usually hydrophobic in nature.		adsorption occurs is called adsorbant
5	(c)	20	(c)
	$2SO_{2}(g) + O_{2} \xrightarrow{V_{2}O_{5}} 2SO_{2}(g)$	20	Physical adsorption decreases with increase in
	solid solid	S.	temperature, whereas chemisorptions first
	In this reaction reactants as well as the catalyst		increase and then decreases with increase in
	are present in more than one phase hence it is an		temperature.
	example of heterogeneous catalysis.	21	(b)
6	(a)		When temperature increases, the adsorbed
	$NH_2CONH_2 \xrightarrow{Orease} NH_3 + CO_2$		molecules get energy and desorption starts
7	(a)		increasing, therefore adsorption decreases with
	Adsorption is an exothermic process. Thus		increase in temperature
	according to Le-chatelier principle the amount of	22	
	substance adsorbed should increase with		For chemisorption, high temperature is
0	decrease in temperature		On the other hand low temperature is favourable
8	(D) Enoundlish adaptation is therm reaction is		for physisorption so it decreases with rise in
	x		temperature
	$\frac{1}{m} = kp^n$	23	(d)
9	(b)		Ferric hydroxide sol is positively charged sol. It is
	In lead nitrate, lead is present as Pb ²⁺ ion. While		coagulated by negative ions. Larger the charge on
~	there is only on negative ion per mole of colloid.		anion, larger is its coagulating power or smaller is
Ċ	Hence, one mole Pb ²⁺ can coagulate two moles of		its flocculation value. In $K_4[Fe(CN)_6]$, the anion
	[AgI]I ⁻ .		$[Fe(CN)_6]^{4-}$ has highest charge, therefore
11	(d) CMC accura only above Kraft's terms eventure		K_4 [Fe(CN) ₆] is most effective in coagulating
12	CMC occurs only above Krait's temperature.	24	$Fe(OH)_3$ sol.
13	Washing soans are obtained by ground put oils	24	(a)
14	(a)		formation appears
	$4NH + 50 \rightarrow 4NO + 6H 0$		iormation appears
15	$4Nn_3 + 5 O_2 \rightarrow 4NO + On_2O$	25	(b)
10	(u)	l	

Litmus is adsorbed by charcoal.

26 **(d)**

 $CO(g) + 2H_2(g) \xrightarrow{Cu,ZnO-Cr_2O_3(s)} CH_3OH(l)$ In this reaction, reactants and catalyst are in different physical states, hence it is an example of heterogeneous catalysis.

27 **(b)**

Adsorption is an exothermic process and hence, ΔH is negative for adsorption. On the other hand the molecules of the adsorbate are held on the surface of the adsorbent and hence, they have lesser tendency to move about freely. In other words entropy decreases *i.e.*, ΔS is negative. According to Gibbs-Helmholtz equation, $\Delta G =$ $\Delta H - T.\Delta S$

Thus, for the process of adsorption to occur ΔG must be negative. Hence, for adsorption $\Delta G < 0$: $\Delta S < 0$: $\Delta H < 0$

28 **(a)**

A homogeneous solution has number of phase = 1.

29 **(b)**

Among Na⁺, K⁺, Mg²⁺, ions, Mg²⁺ ion has maximum valency, thus it will be the most effective in the coagulation of gold sol

30 **(d)**

Activated charcoal is used for decolourizing and deodorizing sugar solution during the process of manufacture of sugar due to its adsorbing property.

31 **(a)**

The phenomenon of the precipitation of a colloidal solution by the addition of the excess of an electrolyte is called coagulation. When oppositely charged sols are mixed in almost equal proportions, their charges are neutralised. So, statement (a) is wrong.

32 **(c)**

The size of colloidal particles is in the range of 100 nm to 1nm or 10^{-5} cm to 10^{-7} cm.

33 **(d)**

Note that pollen grains also move irregularly in 49 water, *i.e.*, lighter and smaller suspended particles. In true solution of sugar, the sugar particles are also in motion in solution.

34 **(d)**

It involves sorption. Both process of adsorption and absorption taking place simultaneously are called sorption.

35 **(a)**

Physical adsorption occurs at low temperature while chemisorption occurs at higher temperature

37 **(d)**

The negatively charged carbon particles in air (smoke) are moved towards anode due to cataphoresis, where they are neutralized to left free air. The process is used to control air pollution.

40 **(b)**

Enzymes decrease the activation energy to greater extent.

41 **(b)**

At critical micelle concentration, the surfactant molecules associate to form micelles

42 **(c)**

In case of chemisorption, adsorption only monolayered. All other option are correct about chemisorption.

43 **(b)**

Lyophobic sols are irreversible. Rest all points signify for lyophilic sols.

(b)

The size of the particles order in three states is : True solution < colloidal solution < suspension

45 **(c)**

Emulsions can be broken to get the constituent liquids by heating, freezing, centrifuging or by addition of appreciable amount of electrolytes. They are also broken by destroying the emulsifying agent

46 **(b)**

Physical adsorption is non-directional, reversible, multilayers exothermic process where adsorbent molecules are held on surface of adsorbent by physical forces such as van der Waals' forces.

47 **(b)**

Gelatin is protective colloid.

48 **(b)**

Blood is negatively charged emulsion.

(c)

The plot of temperature *versus* pressure for a given amount of adsorption is called adsorption isostere

50 **(b)**

Scattering of blue light is maximum because scattering $\propto \frac{1}{14}$.

51 **(b)**

	An application in paints industry.		These are the characteristics of zeolites.
52	(c)	68	(a)
	The dispersal of a precipitated material into		It is definition of adsorption.
	colloidal solution by the action of an electrolyte in	69	(c)
	solution is called peptisation and the electrolyte is		A colloidal solution cannot form when dispersion
	called a peptising agent.		medium as well as dispersion medium both are
53	(d)		gas
00	Colloidal state nossesses lower surface tension or		Bus
	increase in surface area. This provides sel to	70	(c)
	increase in surface area. This provides sol to		The adsorption of a gas is directly proportional to
	acquire peculiar properties, e.g., more ausorption		the pressure of the gas.
- 4	power.	71	(c)
54	(C)		When one of the products of a reaction acts as a
	Al ³⁺ is very good coagulating agent for –ve sol		catalyst for the reaction the nhenomenon is
	(muddy water).		known as auto catalysis When KMnO, solution is
55	(c)		added to evaluate and the disappearance of piply
	Liquid in solid are known as gels.		added to oxalic acid, the disappearance of plik
56	(d)		colour is slow at start but as soon as some M_{2}^{2+1}
	In physical adsorption, gas molecules over the		Mn ² for are formed the disappearance of colour
	surface of adsorbent are held by weak van der		becomes fast.
	Waals' forces		$2MnO_4^- + 5C_2O_4^- + 16H^+$
57	(c)		$\rightarrow 2\mathrm{Mn}^{2+}10\mathrm{CO}_2 + 8\mathrm{H}_2\mathrm{O}$
	Gold no. is to be reported in mg.		(catalyst)
58	(b)		or $2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow 2MnSO_4 +$
	It is the definition of rule.	$\boldsymbol{\mathcal{S}}$	$K_2SO_4 + 8H_2O + 10CO_2$
59	(a)		(catalyst)
	Catalyst forms an intermediate with reactant and		$Mn^{2+}ion$ (orMnSO ₄)acts as catalyst in this
	thus, rate of reaction for intermediate formation	Y	reaction.
	depends upon concentration of catalyst.	72	(a)
60	(c)		Lesser valence of Br^- is responsible for least
	When a catalyst is present in finely divided state		effective nature.
	greater adsorption takes place hence its efficiency	73	(a)
	increases		A colloidal system in which gas bubbles are
	increases		dispersed in a liquid is known as foam.
62	(c)	74	(c)
	Catalysis is a process where the rate of a chemical		Hydroph ilic sols have higher viscosity than
	reaction alters due to mere presence of foreign		medium.
	substance. In thermite process, no other	75	(b)
	substance present except the reacting substances		Catalyst never changes the equilibrium constant.
63	(b)	76	(a)
	Whipped cream is gas in liquid system.		The simplest way to check whether a system is
64	(c)		colloid or not is Tyndall effect because it requires
	Allov is a mixture of two or more elements which		to keen colloid in nath of light Rest of the
C	has metallic properties. Brass is an alloy of Cu and		methods are complicated than this method
	Zn. Allov is an example of solid sol. Some kinds of	77	(h)
	steel are alloys of Fe and C and can be considered	<i>'</i> '	Micelles show lower colligative properties as that
	as solid solutions in which carbon atoms are		of common colloidal solution
	located in some of the space between iron atoms		
65	(a)	78	(c)
05	(*) Langmuir's adsorption is monomolecular <i>in</i> the		Equation,
	gas adsorbed forms unimolecular layer		
66	(d)		$CH_3COOH(l) +$
00	(u)		

	$C_2H_5OH(l) \xrightarrow{H^+} CH_3COOC_2H_5(l) + H_2O(l)$	91	in the range 10Å to 2000 Å. (d)
	represents the homogeneous catalysis as all reactants and catalyst are in liquid state		If x/m is the mass of adsorbate per unit mass of adsorbent, p is the pressure of adsorbate gas and
79	(d) The micelles formed by detergents in water solubilize the oily stain forming emulsion with it		<i>a</i> and <i>b</i> are constants, then Langmuir adsorption isotherm is given as $\frac{x}{a} = \frac{ap}{a}$
80	(c) Zsigmondy designed ultramicroscope based on scattering of light by sol particles.		m 1 + bp or $\frac{1}{x/m} = \frac{1+bp}{ap}$ 1 1 b
81	(c) Follow the concept of promoters.	92	$\frac{1}{x/m} = \frac{1}{ap} + \frac{1}{a}$ (d)
82	(a) The substance which is added to stabilize the emulsion is known as emulsifier or emulsifying agent. Emulsions are two types –	93	It is definition of tanning of leather. (a) In a chemical reaction the catalyst decreases the activation energy of reaction and hence, increases the rate of reaction. (d)
83	(i) Water in oil (ii) Oil in water (b) $C_{15}H_{31}COO^-Na^+$ is an anionic surfactants	05	Addition of electrolyte brings in coagulation of sol.
84	(d) According to Freundlich adsorption isotherm, $\log \frac{x}{m} = \log k + \frac{1}{n} \log p$ It is clear from above equation that slope is equal	95	 (b) Strong intermolecular van der Waals' forces operates among molecules. (b) When one of the products acts as a catalyst, it is
	to $\frac{1}{n}$	07	known as autocatalysis
85	(c) It is the definition of promoter or in other words	97 98	Larger is surface area, more are active centres. (a)
86	(d) Since for spontaneous and exothermic process $\Delta G = -\text{ve}, \ \Delta H = -\text{ve}$ at all temperatures, therefore from $\Delta G = \Delta H - T\Delta S, \Delta S$ should be $-\text{ve}$.	99 100	The definition of Zeta potential. (d) Gold number is a scale to express protecting power of lyophilic colloidal sol. (b)
87	(a) Freundlich adsorption isotherm is $x/m = kp^{1/n}$ Here <i>n k</i> and <i>n</i> are constant	101	Physical adsorption decrease with increasing temperature or rate of physical adsorption increase with decreasing temperature. (c)
	Note Freundlich isotherm is not applicable at high		The size of colloidal particle is 0.1µ-1mµ or 100 nm – 1 nm.
88	(d) $R(NH_3)_3 Br \rightarrow R(NH_3)_3^+ + Br^-$ Alkyl trimethyl ammonium ions aggregates to	102 103	(c)It involves motion of dispersed phase.(a)
89	form cationic micelles		The phenomenon of the scattering of light by the particles is called Tyndall effect
0,	A catalyst increases the rate of the reaction by decreasing its activation energy.	104	(d) Each one possesses two liquid phases, one
90	(b) Sol particles, <i>i.e.</i> , particles of dispersed phase lie	105	dispersed in other; however they have low m.p. (a)

