PHYSICS

- **Sol.** detergent decreases the surface tension so level of water rise will be lesser.
- Q.2 In a capillary tube, water rises to a height of 4 cm. If the cross-sectional area of the tube were one-fourth, water would have risen to a height of -

(B) 4 cm

(D) 16 cm

[C]

(A) 2 cm (E
(C) 8 cm (I)
$$h = \frac{2T\cos\theta}{2T\cos\theta} \Rightarrow r_1 h_1 = r_2 h_2$$

$$\begin{array}{l} \mathbf{h} = \frac{1}{\mathbf{r}dg} \implies \mathbf{h}_{1} \mathbf{h}_{1} = \mathbf{h}_{2} \\ \text{and } \mathbf{A} = 2 \ \pi \ \mathbf{r}^{2} \implies \mathbf{r} \ \alpha \sqrt{\mathbf{A}} \\ \therefore \ \sqrt{\mathbf{A}_{1}} \ \mathbf{h}_{1} = \sqrt{\mathbf{A}_{2}} \ \mathbf{h}_{2} \\ \implies \sqrt{\mathbf{A}} \times \mathbf{4} = \sqrt{\frac{\mathbf{A}}{4}} \times \mathbf{h}_{2} \\ \end{array}$$

$$\Rightarrow$$
 h₂ = 8 cm

Q.3 A container contains two immiscible liquids of density ρ_1 and ρ_2 ($\rho_2 > \rho_1$). A capillary of radius r is inserted in the liquid so that its bottom reaches upto denser liquid. Denser liquid rises in capillary and attain height equal to h which is also equal to column length of lighter liquid. Assuming zero contact angle find surface tension of heavier liquid–

(C) $0.8 \pi \text{ mN}$ (D) $4.8 \pi \text{ mN}$ [A]

Water is filled up to a height h in a beaker of radius R as shown in the figure. The density of water is ρ , the surface tension of water is T and the atmospheric pressure is P_0 . Consider a vertical section ABCD of the water column through a diameter of the beaker. The force on water on one side of this section by water on the other side of this section has magnitude -

(A) $|2P_0Rh + \pi R^2\rho gh - 2RT|$ (B) $|2P_0Rh + R^2\rho gh - 2RT|$

 $(C) \ |P_0\pi R^2 + R\rho gh^2 - 2RT|$

(D) $|P_0\pi R^2 + R\rho gh^2 + 2RT|$ [B]

Q.6 The drops of a liquid of density ρ are swimming half immersed inside a liquid of density σ. If the surface tension of the liquid is T, then the radius R of the drop is-

(A)
$$R = \sqrt{\frac{3T}{g(2\rho - \sigma)}}$$
 (B) $R = \sqrt{\frac{3T}{2g(2\rho - \sigma)}}$
(C) $R = \sqrt{\frac{3T}{2g\rho}}$ (D) $R = \sqrt{\frac{2T}{3g\rho}}$ [A]

Q.7 A thin metal ring of radius r floats on water surface and bends the surface downwards along the perimeter making an angle θ with vertical edge of the ring. If the ring displaces a weight of water W and surface tension of water is T, then the weight of metal ring is-

(A) $2\pi rT \cos \theta + W$ (B) $2\pi rT \cos \theta - W$

(C) $4\pi rT \cos \theta + 2W$ (D) $4\pi rT \cos \theta + W$ [D]

Q.8 A liquid is contained in a vertical tube of semicircular cross-section (shown in figure). The contact angle is zero. The force of surface tension on the flat part and on the curved part are in ratio-

Q.9 Energy liberated in combining n equal drops (surface tension = T) of radius r to form a big drop of radius R is (A) $E = 4\pi r^2 T(n^{1/3} - 1)$ (B) $E = 4\pi R^2 T(n^{1/3} - 1)$ (C) $E = \pi r^2 T(n^{1/3} - 1)$ (D) $E = \pi R^2 T(n^{1/3} - 1)$ [B] Q.10 If in a liquid, different capillaries (radius = r) are dipped, then the graph between liquid rise (h) and r is

Q.11 The amount of work done in increasing size of a soap film from $10 \text{ cm} \times 6 \text{ cm}$ to $10 \text{ cm} \times 10 \text{ cm}$ is (surface tension = $30 \times 10^{-3} \text{ N/m}$)

(A)
$$2.4 \times 10^{-2}$$
 J (B) 2.4×10^{-4} J
(C) 1.2×10^{-2} J (D) 1.2×10^{-4} J [B]

Q.12 Two spherical soap bubbles coalesce. If V is the consequent change in volume of the contained air and S is the change in the total surface area, then (A) 3PV + 4ST = 0 (B) 4PV + 3ST = 0(C) PV + 4ST = 0 (D) 4PV + ST = 0

Q.13 When a drop of water is placed between two glass-plates, the drop squeezes into

Q.14 The surface energy of a small liquid drop is U. It is sprayed into 1000 small and equal drops. The surface energy will be

(A) U	(B) 10 U	
(C) 100 U	(D) 1000 U	[B]

Q.15 Hair of shaving brush cling together when it is removed from water, due to

(A) surface tension	(B) viscosity	
(C) friction	(D) elasticity	[A]

Q.16 A mercury pallet is trapped between two horizontal glass plate having small space between them. The shape of mercury pallet is best described by -

Sol. Contact angle between mercury and glass plate is acute.

