STRUCTURE OF ATOM

CHEMISTRY

Single Correct Answer Type

1.	Choose the incorrect relation on the basis					
	a) Velocity of electron $\propto \frac{1}{n}$	b) Frequency of revolut	b) Frequency of revolution $\propto \frac{1}{n^2}$			
	c) Radius of orbit $\propto n^2 Z$	d) Force on electron ∝	$\frac{1}{n^4}$			
2.	X-rays were discovered by:					
	a) Becquerel b) Roentgen	c) Mme. Curie	d) Van Laue			
3.	Two electrons in the same orbital may be	identified with:	0 7			
	a) <i>n</i> b) <i>l</i>	c) <i>m</i>	d) <i>s</i>			
4.	An electron has principal quantum number respectively:	ber 3. The number of its (i) subshe	ells and (ii) orbitals would be			
	a) 3 and 5 b) 3 and 7	c) 3 and 9	d) 2 and 5			
5.	Maximum number of electrons in a subsh	ell of an atom is determined by the	following:			
	a) $2n^2$ b) $4l + 2$	c) $2l + 1$	d) $4l - 2$			
6.	Particle having mass 200 times that of an	electron is:				
	a) Proton b) Positron	c) Meson	d) Neutron			
7.	Which of the following has the maximum	number of unpaired electrons?				
	a) Mg ²⁺ b) Ti ³⁺	c) Fe ²⁺	d) V ³⁺			
8.	An electron from one Bohr stationary orb	it can go to next higher orbit	-			
	a) By emission of electromagnetic radiation					
	b) By absorption of any electromagnetic radiation					
	c) By absorption of electromagnetic radia	ntion of particular frequency				
	d) Without emission or absorption of elec					
9.	How many neutrons are present in tritiun					
	a) 2 b) 3	c) 1	d) 0			
10.	The number of wave made by an electron	n moving in an orbit having maximu	m magnetic quantum numbei			
	+3 is:					
	a) 4 b) 3	c) 5	d) 6			
11.	The wavelength of a spectral line emitted	by hydrogen atom in the Lyman ser	ries is $\frac{16}{15R}$ cm. What is the			
	value of n_2 ?(R =Rydberg constant)		131			
	a) 2 b) 3	c) 4	d) 1			
12.	The statements, which is/are correct:	,	,			
	a) Number of total nodes in an orbital $= n - 1$					
~~	b) Number of radial nodes in an orbital $= n - l - 1$					
	c) Number of angular nodes in an orbital $= l$					
~	d) All of the above					
13.	If the wavelength of an electromagnetic ra	adiation is 2000Å, what is its energy	in ergs?			
	a) 9.94×10^{-12} b) 9.94×10^{-1}		d) 4.97×10^{-19}			
14.	Number of unpaired electrons in the elect		,			
	a) 2 b) 3	c) 4	d) 6			
15.	A strong argument for the particle nature	-	,			
	a) Produce fluorescence					
	b) Travel through vacuum					

	c) Get deflected by electr	ic and magnetic fields		
16	d) Cast shadow	ion $1s^2$, $2s^22p^6$, $3s^13p^1$ coi	rractly describes	
10.	a) Ground state of Na	b) Ground state of Si ⁺		d) Excited state of Al ³⁺
17		-	electron beam with an effe	
1/.	0.090Å?	iai is needed to produce an	election beam with an ene	ctive wavelength of
	a) $1.86 \times 10^4 \text{ eV}$	b) $1.86 \times 10^2 \text{eV}$	c) $2.86 \times 10^4 \text{ eV}$	d) $2.86 \times 10^2 \text{ eV}$
10	=	irs have identical values of	•	u) 2.00 × 10 ev
10.	a) A proton and a neutron		b) A proton and deuterium	m
	c) Deuterium and an α -pa		d) An electron and γ -rays	
10	Positive charge in an ator		u) All electron and y-rays	
1).	a) Scattered all over the a			
	b) Concentrated in the nu			A Y
	c) Revolving around the i			
	d) None is true	iucicus		
20	•	f Cr — 24) has a magnetic	moment of 383 R M. The	e correct distribution of 3d
20.	electrons in the chromiur		moment of 5.05 B. M. The	correct distribution of su
	a) $3d_{xy}^1, 3d_{yz}^1, 3d_{xz}^1$	if of the complex.	4/0	
	b) $3s_{xy}^1, 3d_{yz}^1, 3d_{z^2}^1$			
	, , ,			
	c) $(3d_{x^2-y^2}^1)$, $3d_{z^2}^1$, $3d_{xz}^1$			
	d) $3d_{xy}^1$, $\left(3d_{x^2-y^2}^1\right)$, $3d_{yz}^1$			
21.	The mass of an electron is	s m, its charge is e and it is	accelerated from rest throu	ıgh a potential difference,
	V. The velocity of electron	n will be calculated by form	ula	
	V	aV.	(201/)	d) None of these
	a) $\sqrt{\frac{V}{m}}$	b) $\sqrt{\frac{eV}{m}}$	c) $\left \left(\frac{2eV}{m} \right) \right $	
	V	1	\sqrt{m}	
22.	The present atomic weigh		3 xx1	D a13
22	a) C ¹²	b) 0 ¹⁶	c) H ¹	d) C ¹³
23.	Which one of the following	ng set of quantum numbers	is not possible for electron	in the ground state of an
	atom with atomic number	r 19?	.) 2.1 .1 1	D 2.1 2 12
24	a) $n = 2, l = 0, m = 0$	0) n = 2, l = 1, m = 0	c) $n = 3, l = 1, m = -1$	a) $n = 3, l = 2, m = +2$
24.			rbon consists of isotopes of	f C^{12} and C^{13} . Total number
	of CO ₂ molecules possible		a) 10	J) 1
25		b) 12	c) 18	d) 1
25.			mber of quantum number r	
26	a) 1	b) 2	c) 3	d) 4
20.		iutiiai quantum number <i>t</i> ,	the total number of values	s for the magnetic quantum
	number m are given by: a) $l+1$	b) 2 <i>l</i> + 1	c) $2l - 1$	d) $l + 2$
27		er for the last electron in so	•	u) t + 2
۷).	a) 3	b) 1	c) 2	d) Zero
28		ainty principle can be appli	,	uj Zero
20.	a) A cricket ball	b) A football	c) A jet aeroplane	d) An electron
29	Isotopes are	b) II lootball	ej rijet deroplane	a) Thi electron
- ∕.	•	nents having same mass nu	ımher	
	-	ts having same mass numb		
		ts having different mass nu		
	=	nents having same number		
30.	Which element possess n	-	0110	
	The second possess in			

	a) He b) B	c) Be	d) Li
31.	Splitting of spherical lines when atoms are subjected	d to strong electric field is o	called:
	a) Zeeman effect b) Stark effect	c) Decay	d) Disintegration
32.	An orbital in which $n=4$ and $l=2$ is expressed by		
	a) 4s b) 4p	c) 4 <i>d</i>	d) 5 <i>p</i>
33.	Which wave property is directly proportional to ene		iation:
	a) Velocity b) Frequency	c) Wave number	d) All of these
34.	Mass of an electron is:		
	a) 9.1×10^{-28} g b) 9.1×10^{-25} g	c) 9.1×10^{-10} g	d) 9.1×10^{-18} g
35.	Which is the correct outermost shell configuration of	of chromium?	
	a) 1 1 1 1 1		
	1. 4. 4. 1		
	b) 1 1 1 1 1 1 1 1 1 1 1		
	c) 11 12 /		0/
	d) 1 1 1 1 1 1 1	4	
26	Which of the following ion will show colour in aqueo	ous solution?	
30.	a) La ³⁺ ($Z = 57$) b) Ti ³⁺ ($Z = 22$)	c) $Lu^{3+}(Z = 71)$	d) $Sc^{3+}(Z = 21)$
37	The electric configuration of element with atomic nu		u) 3c (z = 21)
37.	a) $1s^2$, $2s^22p^6$, $3s^23p^63d^4$, $4s^2$	b) $1s^2$, $2s^22p^6$, $3s^23p^63d$	10
	c) $1s^2, 2s^22p^6, 3s^23p^63d^6$	d) $1s^2$, $2s^22p^6$, $3s^23p^63d$	
38	What is the maximum number of electrons in an ato	-	
50.	$4, m_1 = +1?$	in that can have the follows	ing quantum numbers n
	a) 4 b) 15	c) 3	d) 6
39.	The principal quantum number of an atom represen	its:	,
	a) Size and energy of the orbit		
	b) Spin angular momentum		
	c) Orbital angular momentum		
	d) Space orientation of the orbitals		
40.	The specific charge for positive rays is much less that	an the specific charge for ca	thode rays. This is because:
	a) Positive rays are positively charged		
	b) Charge on positive rays is less		
	c) Positive rays comprise ionised atoms, whose mas	-	
	d) Experimental method for determination is wrong		
41.	The magnetic moment of electron in an atom (exclu		
	a) $\sqrt{n(n+2)}$ Bohr Magneton (or B.M) b) $\sqrt{n(n+1)}$ B. M.	c) $\sqrt{n(n+3)}$ B. M.	d) None of the above
40		•	
42.	de Broglie equation is a relationship between:		
	a) Position of an electron and its momentum		
	b) Wavelength of an electron and its momentum		
	c) Mass of an electron and its energy		
12	d) Wavelength of an electron and its frequency Which electromagnetic radiation has extremely small	all wavelength?	
43.	Which electromagnetic radiation has extremely sma a) Radiowave b) Cosmic rays	c) Infrared rays	d) Microwayas
4.4.	Dimensions of Planck's constant are:	cj iiii ai eu rays	d) Microwaves
-11 .	a) force × time b) energy × distance	c) energy/time	d) energy × time
45	Given: The mass of electron is 9.11×10^{-31} kg and	c) chergy/mine	aj energy A unic
10.	Planck constant is 6.626×10^{-34} Js,		

	=	in the measurement of vel	=			
	=	b) $5.79 \times 10^5 \text{ m s}^{-1}$				
46.	If helium atom and hydr a) 4:1	ogen molecules are moving b) 1: 2	gwith the same velocity, the c) 2:1	eir wavelength ratio will be d) 1: 4		
47.	The energy required to b	oreak one mode of Cl – Cl b	onds in Cl_2 is 242 kJmol $^{-1}$.	The longest wavelength of		
	light capable of breaking	g a single Cl – Cl bond is				
	a) 594 nm	b) 640 nm	c) 700 nm	d) 494 nm		
48.	The uncertainty in mom	entum of an electron is $1 \times$	10^{-5} kg m/s. the uncertain	ity in its position will be		
	$(h = 6.62 \times 10^{-34} \text{ kg m}^2)$	² /s)				
	a) 2.36×10^{-28} m	b) 5.25×10^{-28} m	c) 2.27×10^{-30} m	d) 5.27×10^{-30} m		
49.	All types of electromagn	etic radiations possess sam	ie:			
	a) Energy	b) Velocity	c) Frequency	d) Wavelength		
50.	The values of four quant	um numbers of valence ele	ctron of an element are			
	n = 4, $l = 0$, $m = 0$ and	$s = +\frac{1}{2}$.				
	The element is	2				
	a) K	b) Ti	c) Na	d) Sc		
51.		configuration of nitrogen at		u) be		
01.	a) [1] [1] [1] [1]	b) [4] [4] [1] [1]		d) 14 14 14 14		
	, — — — —	, — — — — —	,	, — — ———		
52.	-	-		1.6×10^{-19} and -4×10^{-1}		
		e electronic charge, indicat	_	40		
	a) 1.6×10^{-19}	b) -2.4×10^{-19}		d) -0.8×10^{-19}		
53.		6 to $n = 3$ in hydrogen spe				
	a) Lyman series		c) Balmer series	d) Pfund series		
54.	The atomic numbers of elements <i>X</i> , <i>Y</i> and <i>Z</i> are 19, 21 and 25 respectively. The number of electrons present in the <i>M</i> -shell of these elements follow the order					
	•		y	D. W		
	a) $Z > X > Y$	b) $X > Y > Z$	c) $Z > Y > X$	•		
55.				er of protons, electrons and		
	• • • •	resent in the atom of the ele		D 40 44 40		
-	a) 11, 11, 12	b) 12,12,11	c) 11, 12, 11	d) 12, 11, 12		
56.	•	n the energy of the emitted	electrons is:			
	a) Larger than that of inc	- V				
	b) Smaller than that of in	, Y -				
	c) Same as that of incide					
5 7	d) Proportional to intens	_	irran hrv.			
37.	h	n electron in an orbital is g	h	d) None of these		
	a) $n\frac{\pi}{2\pi}$	b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$	c) $n\frac{\pi}{4\pi}$	u) None of these		
58.		oton of sodium light with a		$= 6.63 \times 10^{-27} \text{ erg-s}$		
	a) 5.685×10^{-33} g	b) 6.256×10^{-33} g	c) 4.256×10^{-33} g	d) 3.752×10^{-33} g		
59.		te of $(Z = 24)$. The number				
			5 61 616 600 616 617 617 617 617 617 617 617 617 617	iumui quamumi mamboro,		
	l = 1 and 2 are respective a) 12 and 4	b) 12 and 5	c) 16 and 4	d) 16 and 5		
	The charge on an electro		.,	.,		
	a) J.J. Thomson	b) Neil Bohr	c) James Chadwick	d) Mullikan		
61.	* * *	uantum number of $+\frac{1}{2}$ and a	* *			
		2	quantum mumb	, camile be		
	represented in an	b) <i>p</i> –orbital	c) d _orbital	d) f _orbital		
62.	a) <i>s</i> –orbital	υ) μ – σι σιται	cj u –orbital	$\frac{1}{16} \cdot \frac{1}{4} \cdot h = 1$		
υ Δ .		nentum for an electron revo	olving in an orbit is given by	$V_{\chi}\iota(\iota+1){2\pi}$. This		
	momentum for an s-elec	tron will be given by				

	a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$	b) Zero	c) $\frac{h}{2\pi}$	d) $\sqrt{2} \cdot \frac{h}{2\pi}$
62		. 1 17 1		
63.		nic number X and mass nur		
	a) <i>X Y</i>	b) <i>X Y</i>	c) <i>X Y</i>	d) $X Z (1 Y)^2$
64.	Proton is:			
	a) Nucleus of deuterium			
	b) Ionised hydrogen mole			
	c) Ionised hydrogen atom	1		
	d) An α -particle			
65.	An isotone of $^{76}_{32}$ Ge is			
	a) ⁷⁷ ₃₂ Ge	b) ⁷⁷ ₃₃ As	c) ⁷⁷ ₃₄ Se	d) ⁷⁸ ₃₆ Sc
66.	Which principle/rule limit	its the maximum number of	f electrons in an orbital to t	wo?
	a) Aufbau principle			
	b) Pauli's exclusion princ	iple		
	c) Hund's rule of maximu	m multiplicity		
	d) Heisenberg's uncertain	nty principle		V
67.	Magnitude of kinetic ener	gy in an orbit is equal to	CA	
	a) Half of the potential en	ergy	b) Twice of the potential e	energy
	c) One fourth of the poten	ntial energy	d) None of the above	
68.	The shortest λ for the Lyr	nan series is: (Given $R_H = 1$	109678cm^{-1}	
	a) 991 Å	b) 700 Å	c) 600 Å	d) 811 Å
69.	The maximum number of	atomic orbitals associated	with a principal quantum r	number 5 is:
	a) 9	b) 12	c) 16	d) 25
70.	The number of orbitals pr	resent in the shell with $n =$	4 is	
	a) 16	b) 8	c) 18	d) 32
71.	Which one of the following	ng is the set of correct quan	tum numbers of an electror	n in $3d$ orbital?
	a) $n = 3, l = 0, m = 0, s = 0$	= -1/2	b) $n = 2, l = 3, m = 0, s =$	= +1/2
	c) $n = 3, l = 1, m = 0, s =$	= -1/2	d) $n = 3, l = 2, m = 1, s =$	= +1/2
72.	Different lines in Lyman s	series of hydrogen spectrum	n lie in region	
	a) Ultraviolet	b) Infrared	c) Visible	d) Far infrared
73.	The first energy level that	t can have d -orbitals is:		
	a) 2	b) 3	c) 4	d) All are correct
74.	The uncertainty in the mo	omentum of an electron is 1	$1.0 imes 10^{-5} ext{kg ms}^{-1}$. The unc	certainty in its position will
	be	Y		
	a) 1.50×10^{-28} m	b) 1.05×10^{-26} m	c) 5.27×10^{-30} m	d) 5.25×10^{-28} m
75.	Which of the following pa	rticles moving with same v	relocity would be associated	d with smaller de-Broglie
	wavelength?			
	a) Helium molecule	b) Oxygen molecule	c) Hydrogen molecule	d) Carbon molecule
	Stark effect refers to the			
	a) Splitting up of the linesb) Random scattering of lc) Splitting up of the lines	s in an emission spectrum i	n the presence of an extern	al electrostatic field
4	b) Random scattering of l	ight by colloidal particles		
	c) Splitting up of the lines	s in an emission spectrum i	n a magnetic field	
	d) Emission of electrons f	from metals when light falls	s upon them	
77.	For which species, Bohr's	theory does not apply:		
	a) H	b) Be	c) He ⁺	d) Li ²⁺
78.	The energy of electron in	first orbit of He^+ is $(R_H = -$	-871.6×10^{-20} J). The ene	rgy of electron in the first
	orbit of H is:			
	a) -871.6×10^{-20} J	b) -435.8×10^{-20} J	c) -217.9×10^{-20} J	d) -108.9×10^{-20} J
79.	The quantum levels upto			
	a) s and p-levels	b) <i>s</i> , <i>p</i> , <i>d</i> , <i>f</i> -levels	c) s,p,d-levels	d) s-level

	a) s	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
81.	The lightest particle is			
	a) -particle	b) Positron	c) Proton	d) Neutron
82.	The ratio of speed of γ -ray	ys and X-rays is:		
	a) 1	b) < 1	c) > 1	d) None of these
83.	The radius of second Bohr	r's orbit of hydrogen atom i	S	
	a) 0.053 nm	b) 0.106 nm	c) 0.2116 nm	d) 0.4256 nm
84.	Which set of phenomenor	n shown by the radiation pr	oves the dual nature of rad	iation?
	a) Scintillation			(V)
	b) Interference and diffra	ction		
	c) Interference and photo	oelectric effect		
	d) None of the above			
85.	The hydrogen spectrum f	rom an incandescent sourc	e of hydrogen is:	
	a) A band spectrum in em	nission		
	b) A line spectrum in emis	ssion		V
	c) A band spectrum in abs	sorption	. (4	Y
	d) A line spectrum in abso	-		
86.	The total spin resulting fr	om a d^7 configuration is:		
	a) $\pm 1/2$	b) ±2	c) ±1	d) $\pm 3/2$
87.	The path of deflection of e	electron beam is:		
		o the magnitude of applied		
		to the magnitude of applie	d magnetic field	
		to the velocity of electron		
	d) Directly proportional to			
88.		g groupings represents a co	ollection of isoelectronic sp	ecies?
	(At. no. Cs=55, Br=35)			2
	a) Na, Ca ² , Mg ²	b) N ³ , F, Na	c) Be, Al ³ , Cl	d) Ca ² , Cs, Br
89.		moved from a stable neutra		
0.0	a) An α-particle	b) A neutron	c) A proton	d) An electron
90.		ogen shows that it exists in	i two different forms whic	h are based on direction of
	spin of the:			
	a) Molecule of hydrogen	X Y		
	b) Nuclei of hydrogen atoc) Electrons of hydrogen			
	d) Atoms of hydrogen mo			
91		e of different energy levels	in atom is supplied by:	
71.	a) Spectral lines	b) Mass defects	c) Atomic numbers	d) Atomic radii
92		on the scattering of α –par		
<i>)</i> <u>_</u> .	a) Electrons	b) Protons	c) Nucleus	d) Neutrons
93		an series is : (Given $R_H = 1$	-	a) Nead ons
	a) 1215 Å	b) 1315 Å	c) 1415 Å	d) 1515 Å
	Ÿ	of electron in n th orbit is given	•	u) 1313 11
71.				n^2h
	a) nh	b) $\frac{h}{2\pi n}$	c) $\frac{nh}{2\pi}$	d) $\frac{n^2h}{2\pi}$
95.	According to Bohr's postu	ılates which quantity can ta		<i>∆1</i> ℓ
	a) Kinetic energy	b) Angular momentum	c) Momentum	d) Potential energy
96.	,	, ,		the emitted photoelectrons
	will be:	•		•
	a) Doubled			

80. Which of the subshell has double dumb-bell shape?

c) Increased but more than doubled of the previous KE d) Unchanged 97. The mass of one mole of electron is: a) 0.55 mg b) 0.008 mg c) 1.008 mg d) 0.184 mg 98. The velocities of two particles A and B are 0.05 and 0.02 ms ⁻¹ respectively. The mass of B is five times the mass of A . The ratio of their de-Broglie's wavelength is a) 2: 1 b) 1:4 c) 1:1 d) 14: 1 99. Which are in the ascending order of wavelength? a) H_{ac} , H_{pc} , H_{pc} . Lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$ $3d^1$, $4s^2$ $4p^6$ b) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$ $3d^1$, $4s^2$ $4p^6$ b) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$ $3d^1$, $4s^2$ $4p^6$ b) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$ $3d^1$, $4s^2$ $4p^6$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d$ $4s$ $4p$ $4d$ $5s$ b) $4s$ $3d$ $4p$ $5s$ $4d$ c $5s$ $4p$ $3d$ $4d$ $5s$ d) $3d$ $4p$ $4s$ $4d$ $5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/r^2$ r^2 eV. The smallest amount thata an H-atom will absorb, if in ground state is: a) 10 eV b) $3(3)$ 30 eV c) $6(7)$ eV d) $3(1)$ 10 eV 104. The amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 3 10. eV b) $3(3)$		b) Halved					
97. The mass of one mole of electron is: a) 0.55 mg b) 0.008 mg c) 1.008 mg d) 0.184 mg 98. The velocities of two particles A and B are 0.05 and 0.02 ms ⁻¹ respectively. The mass of B is five times the mass of A. The ratio of their de-Broglie's wavelength is a) 2:1 b) 1:4 c) 1:1 d) 14:1 99. Which are in the ascending order of wavelength? a) H _{ac} , H _B , H _Y lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) 1s ² , 2s ² 2p ⁶ , 3s ² 3p ⁶ 3d ¹⁰ , 4s ¹ 4p ⁶ b) 1s ² , 2s ² 2p ⁶ , 3s ² 3p ⁶ 3d ¹⁰ , 4s ² 4p ⁶ b) 1s ² , 2s ² 2p ⁶ , 3s ² 3p ⁶ 3d ¹⁰ , 4s ² 4p ⁵ 102. The order of filling of electrons in the orbital of an atom will be: a) 3d 4s 4p 4d 5s b) 4s 3d 4p 5s 4d c) 5s 4p 3d 4d 5s d) 3d 4p 4s 4d 5s 103. The Bohr's energy equation for H, atom reveals that the energy level of a shell is given by E = -13.58/n ² eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li ²⁺ ion in its ground state is how many times greater than the amount of energy required to remove the electron from a H atom in its ground state: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a H atom in its ground state: a) 1.0 eV b) 2.30 eV c) 6.79 eV d) 1.19 eV 105. Compared to mass of lightest nucleus the mass of an electron is only: a) 1.70 eV a) 1.71 eV a) 4 eV a) 5 eV c) 6.70 eV d) 1.71 eV a) 6.72 eV a) 6.73 eV a) 6.74 eV a) 6.74 eV a) 6.74 eV a) 6.75 eV a) 6.75 eV b) 1.75 eV b) 1		c) Increased but more tha	n doubled of the previous	KE			
98. The velocities of two particles A and B are 0.05 and 0.02 ms $^{-1}$ respectively. The mass of B is five times the mass of A . The ratio of their de-Broglie's wavelength is a) 2:1 b) 1:4 c) 1:1 d) 14:1 99. Which are in the ascending order of wavelength? a) $H_{ac}H_{Bc}H_{yc}$, lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) 1.8^2 , 2.8^2 22 p^6 , 3.8^2 3 p^6 3 d^{10} , 4.8^4 4 p^6 b) 1.8^2 , 2.8^2 22 p^6 , 3.8^2 3 p^6 3 d^{10} , 4.8^4 4 p^6 b) 1.8^2 , 2.8^2 22 p^6 , 3.8^2 3 p^6 3 d^{10} , 4.8^4 4 p^6 b) 1.8^2 , 2.8^2 22 p^6 , 3.8^2 3 p^6 3 d^{10} , 4.8^4 4 p^6 b) 1.8^2 , 2.8^2 22 p^6 , 3.8^2 3 p^6 3 d^{10} , 4.8^4 4 p^6 c) 1.8^2 , 1.8^2 22 p^6 3.3 p^6 3 p^6		d) Unchanged					
98. The velocities of two particles A and B are 0.05 and 0.02 ms ⁻¹ respectively. The mass of B is five times the mass of A. The ratio of their de-Broglie's wavelength is a) 2:1 b) 1:4 c) 1:1 d) 14:1 99. Which are in the ascending order of wavelength? a) Ha, HB, BY, lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) 1s², 2s²2p6, 3s²3p°3d¹, 4s²4p6 b) 1s², 2s²2p6, 3s²3p°3d¹, 4s²4p5 c) 1s², 2s²2p6, 3s²3p°3d¹, 4s²4p5 102. The order of filling of electrons in the orbital of an atom will be: a) 3d 4s 4p 4d 5s b) 4s 3d 4p 5s 4d c) 5s 4p 3d 4d 5s d) 3d 4p 4s 4d 5s 103. The Bohr's energy equation for 1l atom reveals that the energy level of a shell is given by E = −13.58/n²ev. The smallest amount that an la-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li²t ion in its ground states: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 1.1800 d) 1/1000 105. Braggis equation will have no solution, if: a) 4 ≥ 2d b) 4 ≥ 2d c) 1/1800 d) 1/1000 106. Braggis equation will have no solution, if: a) 4 ≥ 2d b) 1/3 c 2d c) 1/300 d) 1/1000 107. Size of the nucleus is: a) 10.0-15 cm b) 10.0-25 m b) 0.0530 nm c) 1.0-10 cm d) 0.0-12 0 m 109. Splitting of spectrum lines in magnetic field is a) 3 cycle for the field of the radius of second orbit in He+ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) 3 cycle feet the radius of fiest Bohr's orbit be a, then the radius of third Bohr's orbit would be:	97.	The mass of one mole of el	lectron is:				
mass of A. The ratio of their de-Broglie's wavelength is a) 2:1		a) 0.55 mg	b) 0.008 mg	c) 1.008 mg	d) 0.184 mg		
mass of A. The ratio of their de-Broglie's wavelength is a) 2:1	98.	The velocities of two parti	cles A and B are 0.05 and	0.02 ms ⁻¹ respectively. Th	e mass of <i>B</i> is five times the		
a) 2:1 b) 1:4 c) 1:1 d) 14:1 99. Which are in the ascending order of wavelength? a) $H_{tx}H_{p}$, H_{y} , lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^34p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^3$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d$ $4s$ $4p$ $4d$ $5s$ b) $4s$ $3d$ $4p$ $5s$ $4d$ c) $5s$ $4p$ $3d$ $4s$ $4d$ $5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2eV$. The smallest amount that an H-atom will absorb, if in ground state is: a) $1.0 eV$ b) $3.39 eV$ c) $6.79 eV$ d) $10.19 eV$ 104. The amount of energy required to remove the electron from a Li ²⁺ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Braggi's equation will have no solution, if: a) $1/80$ b) $1/360$ c) $1/300$ d) $1/300$ d) $1/300$ 107. Size of the nucleus is: a) 10.100 b) 10.100 c) 10.100 c) 10.100 c) 10.100 d) 10.100 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.01060 nm d) 0.02120 nm 109. Splitting of spectrum lines in magnetic field is a) 0.0265 nm b)							
99. Which are in the ascending order of wavelength? a) H_{α} , H_{β} , H_{β} , lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ e) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ e) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ e) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ e) $1s^2$, $2s^2$			= =		d) l4: 1		
a) H_{ar}, H_{b}, H_{y} lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state $$1$$ electronic configuration of He by box-diagram as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ e) $1s^2$, $2s^2p^6$, $3s^23p^63d^5$, $4s^2$ e) $1s^2$, 1	99.	Which are in the ascending	g order of wavelength?				
b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state $\uparrow \uparrow \uparrow$ electronic configuration of He by box-diagram as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^24p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^24p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d$ $4s$ $4p$ $4d$ $5s$ b) $4s$ $3d$ $4p$ $5s$ $4d$ c) $5s$ $4p$ $3d$ $4d$ $5s$ d) $3d$ $4p$ $4s$ $4d$ $5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ of e^{-1} . The amount of energy required to remove the electron from a e^{-1} e			= =	tom	\sim		
c) Blue, violet, yellow, red colours in solar spectrum d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d$ $4s$ $4p$ $4d$ $5s$ b) $4s$ $3d$ $4p$ $5s$ $4d$ c) $5s$ $4p$ $3d$ $4s$ $4p$ $4d$ $5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a $1s^2$ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $A > 2d$ b) $A < 2d$ c) $A < d$ d) $A = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He+ would be: a) 0.0255 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit bould be:		• •					
d) None of the above 100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p6$, $3s^23p63d^{10}$, $4s^14p6$ b) $1s^2$, $2s^22p6$, $3s^23p63d^{10}$, $4s^14p6$ b) $1s^2$, $2s^22p6$, $3s^23p63d^{10}$, $4s^14p6$ d) $1s^2$, $2s^22p6$, $3s^23p63d^{10}$, $4s^24p6$ 101. The order of filling of electrons in the orbital of an atom will be: a) $3d^44p^4d^5s$ b) $4s^3d^4p^5s^4d^2$ c) $5s^4p^3d^4d^5s$ d) $3d^4p^4s^4d^5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li²+ ion in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{115} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-19} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He+ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:		= =	=	= = =			
100. The representation of the ground state as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^6$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $1s^2$			1		× , ,		
is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^14p^6$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d^2s^2s^2s^2s^2s^2s^2s^2s^2s^2s^2s^2s^2s^$	100.	•	ground state	electronic configura	ition of He by box-diagram		
is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^44p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d \cdot 4s \cdot 4p \cdot 4d \cdot 5s$ b) $4s \cdot 3d \cdot 4p \cdot 5s \cdot 4d$ c) $5s \cdot 4p \cdot 3d \cdot 4p \cdot 5s \cdot 4d$ c) $5s \cdot 4p \cdot 3d \cdot 4p \cdot 5s \cdot 4d \cdot 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) $1.0 \cdot 8v \cdot 8$			6	1 1	and any arm among among		
a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^3$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^3$, $4s^24p^5$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d \cdot 4s \cdot 4p \cdot 4d \cdot 5s$ b) $4s \cdot 3d \cdot 4p \cdot 5s \cdot 4d$ c) $5s \cdot 4p \cdot 3d \cdot 4p \cdot 5s \cdot 4d \cdot 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li ²⁺ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $1/20$ d b) $1/20$ c c) $1/20$ d d) $1/20$ c d) $1/20$ compared to mass of Bohr's first orbit in H-atom is 0.053 nm . The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.0530 nm c) 0.060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) $1/20$ d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:			es	A			
b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^1 4p^6$ b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^2$ c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^2$ c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^2$ d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^0, 4s^2 4p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d 4s 4p 4d 5s$ b) $4s 3d 4p 5s 4d$ c) $5s 4p 3d 4d 5s$ d) $3d 4p 4s 4d 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a L^{12+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda \geq 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm . The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) $2 \times 2d$ b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:		-					
c.) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^6$, $4s^1$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^6$, $4s^1$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^1$, $4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d$ $4s$ $4p$ $4d$ $5s$ b) $4s$ $3d$ $4p$ $5s$ $4d$ c) $5s$ $4p$ $3d$ $4d$ $5s$ d) $3d$ $4p$ $4d$ $5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li^{2+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He+ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) 3 Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect				1			
d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^14p^6$ b) $1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^2$ c) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d$ $4s$ $4p$ $4d$ $5s$ b) $4s$ $3d$ $4p$ $5s$ $4d$ c) $5s$ $4p$ $3d$ $4d$ $5s$ d) $3d$ $4p$ $4s$ $4d$ $5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a 16.79 Life in in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He+ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) 10^{-10} cm b) 10^{-10} cm c) 10^{-10} cm c) 10^{-10} cm d) 10^{-10} cm		=					
101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^14p^6$ b) $1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^2$ c) $1s^2, 2s^22p^6, 3s^23p^63d^6, 4s^1$ d) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d$ $4s$ $4p$ $4d$ $5s$ b) $4s$ $3d$ $4p$ $5s$ $4d$ c) $5s$ $4p$ $3d$ $4d$ $5s$ d) $3d$ $4p$ $4s$ $4d$ $5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a $16^2 + 1$,	-				
same particle group is: a) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^14p^6$ b) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^14p^6$ d) $1s^2, 2s^22p^6, 3s^23p^63d^6, 4s^1$ d) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d \cdot 4s \cdot 4p \cdot 4d \cdot 5s$ b) $4s \cdot 3d \cdot 4p \cdot 5s \cdot 4d$ c) $5s \cdot 4p \cdot 3d \cdot 4d \cdot 5s$ d) $3d \cdot 4p \cdot 4s \cdot 4d \cdot 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li²+ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm . The radius of second orbit in He+ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect	101.		on of the element which i	s iust above the element w	ith atomic number 43 in the		
a) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^14p^6$ b) $1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^2$ c) $1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^2$ d) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d \ 4s \ 4p \ 4d \ 5s$ b) $4s \ 3d \ 4p \ 5s \ 4d$ c) $5s \ 4p \ 3d \ 4d \ 5s$ d) $3d \ 4p \ 4s \ 4d \ 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2 \ eV$. The smallest amount that an H-atom will absorb, if in ground state is: a) $1.0 \ eV$ b) $3.39 \ eV$ c) $6.79 \ eV$ d) $10.19 \ eV$ 104. The amount of energy required to remove the electron from a Li^{2+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) $10^{-15} cm$ b) $10^{-13} cm$ c) $10^{-10} cm$ d) $10^{-8} cm$ 108. The radius of Bohr's first orbit in H-atom is $0.053 \ nm$. The radius of second orbit in He+ would be: a) $0.0265 \ nm$ b) $0.0530 \ nm$ c) $0.1060 \ nm$ d) $0.2120 \ nm$ 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect							
b) $1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^2$ c) $1s^2, 2s^22p^6, 3s^23p^63d^6, 4s^1$ d) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d 4s 4p 4d 5s$ b) $4s 3d 4p 5s 4d$ c) $5s 4p 3d 4d 5s$ d) $3d 4p 4s 4d 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li^{2+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He+ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect			10 , $4s^14p^6$				
c) $1s^2, 2s^22p^6, 3s^23p^63d^6, 4s^1$ d) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d \ 4s \ 4p \ 4d \ 5s$ b) $4s \ 3d \ 4p \ 5s \ 4d$ c) $5s \ 4p \ 3d \ 4d \ 5s$ d) $3d \ 4p \ 4s \ 4d \ 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) $1.0 \ eV$ b) $3.39 \ eV$ c) $6.79 \ eV$ d) $10.19 \ eV$ 104. The amount of energy required to remove the electron from a Li^{2+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) $10^{-15} cm$ b) $10^{-13} cm$ c) $10^{-10} cm$ d) $10^{-8} cm$ 108. The radius of Bohr's first orbit in H-atom is $0.053 \ nm$. The radius of second orbit in He+ would be: a) $0.0265 \ nm$ b) $0.0530 \ nm$ c) $0.1060 \ nm$ d) $0.2120 \ nm$ 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect				GXY			
d) $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: a) $3d ext{ 4s } 4p ext{ 4d } 5s$ b) $4s ext{ 3d } 4p ext{ 5s } 4d$ c) $5s ext{ 4p } 3d ext{ 4d } 5s$ d) $3d ext{ 4p } 4s ext{ 4d } 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) $1.0 ext{ eV}$ b) $3.39 ext{ eV}$ c) $6.79 ext{ eV}$ d) $10.19 ext{ eV}$ 104. The amount of energy required to remove the electron from a Li^{2+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) $10^{-15} ext{cm}$ b) $10^{-13} ext{cm}$ c) $10^{-10} ext{cm}$ d) $10^{-8} ext{cm}$ 108. The radius of Bohr's first orbit in H-atom is $0.053 ext{ nm}$. The radius of second orbit in He+ would be: a) $0.0265 ext{ nm}$ b) $0.0530 ext{ nm}$ c) $0.1060 ext{ nm}$ d) $0.2120 ext{ nm}$ 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect							
102. The order of filling of electrons in the orbital of an atom will be: a) $3d \ 4s \ 4p \ 4d \ 5s$				>			
a) $3d \ 4s \ 4p \ 4d \ 5s$ b) $4s \ 3d \ 4p \ 5s \ 4d$ c) $5s \ 4p \ 3d \ 4d \ 5s$ d) $3d \ 4p \ 4s \ 4d \ 5s$ 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E = -13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) $1.0 \ eV$ b) $3.39 \ eV$ c) $6.79 \ eV$ d) $10.19 \ eV$ 104. The amount of energy required to remove the electron from a Li^{2+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is $0.053 \ \text{nm}$. The radius of second orbit in He ⁺ would be: a) $0.0265 \ \text{nm}$ b) $0.0530 \ \text{nm}$ c) $0.1060 \ \text{nm}$ d) $0.2120 \ \text{nm}$ 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect	102.	•		tom will be:			
103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by $E=-13.58/n^2$ eV. The smallest amount that an H-atom will absorb, if in ground state is: a) 1.0 eV b) 3.39 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li²+ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) 1/80 b) 1/360 c) 1/1800 d) 1/1000 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He+ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect		_			d) 3 <i>d</i> 4 <i>p</i> 4 <i>s</i> 4 <i>d</i> 5 <i>s</i>		
n^2 eV. The smallest amount that an H-atom will absorb, if in ground state is: a) $1.0 \mathrm{eV}$ b) $3.39 \mathrm{eV}$ c) $6.79 \mathrm{eV}$ d) $10.19 \mathrm{eV}$ 104. The amount of energy required to remove the electron from a $\mathrm{Li^{2+}}$ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) $10^{-15} \mathrm{cm}$ b) $10^{-13} \mathrm{cm}$ c) $10^{-10} \mathrm{cm}$ d) $10^{-8} \mathrm{cm}$ 108. The radius of Bohr's first orbit in H-atom is $0.053 \mathrm{nm}$. The radius of second orbit in He ⁺ would be: a) $0.0265 \mathrm{nm}$ b) $0.0530 \mathrm{nm}$ c) $0.1060 \mathrm{nm}$ d) $0.2120 \mathrm{nm}$ 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect	103.	•		-			
a) $1.0 \mathrm{eV}$ b) $3.39 \mathrm{eV}$ c) $6.79 \mathrm{eV}$ d) $10.19 \mathrm{eV}$ $104.$ The amount of energy required to remove the electron from a $\mathrm{Li^{2+}}$ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 $105.$ Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ $106.$ Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ $107.$ Size of the nucleus is: a) $10^{-15} \mathrm{cm}$ b) $10^{-13} \mathrm{cm}$ c) $10^{-10} \mathrm{cm}$ d) $10^{-8} \mathrm{cm}$ $108.$ The radius of Bohr's first orbit in H-atom is $0.053 \mathrm{nm}$. The radius of second orbit in He ⁺ would be: a) $0.0265 \mathrm{nm}$ b) $0.0530 \mathrm{nm}$ c) $0.1060 \mathrm{nm}$ d) $0.2120 \mathrm{nm}$ $109.$ Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect							
104. The amount of energy required to remove the electron from a Li^{2+} ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9				•	d) 10.19 eV		
times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect	104.	•		•			
state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect			-		_		
a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect			round or onlorgy required		o a 11 acon 100 Br o a		
105. Compared to mass of lightest nucleus the mass of an electron is only: a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:			b) 2	c) 3	d) 5		
a) $1/80$ b) $1/360$ c) $1/1800$ d) $1/1000$ 106 . Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107 . Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108 . The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109 . Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect	105.		•	•	- , -		
106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:		-		-	d) 1/1000		
a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:	106.			-, -,	-, -,		
107. Size of the nucleus is: a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:				c) $\lambda < d$	d) $\lambda = d$		
a) 10^{-15} cm b) 10^{-13} cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:	107.	-	- ,	.,			
108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He ⁺ would be: a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:			b) 10^{-13} cm	c) 10^{-10} cm	d) 10 ⁻⁸ cm		
a) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:	\sim			•	•		
109. Splitting of spectrum lines in magnetic field is a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:							
a) Stark effect b) Raman effect c) Zeeman effect d) Rutherford effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:				•, •.=•••	.,		
110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be:	207.		-	c) Zeeman effect	d) Rutherford effect		
	110.						
-							
111. Which of the following atoms has same number of protons and neutrons in its nucleus?	111.	_	- •	-	, ,		
a) Carbon b) Deuterium c) Tritium d) Nitrogen		=	-				
112. The ratio of the difference in energy between the first and the second Bohr orbit to that between the	112.	•	•	•	, ,		

	second and the third Boh	r orbit is				
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{4}{9}$	d) $\frac{27}{5}$		
	-	3		J		
113.	3. The wavelength of radiation emitted when electron falls from 4th Bohr's orbit to 2nd in H-atom is:					
	$(R_{\rm H} = -1.09678 \times 10^{-7} \mathrm{r})$			N 400		
	a) 972 nm	b) 486 nm	c) 243 nm	d) 182 nm		
114.		umber 29, mass number 59				
	a) 29	b) 30	c) 40	d) 59		
115.		es rise to the radiation of fr	equency 10 ⁴ MHz. The cha	nge in energy per mole of		
	atoms taking place would		26.60 40-201	D 0 00 I		
116	a) 6.62×10^{-30} J	b) 5.32×10^{-28} J		d) 3.99 J		
116.		n of an electron (mass $= 9$.	1.1×10^{-31} kg) moving with	a velocity 300 ms +,		
	accurate upon 0.001% wi	II be				
	$(h = 6.63 \times 10^{-34} \text{Js})$	1) = = 6 40=2	.) 1.02 10=2	1) 2 04 10=2		
117	•		c) 1.92×10^{-2} m	d) 3.84×10^{-2} m		
11/.	Which of the following is		-) 2 l 0 0	d) $n = 3, l = 1, m = -1$		
110	a) $n = 2$, $l = 1$, $m = 0$	b) $n = 2, l = 0, m = -1$	c) $n = 3, l = 0, m = 0$	$a_{j}n = 3, l = 1, m = -1$		
118.	The dynamic mass of a ph		a) h/a]	d) h / 1		
110	a) ZeroThe atomic radius is of th	b) hc/λ	c) <i>h/cλ</i>	d) h/λ		
119.	a) 10^{-8} cm	e order or : b) 10 ⁸ cm	c) 10^{-10} cm	d) 10 ⁻¹² cm		
120	•	on occurs from higher energ		•		
120.		=	=-			
		electron volts, the waveleng		d) Either of these		
	a) $\frac{12375}{\Lambda E}$ Å	b) $\frac{12375}{\Delta E} \times 10^{-8} \text{cm}$	c) $\frac{12373}{\Lambda E} \times 10^{-10} \text{m}$	u) Either of these		
	_	tate has a $4d^5$, $5s^1$ configur		$5s^1$ configuration. This is		
	-	alf-filled or completely fille	_	g		
	a) Strongly exchange des		b) Weakly exchange stabi	lized		
	c) Weakly exchange desta		d) Strongly exchange dest			
122.	The ionisation enthalpy o	f hydrogen atom is 1.312 \times	, ,,			
	in the atom from $n_1 = 1$ t		,	•		
		b) $6.56 \times 10^5 \mathrm{J mol^{-1}}$	c) $7.56 \times 10^5 \text{ J mol}^{-1}$	d) $9.84 \times 10^5 \text{ J mol}^{-1}$		
123.		ts of quantum number is co				
	a) $n = 4, l = 3, m = +4, s$	= +1/2	b) $n = 4, l = 4, m = -4, s$	=-1/2		
	c) $n = 4, l = 3, m = +1, s$	= +1/2	d) $n = 3, l = 2, m = -2, s$	= +1/2		
124.	Number of electrons in —	CONH ₂ are:				
	a) 24	b) 20	c) 22	d) 18		
125.	The ratio of radii of two n	uclei with mass numbers 2	7 and 64 is			
	a) 1/2	b) 3/4	c) 3/2	d) 2/3		
126.	The atomic number of Ni	and Cu are 28 and 29 respe	ectively. The electronic conf	iguration		
	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ re	presents				
^	a) Cu ⁺	b) Cu ²⁺	c) Ni ²⁺	d) Ni		
127.	The three quantum numb	ers n,l and m are the outco	ome of:			
	a) Bohr's atomic theory					
	b) Solution of Schrödinge	r principle				
	c) Heisenberg's uncertain	nty principle				
	d) Aufbau principle					
128.	Which has the highest e/r					
	a) He ²⁺	b) H ⁺	c) He ⁺	d) D ⁺		
129.	_	ion of an element in ultimat				
	$(n \ 1)s^2(n \ 1)p^6(n \ 1)d^x \ ns^2$. If $n \ 4$ and $x \ 5$ then number of protons in the nucleus is					

	a) 25	b) <724	c) 25	d) 30
130.	The de-Broglie wavelengt	h of a tennis ball of mass 6	0g moving with a velocity o	of 10 m/s is approximately
	(Planck's constant, $h = 6.6$	$63 \times 10^{-34} \text{Js}$		
	a) 10 ⁻³³ m	b) 10^{-31} m	c) 10^{-16} m	d) 10^{-25} m
131.	The work-function for pho	otoelectric effect :		
	a) Depends upon the frequ	uency of incident light		
	b) Is same for all metals			
	c) Is different for differen	t metals		
	d) None of the above			
132.	Line spectra is characteris	tic of :		
	a) Atoms	b) Molecules	c) Radicals	d) Ions
		he correct form of Schrodi	nger wave equation?	
	a) $\frac{\partial^2 \Psi}{\partial^2 x} + \frac{\partial^2 \Psi}{\partial^2 y} + \frac{\partial^2 \Psi}{\partial^2 z} + \frac{8\tau}{2}$	a^2m	b) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\eta}{2}$	$\tau^2 m$
•	a) $\frac{\partial^2 x}{\partial x^2} + \frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} + \partial^2 z$	$\frac{1}{n^2}(E - V)\Psi = 0$	$\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2} + \frac{\partial}{\partial z^2}$	$\frac{1}{h^2}(E - V)\Psi = 0$
	c) $\frac{\partial \Psi^2}{\partial x^2} + \frac{\partial \Psi^2}{\partial y^2} + \frac{\partial \Psi^2}{\partial z^2} + \frac{81}{2}$	$\tau^2 m$	d) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{81}{2}$	$\tau^2 m^2$
	c) $\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2} + \frac{\partial}{\partial z^2}$	$\frac{1}{h^2}(E - V)\Psi = 0$	$d\int \frac{dx^2}{dx^2} + \frac{\partial y^2}{\partial y^2} + \frac{\partial z^2}{\partial z^2} + \frac{\partial z}{\partial z^2}$	$h^2 (E - V) \Psi = 0$
134.	If $n = 6$, the correct seque	nce for filling of electrons	will be:	Y
	a) $ns \rightarrow np \rightarrow (n-1)d \rightarrow$	(n-2)f		
	b) $ns \rightarrow (n-2)f \rightarrow (n-1)$	$1)d \rightarrow np$		
	c) $ns \rightarrow (n-1)d \rightarrow (n-1)d$	$(2)f \rightarrow np$		
	d) $ns \rightarrow (n-2)f \rightarrow np \rightarrow$	(n-1)d		
135.	Which one is not true for t	the cathode rays?		
;	a) They have kinetic energ	gy		
	b) They cause certain sub	stances to show fluorescen	ice	
	c) They travel in straight l	ine		
	d) They are electromagne	tic waves		
136.	Which of the following ion	s has electronic configura	tion [Ar] $3d^6$:	
;	a) ₂₇ Ni ³⁺	b) ₂₅ Mn ³⁺	c) $_{26}$ Fe ³⁺	d) ₂₇ Co ³⁺
137.	In an atom, an electron is	moving with a speed of 60	0 m/s with an accuracy of 0	0.005%. Certainity with
,	which the position of the	plactron can be located is	$h = 6.6 \times 10^{-34} \text{kg m}$	$^{2}s^{-1}$,
	which the position of the t	rection can be located is	$h = 6.6 \times 10^{-34} \text{kg m}$ mass of electron, $e_{\text{m}} = 9.1$	$\times 10^{-31} \text{kg}$
	a) 1.52×10^{-4} m	b) 5.10×10^{-3} m	c) 1.92×10^{-3} m	d) 3.84×10^{-3} m
138.	Consider the ground state	of Cr atom $(Z = 24)$. The	numbers of electrons with	the azimuthal quantum
	numbers, $l = 1$ and 2 are,	respectively		
;	a) 12 and 4	b) 12 and 5	c) 16 and 4	d) 16 and 5
139.	Moseley's law is : $(a \text{ and } b)$	are constants, $Z = atomic$	number, v = frequency)	
;	a) $\sqrt{\mathbf{v}} = aZ$	b) $v = c/\lambda$	c) $2d \sin \theta = n\lambda$	$d) \sqrt{v} = a(Z - b)$
140.	From the discharge tube e	xperiment, it is concluded	that:	
	a) Mass of a proton is in fr	action		
1	b) Matter contains electro	ns		
	c) Nucleus contains positi	_		
5	d) Positive rays are heavid	er than protons		
141.	Which atom has as many a	as s -electrons as p -electror	ns?	
;	a) H	b) Mg	c) N	d) Na
142.	The electronic configurati	on of Pd ²⁺ (at.no.46)is:		
;	a) [Kr]4 <i>d</i> ⁸	b) $[Kr]5s^24d^6$	c) [Kr]4d ⁶	d) [Kr] $4d^85s^2$
143.	When $lpha$ —particles are se	nt through a thin metal foil	, most of them go straight t	hrough the foil because
;	a) Most part of the atom is	s empty space		
	b) Alpha particles move w	ith high speed		
	c) Alpha particles are muc	ch heavier than electrons		