The colour of KMnO ₄ disappears slowly in the	process and usually occurs at low temperature.
beginning and then readily during its reaction	The value of adsorption enthalpy is low in this
with oxalic acid, due to formation of Mn^{2+} ions	process. It forms multimolecular lavers. No
which acts as auto catalyst	activation energy is required in this process
$2KM_{PO} + 5H C O + 2H SO$	110 (c)
$2KMIO_4 + 3I_2C_2O_4 + 3I_2SO_4$	Follow we charge of a costing set charge
$\rightarrow K_2 S O_4 + 10 C O_2 + 2 M n S O_4$	Follow mechanism of negative catalysis.
$+8H_{2}O$	120 (b)
106 (b)	Sols or colloidal solutions scatter light and are
Lyophilic sols are more stable than lyophobic sols	passed through ordinary filter paper.
due to the fact that lyophilic colloids are	121 (c)
extensively solvated.	Reactant + Catalyst \rightarrow Adsorbed activated
107 (d)	$complex \rightarrow Product + Catalyst$
These are characteristics of hydrophilic sols.	The intermediate is formed as a result of physical
108 (h)	or chemical adsorption.
Soon in water is called sol (solid in water)	122 (a)
100 (b)	Transitional motals, showing variable valency in
Gold number is associated with protective	finely divided state mostly acts as catalyst
colloids.	123 (c)
110 (d)	Due to cimilar structure the adaptition becomes
According to Hardy-Schulze rule, coagulating	Due to similar structure, the ausorption becomes
power of ions is directly proportional to charge on	more enective and the neutralization of charge
ion	coagulates clouds to bring in rain.
\therefore Fe(OH) ₃ is positively charged colloid.	126 (a)
\therefore It will be coagulated by anion.	Colloidal state has large surface area and provides
(a) KCN – K^+ and CN^-	more effective adsorption of medicine to bring in
(b)Ba(L = Ba^{2+} and Cl^{-}	better results.
$(b) \text{ bach}_2 \text{ ba } \text{ and } \text{ Cl}^-$	127 (d)
$(C) \text{Nacl} = \text{Na} \text{allu Cl} \\ (d) \text{Macl} = (DQ) = Mac^2 + and DQ^3 = (DQ)$	Anhydrous AlCl ₃ is used as a catalyst in Friedel-
$(a)Mg_3(PO_4)_2 - Mg^2$ and PO_4^2	Craft's reaction
$: PO_4^{3-}$ has highest charge among the given ions	128 (d)
anions.	Casein is the important protein of milk
\therefore Mg ₃ (PO ₄) ₂ is the most effective in coagulation	120 (d)
of Fe(OH) ₃ sol.	129 (u) Chamica antica is strong on them alterial
112 (a)	Chemisorption is stronger than physical
Due to maximum surface area in colloidal state.	adsorption and give rise to evolution of more
114 (a)	heat.
The colloidion solution is used to prepare	130 (b)
ultrafilters. It is a solution of 5% cellulose nitrate	Easily liquifiable gases (like SO_2 , NH_3 , CO_2 etc.)
in alcohol-other	are adsorbed up to greater extent than the gases
	like O_2 , H_2 , N_2 , He etc which liquify with great
	difficulty.
Follow theories of catalysis.	131 (a)
116 (b)	As S solution is negatively charged colloidal
Solvent loving sols are lyophilic or in other words	solution A positive ion will congulate it As
dispersed phase has more affinity for solvent.	solution. A positive for win coagulate it. As
117 (d)	toagulating power & effective charge of for.
Adsorption and occlusion have same meaning.	nence, Al ion will have highest coagulating
118 (b)	power.
When the particles of the adsorbate are held to	132 (b)
the surface of the adsorbent by the physical	It is the definition of dialysis.
forces the adsorption is called physical	133 (a)
adsorption or physicarption. It is a reversible	Dust storm is solid dispersed in gas, a class (solid
מעזטו דעוטו טי דוואטוט דעוטוג ונ וא מ ובעבו אוטופ	aerosol) of colloidal system.

134 (b) $4NH_3 + 5O_2 \xrightarrow{Pt} 4NO + 6H_2O$; Pt is catalyst. 135 (c) Tyndall effect would be observed in colloidal solution. 136 (d) Freundlich adsorption isotherm equation is $\frac{x}{m} = kp^{1/n}$ On taking log both sides $\log \frac{x}{m} = \log k + \frac{1}{n} \log p$ $\log \frac{x}{m} = \log 10 + \frac{1}{n} \log 0.5$ $(\because \text{Slope} = \frac{1}{n} = \tan\theta = \tan 45^\circ = 1)$ $\log \frac{x}{m} = 1 + \frac{1}{1}\log(5 \times 10^{-1})$ $\log \frac{x}{m} = 1 + 0.6990 - 1$ =0.6990 $\frac{x}{m} = 5.00$ =5 g

137 (a)

When a coagulated substance (ie, colloidal 151 (b) solution) is treated with a suitable electrolyte, it again changes to a colloidal solution, this is known as peptization

138 (d)

- All are same processes.
- 139 (d)

Enzymes are biological catalys

140 (d)

-		
Colloid	Dispersed	Dispersion
	phase	medium
Milk	Liquid	Liquid
Foam	Gas	Liquid
Mist	Liquid	Gas
Vegetable	Liquid	Liquid
oil		

: Foam is colloid which has liquid dispersed in gas.

141 (b)

Gold is a lyophobic sol.

142 **(b)**

The reaction in contact process is

$$2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$$

143 **(b)**

$$2SO_2 + O_2 \xrightarrow{\text{NO}} 2SO_3$$
; NO is catalyst.

144 (b)

The sol particles at isoelectric point do not show electrophoresis.

145 (a)

Langmuir adsorption isotherm is valid for (chemical monolayer adsorption). Having adsorption sites at active centres, *i.e.*, free valencies which have equivalent ability to adsorb the particles.

147 (b)

Adsorption is an exothermic process, thus ΔH is negative (i.e., $\Delta H < 0$). Moreover, adsorption results in more ordered arrangement of molecules, thus entropy decreases (*i.e.*, $\Delta S < 0$). $\Delta G = \Delta H - T \Delta S$

Hence, low temperature favours the reaction. 149 (c)

Cow milk is stabilized by casein.

150 (d)

Normal optimum temperature of enzymes is between 25°C to 40°C hence (a) is false. Similarly, (b) and (c) are also false. Enzymes have well defined active sites and their actions are specific in nature.

If BaSO₄ is not used, the reaction will give alcohol. BaSO₄ retards the activity of Pd.

$$R \text{COCl} \xrightarrow{\text{H}_2} R \text{CHO}$$

$$RCOCl \xrightarrow{H_2} RCHO \longrightarrow RCH_2OH$$

152 (d)

Rest all are characteristics of sol.

153 (b)

Bredig arc method is used to prepare the metal sols which do not react with water even at high temperature.

154 (a)

$$\begin{array}{ccc} CH_2OOCR & CH_2OH \\ | & | \\ CHOOCR + 3 NaOH \\ | & (Alkali) \\ CH_2OOCR & CH_2OH \\ (Fat) & (Glycerol) \end{array}$$

is saponification.

155 (b)

Colloidal state involves dispersion state, an intermediate state in between true solution and suspension state.

Milk ———→ Curd

157 (c)

Easily liquefiable gases like SO₂, NH₃, CO₂ are adsorbed to a greater extent than the elemental gases like N_2 , O_2 , H_2

158 (d)

Follow theories of catalysis –The modern theory.

159 (d)

On passing a beam of light through a colloidal solution, the colloidal particles adsorb light energy and then emit it in all the possible directions. This phenomenon is called scattering of light or Tyndall effect.

Note: Tyndall effect is not observed in true solutions.

160 (c)

The pH at which the colloidal particles are neither positive nor negative is known as isoelectric point of the colloid

161 **(b)**

Homogenous catalysisWhenthe reactants and catalyst are in the same phase, the catalysis is known as homogeneous catalysis.

Example
$$2\text{KClO}_3(s) \xrightarrow{\text{MnO}_2(s)} 2\text{KCl}(s) + 3\text{O}_2(g)$$

162 (a)

$$(C_6H_{12}O_6) \xrightarrow{\text{Touching}} C_2H_5OH$$

163 (d)

The solid in liquid system sets on meaning for the formation of liquid in solid system, i.e., gel formation.

164 **(b)**

Because of larger surface area in colloidal state, 175 (a) adsorption is more, also it acts as germ killer.

165 (d)

Zeigler-Natta catalyst is formed by the action of $(C_2H_5)_3$ Al and TiCl₄. The active species is Ti^{III} as $(C_2H_5)_3$ Al can reduce TiCl₄ to TiCl₃. Ti^{III} has one active site vacant and thus accommodates one alkyl group.

166 (d)

When a liquid (dispersed phase) is dispersed in solid (dispersion medium), the colloidal solution is termed as gel.

167 (a)

During the manufacturing of HNO₃ from ammonia, platinum is used as a catalyst for the oxidation of ammonia to nitric oxide

169 (c)

When we plot a graph between $\log(x/m)$ and \log *p*, a straight line with positive slope will be

obtained. This graph represents the Freundlich adsorption isotherm.

$$\log \frac{x}{m} + \frac{1}{\log P} + \frac{1}{\log P}$$

170 (a)

ZSM-5 acts as an effective catalyst to convert alcohol to alkanes (petrol).