[B]

Q.17 The pressure inside two soap bubbles are 1.02 atm. and 1.03 atm. respectively. The ratio of their volumes is -(A) 102 : 103 (B) 103 : 102 (C) (103)³ : (102)³ (D) 27 : 8 [D] Sol. $P_{in} - P_{atm} = excess \ pressure = \frac{4T}{R}$

$$[P_{in} - P_{atm} = nkc vkf/kD; = \frac{4T}{R}]$$

$$\therefore \frac{R_1}{R_2} = \frac{\Delta P_2}{\Delta P_1} = \frac{3}{2}$$

$$\therefore \frac{V_1}{V_2} = \frac{R_1^{3}}{R_2^{3}} = \frac{27}{8}$$

Q.18 A capillary tube (P) is dipped in water. Another identical tube (Q) is dipped in a soap water solution. Which of the following shows the relative nature of the liquids columns in the two tubes ?

Sol. Meniscus will be concave from upside and in soap solution it should decrease.

- Q.19 The angle of contact between liquid and solid doesn't depend upon
 - (A) nature of liquid and solid
 - (B) impurity on the surface of contact
 - (C) third medium or atmosphere
 - (D) inclination of solid
- **Q.20** A metallic wire of density ρ floats horizontal in water. The maximum radius of the wire so that the wire may not sink will be : (surface tension of water = T and angle of contact $\theta = 0^{\circ}$) -

(A)
$$\sqrt{\frac{2T}{\pi\rho g}}$$
 (B) $\sqrt{\frac{4T}{\rho g}}$
(C) $\sqrt{\frac{T}{\pi\rho g}}$ (D) $\sqrt{\frac{T\rho}{\pi g}}$ [A]

Sol. $2T\ell \cos \theta = mg = \pi r^2 \ell \rho g$

$$\therefore$$
 r = $\sqrt{\frac{2T}{\pi\rho g}}$

SURFACE TENSION

[D]

Q.21 In the bottom of a vessel with mercury of density ρ there is a round hole of radius r. At what maximum height of the mercury layer will the liquid still not flow out through this hole? (Surface tension = T) -

(A)
$$\frac{T}{r\rho g}$$
 (B) $\frac{T}{2r\rho g}$

(C)
$$\frac{2T}{r\rho g}$$
 (D) $\frac{4T}{r\rho g}$ [C]

Sol. Because mercury meniscus is convex. The pressure just inside the hole will be less than the

outside pressure by $\frac{2T}{r}$ $\therefore h\rho g = \frac{2T}{r}$ or $h = \frac{2T}{r\rho g}$

Q.22 In a U-tube the radii of two columns are respectively r_1 and r_2 . When a liquid of density $\rho (\theta = 0^\circ)$ is filled in it, a level difference of h is observed on two arms, then the surface tension of the liquid is -

(A)
$$\frac{\rho g h r_1 r_2}{2(r_2 - r_1)}$$
(B) $h \rho g (r_2 - r_1)$
(C)
$$\frac{h \rho g (r_2 - r_1)}{2}$$
(D)
$$\frac{h \rho g}{2(r_2 - r_1)}$$
(A)
Sol.
$$\rho g h = 2T \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = 2T \left(\frac{r_2 - r_1}{r_1 r_2}\right)$$

$$\therefore T = \frac{\rho g h r_1 r_2}{2(r_2 - r_1)}$$

Q.23 A coaxial cylinder made of glass is immersed in liquid of surface tension 'S'. Radius of inner and outer surface of cylinder are R_1 and R_2 respectively. Height till which liquid will rise is (Density of liquid is ρ)-

(A)
$$\frac{2S}{R_2 \rho g}$$
 (B) $\frac{2S}{R_1 \rho g}$
(C) $\frac{S}{(R_2 - R_1)\rho g}$ (D) $\frac{2S}{(R_2 - R_1)\rho g}$ [D]

Sol.