- d) Alpha particles are positively charged
- 144. A neutral atom of an element has 2K, 8L, 11M and 2N electrons. Total number of electrons with l=2 will be:
 - a) Zero

b) 3

c) 6

d) 10

- 145. Mosley's name is connected with the discovery of:
 - a) Protons
- b) Neutrons
- c) Atomic number
- d) Atomic weight
- 146. For a Bohr atom angular momentum M of the electron is (n = 0, 1, 2, ...)
 - a) $\frac{nh^2}{4\pi}$

- b) $\frac{n^2h^2}{4\pi}$
- c) $\frac{\sqrt{\pi h^2}}{4\pi}$

- d) $\frac{nh}{2\pi}$
- 147. When 3*d*-orbital is complete, the newly entering electron goes into:
 - a) 4*f*

b) 4s

c) 4p

- d) 4d
- 148. Which of the followings sets of quantum numbers represents the highest energy of an atom?
 - a) n = 3, l = 1, m = 1, s = +1/2

b) n = 3, l = 2, m = 1, s = +1/2

c) n = 4, l = 0, m = 0, s = +1/2

- d) n = 3, l = 0, m = 0, s = +1/2
- 149. When an electron jumps from L-level to M-level, there occurs:
 - a) Emission of energy
 - b) Absorption of energy
 - c) Emission of γ -radiations
 - d) Emission of X-rays
- 150. If the kinetic energy of an electron is increased four times, the wavelength of the de-Broglie wave associated with it would becomes
 - a) Half times
- b) $\frac{1}{4}$ times
- c) Four times
- d) Two times
- 151. The work function (Φ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metals is :

M	L	N	K	M	С	Α	Fe	P	W
et	i	a		g	u	g		t	
al									1
Ф(е	2	2.	2	3.	4.	4	4.7	6	4.
		3		7	8			۸.	7
	4		2			3	47	3	5

- a) 2
- b) 4
- c) 6
- d) 8
- 152. "Positronium" is the name given to an atom-like combination formed between:
 - a) A positron and a proton
 - b) A positron and a neutron
 - c) A positron and α -particle
 - d) A positron and an electron
- 153. The nucleus of helium contains:
 - a) Four protons
 - b) Four neutrons
 - c) Two neutrons and two protons
 - d) Four protons and two electrons
- 154. Photoelectric effect shows:
 - a) Particle-like behaviour of light
 - b) Wave-like behaviour of light
 - c) Both wave-like and particle-like behaviour of light
 - d) Neither wave-like and particle-like behaviour of light
- 155. When high speed electrons strike a target:
 - a) Only heat is produced

	b) Only continuous X-rays			
		naracteristic X-rays are emi		_
	•	•	and characteristic X-rays ar	re emitted
156.	_	h of a particle with mass 1	= :	0.5
	a) 6.63×10^{-33} m	b) 6.63×10^{-34} m	c) 6.63×10^{-35} m	d) 6.65×10^{-35} m
157.	. After np^6 electronic config	guration, the next orbital fi	lled will be	
	a) $(n + 1)d$	b) $(n + 1)s$	c) $(n+1)f$	d) None of these
158.	. Choose the incorrect state	ement		
	a) The shape of an atomic	orbital depends upon the	azimuthal quantum numbe	r
	b) The orientation of an a	tomic orbital depends upor	n the magnetic quantum nu	mber
	c) The energy of an electr	on in an atomic orbital of n	nulti-electron atom depend	s on principal quantum
	number			
	d) The number of degener	rate atomic orbitals of one	type depends on the value	of azimuthal and magnetic
	quantum numbers			
159.	. Photoelectric effect can be	e caused by :		
	a) Visible light but not by	X-rays		
	b) Gamma-rays but not by	y X-rays	. (4	
	c) Ultraviolet light only			
	d) Visible light, ultraviolet	t rays, X-rays and gamma r	ays also	
160.	. The number of neutrons p	oresent in ₁₉ K ³⁹ is :		
	a) 39	b) 19	c) 20	d) None of these
161.	. Deflection back of a few p	articles on hitting thin foil	of gold shows that	
	a) Nucleus is heavy			
	b) Nucleus is small			
	c) Both (a) and (b)	4		
		rance in the movement of o	•	
162.	An atom has 2 electrons	in <i>K</i> -shell, 8 electrons in	L-shell and 6 electrons in	<i>M</i> -shell. The number of <i>s</i> -
	electrons present in the el	lement is:		
	a) 10	b) 7	c) 6	d) 4
163.	. Which orbital is represent	ted by Ψ 4, 2, 0 ?		
	a) 4 <i>a</i>	b) 3 <i>a</i>	c) 4p	d) 4 <i>s</i>
164.		ion of a dipositive ion M^{2+}	is 2, 8, 14 and its mass num	ber is 56. The number of
	neutrons present is	X Y .		
	a) 32	b) 42	c) 30	d) 34
165.		of an electron in 2 <i>p</i> -orbital		
	a) $\frac{h}{2\pi}$	b) $\frac{h}{\sqrt{2\pi}}$	c) $\frac{2h}{\pi}$	d) None of these
		V = 10	π	
166.	. Which set has the same n			
			c) S ²⁻ , Ni ²⁺ , Zn	d) None of these
	The electronic configurati	ion of P in H ₃ PO ₄ is		
1	a) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$ c) $1s^2$, $2s^2$, $2p^6$		b) $1s^2$, $2s^2$, $2p^6$, $3s^2$	
			d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$,	
168.			1) is approximately 0.53Å.	The radius for the first
	excited state $(n = 2)$ orbit	_	0	0
	a) 0.27 Å	b) 1.27 Å		d) 3.12 Å
169.		of a metal is $4 \times 10^{14} \text{s}^{-1}$.	Γhe minimum energy of ph	oton to cause photoelectric
	effect is:			
	a) 3.06×10^{-12} J	-	c) 3.4×10^{-19} J	d) 2.64×10^{-19} J
170.	. Which wavelength falls in			
	a) 10,000 Å	b) 1000 Å	c) 1Å	d) 10^{-2} Å

a) Every object emits radiation whose predominant frequency depends on its temperature							
b) The quantum energy of a wave is proportional to	its frequency						
c) Photons are quanta of light							
d) The value of Planck's constant is energy depende							
172. What is the energy (in eV) require to excite the elec		ate in hydrogen atom?					
(n=principle quantum number)		<i>y</i>					
a) 13.6 b) 3.4	c) 17.0	d) 10.2					
173. Of the following transitions in hydrogen atom, the							
is:	one which gives an absorpt	ion fine of lowest frequency					
a) $n = 1$ to $n = 2$ b) $n = 3$ to $n = 8$	c) $n = 2$ to $n = 1$	d) $n = 8$ to $n = 3$					
174. Which is not in accordance to aufbau principle?	0 n - 2 to n - 1	$u_j n = 8 to n = 3$					
•	2						
a) $\frac{2s}{4}$ $\frac{2p}{4}$ b) $\frac{2s}{4}$ $\frac{2p}{4}$	c) $\frac{2s}{1}$ $\frac{2p}{11}$	d) 2s 2p 1 1 1					
175. Which of the following has more number of unpaired	ed electron?						
a) Zn ⁺ b) Fe ²⁺	c) Ni ²⁺	d) Cu ⁺					
176. The scientist who proposed the atomic model based	l on the quantization of ene	rgy for the first time is					
a) Max Planck b) Niels Bohr	c) De-Broglie	d) Heisenberg					
177. The energy per mole of photon of electromagnetic r	adiation of wavelength 400	0 Å is:					
a) 3.0×10^{-12} erg b) 4.0×10^{-12} erg		d) 6.0×10^{-12} erg					
178. A particle <i>A</i> moving with a certain velocity has the o		,					
25% of <i>A</i> and velocity 75% of <i>A</i> , calculate the de-Br		r					
a) 3 A° b) 5.33 A°	c) 6.88 A°	d) 0.48 A°					
179. The correct designation of an electron with $n = 4$, l							
a) $3d$ b) $4f$	c) 5p	d) 6 <i>s</i>					
180. The energy of the electron in first Bohr's orbit is -1	-	•					
state is	o.ocv. The energy of the en	eti oli ili its ili st exelteti					
a) -3.4 eV b) -27.8 eV	c) -6.8 eV	d) -10.2 eV					
	,	uj – 10.2 ev					
181. The statement that does not belong to Bohr's mode	i oi atoiii, is						
a) Energy of the electrons in the orbit is quantized							
b) The electron in the orbit nearest to the nucleus is							
c) Electrons revolve in different orbits around the r							
d) The electrons emit energy during revolution due		oic forces of attraction					
182. The ratio of radius of III and IV Bohr's orbits in hyd							
a) 3:4 b) 3:8	c) 9:16	d) 8 : 9					
183. In the Schrödinger wave equation, ψ represents:							
a) Orbitals b) Wave function	c) Amplitude function	d) All of these					
184. Which diagram best represents the appearance of t	he line spectrum of atomic l	nydrogen in the visible					
region?							
Increasing wave length							
a)	b)						
c)	d)						
, <u> </u>							
185. If the electron of a hydrogen atom is present in the							
a) $\frac{-e^2}{r}$ b) $\frac{-e^2}{r^2}$	c) $\frac{-e^2}{2r}$	d) $\frac{-e^2}{2r^2}$					
	$\frac{\sqrt{2r}}{2r}$	$\frac{2r^2}{2r^2}$					
186. What is the charge in coulomb on Fe ³⁺ ion?							
a) 4.8×10^{-19} C b) 1.6×10^{-19} C	c) 3.2×10^{-19} C	d) 6.4×10^{-19} C					
187. The ground state term symbol for an electronic stat	e is governed by						
a) Hund's rule	b) Heisenberg's principle						

171. Choose the incorrect statement

c) Aufbau principle	d) Pauli's exclusion princ	ciple
188. The number of elliptical orbits, including circular o	rbits in the M-shell of an at	om is:
a) 3 b) 4	c) 2	d) 1
189. Wave mechanical model of the atom depends upon	:	
a) de Broglie concept of dual nature of electron		
b) Heisenberg's uncertainty principle		
c) Schrödinger wave equation		
d) All of the above		
190. The velocity of a photon is:		
a) Independent of its wavelength		AY
b) Depends on its wavelength		
c) Depends on its source		
d) Equal to square of its amplitude		
191. The frequency of radiation emitted when the electr	on falls from $n=4$ to $n=1$ in	n a hydrogen atom will be
(Given, ionisation energy of	-34 x >	04
$103 \text{ H} = 2.18 \times 10^{-18} \text{ J atom}^{-1} \text{ and } h = 6.625 \times 10^{-18} \text{ J}$		10.00 4.015 -1
a) $1.54 \times 10^{15} \text{s}^{-1}$ b) $1.03 \times 10^{15} \text{s}^{-1}$	c) $3.08 \times 10^{15} \text{s}^{-1}$	d) $2.00 \times 10^{15} \text{s}^{-1}$
192. A node is a surface on which the probability of find		D > 00
a) Zero b) > 1	c) > 10	d) > 90
193. In photoelectric effect, the photo-current:	whoton	
a) Increases with increase of frequency of incident	-	
b) Decreases with increase of frequency of incidentc) Does not depend on the frequency of photon but	•	city of incident light
d) Depends both on intensity and frequency of the		sity of incluent light
194. Possible number of orientations of a subshell is:	mendent photon	
a) l b) n	c) $2l + 1$	d) n^2
195. The orientation of an atomic orbital is governed by	,	uj ii
a) Magnetic quantum number	•	
b) Principal quantum number		
c) Azimuthal quantum number		
d) Spin quantum number		
196. The ratio of the radius of the orbit for the electron	n orbiting the hydrogen n	ucleus to that of an electron
orbiting a deuterium nucleus is:	0 7 0	
a) 1 : 1 b) 1 : 2	c) 2:1	d) 1:3
197. Which of the following sets of quantum numbers is	correct for an electron in 4	f-orbital?
a) $n = 3, l = 2, m = -2, s = +\frac{1}{2}$ b) $n = 4, l = 4, m = -4, s = -\frac{1}{2}$ c) $n = 4, l = 3, m = +1, s = +\frac{1}{2}$ d) $n = 4, l = 3, m = +4, s = +\frac{1}{2}$		
a) $n = 3, i = 2, m = -2, s = +\frac{7}{2}$		
b) $n = 4, l = 4, m = -4, s = -\frac{1}{2}$		
2		
c) $n = 4, l = 3, m = +1, s = +\frac{1}{2}$		
0) $n = 4, l = 3, m = +4, s = +\frac{7}{2}$		
198. The electronic energy levels of the hydrogen atom	n the Bohr's theory are cal	led:
a) Orbitals b) Orbits	c) Rydberg levels	d) Ground states
199. A photoelectric cell is a device, which:		
a) Converts light into electricity		
b) Converts electricity into light		
c) Stores lights		
d) Stores electricity		
200. An <i>f</i> -shell containing 6 unpaired electrons can excl	nange	

201	a) 6 electrons . Mg ²⁺ is isoelectrionic wit	b) 9 electrons th	c) 12 electrons	d) 15 electrons		
	a) Cu ²⁺	b) Zn ²⁺	c) Na ⁺	d) Ca ²⁺		
202	. The first orbital of H is re	,	,	,		
	$\psi = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$, where a_0 is Bohr's radius. The probability of finding the electron at a distance					
	from the nucleus in the re					
	a) $\psi^2 dr$	b) $\int \psi^2 4\pi r^2 dv$	c) $\psi^2 4\pi r^2 dr$	d) $\int \psi dv$		
000	, .	J	- 7 1	7) 1		
203	. The correct statement ab	=	137 11 1	\sim \sim \sim		
	a) It is a nucleus of deute		b) It is an ionized hydrogo	en atom		
004	c) It is an ionized hydrog		d) It is an α - particle			
204	==	iding to intense yellow line		D O A A A		
205	a) 2.10 eV	b) 43.37 eV	c) 47.12 eV	d) 2.11 kcal		
205	. One electron volt is:					
	=	b) $1.6 \times 10^{-12} \text{erg}$		d) 1.6×10^8 erg		
206	=	at is in no way related to ot	-			
	a) <i>l</i>	b) <i>s</i>	c) n	d) m		
207	. The de-Broglie waveleng	th relates to applied voltage	e ror α -particles as			
	a) $\lambda = \frac{12.3\text{A}^{\circ}}{\sqrt{V}}$	b) $\lambda = \frac{0.286}{\sqrt{V}} \text{A}^{\circ}$	c) $\lambda = \frac{0.101}{\sqrt{V}} A^{\circ}$	d) $\lambda = \frac{0.856}{\sqrt{V}} \text{A}^{\circ}$		
208			with a proton moving at 1.			
		and $h = 6.63 \times 10^{-34} \text{ Js}$				
	a) 0.032 nm	b) 0.40 nm	c) 2.5 nm	d) 14.0 nm		
209	. The number of waves in a		<u> </u>	w) 1 110 11111		
	a) n^2	b) n	c) n – 1	d) n – 2		
210	•	,	en atom will require larges	,		
	a) From $n = 1$ to $n = 2$		b) From $n = 2$ to $n = 3$	t amount of energy i		
	c) From $n = \infty$ to $n = 1$		d) From $n = 3$ to $n = 5$			
211	•	umber <i>n</i> can have integral v	•			
211	a) 0 to 10	b) 1 to ∞	c) 1 to $(n = l)$	d) 1 to 50		
212	•		nbers $n = 5, l = 0$ or $n = 3$			
212	a) $n = 5, l = 0$	-	c) $n = 3, l = 2$	d) Data insufficient		
212		_	_	0Å and the energy E_2 of the		
213	radiation with a wavelen		don with a wavelength ood	oh and the energy L ₂ of the		
	a) $E_1 = 6E_2$	b) $E_1 = 2E_2$	c) $E_1 = 4E_2$	d) $E_1 = 1/2E_2$		
211	, -	,	d s for the electron in an atom $\frac{1}{2}$, <u> </u>		
217	permissible solution of th		a 3 for the electron in an au	om does not provide a		
		-	1	1		
	a) 3, 2, 1, $\frac{1}{2}$	b) 3, 1, 1, $-\frac{1}{2}$	c) 3, 3, 1, $-\frac{1}{2}$	d) 3, 2, $-2, \frac{1}{2}$		
215		·	d by the hydrogen atom in	the Lyman series?		
7	($h=$ Planck's constant, $c=$	velocity of light, R=Rydber	g's constant).			
	a) $\frac{5hcR}{36}$	b) $\frac{4hcR}{2}$	c) $\frac{3hcR}{4}$	d) $\frac{7hcR}{14A}$		
	30	3	4	$\frac{144}{144}$		
216	. Which is not electromagn					
	a) Infrared rays	b) X-rays	c) Cathode rays	d) γ-rays		
217			s represents the highest en			
	a) $n = 4, l = 0, m = 0, s = 0$	$=+\frac{1}{2}$	b) $n = 3, l = 1, m = 1, s = 0$ d) $n = 3, l = 0, m = 0, s = 0$	$=+\frac{1}{2}$		
	c) $n = 3, l = 2, m = -2, s$	$s = +\frac{1}{2}$	d) $n = 3, l = 0, m = 0, s =$	$= +\frac{1}{2}$		
21Ω	. Which consists of particle	<u> </u>	, , , , -, -, -, -, -, -, -, -, -, -, -,	2		
-10	consists of particle	. o				

a) Alpha rays	b) Beta rays	c) Cathode rays	d) All of these
219. If λ_1 and λ_2 are the way	velength of characteristic X	K-rays and gamma rays re	spectively, then the relation
between them is:			
a) $\lambda_1 = 1/\lambda_2$	b) $\lambda_1 = \lambda_2$	c) $\lambda_1 > \lambda_2$	d) $\lambda_1 < \lambda_2$
220. Which best describe the	emission spectra of atomic	hydrogen?	
a) A series of only four li	nes		
b) A discrete series of lin	es of equal intensity and eq	qually spaced with respect t	to wavelength
c) Several discrete series	s of lines with both intensity	y and spacings between line	es decreasing as the wave
number increase with	in each series		
d) A continuous emission	n of radiation of all frequen	cies	
221. In the ground state of the	e H-atom, the electron is :		
a) In the second shell			
b) In the nucleus			
c) Nearest to the nucleus	S		
d) Farthest from the nuc	leus		
222. Atoms consist of electro	_		
attributed to the electron	ns was doubled, the atomic	mass of ${}_{6}C^{12}$ would be app	
a) Same	b) Doubled	c) Halved	d) Reduced by 25%
223. The number of electrons	in a neutral atom of an eler	ment is equal to its:	
a) Atomic weight	b) Atomic number	c) Equivalent weight	d) Electron affinity
224. Which particle contains	2 neutrons and 1 proton?		
a) ₁ H²	b) ₂ He ⁴	c) ₁ T ³	d) $_1D^2$
225. The highest number of u	npaired electrons are in		
a) Fe	4	b) Fe ²⁺	
c) Fe ³⁺	4	d) All have equal number	of unpaired electrons
226. Maximum number of ele	ctrons in an orbit is given b	y:	
a) n^2	b) 2n ²	c) $n^2/2$	d) None of these
227. The wave nature of elect	ron is verified by		
a) De-Broglie		b) Davisson and Germer	
c) Rutherford		d) All of these	
228. Compared to the mass of	f lightest nuclei, the mass of	an electron is only (app.)	
a) 1/80	b) 1/800	c) 1/1800	d) 1/2800
229. Which one of the followi	ng pair of atoms/atom-ion l	have identical ground state	configuration?
a) Li ⁺ and He ⁺	b) Cl ⁻ and Ar	c) Na ⁺ and K ⁺	d) F ⁺ and Ne
230. The total number of orbi			
a) 2 <i>n</i>	b) $2n^2$	c) n^2	d) $n + 1$
231. Which of the following st	tatements does not form a p	part of Bohr's model of hyd	rogen atom?
	is in the orbit is quantised		
	bit nearest the nucleus has	•	
c) Electrons revolve in d	ifferent orbits around the n	ucleus	
_	city of the electrons in the o	orbit cannot be determined	simultaneously
232. Penetration power of pr			
a) Greater than e	b) Less than electron	c) Greater than $'n'$	d) None of these
233. Bohr's theory is applicab			
a) He	b) Li ²⁺	c) He ²⁺	d) None of these
234. Which set of quantum nu		st electron of Mg ⁺ ion?	
a) $n = 3, l = 2, m = 0, s$	•		
b) $n = 2, l = 3, m = 0, s$	· · · · · · · · · · · · · · · · · · ·		
c) $n = 1, l = 0, m = 0, s$	•		
d) $n = 3, l = 0, m = 0, s$	= +1/2		

a) $r^2 \Psi^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c) $r^2 \Psi^2$ a_0	d) $r^2 \Psi^2 \left[\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right]$
237. In which orbital e	lectron is most tightly bound to	the nucleus?	Y
a) 5 <i>s</i>	b) 4p	c) 4 <i>d</i>	d) 5 <i>d</i>
238. Ca ² is isoelectron			
a) Na	b) Ar	c) Mg^2	d) Kr
239. Threshold wavele	ength depends upon :	, ,	
a) Frequency of in	ncident radiation		0 4
b) Velocity of elec	etrons		_
c) Work function		4	
d) None of the ab	ove		
240. The electrons ide	ntified by quantum numbers		
I. $n = 4, l =$			
II. $n = 4, l =$	0		
III. $n = 3, l =$			
IV. $n = 2, l =$	1		
Can be placed in o	order of increasing energy from t	he lowest to highest as	
a) IV <ii<iii<i< td=""><td>b) II<iv<i<iii< td=""><td>c) I<iii<ii< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<ii<></td></iv<i<iii<></td></ii<iii<i<>	b) II <iv<i<iii< td=""><td>c) I<iii<ii< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<ii<></td></iv<i<iii<>	c) I <iii<ii< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<ii<>	d) III <i<iv<ii< td=""></i<iv<ii<>
241. The energy of an	electron in first Bohr orbit of H-a	atom is -13.6 eV. The po	ssible energy value of electron
in the excited stat	te of Li ²⁺ is		
a) -122.4 eV	b) 30.6 eV	c) -30.6 eV	d) 13.6 eV
242. When the azimutl	hal quantum number has the val	ue of 2, the number of or	bitals possible are
a) 7	b) 5	c) 3	d) 0
243. Compared to the	lightest atom the heaviest atom v	weighs:	
a) 200 times	b) 238 times	c) 92 times	d) 16 times
244. If the following pa	articles travel with equal speed, t	then for which particle th	ne wavelength will be longest?
a) Proton	b) Neutron	c) α-particle	d) β -particle
245. The orbital cylind	rically symmetrical about x -axis	is:	
a) p_z	b) p_{ν}	c) p_x	d) d_{xz}
	naximum number of possible ori		7 12
a) s	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
	lectric equation states that $E_k =$		
Here, E_k refers to			
7 17	of all ejected electrons	b) Mean kinetic ener	gy of emitted electrons
	tic energy of emitted electrons	=	energy of emitted electrons
248. The orbital closes		.,	
a) 7 <i>s</i>	b) 3 <i>d</i>	c) 6 <i>p</i>	d) 4 <i>s</i>
,	among the following is	- <i>)</i> -r	- 3 -
a) Ca and K	b) Ar and Ca ²⁺	c) K and Ca ²⁺	d) Ar and K
•	_	•	where h is Planck's constant. The
	photon is $p = h/\lambda$, where λ is		on. Then we may conclude that
a) $(E/p)^{1/2}$	b) <i>E/p</i>	c) <i>Ep</i>	d) $(E/p)^2$
-) (-)	J - I F	- <i>)</i> r	
			Page 16

235. The electronic configuration for $_{26}$ Fe is: a) [Ar]3 d^6 ,4 s^2 b) [Ar]3 d^7 ,4 s^2

b) $[Ar]3d^7, 4s^2$

236. Which of the following radial distribution graphs correspond to n=3, l=2 for an atom?

c) $[Ar]3d^5, 4s^2$

d) $[Ar]3d^7, 4s^1$

251			is 10 ^{–5} m. Hence, uncertain	ity in velocity (ms ⁻¹) is	
	(Planck's constant $h = 6.0$.) 0.5 10=34	1) 5 0 10-24	
0=0	a) 2.1×10^{-28}	b) 2.1×10^{-34}	c) 0.5×10^{-34}	d) 5.0×10^{-24}	
252	. The mass of a neutron is o		26.	27.	
	a) 10^{-23} kg	b) 10^{-24} kg	c) 10^{-26} kg	d) 10^{-27} kg	
253			vn Kufri Hill in Shimla at 1		
	a) 1×10^{-36} m	b) 1×10^{-37} m	c) 1×10^{-38} m	d) 1×10^{-39} m	
254	. The Z $-$ component of ang	gular momentum of an elec	tron in an atomic orbital is		
	a) Magnetic quantum nun	nber	b) Azimuthal quantum nu	umber	
	c) Spin quantum number		d) Principal quantum nur	nber	
255	. An electron with values 4	4, 2, -2 and $+1/2$ for the se	t of four quantum numbers	$s n, l, m_l$ and s respectively,	
	belongs to				
	a) 4s-orbital	b) 4 <i>p</i> -orbital	c) 4 <i>d</i> -orbital	d) $4f$ -orbital	
256	. Consider the following sta	atements :		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	
	1.Electron density in <i>xy</i> p	lane in $3d_{x^2-v^2}$ orbital is z	ero		
		olane in $3d_{z^2}$ orbital is zero	~	V ·	
	3.2s orbital has only one s	•			
	4. For $2p_z$ orbital yz is the	-			
	The correct statements ar				
	a) 2 and 3	b) 1,2,3,4	c) Only 2	d) 1 and 3	
257				u) 1 anu 3	
237		y of finding electron in the	$u_{\chi y}$ of offairs.		
	a) Along the <i>x</i> -axis				
	b) Along the <i>y</i> -axis				
	c) At an angle of 45° from	4	()		
	d) At an angle of 90° from) Y		
258	. Two electron in an atm of				
	a) The same principle quantum number				
	b) The same azimuthal qu				
	c) The same magnetic qua				
	d) An identical set of quar				
259	. The energy of electromag	netic radiation depends on	1:		
	a) Amplitude and wavelet	ngth			
	b) Wavelength	X , Y			
	c) Amplitude				
	d) Temperature of mediu	m through which it passes			
260	. Correct electronic configu	ıration of Cu ²⁺ is:			
	a) $[Ar]3d^8, 4s^1$	b) [Ar] $3d^{10}$, $4s^24p^1$	c) $[Ar]3d^{10}, 4s^1$	d) [Ar]3 <i>d</i> ⁹	
261	. The difference between ic	ons and atoms is of:			
	a) Relative size	b) Configuration	c) Presence of charge	d) All of these	
262	. Electronic configuration o	, .	, G		
	a) $1 s^0$	b) 1 s ¹	c) $1 s^2$	d) $1s^1$, $2s^2$	
263		mbol for an electronic state	,	,, == ,==	
	a) Heisenberg's principle		b) Hund's rule		
	c) Aufbau principle		d) Pauli exclusion princip	ale	
264		s from $n-2$ to $n-1$ will pro	duce shortest wavelength i		
201	quantum state)	7 11 0111 11 — 2 to 11 — 1 Will pro	auce shortest wavelength i	iii (where <i>n</i> -principle	
	a) Li ²⁺	b) He ⁺	c) H	d) H ⁺	
265	•		•	•	
205		i element is 17. The numb	er of orbitals colltaining e	electron pairs in the valency	
	shell is:	k) 2	a) 2	4) (
	a) 8	b) 2	c) 3	d) 6	

266. The number of electrons in an atom with atomic	number 105 having $(n + l)$)=8 are:
a) 30 b) 17	c) 15	d) Unpredictable
267. Three isotopes of an element have mass number	ers, m , $(m + 1)$ and $(m + 2)$	2). If the mean mass number is
(m + 0.5) then which of the following ratios ma	y be accepted for m , $(m + 1)$	(m+2) in that order:
a) 1:1:1 b) 4:1:1	c) 3:2:1	d) 2:1:1
268. According to Bohr's theory the radius of electr	on in an orbit described by	y principle quantum number <i>n</i>
and atomic number Z is proportional to :		
a) $Z^2 n^2$ b) $\frac{Z^2}{n^2}$	Z^2	d) $\frac{n^2}{7}$
$I\iota$	c) $\frac{Z^2}{n}$	L
269. The radius of the first Bohr orbit of hydrogen ato	_	
a) 8.46 Å b) 0.705 Å	c) 1.59 Å	d) 4.76 Å
270. The de Broglie wavelength associated with a ma	terial particle is:	
a) Inversely proportional to momentum		
b) Inversely proportional to its energy		
c) Directly proportional to momentum		
d) Directly proportional to its energy		
271. Energy levels A, B, C of a certain atom corresponding		
λ_1, λ_2 and λ_3 are the wavelengths of radiations		itions C to B , B to A and C to A
respectively, which of the following statements i	s correct?	
λ_1		
В		
λ_2 λ_3		
	$\mathcal{C}_{\lambda}, \mathcal{V}'$	
a) $\lambda_3 = \lambda_1 + \lambda_2$ b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$	$c)$ λ $\pm \lambda$ $\pm \lambda$ $= 0$	$d) \lambda_3^2 = \lambda_1^2 + \lambda_2^2$
$\lambda_1 \lambda_3 = \lambda_1 + \lambda_2 \qquad \qquad \lambda_1 + \lambda_2 \qquad \qquad \lambda_1 + \lambda_2 \qquad \qquad \lambda_2 + \lambda_2 \qquad \qquad \lambda_3 = \lambda_1 + \lambda_2 \qquad \qquad \lambda_3 = \lambda_1 + \lambda_2 \qquad \qquad \lambda_3 = \lambda_1 + \lambda_2 \qquad \qquad \lambda_4 + \lambda_5 \qquad \qquad \lambda_5 = \lambda_5 + \lambda_$	$c_1 n_1 + n_2 + n_3 = 0$	$u_1 n_3 = n_1 + n_2$
272. Naturally occurring elements are mixtures of:		
a) Isotone b) Isobars	c) Isotopes	d) Isomers
273. Krypton ($_{36}\mbox{Kr})$ has the electronic configuration	$(_{18}\text{Ar})4s^23d^{10}4p^6$, the 37	th electron will go into which of
the following subshells?		
a) 4 <i>f</i> b) 4 <i>d</i>	c) 3 p	d) 5 <i>s</i>
274. 1 fermi is equal to:		
a) 10^{-13} cm b) 10^{-10} cm	c) 10^{-4} cm	d) 10^{-8} cm
275. When an electron moves from higher orbit to a l	ower orbit is produced	
a) Absorption spectra b) Emission spectra	c) α -particle	d) None of these
276. A photon in <i>X</i> region is more energetic than in the	ne visible region X is:	
a) Infrared b) Ultraviolet	c) Microwave	d) Radiowave
277. According to aufbau principle, the correct order	of energy of $3d$, $4s$ and $4p$ -o	orbitals is
a) $4p < 3d < 4s$ b) $4s < 4p < 3d$	c) $4s < 3d < 4p$	d) $3d < 4s < 4p$
278. The total number of valency electrons for NH_4^+ is	S:	
a) 9 b) 8	c) 6	d) 11
279. According to Bohr's model of hydrogen atom		
a) Total energy of the electron is quantized	b) Angular momentur	n of electron is quantised
c) Both (a) and (b)	d) None of the above	
280. The H-spectrum show		
a) Heisenberg's uncertainty principle	b) Diffraction	
c) Polarisation	d) Presence of quantis	sed energy level
281. The total number of protons present in all the ele	ements upto 'Zn' in the per	iodic table is:
a) 300 b) 350	c) 465	d) 450
282. Time period of a wave is 5×10^{-3} s, what is the f	requency?	
a) $5 \times 10^{-3} \text{s}^{-1}$ b) $2 \times 10^{2} \text{s}^{-1}$	c) $23 \times 10^3 \text{s}^{-1}$	d) $5 \times 10^2 \text{s}^{-1}$

283. The increasing order (lowest first) of the value of $\frac{e}{m}$	for electron (e) , proton (p)),neutron (n) and alpha
particle (α) will be		
a) n, α, p, e b) e, p, n, α	c) n, p, e, α	d) <i>n</i> , <i>p</i> , <i>α</i> , <i>e</i>
284. Orbitals processing the same energy are called:		
a) Hybrid orbitals b) Valency orbitals	c) <i>d</i> -orbitals	d) Degenerate orbitals
285. Which set has the same number of unpaired electron	ns in their ground state?	-
a) N, P, V b) Na, P, Cl	c) Na ⁺ , Mg ²⁺ , Al	d) Cl ⁻ , Fe ³⁺ , Cr ³⁺
286. Wavelength of a photon is 2.0×10^{-11} m, $h = 6.6 \times 10^{-11}$	10^{-34} Js. The momentum of	photon is:
a) $3.3 \times 10^{-23} \text{ kg m s}^{-1}$,	
b) $3.3 \times 10^{22} \text{ kg m s}^{-1}$		
c) $1.452 \times 10^{-44} \text{ kg m s}^{-1}$		
d) $6.89 \times 10^{43} \text{ kg m s}^{-1}$		
287. The atomic number of an element is 35 and its mass	is 81. The number of electi	ons in its outermost shell is
a) 3 b) 5	c) 7	d) 9
288. According to Dalton's atomic theory, the smallest pa	,	
a) Element b) Atom	c) Molecule	d) Ion
289. The possibility of finding an electron in an orbital w	-	uj ten
a) Rutherford b) Bohr	c) Heisenberg	d) Schrödinger
290. Which statement is/are correct?	c) Heisenberg	a) bein baniger
·		
a) Volume of proton is approximately $(4/3 \pi r^3) = 1.5 \times 10^{-38} \text{ cm}^3$		
b) The radius electron is 42.8×10^{-13} cm		
c) The density of nucleus is 10^{14} g/cm ³		
d) All of the above		
291. X-rays cannot penetrate through a sheet of:		
a) Wood b) Paper	c) Aluminium	d) Lead
292. How many electrons can fit into the orbitals that cor	•	•
	•	
a) 2 b) 8	c) 18	d) 32
293. The total values of magnetic quantum number of an		
a) 9 b) 6	•	d) 2 $= 4 + 6$
294. Which transition in the hydrogen atomic spectrum $n=2$ of He ⁺ spectrum?	will have the same waveleng	gui as the transition, $n=4$ to
a) $n = 4$ to $n = 3$ b) $n = 3$ to $n = 2$	a) $m = 4 + 0 = 2$	d) m = 2 + 0 m = 1
		u) n = 2 to n = 1
295. According to $(n + l)$ rule after completing 'np' level a) $(n - 1)d$ b) $(n + 1)s$		d) (m + 1)m
	c) nd	d) $(n+1)p$
296. If the series limit of wavelength of the Lyman series		12 A, then the series limit of
wavelength for the Balmer series of the hydrogen at	_	12 04 0 40 8
a) 912 Å b) 912 × 2 Å	c) 912 × 4 Å	d) 912/2 Å
297. The best metal to be used for photoemission is:		
a) Potassium b) Sodium	c) Cesium	d) Lithium
298. The correct Schrödinger's wave equation of an elect	ron with <i>E</i> as total energy a	and V as potential energy is:
a) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2}{mh^2} (E - V)\Psi = 0$		
•		
b) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m}{h^2} (E - V) \Psi = 0$		
c) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$		
$\partial \int \frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} + \frac{\partial z^2}{\partial z^2} + \frac{\partial z}{\partial z^2} + \frac{\partial z}{\partial z^2} = 0$		
d) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m^2}{h} (E - V)\Psi = 0$		
299. Electronic configuration of tritium is:		

	a) 1s ¹	b) $1s^2$, $2s^2$	c) $1s^1, 2s^1$	d) None of these	
300.	The ratio of e/m , $i.e.$, spec			.,	
	a) Has the smallest value when the discharge tube is filled with H ₂				
	b) Is constant		2		
	c) Varies with the atomic number of gas in the discharge tube				
	d) Varies with the atomic	•	•		
301.	The energy of a photon is 3		_		
	$(h = 6.62 \times 10^{-27} \text{ergs}, c =$		Ü		
	a) 662	b) 1324	c) 66.2	d) 6.62	
302.	,	,	tals described by the three		
	have the same energy in th	-			
	(A) $n = 1, l = 0, m = 0$				
	(B) $n = 2, l = 0, m = 0$				
	(C) $n = 2, l = 1, m = 1$				
	(D) $n = 3, l = 2, m = 1$				
	(E)n = 3, l = 2, m = 0			V ·	
	a) (D) and (E)		CA		
	b) (C) and (D)				
	c) (B) and (C)				
	d) (A) and (B)				
303.	Zeeman effect refers to the	2			
		_	n the presence of an externa	al electrostatic field	
	b) Random scattering of li				
	c) Splitting up of the lines				
	d) Emission of electrons fr	_			
304.	Bohr's radius of 2nd orbit	of Be ³⁺ is equal to that of			
	a) 4th orbit of hydrogen		b) 2nd orbit of He ⁺		
	c) 3rd orbit of Li ²⁺		d) First orbit of hydrogen	4 1 1 7000	
305.		i must possess to acquire a	momentum equal to the pl	noton of wavelength 5200	
	A°, will be	13.6300	2 4 4 0 0 - 1	D 4000 -1	
206	•	b) 1298 ms ⁻¹	c) 1400 ms ⁻¹	d) 1300 ms ⁻¹	
306.	In potassium the order of			J) 4 - 2 J	
207		b) $4s < 3d$	c) $4s > 4p$	d) $4s = 3d$	
307.	[Ar] $3d^{10}$, $4s^1$ electronic co	Y	a) C.,	4) W	
200	a) Ti	b) Tl	c) Cu	d) V	
300.		b) 9.6×10^{-10} esu	the value of charge in Li ⁺ i c) 1.44×10^{-9} esu	d) 2.4×10^{-10} esu	
200	What is the ration of mass		•	u) 2.4 × 10 Tesu	
309.	a) 1:2	b) 1:1	c) 1:1837	d) 1:3	
210		,	e difference between the ad	,	
310.	a) Increases	b) Remains constant	c) Decreases	d) None of these	
311	The potential energy of an	=	-	uj None of these	
	_	_		$3e^2$	
	a) $+\frac{3e^2}{4\pi\varepsilon_0 r}$	b) $-\frac{3e}{4\pi\varepsilon_0 r}$	c) $-\frac{3e^2}{4\pi\varepsilon_0 r}$	$d) - \frac{3e^2}{4\pi\varepsilon_0 r^2}$	
	The orbital angular mome	0		111001	
012.	7		_		
	a) $\frac{n}{\sqrt{2}\pi}$	b) $\sqrt{3} \frac{h}{2\pi}$	c) $\sqrt{\frac{3}{2}\frac{h}{\pi}}$	d) $\sqrt{6} \cdot \frac{h}{2\pi}$	
	$\sqrt{2\pi}$	2π	$\sqrt{2\pi}$	2π	
313.	Transition from $n = 2,3,4$,	$5 \dots to n = 1 is called$			
	a) Lyman series	b) Paschen series	c) Balmer series	d) Bracket series	