171 (c)

Both are antiknock compounds.

172 (a)

 $Fe(OH)_3$ is a positively charged sol, thus coagulated by negative ion (anion). Smaller the charge on anion, smaller is its coagulating power or higher is its flocculation value.

(a)KBr \rightarrow K⁺ + Br⁻ (b) $K_{a}SO_{4} \rightarrow 2K^{+} + SO_{4}^{2-}$

$$U_2 S U_4 \rightarrow 2K + S U_4$$

 $(c)K_2CrO_4 \rightarrow 2K^+ + CrO_4^{2-}$

$$(d)K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4^-}$$

∴ Br[−]has smaller charge.

. KBr is least effective in coagulating Fe(OH)₃ sol.

173 (d)

All these are standard facts for given graph.

174 (b)

The substances that stabilise emulsions are called emulsifiers. Agar, gum and soap all were emulsifier while milk is an emulsion, not an emulsifier.

Langmuir's adsorption isotherm deals in terms of chemical adsorption which fails at high pressure because, the mass adsorbed reaches a constant value when the adsorbed surface is completely covered by a unimolecular layer of gases.

176 **(a)**

To catalyse the digestion process.

177 (a)

Flocculation value or coagulation value is the amount of electrolyte in millimole to coagulate one lire of a colloidal solution.

178 (a)

In heterogeneous catalysis the reactants and the catalyst are in different phases.

$$N_2(g)+3H_2(g) \xrightarrow{Fe(S), Mo} 2NH_3(g)$$

In the Haber's process the reactants are in gaseous phase while catalyst (Fe) in solid phase.

170	Hence, it is an example of heterogeneous catalysis.	100	effective coagulating agent.
1/9	(C) Cases which have high critical temperature have	196	(C) Precious stones are solid in solid sol
	strong van der Waals' forces of attraction and	197	(a)
	hence, are adsorbed to a greater extent.	177	Size of colloidal particles $=1$ to 100 nm (say 10
180	(c)		nm).
	Enzyme catalysed reactions are highly specific,		$V = \frac{4}{\pi r^3} - \frac{4}{\pi (10)^3}$
	<i>i.e</i> , one enzyme catalyses one reaction.		$v_c - \frac{1}{3}n - \frac{1}{3}n(10)$
181	(a)		Size of true solution particles $\approx 1 \text{ nm}$
	It is an scale to represent protective power of		$V_S = \frac{4}{3}\pi(1)^3$
104	lyophilic sols.		Thus $\frac{v_c}{v_c} = 10^3$
184	(a) Water molecules are held up in solid coment	100	ch)
	particles to give gel formation.	198	(D) $V = \frac{4}{3\pi r^3} r^3 (10)^3$
185	(c)		$\frac{V_c}{V_s} = \frac{1/3R_c}{4/3\pi r_s^3} = \frac{V_c}{r_s^3} = \left(\frac{10}{1}\right) = 10^3$
	Tyndall effect is not observed in sugar solution	199	(c)
	because it is a true homogeneous solution.		The gold sol is obtained by the reduction of $AuCl_3$.
186	(b)		$2AuCl_3 + 3HCHO + 3H_2O$
	Enzymes are high molecular weight protein with		\rightarrow 2Au + 3HCOOH + 6HCL
	specific action	200	
187	(a)	200	Gold number of protective colloid is
	Multilayer adsorption occurs in physical		"Colloid in milligrams which when added to 10
	adsorption due to weak van der Waals' forces		mL of gold solution just prevents its coagulation
189	(d)		by 1mL of 10% NaCl solution."
	Catalyst never starts a chemical reaction, it only		Protective power $\propto \frac{1}{2}$
			gold number The gold number of starch is 25 because it has
190	(b)		verv low protective power.
	Contact process of H_2SO_4 requires Pt asbestos or	201	(d)
101	$V_2 O_5$ as catalyst for combination of SO_2 and O_2 .		Electrophoresis is movement of colloidal particles
191	(C) Flectrolysis is the technique by which electrolytic		under the influence of electric field.
	impurities can be removed. Hence, urea, being	202	(d)
	non-electrolyte cannot be removed by this		Lyophilic sols are self stabilizing because these
	nethod.		sols are reversible and are nightly hydrated in the
192	(b)	203	(c)
	The minimum energy barrier required to be		All these are liquid aerosol systems, <i>i.e.</i> , liquid
	crossed to bring in a chemical change is called		dispersed in gas.
102	(d)	204	(b)
193	Sol particles carry charge and thus move towards		Hydrolysis of ester catalysed by a proton is acid-
C	opposite electrodes under the influence of electric	0 0 -	base catalysis.
7	field and the phenomenon is known as	205	(C) An example of autocatalyzia
	cataphoresis or electrophoresis.	206	(c)
194	(d)	200	Freundlisch adsorption isotherm is
	More is the valence of effective ion, greater is its		$\frac{X}{M} = KP^{1/n}$
105	coagulating power. The Hardy-Schulze rule.		m^{-1}
192	(C) Sh. S. is an anionic sol, therefore ention of highest		If $P \to 0$; $n = 1$ $\frac{1}{m} = KP$
	valency (Al^{3+} in the present case) would be most		If <i>P</i> is high; $n = 0$ $\frac{\Lambda}{m} = KP^0$
	с г	1	110

Colloidal solution of gold is called purple of 221 (c) cassius

208 **(b)**

According to Freundlich equation,

$$\frac{X}{m} \propto p^{1/n} \operatorname{or} \frac{X}{m} = kp^{1/n}$$

or $\log \frac{X}{m} = \log kp^{1/n}$
or $\log \frac{X}{m} = \log k + \frac{1}{n} \log p$

209 **(c)**

CO gets adsorbed on active centres of Fe.

210 **(a)**

The conversion of freshly prepared suspension into colloid is known as peptisation and those substances which help for such a conversion are known as peptising agent.

211 **(b)**

The graph plotted between amount of substance adsorbed and on the given pressure at constant temperature is known as adsorption isotherm

212 **(a)**

Tyndall effect is shown by colloidal solution due to scattering of light by their particles.

213 **(a)**

The definition of negative catalyst.

214 (a)

Chlorophyll is a compound.

215 **(b)**

Dodecyl trimethyl ammonium chloride $C_{12}H_{25}(CH_3)_3NCl$ on dissolution forms $C_{12}H_{25}(CH_3)_3N^+$ and Cl^- ions. The former possesses hydrophilic $(-N^+)$ and hydrophobic $[C_{12}H_{25}(CH_3)_3^-]$ parts.

216 **(c)**

It is w/o type emulsion.

217 **(a)**

Colour of colloidal solution depends upon particle size. As the particles size increases, the colour of gold sol changes from red to blue and finally to golden.

218 **(d)**

In medical field, colloidal gold is used as tonic to raise vitality of human systems

219 **(b)**

It is the definition of thixotropy, a property of gel.

220 **(b)**

Catalyst in finely powdered state possesses larger surface area and more active centres and thus,

becomes more effective.

Higher the gold number, lesser will be the protective power of colloid.

222 **(d)**

Gold number is the amount of substance in milligram that is required to prevent coagulation of 10 cm^3 of gold sol by addition of 1 mL of 10% NaCl solution.

Convert 0.025 g into milligram = 25

 $0.025 \text{ g starch} = 0.025 \times 1000 = 25 \text{ mg}$

Thus, the gold number of starch = 25

223 **(c)**

50 mL of 1 M oxalic acid [(COOH)₂ .2H₂O] = 50 millimol

= 0.050 mol

$$= 0.050 \times 126 \text{ g}$$

 $= 6.3 \, \mathrm{g}$

50 mL of 0.5 M oxalic acid = 3.15 g \therefore Oxalic acid asorbed on 0.5 g charcoal = 6.3 - 3.15

= 3.15 g

∴ Amount of oxalic acid adsorbed per gram of charcoal = $\frac{3.19}{0.5} = 6.3$

224 **(c)**

Colloidal solutions are heterogeneous in nature.

225 (c) The scattering $\propto \frac{1}{\lambda^4}$. Thus, scattering of blue light (shorter wavelength) is more.

226 (a)

It is the definition of synerisis, a property of gel. 227 **(c)**

Solid aerosol involves solid dispersed in gas, *e*.g., smoke, storm, etc.

228 **(c)**

Negative colloid is coagulated by positive ion or *vice-versa*. Greater the valency of coagulating ion, greater will be coagulating ion, greater will be coagulating power.

$$(a)ZnSO_4 \rightarrow Zn^{2+} + SO_4^{2-}$$

 $(b)Na_3PO_4 \rightarrow 3Na^+ + PO_4^{3-}$

$$(c)AlCl_3 \rightarrow Al^{3+} + 3Cl^{-}$$

 $(d)K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4-}$

Since, in AlCl₃, the valency of positive ion (coagulation ion) is highest, it is the most