Q.24 A conical pipe shown in figure have a water drop. The drop will tend to move towards -

- **Sol.** Excess pressure is directed towards centre of curvature and inversely proportional to radius of curvature.
- Q.25 Graph between the mass of liquid inside the capillary and radius of capillary is (A)

Q.30 Free surface of a liquid behaves as a stretched membrane and tends to assume the smallest possible area due to the-(A) cohesive force (B) adhesive force (C) centrifugal force (D) centripetal force [A] Q.31 The liquid surfaces have a tendency to contract, this phenomenon is due to-(A) surface tension (B) viscosity (D) dispersion (C) friction [A] Q.32 Surface tension may be defined as the mechanical work required to create an additional unit area of the liquid under-(A) isobaric conditions (B) isothermal conditions (C) adiabatic conditions (D) isometric conditions. [B] Q.33 The surface tension of a liquid depends on -(A) contamination (B) impurity dissolved in the liquid (C) temperature (D) all of the above [D] Q.34 If we increase the surface area of a soap film, the surface tension of the film -(A) increases (B) decreases (C) remains the same (D) becomes infinite [C] Q.35 When the temperature of liquid is increased/current flows through a liquid, then its surface tension -(A) remains constant (B) increases (C) decreases (D) first increases then decreases [C] 0.36 The soap and the detergent make water suitable for washing clothes because they-(A) make it rich in lather (B) increase its density (C) reduce its hardness (D) reduce its surface tension [**D**]

Q.37	Which of the followi	ng liquids has the	
	(A) water	(B) soap-solution	
	(C) alcohol	(D) mercury [D]	
	(0)		
Q.38	The surface tension of	mercury at normal	
	(A) 72 dame (and pressure)	(\mathbf{D}) 72 N/ (\mathbf{z})	
	(A) 72 dyne/cm	(B) $\frac{12}{2}$ N/m.	
	(C) 453 dyne/cm	(D) 435×10^{-3} N/m	
		[D]	
Q.39	At critical temperature, th	ne surface tension of a	
	liquid-		
	(A) is zero		
	(B) is infinity		
	(C) is the same as that any	other temperature	
	(D) can not be determined	. [A]	
Q.40	On wearing a rain coat of material is coated, a person because-	on which some greasy on does not wet in rain	
	(A) the rain coat absorbs y	vater	
	(B) the cohesive force of y	water is more	
	(C) the adhesion between	en the rain coat and	
	water becomes less		
	(D) none of these	[C]	
Q.41	Few drops of alcohols are	poured on the surface	
-	of water contained in a	tube. The water goes	
	away from the side from	which alcohol is being	
	poured. This shows that -	\mathcal{S}	
	(A) the surface tension of is more than that of w	of the alcohol solution	
	(B) the viscosity of the al	cobol solution is more	
	than that of water	conor solution is more	
	(C) the surface tension of	of the alcohol solution	
	is less than that of wa	ter	
	(D) the viscosity of the a	lcohol solution is less	
\mathbf{C}	than that of water	[C]	
\checkmark			
Q.42	It is possible to join two n to the property of-	netals by soldering due	
	(A) diffusion	(B) elasticity	
	(C) viscosity	(D) surface tension	
		[D]	

Q.43	If there is a thin lay parallel plates then it plates by-	er of water between two is easier to separate the
	(A) displacing them	
	(B) applying force pe of the plates	rpendicular to the surface
	(C) applying force in t	he some direction
	(D) none of the above	[A]
Q.44	The writing of a fount not legible due to-	ain pen on a newspaper is
	(A) cohesion	
	(B) adhesion	×
	(C) capillary rise effec	t
	(D) none of the above	[C]
0.45	The incorrect statemer	nt is -
C	(A) Tree gets wate	er from earth through
	capillary action	
	(B) Towel absorbs v capillary action	water from our body by
E.F.	(C) We get water in action of surface	house tops through the tension
	(D) Our teeth get b capillary action	lood from the body by [C]
O.46	If a liquid is stirred fo	r some time and then left.
C	It comes to rest after se	ome time. Its reason is-
	(A) viscosity	(B) surface tension
	(C) gravitation	(D) centripetal force
		[A]
Q.47	Big liquid drops are no	ot spherical due to -
	(A) viscosity	
	(B) surface tension	
	(C) gravitational force	
	(D) atmospheric press	ure [C]
O 48	The length of a nee	dle floating on water is
עדיע	2.5 cm. The minimur	n force in addition to its
	weight needed to lit	ft the needle above the
	surface of water will b	e -

(A) 36 N	(B) 10 N	
(C) 9 N	(D) 6 N	[A]

- Q.49 W is the work done in forming a bubble of radius r, the work done in forming a bubble of radius 2r will be -
 - (A) 4W (B) 3W

(C) 2W (D) W [A]

SMART ACHIEVERSTEAM MARTING PM. I.

(A) 5×10^{5} joule	(B) 2.9×10^{-5} joule
(C) 2.55×10^{-5} joule	(D) zero [C]

SURFACE TENSION