314. If the total energy of	an electron in a hydrogen l	ike atom in an excited sta	te is -3.4 eV, then the de Broglie
wavelength of the ele			
a) 6.6×10^{-10}	b) 3×10^{-10}	c) 5×10^{-9}	d) 9.3×10^{-12}
315. Which <i>d</i> -orbital does	s not have four lobes?		
a) $d_{x^2-y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{xz}
316. The nucleus of an ato	om contains		
a) Proton and electro	on	b) Neutron and elect	cron
c) Proton and neutro		d) Proton, neutron a	
<u>-</u>	trons present in acetylene n	=	
a) 14	b) 26	c) 18	d) 16
•	electrons in the outermost s	shell is:	
a) Cu ⁺	b) Th ⁴⁺	c) Cs ⁺	d) K ⁺
•	er of electrons in a p-orbita	I with $n=6$ and $m=0$ ca	
a) 2	b) 6	c) 10	d) 14
320. The graph represent	•	· ,	
1			
		Ψ	Ψ
$\Psi \Big \Big \setminus$	$\Psi \setminus$		
a) \	b) \	c)	d) (
$\overline{a_0}$	a_0	a_0	a_0
	1		I
321. Energy of photon of v	-		15.4.117
a) 1 eV	b) 1 MeV	c) 1 eV	d) 1 keV
	ng statements is incorrect?		
21		ed orbitals among s and p	block elements is reflected in
trends of IE across		. d d.: 4 . l	. black alamanta :
		ed orbitals among s and p	block elements is reflected in
EA trends across a	•	1:00	
Cl	s incorrect for cases where	energy amerence between	n ns and $(n-1)d$ sub-shell us
larger	16.611 4 4 1 1 11 1	1 . 1	
•	nalf filled sub-shell is due to		
-		=	uency than a certain minimum:
a) Frequency	b) Wavelength	c) Speed	d) Charge
	ice between the ground stat		ed state is 4.4×10^{-4} J, the
9 1	n required to produce the tr		
a) 2.26×10^{-12} m	b) 1.13×10^{-12} m	•	d) 4.52×10^{-12} m
	owing, the radius will be san		
a) $He^{+}, n = 2$	b) Li^{2+} , $n=2$	c) Be ³⁺ , $n = 2$	d) Li^{2+} , $n = 3$
326. The volume of a prot			
	b) $1.5 \times 10^{-38} \text{cm}^3$	c) $1.5 \times 10^{-34} \text{cm}^3$	d) None of these
327. Normally, the time ta	iken in the transition is:		
a) Zero	b) 1 sec	c) 10 ⁻⁵ sec	d) 10 ⁻⁸ sec
328. When the value of az	imuthal quantum number is	s 3, magnetic quantum nu	mber can have values:
a) +1,−1	b) $+3, +2, +1, 0, -1, -1$	-2, -x) $+2, +1, 0, -1, -2$	d) $+1, 0, -1$
329. Positive rays or cana	l rays are:		
a) Electromagnetic w	vaves		
b) A steam of positive	ely charged gaseous ions		
c) A steam of electro	ns		
d) Neutrons			
330. X-rays do not show the	he phenomenon of :		

	a) Diffraction			
	b) Polarisation	. 11		
	c) Deflection by electric fi	leld		
221	d) Interference		h	··· (A ··) ii l
331			he uncertainty in its positio	
	a) $\frac{h}{2}\pi m\Delta v$	b) $\frac{2\pi}{hm\Lambda v}$	c) $\frac{h}{4\pi m \Lambda v}$	d) $\frac{2\pi m}{h\Delta n}$
332	_	TUTTE	s is x , the longest waveleng	$\iota\iota\Delta\iota$
-	is		,	
	a) $\frac{36x}{5}$	b) $\frac{5x}{9}$	c) $\frac{x}{4}$	9x
	0	b) 9	$\frac{c}{4}$	$\frac{a}{5}$
333	. Rydberg is :			
		nstant and is a universal co		A . Y
	-	l one Rydberg equal to 1.09		
		nd one Rydberg equal to 1.	$1.097 \times 10^7 \mathrm{m}^{-1}$	
20.4	d) Unit of energy and one			V
334	. Which is not deflected by	_	a) Proston	d) Electron
225	a) Neutron	b) Positron	c) Proton	d) Electron
333		$\frac{1}{2}$ and $-\frac{1}{2}$ for an electron re		
		clockwise and anticlockwis		
		anticlockwise and clockwise		
	-	ectron pointing up and dov	-	
226		ical spin states which have		
336		of the incident radiations i	ncreases the:	
	a) Rate of emission of phob) Work function	oto-electrons		
	c) Kinetic energy of photo	n-alactrons		
	d) Threshold frequency	y-cicci olis		
337		ohoton whose momentum	is 1.1×10^{-23} kg ms ⁻² ?	
00.		b) $5 \times 10^{17} \text{Hz}$		d) $5 \times 10^{18} \text{Hz}$
338	. A quanta will have more ϵ		3) 0.0 11 20 112	.,
	a) The wavelength is large			
	b) The frequency is higher			
	c) The amplitude is highe	r		
	d) The velocity is lower	<i>Y</i>		
339			ght of 4500 A $^\circ$. If one quant	tum of energy is absorbed
	by each molecule, the KE	of iodine atoms will be		
	(BE of $I_2 = 240 \text{ kJ/mol}$)	40	40	4.0
	a) 240×10^{-19} J	-	c) 2.16×10^{-19} J	d) 2.40×10^{-19} J
340	. The rest mass of a photon		21/2	15.1.72
241	a) Zero	b) hc/λ	c) $h/c\lambda$	d) h/λ
341			ich part of electromagnetic	
2/12	a) UV region	b) Visible region nic configuration of Cr ²⁺ ion	c) IR region	d) Microwave region
344	a) $4s^03d^4$	b) $4s^23d^2$	c) $4s^23d^0$	d) $3p^64s^2$
343	,	,	bitals, all the 'p' orbitals an	, .
JTJ	cesium ion are respective	-	bicais, air tile politicais all	ia an the a vivitals vi
	a) 8, 26, 10	b) 10, 24, 20	c) 8, 22, 24	d) 12, 20, 22
344		e velocity acquired by the e		- ,
_	a) $\sqrt{V/m}$	b) $\sqrt{(eV/m)}$	c) $\sqrt{(2eV/m)}$	d) None of these
	- 5 V · 1 ····	- , v (· · / · · ·)	- , v (, m)	-

345. The ionization energy of second orbit would be	the ground state hydrogen	atom is 2.18×10^{-18} J. The	energy of an electron in its
	L) [45 × 10-19 t	-) 2 FO v 10=18 I	J) 4.00 × 10=19 I
		c) -3.58×10^{-18} J	
346. The velocity of electron			=
a) $\frac{1}{10}$ th	b) $\frac{1}{100}$ th	c) $\frac{1}{1000}$ th	d) Same
347. A gas absorbs photon of	100	1000	ission is at 680 nm. the
other is at	333 IIII and enits at two w	vavelengths. If one of the em	ission is at ood inii, the
a) 1035 nm	b) 325 nm	c) 743 nm	d) 518 bm
348. Bohr's model violates th		,	u) 516 bili
a) All electrons have san		because it assumes that.	(Y
b) The nucleus have sam	•		4 7
c) Electrons can revolve	=		
•	a accelerate without emitting	na radiant anaray	4
349. The stability of ferric ion		ng radiant energy	4 7
a) Half filled f -orbitals	is due to	b) Half filled <i>d</i> -orbitals	0 1
c) Completely filled <i>f</i> -or	hitale	d) Completely filled d -orb	nitale
350. The electron possesses v		, ,	ntais
a) Bohr	b) de Broglie	c) Davission and germer	d) Schrödinger
351. The nature of canal rays	=	c) Davission and germen	u) sciii ounigei
a) Nature of electrode	depends on:		
	tuho		
b) Nature of dischargingc) Nature of residual gas			
d) All of the above		A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	alactrone in phaephanium	ion DU ⁺ io	
352. Total number of valency			J) 10
a) 16	b) 32	c) 8	d) 18
353. Neutron possesses:		h) No not ahayaa	
a) Positive charge		b) No net charge	
c) Negative charge	lin.	d) All are correct	
354. Cathode-ray tube is used			
a) Compound microscop	Je -		
b) A radio receiver			
c) A television set	ton		
d) A van de Graff genera			
355. Non-directional orbital i		a) 4 f	4) 2 -
a) 4 <i>p</i>	b) 4 <i>d</i>	c) $4f$	d) 3 <i>s</i>
356. How many unpaired elec			D (
a) 0	b) 2	c) 4	d) 6
357. The maximum sum of th	•	• •	
a) 6	b) 5	c) 4	d) 3
358. The magnitude of the sp			D.M. C.I
a) $S = \sqrt{s(s+1)} \frac{h}{2\pi}$	b) $S = s \frac{n}{2}$	c) $S = \frac{3}{2} \times \frac{h}{2\pi}$	d) None of these
211	21t	2 21t	
359. A $3d$ -electron having $s = 3 + 3$			d) + 4
a) +2	b) +3	c) -3	d) +4
360. The emission spectrum of		=	,
	1 2	ere, $n_1 = 1,2,3,$ and $n_2 = 1$	2,3,4, The spectral lines
correspond to Paschen s		1) 4 1 2 2 =	
a) $n_1 = 1$ and $n_2 = 2,3,4$		b) $n_1 = 1$ and $n_2 = 3,4,5$	
c) $n_1 = 3$ and $n_2 = 4.5.6$)	d) $n_1 = 2$ and $n_2 = 3,4,5$	

361.	The maximum number of	3a-electrons having spin q	[uantum number s = +1/2]	are:
	a) 10	b) 14	c) 5	d) None of these
362.	The ratio of nucleons in C	0^{16} and 0^{18} is:		
	a) 8/9	b) 4/5	c) 9/8	d) 1
363.	A particle moving with a	velocity 10^6 m/s will have o	de-Broglie wavelength near	rly [Given, $m = 6.62 \times$
	10^{-27} kg, $h = 6.62 \times 10^{-3}$	[34] - s		_
	a) 10^{-9} m	b) 10 ⁻¹³ m	c) 10^{-19} m	d) 1 Å
364.	Which is not permissible	,	,	
	a) 2 <i>d</i>	b) 4 <i>f</i>	c) 6p	d) 3s
365.	•	, ,	, .	orresponds to which one of
000.		jumps of the electron for Bo		
	a) 3→2	b) 5→2	c) 4→1	d) 2→5
366.	-	•	•	nt frequencies of radiations
	which may be emitted is:		· · · · · · · · · · · · · · · · · · ·	
	a) 4	b) 5	c) 8	d) 10
367		•	*	sed by and respectively
0071	a) Heisenberg, de Broglie	-	attare or matter was propos	sea by mana mrespectively
	b) de Brogli, Heisenberg	•	4	
	c) Heisenberg, Planck			
	d) Planck, Heisenberg			
368	. Quantum theory was pos	tulated hv:		
500.	a) Rutherford	b) Maxwell	c) Max Planck	d) Becquerel
360	-	electronic configuration 1s		
309.				o the nucleus. Yet $1s^7$ is not
	observed because is viola		electrons would be closer to	o the nucleus. Let 13 is not
	a) Heisenberg's uncertain		Y	
	b) Hund's rule	ity principle		
	c) Pauli's exclusion princ	inlo		
	d) Bohr's postulate of sta	•		
270	The number of p -electron			
370.	a) 12	b) 15	c) 7	d) 17
271	. Potassium ion is isoelectr		C) /	u) 17
3/1.			a) Ea	d) Mg
272	a) Ar	b) He at the first black by the base t b) He at the t and t b) t b) He at the t	c) Fe - 2.	u) Mg
3/4.			- Z:	
	a) Must have spin value +b) Must have l = 1	F1/2		
	c) Must have $l = 0.1$ or 2			
	d) Must have $l = 0,1$ of 2 d) Must have $l = 2$			
272		ation as		
3/3.	Cr has electronic configur		a) 2a22m62d6	d) Nama of these
274		b) $3s^2 3p^6 3d^5 4s^1$		d) None of these
		bitals of element with atom		4) (
	a) 2	b) 4	c) 8	d) 6
3/5	=-	ground state is -13.6 eV, her		
276	a) -6.8 eV	b) -3.4 eV	c) -1.51eV	d) -4.53 eV
3/6.	As electron moves away f		a) D	D.M Cil
277	a) Decreases	b) Increases	c) Remains constant	d) None of these
3//.		ound state absorbs a photo		
0.50	a) 1.5 eV	b) 3.4 eV	c) 10.2 eV	d) 13.6 eV
378.	Wave nature of electrons	-) D	15 **
	a) Schrodinger	b) De-Broglie	c) Davisson and Garmer	d) Heisenberg

379	. The principal quantum n	umber of H-atom orbital, if	the electron energy is -3.4	eV, will be
	a) 1	b) 2	c) 3	d) Zero
380	. No two electrons can hav	e the same values of qua	intum numbers.	
	a) One	b) Two	c) Three	d) Four
381	. If $n = 3$, $l = 0$ and $m = 0$, then atomic number is		
	a) 12 or 13	b) 13 or 14	c) 10 or 11	d) 11 or 12
382	The threshold wavelengt	h for photoelectric effect of	n sodium is 5000 Å. Its wor	k function is:
	a) 4×10^{-19} J	b) 1 J	c) 2×10^{-19} J	d) 3×10^{-10} J
383	. The first atom with incon	nplete d -shell is:		
	a) Sc	b) Cu	c) Fe	d) Zn
384	· The wave number of the	spectral line in the emissio	n spectrum of hydrogen wil	Il be equal to $\frac{8}{2}$ times the
	Rydberg's constant if the			9
	a) $n = 3$ to $n = 1$	b) $n = 10$ to $n = 1$	c) $n = 0$ to $n = 1$	d) $n = 2$ to $n = 1$
205		n was experimentally demo	-	u) n + 2 to n - 1
303		•	<u>-</u>	d) Schrondinger
206	a) Max Bon The difference in angula	b) J.J. Thomson	c) De-Broglie	, ,
300	=	i momentum associated w	in the electron in two su	ccessive orbits of hydrogen
	atom is:	b) $h/2\pi$	c) h/2	d) $(n-1)h/2\pi$
207	a) h/π The volume of nucleus is	• •	c) n/2	$u_j(n-1)n/2n$
307				
	a) 10^{-4} times that of an a			
	b) 10^{-12} times that of an			
	c) 10^{-6} times that of an a			
200	d) 10^{-10} times that of an		GXX	
388	=	electrons than neutrons is:		D.M. 2+
200	a) F	b) Na ⁺	c) 0 ²⁻	d) Mg ²⁺
389		sociated with Planck's theo	ry is	
	a) Radiations are associa		·	
			rum is proportional to frequ	ency
	,	ither emitted nor absorbed		
200	-	ither emitted nor absorbed		018 1471 1 1 1 1 1 1 1
390			has two isotopes U ¹⁰ and	O ¹⁸ . Which of the following
	mol. wt. of H ₂ O will not b		. 24	1) 22
204	a) 19	b) 20	c) 24	d) 22
391	. Which ion has the maxim) T 3+	1) 1/3+
200	a) Mn ³⁺	b) Cu ²⁺	c) Fe ³⁺	d) V ³⁺
392	. Photoelectric effect was o	<u>=</u>	A Picatain	DIL
202	a) Hallwach	b) Lenard	c) Einstein	d) Hertz
393	The electronic configurat		> F4 30 12 4 1	D [1] 2 [1
	a) $[Ar]3d^44s^2$	b) $[Ar]3d^34s^0$	c) $[Ar]3d^24s^1$	d) [Ar]3d ⁵ 4s ¹
394	9	the metal surface, the emit	ted electrons:	
	a) Are called photons			
	b) Have random energies			
		pend upon intensity of light		
	, ,	pend upon the frequency of	· ·	
395	= '	first) for the values of e/m	for electron (e) , proton (p)), neutron (n) and α -
	particles is	1.		15
00.	a) e, p, n, α	b) <i>n</i> , α, <i>p</i> , <i>e</i>	c) n, p, e, α	d) n, p, α, e
396		ength of 845 A, causes the i	onisation of N atom. What i	s the ionisation energy of
	N?	12444041.	3.4.4402.17	D 4 4 40 ² L t
	a) 1.4 kI	b) 1.4×10^4 kI	c) $1.4 \times 10^2 \text{ kJ}$	d) 1.4×10^3 kJ

397	_	on of any particle, which o		
			c) 4.8×10^{-10} coulomb	
398			4000 Å, which provide 1 J ϵ	
	a) 2×10^{18}	b) 2×10^9	c) 2×10^{20}	d) 2×10^{10}
399	·		bit with an energy differen	ce of 3.0eV. What will be
	the wavelength of the line			•
	a) 3660 Å	b) 3620 Å	c) 4140 Å	d) 4560 Å
400			articles, only a few of them	get deflected, whereas most
	go straight, undeflected. T			
		exerted on α - particle by e	lectrons is insufficient	\wedge
	b) The volume of nucleus			
		acting on fast moving α -pa	rticle is very small	A
	d) The neutrons have no	-		40
401	-	ements has least number of		
	a) K	b) Mn	c) Ni	d) Sc
402		_	accelerated from rest throu	igh a potential difference V
	The kinetic energy of the	•) M II	D.M. C.1
400	a) V	b) eV	c) MeV	d) None of these
403	. In an atom wave mechani			
	a) Move around the nucle			
	b) Move around the nucle	-		
	c) Form diffused cloud ared) None of the above	ound the nucleus		
404	. Which of the following is 1	non normicciblo?		
404	_	b) $n = 4, l = 2, m = 1$	c) $n = 4, l = 4, m = 1$	d) $n = 4, l = 0, m = 0$
4.05			Pauli's exclusion principle?	$u_j n - 4, i - 0, m - 0$
403	_	b) $1 s^2$, $2s^2 2p^4$, $3s^2$		d) $1s^2$, $2s^22p^6$, $3s^3$
406				The energy for the same
400	transition in Be ³⁺ is:	ii the transition energy i	$01 \ n = 1 \ to \ n = 2, 10.2eV$, the energy for the same
	a) 20.4 eV	h) 30 6 eV	c) 163.2 eV	d) 40.8 eV
407	How many electrons can be	ne accommodated in a subs	shell for which $n = 3, l = 1$	
107	a) 8	b) 6	c) 18	d) 32
408	. Which of the following is		0) 10	w) 0 -
100		when electrons return fron	$n = 2 \text{ to } n = 1 \cdot \frac{3Rh}{R}$	
			7	
		: Independent of wavelen		
		s: Independent of gas in th	e discharge tube	
400	d) Radius of nucleus	` '		
409		remove nucleon and an o	energy E_e to remove an el	ectron from the orbit of an
	atom, then:	L) E = E	-)	J) F > F
410			c) $E_n > E_e$	
410			rm of matter, by saying tha	t it consist of :
	a) Photons or bundles of eb) Electrons or a wave like	ellelgy omattor		
	a) Noutrong since electric	e IIIauei callu nautral		
	c) Neutrons, since electricd) None of the above	Lany neutral		
111		itale having alactrone in	Si are respectively.	
411	a) 3,6	itals having electrons in ₁₄ b) 6, 3	c) 7,3	d) 3,8
417	_		•	that in the 2nd excited state
114	is:	cisy of all electron in grou	ina state is 15.0 cv, tileti t	mat m the 2nd extited state
	a) -1.51 eV	b) -3.4 eV	c) -6.0 eV	d) -13.6 eV
	uj 1101 CV	0, 0,10 v	c, 0.0 c v	a, 10.000

413. The number of elect	rons with the azimuthal qu	antum number $l=1$ and 2	for 24Cr in ground state are:
a) 16 and 5	b) 12 and 5	c) 16 and 4	d) 12 and 4
414. The number of valer	nce electrons in completely	excited sulphur atom is:	
a) Zero	b) 4	c) 6	d) 2
415. An improbable confi	iguration is:		
a) [Ar]3d ⁴ ,4s ²	b) [Ar]3d ⁵ ,4s ¹	c) $[Ar]3d^6, 4s^2$	d) [Ar]3d ¹⁰ ,4s ¹
416. The wave number of	f radiation of wavelength 5	00 nm is:	
a) $5 \times 10^{-7} \text{m}^{-1}$	b) $2 \times 10^{-7} \text{m}^{-1}$	c) $2 \times 10^6 \text{m}^{-1}$	d) $500 \times 10^{-9} \text{m}^{-1}$
		25 eV and 50 eV respective	vely. The relation between their
wavelengths $i.e. \lambda_1$	and λ_2 will be:		(Y
a) $\lambda_1 = \frac{1}{2}\lambda_2$	b) $\lambda_1 = \lambda_2$	c) $\lambda_1 = 2\lambda_2$	d) $\lambda_1 = 4\lambda_2$
418. The nitrogen atom h	as 7 electrons, the nitride i	ion (N³-) will have	A A
a) 7 protons and 10	electrons		
b) 4 protons and 7 e	electrons		
c) 4 protons and 10	electrons		
d) 10 protons and 7	electrons		
419. Which among the fo	llowing is correct for $_5\mathrm{B}$ in	normal state?	
1s $2p$			
a) 11 1			
: Against Hund's 1	<u>rule</u>		
b) 1 1 1 1			
: Against Aufbau	principle as well as Hund's	rule	
c) 11 1 1 CP		S.V.	
: Violation of Paul	li's exclusion principle and	not Hund's rule	
d) $\begin{bmatrix} 1l \\ A \end{bmatrix}$			
Against Aufbau p			
	oduced when the pressure	in the discharge tube is of the	ne order of :
a) 76 cm of Hg			
b) 10^{-6} cm of Hg			
c) 1 cm of Hg	CII		
d) 10^{-2} to 10^{-3} mm		200 1 - 1 6000 1 -	
	f a photon of wavelength 30		J) 1.4
a) 1:1	b) 2:1	c) 1:2	d) 1:4
	lectric effect is useful in un	derstanding:	
a) Conservation of e			
b) Quantization of cl			
c) Conservation of c	_		
d) Conservation of k		alaatuan with tha awantum	
-2, s = 1/2?	or bitai designation for the (electron with the quantum i	fulfibers, $n = 4$, $t = 5$, $m =$
a) $3s$	b) 4 <i>f</i>	a) E n	d) 6s
	eV. The E_2 for He ⁺ would b	c) 5 <i>p</i>	d) os
a) $-6.8eV$	b) -13.6 eV	c) -27.2eV	d) -108.8eV
•	•	•	uj – 106.6ev
	fundamental particles in o	c) 14	4) 20
a) 6	b) 8 shramium atom $(7-24)$	•	d) 20
	cin official atom $(z = 24)$	i ine iotai number oi orbi	tals populated by one or more
electrons is:	h) 16	a) 20	d) 1 <i>4</i>
a) 15	b) 16	c) 20	d) 14
	ainty principle has no sign		d) Cricket hall
a) Proton	b) Neutron	c) Electron	d) Cricket ball

428. Which set is not correct?	?		
a) 3, 1, 0, -1/2	b) 3, 2, 1, +1/2	c) $3, 1, 2, -1/2$	d) 3, 2, 0, +1/2
429. If E_e , E_a and E_p represer	nt the kinetic energies of an	electron, alpha particle an	d a proton respectively, each
moving with same de-Bı	oglie wavelength then		
a) $E_e = E_\alpha = E_p$	b) $E_e > E_\alpha > E_p$	c) $E_{\alpha} > E_p > E_e$	d) $E_e > E_p > E_\alpha$
430. Which among the follow			
penultimate shell?			
a) Mg ²⁺	b) 0 ²⁻	c) F ⁻	d) Ca ²⁺
431. Photons of energy 6 eV	are incidented on a pot	assium surface of work f	function 2.1 eV. What is the
stopping potential?	_		
a) -6 V	b) -2.1 V	c) -3.9 V	d) -8.1 V
432. If uncertainty in position	n and momentum are equal	, then uncertainty in veloci	ty is:
_	_	_	1 1
a) $\sqrt{\frac{h}{2\pi}}$	b) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$	c) $\frac{n}{-}$	d) $\frac{1}{2}$ $\frac{n}{2}$
V	V	V	$2m\sqrt{\pi}$
433. Which one of the following	ng ions is not isoelectronic		V
a) Ti ⁺	b) Na ⁺	c) F ⁻	d) N ³⁻
434. How many electrons wit	th $l=2$ are there in an aton	n having atomic number 23	3?
a) 2	b) 3	c) 4	d) 5
435. The statements are valid	l for :		
(i) In filling a group of o	orbitals of equal energy, it i	is energetically preferable	to assign electrons to empty
orbitals rather than pair	them into a particular orbi	tal	
(ii) When two electrons	are placed in two different	orbitals, energy is lower if	the spins are parallel
a) Aufbau principle	A	$G_{\lambda}X^{\prime}$	
b) Hund's rule	4		
c) Pauli's exclusion prin	ciple		
d) Uncertainty principle			
436. The radius of electron in	the first excited state of hy	drogen atom is	
(Where, a_0 is the Bohr's	radius)		
a) a_0	b) $4a_0$	c) $2a_0$	d) 8 <i>a</i> ₀
437. The momentum of a pho	ton of frequency 5×10^{17} s	⁻¹ is nearly:	
a) $1.1 \times 10^{-24} \text{ kg m s}^{-1}$ b) $3.33 \times 10^{-43} \text{ kg m s}^{-1}$ c) $2.27 \times 10^{-40} \text{ kg m s}^{-1}$	$\mathcal{A}(\mathcal{C})$		
b) $3.33 \times 10^{-43} \text{ kg m s}^{-1}$	1		
c) $2.27 \times 10^{-40} \text{ kg m s}^-$	i		
d) $2.27 \times 10^{-38} \text{ kg m s}^-$			
438. In hydrogen atom, which	n energy level order is not c	correct:	
a) $1s < 2p$	b) $2 p = 2s$	c) $2 p > 2s$	d) $2 p < 3s$
439. The frequency v of cer	tain line of the Lyman ser	ries of the atomic spectru	ım of hydrogen satisfies the
following conditions:			
(i) It is the sum of the from	equencies of another Lymai	n line and a Balmer line.	
	requencies of a certain line,		en line.
	requencies of a Lyman and		
To what transition does			
	b) $n_2 = 3$ to $n_1 = 2$	c) $n_2 = 2$ to $n_1 = 1$	d) $n_2 = 4$ to $n_1 = 1$
440. An isobar of $_{20}$ Ca 40 is	, 2 1	, , ,	, ,
	b) ₂₀ Ca ³⁸	c) ₂₀ Ca ⁴²	d) ₁₀ Ar ³⁸
441. If the speed of electron i			, 10
Bohr's orbit is:		G- 111 12011, 1211 opoc	
a) $x/9$	b) $x/3$	c) 3x	d) 9 <i>x</i>
	, ,	,	ity of the electron in the first

	orbit would ne:			
	a) 4 <i>v</i>	b) 16 <i>v</i>	c) v/4	d) $v/16$
443.		not emitted by the electron	· ·	,
	a) Ultraviolet light	b) X-rays	c) Visible light	d) γ-rays
444.	,		_	alpha particle and a proton
	each having same de Brog			
	= =	b) $E_2 > E_3 > E_1$	c) $E_1 > E_2 > E_3$	d) $E_1 = E_2 = E_3$
445				uency of corresponding line
115.	emitted by singly ionised		ogen atom is v ₀ . The frequ	deficy of corresponding fine
	a) $2v_0$	b) $4v_0$	c) $v_0/2$	d) $v_0/4$
446	, ,	itals, the electrons distribu	, ,,	
110.	This statement belongs to		te themserves to retain like	. spins as fair as possible.
	a) Pauli's exclusion princi		b) Aufbau principle	
	c) Hund's rule of maximum	=	d) Slater's rule	4
117	=	=		llad
447.		lable sub-level which has lo	Twelf $n + i$ value. This is can	red:
	a) Hund's rule			X
	b) Aufbau principle	1	4 (4	
	c) Heisenberg's uncertain	ty principie		
4.40	d) Pauli's principle			
448.	Choose the correct statem			
	a) Ψ^2 represents the atom			
	=	n radial distribution is $n-1$		
		ce around nucleus where t	he wave function Ψ has zei	ro value
	d) All of the above			
449.	Which possesses an inert	-		
	a) Fe ³⁺	b) Cl ⁻	c) Mg ⁺	d) Cr ³⁺
450.	-	electron in the n th orbit o		
	a) $\frac{nh}{2\pi}$	b) nh	c) $\frac{2\pi}{nh}$	d) $\frac{\pi}{2nh}$
451				³ 2nh
451.		n became very late because	:	
	a) Neutrons are present in			
	b) Neutrons are fundamen	-		
	c) Neutrons are chargeles	S		
450	d) All of the above	Yll C l		
452.		al line for electron transitio	on in an atom is directly pro	oportional to
	a) Number of electrons ur	idergoing transition		
	b) Velocity of electron		1 1 1 1 1	
		y between energy levels in	volved in the transition	
450	d) None of the above	1 1 6	C C	
				of the incident radiation
4	$(v_1 > v_2)$. If the maximum	n kinetic energies of the p	photoelectrons in the two	cases are in the ratio $1:k$,
	then the threshold freque	ncy v _o is given by:	1	
	a) $\frac{v_2 - v_1}{v_1 - v_1}$	b) $\frac{kv_1 - v_2}{1 + v_2}$	c) $\frac{kv_2 - v_1}{v_1 + v_2}$	d) $\frac{v_2 - v_1}{l}$
454	k-1	m kinetic energies of the part of the par	k-1	, k
454.	The number of $2p$ -electro	ns naving spin quantum nu	impers $s = -1/2$ are	מ נג
455	a) 6	b) 0	c) 2	d) 3
455.	-	to the spectrum of H atom	is iaise?	
	a) The lines can be defined	- -		atatan kana arawa 2001
		velength in the Balmer seri	es corresponds to the tran	sition between $n=3$ and
	n = 2 levels	lanamen mathematik		
	c) The spectral lines are c	loser together at longer wa	iveiengtns	

	d) A continuum occurs at			
456.	The atomic number of the	element having maximum	number of unpaired 3 <i>p</i> -ele	ectrons is:
	a) 15	b) 10	c) 12	d) 8
457.	=	-	electron from first to third	
	a) 487 nm	b) 170 nm	c) 103 nm	d) 17 nm
		bout Bohr's orbit of hydrog	=	_
	$r = n^2 \frac{h^2}{1 + 2n^2}$		b) KE of electron = PE of α	electron
	$4\pi^2 m \left(\frac{e^2}{4\pi\epsilon_0}\right)$			
	a) $r = n^2 \frac{h^2}{4\pi^2 m \left(\frac{e^2}{4\pi\epsilon_0}\right)}$ c) $E = -\frac{1}{n^2} \frac{2\pi^2 m \left(\frac{e^2}{4\pi\epsilon_0}\right)^2}{h^2}$	-	d) None of the above is in	correct
	**	ntum numbers for 4 electro	ons are given below	
	$e_1 = 4, 0, 0, -\frac{1}{2} : e_2 = 3, 1,$	1		
	$e_1 = 4, 0, 0, -\frac{1}{2}; e_2 = 3, 1,$	$\frac{1}{2}$		
	$e_3 = 3, 2, 2, +\frac{1}{2}$: $e_4 = 3, 0,$	$0, 0, +\frac{1}{2}$	4	
	The order of energy of e_1 ,	-		
	a) $e_1 > e_2 > e_3 > e_4$	b) $e_4 > e_3 > e_2 > e_1$	c) $e_2 > e_1 > e_2 > e_4$	d) $e_2 > e_3 > e_4 > e_1$
460.				ne number of possible lines
	spectrum is:	, 0		1
	a) 6	b) 4	c) 2	d) 3
461.	The electrons occupying t	he same orbital have alway	ys spin:	
	a) Paired	b) Unpaired	c) Both (a) and (b)	d) None of these
462.		tom in its ground state is	-13.6 eV. The energy of the	level corresponding to the
	quantum number $n=5$ is	4		
	a) −5.4 eV		c) -2.72 eV	
			for an electron of 5th orbit	
	a) $\frac{2.5h}{\pi}$	b) $\frac{5h}{\pi}$	c) $\frac{25h}{\pi}$	d) $\frac{6h}{2\pi}$
		$\frac{\pi}{e^+}$, the angular momentum		2π
101.	a) First orbit	b) Second orbit	c) Third orbit	d) Fourth orbit
465.	_		ctron of rubidium ($Z = 37$)	_
	a) F 0 0 + 1	1	1	1
		_	c) 5,1,1, $+\frac{1}{2}$	d) 6,0,0, $+\frac{1}{2}$
466.	Electron density in the YZ	plane of $3d_{x^2-y^2}$ orbital is		
	a) Zero	b) 0.50	c) 0.75	d) 0.90
467.	The total number of orbita	als possible for principle qu		
	a) n	b) <i>n</i> ²	c) 2n	d) $2n^2$
468.	Which does not character	-		
	a) The radiation can ionis	_		
	b) It causes Zns to fluores			
	c) Deflected by electric andd) Have wavelength short			
	-	n placed in 3rd orbit of H at	tom will ha	
TU9.	a) 2.79×10^7 cm/s	b) 9.27×10^{27} cm/s		d) 92.7×10^7 cm/s
470.	•	-	p^3 . The number of unpaired	
0.	a) 1	b) Zero	c) 3	d) 5
471.	•	entum of an electron in 2s o	•	- , -
	_	b) Zero		$\frac{1}{\sqrt{2}}h$
	a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$	•	c) $\frac{h}{2\pi}$	d) $\sqrt{2} \frac{h}{2\pi}$
472	In the atomic spectrum of	hydrogen the series of line	es observed in the visible re	egion is:

a) Balmer		b) Paschen series el of hydrogen atom :	c) Bracket series	d) Lyman series		
_		he electron is quantised				
•	b) The angular velocity of the electron is quantised					
-	=	of the electron is quantised	4			
•		m of the electron is quantis				
-		on in the hydrogen atom e				
a) $2 \rightarrow 1$	isition of ciccu	b) $1 \rightarrow 4$	c) $4 \rightarrow 3$	d) $3 \rightarrow 2$		
•	um number tha	at does not describe the dis	_			
a) n		b) <i>l</i>	c) m	d) s		
476. Li ²⁺ and B	Be ³⁺ are:	, .	-,			
a) Isotope		b) Isomers	c) Isobars	d) Isoelectronic		
		_		ifferent lines may appear in		
line specti			•			
a) 4		b) 8	c) 10	d) 12		
478. The electr	onic configurat	ion with maximum exchang	ge energy will be			
a) $3d_{rv}^{1}3d$	$d_{yz}^{1}3d_{zx}^{1}4s^{1}$		b) $3d_{xy}^{1}3d_{yz}^{1}3d_{zx}^{1}3d_{x^{2}-y^{2}}^{1}$	$3d_{z^2}^1 4s^1$		
	$d_{yz}^2 3d_{zx}^2 3d_{x^2-y^2}^2$	$3d^{1},4s^{1}$	b) $3d_{xy}^1 3d_{yz}^1 3d_{zx}^1 3d_{x^2-y^2}^1$ d) $3d_{xy}^2 3d_{yz}^2 3d_{zx}^2 3d_{x^2-y^2}^2$	$3d^{2}_{2}4s^{1}$		
				$3u_{Z^2}$ 13		
	I diagram m wi	hich aufbau principle is vio	rateu is:			
a) [1]	11 1					
b) [1	1 1	1				
c) 1	1 1	1				
d) 1 _L	1 1	1				
480. In the grou	und state of Cu	t, the number of shell occur	pied, sub-shells occupied, fi	illied orbitals and unpaired		
	respectively are		•	•		
a) 4,8,15,0		b) 3,6,15,1	c) 3,6,14,0	d) 4,7,14,2		
481. If <i>h</i> is Plan	ick's constant, t	he momentum of a photon	of wavelength 0.01 Å is:			
a) $10^{-2}h$		b) <i>h</i>	c) $10^2 h$	d) 10 ¹² h		
482. What does	the electronic	configuration $1s^2$, $2s^2$, $2p^5$, 3s ¹ indicate?			
	state of fluorin		b) Excited state of fluorin	e		
c) Excited	state of neon	Y	d) Excited state of the 0_2^-	ion		
483. Each <i>p</i> -orl	oital and each d	l-orbital except one has lob	es respectively as:			
a) 2,4		b) 1,4	c) 2,3	d) 1,1		
484. Which of t	he following sta	atements regarding an orbi	ital is correct?			
a) An orbi	tal is a definite	trajectory around the nucle	eus in which electron can n	nove		
b) An orbi	tal always has s	spherical trajectory				
An orbi	tal is the region	around the nucleus where	there is a $90 - 95\%$ proba	ability of finding all the		
electro	ns of an atom					
d) An orbi	tal is characteri	ized by 3 quantum number				
				hydrogen in Lyman series,		
the energi	es associated w			cansition (in kcal mol^{-1}) are		
a) -313.6		b) -313.6, -78.4		d) -78.4, -19.6		
486. The wavel	engths of the ra	adiations emitted when in a	a H atom, electron falls froi	m infinity to stationary state		
1, is:						
a) 9.1×10^{-1}		b) 192 nm	c) 406 nm	d) 91 nm		
	-	umbers for the outermost e	•	•		
a) $n = 3, l$	= 2	b) $n = 3, l = 3$	c) $n = 4, l = 0$	d) $n = 2, l = 3$		

488. Ultraviolet light of 6.2 eV		(work function = $4.2eV$).	The kinetic energy (in joule)
of the fastest electron em			
a) 3×10^{-21}	b) 3×10^{-19}	c) 3×10^{-17}	d) 3×10^{-15}
489. The number of spherical	nodes in $3p$ orbitals is		
a) 0	b) 1	c) 2	d) 3
490. The maximum number of	f electron in p -orbital with a	n = 5, m = 1 is	
a) 6	b) 2	c) 14	d) 10
491. The species that has same	e number of electrons as $_{16}$	S^{32} is:	
a) ₁₆ S ⁺	b) ₁₇ Cl ⁻	c) ₁₆ S ⁻	d) ₁₇ Cl ⁺
492. Select the odd man:			(V)
a) Deuteron	b) Proton	c) Electron	d) Cyclotron
493. Assuming the velocity be	same, which sub-atomic pa	article possesses smallest d	e Broglie wavelength;
a) An electron	b) A proton	c) An α -particle	d) All have same λ
494. The chromium has differ	ent electronic configuratio	n then what is expected ac	cording to aufbau principle
because:			
a) Cr is a metal			V ·
b) It belongs to d -block e	lments	CA	
c) Half-filled <i>d</i> -orbitals g		10	
d) None of the above	·		
495. If the ionisation potenti	al for hydrogen atom is 1	3.6eV, then the wavelengt	ch of light required for the
ionisation of hydrogen at			O I
a) 1911 nm	b) 912 nm	c) 68 nm	d) 91.2 nm
496. Bohr's atomic theory gav	•		., ,
a) Quantum numbers	b) Shape of sub-levels	c) Nucleus	d) Stationary states
497. Which species has more	, .	OX T-TOTO	a, succession y succes
a) Cl ⁻	b) Ca ²⁺	c) K ⁺	d) Sc ³⁺
498. Electronic configuration	,	c) K	a) be
a) [Kr] $4d^4$, $5s^1$	b) [Kr]4d ⁶	c) $[Kr]4d^3,5s^2$	d) [Kr] $5s^25 p^3$
499. The momentum of radiat		,	u) [Ki]33 3 p
a) 2×10^{-24}	b) 2×10^{-12}	c) 2×10^{-6}	d) 2×10^{-48}
•		C) 2 × 10	u) 2 × 10
500. Predict the total spin in N		-) 11/2	٦) ا 1
a) $\pm 5/2$	b) $\pm 3/2$	c) $\pm 1/2$	d) ± 1
501. An increasing order (low		e/m for electron (e), protor	(p), neutron (n) and alpha
(α) particle is:	b) n, α, p, e		15
		c) n, p, e, α	d) n, p, α, e
502. Choose the arrangement			
		c) n	
503. The m' value for an elect	ron in an atom is equal to t	he number of m value for l	= 1. The electron may be
present in		_	
a) $3d_{x^2-y^2}$	b) $5f_{x(x^2-y^2)}$	c) $4f_{x^3/z}$	d) None of these
504. The kinetic energy of an			
a) $\frac{h^2}{4\pi^2 m a_0^2}$	h^2	c) $\frac{h^2}{32\pi^2 m a_0^2}$	h^2
$a_0 \frac{4\pi^2 m a_0^2}{4\pi^2 m a_0^2}$	$\frac{16\pi^2 m a_0^2}{16\pi^2 m a_0^2}$	$\frac{c_0}{32\pi^2ma_0^2}$	$\frac{dJ}{64\pi^2 m a_0^2}$
505. Number of electrons in n	ucleus of an element of ator	nic number 14 is:	· ·
a) Zero	b) 14	c) 7	d) 20
506. When an electron of cha	arge e and mass m moves	s with velocity u about th	e nuclear charge Ze in the
	the potential energy of the		
a) Ze^2/r	b) $-Ze^2/r$	c) Ze^2/r^2	d) mu^2/r
507. The orbital angular mom	•	ving in a <i>p</i> -otbital is	·

	a) Zero	b) $\frac{h}{\sqrt{2\pi}}$	c) $\frac{h}{2\pi}$	d) $\frac{1}{2} \frac{h}{2\pi}$
		V 210	2 10	$^{\circ}$ 2 2 π
508.		rge e/m of a proton to that c		
	a) 1:4	b) 1 : 2	c) 1:1/4	d) 1:1/2
509.	Possible values of m' fo	=		
	a) n^2	b) $2l + 1$	c) <i>n</i>	d) 2 <i>l</i>
510.	. Common name for proto	on and neutron is		
	a) Deutron	b) Positron	c) Meson	d) Nucleon
511.		n an atom have the followin	g set of quantum numbers:	
	A: 3, 2, -2,	-		
	B: 3, 0, 0, +			
	Which statement is corr			
	a) A and B have same en	nergy		
	b) A has more energy th	an B		
	c) <i>B</i> has more energy th	ian A		
	d) A and B represents sa	ame electron		
512.	Radius of nucleus is pro	portional towhere A is ma	ass number	Y
	a) <i>A</i>	b) A ^{1/3}	c) A^2	d) $A^{2/3}$
513.	The energy levels for $_zA$	(+z-1) can be given by:		
	a) E_n for $A^{(+z-1)} = Z^2 >$	$< E_n$ for H		
	b) E_n for $A^{(+z-1)} = Z \times$	E_n for H		
	c) E_n for $A^{(+z-1)} = \frac{1}{Z^2} \times$	E_n for H		
	d) E_n for $A^{(+z-1)} = \frac{1}{7} \times A^{(+z-1)}$			
Г1 1	L			- i i+1+i
514.		e ground state of nitrogen at	om nas 3 unpaired electron	is in its electronic
		therwise is associated with	10 H . W L C	
	a) Pauli's exclusion prin	-	b) Hund's rule of maximu	
-1 -	c) Heisenberg's uncerta	-	d) Ritz combination princ	•
515.				-3.41eV. The energy of the
		's orbit of He ⁺ ion would be		D (02 A)
51 6	a) -85 eV	b) -13.62 eV	c) -1.70eV	d) -6.82 eV
516.			e close to the nucleus of t	he atom, the energy of the
	electron-nucleus system			
	a) Increases to a greater	-		
	b) Decreases to a smalle	/ -		
	c) Decreases to a greate	-		
Г17	d) Decreases to a smalle	=		
51/.		ron will have the four quant	um numbers:	
	n l m s	b) 1 1 1 1 1/2	a) 2	4) 2
E10	a) 1 0 0 $\pm 1/2$	b) 1 1 1 $+ 1/2$	0) 2 0 0 + 1/2 and then to higher energy	U) 2 1 U + 1/2
	_	to lower energy levels lirst	and then to higher energy	levels according to which of
	the following?			
	a) Aufbau principle	مانيا.		
	b) Pauli's exclusion prin	-		
	c) Hund's rule of maxim			
E10	d) Heisenberg's uncerta		ango.	
519.	-	ron increase, the specific cha	=	d) None of these
E20	a) Decreases	b) Increases	c) Remains same	d) None of these
320.		etic field p -orbitals are know b) Two	c) One	d) Four
5 21	a) Three			d) Four
341.	. m nyarogen spectrum te	east energetic transition of e	riecu ons are iouna in:	