	powerful coagulating agent among the given to	246	Palmitate is an anion and not a macromolecule.
229	(h)	240	Soan solutions act as emulsifier to remove grease
	C_2 H ₋ OH acts as negative catalyst for oxidation of		<i>via</i> emulsification of grease in water.
	CHCl ₂ .	247	(d)
231	(a)		All the option are correct for Freundlich
	Catalyst affects only activation energy. It brings		adsorption isotherm at different pressures.
	down activation energy of reaction. Catalyst does		$\frac{x}{k} = kp^1$ (at low pressure)
	not affect equilibrium constant, reaction entropy		$\frac{m}{x} - km^0$ (at high processing)
	and reaction enthalpy.		$\frac{1}{m} - kp$ (at high pressure)
232	(b)		$\frac{1}{m} = kp^{1/n}$ (at intermediate pressure)
	The blue colour of sky is due to Tyndall effect <i>i.e.</i> ,	248	(d)
	the colloidal particles adsorb light, become self		Adsorption is an exothermic process <i>i.e.</i> , energy is
	luminous and then scatter light of different		released against van der Waals' force of attraction
	wavelengths in all possible directions.		(physisorptions).
233	(a)	240	Hence, ΔH is always negative.
	Egg albumin is organic sols and organic sols are	249	(D) The catalysts used are CuCl in Descen's process
224	(a)		NO in chamber process and Fe in Haber's process
234	In chemical adsorption unimolecular layer is	250	(c)
	formed over the surface of adsorbent		Enzymes are biological catalysts produced by
235	(a)		living cells which catalyze the biochemical
	Blood is purified by dialysis method		reactions in living organisms. Hydrolysis of urea
		S.	by urease (enzyme) is an example of biochemical
236			catalysis.
227	Berzelius used the term for the first time.		
237	(a) The sky looks blue due to scattering of light	-	H_2N — \ddot{C} — $NH_2 + H_2O$ $Urease > 2NH_3 + CO_2$
238	(a)	251	(d)
250	Fermentation of starch is enzyme catalysed	251	$V_{2}O_{5}(l) = 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 0 + 1 + 0 + 0$
	reaction,		Equation, $SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g)$ is
	(C H O) Diastase $C H O$		only example of heterogeneous catalysis
239	$(C_6 \Pi_{10} O_5)_n \longrightarrow C_{12} \Pi_{22} O_{11}$	252	(a)
237	The efficiency of a catalyst depends upon the size	202	Milk is an emulsion in which the particles (or
	of particles		globules) of liquid fats are dispersed in water.
		253	(a)
240	(c)		Protective power of colloid
	Adsorption of gases increases with pressure,		r <u>1</u>
244	decreases with temperature.		gold number
241	(b) $-F/BT$ 1 \cdot 1 \cdot 1 \cdot 1		\therefore Gelatin has lowest gold number among given
242	$k = Ae^{-E_a/M}$; higher is E_a , lesser is k .		choices.
242	()) Ni	254	\therefore Gelatin is best protective colloid.
	$Oils + H_2 \rightarrow Ghee$ (Insaturated) (Saturated)	254	(b)
243	(c)		$2 H N O_3 + 3 H_2 S \rightarrow 3 S + H_2 O + 2 N O$
- 10	$2H O(1)^{Pt(s)} 2H O(1) + O(c)$		This equation is used for the preparation of
	$2 \Pi_2 \cup_2(l) \longrightarrow 2 \Pi_2 \cup (l) + \cup_2(g)$ In this reaction reactants and catalyst are in		sulphur sol
	different phase hence it is an example of	255	
	heterogeneous catalysis.	255	(u) Each one brings in neutralization of sharess on cal
244	(a)		nactione of mgs in neuralization of charges on sol
			ירבים אונורט.

256 **(b)**

 $2SO_2(g) + O_2(g) \xrightarrow{Pt(s)} 2SO_3$; Phase for reactant + catalyst = 2;

Thus, heterogeneous.

257 **(a)**

Negatively charged sols require minimum amount of electrolyte having higher valence of cation.

258 **(c)**

The dispersed phase particles bear continuous collisions with dispersion medium to show irregular motion in sol state.

259 **(a)**

Freundlich adsorption isotherm is given as

$$\frac{x}{m} = kp^{1/n}$$
(at a particular pressure)

When
$$x = 1$$
, $\frac{x}{m} = kp$ (at low pressure)

When
$$n > 1$$
, $\frac{x}{m} = k$ (at high pressure)

260 **(d)**

Autocatalysis is a process in which one of the product behaves as a catalyst.

 $e. g., 2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4$ $\rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O_4$ $+ 10CO_2$

(acts as catalyst)

The pink colour of KMnO₄dissappears slowly on reaction with oxalic acid, but the rate of disappearance of colour fastens after sometime due to the formation of MnSO₄ which acts as autocatalyst for the reaction.

261 **(d)**

The action of enzyme in living system is to enhance the rate of biochemical reactions.

263 **(b)**

Catalyst shows exothermic adsorption of reactant molecules and thus, energy of activation is lowered.

265 (d)

In a, b, c anionic micelle is formed.

266 (c)

Colloidal solution is prepared by electrical dispersion, peptization and mechanical dispersion. It is not prepared by coagulation because coagulation is the phenomenon of the precipitation of colloidal solution by the addition of the electrolyte. 267 **(d)**

Volume of the gold dispersed in one litre water

$$= \frac{\text{mass}}{\text{density}} = \frac{1.9 \times 10^{-4} \text{g}}{19 \text{g cm}^{-3}}$$
$$= 1 \times 10^{-5} \text{cm}^{-3}$$

Radius of gold sol particle =10 nm

$$= 10 \times 10^{-9} \text{m} = 10 \times 10^{-7} \text{cm}$$

$$= \frac{1}{3}\pi r^{3}$$
$$= \frac{4}{3} \times \frac{22}{7} \times (10^{-6})^{3}$$
$$= 4.19 \times 10^{-18} \text{ cm}^{3}$$

Number of gold sol particle in 1×10^{-5} cm³

$$=\frac{1\times10^{-5}}{4.19\times10^{-18}}$$
$$=2.38\times10^{12}$$

Number of gold sol particle in one mm³

$$=\frac{2.38\times10^{12}}{10^6}$$
$$=2.38\times10^6$$

269 (a)

Usually poisons for human body are poison for catalysts.

270 **(b)**

If reactant + catalyst have P = 1 then homogeneous catalysis.

271 **(c)**

The reaction in solution phase (P = 1) is catalysed by H⁺.

272 **(c)**

Such a process involving oxidation of one substance in presence of other which would otherwise not been possible is called induced catalysis or better to say induced oxidation.

273 **(c)**

Detergents possess surface activity like surfactants as well as cleaning action.

274 **(d)**

When dispersed phase is gas and dispersion medium is solid the colloidal sol obtained is termed as solid foam

275 **(a)**

Lower is the value of gold number, more is its protecting power.

276 **(d)**

Due to dipole and van der Waals' forces of attraction.

277 **(c)**

Polyoxyethylene glycols and their derivatives are

	non-ionic detergents.		physically (temporary poisoning) or chemically
278	(a)		(permanent poisoning).
	Graph (a) represent correctly the action of	293	(a)
	catalysis		$\frac{x}{m} = P(\text{at constant } T) \text{ and } \frac{x}{m} \text{ decrease with } T \text{ at}$
279	(d)		constant <i>P</i> .
	Colloidal solution of $CuCl_2$ is not prepared by	294	(b)
	double decomposition method		Heterogeneous gases are adsorbed to greater
280	(c)		extent
	Hydrogenation of oils requires Ni as catalyst.	295	(b)
282	(a)		Fog is an example of aerosols <i>i.e.</i> , it is a colloidal
	Soaps, surfactants, polymers and finely divided		solution of liquid in gas, where liquid is dispersed
	metal oxides and hydroxides are emulsifiers.		phase and gas is dispersion medium.
283		296	(c)
	The phenomenon of change of colloidal state to		A catalyst increases the rate of forward and rate
	suspension state is called flocculation of colloidal		of backward reaction to attain equilibrium earlier.
	solution.	297	(a)
	According to Hardy-Schulze rule, the flocculating		Since ferric ions can coagulate negatively charged
	power of electrolyte increases with valency of ion		blood solution, therefore ferric chloride may be
204	or electrolyte.		applied to stop bleeding
204	(C) Organic cole are usually lyonhilic	200	
285	(h)	290	(a) The formation of colloid from suspension is called
205	A solid may be lyophilic or lyophobic		nentication
286	(c)	<i>C</i> .	The process of converting a precipitate
200	Adsorption theory involves adsorption of gas on		(suspension) into colloidal particles by adding
	solids.		suitable electrolyte is known as pentisation .
287		299	(c)
-	Transition metals are more effective catalyst on		Mist is liquid dispersed in gas.
	account of their larger surface area and half filled	300	(b)
	nature of penultimate <i>d</i> –subshells.		A catalyst alter the nature of chemical reaction by
288	(d)		lowering the activation energy of the reactants
	Emulsion are the colloidal solutions in which both		and products
	the dispersed phase and the dispersion medium	0.01	
	are liquids. A good example of an emulsion is milk	301	
	in which fat globules are dispersed in water.	202	These are different forms of Freundlich equation.
289	(b)	302	(C)
	$\mathrm{H_{3}PO_{4}},$ acetamide acts as negative catalyst for		Initially Pt asbestos was used. Now-a-days a
	decomposition of H_2O_2 .		relatively cheaper catalyst $v_2 O_5$ is used. Also it is not noisoned by CO and As O
290	(c)	303	(b) $100 \text{ poisoned by CO and } \text{As}_2\text{O}_3.$
	Zeolites are used to make soft water from hard	505	Adsorbent is the surface on which adsorption
	water as well as catalyst in petrochemical		occurs
C	industry due to their shape selective nature or	304	(f)
	activity because of different pore sizes and cavity		In Cottrell's precipitator, the charged particles are
201	sizes on their surface.		attracted towards the walls of precipitator, here
291	(b) Starch is an example of lyophilic (water loving)		they lose their charge and coagulate. Hence, the
	colloidal solution. Lyophilic colloids are those		basic principle of Cottrell's precipitator is the
	colloids which form colloidal solution in contact		neutralisation of charge on colloidal particles.
	with water.	305	(d)
292	(d)		Freundlich adsorption isotherm gives relationship
/	Poisoners are adsorbed on active centres either		between pressure and amount of substrate