a) Lyman series	b) Balmer series	c) Bracket series	d) Pfund series
The electronic configurati	on of an element is $1s^2$, $2s$	2 , $2p^{6}$, $3s^{2}$, $3p^{6}$, $3d^{5}$, $4s^{2}$. The second relations in the second relation 2	his represents its
a) Cationic form	b) Anionic form	c) Ground state	d) Excited state
A body of mass x kg is mo	ving with a velocity of 100	ms ⁻¹ . Its de-Broglie wavel	ength is 6.62×10^{-35} m.
Hence, <i>x</i> is $(h = 6.62 \times 10^{-5})$	$^{-34}$ Js)		
a) 0.1 kg	b) 0.25 kg	c) 0.15 kg	d) 0.2 kg
Maximum number of elect	trons in a subshell with $l=$	= 3 and n = 4 is:	
a) 10	b) 12	c) 14	d) 16
One energy difference be	etween the states $n = 2$ a	and $n = 3$ is E eV, in hyd	rogen atom. The ionisation
potential of H atom is:			
a) 3.2 <i>E</i>	b) 5.6 <i>E</i>	c) 7.2 E	d) 13.2 <i>E</i>
The first emission line in t	the electronic spectrum of	hydrogen in the Balmer se	ries appears at cm ⁻¹
a) $\frac{9R}{m}$ cm ⁻¹	h) $\frac{7R}{m}$ cm ⁻¹	c) $\frac{3R}{m}$ cm ⁻¹	d) $\frac{5R}{36}$ cm ⁻¹
100	111	7	36
	, , ,	c) In the <i>y</i> direction	d) In the z direction
			Y
		c) $[Ar]3d^5, 4s^0$	d) [Ne] $3s^5$, $4s^2$
Number of neutron in C ¹²	is		
a) 6	b) 7		d) 9
_	=		
, ,	9	· .	•
	-		-
Combination of an α -parti	cle with a nuclide results i	n the formation of a new n	uclide which has:
a) Less number of neutro	ns		
b) Equal number of electr	ons	>	
c) Lower mass number			
	AF W		•
		chlorine $_{17}\text{Cl}^{35}$ and $_{17}\text{Cl}^{37}$	⁷ ?
a) Both have same atomic	number		
-			
	•		
		s?	
a) Fe ³⁺	b) Co ³⁺	c) Co ²⁺	d) Mn ²⁺
	rith atomic number 7,24,34	and 36 will be	
a) $0,\pm 1,\pm 3,\pm 3/2$	b) $\pm 1,0,\pm 3/2,\pm 3$	c) $\pm 3/2, \pm 3, \pm 1,0$	d) ± 3 , ± 1 , 0, $\pm 3/2$
A photo-sensitive metal i	s not emitting photo-elect	rons when irradiated. It w	vill do so when threshold is
crossed. To cross the thre	shold we need to increase	:	
a) Intensity	b) Frequency	c) Wavelength	d) None of these
The KE of electron in He ⁺	will be maximum in:		
a) 3rd orbit			
b) 2nd orbit			
c) 1st orbit			
d) In orbit with $n = \infty$			
	8 electrons in its outer she		
a) Cu ⁺	b) Pd	c) Mn ⁴⁺	d) Zn
Rutherford scattering form	nula fails for very small sca	attering angles because	
	The electronic configuration a) Cationic form A body of mass x kg is modeled Hence, x is $(h = 6.62 \times 10^{\circ})$ a) 0.1 kg Maximum number of electronic a) 10 One energy difference be potential of H atom is: a) 3.2 E The first emission line in the first emission line in the probability of finding a) In the yz plane What is the electronic conda) $[Ne]3d^5, 4s^0$ Number of neutron in C^{12} a) 6 Which of the following read a) ${}_{6}C^{16} + {}_{1}p^1 \rightarrow {}_{7}N^{14} - {}_{7}C^{11} - {}_{7$	The electronic configuration of an element is $1s^2$, $2s$ a) Cationic form b) Anionic form A body of mass x kg is moving with a velocity of 100 Hence, x is $(h = 6.62 \times 10^{-34}]$ s) a) 0.1 kg b) 0.25 kg Maximum number of electrons in a subshell with $l = a$ 10 b) 12 One energy difference between the states $n = 2$ a potential of H atom is: a) 3.2 E b) 5.6 E The first emission line in the electronic spectrum of a) $\frac{9R}{400}$ cm ⁻¹ b) $\frac{7R}{144}$ cm ⁻¹ The probability of finding an electron residing in a p a) In the yz plane b) In the xy plane What is the electronic configuration of Mn^{2+} ? a) $[Ne]3d^5$, $4s^0$ b) $[Ar]3d^5$, $4s^2$ Number of neutron in C^{12} is a) 6 b) 7 Which of the following reaction led to the discovery a) ${}_6C^{16} + {}_1p^1 \rightarrow {}_7N^{14} + {}_0n^1$ c) ${}_5B^{11} + {}_1D^2 \rightarrow {}_6C^{11} + {}_0n^1$ Combination of an α -particle with a nuclide results a a) Less number of neutrons b) Equal number of electrons c) Lower mass number d) Higher atomic number The radius of which of the following orbit is same as a) $Li^{2+}(n=2)$ b) $Li^{2+}(n=3)$ Which statement is not correct in case of isotopes of a) Both have same atomic number of neutrons d) Both have same number of neutrons d) Higher atomic number a	The electronic configuration of an element is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^2$. Tay Cationic form b) Anionic form c) Ground state A body of mass x kg is moving with a velocity of $100 \mathrm{ms}^{-1}$. Its de-Broglie wavel Hence, x is $(h = 6.62 \times 10^{-34}]s)$ a) $0.1 \mathrm{kg}$ b) $0.25 \mathrm{kg}$ c) $0.15 \mathrm{kg}$ Maximum number of electrons in a subshell with $l = 3$ and $n = 4$ is: a) 10 b) 12 c) 14 One energy difference between the states $n = 2$ and $n = 3$ is E eV, in hydrotential of H atom is: a) $3.2 E$ b) $5.6 E$ c) $7.2 E$ The first emission line in the electronic spectrum of hydrogen in the Balmer set a) $\frac{9R}{400} \mathrm{cm}^{-1}$ b) $\frac{7R}{144} \mathrm{cm}^{-1}$ c) $\frac{3R}{4} \mathrm{cm}^{-1}$ The probability of finding an electron residing in a p_x orbital is not zero: a) In the yz plane b) In the xy plane c) In the yz plane b) In the xy plane c) In the yz direction What is the electronic configuration of $Mn^{2+?}$ a) $[Ne]3d^5, 4s^0$ b) $[Ar]3d^5, 4s^2$ c) $[Ar]3d^5, 4s^0$ Number of neutron in C^{12} is a) $6 C^{16} + 1p^{1} \rightarrow 7N^{14} + 6n^{1}$ b) $4E^9 + 2He^4 \rightarrow 6C^1$ Combination of an a -particle with a nuclide results in the formation of a new n a) Less number of neutrons b) Equal number of electrons c) Lower mass number d) Higher atomic number The radius of which of the following orbit is same as that of the first Bohr's orb a) $Li^{2+}(n=2)$ b) $Li^{2+}(n=3)$ c) $B^{3+}(n=2)$ Which statement is not correct in case of isotopes of chlorine $17C^{135}$ and $17C^{135}$ a) Both have same number of neutrons consolutions which as minimum number of unpaired d -electrons c) Both have same number of neutrons d) Both have same number of neutrons consolutions and d is d in d

a) The kinetic energy of $lpha$ -						
b) The gold foil is very thir	1					
c) The full nuclear charge	c) The full nuclear charge of the target atom is partially screened by its electron					
d) All of the above						
540. 3 <i>p</i> -orbital has :						
a) Two non-spherical node	es					
b) Two spherical nodes						
c) One spherical and one n	on-spherical node					
d) One spherical and two r	non-spherical nodes					
541. Rutherford's alpha particle	e scattering experiment ev	entually led to the conclus	ion that:			
a) Mass and energy are rel	lated					
b) Electrons occupy space	around the nucleus					
c) Neutrons are buried de	ep into the nucleus					
d) The point of impact with	h matter can be precisely d	letermined				
542. The d -orbital with the orie	entation along X and Y axes	s is called:				
a) d_{z^2}	b) d_{zx}	c) d_{yz}	d) $d_{x^2-y^2}$			
543. Which of the following tran	nsitions are not allowed in	the normal electronic emi	ssion spectrum of an atom?			
a) $2s \rightarrow 1s$	b) $2p \rightarrow 1s$	c) $3d \rightarrow 4p$	d) $5p \rightarrow 3s$			
544. In an atom two electrons	move around the nucleus	in circular orbits of radii	R and 4R. The ratio of the			
time taken by them to com	plete one revolution is:					
,	b) 4:1	c) 1:8	d) 8 : 7			
545. The value of Planck's cons						
closest to the wavelength i	in nanometre of a quantum	n of light with frequency of	$8 \times 10^{15} \mathrm{s}^{-1}$?			
a) 2×10^{-25}	b) 5×10^{-18}	c) 4×10^{-8}	d) 3×10^7			
546. The number of electrons a	nd protons in an atoms of	third alkaline earth metal i	is			
a) <i>e</i> 20, <i>p</i> 20	b) e 18, p 20	c) e 18, <i>p</i> 18	d) e 19, p 20			
547. In photoelectric effect the	number of photo-electron	emitted is proportional to	:			
 a) Intensity of incident beat 	am					
b) Frequency of incident b	eam					
c) Velocity of incident bear						
d) Work function of photo						
548. Which of the following state		thode rays?				
a) They produce heating e						
b) They carry negative cha	y ³					
c) They produce X —rays v	when strike with material l	having high atomic masses				
d) None of the above						
549. In an atom no two electror		=				
	b) Pauli	c) Dalton	d) Avogadro			
550. The minimum energy requ	•					
	b) Electrical energy	c) Chemical energy	d) Work function			
551. The orbital angular mome	ntum for an electron revol	lving in an orbit is $\frac{n}{2\pi}\sqrt{l(l)}$	$\overline{+1}$). Thus momentum for a			
s-electron is:						
s-electron is: a) $\frac{h}{2\pi}$	b) $\sqrt{2} \cdot \frac{h}{2\pi}$	$\frac{1}{h}$	d) Zero			
	4 70	2 2n				
552. The binding energy of th	e electron in the lowest	orbit of the hydrogen ato	om is 13.6 eV. The energies			
required in eV to remove a	an electron from three low		atom are:			
	b) 13.6, 10.2, 3.4 eV	0) 10.0, 17.12, 10.0 0	d) 13.6, 3.4, 1.5 eV			
553. The probability of finding						
	b) 90-95%	c) 70-80%	d) 50-60%			
554. The correct de Broglie rela	ntionship is:					

	a) $\frac{\lambda}{mu} = p$	b) $\lambda = \frac{h}{mu}$	c) $\lambda = \frac{h}{mp}$	d) $\lambda m = \frac{u}{n}$
	mu The one electron species h	11000	·F	Ρ
JJJ.	a) H	b) He ⁺	c) B ⁴⁺	d) Li ²⁺
556.	The correct set of quantum	•	pectively) for the unpaired	electron of chlorine atom is
	a) 2, 1, 0	b) 2, 1, 1	c) 3, 1, 1	d) 3, 2, 1
557.	If $'R_H'$ is the Rydberg cons	_	_	• • •
	a) $\frac{R_H c}{h}$	b) $\frac{I}{R_{H}ch}$	hc	d) D be
	$\frac{h}{h}$	$\overline{R_H ch}$	c) $\frac{hc}{R_H}$	d) $-R_H hc$
558.	The radius of hydrogen ato	om is 0.53Å. The radius of	₃ Li ²⁺ is of	(V)
	a) 1.27 Å	b) 0.17 Å	c) 0.57 Å	d) 0.99 Å
559.	Among the following serie			ons have $3d^2$ electronic
	configuration is (At. no. Ti	=22, V=23, Cr=24, Mn=25	5)	
	a) Ti^{3+} , V^{2+} , Cr^{3+} , Mn^{4+}	b) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mn ⁷⁺	c) Ti^{4+} , V^{3+} , Cr^{2+} , Mn^{3+}	d) Ti ²⁺ , V ³⁺ , Cr ⁴⁺ , Mn ⁵⁺
560.	Total number of unpaired	electrons, in an unexcited	atom of atomic number 29	is:
	a) 1	b) 2	c) 3	d) 4
561.			hotoelectron of zero veloc	ity from the surface of the
	metal, the wavelength of in			
	a) 2700 Å	b) 1700 Å	c) 5900 Å	d) 3100 Å
562.	The wave number of the fi	_		
	a) 72755.5cm ⁻¹	b) 109678cm^{-1}	c) 82258.5 cm ⁻¹	d) 65473.6 cm ⁻¹
563.	The nodes present in $3p$ -o			
	a) One spherical, one plan	ar	b) Two spherical	
	c) Two planar		d) One planar	
564.	Electronic configuration of	f deuterium atom is		2
	a) 1s ¹	· /	c) 2s ¹	d) $1s^2$
565.	The number of d -electrons			
	a) 3	b) 4	c) 5	d) 6
	For azimuthal quantum nu	imber $l = 3$, the maximum	number of electrons will b	
	a) 2			d) 14
	Which of the following set			1
	a) $n = 5, l = 4, m = 0, s = 0$ c) $n = 6, l = 0, m + 1, s = 0$	$+\frac{1}{2}$	b) $n = 3, l = 3, m = +3, s$	$=+\frac{1}{2}$
		1		2
	c) $n = 6, l = 0, m + 1, s =$	$-\frac{1}{2}$	d) $n = 4, l = 2, m = +2, s$	=0
	Correct energy value order			
	a) $ns, np, nd, (n-1)f$		b) $ns, np, (n-1)d, (n-2)$)f
	c) $ns, np, (n-1)d, (n-1)$)f	d) $ns, (n-1)d, np, (n-1)d$)f
569.	Which hydrogen like speci	ies will have same radius a	s that of Bohr orbit hydrog	en atom?
	a) $n = 2$, Li^{2+}	b) $n = 2$, Be ³⁺	c) $n = 2$, He ⁺	d) $n = 3$, Li ²⁺
570.	The nucleus and an atom	can be assumed to be sphe	erical. The radius of the nu	cleus of mass no. A is given
-	by $1.25 \times 10^{-13} \times A^{1/3}$ cm	. The atomic radius of aton	n is 1 Å. If the mass no. is 6	4, the fraction of the atomic
	volume that is occupied by	nucleus is:		
	a) 1.0×10^{-3}	b) 5.0×10^{-5}	c) 2.5×10^{-2}	d) 1.25×10^{-13}
571.	The expression <i>Ze</i> gives :			
	a) The charge of α -particle	ė		
	b) The charge on an atom			
	c) The charge on the nucle	eus of atomic number Z		
	d) The kinetic energy of ar	-		
572.	Which has the highest nun	=		
	a) Mn	b) Mn ⁵⁺	c) Mn ³⁺	d) Mn ⁴⁺

	neutrons present in carbon a	nd silicon with respect to a	tomic masses of 12 and 28
is:	13.7.0	3.0.4	1) (00
a) 3:7	b) 7:3	c) 3:4	d) 6:28
	ed in the third $(n = 3)$ quantum		D C
a) Kr	b) Zn	c) Cu	d) Ca
	number of <i>s</i> -electrons as the <i>d</i>		1) D
a) Li	b) Na	c) N	d) P
-	al lines that can be possible wh	ien electrons in 7th shell in	different hydrogen atoms
return to the 2nd shell		.) 14	D 10
a) 12	b) 15	c) 14	d) 10
577. The value of Rydberg		.) 10.07601	D 10 0076 =1
a) 10,9678 cm ⁻¹	b) 10,9876 cm ⁻¹	c) 10,8769 cm ⁻¹	d) 10,8976 cm ⁻¹
	clusion principle, the electroni		
a) $1s^2$, $2s^2$	b) 1s ³	c) $1s^1, 2s^2$	d) $1s^2$, $2s^1$ $2p^1$
-	only as stream of particles?	a) Interference	d) Dlanalda tha ann
a) Diffraction	b) Photoelectronic effect	c) interierence	d) Planck's theory
580. Who introduced the co	oncept of electron spin?	4 4	
a) Schrödinger			/
b) Planck			
c) Bohr	damit		
d) Uhlenbeck and Gau			
581. The unit of wavelength	· · · · · · · · · · · · · · · · · · ·	a) 1000 Å	4) EE 8
a) 10Å	b) 100Å	c) 1000Å	d) 55Å
582. Mass of neutron is t		2000	d) Marra af than
a) 1840	b) 1480	c) 2000	d) None of these
electron is :	ate that unexcited hydrogen a	tom can reach when they a	are bombarded with 12.2 ev
a) $n=1$	b) $n = 2$	c) $n = 3$	d) $n = 4$
	comic orbitals in fourth energy	•	u) $n - 4$
	b) 8		d) 32
a) 4	Bohr orbit of hydrogen atom i	c) 16 c 0 529 Å The radius of the	_
a) 8.46 Å	b) 0.705 Å	c) 1.59 Å	d) 4.79 Å
•	be added to the nucleus of an	•	•
called:	be added to the nucleus of an	i atom without changing t	ne chemical properties, are
a) Electrons	b) Protons	c) Neutrons	d) α-particles
	es 4, 3, -2 and $+\frac{1}{2}$ for the set o	f four quantum numbers <i>n</i> ,	l, m_1 and m_s , respectively,
belongs to			
a) 4s orbital	b) 4p orbital	c) 4 <i>d</i> orbital	d) 4 <i>f</i> orbital
	electrons that can be accomr	nodated in all the orbitals	s having principal quantum
	nal quantum number 1 is:		
a) 2	b) 4	c) 6	d) 8
	parded with α -particles suffer	deflections while others pa	ss through undeflected.
This is because:			
=	ion on the $lpha$ -particle by the op	= =	
	es much smaller volume comp		tom
_	on on the fast moving α -partic		
	cleus do not have any effect or	=	_
-	with $l = 3$ are there in an atom	=	
a) 3	b) 10	c) 14	d) None of these
591. Suppose a completely	p filled or half filled set of p o	or a -orbitals is spherically	symmetrical. Point out the

	species, which is spherica	l symmetrical?		
	a) 0	b) C	c) Cl ⁻	d) Fe
592.	The number of electrons a	and neutrons of an element	t is 18 and 20 respectively.	Its mass number is
	a) 2	b) 17	c) 37	d) 38
593.	Which d -orbital has differ	ent shape from rest of all a	<i>l</i> -orbital?	
	a) $d_{x^2-y^2}$	b) d_{z^2}	c) d_{x^2y}	d) d_{xz}
594.	Photoelectric effect is the	phenomenon in which:	•	
		metal when it is hit by a be	am of electrons	
	b) Photons come out of th	e nucleus of an atom under	r the action of an electric fi	eld
	c) Electrons come out of a incident light wave	n metal with a constant velo	ocity which depends on the	frequency and intensity of
	=	n metal with different veloc of the incident light wave a	ities not greater than a cer nd not on its intensity	tain value which depends
595.		ons of sublevel in n^{th} orbit		
	a) 2n	b) 2 <i>l</i> + 1	c) n^2	d) $2n^2$
596.			ses in order to produce pho	1
		shold frequency for platinu	•	
	a) 3.6×10^{-13} erg	b) $8.2 \times 10^{-13} \text{erg}$	c) $8.2 \times 10^{-14} \text{erg}$	d) 8.6×10^{-12} erg
597.	,	_	on Ψ is proportional to exp	,
		_		nucleus to the probability of
	finding it at a_0 ?	1 ,		1 ,
	- •	b) e ²	1	d) Zero
	a) <i>e</i>	b) e-	e^2	
598.	Millikan's oil drop experir	nent is used to find:		
	a) e/m ratio of electron		b) Electronic charge	
	c) Mass of an electron		d) Velocity of an electron	
599.	The maximum number of	unpaired electrons presen		
	a) 5	b) 7	c) 10	d) 6
600.	According to Bohr's mod principle quantum number		the radius of a stationary	orbit characterised by the
	a) n^{-1}	b) n	c) n^{-2}	d) n^2
601.		g has unit positive charge a	=	,
	a) Electron	b) Neutron	c) Proton	d) None of these
602.		light is 6×10^{14} Hz. Its wav	elength is:	,
		b) 5 nm	c) 50,000 nm	d) None of these
603.	Among the following sets	of quantum numbers, whic	ch one is incorrect for $4d -$	electron?
	a) 4, 3, 2, $+\frac{1}{2}$	b) 4, 2, 1, $+\frac{1}{2}$	c) $4, 2, -2, +\frac{1}{2}$	d) 4, 2, 1, $-\frac{1}{2}$
604.	Nitrogen has the electro	onic configuration $1s^2$, $2s$	$2^{2} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$ and not 1.	s^2 , $2s^2 2p_x^2 2p_x^1 2p_z^0$. It was
	proposed by:			
	a) Aufbau principleb) Pauli's exclusion princic) Hund's rule			
	b) Pauli's exclusion princi	ple		
	c) Hund's rule			
	d) Uncertainty principle			
605.			collection of isoelectronic s	
			c) N^{3-} , O^{2-} , F^- , S^{2-}	d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
606.	The e/m ratio is maximum			
	a) D ⁺	b) He ⁺	c) H ⁺	d) He ²⁺
	The principle, which gives a) Hund's rule	s a way to fill the electrons	in the available energy leve	el is:

	l as
•	
f mass 25 g in space is 10) ⁻⁵ m. The uncertainty in its
- 20	22
	d) 0.5×10^{-23}
=	
c) 100	d) 60
- 22	25
	d) 6.02×10^{25}
,	d) 32
-	d) 2
oportional to:	<i>7</i>
c) \sqrt{r}	d) —
c) (1	\sqrt{r}
A' V Y	d) 3 N
on of the lowest energy?	
	d) L. Rutherford
c) Na ⁺	d) Al ³⁺
	4 cm and velocity = 10^{-4}
=	d) 5.27×10^{-7} cm
ry?	
mical reaction	
nds of atoms are constant	
asses	
rticles called atoms	
scribing an electron, which	can have the largest value:
c) <i>m</i>	d) <i>s</i>
n Z = 23 is:	
c) $3d^2$, $4s^14p^1$	d) $3d^3$, $4s^14 p^1$
given an energy E equal to):
c) mc	d) c^2/m
ence electron of rubidium ((Z=37) is
b) $n = 5, l = 1, m = 1, s$	= +1/2
d) $n = 6, l = 0, m = 0, s$	= +1/2
	(10^{-11} g) ; diameter = 10^{-4} (7) is 1%) (7) 5.27 \times 10^{-6} cm ry? mical reaction ands of atoms are constant asses rticles called atoms scribing an electron, which (7)

	a) A quanta of light (or el	ectromagnetic) energy		
	b) A quanta of matter			
	c) A positively charged pa			
	d) An instrument for mea			
626	. Which orbital is dumb-be	-		
	a) <i>s</i>	b) 2 <i>p</i> _y	c) 3 <i>s</i>	d) $3d_z^2$
627	. Aufbau principle does not	t give the correct arrangem	ent of filling up of atomic o	orbital's in
	a) Cu and Zn	b) Co and Zn	c) Mn and Cr	d) Cu and Cr
628	. Ordinary oxygen contains	5:		
	a) Only 0-16 isotope			
	b) Only 0-17 isotope			
	c) A mixture of 0-16 and	0-18 isotopes		
	d) A mixture of 0-16,0-17	7 and 0-18 isotopes		
629	. The approximate quantur	m number of a circular orb	it of diameter, 20.6 nm of t	he hydrogen atom according
	to Bohr's theory is:			
	a) 10	b) 14	c) 12	d) 16
630	. A p-orbital in a given shel	l can accommodate upto		•
	a) Four electrons	-	b) Two electrons with pa	rallel spin
	c) Six electrons		d) Two electrons with op	_
631	-	erated through a potential	difference of 10,000 volt. T	
	of the electron beam is	0 1		
	a) 0.123 A°	b) 0.356 A°	c) 0.186 A°	d) 0.258 A°
632	•	m n = 3 to $n = 1$ level resu		,
	a) X-ray spectrum	b) Emission spectrum		d) Infrared spectrum
633				⁻¹³ cm. The fraction of atom
	occupied by nucleus is:			
	a) 10^{-5}	b) 10 ⁵	c) 10^{-15}	d) None of these
634	. The ratio of the masses of	f proton and neutron are:	,	,
-	a) > 1	b) < 1	c) = 1	d) > $\sqrt{1}$
635	•	element is W and its atomi	•	w) > V1
055	a) Number of $e^0 - W$	– M	e number 13 14, then.	
	h) Number of protons (\mathcal{A}	H^1) – W – N		
	a) Number of $_{-1}e^0 = W$ b) Number of protons ($_1$) c) Number of $_0n^1 = W$ d) Number of $_0n^1 = N$.N		
	d) Number of $n^1 - N$	14		
636	For a particular value of a	zimuthal auantum numbo	r, the total number of magn	natic quantum number
030				ieuc quantum number
	m + 1	m - 1	2m + 1	21 + 1
	a) $l = \frac{m+1}{2}$	b) $l = \frac{m-1}{2}$	c) $l = \frac{2m+1}{2}$	$d) m = \frac{2l+1}{2}$
637		ergy of a radiation and its fr	-	2
	a) De Broglie	b) Einstein	c) Planck	d) Bohr
638		starts in the element of ato	•	,
	a) 29	b) 31	c) 35	d) 19
639	× 9	electron in the <i>n</i> th orbit of	,	w) = 3
	a) Directly proportional t		2011 11/ 01/ 08/01/ 00/01/ 10 1	
	b) Inversely proportional			
	c) Inversely proportional			
	d) Inversely proportional			
640		from chloride ion in the n_i	imher of:	
040	a) Protons	b) Neutrons	c) Electrons	d) None of these
641		•	•	ential for He ⁺ ion should be
0.11	. 11 the formsation potential	ioi ilyalogeli atolli is 13.0	ev, men me minsamon pou	circiai ioi iic ioii siiouiu De

a) 13.6 eV	b) 6.8 eV	c) 54.4 eV	d) 72.2 eV
642. The λ for H_{α} line of Ba	almer series is 6500 Å. Thu	s, λ for H_{β} line of Balmer ser	es is :
a) 4814 Å	b) 4914 Å	c) 5014 Å	d) 4714 Å
643. According to Bohr's th	neory, the angular moment	um for an electron of 3rd orb	it is
a) 3 <i>h</i>	b) 1.5 <i>h</i>	c) 9 h	d) $2\frac{h}{\pi}$
644. The de-Broglie equati	on annlies		π
a) To protons only	он аррнез	b) To electrons only	
c) All the material obj	ects in motion	d) To neutrons only	
645. Which of the following		•	
a) $1s^2$, $2s^2$	b) $1s^2$, $2s^22p^6$	-	d) $1s^2$, $2s^22p^2$, $3s^1$
		ommodated in a g -subshell i	s:
a) 14	b) 18	c) 12	d) 20
647. The correct ground st	•	•	
a) $[Ar]3d^54s^1$	b) [Ar]3d ⁴ 4s ²	c) [Ar] $3d^64s^0$	d) $[Ar]4d^54s^1$
		eV. What will be the ionisatio	4 1. 4
a) 13.6 eV	b) 54.4 eV	c) 122.4 eV	d) Zero
-	_	eV of energy, then the numb	er of spectral lines emitted is
equal to:			•
a) None	b) Two	c) Three	d) Four
650. ψ^2 (psi) the wave fund	ction represents the probal	oility of finding electron. Its v	alue depends:
a) Inside the nucleus			
b) Far from the nucle	ıs		
c) Near the nucleus			
d) Upon the type of or	·bital		
651. The orbital angular m			
a) $\sqrt{6} \frac{h}{2\pi}$	b) $\sqrt{2}\frac{h}{2\pi}$	c) $\frac{h}{2\pi}$	d) $\frac{2h}{2\pi}$
2π 652. The space between th		— -	2π
a) Filled with air	e proton and electron in n	y ar ogen atom is.	
b) Empty			
c) Filled with magnet	ic radiation		
d) None of the above			
		th electrons, the next electro	n will enter:
a) 5 <i>s</i>	b) 6s	c) 5 <i>d</i>	d) 5 <i>p</i>
654. The number of unpair	red electrons in Fe ³⁺ ion is	•	
a) 3	b) 1	c) 5	d) 2
655. The number of d -elec			
	trons in Fe ²⁺ (at. No. of Fe	= 26) is not equal to that of	the:
a) <i>p</i> -electrons in Ne (a	•	= 26) is not equal to that of	the:
	at. no. = 10)	= 26) is not equal to that of	the:
a) p -electrons in Ne (a	at. no. = 10)	= 26) is not equal to that of	the:
a) p-electrons in Ne (ab) s-electrons in Mg (a	at. no. = 10) at. no. = 12)	= 26) is not equal to that of	the:
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 	at. no. = 10) at. no. = 12) at. no. Cl = 17)	= 26) is not equal to that of second	
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 	at. no. = 10) at. no. = 12) at. no. Cl = 17)		
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 656. When the value of azi 	at. no. = 10) at. no. = 12) at. no. Cl = 17) muthal quantum number is b) +1 only	s 1, magnetic quantum numb $c) +1, 0, -1$	er can have values :
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 656. When the value of azina) -1 only 	at. no. = 10) at. no. = 12) at. no. Cl = 17) muthal quantum number is b) +1 only	s 1, magnetic quantum numb $c) +1, 0, -1$	er can have values :
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 656. When the value of azin a) -1 only 657. The H atom electron of 	at. no. = 10) at. no. = 12) at. no. Cl = 17) muthal quantum number is b) +1 only dropped from $n = 3$ to $n =$ b) 12 eV	s 1, magnetic quantum numb c) $+1,0,-1$ 2, then energy emitted is	er can have values : d) +1 and –1
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 656. When the value of azina) -1 only 657. The H atom electron of a) 1.9 eV 658. The n + l value for the a) 4 	at. no. = 10) at. no. = 12) at. no. Cl = 17) muthal quantum number is b) +1 only dropped from $n = 3$ to $n =$ b) 12 eV e 3 p -energy level is: b) 7	s 1, magnetic quantum numb c) +1,0,-1 2, then energy emitted is c) 10.2 eV c) 3	er can have values : d) +1 and -1 d) 0.65 eV d) 1
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 656. When the value of azina) -1 only 657. The H atom electron of a) 1.9 eV 658. The n + l value for the a) 4 659. The maximum number 	at. no. = 10) at. no. = 12) at. no. Cl = 17) muthal quantum number is b) +1 only dropped from n = 3 to n = b) 12 eV e 3 p-energy level is: b) 7 r of sublevels, orbitals and	s 1, magnetic quantum numb c) +1,0,-1 2, then energy emitted is c) 10.2 eV c) 3 electrons in N-shell of an atom	er can have values : d) +1 and -1 d) 0.65 eV d) 1 om are respectively
 a) p-electrons in Ne (a b) s-electrons in Mg (a c) d-electrons in Fe d) p-electrons in Cl⁻(a 656. When the value of azina) -1 only 657. The H atom electron of a) 1.9 eV 658. The n + l value for the a) 4 659. The maximum number a) 4, 12, 32 	at. no. = 10) at. no. = 12) at. no. Cl = 17) muthal quantum number is b) +1 only dropped from n = 3 to n = b) 12 eV e 3 p-energy level is: b) 7 r of sublevels, orbitals and b) 4, 16, 30	s 1, magnetic quantum numb c) +1,0,-1 2, then energy emitted is c) 10.2 eV c) 3	er can have values: d) +1 and -1 d) 0.65 eV d) 1 om are respectively d) 4, 32, 64

	$(h = 6.626 \times 10^{-27} \text{erg} - \text{s})$		
	a) 6.626×10^{-28} cm b) 6.626×10^{-29} cm	c) 6.626×10^{-30} cm	d) 6.626×10^{-31} cm
661.	The target used for production of X-ray beam must h	nave:	
	a) High melting point and high atomic number		
	b) High melting point and low atomic number		
	c) Low melting point and low atomic number		
	d) Low melting point and high atomic number		
662.	When photons of energy 4.25eV strike the surface o	f a metal A, the ejected pho	toelectrons have maximum
	kinetic energy, T_A (expressed in eV) and de Brog		
	photoelectrons liberated from another metal <i>B</i> by		
	de Broglie wavelength of these photoelectrons is λ_B		
	a) The work function of <i>A</i> is 2.25 eV	A,	
	b) The work function of <i>B</i> is 3.70 eV		A Y
	c) $T_A = 2.00 \text{ eV}$		
	d) $T_B = 0.5 \text{eV}$		
663	An electrons is in one of the $3d$ -orbitals, which of the	a guantum numbar ic not n	neeibla?
003.	a) $l = 1$ b) $n = 3$	c) $m = 1$	d) $m=2$
661			$u_f m = 2$
004.	The momentum of a photon is p . The corresponding		1) 1 / C
	a) <i>h/p</i> b) <i>hp</i>	c) <i>p/h</i>	d) h/\sqrt{p}
665.	An electron, a proton and an alpha particle have KE	of $16E$, $4E$ and E respective	ely. What is the qualitative
	order of their de-Broglie wavelengths?		
	a) $\lambda_e > \lambda_p > \lambda_\alpha$ b) $\lambda_p = \lambda_\alpha > \lambda_e$	c) $\lambda_p < \lambda_e < \lambda_\alpha$	d) $\lambda_{\alpha} < \lambda_{e} \approx \lambda_{p}$
666.	How many sets of four quantum number are possibl	e for the electrons present	in He ^{2–} ?
	a) 4 b) 3	c) 2	d) None of these
667.	Which of the following has the maximum number of	unpaired 'd' electrons?	
	a) Zn ²⁺ b) Fe ²⁺	c) Ni ³⁺	d) Cu ⁺
668.	The electrons, identified by quantum number n and	l,	
	V. $n = 3; l = 2$		
	VI. $n = 5; l = 0$		
	VII. n = 4; l = 1		
	VIII. $n = 4; l = 2$		
	IX. $n = 4; l = 0$		
	can be placed in order of increasing energy, as		
	a) I <v<iii<iv<ii b)="" i<v<iii<iiv<="" td=""><td>c) V<i<iii<iv< td=""><td>d) V<i<ii<iv< td=""></i<ii<iv<></td></i<iii<iv<></td></v<iii<iv<ii>	c) V <i<iii<iv< td=""><td>d) V<i<ii<iv< td=""></i<ii<iv<></td></i<iii<iv<>	d) V <i<ii<iv< td=""></i<ii<iv<>
669.	Identify the least stable ion amongst the following		,
	a) Li b) Be	c) B ⁻	d) C ⁻
670.	Mass number of atom represents the number of its:	,	,
	a) Protons only		
	b) Protons and neutrons		
	c) Protons and electrons		
	d) Neutrons and electrons		
~ \			
	The equation, $\lambda = \frac{h}{mv}$ was deduced by		
	a) Newton b) de-Broglie	c) Planck	d) Heisenberg
672.	Ionisation potential of hydrogen atom is 13.6 eV. Hy	= =	-
	monochromatic light of energy 12.1 eV. The spectra	l lines emitted by hydrogen	according to Bohr's theory
	will be:		
	a) One b) Two	c) Three	d) Four
673.	The line spectrum observed when electron falls from		
	a) Balmer series b) Paschen series	c) Bracket series	d) None of these
674.	Atomic weight of Ne is 20.2. Ne is a mixture of Ne ²⁰ a	and Ne ²² . Relative abundan	ce of heavier isotope is:

	a) 90	b) 20	c) 40	d) 10
675	. The number of waves in a	n orbit are		
	a) n^2	b) <i>n</i>	c) $n - 1$	d) $n - 2$
676	. An ion Mn $^{a+}$ has the magi	netic moment equal to 4.9 I	B. M. The value of a is:	
	a) 3	b) 4	c) 2	d) 5
677	. The number of electrons i	n [₁₉ K ⁴⁰] - is:		
	a) 19	b) 20	c) 18	d) 40
678	. p -orbitals of an atom in p	resence of magnetic field a	re;	
	a) Three fold degenerate			
	b) Two fold degenerate			
	c) Non-degenerate			
	d) None of these			
679	. In 'aufbau principle', the ${\sf t}$	erm aufbau represents:		
	a) The name of scientist			
	b) German term meaning	for building up		
	c) The energy of electron			
	d) The angular momentur			, , , , , , , , , , , , , , , , , , ,
680		the hydrogen atom is 2.2	\times 10° m/s. The de Broglie	wavelength for this electron
	is:	15.4		N 0 0 0
	a) 33 nm	b) 45.6 nm	c) 23.3 nm	d) 0.33 nm
681	=		d 20 neutrons. Its mass nur	
	a) 37	b) 35	c) 38	d) 20
682		related with both wave nat		N 77 1
600	a) Interference	b) $E = mc^2$	c) Diffraction	d) $E = hv$
683		Bohr's fourth orbit. Its de-B	roglie wavelength is λ . What	at is the circumference of
	the fourth orbit?	()		1
	a) $\frac{2}{4}$	b) 2 λ	c) 4 λ	d) $\frac{4}{1}$
684	71	ts of quantum numbers ren	oresents an impossible arra	λ
001	n l m s	is or quantum, and so rop		
			b) 3 2 $-3 \pm \frac{1}{2}$	
	a) 3 2 $-2 + \frac{1}{2}$ c) 4 0 0 $-\frac{1}{2}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b) 3 2 $-3 + \frac{1}{2}$ d) 5 3 0 $-\frac{1}{2}$	
	c) 4 0 0 $-\frac{1}{2}$		d) 5 3 0 $-\frac{1}{2}$	
685	. A cricket ball of 0.5 kg is r	noving with a velocity of 10	00m/s. The wavelength ass	ociated with its motion is
	a) 0.01 cm	b) 6.6×10^{-34} m	c) 1.32×10^{-35} m	d) 6.6×10^{-28} m
686	.The ratio between kineti	c energy and the total en	ergy of the electrons of h	ydrogen atom according to
	Bohr's model is:			
	a) 1:-1	b) 1:1	c) 1:2	d) 2:1
687		en atom is 13.6 eV. The bin	ding energy of a singly ioni	sed helium atom is:
	a) 13.6 eV	b) 27.2 eV	c) 54.4 eV	d) 3.4 eV
688	-		gth of 0.15 nm Mass of an e	lectron is 9.109×10^{-28} g.
	$(h = 6.626 \times 10^{-27} \text{erg-s})$			
	,		c) $4.84 \times 10^8 \text{ cm. s}^{-1}$	d) 2.062×10^{-9} cm. s ⁻¹
689	Einstein's theory of photo			
	a) Maxwell's electromagn	etic theory of light	b) Planck's quantum theo	ry of light
	c) Both of the above		d) None of the above	
690	. Which orbital does not po	ssess angular node?		
	a) s	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
691	-	umber for an electron in a	5 <i>d</i> -orbital is:	
	a) May be zero			
	b) Two			

d) May be $+5$ to -5 including zero				
692. What is the wavelength of an α -particle having mass 6.6×10^{-27} kg moving with a speed of 10^5 cm s ⁻¹ ? $(h = 6.6 \times 10^{-34} \text{kg m}^2 - \text{s})$				
e energy				
atom				

707. Which is correct in case of p -orbitals?		
a) They are spherical		
b) They have a strong directional character		
c) They are five fold degenerate		
d) They have no directional character	1 11	
708. X-rays and γ -rays of same energies may be distingui	<u>=</u>	d) Mathada Carada attan
a) Velocity b) Ionizing power	c) Intensity	d) Method of production
709. A neutral atom always consist of :		
a) Protons b) Noutrons I protons		
b) Neutrons + protonsc) Neutrons + electrons		Y
d) Neutrons + protons + electrons		
710. A photon of 300 nm is absorbed by a gas then	ra-amits two photons (Ina ra-amittad nhoton has
wavelength 496 nm, the wavelength of second re-en	-	one re-chilitica photon has
a) 757 b) 857	c) 957	d) 657
711. If uncertainties in the measurement of position and		
the measurement of velocity is a) $8.0 \times 10^{12} \text{ ms}^{-1}$ b) $4.2 \times 10^{10} \text{ ms}^{-1}$	c) $8.5 \times 10^{10} \text{ ms}^{-1}$	d) $6.2 \times 10^{10} \text{ ms}^{-1}$
712. If the quantum number for the 5 th electron in carbon		
values would be		, , ,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	d) 2, 1, -1 , $+-\frac{1}{2}$
a) 2, 1, 0, $-\frac{1}{2}$ b) 2, 0, 1, $+\frac{1}{2}$	c) $2, 1, 1, -\frac{1}{2}$	a) 2, 1, -1 , $+-\frac{1}{2}$
713. A patient is asked to drink $BaSO_4$ solution for examination		, because X-rays are:
a) Less absorbed by heavy atoms	GXX	
b) More absorbed by heavy atoms		
c) Diffracted by heavy atoms	> '	
d) Refracted by heavy atoms		
714. Which of the following is correct for number of elect		= =
a) 4, 4 and 8 b) 4, 8 and 16	c) 32, 16 and 4	d) 4, 16 and 32
715. Which has highest e/m ratio?		
a) He ²⁺ b) H ⁺	c) He ⁺	d) H
716. The quantum number sufficient to describe the elect		15
a) n b) 1	c) <i>m</i>	d) s
717. If an isotope of hydrogen has two neutrons in its ato		
a) 2 and 1 b) 3 and 1	c) 1 and 1	d) 1 and 3
718. The radius of hydrogen atom in the ground state is 0	.53A. The radius of Li ⁻¹ lo	n (atomic number =3) in a
similar state is a) 0.176 Å b) 0.30 Å	c) 0.53 Å	d) 1.23 Å
a) 0.176 Å b) 0.30 Å 719. The speed of the cathode rays is:	C) 0.55 A	u) 1.23 A
a) Equal to light		
b) Less than light		
c) Greater than light		
d) May be less than, greater than or equal to light		
720. Bohr model can explain		
a) The solar spectrum		
b) The spectrum of hydrogen molecule		
c) Spectrum of any atom or ion containing one electronic	ron only	
d) The spectrum of hydrogen atom only	- J	
721. Which represents the correct set up of the four quan	tum numbers of 4s-electro	on?
a) 4, 3, 2, +1/2 b) 4, 2, 1, 0	c) $4, 3, -2, +1/2$	d) 4, 0, 0, 1/2
722. Electron in the atom are held by:	•	•

a) Coulombic forces	b) Nuclear forces	c) Gravitational forces	d) Van der Waals' forces
723. According to Bohr's th	eory, the angular momentur	n of an electron in 5th orbi	t is
$\frac{h}{25}$	b) $1.0\frac{h}{\pi}$	c) $10\frac{h}{\pi}$	d) $2.5 \frac{h}{\pi}$
a) $25\frac{n}{\pi}$	π	π	$\frac{\alpha}{\pi}$
724. Positron is:			
a) Electron with +ve cl	narge		
b) A helium nucleus			
c) A nucleus with two p	protons		
d) A nuclear with one r	neutron and one proton		
725. The line spectra of two	elements are not identical b	oecause	\mathcal{L}
a) The elements do not	have the same number of n	eutrons	4
b) They have different	mass numbers		
c) Their outermost ele	ctrons are at different energ	y levels	, Y
d) All of the above			
726. Which of the following			
h	b) $\lambda = \frac{h}{mv}$	c) $\lambda = \frac{h}{mp}$	$d0 \lambda m - \frac{v}{a}$
a) $p = \frac{h}{mv}$	$mv = \frac{mv}{mv}$	$C) \lambda - \frac{mp}{mp}$	$a_j m = p$
727. Three electrons in <i>p</i> -su	blevel must have the quanti	um number:	
a) $n = 2$	b) $m = 0$	c) $l = 0$	d) $s = -1/2$ or $+1/2$
728. The number of vacant	d-orbitals in completely exci	ited Cl atom is:	
a) 2	b) 3	c) 1	d) 4
729. The planck's constant h	nas a unit of :		
a) Work	b) Energy	c) Angular momentum	d) Linear momentum
730. The quantum numbers	of most energetic electron i	n Ne atom when it is in firs	t excited state is:
a) $2, 1, 0, +1/2$	b) 3, 1, 1, +1/2	c) 3, 0, 0, +1/2	d) 3, 1, 0, +1/2
731. The charge to mass rat			ratio of protons
a) Six times	b) Four times	c) Half	d) Two times
732. The number of photons		•	tic light of wavelength 663
nm is $(h = 6.63 \times 10^{-3})$			5
a) 4×10^{-20}	b) 1.54×10^{20}	c) 3×10^{-20}	d) 2×10^{20}
733. Density of the electron		., .	
a) 2.77×10^{12} g/mL	b) 4.38×10^{17} g/mL	c) 2.17×10^{14} g/mL	d) None of these
, ,,,	0.	·	lls from infinity to stationary
	perg constant = 1.097×10^7		
7 7	b) 192 nm	c) 406 nm	d) 9.1×10^{-8} nm
735. The number of electron		•	
a) 2	b) 6	c) 10	d) 8
736. Suppose 10^{-17} J of ligh	•	•	•
	green light ($\lambda = 550 \text{ nm}$) ne		
a) 26	b) 27	c) 28	d) 29
737. A 0.66 kg ball is moving	,	•	•
a) 6.6×10^{-32} m	b) 6.6×10^{-34} m	c) 1.0×10^{-35} m	d) 1.0×10^{-32} m
738. Which of the following	,	c) 1.0 × 10 III	u) 1.0 × 10 III
a) $_1$ H ¹ and $_2$ He ³ are is		b) $_6\text{C}^{14}$ and $_7\text{N}^{14}$ are iso	otones
c) $_{19}K^{39}$ and $_{20}Ca^{40}$ and	-	d) $_{9}F^{19}$ and $_{11}Na^{24}$ are:	-
739. Nuclear theory of the a		uj gi allu ₁₁ Na die	isouiapiicis
		a) Noila Dohn	d) II Thomson
a) Rutherford	b) Aston	c) Neils Bohr	d) J.J. Thomson
740. Which of the following $n = 3$, $n = 3$, $l = 2$, $m = -3$	=	ient of electrons III all atom	:
a) $n = 3, l = 2, m = -2$			
b) $n = 4, l = 0, m = 0,$	•		
c) $n = 5, l = 3, m = 0,$	S = +1/2		

	d) $n = 3, l = 2, m = -3, s = -1/2$			
741.	The measurement of the electron pos			momentum, which is equal
	to 1×10^{-18} g cm s ⁻¹ . The uncertainty	in electron ve	elocity is:	
	(mass of an electron is 9×10^{-28} g)			
	a) $1 \times 10^6 \text{ cm s}^{-1}$ b) $1 \times 10^5 \text{ cm}$	m s ⁻¹	c) $1 \times 10^{11} \text{cm s}^{-1}$	d) $1.1 \times 10^9 \text{cm s}^{-1}$
742.	The two electrons ins K-sub shell will	differ in		
	a) Principal quantum number		b) Azimuthal quantum nu	ımber
	c) Magnetic quantum number		d) Spin quantum number	
743.	An atom having even number of electr	ons may be:		
	a) Diamagnetic			
	b) Paramagnetic			
	c) Diamagnetic or paramagnetic			
	d) None of the above			
744.	Dual nature of particles was proposed	by		
	a) Heisenberg b) Lowry		c) de-Broglie	d) Schrodinger
745.	In photoelectric effect, the number of	ohotoelectrons	s emitted is proportions to	7
	a) Intensity of incident beam		b) Frequency of incident	
	c) Wavelength of incident beam		d) All of the above	
746.	A ball of mass 200 g is moving with	a velocity of 1		measurement of velocity is
	0.1%, the uncertainty in its position is			incustration of versery is
	a) 3.3×10^{-31} m b) 3.3×10		c) 5.3×10^{-25} m	d) 2.64×10^{-32} m
747	The number of radial nodes of $3s$ and			u) 2.01 × 10 III
, 1,	a) 2, 0 b) 0, 2	2p orbitals are	c) 1, 2	d) 2, 11
74.8	The mass of a photon with wavelength	36 Å is	C) 1, 2	u) 2, 11
740.	a) 6.135×10^{-29} kg b) 3.60×1		c) 6.135×10^{-33} kg	d) 3.60×10^{-27} kg
740	Correct set of four quantum numbers	_		u) 5.00 × 10 kg
749.	-		c) 4, 3, -2, +1/2	d) 4, 2, -1, -1/2
750	a) 4, 3, -2, 1/2 b) 4, 2, -1,			u) 4, 2, -1, -1/2
750.	The orbital angular momentum of an e	electron in 58-0	_	d) 7 ana
	a) $\frac{1}{2} \cdot \frac{h}{2\pi}$ b) $\frac{h}{2\pi}$	$\langle \rangle'$	c) $\frac{1}{3} \cdot \frac{h}{2\pi}$	d) Zero
751	The uncertainties in the velocities of to	wo narticles A		s ⁻¹ respecively. The mass
701				
	of B is five times to that of mass A . Wh	at is the ratio (of uncertainties $\left(\frac{\Delta x_B}{\Delta x_B}\right)$ in th	eir positions?
	a) 2 b) 0.25		c) 4	d) 1
752.	Which of the following statement is re	lation to the hy	ydrogen atom is correct?	
	a) $3s$, $3p$ and $3d$ -orbitals all have the s	ame energy		
	b) 3s and 3p-orbitals is lower energy to	than $3d$ -orbita	l	
	c) $3p$ -orbital is lower in energy than 3	d-orbital		
	d) 3s-orbital is lower in energy than 3	<i>p</i> -orbital		
753.	Atoms in hydrogen gas have preponde	erance of:		
	a) ₁ H ¹ atoms			
7	b) Deuterium atoms			
	c) Tritium atoms			
	d) All the three (a),(b) and (c) are in e	qual ratio		
754.	The energy of the electron at infinite d	istance from t	he nucleus in Bohr's mode	l is taken a:
	a) Zero b) Positive		c) Negative	d) Any value
755.	The quantum numbers for the last elec	ctron in an ato	m are $n=3$, $l=1$ and $m=1$	= -1. The atom is:
	a) Al b) Si		c) Mg	d) C
756.	The maximum number of electrons po	ssible in a sub	level is equal to:	
	a) $2l + 1$ b) $2n^2$		c) $2l^2$	d) $4l + 2$
757	The quantum number for the last elec-	rons of an ato	m are $n = 2, l = 0, m = 0, s$	$s = \pm 1/2$. The atom is:

a) Lithium b) Boron	c) Carbon	d) Hydrogen
758. The radius of second stationary orbit in Bohr's atom	s is <i>R</i> . The radius of third o	rbit will be:
a) 3 <i>R</i> b) 9 <i>R</i>	c) 2.25 R	d) R/3
759. Number of f -orbitals associated with $n = 5$ is:		
a) 7 b) 5	c) 9	d) 10
760. The number of d -electrons retained in Fe ²⁺ ion is :		
a) 5 b) 6	c) 3	d) 4
761. The triad of nuclei which is isotonic is		
a) $_{6}^{14}C_{.7}^{14}N_{.9}^{17}F$ b) $_{6}^{14}C_{.7}^{14}N_{.9}^{19}F$	c) $_{6}^{14}C_{7}^{15}N_{9}^{17}F$	d) ${}_{6}^{12}C_{7}^{14}N_{9}^{19}F$
762. The wavelength of a spectral line in Lyman series, w	hen electron jumps back fro	
a) 1162 Å b) 1216 Å	c) 1362 Å	d) 1176 Å
763. Ionisation energy of He ⁺ is 19.6×10^{-18} J atom ⁻¹ . Th		
a) $4.41 \times 10^{-16} \text{J atom}^{-1}$	b) -4.41×10^{-17} J atom ⁻¹	
c) $-2.2 \times 10^{-15} \text{J atom}^{-1}$	d) $8.82 \times 10^{-17} \text{J atom}^{-1}$	
764. The energy of second Bohr orbit of the hydrogen ato		the energy of fourth Bohr
orbit would be	0 = 0, 0 , , ,	one once gy or roun on zom
a) -41 kJ mol^{-1} b) $-1312 \text{ kJ mol}^{-1}$	c) -164 kI mol^{-1}	d) -82 kJ mol ⁻¹
765. In hydrogen spectrum most energetic transitions of		dy of hymor
a) Balmer series b) Bracket series	c) Paschen series	d) Lyman series
766. The ratio of specific charge (e/m) of an electron to the		a) Lyman series
a) 1:1 b) 1840:1	c) 1:1840	d) 2:1
767. Which property of elements is not a whole number?	c) 1 · 1010	u) 2 · 1
a) Mass number		
b) Atomic number		
c) Average atomic weight	K)	
d) None of these	>	
768. The maximum kinetic energy of the photoelectrons i	s found to be 6.63 × 10 ⁻¹⁹	I When the metal is
irradiated with a radiation of frequency 2×10^{15} Hz		
a) $2 \times 10^{15} \mathrm{s}^{-1}$ b) $1 \times 10^{15} \mathrm{s}^{-1}$	c) $2.5 \times 10^{15} \text{s}^{-1}$	d) $4 \times 10^{15} \text{ s}^{-1}$
769. Which of the following is Heisenberg uncertainty pri	,	u) 4× 10 S
	•	h
a) $\Delta x. \Delta p \ge \frac{h}{4\pi}$ b) $\Delta x. \Delta p = \frac{h}{4\pi}$	c) $\Delta x. \Delta p \leq \frac{h}{4\pi}$	d) Δx . $\Delta p < \frac{h}{4\pi}$
770. Which of the following make up an isotonic triad?	TIL	TIL
a) ${}^{78}_{32}$ Ge, ${}^{77}_{33}$ As, ${}^{74}_{31}$ Ga b) ${}^{40}_{18}$ Ar, ${}^{40}_{19}$ K, ${}^{40}_{20}$ Ca	c) $^{233}_{92}$ U, $^{232}_{90}$ Th, $^{239}_{94}$ Pu	d) ${}^{14}_{6}$ C, ${}^{16}_{8}$ O, ${}^{15}_{7}$ N
771. The magnetic quantum number for valency electron		a) 60,80,71
a) 3 b) 2	c) 1	d) Zero
772. Which pair has elements containing same number of		•
a) Cl and Br b) Ca and Cl	c) Na and Cl	d) N and O
773. The electromagnetic radiation with maximum wavel	•	a) It alia o
a) Ultraviolet b) Radiowaves	c) X-ray	d) Infrared
774. An element contains:	oj ii iuj	a) imiarou
a) Only one type of nuclide		
b) Two types of nuclides		
c) Different types of nuclides		
d) None of the above		
775. Which of the following statements is incorrect?		
a) The charge on electron and proton are equal and	onnosite	
b) Neutrons have no charge	opposite	
c) The mass of proton and electron are nearly the sa	me	
d) None of the above	1110	
a, mone of the above		

	a) Meson	b) Neutron	c) Proton	d) Electron
	=	ers for the outermost elect		
	4	4	c) $4, 0, 0, +\frac{1}{2}$	4
778.	. A certain negative ion X ²	^{?–} has in its nucleus 18 ne	utrons and 18 electrons in	its extra nuclear structure
	What is the mass number	of the most abundant isoto	ope of X?	
	a) 36	b) 35.46	c) 32	d) 39
779.	. Atom containing an odd r	number of electron is:		
	a) Ferromagnetic	b) Ferrimagnetic	c) Paramagnetic	d) Diamagnetic
780.	Amplification of electrom	agnetic waves by simulated	d emission of radiation pro	duces:
	a) Polarised light	b) Neutrons	c) Laser	d) γ-rays
781.	. In the discharge tube emi	ssion of cathode rays requi	res:	A . Y
	a) Low potential and low	pressure		
	b) Low potential and high	ı pressure		
	c) High potential and high	h pressure		
	d) High potential and low	pressure		
782.	Which electron transition	ı in a hydrogen atom requir	es the largest amount of en	iergy?
	a) From $n = 1$ to $n = 2$	b) From $n = 2$ to $n = 3$	c) From $n = \infty$ to $n = 1$	d) From $n = 3$ to $n = 5$
783.	The number of electrons	in the valence shell of calciu	um is	
	a) 2	b) 4	c) 6	d) 8
784.	A cricket ball of 0.5 kg is a	moving with a velocity of 10	00 m/s. The wavelength as	sociated with its motion is
	a) 1/100 cm	b) 6.6×10^{-34} m	c) 1.32×10^{-35} m	d) 6.6×10^{-28} m
785.	A body of mass 10 mg is r	noving with a velocity of 10	00 ms^{-1} . The wavelength of	f de-Broglie wave
	associated with it would l		()	
	$(h = 6.63 \times 10^{-34} \text{Js})$			
	a) 6.63×10^{-35} m	b) 6.63×10^{-34} m	c) 6.63×10^{-31} m	d) 6.63×10^{-37} m
786.		charge on electron was det	termined by	
	a) J.J. Thomson	b) R.A. Millikan	c) Rutherford	d) Chadwick
787.	Which of the following wi	ill violates aufbau principle	as well as Pauli's exclusion	principle?
	a) $\frac{1s}{1l}$ $\frac{2s}{1l}$ $\frac{2p}{1l}$	KÎ()	b) $\frac{1s}{1l}$ $\frac{2s}{1l}$ $\frac{2p}{1l}$	1
	$\frac{1s}{2s}$ $\frac{2s}{2r}$		d) None of the above	
	^{c)} 1 1 11			
788.	The angular momentum of	of an electron in an atomic o	orbital is governed by the:	
	a) Principal quantum nur	nber		
	b) Azimuthal quantum nu	ımber		
	c) Magnetic quantum nur	nber		
	d) Spin quantum number			
789.	In Bohr's model of the hy	drogen atom the ratio betw	veen the period of revolution	on of an electron in the orbi
	n = 1 to the period of rev	olution of the electron in th	ne orbit $n=2$ is:	
~	a) 1:2	b) 2:1	c) 1:4	d) 1:8
790.	The "spin-only" magnetic	moment [in unit of Bohr m	agneton, (μ_B)] of Ni ²⁺ in a	queous solution would be:
	(At. no. Ni = 28)			
	a) 2.84	b) 4.90	c) 0	d) 1.73
791.	The atoms in a molecule	vibrate around their mean	position by stretching or	bending out of place. These
	vibration and the energy	they carry are studied by:		
	a) X-ray spectra	b) Visible spectra	c) IR spectra	d) UV spectra
792.		electrons that can have pri		, .
	number, $m_s = -\frac{1}{2}$, is	•	-	- •
	2, 2			

776. Heaviest particle is:

	Maximum number of a	b) 5	c) 7	d) 9
	Maximum number of c	lectrons present in "N" s	hell is:	
	a) 18	b) 32	c) 2	d) 8
794.	Which electronic level	will allow the hydrogen	atom to absorb photon bi	ut not to emit?
	a) 1s	b) 2 <i>s</i>	c) 2 <i>p</i>	d) 2 <i>d</i>
795.	The mass of electron m	oving with velocity of lig	ght is:	
	a) 2 <i>m</i> _e	b) 3 <i>m</i> _e	c) Infinite	d) Zero
796.	The electron configura	tion of the oxide ion is m	uch most similar to the el	lectron configuration of the
	a) Sulphide ion	b) Nitride ion	c) Oxygen atom	d) Nitrogen atom
797.	If S_1 be the specific cha	rge (e/m) of cathode ra		e rays, then which is true?
	a) $S_1 = S_2$	b) $S_1 < S_2$	c) $S_1 > S_2$	d) Either of these
•	RELAC			
5	ARTA			
S				

STRUCTURE OF ATOM

CHEMISTRY

					:	ANS	W	ER K	EΥ						
1)	С	2)	b	3)	d	4)	С	169)	d	170)	С	171)	d	172)	d
5)	b	6)	c	7)	c	8)	С	173)	b	174)	С	175)	b	176)	b
9)	a	10)	a	11)	c	12)	d	177)	a	178)	b	179)	b	180)	a
13)	a	14)	a	15)	c	16)	С	181)	d	182)	c	183)	d	184)	С
17)	a	18)	c	19)	b	20)	a	185)	c	186)	a	187)	c	188)	a
21)	c	22)	a	23)	d	24)	b	189)	d	190)	a	191)	c	192)	a
25)	c	26)	b	27)	d	28)	d	193)	c	194)	c	195)	a	196)	a
29)	c	30)	b	31)	b	32)	C	197)	c	198)	b	199)	a	200)	d
33)	d	34)	a	35)	d	36)	b	201)	C	202)	C	203)	b	204)	a
37)	d	38)	d	39)	a	40)	C	205)	b	206)	b	207)	c	208)	b
41)	a	42)	b	43)	b	44)	d	209)	b	210)	a	211)	b	212)	C
45)	c	46)	b	47)	d	48)	d	213)	b 🗸	214)	c	215)	c	216)	c
49)	b	50)	a	51)	a	52)	d	217)	c	218)	d	219)	c	220)	c
53)	b	54)	C	55)	a	56)	b	221)	С	222)	d	223)	b	224)	C
57)	b	58)	d	59)	b	60)	a	225)	c	226)	b	227)	b	228)	C
61)	a	62)	b	63)	b	64)	C	229)	b	230)	C	231)	d	232)	b
65)	b	66)	b	67)	a	68)	a	233)	b	234)	d	235)	a	236)	C
69)	d	70)	a	71)	d	72)	a	237)	b	238)	b	239)	C	240)	a
73)	b	74)	c	75)	b	76)	a	241)	C	242)	b	243)	b	244)	d
77)	b	78)	c	79)	c	80)	C	245)	C	246)	d	247)	d	248)	b
81)	b	82)	a	83)	c	84)	C	249)	b	250)	b	251)	a	252)	d
85)	b	86)	d	87)	b	88)	b	253)	С	254)	b	255)	C	256)	d
89)	d	90)	b	- A ' X	a	92)	C	257)	C	258)	d	259)	b	260)	d
93)	a	94)	C .	95)	b	96)	C	261)	d	262)	C	263)	b	264)	a
97)	a	98)	a	99)	b	100)	С	265)	C	266)	b	267)	b	268)	d
101)	b	102)	b	103)	d	104)	a	269)	d	270)	a	271)	b	272)	C
105)	С	106)	a	107)	b	108)	C	273)	d	274)	a	275)	b	276)	b
109)	C	110)	C	111)	b	112)	d	277)	С	278)	b	279)	С	280)	d
113)	b	114)	á	115)	d	116)		281)	С	282)	b	283)	a	284)	d
117)	b	118)	C	119)	a	120)		285)	a	286)	a	287)	C	288)	b
121)	d	122)	d	123)	C	124)		289)	d	290)	d	291)	d	292)	C
125)		126)	a	127)	b	128)		293)	c	294)	d	295)	b	296)	C h
129)	C	130)	a	131)	C	132)		297)	c	298)	C	299)	a	300)	b
133)		134)	a L	135)	d a	136)		301)	a	302)	a	303)	c	304)	d
137)	C L	138)	b	139)	d	140)		305)	c	306)	b	307)	c	308)	a
141)	b	142)	a	143)	a	144)		309)	c	310)	c	311)	c	312)	a
145)	C h	146) 150)	d	147) 151)	C h	148) 152)		313)	a	314)	a	315) 310)	c	316)	c
149) 153)	b	150) 154)	a	151) 155)	b d	152) 156)		317) 321)	a	318) 322)	a	319) 323)	a	320) 324)	C
153) 157)	c b	154) 158)	a c	155) 159)	u d	160)		321) 325)	a	322) 326)	c b	323) 327)	a d	324) 328)	d b
161)	C	162)	c	163)	a	164)		329)	c b	330)	C	331)	u C	332)	d
165)	b	166)	b	167)	a C	168)		333)	d	334)	a	33 1)	d	336)	u C
103)	U	100)	U	10/j	·	100)	·	333	u	334J	а	งงงา	u	330j	·

337) d. 338) b. 339) b. 340; a. 541) b. 542, d. 543, a. 544, c. 546, d. 347; a. 548, c. 546, a. 547; a. 548, d. 348, d. 548, d																
345 b 346 c 347 c 348 d 550 d 5550 d 5560 c 5501 d 5550 d 5560 d 5660 d 5670 d 5670 d 5671 d 5671 d 5671 d 5671 d 5670 d 5771 d 5761 d 4761 4871 4871 4871 4871 4871	337)	d	338)	b	339)	b	340)	a	541)	b	542)	d	543)	a	544)	c
3490 b 3501 c 3551 c 3532 c 5531 b 5549 b 5590 c 5560 c 5301 d 5601 a 5701 b 5702 a 3601 6 3601 6 3601 a 5701 a 5702 a 5703 a 5703 b 5703 b 5703 b 5703 b 5703 b 5702 a 5702 a 3733 a 3613 a	341)	b	342)	a	343)	b	344)	c	545)	c	546)	a	547)	a	548)	d
3531 b 3549 c 3559 d 3569 d 5589 d 5599 d 5600 a 3601 c 5613 d 5659 d 5660 d 5679 a 5689 a 5680 a 5681 a 5681 a 5681 a 5680 d 5670 d 5671 c 5680 a 3661 a 5680 c 5700 d 5711 c 5620 a 3731 a 3731 a 3771 a 5780 b 5800 d 3831 d 3783 b 3791 b 3801 d 5813 d 5833 c 5841 c 5841 c 5841 d 5880 d 5833 d 5840 c 5871 d 5880 d 5831 d 5833 d 5840 c 5831 d 5833	345)	b	346)	b	347)	c	348)	d	549)	b	550)	d	551)	d	552)	d
3571 d 3581 a 3591 a 3601 c 5641 d 5621 c 5631 a 5641 a 5631 a 5641 a 5631 a 5641 a 5631 a 5631 a 5721 a 5721 a 5721 a 5721 a 5721 c 5721 a 5751 d 5761 a 5861 a 4861 a 5861 a 5861 a 5861 a 5861 a 5861 a 5881 a 5881	349)	b	350)	c	351)	c	352)	c	553)	b	554)	b	555)	b	556)	c
361 c 362 a 363 b 364 a 565 d 570 d 577 a 568 d 576 d 577 a 569 d 577 d 576 d 5780 d 580 d 380 d 577 a 583 c 580 d 380 d 581 a 580 d 580 480 380 <th< td=""><td>353)</td><td>b</td><td>354)</td><td>c</td><td>355)</td><td>d</td><td>356)</td><td>b</td><td>557)</td><td>d</td><td>558)</td><td>b</td><td>559)</td><td>d</td><td>560)</td><td>a</td></th<>	353)	b	354)	c	355)	d	356)	b	557)	d	558)	b	559)	d	560)	a
369 b 369 c 370 d 371 a 372 d 573 a 574 c 572 c 572 a 573 a 574 c 572 d 570 b 570 b 580 b 580 b 580 c 580 c 578 b 579 b 580 c 580 c<	357)	d	358)	a	359)	a	360)	c	561)	d	562)	c	563)	a	564)	a
369] c 370] d 371] a 372] d 573] a 575] c 576] b 580] b 580] c 584] c 586] c 587] d 588] c 589] d 590] d 591] c 590] d 595] c 590] d 598] d 595] c 590] d 590] d 595] d 596] d 596] d 598] d 595] d 596] d 586] d 596] d 281 398] d 393] d 404 393 d 404 394 d	361)	c	362)	a	363)	b	364)	a	565)	d	566)	d	567)	a	568)	d
3373 b 374) d 375) c 376) a 5770 a 582) c 580) d 3771 d 3781 b 3791 b 3803 a 3841 a 5821 c 5871 c 5871 c 5872 c 5881 c 3881 d 3801 c 3871 c 3881 c 5891 c 5891 c 5992 d 3893 d 3990 c 3991 c 4001 c 5991 c 5992 c 4011 a 4102 b 4031 c 4001 c 6001 c 6013 a 6103 a 6101 a 6111 a 6161 a 6121 a 6121 a 6123 a 6121 a 6123 a 6221 a 6221 a 6221 <t< td=""><td>365)</td><td>b</td><td>366)</td><td>d</td><td>367)</td><td>a</td><td>368)</td><td>c</td><td>569)</td><td>c</td><td>570)</td><td>d</td><td>571)</td><td>c</td><td>572)</td><td>a</td></t<>	365)	b	366)	d	367)	a	368)	c	569)	c	570)	d	571)	c	572)	a
377 d 378 b 379 b 380 d 881 a 582 a 583 c 584 c 582 d 588 c 588 c 589 c 589 d 589 c 592 d 590 d 591 c 592 d 388 c 592 d 388 c 592 d 598 b 599 b 690 c 602 a 603 c 602 a 603 c 602 a 603 c 602 a 603 c 613 c 403 a 614 c 615 a 610 c 403 a <t>614 a 623 a<!--</td--><td>369)</td><td>c</td><td>370)</td><td>d</td><td>371)</td><td>a</td><td>372)</td><td>d</td><td>573)</td><td>a</td><td>574)</td><td>c</td><td>575)</td><td>d</td><td>576)</td><td>b</td></t>	369)	c	370)	d	371)	a	372)	d	573)	a	574)	c	575)	d	576)	b
381 d 382 a 383 a 384 a 585 d 586 c 587 d 588 c 589 b 590 d 591 c 592 d 582 d 593 d 593 c 596 d 593 d 593 d 593 d 593 d 593 d 596 d 393 a 399 c 400 b 591 c 590 d 603 a 604 c 603 a 612 b 402 a 612 a 624 a 412 a 412 a<	373)	b	374)	d	375)	c	376)	a	577)	a	578)	b	579)	b	580)	d
385 b 386 b 387 b 388 c 589 b 590 d 595 c 592 d 3893 d 3994 d 3994 d 598 b 598 c 596 d 598 c 596 d 600 d 600 d 600 d 600 d 600 a 603 a 606 c 607 c 608 a 606 c 607 c 608 c 602 a 606 c 607 c 608 c 607 c 608 c 607 c 610 a 416 a 416 418 4141 d 412 a 413 a 416 612 a 626 b 627 a 626 b 627 a 638 a 631 a 623 a 626	377)	d	378)	b	379)	b	380)	d	581)	a	582)	a	583)	c 🗸	584)	c
389 d 3990 c 3911 c 3921 d 593 b 5993 b 5993 b 6000 d 3973 a 5983 b 5993 b 6000 d 3981 a 3998 a 3999 c 4001 c 4001 c 4002 b 4033 c 4004 c 6050 a 6060 c 6070 c 6080 c 4090 c 4100 a 4111 c 4151 a 4161 c 6101 a 6111 a 6121 b 4131 b 4141 c 4151 c 4120 d 6221 a 6129 d 6203 a 6224 a 4131 b 4210 d 4280 c 6299 b 6300 c 6313 a 6224 a 4221	381)	d	382)	a	383)	a	384)	a	585)	d	586)	c	587)	d	588)	c
339] b 394] d 395] b 396] d 597] d 598] b 599] b 6000 d 602 a 603 a 6040 c 6040 c 602 a 603 a 6040 c 603 a 6040 c 603 a 6040 c 603 a 603 a 603 a 603 a 603 c 603 a 6111 a 6120 c 4009 c 410 a 4111 d 4121 a 6121 a 6161 a 6162 a 6162 a 6162 a 6162 a 6163 a 6162 a <td>385)</td> <td>b</td> <td>386)</td> <td>b</td> <td>387)</td> <td>b</td> <td>388)</td> <td>С</td> <td>589)</td> <td>b</td> <td>590)</td> <td>d</td> <td>591)</td> <td>С</td> <td>592)</td> <td>d</td>	385)	b	386)	b	387)	b	388)	С	589)	b	590)	d	591)	С	592)	d
397) a 399) c 400) b 601 c 602 a 603 a 604 c 606 c 607 c 608 c 608 c 607 c 608 c 608 c 607 c 607 c 608 c 609 c 610 a 611 a 612 a 613 a 610 a 610 a 610 a 620 c 620 b 627 d 622 d 620 b 627 d 622 d 623 a 620 d 620 d 420 d 420 d 420 d 428 c 633 c 634 b 632 d 632 <td< td=""><td>389)</td><td>d</td><td>390)</td><td>c</td><td>391)</td><td>c</td><td>392)</td><td>d</td><td>593)</td><td>b</td><td>594)</td><td>d</td><td>595)</td><td>c</td><td>596)</td><td>d</td></td<>	389)	d	390)	c	391)	c	392)	d	593)	b	594)	d	595)	c	596)	d
397) a 398) a 399) c 400 b 601 c 602 a 603 a 604 c 604 c 607 c 607 c 6081 c 608 c 600 c 607 c 6081 c 608 c 604 c 607 c 600 c 6011 a 6121 c 613 c 6161 a 6125 a 6161 a 6120 a 6131 c 6131 a 6161 a 6161 a 6161 a 6161 a 6161 a 6161 a 6171 c 6181 a 6171 c 6181 a 6171 a 6181 a 6171 a 6181 a 6271 d 6281 a 6271 d 6281 a 6271 d 6282 d 6271 d	393)	b	394)	d	395)	b	396)	d	597)	d	598)	b	599)	b	600)	d
401	397)	a	398)	a	399)	c	400)	b	601)	С	-	a	603)	a	604)	c
405	401)	a	402)	b	403)	c	404)	С	605)	a	-	c	607)	С	608)	С
409) c 410) a 411) d 412) a 613) b 614} c 615) a 616) a 413) b 414 c 415 a 416 c 617 c 618 a 619 c 620 c 417) c 418 a 419 c 420 d 621 a 622 b 623 a 623 a 622 d 421) b 4220 a 423 b 424 b 625 a 626 b 637 d 628 d 429) d 430 d 430 c 630 c 631 a 632 d 640 b 433 d 640 c 631 a 662 a 643 a 644 c 444 a 647 <t< td=""><td>•</td><td></td><td>•</td><td></td><td>•</td><td>_</td><td>•</td><td></td><td>_</td><td>С</td><td>-</td><td>\</td><td></td><td>a</td><td>•</td><td></td></t<>	•		•		•	_	•		_	С	-	\		a	•	
413] b 414] c 415] a 416] c 617] c 618] a 619] c 620] c 620] c 623] a 624] a 623] a 623] a 623] a 623] a 623] a 623] b 630] c 631] a 632] b 633] c 633] d 634] b 635] c 636] b 433] d 436] b 633] c 634] b 633] d 644] a 644] c 644] c 643] a 644] c 643] a 644] c 643] a 644] c 643]	•		•	a	-	_	-		_	b			_	a	-	
417) c 418) a 419) c 420) d 621) a 622) b 623) a 624) a 421) b 422) a 423) b 424) b 625) a 626) b 627) d 628) d 429) d 4260 a 427) d 428) c 630) c 631) a 632) b 429) d 430) d 431) c 4330 c 638) b 635) c 636) b 433) a 434) b 435) c 436) b 637) c 638 b 643) a 644) c 4441 a 4451 c 4461 a 6471 a 6441 c 4441 a 4452 c 6430 a 6571 a 6531 a <td< td=""><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>_</td><td></td><td></td><td>a</td><td>•</td><td></td><td>-</td><td></td></td<>	-		-		-		-		_			a	•		-	
421) b 422) a 423) b 424 b 625 a 626 b 627 d 628 d 425) d 426 a 427 d 428 c 629 b 630 c 631 a 632 b 429) d 430 d 431 c 432 d 633 c 634 b 639 d 640 c 433) a 434 b 435 c 439 d 440 a 641 c 642 a 643 a 644 c 441) b 442 a 443 d 444 a 645 d 667 b 648 b 4451 b 445 d 455 c 455 a 657 a 658 a 669 b 463 a	•		•		•		•		_	- 4			•		-	
425) d 426) a 427) d 428) c 629) b 630) c 631) a 632) b 429) d 430) d 431) c 432) d 633) c 634) b 635) c 636) b 437) a 4330 c 439) d 440) a 641) c 642) a 643 a 6440 c 437) a 4381 c 4391 d 4401 a 641) c 6422 a 6431 a 6481 b 4431 a 6451 d 6401 b 6441 a 6441 c 6471 a 6481 b 4481 b 4481 b 4481 b 4481 b 4481 b 4481 c 6531 a 6651 a 6671 a <td< td=""><td>•</td><td>_</td><td>•</td><td></td><td>•</td><td>_</td><td>•</td><td></td><td>_</td><td></td><td>_</td><td>_</td><td>-</td><td>_</td><td>-</td><td></td></td<>	•	_	•		•	_	•		_		_	_	-	_	-	
4299 d 4300 d 4311 c 4321 d 6331 c 634) b 6355 c 6366 b 6371 c 6381 b 6391 d 6400 c 4371 a 4381 c 4391 d 4401 a 6411 c 6421 a 6431 a 6441 c 6441 c 6441 c 6441 c 6441 c 6481 a 6441 c 6481 b 6441 c 6481 b 6441 c 6481 c 6481 b 6481 c 6481 b 6481 a 6651 a 6661 a 6667 b 6681 a 6671	•		•		•	_	-						•		•	
433] a 434] b 435] c 436] b 637] c 638] b 639] d 640] c 437] a 438] c 439] d 440] a 641] c 642] a 643] a 644] c 441] b 442] a 443] d 444] a 645] d 646] b 647] a 648] b 445] b 4450 c 447] b 448] d 649] a 650] d 655] d 655] d 655] d 655] d 655] d 655] d 656] d 655] d 656] d 656] d 656] d 666] d 667] b 666] d 667] b 666] a 667] b 668] c 4663]	•		•		•		-		A 1		-	_	-		-	_
437) a 438) c 439) d 440) a 641) c 642) a 643) a 644) c 6441) c 642) a 6433 a 6444) c 6451 d 6461 b 6471 a 6481 b 6443 b 6443 b 6481 b 6481 b 6441 c 6481 b 6481 b 6481 b 6481 b 6481 b 6481 b 6521 b 6531 c 6531 c 6551 d 6560 c 6551 d 6560 c 6650 c 6660 a 6671 b 6683 a 6661 a 6671 b 6683 a 6667 b 6683 a 6671 b 6683 a 6671 b 6683 a 6672 b 66683 a 6677	•		-		-		-				-	_	•	_	-	
441) b 442) a 443) d 444, a a 645, d d 646, b b 647, a a 648, b b 445) b 446, c 447, b b 448, d d 649, a a 650, d d 651, a 652, b b 449, b b 450, a 451, c 452, c 653, c 654, c 655, d d 656, c 453, d 659, c 660, b 658, a 659, c 660, b 6461, a 657, a 658, a 659, b 660, a 667, b 660, a 667, b 668, c 661, a 667, b 668, c 666, a 667, b 668, c 664, a 667, b 668, c 669, b 670, b 671, b 672, c 669, b 670, b 671, b 672, c 669, a 667, b 667, b 667, b 667, b 668, c 669, b 670, b 671, b 672, c 668, c 469, d 477, b 673, a 673, c </td <td>•</td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>	•		•		•		•				-		-		-	
445) b 446) c 447) b 448) d 649) a 650) d 651) a 652) b 449) b 450) a 451) c 452) c 653) c 654) c 655) d 656) c 453) b 454) d 455) c 456) a 657) a 658) a 659) c 660) b 457) c 458) b 459) c 460) a 661) a 662) b 663) a 664) a 461) a 466) a 467) b 468 c 669) b 670 b 671 b 672 c 469) c 470 c 471 b 472 a 673 a 674 d 671 b 668	•	_	•		•				_	_	-	_	•		•	
449) b 450) a 451) c 452) c 653) c 654) c 655) d 656) c 453) b 454) d 455) c 456) a 657) a 658) a 659) c 660) b 457) c 458) b 459) c 460) a 661) a 662) b 663) a 664) a 664) a 461) a 462) b 463) a 464) a 665) a 666) a 667) b 668) c 465) a 466) a 467) b 468) c 669) b 670) b 671) b 672) c 473) d 474) a 475) d 476) d 677) b 678) c 679) b 680) d 477) c 478) d 479) b 480) c 681) a 682) d 683) c 687) b 680) d 481) d 482) c 483) a 484) c 685) c 686) a 682) d 683) c 688) c 688) b 490) b 491) d 492) d 693) c 690) a 691) b 692) c 688) c 688) b 490) b 491) d 492) d 693) c 694) d 695) b 696) b 693) d 699) d 700) a 497) a 498) a 499) a 500) d 701) b 702) c 703) b 704) d 651) b 502) a 500) d 511) b 502) a 500) d 511) b 512) b 516) c 705) c 706) a 711) a 711) a 712) d 509) c 510) d 511) b 512) b 516) c 717) d 718) a 719) b 720) c 513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 513) a 534) c 523) a 530) b 531) d 532) c 533) c 534) c 535) c 536) b 537) c 536) b 537) c 538) c 534) c 536) b 537) c 538) c 534) c 536) b 537) c 538) c 534) c 538) c 534) c 536) b 737) c 738) c 739) a 740) d 537) c 744) d 742) d 743) c 744) d 743) d 744) d 74	•	_	-		-	_		"	_		-		-		-	
453) b 454) d 455) c 456) a 657) a 658) a 659) c 660) b 457) c 458) b 459) c 460) a 661) a 662) b 663) a 664) a 461) a 462) b 463) a 4644) a 665) a 666) a 667) b 668) c 465) a 466) a 467) b 4681 c 669) b 670) b 671) b 668) c 469) c 470) c 471) b 472) a 673) a 674) d 675) b 676) a 477) c 4781 d 4791 b 4801 c 681) a 682) d 683) c	-		,		•				_		-		-		-	
457) c 458) b 459) c 460) a 661) a 662) b 663) a 664) a 461) a 462) b 463) a 464) a 665) a 666) a 667) b 668) c 465) a 466) a 467) b 468) c 669) b 670) b 671) b 672) c 469) c 470) c 471) b 472) a 673) a 674) d 675) b 676) a 473) d 474) a 475) d 476) d 677) b 678) c 679) b 680) d 487) c 483) a 484) c 685) c 686) a 687) c 688) c	_		•		-	-4			-		-		-		-	
461) a 462) b 463) a 464) a 665) a 667) b 668) c 465) a 466) a 467) b 468) c 669) b 670) b 671) b 672) c 469) c 470) c 471) b 472) a 673) a 674) d 675) b 676) a 473) d 474) a 475) d 476) d 677) b 678) c 679) b 680) d 477) c 478) d 479) b 480) c 681) a 682) d 683) c 684) b 481) d 482) c 483) a 484) c 685) c 686) a 687) c 688) c 485) b 490) d 492) d 693) c 694)	_		=						_		_		=		=	
465) a 466) a 467) b 468) c 669) b 670) b 671) b 672) c 469) c 470) c 471) b 472) a 673) a 674) d 675) b 676) a 473) d 474) a 475) d 476) d 677) b 678) c 679) b 680) d 477) c 478) d 479) b 480) c 681) a 682) d 683) c 684) b 481) d 482) c 483) a 484) c 685) c 686) a 687) c 688) c 485) b 486) d 487) c 488) b 689) b 690) a 691) b 692) c 489) b 496) d 496) d 697)	•		•				_		-		-		-		-	
469) c 470) c 471 b 472 a 673 a 674 d 675 b 676 a 473) d 474 a 475 d 476 d 677 b 678 c 679 b 680 d 477) c 478 d 479 b 480 c 681 a 682 d 683 c 684 b 481) d 482 c 483 a 484 c 685 c 686 a 687 c 688 c 485) b 486 d 487 c 488 b 689 b 690 a 691 b 692 c 489 b 490 b 495 d 496 d 697 b 698 d 699 d 700 a 497 a 498 a 499 a 500 d 705 c <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>	•		-				-		-		-		-		-	
473) d 474) a 475) d 476) d 677) b 678) c 679) b 680) d 477) c 478) d 479) b 480) c 681) a 682) d 683) c 684) b 481) d 482) c 483) a 484) c 685) c 686) a 687) c 688) c 485) b 486) d 487) c 488) b 689) b 690) a 691) b 692) c 489) b 490) b 491) d 492) d 693) c 694) d 695) b 696) b 497) a 498) a 499) a 500) d 701) b 703) b 704) d 501) b 502) a 503) b 504) c 705)	•		-				-		_		•		-		-	
477) c 478) d 479) b 480) c 681) a 682) d 683) c 684) b 481) d 482) c 483) a 484) c 685) c 686) a 687) c 688) c 485) b 486) d 487) c 488) b 689) b 690) a 691) b 692) c 489) b 490) b 491) d 492) d 693) c 694) d 695) b 696) b 493) c 494) c 495) d 496) d 697) b 698) d 699) d 700) a 497) a 498) a 499) a 500) d 701) b 702) c 703) b 704) d 501) b 502) a 503) b 504)	-		-	- 1			-		_		-		-		-	
481) d 482) c 483) a 484) c 685) c 686) a 687) c 688) c 485) b 486) d 487) c 488) b 689) b 690) a 691) b 692) c 489) b 490) b 491) d 492) d 693) c 694) d 695) b 696) b 493) c 494) c 495) d 496) d 697) b 698) d 699) d 700) a 497) a 498) a 499) a 500) d 701) b 702) c 703) b 704) d 501) b 502) a 503) b 504) c 705) c 706) a 707) b 708) d 509) c 510) d 511) b 512)	•		- "				-		-		•		•		•	
485) b 486) d 487) c 488) b 689) b 690) a 691) b 692) c 489) b 490) b 491) d 492) d 693) c 694) d 695) b 696) b 493) c 494) c 495) d 496) d 697) b 698) d 699) d 700) a 497) a 498) a 499) a 500) d 701) b 702) c 703) b 704) d 501) b 502) a 503) b 504) c 705) c 706) a 707) b 708) d 505) a 506) b 507) b 508) d 709) a 710) a 711) a 712) d 509) c 510) d 511) b 512) b 713) c 714) c 715) b 716) a 513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c 744) c	-			X	,		-		_		-		-		-	
489) b 490) b 491) d 492) d 693) c 694) d 695) b 696) b 493) c 494) c 495) d 496) d 697) b 698) d 699) d 700) a 497) a 498) a 499) a 500) d 701) b 702) c 703) b 704) d 501) b 502) a 503) b 504) c 705) c 706) a 707) b 708) d 505) a 506) b 507) b 508) d 709) a 710) a 711) a 712) d 509) c 510) d 511) b 512) b 713) c 714) c 715) b 716) a 513) a 514) b 515) b 516)	-		_	_	-		•		_		-		•		-	
493) c 494) c 495) d 496) d 697) b 698) d 699) d 700) a 497) a 498) a 499) a 500) d 701) b 702) c 703) b 704) d 501) b 502) a 503) b 504) c 705) c 706) a 707) b 708) d 505) a 506) b 507) b 508) d 709) a 710) a 711) a 712) d 509) c 510) d 511) b 512) b 713) c 714) c 715) b 716) a 513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c <td< td=""><td>-</td><td>4</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>_</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td></td<>	-	4			-		-		_		-		-		-	
497) a 498) a 499) a 500) d 701) b 702) c 703) b 704) d 501) b 502) a 503) b 504) c 705) c 706) a 707) b 708) d 505) a 506) b 507) b 508) d 709) a 710) a 711) a 712) d 509) c 510) d 511) b 512) b 713) c 714) c 715) b 716) a 513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c <td< td=""><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>_</td><td>_</td><td>•</td><td></td><td>-</td><td></td><td>-</td><td></td></td<>	-		-		-		-		_	_	•		-		-	
501) b 502) a 503) b 504) c 705) c 706) a 707) b 708) d 505) a 506) b 507) b 508) d 709) a 710) a 711) a 712) d 509) c 510) d 511) b 512) b 713) c 714) c 715) b 716) a 513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524)	-	V 7	_		-		-		_		•		-	_	-	
505) a 506) b 507) b 508) d 709) a 710) a 711) a 712) d 509) c 510) d 511) b 512) b 713) c 714) c 715) b 716) a 513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 522) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 534) c 535) c 536)			-		•		-		-		-		-		-	
509) c 510) d 511) b 512) b 713) c 714) c 715) b 716) a 513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c		7	-		-		-	_	_		-		-		-	
513) a 514) b 515) b 516) c 717) d 718) a 719) b 720) c 517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c			-		-		-	_	_		-		-		-	
517) c 518) a 519) a 520) a 721) d 722) a 723) d 724) a 521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c	-		-		-		-		-		-		-		-	
521) d 522) c 523) a 524) c 725) c 726) b 727) d 728) a 525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c	-		-		-		-		_		-		-		-	
525) c 526) d 527) b 528) c 729) c 730) c 731) c 732) d 529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c	-		-		-		=		-		_		-		-	
529) a 530) b 531) d 532) c 733) a 734) a 735) d 736) c 533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c	-		-		-		-		-		-		-		-	
533) c 534) c 535) c 536) b 737) c 738) c 739) a 740) d 537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c	-		-		-		-		-		-		-		-	
537) c 538) b 539) c 540) c 741) d 742) d 743) c 744) c	-		-		-		-		_		-		-		-	
	-		-		-		-		-		-		-		-	
			330)			_	<i>5 F0 j</i>	_			, 12)		, 13,	_		

```
745)
              746)
                     d
                            747)
                                          748)
                                                 C
      a
                                  a
749)
              750)
                            751)
      d
                     d
                                   a
                                          752)
                                                 a
753)
              754)
                            755)
                                          756)
                                                 d
                     a
                                   a
757)
              758)
                            759)
                                          760)
                                                 b
                     C
                                   a
761)
              762)
                            763)
                                          764)
      C
                     b
                                   b
                                                 d
```

SMART ACHIEVERS LEARNING RVII. LIED

STRUCTURE OF ATOM

CHEMISTRY

: HINTS AND SOLUTIONS :

2

Roentgen discovered X-rays.