adsorbed. $x/m = kp^{\frac{1}{2}}$ (where, $x/m =$ amount adsorbed, $p = \text{pressure}$) or $x = m, kp^{\frac{1}{2}}$ or $x/m = kp^{-n}$ \therefore All equations represent Freundlich adsorption isotherm. 306 (c) Butter is an w/o emulsion having fat dispersed in water. 307 (b) Peptisation is a process in which freshly prepared precipitate disintegrates into colloidal solution 308 (a) A negative catalyst is one which lowers the rate to fed in rate cation e_{x} (Addition of chlorify to great extent 309 (a) Gold no is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% KACI solution. Trues solution Particle size 10 (b) Suspension Colloidal solution which contains particles of intermediate size. The particles of a colloidal solution movement. 310 (b) Suspension Colloidal solution Trues solution Particle size 10 (c) Lyophilic property (<i>Le</i> ,Tyndall effect and Brownian movement). 312 (d) Gold number to 2.5×1000=250 313 (d) Sodium stearate is an example of associated colloidal solution if an day agoing to magnetice size is of the order of 1 to 100 nm. Suspension Colloidal solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement). 313 (d) Gold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloidat solution of mL of a gold sol an addition of fulligrams of a hydrophilic colloid that will just preven the coagulation of 10 mL of a gold sol an addition of the dispersion medium (Ho.0). Purther once precipitated, they do not form the colloidal solution fm $E_{2} + H_{2} h - 2HBr + S$ Sol 313 (d) Sodium stearate is an example of associated colloidi. Colloidal solution for example of associated colloidi. Solution of examples precipitate freize				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		adsorbed.		macromolecular colloids.
$\begin{array}{llllllllllllllllllllllllllllllllllll$		r/m - knn/m (where $r/m - m$	314	(d)
and the decay $P = Present(Y)$ or $x = m, kp^{\pi}$ \therefore All equations represent Freundlich adsorption isotherm. 306 (c) Butter is an w/o emulsion having fat dispersed water. 307 (b) Peptisation is a process in which freshly prepared procipitate disintegrates into colloidal solution 116 ₂ O ₂ prevents the decomposition of CHCl ₃ to great extent 309 (a) Gold nois the amount of lyophilic tim mg which just protect 10 mL gold sol against coagulation y 1 mL of 10% NaCl solution. It is a measure of protective power of kyophilic colloids. 310 (b) Suspension Colloidal solution Suspension Colloidal solution Trues solution Particles ize >100 am 1mm-100m < 1mm Colloidal solution is a heterogeneous solution which contains particles of intermédiate size. The particles ize so the order of 1 to 100 nm. Suspension Colloidal solution have diameters hetween 1 to 100 nm. Colloidal solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement). 311 (c) Gold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids colloidal solution. \therefore Gold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids colloidal solution. \therefore Gold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of experiment the congulation of 10 mL of a gold sol addition of m_{c} (CH) m_{c} (CH) (S) Subtur sol is prepared by the oxidation of H ₂ S by m_{c} (LT) (LT) (LT) (LT) Subture sol is prepared by the oxidation of H ₂ S by m_{c} (LT) (LT) (LT) (LT) (LT) m_{c} (LT) (LT) (LT) (LT) (LT) m_{c} (LT) (LT) (LT) (LT) m_{c} (LT) (LT) (LT) (LT) (LT) m_{c} (LT) (LT) (LT) (LT) m_{c} (LT) m_{c} (LT) m_{c} (LT) m_{c} (LT) m_{c} (LT) m_{c} (LT) m_{c} (LT)		amount adsorbed $n = \text{pressure}$		MnO_2 speeds up the reaction.
or $x = m. kp^{-n}$ All equations represent Freundlich adsorption isotherm. 306 (c) Butter is an w/o emulsion having fat dispersed in water. 307 (b) Peptisation is a process in which freshly prepared precipitate disintegrates into colloidal solution 308 (a) An egative catalyst is one which lowers the rate of chemical reaction. <i>eg.</i> Addition of chloroform to H ₂ O ₂ prevents the decomposition of CHCl ₃ to a great extent 309 (a) 309 (a) 309 (a) 309 (a) 309 (a) 309 (a) 309 (a) 309 (b) 309 (a) 309 (a) 309 (b) 309 (a) 309 (b) 309 (a) 309 (a) 309 (b) 309 (b) 309 (c) 309 (c) 300 (c) 301 (c) 302 (c) 303 (c) 304 (c) 305 (c) 305 (c) 305 (c) 305 (c) 305 (c) 305 (c) 306 (c) 307 (b) 308 (c) 308 (c) 309 (c) 300		$\frac{1}{2}$	316	(b)
 or x/m = kp⁻ⁿ. All equations represent Freundlich adsorption is otherm. 306 (c) Butter is an w/o emulsion having fat dispersed in water. 307 (b) Peptisation is a process in which freshly prepared precipitate disintegrates into colloidal solution 308 (a) An egative catalyst is one which lowers the rate of chemical reaction. <i>qc</i>. Addition of Child₃ to a great extent 309 (a) Gold no is the amount of lyophilic in m gwhich just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution much colloid a solution in a terrate size. The particle size 1 nor-100 nm Colloidal solution may the optical property (<i>Le</i>, Tyndal effect and Brownian movement). 311 (c) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. Cidd and maber = 0.25×1000=250 Cidd unmber is an example of associated colloid. Solution, fi a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a gold sol on addition of mL of 0 mL of a go		or $x = m. kp^n$		Blue colour of the sky and red colour of the red
All equations represent Freundlich adsorption isotherm. 306 (c) Butter is an w/o emulsion having fat dispersed proticities of dust in the atmosphere 317 (c) All (a) in Friedel-Crafts reaction acts as Lewis acid- to produce electrophile. 318 (d) Potassium stearate is an example of associated coloid or micelle. 319 (d) Coagulating power of an electrolyte for arsenioussulphide decreases as $AI^{3+} > Ba^{2+} > Na^{+}$. 320 (d) Coagulating power of an electrolyte for arsenioussulphide decreases as $AI^{3+} > Ba^{2+} > Na^{+}$. 320 (d) Coagulating power of an electrolyte for arsenioussulphide decreases as $AI^{3+} > Ba^{2+} > Na^{+}$. 320 (d) Coagulating power of an electrolyte for arsenioussulphide decreases as $AI^{3+} > Ba^{2+} > Na^{+}$. 321 (a) <i>R</i> = COONa has hydrophilic ($-COO^{-}$) and hydrophobic motites and thus, dispersion of $C_{e}II_{e}$ and water is possible. 310 (b) Suspension Colloidal solution True solution Particle size > 100 nm 1nm-100nm < 1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>e</i> _Tyndall effect and Brownian movement). 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. 312 (d) Solum searet is an example of associated colloids. Colloidal solution for spectrom 414 (d) Subpur sol is prepared by the oxidation of H ₂ S by Suphur sol is prepared by the oxidation of H ₂ S by Solution, Fe ⁴⁺ ions are preferentially adsorbed on Fe(OH), bartice. 313 (d) Solution, Fe ⁴⁺ ions are preferentially adsorbed on Fe(OH), bartice. 314 (d) Solution, Fe ⁴⁺ ions are preferentially adsorbed on Fe(OH), bartice. 315 (d) Solution, Fe ⁴⁺ ions are preferentially adsorbed on Fe(OH), bartice. 316 (d) 317 (d) 317 (d) 318 (d) 319 (d) 319 (d) 310 (d) 310 (d)		or $x/m = kp^{-n}$		sun sets are due to scattering of light from
130113011311(c)303303304317(c)304307(b)Peptisation is a process in which freshly prepared precipitate disintegrates into colloidal solution318(d)308(a)A negative catalyst is one which lowers the rate o chemical reaction. <i>eg.</i> Addition of chioroform to H ₂ O ₂ prevents the decomposition of CHCl ₃ to a great extent319(d)309(a)Coagulating power of an electrolyte for arsenioussulphide decreases as $AB^{3+} > Ba^{2+} > Na^{+}$.309(a)Colloid no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids.310310(b)True solutionTrue solution310(b)True solution311(c)Colloidal solution is a hetrogeneous solution which contains particles of intermediate size. The particle size1 nm colloidal solution have diameters between 1 to 100 mm.311(c)Colloidal solution have diameters between 1 to 100 mk.311(c)Colloidal solution have diameters between 1 to 100 mk.312(d)Solium oducely sulphate (SDS) CMC (mm)>-10313(d)Solium searate is an example of associated colloids.314(d)Solium searate is an example of associated colloids.313(d)Solium searate is an example of associated colloids.314(d)Solium searate is an example of associated colloids.314(d)		• All equations represent Freundlich adsorption		particles of dust in the atmosphere
300 [d] Butter is an w/o emulsion having fat dispersed in water.AlCl ₂ in Friedel-Crafts reaction acts as Lewis acid to produce electrophile.307 (b) Peptisation is a process in which freshly prepared precipitate disintegrates into colloidal solution H ₂ O ₂ prevents the decomposition of CHCl ₃ to a great extent318 (d)309 (a) Cold no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. True solution Particle size >100 nm 1m-100 m which contains particles of a colloidal solution which outains particles of a colloidal solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement).310 (c) Colloidal solution for the solution is a heterogeneous solution which contains particles.310311 (c) Lyophilic colloidal solution is a heterogeneous solution which contains particles.True solution provement).322 (a) Solum dodecyl sulphate (SDS) CMC (mm)>-10311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is roround sol particles.Solu nature and the dispersion medium (H ₂ O). Further once precipitated, they do not form the colloidal sol by simple addition of water.312 (d) Sodium stearate is an example of associated colloids. Colloidal solution for mile of 10 mL of a gold sol on addition of mL of 10% NaCl solution. . Gold number = 0.25×1000=250313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of associated colloids. Colloidal solution for symes, proteins.314 (d) Sodium stearate is an example of associated colloids. Colloidal solution for mile mature and mus, a thin layer of mile mile grame of a molarity between the dis	0.0.6	isotherm.	317	(c)
butter is an w/o emulsion having fat dispersed in water. 307 (b) Peptisation is a process in which freshly prepared precipitate disintegrates into colloidal solution 308 (a) A negative catalyst is one which lowers the rate of chemical reaction. <i>eg.</i> Addition of chloroform to H_2O_2 prevents the decomposition of CHCl ₃ to a great extent 309 (a) Cold nois the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10%, NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution Suspension Colloidal solution which contains particles of intermediate size. The particles size > 100 nm 1nm-100nm < 1nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 mi. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Jyophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of mL of 10% NaCl solution. . Cold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of mL of 10% NaCl solution. . Cold number = -0.25 × 1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of associated colloids. Co	306	(C)		AlCl ₃ in Friedel-Crafts reaction acts as Lewis acid
water. Water. Water. Peptisation is a process in which freshly prepared precipitate disintegrates into colloidal solution 308 (a) A negative catalyst is one which lowers the rate of chemical reaction. <i>eg.</i> Addition of chloroform to H ₂ O ₂ prevents the decomposition of CHCl ₃ to a great extent 309 (a) Gold no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution which contains particles of intermediate size. The particle size > 100 nm 1mm-100nm < 1 mm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particle size between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i>]Tyndall effect and Brownian movement). 311 (c) Lyophilic colloid hat will just preven the coagulation of 10 nL of a gold sol on addition of 1 mL of 10% NaCl solution. 312 (d) Sodium stearate is an example of associated colloids. Colloidal solution of male ectrolyte for arsenioussulphile decreases as $Al^{3+} > Ba^{2+} > Na^{+}$. 320 (d) A biological catalyst is an enzyme. 321 (a) <i>R</i> – COONa has hydrophilic ($-COO^{-}$) and hydrophobic moties and thus, dispersion of C_6H_6 and water is possible. 322 (a) In colloid particles, size is of the order of 1 to 100 nm. 324 (a) Sodium dodecyl sulphate (SDS) CMC (m)>-10 Hexadecyl trimethyl ammonium bromide (CTAB) Note At a certain concentration surfactant molecules start to aggregate and form micelle, the concentration is called critical micellisationconcentration of water. 327 (b) Sulphur sol is prepared by the oxidation of H_2S by bromine. Br ₂ + $H_2S \rightarrow 2HBr + S$ sold: 328 (c) When some FeCls is added to the Fe(OH) ₂ solution, Fe ³ ions are preferentially adsorbed on Fe(OID), particle, Hus, it turns into positive ferit		Butter is an w/o emulsion having fat dispersed in		to produce electrophile.
Potassium stearate is an example of associated colloid or micelle.309(a)Coagulating power of an electrolyte for arsenioussulphide decreases as $Al^{3+} > Ba^{2+} > Na^+$.309(a)Coagulating power of an electrolyte for arsenioussulphide decreases as $Al^{3+} > Ba^{2+} > Na^+$.309(a)Coagulating power of an electrolyte for arsenioussulphide decreases as $Al^{3+} > Ba^{2+} > Na^+$.309(a)Coagulating power of an electrolyte for arsenioussulphide decreases as $Al^{3+} > Ba^{2+} > Na^+$.309(a)Coagulating power of an electrolyte for arsenioussulphide decreases as $Al^{3+} > Ba^{2+} > Na^+$.310(b)Colloid against coagulation by 1 mL of 10% NaCl solution. It is a measure of solutionTrue solution310(b)TumColloidal solution is a heterogeneous solution which contains particles of intermediate size. The particle size acloloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement).Tum311(c)Coagulation of 10 mL of agold sol on addition of hydrophilic colloid that will just prevent the coagulation of 10 mL of agold sol on addition of mL of 10% NaCl solution. . Gold number = 0.25×1000=250Still (a)313(d)Solution, Fe+1ons are preferentially adsorbed on Fe(OH) to article. Thus, it turns into positive ferric solution, Fe+1ons are preferentially adsorbed on Fe(OH) to article.	207	water.	318	(d)
colloid or micelle. colloid	307	(D)		Potassium stearate is an example of associated
precipitate disintegrates into conordal solution A negative catalyst is one which lowers the rate of chemical reaction. <i>e.g.</i> Addition of chloroform to H ₂ O ₂ prevents the decomposition of CHCl ₃ to a great extent 309 (a) Gold nois the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution Particle size between 1 to 100 nm. Colloidal solution have diameters between 1 to 100 nm. Colloidal solution have diameters the optical property (<i>Le</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of mL of 10% NaCl solution. . Gold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution forws, proteins, The diameters is an example of associated colloids. Colloidal solution of enzymes, proteins, 319 (d) 310 (d) Sultion, Fe ³⁺ ions are preferentially adsorbed on Fe(OH ₃) a particle. Thus, it turns into positive ferric		Peptisation is a process in which freshly prepared		colloid or micelle.