3

Spins of an electron are $\pm 1/2$ in an orbital

4

No. of subshell = n; no. of orbitals = n^2 .

5

No. of electrons in an orbital = 2

No. of orbitals in a subshell = 2l + 1

 \therefore No. of electrons in an orbital = 2(2l + 1)

6

Mesons are electrically neutral (π^0) or charged (π^-, π^+) particles having their mass 236 times of electron.

7 (c)

 $Mg^{2+} = [Ne]$ [Zero unpaired electrons]

 $Ti^{3+} = [Ar]3d^1$ [One unpaired electrons]

 $Fe^{2+} = [Ar]3d^5$ [Five unpaired electrons]

 $V^{3+} = [Ar]3d^2$ [Two unpaired electrons]

8

According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level. Energy is absorbed in the form of quanta (or photon).

$$\Delta E = hv$$

Where, *v* is the frequency.

According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency.

(a)

Tritium is the isotope of hydrogen. Its

composition is as follows:

1 electron, 1 proton and 2 neutrons

10 (a)

If m = +3 (maximum), then l = 3 (maximum).

Thus, maximum value of n = 4. Also no. of waves in an orbit = no. of orbit

11 (c)

For Lyman series,

$$\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$$

 $\frac{15R}{16} = R \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$

$$\frac{15R}{16R} = \left[\frac{n_2^2 - 1}{n_2^2} \right]$$

$$\frac{15}{16} = \frac{n_2^2 - 1}{n_2^2}$$

$$15n_2^2 = 16n_2^2 - 16$$

 $n_2^2 = 16, n_2 = 4$
(d)

$$n_2^2 = 16, n_2 = 4$$

12

The desired formulae to calculate nodes.

13 (a)

$$v = \frac{c}{\lambda} = \frac{3 \times 10^{10}}{2000 \times 10^{-8}} = 1.5 \times 10^{15} \text{s}^{-1}$$

 $h = 6.6 \times 10^{-27} \text{erg s.}$

 $E = hv = 6.6 \times 10^{-27} \times 1.5 \times 10^{15}$

 \Rightarrow 9.94 × 10⁻¹²erg

14

In *p*-orbitals electrons are present as

15 (c)

Rest all are evidence for wave nature.

16

Ground state of $_{12}$ Mg is $1s^2$, $2s^22p^6$, $3s^2$.

17 (a)

$$\lambda = \frac{h}{\sqrt{2m(\text{KE})}}$$

$$KE = \frac{h^2}{2\lambda^2 m}$$

$$(6.626 \times 10^{-34})^2$$

 $=\frac{(6.626\times10^{-34})^2}{2\times(0.090\times20^{-10})^2\times9.1\times10^{-31}}$

 $= 2.98 \times 10^{-15}$ J

Accelerating potential

$$= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}} \text{ eV}$$
$$= 1.86 \times 10^{4} \text{ eV}$$

18 (c)

$$\frac{\frac{\overline{m_d}}{m_d}}{\frac{2e}{m_{a-p}}} = \frac{4m_{a-p}}{4m_d} = 1$$

So, deuterium and an α -particles have identical value of e/m

19 **(b)**

All the protons carrying +ve charge are present in nucleus.

20 (a)

 $\operatorname{Cr}^{3+}: 1s^2, 2s^22p^6, 3s^23p^63d^3$. The $3d_{xy}^1, 3d_{xz}^1, 3d_{yz}^1$ has lower energy.

21 **(c)**

We know that kinetic energy = eV

or
$$=\frac{1}{2}mv^2$$

So,
$$\frac{1}{2}mv^2 = eV$$

$$v^2 = \frac{2eV}{m}$$

$$\therefore v = \sqrt{\frac{2eV}{m}}$$

22 **(a)**

At. wt. scale now-a-days is based on C¹².

23 **(d)**

$$K(Z = 19): 1s^2, 2s^22p^6, 3s^23p^6, 4s^1$$

In the ground state the value of \boldsymbol{l} can be either zero or one.

Hence, the set (d) of quantum numbers i.e., (n = 3, l = 2, m = +2)cannot possible in the ground state.

24 **(b)**

Six with C^{12} as $C^{12}O^{16}O^{16}$, $C^{12}O^{16}O^{17}$, $C^{12}O^{17}O^{17}$ $C^{12}O^{18}O^{18}$, $C^{12}O^{16}O^{18}$, $C^{12}O^{17}O^{18}$ and six with C^{13}

25 (c)

To designate an orbital, n, l, m are required.

26 **(b)**

Total values of m for a given subshell (2l + 1).

27 **(d)**

Na has $3s^1$ configuration for last electron.

28 **(d**)

The principle is valid only for sub-atomic particles.

29 **(c)**

Isotopes are atoms of same elements having different mass number

Isobars are atoms of different elements having same mass number.

Isotones are atoms of different elements having same number of neutrons.

Nuclear isomers are atoms with the same atomic number and same mass number but different radioactive properties.

30 **(b)**

B has $1s^2$, $2s^22p^1$ configuration; p is non-spherically shell.

31 **(b)**

Follow Stark effect.

32 **(c)**

n=4, means electron is in 4th shell and l=2, means subshell is d. Therefore, the orbital is in 4d-subshell.

33 **(d)**

$$E = hv = \frac{hc}{\lambda} = hc\overline{v}$$

34 **(a)**

$$m_e = 9.108 \times 10^{-28} g = 9.108 \times 10^{-31} \text{kg}$$

35 **(d)**

Cr has $3d^5$, $4s^1$ configuration.

36 **(b)**

 $_{22}\mathrm{Ti}^{3+}$: $3d^{1}$, i.e., one unpaired electron.

37 **(d)**

The electronic configuration of element with atomic number 24 is

$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^1, 3d^5$$

(:Exactly half-filled orbitals are more stable than nearly half-filled orbitals.)

38 **(d)**

$$n = 4, m_l = +1$$

 $m_1 = +1$ shows the *p*-subshell, the maximum number of electron will be six.

39 **(a)**

Principal quantum number specifies size and energy level of orbit.

40 (c)

Specific charge = e/m; Higher is m, lesser will be e/m.

41 (a)

The formula for magnetic moment of an atom.

42 **(b)**

 $\lambda = h/mu$.

43 **(b)**

The cosmic rays are highest energy rays having smallest λ , of the order of less than $10^{-15} m$.

44 (d)

Planck's constant $h = \frac{E}{v}$. Put dimensions of energy and frequency, *i. e.*, energy/time⁻¹ = energy × time.

45 **(c)**

$$\Delta u \cdot \Delta x = \frac{h}{4\pi m}$$

$$\Delta u = \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 9.11 \times 10^{-31} \times 0.1 \times 10^{-10}}$$

= 5.8 × 10⁶ m/sec

46 **(b**

According to de-Broglie,

$$\lambda = \frac{h}{mv}$$

$$or \frac{\lambda_{\rm He}}{\lambda_{\rm H_2}} = \frac{m_{\rm H_2}}{m_{\rm He}} \times \frac{v_{\rm H_2}}{v_{\rm He}}$$
 Given, $v_{\rm H_2} = v_{\rm He}$

$$\frac{\lambda_{\text{He}}}{\lambda_{\text{H}_2}} = \frac{2}{4} \times \frac{v_{\text{He}}}{v_{\text{He}}}$$
$$= \frac{1}{2}$$

47 **(d**)

Energy required for 1 Cl_2 molecule = $\frac{242 \times 10^3}{N_A}$ J

$$E = \frac{hc}{\lambda}$$
or $\lambda = \frac{hc}{E}$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8 \times 6.02 \times 10^{23}}{242 \times 10^3}$$

$$= 494 \times 10^{-9} \text{m} = 494 \text{ nm}$$

48 **(d)**

$$\Delta x \cdot \Delta P = \frac{h}{4\pi}$$

$$\Delta x = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 10^{-5}}$$

$$= \frac{5.27 \times 10^{-35}}{1 \times 10^{-5}}$$

$$= 5.27 \times 10^{-30} \text{ m}$$

49 **(b)**

Velocity of light is same for all types of radiations.

50 (a)

Four quantum numbers are

$$n = 4, l = 0, m = 0, s = +\frac{1}{2}$$

n=4 indicates that the valence electron is present in 4th shell (4th period), l=0 indicates that the valence electron is present in s-subshell. m=0 indicates that the valence electron is present in orbital of s-subshell. $s=+\frac{1}{2}$ indicates that the spining of electron in orbital is clockwise. So, from the above discussion it is clear that valence electron is present in 4s subshell as $4s^1.s^1$ indicates that the element is present in IA group. So, the element present in 4th period and IA group is potassium (K).

51 (a)

The atomic number of nitrogen is 7 and its electronic configuration in ground state is as:

$$_{7}$$
N¹⁴: 1s² 2s² 2p³

52 **(d)**

Free charge can exist only as integer multiple of electronic charge.

53 **(b)**

For Paschen series electron must fall in 3rd shell.

54 **(c)**

•					
Symb	ols	K	L	M	N
₁₉ X	=	2	8	8	1
21Y	=	2	8	9	2
₂₅ Z	=	2	8	13	2

Hence, the order of number of electrons in *M* shell is

55 **(a)**

Mass no. ≈ At. wt;

Mass no. = No. of protons + No. of neutrons;

At. no. = No of protons

56 **(b)**

A part of energy of photon is used up to do work against coulombic forces of attractions.

57 **(b)**

It is expression to represent angular momentum of an electron in an orbital.

58 **(d)**

$$\lambda = \frac{h}{mc} \text{ or } m = \frac{h}{\lambda c}$$

$$= \frac{6.63 \times 10^{-27}}{5890 \times 10^{-8} \times 3 \times 10^{10}}$$

$$= 3.752 \times 10^{-33} \text{ g}$$

59 (b)

$$Z = (24) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^1, 3d^5$$

l=1, means p-orbitals and p-orbitals have total 12 electrons

l=2 means d-orbitals and d — orbitals have total 5 electrons

60 **(a)**

1. J.J. Thomson Determined charge on electron

2. Neil Bohr Gave structure of atom

3. James Chadwick Discovered neutron

4. Mullikan Carried out oil drop experiment

61 (a)

m = -1 is not possible for s-orbital (l = 0)

62 **(b)**

For *s*-electron, l=0

63 **(b)**

A heavy element has atomic number *X* and mass number *Y*.

The atomic number of heavy element is smaller than its mass number.

i.e., X < Y

64 **(c)**

Proton is referred as H⁺.

65 (b)

The isotones are a species which have equal number of neutrons.

No. of neutrons is
$${}^{77}_{32}$$
Ge = 77 - 32 = 45

No. of neutrons in
$$^{77}_{33}$$
As = 77 - 33 = 44

No. of neutrons
$$^{77}_{34}$$
Se = 77 - 34 = 43

No. of neutron
$$^{77}_{36}$$
Sc = $76 - 36 = 40$

No. of neutrons in
$${}^{76}_{32}\text{Ge} = 76 - 32 = 44$$

 $\therefore ^{77}_{33}$ As is isotone of $^{76}_{32}$ Ge.

66 (b)

Follow Pauli's exclusion principle.

67

Kinetic energy in an orbit=
$$\frac{Ze^2}{8\pi E^{\circ}r}$$
 ...(i)

Potential energy in an orbit =
$$\frac{Ze^2}{4\pi E^{\circ}r}$$
 ... (ii)

Comparing Eqs. (i) and (ii)

$$KE = \frac{1}{2}PE$$

68

For shortest λ of Lyman series,

$$n_1 = 1 \text{ and } n_2 = \infty; \frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

Because $\Delta E = \frac{hc}{\lambda}$ is maximum when λ is small

Thus, $\Delta E = E_{\infty} - E_1$

69 (d)

No. of orbitals for a given value of $n = n^2$.

70 **(a)**

The number of orbitals in an orbit (or shell) = n^2 where, n = no. of orbit or shell

Given, n = 4

∴ No. of orbitals in the 4th shell = $(4)^2$

71 **(d)**

For 3*d*-orbital,

$$n = 3$$

For d-orbital, l = 2

and
$$m = -2, -1, 0, +1, +2$$

$$s = \pm \frac{1}{2}$$

 \therefore The correct set for 3d-orbital is

$$n = 3, l = 2, m = 1, s = +\frac{1}{2}$$

(a)

Lyman series falls in UV region.

The 3rd shell as well as all higher shells have *d*subshells.

$$\Delta x \times \Delta p \ge \frac{h}{4\pi}$$

where, Δx =uncertainty in position.

 Δp =uncertainty in momentum.

$$= 1.0 \times 10^{-5} \text{kg ms}^{-1}$$

$$\Delta x \times 1.0 \times 10^{-5} \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14}$$

$$\Delta x \times 1.0 \times 10^{-5} \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14}$$
$$\Delta x \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 1.0 \times 10^{-5}}$$

75 **(b)**

De-Broglie wavelength,

$$\lambda = \frac{h}{mv}$$

or
$$\lambda = \frac{1}{m}$$

76 (a)

Splitting of spectral lines under the influence of an external electrostatic field is called Stark effect.

77 (b)

Bohr's model is applicable to one electron system

78 **(c)**

$$E_{1 \text{ He}^{+}} = E_{1 \text{ H}} \times Z^{2}$$

 $\therefore -871.6 \times 10^{-20} = E_{1 \text{ H}} \times 4$
 $\therefore E_{1 \text{ H}} = -217.9 \times 10^{-20} \text{ J}$

79 (c)

For n = 3, l may have values $0_{(s)}$, $1_{(p)}$ and $2_{(d)}$.

80

s-orbitals are spherical; p-orbitals are dumb-bell; *d*-orbitals are double dumb-bell; *f*-orbitals are complicated.

81 (b)

Positron is as heavy as an electron.

82 (a)

Both are waves of radiant energy.

83 (c)

Give that,

Bohr's orbit of hydrogen atom (n)=2

Atomic number of hydrogen (Z)=1

By using

$$r = \frac{0.529 n^2}{Z}$$

$$= \frac{0.529 \times (2)^2}{1}$$

$$= \frac{0.529 \times 4}{1}$$

$$= 2.116 \text{ Å}$$

$$= 0.2116 \text{ nm}$$

84

Interference shows the wave nature and photoelectric effect represents particle nature.

85

Elements show characteristics line spectrum

which is finger print of atom.

86 (d)

 d^7 configuration has three unpaired electrons. Thus, total spin = $\pm 1/2 \times$ no. of unpaired electrons.

87 **(b)**

Radius of deflected path = $\frac{mu}{e \cdot H}$; where *H* is magnetic field.

88 **(b)**

 $N^{3-7} + 3 = 10$ electrons $F^{-}9 + 1 = 10$ electrons $Na^{+}11 - 1 = 10$ electrons

89 **(d)**

Rest all involves nuclear forces of higher degree.

90 **(b)**

H₂ has two nuclear isomers knows as ortho (same spin of nuclei) and para (anti-spin).

91 (a)

Spectral lines of different λ suggest for different energy levels.

92 (c)

Rutherford's scattering experiment for the first time showed the presence of positively charged nucleus at the centre of atom.

93

For longest λ of Lyman series $n_1 = 1$ and $n_2 = 2$,

$$\frac{1}{\lambda} = R_{\mathrm{H}} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

Because $\Delta E = \frac{hc}{\lambda}$ is minimum when λ is longest

Thus, $\Delta E = E_2 - E_1$

Angular momentum of electron in an orbit = $n \frac{h}{2\pi}$

95

Angular momentum = $n \cdot \frac{h}{2\pi}$; where n is integer and thus discrete value.

96

 $hv_1 = \text{work function} + K \cdot E_1$

 $2 \times hv_1 = \text{work function} + K \cdot E_2$

Mass on one mole electron

 $= N \times m_e = 6.023 \times 10^{23} \times 9.108 \times 10^{-31} \text{kg}$

Given, velocity of particle $A=0.05 \text{ ms}^{-1}$ Velocity of particle $B=0.02 \text{ ms}^{-1}$

Let the mass of particle A = x \therefore The mass of particle B = 5x

de-Broglie's equation is

$$\lambda = \frac{h}{mv}$$

For particle A

$$\lambda_A = \frac{h}{x \times 0.05} \qquad \dots (i)$$

$$\lambda_B = \frac{h}{5x \times 0.02} \qquad \dots \text{(ii)}$$

Eq. (i)/(ii)

$$\frac{\lambda_A}{1} = \frac{5x \times 0.02}{x \times 0.05}$$

$$\frac{\lambda_A}{\Delta_A} = \frac{2}{1}$$

99 (b)

 λ increase in the order Lyman < Balmer < Paschen (U.V) (Visible) (IR)

100 (c)

According to Pauli Exclusion Principle, In any orbital, maximum two electrons can exist, having opposite spin.

101 **(b)**

Element just above element having at no. 43 is one which has at.no. 25.

102 **(b)**

Follow (n + l) rule

103 **(d)**

The smallest value that an electron in H atom in ground state can absorb.

$$= E_2 - E_1$$

$$= \frac{-13.58}{4} - \left(\frac{-13.58}{12}\right)d = 10.19$$

$$E_{\text{Li}^{2+}} = E_{\text{H}} \times Z^2$$

$$\therefore \frac{E_{1\text{Li}^{2+}}}{E_{1\text{ H}}} = Z^2 = 3^2 = 9$$

105 (c)

$$m_e = 9.108 \times 10^{-31} \text{kg}$$

 $m_H = 1.672 \times 10^{-27} \text{kg}$

106 (a)

Bragg's equation is $n\lambda = 2d \sin \theta$, $\sin \theta = \frac{n\lambda}{2d}$; if $\lambda > 2d$; $\sin \theta > 1$ which is not possible.

107 **(b)**

An experimental fact.

108 (c)

$$r_n$$
 for He⁺ = $\frac{r_n$ for H $}{Z}$

$$\therefore r_2$$
 for He⁺ = $\frac{r_2$ for H $}{2}$
= $\frac{r_1$ for H × 2²}{2} (: $r_n = r_1 \times n^2$)

$$\therefore r_2$$
 for He⁺ = 0.053 × 2 = 0.106nm

109 (c)

Stark Effect The splitting of spectral lines under

the influence of electric field is called Stark effect. Raman Effect When light of frequency v_0 is scattered by molecules of a substance which have a vibrational frequency of v_1 , the scattered light when analysed spectroscopically has lines of frequency v where

$$v = v_0 \pm v_0$$

Zeeman Effect The splitting of spectral lines under the influence of magnetic field is called Zeeman Effect.

Rutherford Effect According to Rutherford on the bombardment of the atoms by high speed α particles, the center of the atom scatters the α -particles.

 $r_n = r_1 \times n^2.$

111 **(b)**

Deuterium is $_1H^2$ (*ie*, have 1 proton and 1 neutron.)

(\therefore C may be ${}_{6}$ C¹² or ${}_{6}$ C¹⁴. Similar is true for N.)

112 (d)

$$E_{1} - E_{2} = 1312 \times Z^{2} \left[\frac{1}{1^{2}} - \frac{1}{2^{2}} \right]$$

$$E_{1} - E_{2} = 1312 \times Z^{2} \left[\frac{3}{4} \right] \qquad \dots (i)$$

$$E_{2} - E_{3} = 1312 \times Z^{2} \left[\frac{1}{2^{2}} - \frac{1}{3^{2}} \right]$$

$$E_{2} - E_{3} = 1312 \times Z^{2} \left[\frac{5}{36} \right] \qquad \dots (ii)$$

From Eqs. (i) and (ii)

$$\frac{E_1 - E_2}{E_2 - E_3} = \frac{3 \times 36}{4 \times 5} = \frac{27}{5}$$

113 **(b)**

$$\frac{1}{\lambda} = R_{\rm H} \times \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = 4.86 \times 10^{-7} \,\text{m} = 486 \,\text{nm}$$

114 (a)

No. of electrons = no. of protons.

115 (d)

$$E = Nhv$$
= 6.023 × 10²³ × 6.626 × 10⁻³⁴ × 10⁴ × 10⁶
= 3.99 I

116 (c)

$$\Delta x. \, \Delta v \ge \frac{h}{4\pi m}$$

 Δx

$$= \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 300 \times 0.001 \times 10^{-2}}$$
$$= 0.01933$$
$$= 1.93 \times 10^{-2}$$

117 **(b)**

5.
$$n = 2, l = 1, m = 0$$
 it is possible

- 6. n = 2, l = 0, m = -1 it is not possible because if l = 0, m must be 0. The value of m totally depends upon the value of l(m = -l to + l).
- 7. n = 3, l = 0, m = -0 it is possible.
- 8. n = 3, l = 1, m = -1 it is possible.

118 (c)

$$\lambda = \frac{h}{mc}$$

119 (a)

An experimental value.

120 **(d)**

$$\Delta E(eV) = \frac{12375}{\lambda}$$
; where λ in Å

121 (d)

A subshell having nearly half-filled or nearly completely filled configurations tends to acquire exactly half-filled or exactly completely filled nature to have lower energy level in order to attain extra stability

122 **(d)**

Ionisation enthalpy of hydrogen atom is 1.312×10^6 J mol⁻¹.

It suggests that the energy of electron in the ground state (first orbit) is -1.312×10^6 J mol⁻¹.

$$\Delta E = E_2 - E_1$$

$$= \left(\frac{-1.312 \times 10^6}{2^2}\right) - \left(\frac{-1.312 \times 10^6}{1}\right)$$

$$= 9.84 \times 10^5 \text{ J mol}^{-1}$$

123 (c)

Any sub-orbit is represented as nl such that n is the principal quantum number (in the form of values) and l is the azimuthal quantum number (its name).

Value of l < n, l: 0 1 2 3 4

Value of m: -l,0, + l

Value of s:
$$+\frac{1}{2}$$
 or $-\frac{1}{2}$

Thus, for 4f: n = 4, l = 3, m = any value between -3 to +3.

124 (a)

No. of electrons in $-CONH_2 = No.$ of electrons in (C + O + N + H) + 1 (for covalent bond).

125 **(b)**

 $r_{\rm nucleus} \propto ({\rm mass~no.})^{1/3}$

126 (a)

Electronic configuration of $_{28}$ Ni = $1s^2$, $2s^22p^6$, $3s^23p^63d^8$, $4s^2$

$$Ni^{2+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^8, 4s^0$$

$_{29}$ Cu = $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^1$
$Cu^+ = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^0$
So, the given configuration is of Cu ⁺ .

127 **(b)**

The three quantum no. n, l, m were obtained as a result of solution of Schrödinger wave equation.

128 **(b)**

$$e/m$$
 ratio for $He^{2+} = \frac{2}{4}$
 e/m ratio for $H^+ = \frac{1}{1}$
 e/m ratio for $He^+ = \frac{1}{4}$
 e/m ratio for $D^+ = \frac{1}{2}$

 \therefore The e/m is highest for hydrogen.

129 (c)

When n = 4 and x = 5 then electronic configuration can be written as $(4-1)s^2(4-1)p^6(4-1)d^54s^2$

This electronic configuration represents Mn and its atomic number is 25. Hence, number of protons are 25 in its nucleus.

130 (a)

$$\lambda = \frac{h}{mv}$$

$$= \frac{6.63 \times 10^{-34}}{60 \times 10^{-3} \times 10}$$

$$= 1.105 \times 10^{-33} \text{m}$$

131 **(c)**

Each metal has different effective nuclear charge.

132 (a)

A characteristic of each element is its line spectrum.

133 **(b)**

Schrodinger wave equation is

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$$

134 (a)

np is filled after ns in each shell

135 **(d)**

Cathode rays are fastly moving electrons.

 $_{27}\text{Co}^{3+}$:3 d^6 .

137 (c)

By Heisenberg's uncertainty principle

$$\Delta x. \, m\Delta V = \frac{h}{4\pi}$$

$$\Delta V = 0.005\% \text{ or } 600 \text{m/s} = \frac{600 \times 0.005}{100} = 0.03$$

$$\Delta x \times 9.1 \times 10^{-31} \times 0.03 = \frac{6.6 \times 10^{-34}}{4 \times 3.14}$$

$$\Delta x \times 9.1 \times 10^{-31} \times 0.03 = \frac{6.6 \times 10^{-34}}{4 \times 3.14}$$

Hence,
$$\Delta x = \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 0.03 \times 9.1 \times 10^{-31}}$$

= 1.92 × 10⁻³ m.

138 **(b)**

EC of Cr (Z = 24) is

`	,	
Outer	n	l
configuration		
$1s^2$	1	0
$2s^2$	2	0
$2p^6$ $3s^2$	2	1
	3	0
$3p^{6}$	3	1
$3p^6 \ 3d^5$	3	2
$4s^1$	4	0

Thus, electrons with l = 1, are 1 With l = 2, are 5

139 (d)

Acc. to Mosley : $\sqrt{v} = a(Z - b)$.

140 **(b)**

Follow discovery of cathode rays.

 $_{12}$ Mg: $1s^2$, $2s^22p^6$, $3s^2$, *i. e.*, six s- and six pelectrons.

142 (a)

Pd is $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^64d^{10}$ and thus, $Pd^{2+} = [Kr]4d^8$.

144 (b)

l=2 means d-orbital and thus. $1s^2$, $2s^22p^6$, $3s^23p^63d^3$, $4s^2$ has 3 electrons in dsubshell.

145 (c)

Mosley proposed the new periodic law based on atomic number.

Angular momentum of electrons = $mvr = \frac{nh}{2\pi}$

147 (c)

4 p has (n + l) value, (i.e.,5) lesser than 4d, (i.e.,6) and 4f(i.e.,7)4s has already filled before 3d.

148 **(b)**

n + l = 5 maximum.

149 **(b)**

Jump of electron from lower energy level *L*, (*i. e.*, 2nd shell) to higher energy level M, (i.e., 3rd shell) absorbs energy.

150 (a)

$$\lambda = \frac{h}{\sqrt{2Em}}$$

When kinetic energy of electron becomes four times, the de-Broglie wavelength will become half

151 **(b)**

Energy of photon=
$$\frac{hc}{\lambda}J = \frac{hc}{e\lambda}eV$$

= $\frac{6.625 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9} \times 1.602 \times 10^{-19}} = 4.14 \text{ eV}$

For photoelectric effect to occur, energy of incident photons, must be greater than work functions of metal. Hence, only Li, Na, K and Mg have work functions less than 4.14 V.

152 **(d)**

Positron + Electron \rightarrow Positroniu.

153 **(c)**

Nucleus of He is ₂He⁴.

154 (a)

It is an experimental evidence for particle nature of electron.

155 (d)

An experimental fact supported by argument.

156 (a)

$$\lambda = \frac{h}{mu} = \frac{6.63 \times 10^{-34}}{1 \times 10^{-3} \times 100}$$
$$= 6.63 \times 10^{-33} \text{m}$$

159 (d)

For photoelectric effect, energy of the incident radiations must be greater than work function of the metal.

160 **(c)**

No. of neutrons = Mass no. -Atomic no.

161 **(c)**

Deflection back shows that the nucleus is heavy but of only a few particles shows that nucleus is small.

162 **(c)**

Configuration of atom $1s^2$, $2s^22p^6$, $3s^23p^4$.

163 (a)

$$n = 4, l = 2, m = 0, i.e.,4d$$

164 (c)

Number of electrons in $M^{2+} = 24$

- ∴ Number of electrons in M=26
- *i.e.*, atomic number (Z)=26

Mass number (A)=56

 \therefore Number of neutrons = A - Z = 56-26 = 30

165 **(b)**

Angular momentum in an orbital $=\frac{h}{2\pi}\sqrt{l(l+1)}$.

166 **(b)**

Each has sic s-electrons.

167 **(c)**

In H₃PO₄, P is present as P⁵⁺ ₁₅P = 1s², 2s², 2p⁶, 3s², 3p³ P⁵⁺ = 1s², 2s², 2p⁶

168 **(c**)

Radius of *n*th orbit of hydrogen atom $=0.529n^2$

where, n = no. of orbit = 2

$$r_2 = 0.529 \times (2)^2 = 2.116$$
Å = 2.12Å

169 (d)

 $E_{\rm Mini} = hv_0$

170 (c)

An experimental fact.

172 (d)

$$\Delta E = 13.6 Z^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)$$

$$= 13.6 \times (1)^{2} \left(\frac{1}{1} - \frac{1}{2^{2}} \right)$$

$$= 13.6 \left(1 - \frac{1}{4} \right)$$

$$= 13.6 \times \frac{3}{4} = 10.2 \text{ eV}$$

173 **(b)**

 $E_8 - E_3$ is minimum. Also, transition from 3 to 8 result in absorption spectrum.

174 **(c)**

Aufbau principle states that in the ground state of an atom, the orbital with lower energy is filled up first before the filling of the orbitals with a higher energy commences.

Increasing order of energy of various orbitals is 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, ... etc.

Therefore,

1 1 1 1

Is not obeyed by aufbau principle. Without fully filling of *s*-subshell electrons cannot enter in *p*-subshell in ground state of atom.

175 **(b)**

The configuration are:

 Zn^+ : [Ar] $3d^{10}$, $4s^1$; Fe²⁺: [Ar] $3d^6$

 Ni^+ : [Ar]3 d^7 ; Cu⁺[Ar]3 d^{10}

176 **(b)**

Niels Bohr utilised the concepts of quantisation of energy (proposed by Max planck) first time to give a new model of atom.

177 (a)

$$E = \frac{N \cdot hc}{\lambda}$$

178 **(b)**

$$\lambda_A = \frac{h}{m_A v_A} \text{ and } \lambda_B = \frac{h}{m_B v_B}$$

$$\frac{\lambda_A}{\lambda_B} = \frac{m_B v_B}{m_A v_A}$$

$$\frac{1 \times 10^{-10}}{\lambda_B} = \frac{m_A \times 3v_A}{m_A \times 4 \times v_A \times 4}$$

$$\lambda_B = \frac{16 \times 10^{-10}}{3} = 5.33 \text{ Å}$$

179 **(b**)

n = 4, l = 3, means 4f, since l = 3 for f-subshell.

180 (a)

For first excited state n = 2

$$E_n = \frac{E_1}{n^2}$$

(Where, E_1 = energy of first

Bohr's orbit)

$$E_2 = \frac{-13.6}{(2)^2}$$

$$r_n = r_1 \times n^2$$

All are same terms having same meaning.

184 (c)

Line spectrum of atomic hydrogen in the visible region.

185 **(c)**

Kinetic energy $=\frac{1}{2}mv^2$,

Potential energy = $\frac{-e^2}{r}$

But,
$$mv^2 = \frac{e^2}{r}$$

$$KE = \frac{1}{2} \frac{e^2}{r}$$

Total energy =KE+PE

$$= \frac{1}{2} \frac{e^2}{r} - \frac{e^2}{r} = \frac{e^2}{r} \left(\frac{1}{2} - 1\right) = \frac{-e^2}{2r}$$

Each shell possesses one circular and rest all elliptical orbits.

Total number of orbits = n_*

189 (d)

Based on all these three principles.

190 (a)

Velocity of light is constant.

191 (c)

Ionisation energy of H

$$= 2.18 \times 10^{-18} \text{J atom}^{-1}$$

 $: E_1$ (Energy of 1st orbit of H-atom)

=
$$-2.18 \times 10^{-18} \text{J atom}^{-1}$$

$$\therefore E_n = \frac{-2.18 \times 10^{-18}}{n^2} \text{J atom}^{-1}$$

$$Z = 1$$
 for H $-$ atom

$$\Delta E = E_4 - E_1$$

$$=\frac{-2.18\times10^{-18}}{4^2}-\frac{-2.18\times10^{-18}}{1^2}$$

$$= -2.18 \times 10^{-18} \times \left[\frac{1}{4^2} - \frac{1}{1^2} \right]$$

$$\Delta E = hv = -2.18 \times 10^{-18} \times -\frac{15}{16}$$

= +2.0437 × 10⁻¹⁸ I atom⁻¹

$$v = \frac{\Delta E}{h} = \frac{2.0437 \times 10^{-18} \text{J atom}^{-1}}{6.625 \times 10^{-34} \text{Js}}$$

$$= 3.084 \times 10^{15} \text{s}^{-1} \text{atom}^{-1}$$

192 (a)

Node is the surface where electron density = 0.

193 (c)

Higher photo-current implies, higher no. of electrons emitted/sec.

194 (c)

No. of subshells in a subshell = 2l + 1

195 (a)

Magnetic quantum number signifies the possible number of orientations of an orbital.

196 (a)

It is due to isotopic effect.

197 (c)

For n = 4, $l \neq 4$, for n = l = 3, $m \neq 4$

198 (b)

Bohr proposed the concept of stationary state known as orbits.

199 (a)

Follow photoelectric effect.

200 **(d)**

$$5 + 4 + 3 + 2 + 1 = 15$$

201 (c)

Isoelectronic species have same number of electron. Mg²⁺ and Na⁺both have 10 electrons hence, they are isoelectronic species.

202 (c)

This is obtained by the solution of Schrodinger wave equation

Probability = $\Psi^2 dV$

Ist orbital is spherically symmetrical

$$\therefore V = \frac{4}{3}\pi r^3, \because \frac{dV}{dr} = 4\pi r^2$$

 \therefore Probability = $\Psi^2 4\pi r^2 dr$

204 (a)

$$_{(eV)}^{\Delta E} = \frac{12375}{\lambda_{in} \, ^{\hat{\Lambda}}} = \frac{12375}{5890} = 2.10 \text{ eV}$$

205 **(b)**

$$1 \text{ eV} = 1.602 \times 10^{-12} \text{erg}.$$

206 **(b)**

s can have only two values +1/2 and -1/2.

The de-Broglie wavelength associated with the charged particle as

For electron,
$$\lambda = \frac{12.27}{\sqrt{V}} \text{Å}$$

For proton,
$$\lambda = \frac{0.286}{\sqrt{V}} \text{Å}$$

For α -particles, $\lambda = \frac{0.101}{\sqrt{V}} \text{Å}$

208 **(b)**

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 1 \times 10^3}$$
$$= 3.97 \times 10^{-10} \text{m} \sim 0.40 \text{ nm}.$$

209 **(b)**

The number of waves in an orbit=n.

210 (a)

$$E \propto \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$
or $E \propto \frac{1}{n_2^2}$

211 **(b)**

n is an integer except zero.

212 (c)

According to aufbau principle, electrons enter into orbitals according to their energy. The electrons first enters into orbital having lesser value of (n +*l*). If the value of n + l is same for two orbitals then the electron will first enter into orbital having lesser value of *n*.

$$n = 5, l = 0 : n + l = 5 + 0 = 5$$

For other.

$$n = 3, l = 2$$
 $\therefore n + l = 3 + 2 = 5$

- \therefore Both of the orbitals have same value for n + l.
- : Electron will enter into orbital having lower value of n.
- \therefore Electron will enter into n = 3, l = 2 orbital.

213 **(b)**

 $E = \frac{hc}{\lambda}$, h and c for both causes are same so, $\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{16000}{8000}$

$$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{16000}{8000}$$

$$E_1 = 2E_2$$

214 **(c)**

When n = 3, number of values of l are 0 to (n-1)i.e., 0, 1, 2

Hence,

when n = 3, then l = 3 does not exist.

215 **(c)**

We know that,

$$\Delta E = hc. R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

For lowest energy, of the spectral line in Lyman series, $n_1 = 1, n_2 = 2$

$$\Delta E = hc. R \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$$

$$\Delta E = \frac{3hcR}{4}$$

216 **(c)**

Cathode rays are fastly moving electrons.

217 **(c)**

9.
$$n = 4, l = 0, m = 0, s = +\frac{1}{2}$$

 \rightarrow 4s energy level.

10.
$$n = 3, l = 1, m = -1, s = +\frac{1}{2}$$

 \rightarrow 3*p* energy level.

11.
$$n = 3, l = 2, m = -2, s = +\frac{1}{2}$$

 $\rightarrow 3d$ energy level.

12.
$$n = 3, l = 0, m = 0, s = +\frac{1}{2}$$
 $\rightarrow 3s \text{ energy level.}$

According to aufbau principle, the energy of orbitals (other than H-atom) depend upon n + 1value.

$$n + l$$
 for $3d = 3 + 2 = 5$

So, it is highest energy level (in the given options).

218 (d)

Each one possesses mass.

219 **(c)**

X-rays have larger wavelength than γ -rays.

220 (c)

$$\Delta E = \frac{hc}{\lambda}$$

221 (c)

H atom has $1s^1$ configuration.

222 (d)

No charge by doubling mass of electrons, however, by reducing mass of neutron to half total atomic mass becomes 6 + 3 instead of 6 + 6. Thus, reduced by 25%.

223 **(b)**

It is a characteristic fact.

224 (c)

Tritium contains 2 neutrons and 1 proton.

225 (c)

Fe(26) =
$$1s^2$$
, $2s^22p^6$, $3s^23p^63d^6$, $4s^2$
 $3d^6$ means $\boxed{111111}$

Hence, it has 4 unpaired electrons.

$$Fe^{2+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6, 4s^0$$

∴ It also has 4 unpaired electrons.

Fe³⁺ =
$$1s^2$$
, $2s^22p^6$, $3s^23p^63d^5$, $4s^0$
 $3d^5$ means 1 1 1 1 1

Hence, it has 5 unpaired electrons.

226 **(b)**

Follow Pauli's exclusion principle.

228 (c)

The mass of electron $=\frac{1}{1837}$ (mass of lightest nuclei)

or approximately $\frac{1}{1800}$

229 **(b)**

Both have $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

230 **(c)**

No. of orbitals in a shell = n^2 .

231 (d)

According to Bohr's model of hydrogen atom, the energy of electrons in the orbit is quantised, the electron in the orbit nearest to nucleus has lowest energy and electrons revolve in different orbits around the nucleus.

Whereas according to Heisenberg's uncertainty principle position and velocity of the electrons in the orbit cannot be determined simultaneously.

232 **(b)**

A proton requires more energy for penetration due to its relatively higher mass and positive charge than electron.

234 (d)

Last electron of Mg^+ is $3s^1$.

235 (a)

₂₆Fe has 2,8,14,2 configuration.

236 (c)

The electron density is directly proportional to Ψ^2 . The larger the electron density, the larger the value of Ψ^2 and more is the probability of finding the electrons

237 **(b)**

4p is more closer to nucleus.

238 **(b)**

 $Ca^{2+}(2,8,8)$ and Ar (2,8,8) contains equal number (18) of electrons, hence they are isoelectronic.

239 **(c)**

Threshold frequency (v_0) means for zero kinetic energy of electrons; Thus,

 $hv = \text{work function} + (1/2)mu^2$

or hv_0 = work function

240 **(a)**

1. For
$$n = 4$$
, $l = 1$; $4p$

2. For
$$n = 4$$
, $l = 0$; 4s

3. For
$$n = 3$$
, $l = 2$; $3d$

4. For
$$n = 2, l = 1; 2p$$

The order of increasing energy is as

$$i.e.$$
, (IV) $<$ (II) $<$ (III) $<$ (I)

241 **(c)**

$$E_n = \frac{E_1}{n^2} \times Z^2$$

= $\frac{-13.6}{4} \times 9 = -30.6 \text{ eV}$

(for the excited state, n = 2 and for $Li^{2+}ion$, Z = 3)

242 **(b)**

Given, azimuthal quantum number (l)=2Number of orbital's =(2l+1) $=(2 \times 2 + 1) = 4 + 1 = 5$

243 **(b)**

Heaviest atom has mass no. 238, (i.e., $_{92}U^{238}$) and lighter one is $_{1}H^{1}$.

244 (d)

$$\lambda = \frac{h}{mu}$$

245 (c)

 p_x orbital has two lobes on x-axis.

246 (d)

f-orbital has 7 orientations.

248 **(b)**

III shell is more closer to nucleus.

249 **(b)**

Ar and Ca²⁺ are isoelectronic species as they have same number of electrons, *i. e.*, 18.

250 **(b)**

$$p = mu = \frac{h}{\lambda}$$
 and $E = \frac{hc}{\lambda}$
 $\therefore E = \frac{c}{\lambda} \cdot p \cdot \lambda = c \cdot p$

251 (a)

$$\Delta x. \, \Delta v \ge \frac{h}{4\pi m}$$

$$\Delta x \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 25 \times 10^{-3} \times 10^{-5}}$$

$$= 2.10 \times 10^{-28} \text{m}$$

252 (d)

Mass of neutron = 1.675×10^{-27} kg.

253 **(c)**

$$\lambda = \frac{h}{mu} = \frac{6.62 \times 10^{-34}}{66 \times 10^3 \times 1}$$

255 **(c)**

n = 4(4th shell)

l = 2(d-subshell)

 $m_1 = -2(d_{xy} \text{ orbital})$

$$s = +\frac{1}{2}(\uparrow)$$

Hence, electron belongs to 4d-orbital.

256 (d)

The four lobes of $d_{x^2-y^2}$ orbital are lying along x and y axes, while the two lobes of d_{z^2} orbital are lying along z-axis, and contain a ring of negative charge surrounding the nucleus in xy plane 2s orbitals has one spherical node, where electron density is zero

p-orbital have direction character

Orbital $\rightarrow p_z \quad p_x \quad p_y$

$$m \rightarrow 0 \pm 1 \pm 1$$

Nodal plane $\rightarrow xy \quad yz \quad zx$

257 (c)

 d_{xy} orbital lies at 45° angle in between x-and y-axes.

258 (d)

According to Pauli exclusion principle.

259 **(b)**

$$E = \frac{hc}{\lambda}$$
.

260 (d)

Cu has configuration [Ar] $3d^{10}$, $4s^{1}$; the two electrons are lost, one from $4s^{1}$ and one from $3d^{10}$.

261 (d)

Ions have charge, different size and configuration than atom.

262 **(c)**

H⁻ has two electrons.

263 **(b)**

In the ground state of an atom the number of states is limited by Hund's rule. There are

n

 $\frac{|r| \cdot |n-r|}{|m-r|}$ ways in which electron in an orbital may be arranged which do not violate Pauli's exclusion principle.

Where, n=number of maximum electrons that can be filled in an orbital and r=number of electrons present in orbital.

But the valid ground state term is calculated by Hund's rule of maximum multiplicity. As Hund's

rule gives the most stable electronic configuration of electrons.

264 (a)

$$\frac{1}{\lambda} = Z^2 \cdot R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\Rightarrow \frac{1}{\lambda} = (Z)^2 \cdot R_H \left\{ \frac{1}{1} - \frac{1}{4} \right\} = \frac{3}{4} R_H Z^2$$

$$\therefore \lambda \propto \frac{1}{Z^2}$$

Hence for shortest λ , Z must be maximum, which is for Li^{2+} .

265 (c)

Element with atomic no. 17 has $3s^23p^5$ valence shell.

266 **(b)**

The electronic configuration of element with at. no. 105 is:

$$1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^64d^{10}4f^{14},$$

$$5s^25p^65d^{10}5f^{14}$$
, $6s^26p^66d^3$, $7s^2$
for $5f(n+l) = 5+3=8$

for
$$6d(n+l) = 6+2=8$$

267 **(b)**

Average mass =
$$(m + 0.5)$$
 = $\frac{m \times 4 + (m + 1) \times 1 + (m + 2) \times 1}{6} = \frac{6m + 3}{6}$

268 (d)

$$r_n = \frac{r_1 n^2}{Z}$$
; r_1 is radius of H-atom.

269 **(d**)

According to Bohr model, Radius of hydrogen atom

$$(r_n) = \frac{0.529 \times n^2}{Z} \text{Å}$$

Where, n = number of orbit

Z= atomic number

$$r_3 = \frac{0.529 \times (3)^2}{1} = 4.761$$
Å

270 (a)

de Broglie equation is
$$\lambda = \frac{h}{mu}$$

271 **(b)**

$$E_3 = E_1 + E_2 \text{ or } \frac{hc}{\lambda_2} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}$$

272 (c)

e. g., oxygen has 0^{16} , 0^{17} and 0^{18} isotopes.

273 (d)

Energy order: 5s < 4d < 4f.

274 **(a)**

$$1F = 10^{-13} \text{ cm} = 10^{-15} \text{ m}$$

275 **(b)**

276 **(b)**

 $E_X > E_{VR} :: \lambda_{VR} > \lambda_X$ or X is UV region.

277 (c)

According to aufbau principle, as electron enters the orbital of lowest energy first and subsequent electrons are fed in the order of increasing energies. The relative energies of various orbital in increasing order are

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p

278 **(b)**

No. of (valence) electrons in $NH_4^+ = 8$, No. of valence electron in N, (i.e., 5) + No. of e in 4H, (i.e., 4) - 1 (of +ve charge).

280 (d)

Hydrogen spectrum is an emission spectrum. It shows the presence of quantized energy levels in hydrogen atom.

281 (c)

Total no. of protons in all the elements from at. no. 1 to at no. $n = n \times (n + 1)/2$.

282 **(b)**

Frequency (n) =
$$\frac{1}{\text{time period }(T)}$$

Here, $T = 5 \times 10^{-3} \text{s}$
 $n = \frac{1}{5 \times 10^{-3}} = 0.2 \times 10^3$
 $= 2 \times 10^2 \text{s}^{-1}$

283 (a)

$$\frac{e}{m}$$
 for: (i) neutron = $\frac{0}{1}$ = 0
(ii) α -particle = $\frac{2}{4}$ = 0.5

(iii)proton =
$$\frac{1}{1}$$
 = 1

(iv)electron =
$$\frac{1}{1/1837}$$
 = 1837

284 **(d)**

It is the definition of degenerate orbitals.

285 (a)

N and P have 3 unpaired electrons in 2p and 3p respectively; V has 3 unpaired electrons in 3d.

286 **(a)**

Momentum of photon =
$$mu = \frac{h}{\lambda} \left(\because \lambda = \frac{h}{mu} \right)$$

= $\frac{6.6 \times 10^{-34}}{2 \times 10^{-11}} = 3.3 \times 10^{-23} \text{kg m s}^{-1}$

287 (c)

$$35 = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}, 4p^5$$

Thus, it contains 7 electrons in 4th or outermost

288 **(b)**

Follow Dalton's assumptions.

289 (d)

Schrödinger proposed the concept of orbitals -a

three-dimensional region in which probability for finding electron is maximum.

290 (d)

All are facts

291 **(d)**

Pb sheets cut X-rays.

292 **(c)**

Maximum no. of electron in an orbit = $2n^2$.

293 **(c)**

Total values of m' in a given shell = n^2 .

294 (d)

$$\frac{1}{\lambda} = Z^2, R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
For He⁺, $\frac{1}{\lambda} = 2^2$. $R_H \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = 4 \times \frac{3}{16} = \frac{3}{4}$
For H, $\frac{1}{\lambda} = 1^2$. $R_H \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3}{4}$
Hence, for hydrogen $n = 2$ to $n = 1$.

of (1)

295 **(b)**

After filling up of electron in np, the next electron occupies (n + 1)s level.

296 (c)

$$\frac{1}{\lambda_{\text{Lyman}}} = R_{\text{H}} \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right];$$

$$\frac{1}{\lambda_{\text{Balmer}}} = R_{\text{H}} \left[\frac{1}{2^2} - \frac{1}{\infty^2} \right]$$

297 (c)

Work function for Cs is minimum.

298 (c

It is famous Schrödinger wave equation.

299 (a)

Tritium has only one electron.

300 **(b)**

A characteristic of cathode rays particles (electrons).

301 (a)

$$E = 3 \times 10^{-12} \text{ergs}$$

$$\lambda = ?$$

$$h = 6.62 \times 10^{-27} \text{ergs}$$

$$c = 3 \times 10^{10} \text{cms}^{-1}$$

$$E = \frac{hc}{\lambda}$$

$$3 \times 10^{-2} = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{\lambda}$$

$$\lambda = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{3 \times 10^{-12}}$$

$$= 6.62 \times 10^{-5} \text{cm}$$

$$= 662 \times 10^{-9} \text{m}$$

$$= 662 \text{ nm}$$

302 **(a)**

- 5. 1*s*
- 6. 2*s*
- 7. 2*p*
- 8. 3*d*
- 9. 3*d*

In the absence of any field, 3d in (D) and (E) will be of equal energy.

303 **(c)**

Zeeman effect is splitting up of the lines of an emission spectrum in a magnetic field.

304 **(d)**

Bohr radius for *n*th orbit = $0.53 \times \frac{n^2}{Z}$

Where, Z =atomic number

- ∴ Bohr radius of 2nd orbit of Be³⁺ = $\frac{0.53 \times (2)^3}{4}$ = 0.53 Å
 - (d) Bohr radius of 1st orbit of H= $\frac{0.53\times(1)^2}{1}$

Hence, Bohr's radius of 2nd orbit of Be³⁺is equal to that of first orbit of hydrogen.

305 (c)

$$\lambda = \frac{h}{mv}$$

$$\therefore mv = \frac{6.626 \times 10^{-34}}{5200 \times 10^{-10}} = 1.274 \times 10^{-27}$$

For electron, $m = 9.1 \times 10^{-31} \text{kg}$

$$9.1 \times 10^{-31} \times v = 1.274 \times 10^{-27}$$

v = 1400 m/s

306 **(b)**

(n+l) is more for a subshell, more will be its energy.

307 (c)

[Ar] $3d^{10}$, $4s^1$ (atomic no. 29) electronic configuration belongs to copper.

308 (a)

Li⁺ has charge of 1 proton due to loss of electron.

309 (c)

Mass or proton = 1.672614×10^{27} kg

Mass of electron = 1.60211×10^{-31} kg

 \therefore Mass of proton/Mass of electron = $\frac{1}{1837}$

310 (c)

Follow : $E_n = E_1/n^2$

312 (a

Orbital angular momentum = $\sqrt{l(l+1)} \times \frac{h}{2\pi}$

For *p*-electron
$$(l = 1) = \sqrt{1(1+1)} \times \frac{h}{2\pi}$$
$$= \sqrt{2} \times \frac{h}{2\pi} = \frac{h}{\sqrt{2}\pi}$$

313 (a)

Transition from any higher level to n = 1 gives Lyman series.

314 **(a)**

Total energy =
$$\frac{-e^2}{2r_n}$$
 = -3.4 eV = $\frac{E_1}{n^2}$

$$\therefore n^2 = \frac{-13.6}{-3.4} = 4 \therefore n = 2$$

The velocity in II orbit

$$=\frac{u_1}{2}=\frac{2.18\times10^8}{2}\,\mathrm{cm\,sec^{-1}}$$

315 **(c)**

The orbital d_{z^2} has 2 lobes.

316 **(c)**

Nucleus of an atom is small in size but carries the entire mass *i. e.*, contains all the neutrons and protons.

317 (a)

In C_2H_2 total electrons = 6 + 6 + 1 + 1 = 14.

318 (a)

 Cu^+ has $3d^{10}$ configuration.

319 (a

Only 2 electrons in *p*-orbitals can have m = 0.

321 (a

 λ for visible light is in the range of 400 to 780 nm.

$$E=\frac{hc}{\lambda}$$

This, it is in the range of electron volt (eV).

323 (a)

To cross over threshold energy level.

324 (d)

$$\Delta E = hv = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{\Delta E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{4.4 \times 10^{-14}}$$

$$= 4.52 \times 10^{-12} \text{m}$$

$$r_2 \text{Be}^{3+} = \frac{r_1 \text{H}}{4} \times 2^2$$

 $\left(\because r_2 \text{H} = r_{1 \text{H}} \times 2^2 \text{ and } r_n \text{Be}^{3+} = \frac{r_n \text{H}}{n}\right)$

326 **(b)**

An experimental fact.

327 (d)

The transition is almost instantaneous process

328 **(b)**

The values of m are -l to +l through zero.

329 **(b)**

A fact.

330 (c)

X-rays are light waves or a form of light energy.

$$\Delta x \cdot \Delta v \ge \frac{h}{4\pi m}$$

332 (d)

$$\overline{v} = \frac{1}{\lambda} = R'Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

For shortest wavelength (maximum energy) in Lyman series of hydrogen $Z = 1, n_1 = 1, n_2 \rightarrow \infty$ and

$$\lambda = x$$

$$\frac{1}{x} = R'$$

For longest wavelength (minimum energy) in Balmer series of He⁺, Z = 2 and $n_1 = 2$, $n_2 = 3$

$$\frac{1}{\lambda} = R'2^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$$

$$\frac{1}{\lambda} = \frac{4}{x} \left[\frac{1}{4} - \frac{1}{9} \right]$$

$$\frac{1}{\lambda} = \frac{4}{x} \frac{5}{36}$$

$$\frac{1}{1} = \frac{4}{3} = \frac{5}{26}$$

$$\lambda = \frac{9x}{5}$$

333 (d)

Rydberg is an unit of energy.

Neutrons are neutral particles.

335 (d)

 $+\frac{1}{2}$ and $-\frac{1}{2}$ spinning produces angular

momentum equal to Z – component of angular momentum which is given as $m_s(h/2\pi)$

336 (c)

Since, $hv = \text{work function} + (1/2)mu^2$.

$$\lambda = \frac{h}{p}$$

$$v = \frac{a}{2}$$

$$v = \frac{3 \times 10^8 \times 1.1 \times 10^{-23}}{6.6 \times 10^{-34}}$$
$$= 5.0 \times 10^{18} \text{Hz}$$

338 **(b)**

$$E = \frac{hc}{\lambda} = hv$$

339 **(b)**

Step 1 Calculate energy given to I_2 molecule by $\frac{hc}{I_2}$

Step 2 Calculate energy used to break I₂ molecule. The difference in above two energies will be the KE of two I atoms

340 (a)

It is a fact.

341 **(b)**

Find λ from $E = \frac{hc}{\lambda}$; It comes out to be 4965 Å, which represents visible region (i.e., in between 3800 - 7600 Å).

342 (a)

The ground state configuration of chromium is $_{24}$ Cr = [Ar] $3d^54s^1$

$$\therefore \quad _{24} \text{cr}^{2+} = [\text{Ar}] 3d^4 4s^0$$

343 **(b)**

The atomic number of cesium is 55. The electronic configuration of cesium atom is

55 Cs

$$=1s^2, 2s^22p^6, 3s^23p^6, 4s^2, 3d^{10}4p^6, 5s^2, 4d^{10}, 5p^6$$

The electronic configuration of cesium atom is

 $=1s^2,2s^22p^6,3s^23p^63d^{10},4s^24p^64d^{10},5s^25p^6,6$

So, the total number of s-electrons = 10,

The total number of p-electrons=24,

The total number of d-electrons=20

344 (c)

$$KE = (1/2)mu^2 = eV$$

$$\therefore u = \sqrt{\frac{2eV}{m}}$$

345 **(b)**

Sine,
$$E \propto -\frac{1}{n^2}$$

The energy of an electron in the second orbit will

$$E_2 = \frac{E_1}{4} = \frac{(-2.18 \times 10^{-18} \text{J})}{4}$$
$$= -5.45 \times 10^{-19} \text{J}$$

346 **(b)**

Velocity of an electron in first orbit of H atom is

$$u = \frac{2.1847 \times 10^8}{1} \, \text{cms}^{-1}$$

Hence, it is $\frac{1}{100}$ th as compared to the velocity of light.

347 (c)

Energy values are always additive.

$$E_{\text{total}} = E_1 + E_2$$

$$\frac{hc}{\lambda} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}$$

$$\frac{1}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$$

$$\frac{1}{355} = \frac{1}{680} + \frac{1}{\lambda_2}$$

$$\lambda_2 = 742.77 \text{ nm} \approx 743 \text{ nm}$$

348 **(d**)

Bohr's model is against the law of electrodynamics.

349 **(b)**

Fe³⁺ ion has the following configuration Fe³⁺ = $1s^2$, $2s^22p^6$, $3s^23p^63d^5$ Hence, ferric ion is quite stable due to half-filled d-orbitals.

350 **(c)**

During the experimental verification of de Broglie equation, Davission and Germer confirmed wave nature of electron.

For a given shell, say
$$n=2, l=0$$
 $\therefore m=0$ $l=1$ $\therefore m=-1,0,+1$

351 (c)

Anode rays particles are ionised gaseous atoms left after removal of electron.

352 **(c)**

P has 5 valence electron; each H has 1; Thus, total electrons = 5 + 4 - 1 = 8.

353 **(b)**

Neutron is composed of $_{+1}p^1 + _{-1}e^0$ and thus, net charge is zero.

354 **(c)**

Picture tube of TV set is cathode rays tube.

355 (d)

s-subshell has only one orbital and that is spherical, hence, s-orbitals are non-directional.

356 **(b)**

$$_{28}$$
Ni = $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^8$
Ni²⁺ = $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^8$

two unpaired electrons

357 (d)

In $_1H^3$, nucleons are 3.

359 (a)

m can be ± 2 , ± 1 and 0 for 3d-subshell.

360 (c)

For Paschen series, $n_1 = 3$ and $n_2 = 4, 5, 6$

361 (c)

3d-subshell has five orbitals. Each orbital can have one electron with spin +1/2.

362 **(a)**

The no. of nucleons in O^{16} and O^{18} are 16 and 18 respectively.

363 **(b)**

de-Broglie wavelength, $\lambda = \frac{h}{p} = \frac{h}{mv}$ (:momentum p = mv)

$$\Rightarrow \lambda = \frac{6.62 \times 10^{-34} \text{J} - \text{s}}{6.62 \times 10^{-27} \times 10^6 \text{kg m/s}}$$
$$= 10^{-13} \text{m}$$

364 (a)

For n = 2; l can have value only 0 and 1, i. e., s and p-subshells.

365 **(b)**

Hydrogen spectrum coloured radiation means visible radiation corresponds to Balmer series

3rd line from the red end it means $5 \rightarrow 2$

366 (d)

Frequencies emitted

$$= \sum_{n=0}^{\infty} (n-1) = \sum_{n=0}^{\infty} (5-1) = \sum_{n=0}^{\infty} 4^{n}$$

$$= 1 + 2 + 3 + 4 = 10$$

367 (a)

Heisenberg's uncertainty principle; de Broglie's dual concept.

368 (c)

Follow planck's quantum theory.

369 (c)

As per Pauli's exclusion principle "no two electrons in the same atom can have all the four quantum numbers equal or an orbital cannot contain more than two electrons and it can accommodate two electrons only when their directions of spins are opposite."

370 (d)

Br (At. no.=35)

E. C. =
$$1s^2$$
, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^5$

∴ Br atom has 17 *p*-electrons.

371 **(a)**

K⁺ and Ar both have 18 electrons.

372 (d)

Since m = 2 and thus, l must be not lesser than m.

373 **(b**)

$$Cr(24) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$$

374 (d)

Configuration of atomic number 14 is $1s^2$, $2s^22p^6$, $3s^23p^2$;

One p-orbital and five d-orbitals are vacant.

375 (c)

$$E_n = -\frac{13.6}{n^2} \text{eV}$$

For second excited state n = 3,

$$E_3 = -\frac{13.6}{9} = -1.51$$
eV

376 (a)

$$Kinetic energy = \frac{Ze^2}{2r}$$

377 (d)

 $E_1 = -13.6$ eV; Thus, it can absorb 13.6 eV to get itself knocked out.

378 **(b)**

Wave-nature of electrons was first demonstrated by de-Broglie's who gave following equation for the wavelength of electrons

$$\lambda = \frac{h}{mv}$$

379 **(b)**

$$E_n = \frac{-13.6 \times Z^2}{n^2} \text{eV}$$

For H atom, Z = 1,

$$-3.4 = \frac{-13.6 \times (1)^2}{n^2}$$

$$\Rightarrow n^2 = 4$$

$$\therefore n = 2$$

380 (d)

This is according to Pauli's exclusion principle. The principle states that no two electrons of the same atom can have all the four quantum number values identical.

381 (d)

The values of quantum number will give idea about the last subshell of element. From that value we can find the atomic number of element, n=3 means 3rd-shell

 $l = 0 \atop m = 0$ means subshell

It means it is 3*s*-subshell which can have 1 or 2 electrons.

: Configuration of element is

$$1s^2, 2s^2, 2p^6, 3s^{1-2}$$

 \therefore Atomic *i. e.*, number is 11 or 12.

382 **(a)**

hv = work function +KE;

or
$$hv = hv_0 + KE$$
;

$$hv_0 = \text{work function} = \frac{hc}{\lambda_0}$$
;

where λ_0 is threshold wavelength.

383 (a)

The Sc atom has $3d^1$, $4s^2$ configuration.

384 (a)

Wave number of spectral line in emission spectrum of hydrogen,

$$\bar{v}=R_H\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$$

Given,
$$\bar{v} = \frac{8}{9}R_H$$

On putting the value of \bar{v} in Eq. (i), we get

$$\frac{8}{9} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{8}{9} = \frac{1}{(1)^2} - \frac{1}{n_2^2}$$

$$\frac{8}{9} - 1 = -\frac{1}{n_0^2}$$

$$\frac{1}{2} = \frac{1}{n}$$

$$n_2 = 3$$

$$n_2 = 3$$

Hence, electron jumps from $n_2 = 3$ to $n_1 = 1$

385 (b)

J.J. Thomson (1987) was first experimentally demonstrated particle nature of electron. It was first of all proposed by Millikan's oil drop experiment.

386 **(b)**

Angular momentum for n and (n+1) shells are $\frac{nh}{2\pi}$ and $(n+1)\frac{h}{2\pi}$.

387 **(b)**

The volume of nucleus : volume of atom, $\frac{4}{3}\pi r_n^3 : \frac{4}{3}\pi r^3$ atom.

388 (c)

 0^{2-} has 10 electrons but 8 neutrons ($_{8}0^{16}$).

390 (c)

Possible mol. wt. may be 18,20,19,20,22,21 respectively for

 $H^{1}H^{1}O^{16}$, $H^{2}H^{2}O^{16}$, $H^{1}H^{2}O^{16}$, $H^{1}H^{1}O^{18}$, $H^{2}H^{2}O^{18}$, $H^{1}H^{1}O^{18}$, $H^{2}H^{2}O^{18}$, $H^{1}H^{1}O^{18}$, $H^{2}H^{2}O^{18}$, $H^{2}H^{2}O^{18}O^{18}O^{18}$, $H^{2}H^{2}O^{18}O^{18}O^{18}O^{18}O^{18}O^{18}O^{18}O^{18}O^{18}O^{18}O^$

391 (c)

Magnetic moment = $\sqrt{[n(n+2)]}$ where n is number of unpaired electrons .

392 (d)

Hertz for the first time noticed the effect.

393 **(b)**

Cr (24): [Ar] $3d^54s^1$ Cr³⁺: [Ar] $3d^34s^0$

394 (d)

A part of energy of photon (hv-work function) is used for kinetic energy of electrons.

395 **(b)**

$$\frac{e}{m} \text{ for electron } (e) = \frac{1.6 \times 10^{-19}}{9.1 \times 10^{-28}}$$

$$= 1.758 \times 10^{8}$$

$$= \frac{e}{m} \text{ for proton } (p) = \frac{1.6 \times 10^{-19}}{1.672 \times 10^{-24}}$$

$$= 9.56 \times 10^{4}$$

$$= \frac{e}{m} \text{ for neutron } (n) = \frac{0}{1.675 \times 10^{-24}} = 0$$

$$= \frac{e}{m} \text{ for } \alpha - \text{particle} = \frac{2}{4} = 0.5$$
Hence, the increasing order of $\frac{e}{m}$ is as

Hence, the increasing order $n < \alpha < p < e$

396 **(d)**

Ionisation energy of nitrogen =energy of photon =
$$Nh\frac{c}{\lambda}$$

where,
$$N = 6.02 \times 10^{23}$$

 $c = 3 \times 10^8 \text{ms}^{-1}$
 $\lambda = 854 \text{ Å} = 854 \times 10^{-10} \text{m}$
 $= \frac{6.02 \times 10^{23} \times 6.6 \times 10^{-34} \times 3 \times 10^8}{854 \times 10^{-10}}$
 $= 1.4 \times 10^6 \text{ J mol}^{-1}$
 $= 1.4 \times 10^3 \text{ kJ mol}^{-1}$

397 **(a)**

e/m for proton $=\frac{1}{1}$; e/m for $\alpha = \frac{2}{4}$

398 (a)

$$E = n \frac{hc}{\lambda}$$

$$h = 6.6 \times 10^{-34} \text{ Js or 1J}$$

$$= \frac{n \times 6.6 \times 10^{-34} \times 3 \times 10^8}{10000 \times 10^{-10}}$$

399 (c)

We know that the energy is emitted in the form of quanta and is given by,

$$\Delta E = hv = \frac{hc}{\lambda}$$
or $\lambda = \frac{hc}{\Delta E}$

$$= \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{3 \times 1.6 \times 10^{-12}}$$

$$= 4.14 \times 10^{-5} \text{ cm}$$

$$= 4140 \text{ Å}$$

401 **(a)**

$$_{19}$$
K = $1s^2$, $2s^22p^6$, $3s^23p^6$, $4s^1$
 $_{25}$ Mn = $1s^22s^22p^63s^23p^64s^23d^5$
 $_{28}$ Ni = $1s^22s^22p^63s^23p^64s^23d^8$

 $_{21}$ Sc = $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$

Therefore, K has least number of electrons in its M-shell (n = 3) = 8.

402 **(b)**

KE of charged particle = change \times pot. Difference.

403 (c)

According to wave mechanics, the latest approach for electron in orbital.

404 (c)

According to rules of quantum number the possible values of n, l, m and s are n=1 to ∞ any whole number l=0 to (n-1) for every value of n m=-l to zero to +l for every value of l

$$s = \frac{1}{2} \text{ or } -\frac{1}{2}$$

0. n = 4, l = 3, m = 0

All the values are according to rules.

1. n = 4, l = 2, m = 1

All the values are according to rules.

2. n = 4, l = 4, m = 1

:The value of l can have maximum (n-1)value i.e., 3 in this case.

∴ This set of quantum numbers is non-permissible.

3. n = 4, l = 0, m = 0

All the values are according to rules.

: Choice (a), (b) and (d) are permissible.

405 (d)

s-orbital can have only two electrons.

406 (c)

 ΔE for H = 10.2 eV for n = 1 to n = 2 $\therefore \Delta E$ for Be³⁺ = 10.2 × Z^2 for n = 1 to n = 2 $\therefore Z = 4 : \Delta E = 10.2 \times 16 = 163.2$

407 **(b)**

In 3p-subshell max. no of electrons = 6.

408 (a)

$$\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3R}{4}$$

$$\lambda = \frac{h}{p}$$

$$P = \frac{h}{\lambda} = h \times \frac{3R}{4} = \frac{3Rh}{4}$$

409 (c)

 $E_n > E_e$

410 (a)

Follow Planck's quantum theory.

411 (d)

 $_{14}$ Si: $1s^2$, $2s^22p^6$, $3s^23p^2$, *i. e.*, 3 orbits of *s* and 8 orbitals of *p*.

412 (a)

2nd excited state means 3rd energy level.

$$E_3 = \frac{E_1}{n^2} = \frac{-13.6}{9} = -1.51 \text{ eV}$$

413 **(b)**

$$_{24}$$
Cr = 1s², 2s²2p⁶, 3s²3p⁶3d⁵, 4s¹

Thus, l = 1 is *s*-orbital and l = 2 is *p*-orbital

414 (c)

In excited state S has six unpaired electrons.

415 (a)

Nearly half-filled orbitals tend to acquire exactly half-filled nature to attain lower energy level.

416 (c)

$$\overline{v} = \frac{1}{\lambda} = \frac{1}{500 \times 10^{-9}} = 2 \times 10^6 \text{m}^{-1}$$

417 (c)

$$E_1 = \frac{hc}{\lambda_1}$$
 and $E_2 = \frac{hc}{\lambda_2}$

$$\therefore \frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1}$$

$$\frac{25}{50} = \frac{\lambda_2}{\lambda_2}$$

$$\lambda_1 = 2\lambda_2$$

418 (a)

N³⁻ has three more electrons than N atom.

419 (c)

Option (c) is correct as in it Pauli's exclusion principle is violated but Hund's rule does not

420 (d)

An experimental fact.

421 **(b)**

$$\lambda_1 = 3000\text{Å}, \lambda_2 = 6000\text{Å}$$

$$E_1 = \frac{hc}{\lambda_1} = \frac{hc}{3000}$$

$$E_2 = \frac{nc}{\lambda_2} = \frac{nc}{6000}$$

$$\frac{E_1}{E_2} = \frac{\frac{hc}{3000}}{\frac{hc}{6000}} = \frac{hc}{3000} \times \frac{6000}{hc} = \frac{2}{1}$$

$$E_1$$
: $E_2 = 2$: 1

422 **(a)**

The radiation energy absorbed is used to overpower effective nuclear charge and imparting velocity to electron hv = W + KE.

423 **(b)**

l = 3 represent for f – subshell.

424 **(b)**

$$E_n = \frac{E_1}{n^2}$$
 :: $E_2 = \frac{-54.4}{4} = -13.6 \text{ eV}$

425 **(d)**

No. of fundamental particles = 6 protons + 6 electrons + 8 neutrons = 20.

426 (a)

The configuration of 24Cr is

$$1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^1$$

 \therefore Total *s*-orbitals = 4

Total p-orbitals =6

Total d-orbitals = 5 and thus

Total orbitals = 4 + 6 + 5 = 15

428 **(c)**

 $m \gg l$ for l = 1.

429 **(d)**

$$\lambda = \frac{h}{mv} \quad [mv = \sqrt{2m \cdot KE}]$$

$$\lambda = \frac{h}{\sqrt{2m \cdot KE}}$$

$$KE \propto \frac{1}{\lambda^2 \sqrt{2m}}$$

Since, λ is same,

$$\text{KE} \propto \frac{1}{m}$$

The order of mass of electron, alpha particle and proton is $m_a>m_p>m_e$

Thus, the order of KE is $E_e > E_p > E_a$

430 (d)

$$_{20}$$
Ca = 2, 8, 8, 2

$$Ca^{2+} = 2.8.8$$

Hence, Ca²⁺ has 8 electrons each in outermost and penultimate shell.

431 (c)

$$\frac{1}{2}mu^2 = E_k^{\text{max}} = hv - w = (6 - 2.1)\text{eV}$$

= 3.9 eV or $eV_0 = 3.9 \text{ eV}$

Thus, stopping potential = -3.9 eV

432 **(d**)

$$\Delta x = \Delta p \quad \therefore \Delta x \cdot \Delta p = \frac{h}{4\pi}$$

or
$$\Delta x = \sqrt{\frac{h}{4\pi}}$$

Now,
$$\Delta x \cdot \Delta u = \frac{h}{4\pi m}$$

$$\therefore \Delta u = \frac{h}{4\pi m} \times \sqrt{\frac{4\pi}{h}} = \frac{1}{2m} \times \sqrt{\frac{h}{\pi}}$$

433 (a)

₈0²⁻ has 10 electrons. ₁₈Ti⁺ has 80 electrons.

434 **(b)**

l = 2 means d-subshell; $_{23}V = 1s^2, 2s^22p^6, 3s^239^63d^3, 4s^2$.

435 **(c)**

Follow Hund's multiplicity rules

436 **(b)**

For first excited state (i.e., second energy level)

$$n = 2$$

$$r_n = \frac{a_0 \cdot n^2}{Z}$$
(where, a_0 = Bohr radius = 0.53 Å)
$$r_2 = \frac{a_0(2)^2}{1}$$
 (for H, $Z = 1$)

437 (a)

$$\lambda = \frac{h}{\text{momentum}} \therefore \text{momentum} = \frac{h}{\lambda} = \frac{h \times v}{c}$$

$$\therefore \text{momentum} = \frac{6.6 \times 10^{-34} \times 5 \times 10^{17}}{3.0 \times 10^8}$$

$$= 1.1 \times 10^{-24} \text{ kg m sec}^{-1}$$

438 (c)

In H-atom subshell of a shell possess same energy lavel.

439 (d)

For
$$n=4$$
 to $n=1$ transition
$$= v_{\text{Lyman}(2\rightarrow 1)} + v_{\text{Balmer }(4\rightarrow 2)}$$
 also
$$= v_{\text{Paschen }(4\rightarrow 3)} + v_{\text{Balmer }(3\rightarrow 2)} + v_{\text{L}(2\rightarrow 1)}$$
 also
$$= v_{\text{Paschen }(4\rightarrow 3)} + v_{\text{Lyman }(3\rightarrow 1)}$$

440 (a)

Isobars have same atomic mass but different atomic number.

Thus, the isobar of $_{20}\text{Ca}^{40}$ is $_{18}\text{Ar}^{40}$.

441 **(b)**

$$u_n = \frac{u}{n}$$
.

442 (a)

$$u_n = \frac{u_1}{n}$$

443 **(d)**

 γ -rays emission occurs due to radioactive change, a nuclear phenomenon.

444 (a)

$$KE = (1/2)mu^{2}$$
and $\lambda = \frac{h}{mu}$

$$\therefore KE = \frac{1}{2}m\frac{h^{2}}{m^{2}\lambda^{2}} = \frac{h^{2}}{2m\lambda^{2}}$$

445 **(b)**

for
$$H \frac{1}{\lambda_{B_1}} = R_H \left[\frac{1}{2^2} - \frac{1}{3^2} \right];$$

for $He^+ \lambda_{B_1} = 2^2 R_H \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$

447 **(b)**

This is one of the principles laid down in aufbau principles.

448 (d)

 Ψ^2 is a probability factor. For hydrogen wave function, number of nodes (the space where probability of finding electron is zero) can be calculated as

Radial nodes = (n - l - 1)

Angular nodes = l

Total number of nodes = (n-1)

449 **(b)**

 Cl^- has $3s^23p^6$ configuration, i.e., of Ar.

450 (a)

According to Bohr, an electron can move only in those orbits in which its angular momentum is a simple multiple of $\frac{\hbar}{2\pi}$.

i.e., equal to $\frac{nh}{2\pi}$ (where, n is an integer)

451 (c)

A fact for late discovery of neutron.

453 **(b)**

$$hv_{1} = hv_{0} + \frac{1}{2}mu_{1}^{2} \dots (i)$$

$$hv_{2} = hv_{0} + \frac{1}{2}mu_{2}^{2} \dots (ii)$$

$$\because \frac{1}{2}mu_{1}^{2} = \frac{1}{k}\left\{\frac{1}{2}mu_{2}^{2}\right\}$$

$$\therefore \text{ From (i)}hv_{1} = hv_{0} + \frac{1}{2k}mu_{2}^{2} \dots (iii)$$

$$\text{or } \frac{1}{2}mu_{2}^{2} = khv_{1} - khv_{0} \dots (iv)$$

$$\text{By Eqs. (ii) and (iv),}$$

$$hv_{2} = hv_{0} - khv_{0} + khv_{1}$$

$$\text{or } v_{0}(1 - k) = v_{2} - kv_{1}$$

$$\text{or } v_{0} = \frac{kv_{1} - v_{2}}{(k - 1)}$$

454 (d)

For 2p-subshell,

Hence, number of e^- with $s = -\frac{1}{2}$ is 3.

455 (c)

The spectral lines are closed only when ΔE is large, i.e., λ is small

Element with atomic no. 15 has $3s^23p^3$ valence shell.

457 (c)

$$E_3 - E_1 = \frac{12375}{\lambda}$$

$$\therefore \frac{-13.6}{9} - (-13.6) = \frac{12375}{\lambda}$$

$$\lambda = 1030 \text{ Å}$$

458 **(b)**

In Bohr orbit,

KE of
$$e^- = \frac{1}{2} \frac{Zke^2}{r_n}$$

PE of $e^- = \frac{Zke^2}{r_n}$
Thus, KE= $-\frac{1}{2}$ PE

459 (c)

Higher the (n + l), higher will be the energy. If (n + l) is same for two electrons, the electron for which n is larger, energy is higher

460 (a)

No. of spectral line during transition,

$$= \sum \Delta n = \sum (4-1) = \sum 3 = 1+2+3=6$$

461 (a)

The spins of electron in an orbital may be $\pm 1/2$ only.

462 **(b)**

Energy of e^- in the *n*th orbit of atom= $\frac{-13.6}{n^2}$ eV/atom Given, n = 5

$$\therefore E_5 = -\frac{13.6}{(5)^2} = -\frac{13.6}{25} = -0.54 \text{ eV/atom}$$

463 (a)

Angular momentum = $\frac{n \cdot h}{2\pi} = \frac{5 \cdot h}{2\pi} = \frac{2.5 \ h}{\pi}$.

464 (a)

Angular momentum in an orbit $=\frac{nh}{2\pi}$ if n=1, it will be $\frac{h}{2\pi}$.

465 (a)

Electronic configuration of $Rb_{(37)}$ is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6, 5s^1$ So, for the valence shell electron $5s^1$

$$n = 5, l = 0, m = 0, s = +\frac{1}{2}$$

466 (a)

Electron density of $3d_{x^2-y^2}$ orbital in yz plane is zero.

467 **(b)**

Total number of orbitals for principal quantum number n is equal to n^2 .

468 (c)

X-rays represents radiant energy.

469 **(c)**

$$v = \frac{2.18 \times 10^8 \times Z}{n} \text{ cm s}^{-1}$$

For H atom, Z = 1 and third orbit, n = 3,

$$v_3 = \frac{2.18 \times 10^8 \times 1}{3}$$

= 7.26 × 10⁷ cm s⁻¹

470 **(c)**

All the three electrons in p are unpaired.

471 **(b)**

Orbital angular momentum

$$=\sqrt{l(l+1)}.\frac{h}{2\pi}$$

For 2*s*-orbital, l = o

: Orbital angular momentum

$$=\sqrt{0(0+1)}\frac{h}{2\pi}=\text{zero}$$

472 (a)

Balmer series wavelengths lies in between 6564Å to 3647Å i.e., visible region.

473 **(d)**

Follow assumptions of Bohr's model.

474 (a)

 $E_2 - E_1$ is maximum for H-atom and $E_2 - E_1 = \frac{hc}{\lambda}$.

475 (d)

s describes only spin of electron.

476 (d)

Each has one electron.

477 (c)

No. of line given during a jump = $\sum \Delta n$;

where
$$\Delta n = n_2 - n_1$$

$$\therefore \sum \Delta n = \sum (5-1) = \sum 4 = 10$$

478 (d)

The energy of electrons in the same orbital is the same. For 3d orbitals,

 $3d_{xy}$, $3d_{yz}$, $3d_{zx}$, $3d_{z_2^2}$, $3d_{x^2-y^2}$ are at the same level of energy, irrespective of their orientation. The electronic configuration

 $3d_{xy}^2, 3d_{yz}^2, 3d_{zx}^2, 3d_{x^2-y^2}^2, 3d_{z^2}^2, 4s^1$ has maximum exchange energy

479 **(b)**

s-subshell should be filled first as it possesses lower energy level than *p*-subshell.

480 (c)

$$_{29}$$
Cu = $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^1$, $3d^{10}$
Cu⁺ = $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^{10}$, $4s^0$
Total number of shells occupied = 3
Number of sub-shell occupied = 6

Number of orbitals filled = 14Number of unpaired electrons = 0

481 (d)

 $\lambda = \frac{h}{mu}$; where mu is momentum.

482 (c)

The atomic number of neon is 10.

G. S. Ne[10]:
$$1s^2$$
, $2s^2$, $2p^6$

E. S. Ne [10]:
$$1s^2$$
, $2s^2$, $2p^5$, $3s^1$

Hence, $1s^2$, $2s^2$, $2p^5$, $3s^1$ electronic configuration indicates the excited state of neon.

483 **(a)**

p-orbitals have two lobes; except d_{z^2} all the four *d*-orbitals have four lobes.

485 **(b)**

Energy of an electron in *n*th orbit,

$$E_n = \frac{2\pi^2 k^2 m Z^2 e^4}{n^2 h^2}$$

On submitting the values of k, m, e and h, we get

$$E_n = -\frac{2.172 \times 10^{-18} Z^2}{n^2} \text{J atom}^{-1}$$
or = $-\frac{1311.8Z^2}{n^2} \text{kJ mol}^{-1}$

or =
$$-\frac{1311.8Z^2}{n^2}$$
kJ mol⁻¹

or =
$$-\frac{313.52Z^2}{n^2}$$
 kcal mol⁻¹[: 1 kcal = 4.184 kJ]

For H-atom, Z=1

For Lyman series, $n_1 = 1$, $n_2 = 2$

Energy of electron in n_1 orbit

$$= -\frac{313.52 \times (1)^2}{(1)^2} kcal \text{ mol}^{-1}$$

$$= -313.52 \text{ kcal mol}^{-1}$$

$$\approx -313.6 \text{ kcal mol}^{-1}$$

Energy of electron in n_2 orbit

$$= -\frac{313.52 \times (1)^2}{(2)^2} \text{kcal mol}^{-1}$$
$$= -\frac{313.52}{4} \text{kcal mol}^{-1}$$
$$= -78.38 \text{ kcal mol}^{-1}$$

486 (d)

$$\frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right]$$

487 (c)

The outermost electron in $_{21}$ Sc is $4s^2$

488 **(b)**

$$hv = \text{work function } +KE;$$

$$\therefore KE = 6.2 - 4.2 = 2.0 \text{ eV}$$
Find $\frac{1}{2}mu^2$ in J

489 **(b)**

Number of spherical nodes in 3p orbital = n - l - 1 = 3 - 1 - 1 = 1

490 **(b)**

The maximum number of electron in any orbital is

491 (d)

Each has 16 electrons.

492 (d)

Rest all are particles.

493 **(c)**

de Broglie wavelength $\lambda = \frac{h}{mu}$ m is maximum for α -particle.

494 (c)

 $3d^5$, $4s^1$ is more stable configuration than $3d^4, 4s^2$.

495 (d)

$$E = \frac{12375}{\lambda}$$
; where *E* in eV and λ in Å.

496 **(d)**

Follow text.

497 (a)

Cl⁻ has 18 electrons and 17 protons.

No doubt in Cr it is $3d^5$, $4s^1$; but in Nb it is $4d^4, 5s^1$.

499 **(a)**

$$mu = \frac{h}{\lambda}$$

500 (d)

No. of unpaired electrons in Ni²⁺ is two.

501 **(b)**

Charge on neutrons is zero and mass of electron is minimum.

502 (a)

Mass of electron = 9.1×10^{-31} kg,

Mass of proton = 1.67×10^{-27} kg Mass of neutron = 1.675×10^{-27} kg Mass of α -particle = 6.67×10^{-27} kg So, increasing order of e/m for e, p, n and α -particle is $e > p > \alpha > n$ (: neutron has no charge)

503 **(b)**

Total value of m = (2l + 1) = 3 for l = 1 m = 3 is for f-subshell orbitals

504 (c)

As per Bohr's postulate, kinetic energy in II orbit

$$= +\frac{e^2}{2r_2} = \frac{e^2}{2a_0 \times 2^2} \quad (\because r_2 = r_1 \times n^2)$$
$$= \frac{e^2}{8a_0}$$

Since,
$$a_0 = \frac{h^2}{4\pi^2 me^2}$$

: Kinetic energy in II orbit = $\frac{h^2}{4\pi^2 m a_0} \times \frac{1}{8a_0} = \frac{h^2}{32\pi^2 m a_0^2}$

505 (a)

Nucleus does not contain electron in it.

506 **(b)**

Potential energy in an orbit = $-Ze^2/r_n$

507 **(b)**

Orbital angular momentum = $\sqrt{l(l+1)} \frac{h}{2\pi}$

For *p*-orbital, l = 1

: Orbital angular momentum

$$= \sqrt{1(1+1)} \frac{h}{2\pi} = \frac{\sqrt{2}h}{2\pi}$$
$$= \frac{h}{\sqrt{2}\pi}$$

508 (d)

e/m for proton $=\frac{1}{2}$;

e/m for α -particle = $\frac{2}{4}$

509 (c)

The total values of m for n = 2 are four.

510 **(d)**

Common name for proton and neutron is nucleon.

511 **(b)**

For A, (n + l) = 5 Thus, larger is value of (n + l). For B, (n + l) = 3 more is energy level.

512 **(b)**

$$r_{\text{nucleus}} = (1.3 \times 10^{-13}) A^{\frac{1}{3}}$$

Where *A* is mass no. of nucleus

513 **(a)**

$$E_{\text{He}^+} = E_{\text{H}} \times 2^2$$
; $E_{\text{Li}^{2+}} = E_{\text{H}} \times 3^2$

514 **(b)**

This observation that the ground state of nitrogen atom has 3 unpaired electrons in its electronic configuration and not otherwise is associated with Hund's rule of maximum multiplicity.

515 **(b)**

$$E_{2\text{He}^{+}} = \frac{E_{1\text{H}} \times Z^{2}}{2^{2}}$$

 $E_{1\text{H}} = -13.62 \text{ eV}$

516 (c)

As a result of attraction, some energy is released.

517 (c)

4th electron of Be is in 2s-subshell.

518 (a)

Filling up of electron is made according to aufbau principle.

519 (a)

$$m_e = \frac{m_e(\text{in rest})}{\sqrt{1 - (v/c)^2}};$$

The mass of moving electron increase with increase in velocity and thus e/m decreases

520 (a)

p-orbital are three, i.e., p_x , p_y and p_z each having same energy level, i.e., degenerate orbitals.

521 (d)

Pfund series spectral lines have longer wavelength and thus lesser energy

523 (a)

$$\lambda = \frac{h}{mv}$$
= $\frac{6.62 \times 10^{-34}}{6.62 \times 10^{-35} \times 100}$
= 0.1 kg

524 **(c)**

If n = 4, l = 3, i. e., 4f-orbital. Thus total number of electrons in 4f orbital is 14.

525 (c)

$$E_3 - E_2 = E(\text{eV}) \text{ or } -\frac{E_1}{9} + \frac{E_1}{4} = E$$

$$\therefore E_1 = \frac{36E}{5} = 7.2 E$$

526 (d)

$$\bar{v} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

For Balmer series

$$n_1 = 2, n_2 = 3, 4, 5, ... \infty$$

For first emission line $n_2=3$

$$\vec{v} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$
$$= R\left(\frac{1}{4} - \frac{1}{9}\right) = R\left(\frac{5}{36}\right)$$
$$\vec{v} = \frac{5R}{36} \text{ cm}^{-1}$$

527 **(b)**

 p_x orbital has electron density along x-axis.

528 **(c)**

Electronic configuration of Mn(25) is $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^5$

∴ Electronic configuration of Mn²⁺ is

$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5$$

$$Mn^{2+} = [Ar]3d^5, 4s^0$$

529 (a)

No. of neutron=atomic mass-atomic number. For C^{12} No. of neutron = 12 - 6 = 6

531 **(d)**

Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units.

532 **(c)**

$$r_{\rm H}=0.529{\rm \AA}$$

$$r_n = r_{\rm H} \times \frac{n^2}{Z}$$

For
$$Li^{2+}(n = 2)$$

$$r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(2)^2}{3} = \frac{r_{\text{H}} \times 4}{9}$$

For
$$Li^{2+}(n=3)$$
,

$$r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}}$$

For Be³⁺
$$(n = 2)$$

$$r_{\mathrm{Be^{3+}}} = r_{\mathrm{H}} \times \frac{(2)^2}{4} = r_{\mathrm{H}}$$

For
$$He^+(n=2)$$

$$r_{\text{He}^+} = r_{\text{H}} \times \frac{(2)^2}{2} = 2r_{\text{H}}$$

Thus, $Be^{3+}(n=2)$ has same radius as that of the first Bohr's orbit of H-atom

533 **(c)**

Isotopes of an element have different number of neutrons.

534 (c)

 \cos^{2+} has $1s^2$, $2s^22p^6$, $3s^23p^63d^7$ configuration having 3 unpaired electron only,

535 (c

Total spin = $\pm \frac{1}{2} \times$ number of unpaired electrons in atom

536 **(b)**

More is frequency of photon, more is energy.

537 **(c)**

$$Kinetic energy = \frac{Ze^2}{r_n}$$

538 **(b)**

Pd has $[Kr]4d^{10}$ configuration and is diamagnetic.

539 **(c)**

According to Rutherford

Scattering angle
$$\propto \frac{1}{\sin^4(\theta/2)}$$

It fails for very small scattering angles because the full nuclear charge of the target atom is partially screened by its electron

540 **(c)**

Radial node = n - l - 1; Angular node = l.

541 **(b)**

This led Rutherford to propose nucleus.

542 **(d**)

It is d_{xy} or $d_{x^2-y^2}$ orbital.

543 (a)

Atoms corresponds to different transitions from higher energy levels to lower energy levels

544 (c)

$$T = \frac{2\pi r_n}{u_n} = \frac{2\pi r_1 \times n^2}{u_1/n}$$

or
$$T \propto n^3$$
; $n = 2$ here

545 (c)

$$\lambda = \frac{c}{\lambda}$$
, $\lambda = \frac{3 \times 10^8}{8 \times 10^{15}} = 4 \times 10^{-8}$.