308 (a) A negative catalyst is one which lowers the rate of chemical reaction. <i>eg.</i> , Addition of chloroform to H ₂ O ₂ prevents the decomposition of CHCl ₃ to a great extent 309 (a) Gold nois the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measured protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution Particle size between 1 to 100 nm. Colloidal solution have diameters between 1 to 100 nm. Colloidal solution have diameters between 1 to 100 nm. Colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Solloidal solution of enzymes, proteins, ∴ Gold onumber =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Solloidal solution of enzymes, proteins, ∴ Gold onumber =0.25×1000=250 313 (d) Solution, Fe ³⁺ ions are preferentially adsorbed on Fe ^(CH) > article. Thus, it turns into positive ferric		precipitate disintegrates into colloidal solution	319	(d)
A negative catalyst is one which lowers the rate of chemical reaction. <i>e.g.</i> , Addition of chloroform to $H_2 O_2$ prevents the decomposition of CHCl ₃ to a great extent 309 (a) Gold nois the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution multicle size $1 - 100 \text{ nm}$ colloidal solution True solution momentum to colloidal solution have diameters <i>Le.</i> , particle size is of the order of 1 to 100 nm. Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution have diameters the optical property (<i>Le.</i> , Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Solution 6 maxmes, proteins, $Colloidal$ solution 6 maxmes, proteins, $Colloidal$ solution of enzymes, proteins, $Cell_3$ is added to the Fe(OH) ₃ solution, Fe ³⁺ ions are preferentially adsorbed on Free CH ₃ is added to the Fe(OH) ₃ solution, Fe ³⁺ ions are preferentially adsorbed on fereful.	308	(a)		Coagulating power of an electrolyte for
chemical reaction <i>eg</i> , Addition of chloroform to H_2O_2 prevents the decomposition of CHCl ₃ to a great extent 309 (a) Gold no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution Particle size >100 nm 1nm-100nm < 1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement). 311 (c) Supphilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. .: Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, .: Gold al solution of enzymes, proteins, .: Gold al solution of enzymes, proteins, .: Gold al solution of enzymes, proteins, .: Gold protect is an example of associated colloids. Colloidal solution of enzymes, proteins, .: Gold protect is an example of associated colloids. Colloidal solution of enzymes, proteins, .: Colloids. Solution shoution of enzymes, proteins, .: Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, .: Colloids. Solution stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, .: Colloids. Solution solution ferzymes, proteins, .: Colloids. Solution solution ferzy		A negative catalyst is one which lowers the rate of		arsenioussulphide decreases as $Al^{3+} > Ba^{2+} >$
H202 prevents the decomposition of CHCl3 to a great extent320 (d) A biological catalyst is an enzyme.309 (a) Gold no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids.321 (a) $R - COONa$ has hydrophilic ($-COO^-$) and hydrophobic moities and thus, dispersion of C_6H_6 and water is possible.310 (b) Suspension Colloidal solution True solution > 100 nm 1mm-100nm < 1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particle size a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement).322 (a) Solution solution solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement).324 (a) Solution solution solution shows the optical property (<i>Le</i> ,Tyndall effect and Brownian movement).311 (c) Lyophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250328 (c) When some FeCla is added to the Fe(OH): solution, Fe ³⁺ ions are preferentially adsorbed on Fe(OH)-particle. Thus, it turns into positive ferric solution, Fe ³⁺ ions are preferentially adsorbed on Fe(OH)-particle. Thus, it turns into positive ferric		chemical reaction. <i>eq</i> . Addition of chloroform to		Na ⁺ .
a biological catalyst is an enzyme.309 (a)A biological catalyst is an enzyme.309 (a) $R - CONa$ has hydrophilic ($-COO^-$) and309 (a) $R - CONa$ has hydrophilic ($-COO^-$) and309 (a) $R - CONa$ has hydrophilic ($-COO^-$) and309 (a) $R - CONa$ has hydrophilic ($-COO^-$) and309 (a) $R - CONa$ has hydrophilic ($-COO^-$) and309 (a) $R - CONa$ has hydrophilic ($-COO^-$) and310 (b) $R - CONa$ has hydrophilic ($-COO^-$) and310 (b) $Supension$ SubutionTruesolution $R - CONa$ has hydrophilic ($-COO^-$) and $Note At a catalyst is an enzyme.324 (a)> 100 nm1 nm + 100 nmColloidal solution is a heterogeneous solutionwhich contains particles of intermediate size. Theparticles of a colloidal solution have diametersbetween 1 to 100 nm. Colloidal solution have diametersbetween 1 to 100 nm. Colloidal solution have diametersbetween 1 to 100 nm. Colloidal solution have diameters11 (c)Lyophilic possesses solvent loving nature andhydrophilic colloid that will just prevent thecoagulation of 10 mL of a gold sol on addition of 1mL of 10% NaCl solution.\therefore Gold number =0.25×1000=250313 (d)Sodium stearate is an example of associatedcolloids. Colloidal solution of enzymes, proteins,$		H_2O_2 prevents the decomposition of CHCl ₃ to a	320	(d)
309 (a) Gold no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution Particle size >100 nm 1nm-100nm < 1 nm Colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Soldi number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. .: Gold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloidds. Colloidal solution of enzymes, proteins,		great extent		A biological catalyst is an enzyme.
 309 (a) Gold no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution Particle size >100 nm 1nm-100nm <1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution shows the optical property (<i>Le</i>,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Sodium stearate is an example of associated colloids. Colloidal solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, 			321	(a)
Gold no.is the amount of lyophilic in mg which just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution True solution True solution True solution True solution True solution A mm-100nm < 1 mm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Sodium date protectical micelles and the dispersion medium (HzO) protectical micelles and the dispersion medium (HzO). Solutin Applicating t	309	(a)		R - COONa has hydrophilic (- COO ⁻) and
just protect 10 mL gold sol against coagulation by 1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution Particle size (a) Solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		Gold no.is the amount of lyophilic in mg which		hydrophobic moities and thus, dispersion of C_6H_6
1 mL of 10% NaCl solution. It is a measure of protective power of lyophilic colloids.322 (a) In colloid particles, the range of diameters <i>i.e.</i> , particle size is of the order of 1 to 100 nm.310 (b)Suspension Colloidal solutionTrue solutionSuspension Colloidal solutionTrue solutionAll (a) Solutin dia solution is a heterogeneous solution which contains particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement).Note At a certain concentration surfactant molecules start to aggregate and form micelle, the concentration is called critical micellisationconcentration (CMC).311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles.312 (d) Solum stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,322 (a) In colloid particles, the range of diameters <i>i.e.</i> , particle size is of the order of 1 to 100 nm.312 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,324 (a) Sodium dearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		just protect 10 mL gold sol against coagulation by		and water is possible.
protective power of lyophilic colloids. 310 (b) Suspension Colloidal solution True solution Particle size >100 nm 1nm-100nm < 1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Sold number = 0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		1 mL of 10% NaCl solution. It is a measure of	322	(a)
 310 (b) Suspension Colloidal solution True solution Particle size >100 nm 1nm-100nm < 1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i>,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. .: Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, 		protective power of lyophilic colloids.		In colloid particles, the range of diameters
Suspension Colloidal solution True solution Particle size $>100 \text{ nm}$ 1nm-100nm $< 1 \text{ nm}$ Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 3111 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 3122 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,	310	(b)		<i>i.e.</i> ,particle size is of the order of 1 to 100 nm.
solution Particle size >100 nm 1nm-100nm <1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		Suspension Colloidal solution True	324	(a)
Particle size $CMC (mm) > -10$ >100 nm 1nm-100nm < 1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Sold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		solution		Sodium dodecyl sulphate (SDS)
>100 nm 1nm-100nm < 1 nm Colloidal solution is a heterogeneous solution which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Figure 2 (C) Note At a certain concentration surfactant molecules start to aggregate and form micelle, the concentration is called critical micellisationconcentration(CMC). 325 (c) Hydrophobic sol are irreversible in nature. They have no affinity between the dispersed phase and the dispersion medium (H ₂ O). Further once precipitated, they do not form the colloidal sol by simple addition of water. 327 (b) Sulphur sol is prepared by the oxidation of H ₂ S by bromine. Sol 328 (c) When some FeCl ₃ is added to the Fe(OH) ₃ solution, Fe ³⁺ ions are preferentially adsorbed on Fe(OH) ₂ particle. Thus, it turns into positive ferric		Particle size		CMC (mm)>-10
Note At a certain concentration surfactant molecules start to aggregate and form micelle, the concentration is called critical micellisationconcentration(CMC). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		>100 nm 1nm-100nm <1 nm		Hexadecyl trimethyl ammonium bromide (CTAB)
which contains particles of intermediate size. The particles of a colloidal solution have diameters between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		Colloidal solution is a neterogeneous solution		Note At a certain concentration surfactant
between 1 to 100 nm. Colloidal solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		which contains particles of intermediate size. The		molecules start to aggregate and form micelle, the
between 1 to 100 nm. conordar solution shows the optical property (<i>i.e.</i> ,Tyndall effect and Brownian movement). 311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		particles of a conordal solution have diameters		concentration is called critical
111 (c)325 (c)311 (c)Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles.Hydrophobic sol are irreversible in nature. They have no affinity between the dispersed phase and the dispersion medium (H ₂ O). Further once precipitated, they do not form the colloidal sol by simple addition of water.312 (d)Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250328 (c)313 (d)Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,328 (c)		the entirel property (<i>i</i> a Tundell effect and	225	micellisationconcentration(LML).
311 (c) Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		Brownian movement)	525	(U) Hydrophobia col are imercercible in metrice The
Lyophilic possesses solvent loving nature and thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,	211	(c)		hydrophobic sol are inteversible in nature. They
the dispersion medium (H ₂ O). Further once thus, a thin layer of dispersed phase is formed around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,	511	Lyonhilic possesses solvent loving nature and		the dispersion medium (H-O). Further once
around sol particles. 312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		thus a thin layer of dispersed phase is formed		precipitated they do not form the colloidal sol by
312 (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		around sol particles		simple addition of water
Size (d) Gold number is the number of milligrams of a hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,	312	(d)	227	(h)
hydrophilic colloid that will just prevent the coagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,	511	Gold number is the number of milligrams of a	521	(\mathbf{v}) Subhur sol is prepared by the ovidation of \mathbf{H} S by
InstanceInstanceInstancecoagulation of 10 mL of a gold sol on addition of 1 mL of 10% NaCl solution. \therefore Gold number =0.25×1000=250 $Br_2 + H_2S \rightarrow 2HBr + S$ sol313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, $Br_2 + H_2S \rightarrow 2HBr + S$ sol	5	hydrophilic colloid that will just prevent the		bromino
 mL of 10% NaCl solution. ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Colloidal solution of enzymes, proteins, Colloidal solution of enzymes, proteins, Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, 		coagulation of 10 mL of a gold sol on addition of 1		Bro + HoS \rightarrow 2HBr + S
 ∴ Gold number =0.25×1000=250 313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, 		mL of 10% NaCl solution.		sol
313 (d) Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins,		\therefore Gold number =0.25×1000=250	328	(n)
Sodium stearate is an example of associated colloids. Colloidal solution of enzymes, proteins, Fe ^(OH) particle. Thus, it turns into positive ferric	313	(d)		When some $FeCl_3$ is added to the $Fe(OH)_2$
colloids. Colloidal solution of enzymes, proteins, Fe(OH) ₂ particle. Thus, it turns into positive ferric	510	Sodium stearate is an example of associated		solution. Fe ³⁺ jons are preferentially adsorbed on
		colloids, Colloidal solution of enzymes, proteins		$Fe(0H)_{2}$ particle. Thus, it turns into positive ferric
cellulose and starch are the examples of $hydroxide sol[Fe(OH)_3]Fe^{3+}$. This process is		cellulose and starch are the examples of		hydroxide sol[Fe(OH) ₃]Fe ³⁺ . This process is