546 (a)

The third alkaline metal is $^{40}_{20}$ Ca. It contains 20 protons and 20 electrons.

547 (a)

More intense beam will give out more electrons.

549 **(b)**

Follow Pauli's exclusion principle.

550 **(**d)

hv = work function +KE;

if
$$KE = 0$$
:

hv =work function.

551 (d)

For *s*-orbital l = 0.

552 **(d)**

$$E_1 = -13.6 \text{ eV};$$

$$\therefore E_2 = \frac{E_1}{2^2} \text{ and } E_3 = \frac{E_1}{3^2}$$

553 **(b)**

The probability of finding the electrons in the orbital is 90-95%.

554 (b)

de Broglie equation is $\lambda = \frac{h}{mu}$.

555 **(b)**

Out of other alternates, He⁺has ionisation energy of 54.4 eV because in He⁺effective nuclear charge is fairly high and ionic size is small.

556 (c)

For chlorine atom, electronic configuration

$$=1s^2,2s^2,2p^6,3s^2,3p^5$$

For $3p^5$,

$$n = 3, l = 1, m = -1, 0, +1$$

557 (d)

The relative for E_1 ; $E_1 = -R_H \cdot h \cdot c$.

558 **(b)**

The radius of hydrogen atom=0.53Å $_3$ Li²⁺ion also has only one electron but it has 3 proton in nucleus, hence its electron feels three times more attraction from nucleus in comparison of hydrogen atom. Thus, the radius of $_3$ Li²⁺will be

$$= \frac{0.53}{3} = 0.17 \,\text{Å}$$

559 (d)

$$Ti^{2+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^2, 4s^0$$

$$V^{3+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6, 3d^2, 4s^0$$

$$Cr^{4+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^2, 4s^0$$

$$Mn^{5+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^2, 4s^0$$

560 (a)

The configuration of $_{29}$ Cu is $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^1$.

561 (d)

hv = work function +KE;Given KE = 0;

Thus, hv = 4 eV or $4 = \frac{12375}{\lambda}$, where λ is in Å.

562 (c)

Applying Rydberg formula,

$$\bar{v} - \frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \text{cm}^{-1}$$

For the first line in Lyman series,

$$n_1 = 1$$
 and $n_2 = 2$

$$So, \bar{v} = 109678 \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{109678 \times 3}{4}$$
$$= 822585 \text{cm}^{-1}$$

563 **(a)**

Number of spherical nodes in 3 p-orbital's = 3 - 1 - 1 = 1

There is one planner node in all p-orbitals.

564 (a)

Deuterium is an isotope of hydrogen. Its atomic number is one. Hence, its electronic configuration is ${}_{1}D^{2}$: $1s^{1}$

565 **(d)**

$$_{26}$$
Fe = [Ar] $3d^{6}4s^{2}$
Fe²⁺(24 electrons)=[Ar] $3d^{6}4s^{0}$

566 (d)

No. of electrons in a subshell is (4l + 2).

567 **(a)**

When, n = 5, l = 0, 1, 2, 3 or 4 and m = -4 to +4 $\therefore n = 5$, l = 4, m = 0, $s = +\frac{1}{2}$ is a correct set of quantum numbers.

568 (d)

Subshell having lower value of (n + l) will be of lower energy, where n is the principle and l is the azimuthal quantum number. Thus, Correct energy value order is

ns, (n-1)d, np, (n-1)f.

569 **(c)**

Radius of orbit $(r) = \frac{n^2 h^2}{4\pi^2 me^2} \times \frac{1}{Z}$

In it h, π , m and e are constants, so after substituting these values, we get

$$r = \frac{0.529n^2}{Z} \text{Å}$$

$$Z = 1 \text{ for H}$$

$$\therefore r_H = \frac{0.529n^2}{1} \text{Å} \qquad \dots (i)$$

The transition from n=2 to n=1 in H-atom will have the same wavelength as the transition from n=4 to n=2 in He⁺ ion.

570 (d)

$$\frac{V_n}{V_a} = \frac{(43)\pi r_n^3}{(43)\pi r_a^3} = \frac{r_n^3}{r_a^3} = \frac{\left[1.25 \times 10^{-13} \times (64)^{1/3}\right]^3}{(10^{-8})^3}$$

571 (c)

Z is atomic no. and e is charge on proton.

572 **(a**)

Mn has five unpaired electrons.

573 (a)

Carbon is ${}_{6}C^{12}$ and silicon is ${}_{14}Si^{28}$.

574 (c)

The 29th electron enters into $3d^9$ to have $3d^{10}$ configuration in Cu.

575 (d)

P has 6 electrons in s-subshells as in s-shell of Fe^{2+}

576 **(b)**

Number of spectral lines =
$$\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2}$$
$$= \frac{(7 - 2)(7 - 2 + 1)}{2} = 15$$

577 (a)

The value of Rydberg constant is 10,9678 cm⁻¹.

578 **(b)**

All the three electrons are to be kept in 1s.

579 **(b)**

Particle nature of electron was experimentally evidenced by photoelectric effect.

580 (d)

They proposed the concept of electron spin.

581 (a)

$$1 \text{ nm} = 1 \times 10^9 \text{m} = 10 \times 10^{-10} \text{m} = 10 \text{ Å}$$

582 (a)

Mass of neutron = 1.675×10^{-27} kg Mass of electron = 9.108×10^{-31} kg

583 **(c)**

$$E_1 = -13.6 \text{ eV}$$

After absorption of 12.2 eV energy

$$E_{\rm H} = -13.6 + 12.2$$

= -1.4 eV

Now
$$E_n = \frac{E_1}{n^2} :: n^2 = \frac{-13.6}{-1.4} = 9.71$$

:: $n = 3$

584 (c)

Number of atomic orbitals in 4th energy shell = $4^2 = 16$

585 (d)

According to Bohr model, Radius of hydrogen atom

$$(r_n) = \frac{0.529 \times n^2}{Z} \text{Å}$$

(where, n=number of orbit, Z=atomic number)

$$r_3 = \frac{0.529 \times (3)^2}{1} = 4.761$$
Å

586 (c)

Isotopes have same chemical nature.

587 (d)

The value of 'n' and 'l' equal to 4 and 3 respectively corresponds to 4f-orbital, hence the electron will belong to 4f-orbital.

588 (c)

p-orbitals (l = 1) can have six electrons.

589 **(b**)

It is a fact derived by Rutherford from his α scattering experiment.

590 (d)

At. no. 54 does not contain electron in f-orbital. Filling of f-orbital takes place from at. no. 58.

591 **(c)**

 Cl^- has ns^2np^6 configuration.

592 (d)

The mass number =atomic number + number of neutron

Atomic number=no. of proton

=no. of electron (for an atom)

So, mass number = 18 + 20 = 38

593 **(b)**

All *d*-orbitals except d_{z^2} have four lobes.

594 (d)

$$\frac{1}{2}mu_{\max}^2 = hv - W$$

595 (c)

No. of subshells in a shell = n^2 .

596 **(d)**

The threshold frequency (v_0) is the lowest frequency that photons may possess to produce the photoelectric effect. The energy corresponding to this frequency is the minimum energy (E)

$$E = hv_0$$

= $(6.625 \times 10^{-27} \text{erg s}) (1.3 \times 10^{15} \times \text{s}^{-1})$
= $8.6 \times 10^{-12} \text{ erg}$

597 **(d)**

Higher values of Ψ^2 means greater probability for finding electron and a zero value of Ψ^2 means the probability for finding the electron is zero (at nucleus)

598 **(b)**

It provides experimental determination of charge on electron.

599 **(b)**

f-orbital possesses 7 subshells and thus, maximum number of unpaired electrons = 7.

600 **(d)**

$$r_n = r_1 \cdot n^2$$

601 (c)

The proton has unit positive charge $(+1.602 \times 10^{-19} \text{C})$ and its mass is $1.007 \text{ u} (1.677 \times 10^{-27} \text{kg})$.

602 (a)

 $v = \frac{c}{\lambda}$ where v is frequency; c is velocity and λ is wavelength for light used.

603 (a)

For 4d electron,

$$n = 4, l = 2, m = -2, -1, 0, +1, +2$$

 $s = +\frac{1}{2} \text{ or } -\frac{1}{2}$

604 (c)

Follow Hund's multiplicity rule.

605 (a)

Isoeletronic means having same number of electrons. K⁺, Cl⁻, Ca²⁺, Sc³⁺ (all are having 18 electrons).

606 (c)

$$e/m$$
 for D⁺, H⁺, He⁺ and He²⁺ are $\frac{1}{2}$, $\frac{1}{1}$, $\frac{1}{4}$ and $\frac{2}{4}$.

607 **(c)**

Filling up of electrons in an atom obey aufbau principle.

609 **(c)**

h	6.626×10^{-34}
$\Delta u = \frac{\Delta u}{4\pi m \cdot \Delta x} =$	$4 \times 3.14 \times 25 \times 10^{-3} \times 10^{-5}$
$= 2.1 \times 10^{-28} \mathrm{m/s}$	

610 **(a)**

Elements from atomic no.21 to 100, each has 3*d*-electron in its configuration.

611 (a)

1.8 mL $H_2O = 1.8 \text{ g } H_2O$. also 18 g H_2O has 10N electrons;

Find electrons in 1.8 g H₂O

613 **(b)**

The configuration of at. no. 15 is $1s^2$, $2s^22p^6$, $3s^23p^3$.

614 **(c)**

From Bohr's model:
$$\frac{mu^2}{r} = \frac{e^2}{r^2}$$
$$\operatorname{or} \frac{mr^2mu^2}{r} = \frac{e^2}{r^2} \cdot mr^2 \text{ or } (mur)^2 = e^2m \cdot r$$

 \therefore Angular momentum $\propto \sqrt{r}$

615 (a)

 $1 \text{ mL} \equiv 1.2 \text{ g Mg}$; Also 24 g Mg has 12N electrons.

616 **(a)**

2s has minimum energy level.

617 (c)

de-Broglie, first of all suggested that electron, like light photons, possess wave nature. He proposed that all micro-particles have dual nature *i. e.*, both wave nature and particle nature. The wavelength of electron is given by

$$\lambda = \frac{h}{mv}$$

where,

h = Planck's constant

619 **(c)**

Use,
$$\Delta v \times \Delta x = \frac{h}{4\pi m}$$
 or $\Delta x = \frac{h}{4\pi m \cdot \Delta v}$

620 **(c)**

Atoms of an element are alike.

621 **(a)**

n lies from 1 to ∞ ; l = 0 to (n - 1); m = -1 to +l through zero.

622 **(b)**

Electronic configuration of $_{23}$ V is $1s^2$, $2s^22p^6$, $3s^23p^63d^3$. $4s^2$

623 (a)

Einstein mass-energy relation is $E = mc^2$

624 (a)

Rb —Atomic number is 37, So configuration is

$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}, 4p^6, 5s^1$$

 \therefore Last electron (valence electron) is $5s^1$

n = 5 (: Electron enters 5 energy level)

$$l = 0$$
 (:It is s-subshell)
 $m = 0$
 $s = \pm 1/2$

625 **(a)**

Follow Plank's quantum theory.

626 **(b)**

p-orbitals are dumb-bell type.

627 (d)

Aufbau principle does not give the correct arrangement of filling up of atomic orbitals in copper and chromium because half-filled and completely filled electronic configuration of Cr and Cu have lower energy and therefore, more stable

$$Cr(Z = 24): 1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^1$$

 $Cu(Z = 29): 1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^1$

628 **(d**)

0 has
$$0 - 16$$
, $0 - 17$, $0 - 18$ isotopes.

629 **(b)**

$$r_n = r_1 \times n^2 : n^2 = \frac{r_n}{r_1} = \frac{10.3 \times 10^9}{0.529 \times 10^{-10}} : n = 14$$

630 (c)

A p-orbital has 3 dumbles (i. e. p_x , p_y and p_z) and each dumble can accommodate maximum of 2 electrons. So, maximum number of electrons in p-orbital is 6.

631 **(a)**

$$\lambda = \frac{h}{\sqrt{2eVm_e}}$$

$$e = 1.6 \times 10^{-19} \text{C}, V = 10,000 \text{ V}, m_e = 9.1 \times 10^{-31}$$
kg

$$\lambda = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 1.6 \times 10^{-19} \times 10,000 \times 9.1 \times 10^{-31}}}$$
$$= 0.123 \text{ Å}$$

632 **(b)**

The jump of electron from higher level to lower one shows a decrease in energy and thus, equivalent amount of energy is given out as emission spectra.

633 (c)

$$\frac{V_n}{V_a} = \frac{4/3\pi(r_n)^3}{4/3\pi(r_a)^3}
= \frac{r_n^3}{r_a^3} = \frac{(10^{-13})^3}{(10^{-8})^3} = 10^{-15}$$

634 **(b)**

$$m_p < m_n$$

635 **(c)**

No. of neutron = Mass no. - At. no.

636 **(b)**

For a particular value of azimuthal quantum number, the total number of magnetic quantum number,

$$m = 2l + 1$$
or $2l = m - 1$

$$l = \frac{m - 1}{2}$$

637 **(c)**

According to Planck, E/photon= hv.

638 **(b)**

At. no. 30 has configuration ... $3d^{10}$, $4s^2$ and thus, 31 has ... $3d^{10}$, $4s^24p^1$

639 (d)

Angular speed is $\frac{u}{r}$;

Also $u_n \propto \frac{1}{n}$ and $r_n \propto n^2$

640 (c)

Cl has 17 electrons, Cl⁻ has 18 electrons.

641 (c)

IP for Fe⁺ ion =IP for $H \times (Z)^2$ where, Z =atomic number

∴ IP =
$$13.6 \times (2)^2$$

= $13.6 \times 4 = 54.4 \text{ eV}$

642 **(a)**

$$\frac{1}{\lambda_a} = R_{\mathrm{H}} \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$$

$$\operatorname{and} \frac{1}{\lambda_{\mathrm{B}}} = R_{\mathrm{H}} \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$$

643 (a)

Angular momentum, $mvr = \frac{nh}{2\pi} = \frac{3 \times h}{2\pi} = \frac{1.5h}{\pi}$ = $3h \left[\because h = \frac{h}{2\pi} \right]$

644 (c)

First of all, de-Broglie told that like light, all the microscopic moving particles also have dual nature, i.e., both wave and particle nature. Hence, for any microscopic particle (like e^- , p^+n etc) the wavelength is given by

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$

where, h=Planck's constant mv=p=momentum

645 (d)

According to aufbau principle, 2p-orbital will be filled before 3s-orbital. Therefore, the electronic configuration $(1s^2, 2s^22p^2, 3s^1)$ is not possible.

646 **(b)**

No. of electrons in a subshell = 2(2l + 1) = 4l + 2Also, l = 4 for g-subshell.

648 **(b)**

Ionisation energy of He⁺ =
$$13.6 \times Z^2$$
 eV
= $13.6 \times (2)^2$ eV
= 13.6×4 eV = 54.4 eV

649 (a)

For excitation of electron from ground state the minimum energy needed is 10.2 eV; $E_2 - E_1 = -3.4 - (-13.6)$.

650 (d)

For *s*-orbitals, Ψ^2 is maximum for closer to nucleus. For *p*-orbital, Ψ^2 maximum for far away distance from nucleus.

651 (a)

Orbital angular momentum

$$(L) = \sqrt{l(l+1)} \frac{h}{2\pi}$$

For d-orbital, l = 2

$$(L) = \sqrt{2(2+1)} \frac{h}{2\pi}$$

$$\sqrt{6}h$$

$$=\frac{\sqrt{6\pi}}{2\pi}$$

652 **(b)**A fact.

653 **(c)**

(n+l) for 4f and 5d is same but n being lesser in 4f and thus, energy order, 4f < 5d.

654 **(c)**

The electronic configuration of Fe atom is Fe (26) = [Ar] $3d^64s^2$ Fe³⁺ = [Ar] $3d^54s^0$

1 1 1 1 1

five unpaired electrons

655 (d)

Fe²⁺ has 6 electrons in 3d-shell; Cl⁻ has 12p-electrons.

656 **(c)**

m can have values -l to =+l through zero.

657 (a)

$$E_n = \frac{13.6}{n^2} \text{ eV}$$

$$E_3 - E_2 = 13.6 \left(\frac{1}{(2)^2} - \frac{1}{(3)^2}\right) \text{ eV}$$

$$E_3 - E_2 = 13.6 \left(\frac{1}{4} - \frac{1}{9}\right) \text{ eV}$$

$$E_3 - E_2 = 13.6 \times \left(\frac{5}{36}\right) \text{ eV}$$

= 1.9 eV

658 **(a)**

$$n = 3; l = 1 : (n + l) = 4$$

659 **(c)**

For 'N' shell

 \therefore The number of shell (n)=4

∴The number of sub-levels or sub-shell (l)=4

The number of orbitals $= n^2 = 4^2 = 16$

and the number of electrons= $2n^2 = 2 \times 4^2 = 32$

660 **(b)**

$$\lambda = \frac{h}{mv}$$

Here,

$$v = 3600 \text{ km/h}$$

$$= 10^{5} \text{ cm/s}$$

$$m = 1.0 \text{mg} = 10^{-3}$$

$$\lambda = \frac{6.626 \times 10^{-27}}{10^{-3} \times 10^{5}}$$

$$= 6.626 \times 10^{-29} \text{cm}$$

661 (a)

A fact to produce X-rays.

662 **(b)**

Let work function of A and B be w_A and w_B and T_A , T_B are kinetic energy

$$\therefore 4.25 = w_A + T_A$$

or
$$T_A = 4.25 - w_A$$
 ...(i)

Similarly $T_B = 4.70 - w_B$...(ii)

$$\therefore T_B - T_A = 0.45 + w_A - w_B$$

$$-1.5 = 0.45 + w_A - w_B$$
 (: $T_B - T_A = -1.5$)

or $w_B - w_A = 1.95$

$$\because \lambda = \frac{h}{mv} = \frac{h}{\sqrt{2K \times m}}$$

 $\lambda \propto \frac{1}{\kappa}$ (*K* is kinetic energy)

$$\therefore \frac{\lambda_B}{\lambda_A} = \sqrt{\frac{K_A}{K_B}} = 2$$

Also
$$\frac{T_A}{T_B} = 4 = \frac{K_A}{K_B}$$

$$\therefore \frac{T_A}{T_A - 1.5} = 4$$

$$T_A = 2 \text{ eV}$$

$$T_B = 0.5 \text{ eV}$$

$$w_A = 2.25 \text{ eV}$$

$$w_R = 4.2 \text{ eV}$$

663 **(a)**

For 3d-orbital l cannot be 1.

664 **(a)**

$$\lambda = \frac{h}{mu} = \frac{h}{p}$$

665 (a)

$$\lambda = \frac{h}{mv}$$
, ie, $\lambda \propto \frac{1}{\sqrt{mE}}$ and $m > > E$

Thus, correct order is $\lambda_e > \lambda_p > \lambda_\alpha$

666 (a)

He²⁻ has four electrons and thus, four sets are possible (Pauli's exclusion principle.

667 **(b)**

$$Zn(30) = [Ar]3d^{10}, 4s^2$$

$$Zn^{2+} = [Ar]3d^{10}$$
 (no unpaired electron)

$$Fe(26) = [Ar]3d^6, 4s^2$$

$$Fe^{2+} = [Ar]3d^6$$

$$d^6$$

(four unpaired electrons)

$$Ni(28) = [Ar]3d^8, 4s^2$$

$$Ni^{3+}[Ar]3d^{7}$$

$$3d^7$$

(three unpaired electrons)

$$(Cu(29) = [Ar]3d^{10}, 4s^1$$

$$Cu^+ = [Ar]3d^{10}$$
 (no unpaired electron)

668 (c)

Higher the value of (n + l), higher will be the energy of electrons. If value of (n + l) is same for any two or more electrons, the electron with higher value of n, has higher energy. Hence, the correct order of energy is

$$(n+1)$$
 4 5 5 5 6

669 **(b)**

 $Li^{-} = 1s^{2}, 2s^{2}$ (In it all subshells are saturated so, it is stable)

 $Be^- = 1s^2, 2s^2, 2p^1$ (very much less stable)

$$B^- = 1s^2, 2s^2, 2p^2$$
 (less stable)

 $C^- = 1s^2, 2s^2, 2p^3$ (stable due to presence of half-filled 2p-subshell)

670 **(b)**

Mass no. of an element represents no. of nucleons in it.

671 **(b)**

According to de-Broglie, all the microscopic particles have dual nature. The wavelength of these is given by

$$\lambda = \frac{h}{mv}$$

672 **(c)**

The electron in H atom is excited to III shells after absorbing 12.1 eV; because,

$$E_3 - E_1 = \frac{-13.6}{9} + 13.6 = 12.1$$

Thus, possible transitions are $\sum (3-1) = 3$

673 (a)

Fall of electron from higher level to *L*-level, (*i. e.*, 2nd shell) gives Balmer series.

674 (d)

Average isotopic wt.

$$= \frac{\text{per cent} \times \text{wt. of isotope} + \text{per cent} \times \text{wt. of othe}}{100}$$

100

$$\therefore 20.2 = \frac{a \times 20 + (100 - a) \times 22}{100}$$

 $\therefore a = 90$; per cent of lighter isotope = 100 - 90 = 10

675 **(b)**

The total number of waves in an orbit circumference of orbit $2\pi r$

$$= \frac{\text{circumference of orbit}}{\text{wavelenght}} = \frac{2\pi r}{\lambda}$$

$$= \frac{nh}{h}$$

$$= n \left(\because mur = \frac{nh}{2\pi}\right)$$

676 **(a)**

Magnetic moment = $\sqrt{n(n+2)}$; where n is no. of unpaired electron

$$\therefore 4.9 = \sqrt{n(n+2)} \text{ or } n = 4$$

Thus, electronic configuration of ${\rm Mn}^{a+}$ having 4 unpaired electron is

$$_{25}$$
Mn³⁺: $1s^2$, $2s^22p^6$, $3s^23p^63d^4$.

677 **(b)**

 K^{-} has 19 + 1 = 20 electrons.

678 (c)

Under the influence of magnetic field orbitals (p, d) are non degenerate, i.e., have different energy levels.

679 **(b)**

Aufbau is a German term meaning for building up.

680 (d)

$$\lambda = \frac{h}{mu};$$

Given $u = 2.2 \times 10^{-6} \text{m/s}$

$$m_e=9.10\times 10^{-31}{\rm kg}$$

681 (a)

 A^- has 18 electrons, thus, neutral atom A has 17 electrons or 17 protons. Also neutron = 20 thus, mass no. = 17 + 20 = 37

682 (d)

14. Interference and diffraction support the wave nature of electron.

15. $E = mc^2$ support the particle nature of electron.

16. $E = hv = \frac{hc}{\lambda}$ is de-Broglie equation and it supports both wave nature and particles nature of electron.

683 (c)

According to Bohr's concept, an electron always move in the orbit with angular momentum (mvr) equal to $nh/2\pi$.

$$\therefore mvr = \frac{nh}{2\pi}$$
or $r = \frac{n}{2\pi} \cdot \left(\frac{h}{mv}\right)$
or $r = \frac{n\lambda}{2\pi}$

(From de-Broglie equation, $\lambda = \frac{h}{mv}$)

for fourth orbit (n = 4)

$$r = \frac{2\lambda}{\pi}$$

 $\therefore \text{ Circumference} = 2\pi r = 2\pi \times \frac{2\lambda}{\pi} = 4\lambda$

685 **(c**)

From de-Broglie equation,

$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34}}{0.5 \times 100}$$
$$= 1.32 \times 10^{-35} m$$

686 (a)

$$KE = -\frac{e^2}{2r_n}; TE = -\frac{e^2}{2r_n}$$
$$\therefore \frac{KE}{TE} = \frac{1}{-1} = -1$$

687 (c

$$E_{1 \text{ He}^+} = E_{1 \text{ H}} \times Z^2$$

688 (c)

$$\lambda = \frac{h}{mv}$$

$$v = \frac{h}{m\lambda} = \frac{6.626 \times 10^{-27}}{9.109 \times 10^{-28} \times 0.15 \times 10^{-7}}$$

$$= 4.84 \times 10^{8} \text{ cms}^{-1}$$

690 (a)

Angular node = l; Also l = 0 for s-orbitals.

691 **(b)**

5d-orbital has l=2.

692 (c)

$$\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34} \text{ kg m}^2 \text{s}^{-1}}{6.6 \times 10^{-27} \text{kg} \times 10^3 \text{ms}^{-1}}$$
$$= 1 \times 10^{-10} \text{ m}$$

693 **(c)**

 $_{26}$ Fe³⁺ has $3d^5$ configuration.

694 (d)

We know that $E_n \propto \left[-\frac{1}{n^2}\right]$, where n is the number of orbit.

Hence, as the value of n increases, energy of the electron also increases. Hence, when n becomes infinite, energy also becomes infinite. Hence, due to this reason maximum energy is possessed by an electron, when it is present at infinite distance from the nucleus.

695 **(b)**

The two orbits are either I and II or II and IV

$$\frac{r_{n_2}}{r_{n_1}} = \frac{4}{1} \text{ and } r_n \propto n^2$$
Thus, $E_2 - E_1 = \frac{-13.6}{1} + \frac{1}{1}$

Thus,
$$E_2 - E_1 = \frac{-13.6}{4} + 13.6 = 10.2 \text{ eV}$$

and
$$E_4 - E_2 = \frac{-13.6}{16} + \frac{13.6}{4} = 2.55 \text{ eV}$$

696 **(b)**

$$\Delta E = hv = \frac{2\pi^2 m Z^2 e^4 k^2}{h^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

If electron falls from n_2 –level to n_1 –level.

 \therefore In He⁺ for the $n_2 = 4$ to $n_1 = 2$ transition

$$v(\text{He}^+) = \text{constant (4)} \left[\frac{1}{2^2} - \frac{1}{4^2} \right] \quad [\because Z_{\text{He}^+} = 2]$$

$$= constant \times 4 \left[\frac{3}{16} \right] = \frac{3}{4} constant$$

$$v(H) = \text{constant } (1)^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

= constant $\times \left[\frac{1}{n_2^2} - \frac{1}{n_2^2} \right]$

(a) For
$$n_2 = 3$$
 and $n_1 = 1$,

$$v(H) = \operatorname{constant}\left[\frac{1}{1} - \frac{1}{9}\right]$$

$$=\frac{8}{9}$$
 constant

$$\neq \frac{3}{4} \times \text{constant}$$

(b) For
$$n_2 = 2$$
 and $n_1 = 1$,

$$v(H) = \text{constant } \times \left[\frac{1}{1} - \frac{1}{4}\right]$$

$$=\frac{3}{4} \times \text{constant}$$

 $= v (He^+)$

697 **(b)**

E.C. of $M = [Ar]4s^23d^8$

E.C. of
$$M^{2+} = [Ar]4s^0 3d^8$$

Total electrons = 28 = atomic number

698 (d)

 $\overline{v} = \frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$; $n_1 = 2$ for Balmer series and $n_2 = 3$ for first line or H_{α} line of Balmer series.

699 **(d**)

It represent Heisenberg's uncertainty principle.

701 **(b)**

Follow Chadwick experiment for discovery of neutrons.

702 **(c)**

$$\Delta E = E_4 - E_1 = \frac{hc}{\lambda} = hv$$

$$\therefore v = \frac{E_4 - E_1}{h} = \frac{-21.76 \times 10^{-19} \left[\frac{1}{4^2} - \frac{1}{1^2}\right]}{6.625 \times 10^{-34}}$$

$$= 3.079 \times 10^{15} \text{s}^{-1}$$

703 **(b)**

A nuclide has a definite number of proton.

704 (d)

The isoelectronic species have same number of electrons.

17. NaCl has Na^+ and Cl^- ions

Electrons in $Na^{+} = 11 - 1 = 10$

Electrons in $Cl^{-} = 17 + 1 = 18$

∴ They are not isoelectronic.

18. CsF has Cs⁺ and F⁻ ions

Electrons in $Cs^+ = 55 - 1 = 54$

Electrons in $F^- = 9 + 1 = 10$

: They are not isoelectronic.

19. NaI has Na⁺ and I⁻ ions

Electrons in $Na^{+} = 11 - 1 = 10$

Electrons in $I^- = 53 + 1 = 54$

∴ These are not isoelectronic.

20. K_2S has K^+ and S^{2-} ions

Electrons in $K^{+} = 19 - 1 = 18$

Electrons in $S^{2-} = 16 + 2 = 18$

 \therefore In K₂S, the ions K⁺ and S²⁻ are isoelectronic.

705 **(c)**

Completely filled orbitals are extra stable.

706 (a)

A is 3d and B is 5s; (n + l) for both is 5 and thus, lower value of n' decides lower energy level.

707 **(b)**

p-orbitals are dumb-bell in shape and thus, have directional nature.

708 **(d)**

Both have different modes of preparation.

709 (a)

₁H¹ does not have neutrons.

710 (a)

$$E_{\text{Photon absorbed}} = \frac{E_1 + E_2}{\text{Energy released}}$$
or $\frac{hc}{\lambda} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}$ or $\frac{1}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$

711 **(a**)

Given, $\Delta x = \Delta P$ or $\Delta x = m \cdot \Delta v$ Heisenberg's uncertainty principle,

$$\Delta x \cdot m \cdot \Delta v = \frac{h}{4\pi}$$

$$m \cdot \Delta v \cdot m \Delta v = \frac{h}{4\pi}$$

$$(\Delta v)^2 = \frac{h}{4\pi m^2}$$

$$\Delta v = \frac{1}{2m} \sqrt{\frac{h}{\pi}}$$

$$=\frac{1}{2\times9.1\times10^{-31}}\sqrt{\frac{6.63\times10^{-34}}{3.14}}$$

$$= 7.98 \times 10^{12} \text{ms}^{-1} \approx 8 \times 10^{12} \text{ms}^{-1}$$

712 (d)

$$_{6}C = 1s^{2}, 2s^{2}, 2p^{2}$$

For 6th electron; n = 2, l = 1, m = -1 and $s = +\frac{1}{2}$

713 **(c)**

Ba²⁺ ions scatter X-rays.

714 (c)

For *N*-shell, n = 4

$$l$$
= 0, 1, 2, 3 (subshell) s p d f orbitals 1 3 5 7

Hence, total sub shells =4, orbitals =16 and number of electrons =32

715 **(b)**

Mass of H⁺ is minimum.

716 (a)

 $_{1}$ H¹ has only 1s electron, i. e., n = 1 is sufficient to describe H atom.

717 (d)

It is tritium atom, i. e., $_1H^3$

718 (a)

$$r_n = \frac{r_0 \times n^2}{Z}$$

Given, r_0 = radius of H atom in ground state =0.5Å

n = number of orbit = 1

Z = atomic number of Li = 3

$$r_n = \frac{0.53 \times 1^2}{3} = 0.176 \,\text{Å}$$

The velocity of light is maximum.

720 (c)

Bohr's theory is applicable to unielectron atom or ion only.

721 **(d)**

For 4s level; n = 4, l = 0.

Nucleus and electrons are oppositely charged.

723 **(d)**

Angular momentum of an electron

$$= mvr = \frac{nh}{2\pi}(n \text{ is orbit number})$$

in 5th orbit =
$$\frac{5h}{2\pi} = \frac{2.5h}{\pi}$$

724 (a)

Positron is $+_1e^0$.

726 **(b)**

The de-Broglie relation is,

$$\lambda = \frac{h}{mv}$$

where, λ =de-Broglie wavelength

h = Planck's constant

m =mass of particle

V=velocity of particle

Three electrons in *p*-subshells have same spin.

Cl in completely excited state has, $1s^2, 2s^22p^6, 3s^13p^33d^3.$

 $mur = n h/2\pi$

730 **(c)**

Excited Ne atom is $1s^2$, $2s^22p^5$, $3s^1$.

731 (c)

The charge on α -particles is twice the charge on proton, and mass of α – particle is four times the mass of proton

732 **(d)**

Energy,
$$E = \frac{nhc}{\lambda}$$

$$\Rightarrow$$
 60 × 1Js

$$= \frac{n \times 6.63 \times 10^{-34} \text{Js} \times 3 \times 10^8 \text{m}}{663 \times 10^{-9} \text{m}} \text{ [\because Power}$$
$$= \frac{\text{energy}}{1}$$

$$\therefore n = \frac{60 \times 1 \times 663 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}$$

$$d = \frac{m}{V} = \frac{9.11 \times 10^{-28}}{\frac{4}{3} \times \frac{22}{7} \times (4.28 \times 10^{-14})^3}$$
$$= 2.77 \times 10^{12} \text{ g/mL}$$

734 (a)

$$\frac{1}{\lambda} = \bar{v}_H = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$= 1.097 \times 10^7 \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right]$$

$$\lambda = \frac{1}{1.097 \times 10^7} \text{m}$$

$$= 9.11 \times 10^{-8} \text{m}$$

$$= 91.1nm$$

 $(1 \text{ nm} = 10^{-9} \text{ m})$

735 **(d)**

The number of electrons $=2n^2$ where, n =principal quantum number. For n=2

Number of electrons = $2(2)^2 = 8$

736 **(c)**

Energy of one photon,
$$E = \frac{hc}{\lambda}$$

= $\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{550 \times 10^{-9} \text{ m}}$

∴ Number of photons =
$$\frac{\text{energy required}}{\text{energy of one photon}}$$

= $\frac{10^{-17}}{3.61 \times 10^{-19}}$ = 27.67 = 28

737 **(c)**

$$\lambda = \frac{h}{mu} = \frac{6.6 \times 10^{-34}}{0.66 \times 100} = 1 \times 10^{-35} \text{m}$$

738 (c)

Isotones are species which have equal number of neutrons.

Neutrons in $_{19}K^{39} = 39 - 19 = 20$ Neutrons in $_{20}Ca^{40} = 40 - 20 = 20$

739 (a)

Rutherford showed the existence of nucleus in an atom by his α —particles scattering experiment. He postulated that every atom has a small central part which has positive charge and almost all the mass of atom (*i. e.*, nucleus consists of protons and neutrons).

740 (d)

For l = 2, m can have values -2, -1, 0, +1, +2

741 (d)

$$\Delta x \cdot \Delta u = \frac{h}{4 \pi m}$$

$$\Delta p = 1 \times 10^{-18} \text{g cm sec}^{-1}$$

$$m \times \Delta u = 1 \times 10^{-18}$$

$$\therefore \Delta u = \frac{1 \times 10^{-18}}{9 \times 10^{-28}} = 1.1 \times 10^{9} \text{cm sec}^{-1}$$

743 **(c)**

 $_6 \rm C^{12}$ has six electrons, two of them are unpaired and thus, paramagnetic $_{12} \rm Mg^{24}$ has twelve electrons, all are paired and thus, diamagnetic.

744 (c)

Dual nature of particles was proposed by de-Broglie.

745 (a)

Number of photoelectrons ejected per unit area, per unit time is directly proportional to the intensity of the incident radiation

746 **(d)**

$$\Delta u = \frac{0.1}{100} \times 10 = 10^{-2} \text{m sec}^{-1}; \text{ Now } \Delta u \cdot \Delta x$$

$$= \frac{h}{4\pi m}$$

$$\therefore \Delta x = \frac{6.625 \times 10^{-34}}{4 \times 10^{-2} \times 3.14 \times 200 \times 10^{-3}}$$

$$= 2.64 \times 10^{-32}$$

747 **(a)**

Number of radial nodes = (n - l - 1)For 3s, n = 3, l = 0 (number of radial node=2) For 2p, n = 2, l = 1 (number of radial node=0)

748 (c)

We know that,

$$E = mc^{2} = \frac{hc}{\lambda}$$

$$\therefore \lambda = \frac{h}{mc} \text{ or } m = \frac{h}{\lambda . c}$$

where, λ =wavelength of photon

h = Planck's constant m = mass of photonc = velocity of light

Given,
$$\lambda = 3.6 \text{ Å} = 3.6 \times 10^{-10} \text{m}$$

$$\therefore m = \frac{6.62 \times 10^{-34}}{3.6 \times 10^{-10} \times 3 \times 10^{8}}$$

$$= 6.135 \times 10^{-33} \text{kg}$$

749 **(d)**

4d-subshell has $n=4, l=2, m=\pm 2, \pm 1, 0, s=\mp 1/2$

750 **(d)**

The orbital angular momentum

$$=\frac{h}{2\pi}\sqrt{l(l+1)}$$

For 3s-electron, l = 0

∴ Orbital angular momentum

$$= \frac{h}{2\pi} \sqrt{0(0+1)}$$
$$= 0(zero)$$

751 (a)

According to Heisenberg

$$\Delta x \times m \times \Delta v = \frac{h}{4\pi}$$

where, Δx =uncertainty in position.

m=mass of particle

 Δv =uncertainty in velocity.

According to question

$$\Delta x_A \times m \times 0.05 = \frac{h}{4\pi} \quad \dots (i)$$

$$\Delta x_B \times 5m \times 0.02 = \frac{h}{4\pi} \quad ... (ii)$$

Eq. (i) divided by Eq. (ii), then

$$\frac{\Delta x_A \times m \times 0.05}{\Delta x_B \times 5m \times 0.02} = 1$$

or
$$\frac{\Delta x_A}{\Delta x_B} = 2$$

752 (a)

Hydrogen atom is in $1s^1$ and these 3s, 3p and 3dorbitals will have same energy w.r.t. 1s-orbital.

753 (a) ₁H¹ has more % in H₂.

754 (a)

The energy level increase with increase in distance from the nucleus and the negative values of electrons energy near to nucleus decrease to zero at infinite distance.

755 (a)

It is $3p_x$ or $3p_y$ orbital, i. e., Al having $3s^23p^1$ configuration.

756 **(d)**

The max. no. of orbitals in a shell = 2l + 1, \therefore Max. no. of electron= 2(2l+1) = 4l+2,

757 (a)

Li has $2s^1$ configuration of valence shell.

$$r_n = r_1 \times n^2$$
$$\therefore \frac{r_3}{r_2} = \frac{9}{4}$$

759 (a)

No. of f-orbitals in any shell = 7.

760 **(b)**

$$_{26}$$
Fe²⁺: $1s^2$, $2s^22p^6$, $3s^23p^63d^6$

761 (c)

Isotonic species are those species which have equal number of neutrons, e.g., ${}^{14}_{6}\text{C}$, ${}^{15}_{7}\text{N}$ and ${}^{17}_{9}\text{F}$.

762 **(b)**

$$\frac{1}{\lambda} = R_{\mathrm{H}} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

For Lyman series, $n_1 = 1$, $n_2 = 2$

$$\frac{1}{\lambda} = 10,9678 \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right]$$
$$= \frac{10,9678 \times 3}{4}$$

 $\lambda = 1216 \,\text{Å}$ 763 **(b)**

IE=
$$-E_1$$

 E_1 for He⁺ = -19.6×10^{-18} J atom⁻¹

$$\frac{(E_1)_{\text{He}^+}}{(E_1)_{\text{Li}^2+}} = \frac{(Z_{\text{He}^+})^2}{(Z_{\text{Li}^2+})^2}$$

$$\frac{-19.6 \times 10^{-18}}{(E_1)_{\text{Li}^2+}} = \frac{4}{9}$$
or $E_1(\text{Li}^{2+}) = \frac{-19.6 \times 9 \times 10^{-18}}{4}$

 $= -4.41 \times 10^{-17} \text{J atom}^{-1}$

764 (d)

The energy of second Bohr orbit of hydrogen atom (E_2) is -328 kJ mol⁻¹ because

$$E_2 = -\frac{1312}{2^2} \text{kJ mol}^{-1}$$

 $E_n = -\frac{1312}{n^2} \text{kJ mol}^{-1}$

$$E_n = -\frac{1}{n^2} \text{ KJ mol}$$

If n = 4

$$E_4 = -\frac{1312}{4^2} \text{kJ mol}^{-1}$$
$$= -82 \text{ kJ mol}^{-1}$$

765 (d)

Lyman series spectral lines have smaller λ and thus, higher energy.

766 **(b)**

Charge on electron and H^+ is same; the ratio e/mis ratio of mass of proton to electron.

767 (c) It is average isotopic weight.

768 **(b)**

Kinetic energy =
$$h(v - v_0)$$

 $KE = hv - hv_0$

$$v_0 = v - \frac{KE}{h} = 2 \times 10^{15} - \frac{6.63 \times 10^{-19}}{6.63 \times 10^{-34}}$$

= 1 × 10¹⁵s⁻¹

769 (a)

It is impossible to determine simultaneously the exact position and momentum of moving particle like electron, proton, neutron.

$$\Delta x \times \Delta p \ge \frac{h}{4\pi}$$

where, Δx =uncertainty in position.

 Δp =uncertainty in momentum.

770 (d)

 $^{14}_{6}\text{C,}^{16}_{8}\text{ O,}^{15}_{7}\text{ N}$ =isotonic triad Isotonic=same number of neutron. All species contain 8 neutrons.

771 **(d)**

Valence electron for Na is $3s^1$; Thus, n = 3, l = 0, m = 0.

772 (a)

Both Cl and Br have 7 electrons in their valence shell.

773 **(b)**

The λ order is : Radiowave > Infrared > UV > Xrays.

774 (c)

For example oxygen contains ${}_80^{16}$, ${}_80^{17}$ and ₈0¹⁸ nuclides, *i. e.*, of different types.

776 **(b)**

Neutron has more mass among all.

777 (c)

The electronic configuration of the Cu atom is $_{29}$ Cu = [Ar] $3d^{10}4s^1$

Since, the outermost shell is 4*s*, thus outermost electron is in it.

For $4s^1$,

$$n = 4$$
, $l = 0$, $m = 0$, $s = +\frac{1}{2}$

778 (c)

The *X*-atom has 18 neutrons and 16 electrons and thus, 16 protons also. Thus, it is $_{16}S^{34}$. The most abundant isotope of sulphur is $_{16}S^{32}$.

779 **(c)**

Unpaired electron leads to paramagnetism.

780 (c)

Laser is abbreviated as light amplification by simulated emission of radiation.

781 (d)

These are required conditions to obtain cathode rays.

782 (a)

 $E_2 - E_1$ is maximum.

784 **(c)**

From de-Broglie equation

$$\lambda = \frac{h}{mv}$$
=\frac{6.62 \times 10^{-34}}{0.5 \times 100}
= 1.32 \times 10^{-35} \text{m}

785 (c)

$$m = 10 \text{ mg} = 10 \times 10^{-6} \text{kg}$$

 $v = 100 \text{ ms}^{-1}$
 $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{10 \times 10^{-6} \times 100}$
 $= 6.63 \times 10^{-31} \text{m}$

788 **(b)**

Angular momentum of electron in an orbit and orbital are $\frac{nh}{2\pi}$ and $\sqrt{l(l+1)}$. $\frac{h}{2\pi}$ respectively.

789 (d

Period of one revolution = $\frac{2\pi r}{u}$

$$\therefore \frac{T_2}{T_1} = \frac{2\pi r_2}{u_2} \times \frac{u_1}{2\pi r_1} = \frac{r_2 u_1}{r_1 u_2}$$

Also
$$u_n = \frac{u_1}{n}$$
; $r_n = r_1 \times n^2$

$$\frac{T_1}{T_2} = 1:8$$

790 **(a)**

 Ni^{2+} : $1s^2$, $2s^22p^6$, $3s^23p^63d^8$ (with two unpaired electrons)

Thus, magnetic moment = $\sqrt{n(n+2)} = \sqrt{8} = 2.83 \text{ BM}$.

791 **(c)**

A technique to study the given fact.

792 (d

When n = 3, l = 0, 1, 2 i. e., there are 3s, 3p and 3d-orbital's. If all these orbitals are completely occupied as

1) 1) 1) 1) 1) 1) 1) 1)

Total 18 electrons, 9 electrons with $s = +\frac{1}{2}$ and 9 with

$$s=-\frac{1}{2}.$$

793 **(b)**

No. of electron in a shell = $2n^2$

794 **(a)**

 $1s^1$ being lowest level of energy and thus, it can absorb photon but cannot release photon.

795 (c)

$$m_e' = \frac{m_e}{\sqrt{1 - \left\{\frac{v}{c}\right\}^2}}$$

796 **(b)**

Species having the same number of electrons as in oxide ion, has the same electronic configuration as oxide ion. O^{2-} or N^{3-} both species have same number of electrons (10 electrons).

797 (c)

Mass of positively charged ions in positive rays is more than mass of electrons.