called peptisation.

329 **(a)**

Emulsion is solution of liquid in liquid. Cod liver oil is emulsion.

330 **(b)**

Adsorbent adsorbs impurities from surface of substance. Animal charcoal is good adsorbent. The impurities adsorb on its surface and thus it decolourises colour of liquids.

331 (a)

Flocculation value $\propto \frac{1}{Coagulating power}$ Fe(OH)₃ is a positively charged sol. To coagulateFe(OH)₃, negative charge electrolyte is used and greater the value of negative charge, coagulating power will be strong. Among the given electrolytes, NaCl has lowest coagulating power. So, its flocculation value will be maximum.

332 (c)

Gold sol is a lyophobic sol. Gold particles have very less affinity towards dispersion medium, hence its sol can be easily coagulated.

333 **(d)**

 H^+ for (a) ; mixture of gases for (b) and Mn^{2+} for (c) formed during reaction acts as catalyst.

334 **(d)**

Palladium being a transition element, adsorbs the hydrogen gas to a greater extent and the molecules of H_2 are held to the surface of the metal by chemical forces

335 **(b)**

336 (d)

A catalyst change the activation energy of the reaction. As a result, the reaction follows an alternate path and the rate of reaction will change.

337 (d)

Adsorption of a gas on a solid depends on (a)nature of the gas and solid (b)temperature (decreases with increase in

temperature)

(c)pressure

339 **(a)**

Fog is a colloidal solution in which water (liquid, dispersed phase) is dispersed in air (gas,

dispersion medium)

340 **(c)**

Larger is surface area, more is efficiency of catalyst. The surface area becomes more in finely powdered state, colloidal state or if surface is rough.

341 **(b)**

Gold number is defined as "the minimum amount of protective colloid in milligrams required to just prevent the coagulation of a 10 mL of a given gold sol, when 1 mL of a 10% solution of sodium chloride is added to it.

343 **(c)**

Separation of the dispersed phase from the gel is known as syneresis

344 **(b)**

Silica gel is a powerful adsorbent for moisture.

345 **(a)**

The gold number of the given compounds is Gelatin - 0.005 to 0.1 Starch - 15 to 25 Albumin - 0.1 to 0.2

Blood or haemoglobin – 0.03 to 0.07

So, gelatin has the least gold number.

346 (c)

Mixing the soles together can cause coagulation since the charges are neutralised.

348 (a)

Larger is surface area, more is efficiency of catalyst. The surface area becomes more in finely powdered state, colloidal state or if surface is rough.

349 **(d)**

Ionic surfactant molecules are preferentially adsorbed at the interfaces

351 **(d)**

An emulsion is a dispersion of finely divided droplets in another liquid. Thus, it is a liquid, liquid colloidal system

352 **(d)**

H⁺ from weak acids or strong acids or enzyme's invertase catalyse the hydrolysis of sugar.

353 **(a)**

Rate = k [Reactant] or $k = Ae^{-E_a/RT}$

354 **(d)**

—do—

355 **(d)**

Fe is used in Haber's process.

357 **(c)**

A trade name for graphite-water sol.	(brown vapours).
358 (c)	371 (d)
Active charcoal has greater surface area.	A catalytic poison inhibits a chemical reaction
\therefore it has more adsorption power.	372 (d)
359 (a)	Rest all are colloidal solutions.
An aerosol is dispersion of solid or liquid in a gas.	373 (b)
Smoke and dust are examples of aerosol. Aerosol	Follow poisoning of catalyst.
is a type of colloidal system.	374 (c)
When the reactants and catalyst are in the same	The phenomenon of converting freshly
nhase the catalysis is known as homogeneous	precipitated mass into colloidal state by the action
NO(g)	of solute or solvent is called peptization.
$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$	375 (a)
In this reaction both reactant and catalyst are in	The application of adsorption.
the gaseous phase.	376 (a)
361 (a)	The action of sodium aluminium silicate(zeolite)
Milk is an emulsion of fat in water or o/w type.	on hard water is not an example of colloidal
302 (D)	action. It is actually the simple chemical
they prevent the precipitation of wonhobic	substitution of calcium salts with zeolite so that
colloids	calcium zeolite precipitates out, and hardness of
Gelatin is a protective colloid. Its gold number is	water removes.
0.005-0.001.	377 (a)
363 (c)	This is called synerisis or weeping of gets.
When aqueous solution of $AgNO_3$ is added to KI	The decomposition of $H(0)$ can be slowed by the
solution, positively charged sol of AgI is obtained	addition of acetamide Acetamide act as an
due to the adsorption of Ag ⁺ ions on AgI	inhibitor.
molecules.	Catalytic poisons or inhibitor are those substances
$AgNO_3 + KI \longrightarrow AgI + KNO_3$	which decrease or inhibit the activity of catalyst.
excess Ag ⁺	380 (a)
$\begin{bmatrix} \Lambda \alpha \end{bmatrix} \Lambda \alpha^+$	Catalyst always lowers energy of activation. The
positively charged sol	working of negative catalyst is not based on
	energy of activation concept.
$As_2O_2 + 3H_2S \rightarrow As_2S_2 + 3H_2O$	381 (d)
365 (c)	Sols having water as dispersion medium (D.M.)
Chemisorption is directional, irreversible and	are called aquasol. If benzene is D.M., it is
unimolecular exothermic process where	benzosol. If alconol is D.M., it is alcosol.
adsorbate molecules are adsorbed on active	Both process of adcorption and abcorption taking
centres of adsorbent by chemical forces.	nlace simultaneously are referred as Sorption
366 (b)	383 (d)
Enzymes are most reactive at optimum	In adsorption, due to forces of attraction, ΔH is
temperature (app. 25 – 35°).	negative and as the particles came closer entropy
367 (c)	of the system decrease, <i>ie</i> , ΔS is negative, hence
Alum purify muddy water y coagulation.	$T\Delta S$ is also negative
368 (C)	384 (c)
i ne continuous phase contain the dispersed	Viscosity of hydrophilic is much higher than
pilase uli ougliout. Evample is water droplet in mist	dispersion medium. Surface tension being much
370 (c)	lesser than dispersion medium (water). This is
NO reacts with Ω_{r} to give intermediate NO.	due to higher concentration of dispersed phase in
10 reacts with 0_2 to give interineutate, 10_2	water due to water loving nature.

	Coagulation is the phenomenon of conversion of		colloids from thos
	colloidal sol into precipitate while in peptization,		mixture through p
	a fresh precipitate is converted into sol by adding		(ii)Ultrafiltration
	electrolyte. Hence, it is clear that peptization does		particles of electro
	not involve coagulation.		filtering through u
386	(c)		(iii)Electrophores
	$BaSO_4$ is insoluble in water and thus, it does not		particles under in
	from true solution with water.		(iv) Peptization is
387	(b)		precipitate into co
	On passing H_2S through a cold solution of an		suitable electrolyt
	oxidant, colloidal sulphur is formed.		∴ Peptization is co
388	(a)	399	(c)
	The physical state changes but chemically it		The continuous
	remains same.		colloidal particle
389	(b)		called Brownian n
	A catalyst lowers the activation energy and		
	increases the rate of reaction. It is not consumed	400	(b)
	during reaction.		In Haber's process
390	(a)		molybdenum pow
	C H O Maltase		Fe
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$N_2 + 3H_2 = 2$
391	(a)		Мо
	$SO_{2}(g) + (1/2) O_{2}(g) \xrightarrow{Pt(s)} SO_{2}(g)$	401	(d)
392	(b)	X	Follow Hardy-Sch
	The optimum temperature for production of	402	(d)
	ammonia by Haber's process is 500°C. If the	×	Since, As_2S_3 is a n
	temperature is lowered down then production of		bearing the highes
	ammonia becomes slow down		effective for its co
393	(a)		positive charge. <i>i.e</i>
	Solvent hating sols are lyophobic or in other		the coagulation of
	words dispersed phase has less affinity for	403	(a)
	solvent.		$k = Ae^{Ea/RT}$
394	(b)	407	(d)
	Smaller the value of gold number, greater will be		This is the ph
	the protecting power of the protective colloid.		imbibition or swe
	Hence, protective nature of A. B and C is as	408	(d)
	Colloidal solution : $A > B > C$		All are same tern
	Gold number : 0.01 2.5 20		based on physical
395	(b)	409	(a)
	Catalyst lowers the activation energy or brings		One enzyme cata
C	down the threshold energy barrier.		highly specific
396	(d)		$(C_{12}H_{22}O_{11})$ is hy
	Oil and grease are adsorbed into the hydrophobic		another sugar ma
	centre of detergent micelle and washed away.		hv maltase.
397	(a)	410	(c)
277	Catalyst decreases the activation energy and thus		A catalyst alter the
	chemical process undergoes through a new nath		adsorbing reactan
	of lower energy	412	(d)
			The activity of
398	(c)		

385 (b)

(i)Dialysis is the method of separating particles of colloids from those of crystalloids by diffusion of perchament membrane. is the method of separating olyte from colloidal particle by ultrafilter paper. sis is the movement of colloidal fluence of electric field. a process of passing of olloidal particle on addition of te. orrect answer.

rapid zig-zag motion by a in the dispersion medium is novement

s, a mixture of iron powder and der is used as catalyst

$$F_2 + 3H_2 \xrightarrow{Fe} 2NH_3$$

ulze rule.

egatively charged sol, the ion st positive charge, is more agulation, Al³⁺has highest e.,+3, so it is more effective for As_2S_3 sol.

enomenon of gel, called as lling up of gels.

ns since Freundlich isotherm is adsorption.

lyses only one reaction. This is action of enzyme. Sucrose drolysed by invertase whereas, ltose $(C_{12}H_{22}O_{11})$ is hydrolysed

e path of reaction mechanism by t on its surface.

enzymes is much faster than

ordinary catalysts.

413 **(b)**

A promoter is not a catalyst but it activates the action of a catalyst

414 (c)

It is simply absorption.

416 **(b)**

Cellulose dispersed in ethanol is called collodion. 417 **(b)**

Liquid aerosol involves liquid dispersed in gas, *e*.g., cloud, fog, mist, etc.

418 **(c)**

Colloidal solution of gold is obtained when dispersed phase is solid and dispersion medium is liquid.

Substances like metals cannot be brought into the colloidal state simply by bringing them in contact with water and therefore, special methods are devised for the purpose. Hence, they are known as hydrophobic or lyophobic colloids.

419 **(b)**

Emulsions are colloidal system in which dispersion medium and dispersed phase both are liquids. So, emulsion is dispersion of liquid in liquid.

420 **(c)**

The colour of a colloidal solution depends on the wavelength of the light scattered by the dispersed particles, which in turn depends on the size and the nature of particle.

The colour of water in sea is blue due to the scattering of light by water.

421 **(c)**

Zymase is protein which is a biochemical catalyst

422 **(c)**

When temperature increases, the adsorbed molecules get energy and desorption starts increasing, therefore adsorption decreases with increase in temperature

423 **(b)**

Emulsion are the class of colloids having liquid dispersed in liquid.

424 **(b)**

% reaction +

This graph represents autocatalysis

425 **(a)**

A new definition for protective power of a lyophobic sol as given by Ostwald and known as Rubin number

427 **(a)**

Calcium phosphide reacts with moisture to give $PH_3 \cdot PH_3$ reacts with O_2 to give white dense for of P_2O_5 .

428 **(d)**

These are applications of adsorption, absorption and emulsification.

429 **(c)**

The efficiency of enzyme catalysis is due to its capacity to lower the activation energy of the reaction. Enzymes are biocatalysts which increases the rate of reaction without being consumed in the reaction. In case of equilibrium reactions, catalyst help in attaining the equilibrium quickly without disturbing the equilibrium.

431 **(c)**

In Langmuir's adsorption isotherm, the mass of gas striking a given area of surface is proportional to the pressure of the gas as

$$\frac{x}{k} = \frac{k'p}{k'p}$$

$$m \quad 1 + kp$$

432 **(d)**

Clouds are water-dispersed in air sol carrying + ve and – ve charge on water molecules.

433 **(a)**

Bleeding due to cut can be stopped by applying $FeCl_3$ or alum solution. This is due to coagulation of negatively charged colloidal blood particles (albuminoid substance) by positively charged Fe^{3+} ions. These substances are used as styptic (which check the flow of blood).

434 **(a)**

Lyophilic sols have lower surface tension than H_2O due to loving nature towards H_2O .

435 **(b)**

Fe is catalyst, Mo is promoter.

436 **(a)**

Tyndall effect or scattering of light by smoke.

438 **(c)**

Smoke is carbon in air, negative aerosol.

439 (c)

In homogeneous catalysis, reactants and catalyst are in the same phase.

(a)SO₂(g) + O₂(g)
$$\xrightarrow{Pt(s)}$$
SO₃(g)
(contact process)

	It is an example of heterogeneous catalysis.	450	(b)
	(b)N ₂ (a) + H ₂ (a) $\xrightarrow{\text{Fe}(S)}$ 2NH ₂ (a)		Emulsifying agents are usually of three types,
	(Baber's process)		macromolecules such as polymers, surface active
	It is an example of heterogeneous catalysis.		agents and metal oxides in finely divided state.
	$(c)C_{40}H_{20}O_{44}(aa) + H_2O(aa) + H_2O(aa) + H_2O(aa)$	451	(b)
	$+ C_{c}H_{12}O_{c}$		In lead chamber process of H_2SO_4 , oxide of
	It is an example of homogeneous catalysis.		nitrogen is used as catalyst
	$(d)oil(l) + H(q) \xrightarrow{(Hardening)} fat$	452	(c)
	t(t) f(t) + f(t)(g) - f(t)(s)		$C_{12}H_{22}O_{11} \xrightarrow{\text{Invertase}} C_{4}H_{12}O_{4} + C_{4}H_{12}O_{5}$
	Thus, it is also an example of heterogeneous		Sucrose Glucose Fructose
	catalysis.	453	(b)
440	(c)		As temperature increases desorption increases.
	Catalyst does not alter the equilibrium constant.		Adsorbent +adsorbate \rightleftharpoons Adsorbed state+ ΔE
441	(b)		direction)
	For hydrophilic sol, viscosity is higher than water		Desorption is endothermic process (backward
	whereas surface tension is low		direction).
110	(b)		According to Le-Chatelier's principle increase in
442	(D) Colloidal solutions are beterogenous in nature		temperature favours endothermic process.
	conolual solutions are neterogenous in nature	455	(c)
443	(a)		A catalyst increases the rate of reaction by
	Linseed oil is commonly used to prepare soap	-	decreasing its activation energy. In a reversible
	because of low cost.		reaction, catalyst decreases activation energies of
444	(b)	X	both, forward and backward reactions, equally,
	Rest all have moities with polar and non-polar		thereby increasing rate of both reactions equally.
445	part.	450	Thus, equilibrium is approached quickly.
445	(D)	456	(a) As 0 gets adsorbed on active centres of Pt
	earlier	457	$As_2 O_3$ gets ausorbed on active centres of T .
446	(c)	107	Extent of adsorption = $kn^{1/n}$
	In a reversible reaction, catalyst only alters the		(Freundlich adsorption isotherm)
	rate of reaction		The amount of gas adsorbed does not increase as
			rapidly as the pressure.
447	(d)		The extent of adsorption = $\frac{ap}{(1+bm)}$
	AS_2S_3SOI is a negative sol due to preferential adcorption of S^{2-} ions [As S 1S ²⁻ Honso a soliton		(Langmuir adsorption isotherm)
	is needed to coordilate it $Accoding to Hardy-$		Where, k , a , b are constants and p is pressure.
	Schulze rule aluminium nitrate will be the most	458	(d)
	efficient to coagulate it, as it gives the most valent		Activated charcoal has great affinity for water
	aluminium ion (Al^{3+}) , hence it is required in		vapour as they easily form hydrogen bond among
	minimum amount. (<i>i.e.</i> ,coagulation value is least		themselves
\mathbf{C}	for $Al(NO_3)_3$.	459	(c)
448	(a)		Starch and cellulose are macromolecular particles
	Paste is suspension of solid in liquid.	460	(c)
449	(d)		Aerosol is colloidal system of solid in gas.
	Lioua is not an emulsion. Since, its dispersed		<i>e.g.</i> , smoke. So, dispersion medium in aerosol is
	While emulsion is such type of a colloidal solution		gas.
	which has both the dispersed phase and medium	461	(c)
	in liquid state.		Either BaSO ₄ or Quinoline are used to reduce the
			activity of Pd-charcoal. The catalyst Pd-

charcoal/BaSO₄ or Quinoline is used to 464 **(a)** hydrogenate alkyne to alkene only

 $CH \equiv CH + H_2 \xrightarrow{\text{Lindlar's catalyst}} CH_2 = CH_2$

462 **(d)**

All are examples of negative catalysts.

463 **(d)**

The phenomenon that takes place at the surface, are termed as surface phenomenon. Among the given processes, all processes take place at the surface, so option (e) is correct. This is a fact.

465 **(d)**

Adsorption is process where randomness decreases and energy is released hence ΔS , ΔH and ΔG , all have negative values