PHYSICS

Q. 1 A calorimeter contain 20 gm of water at $20^{\circ} \mathrm{C}$. The water equivalent of Calorimeter is 10 gm . The amount of heat required to raise the temperature of water from $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}(\mathrm{Sp}$. heat of water $=1 \mathrm{cal} / \mathrm{gm}-{ }^{\circ} \mathrm{C}$)
(A) 1000 cal
(B) 800 cal
(C) 400 cal
(D) 1200 cal
[D]
Sol. $\quad \mathrm{Q}=30 \times 1 \times 40$
$=1200 \mathrm{cal}$.
Q. 2 If two sphare having same radius but the ratio of their specific heat is $2: 1$ and the ratio of their density is $1: 4$ then the ratio of their heat capacity is -
(A) $2: 1$
(B) $1: 2$
(C) $1: 1$
(D) $1: 4$
[B]
Sol. $\frac{C_{1}}{C_{2}}=\frac{\rho_{1} \mathrm{v}_{1} \mathrm{~s}_{1}}{\rho_{2} \mathrm{v}_{2} \mathrm{~s}_{2}}$
$=\frac{2}{1} \times \frac{1}{4}=\frac{1}{2}$
Q. 3 Ice at $0^{\circ} \mathrm{C}$ is added to 200 gm of water initially at $70^{\circ} \mathrm{C}$ in a vacuum flask. When 50 gm of ice has been added and has all melted, the temperature of flask and contents is $40^{\circ} \mathrm{C}$, When a further 80 gm of ice is added and has all melted, the temperature of whole becomes $10^{\circ} \mathrm{C}$. Neglecting heat lost to surroundings the latent heat of fusion of ice is :
(A) $80 \mathrm{cal} / \mathrm{gm}$
(B) $90 \mathrm{cal} / \mathrm{gm}$
(C) $70 \mathrm{cal} / \mathrm{gm}$
(D) $540 \mathrm{cal} / \mathrm{gm}$
[B]
Sol. Accoding to principle of calorimetry,
$M L_{F}+M s \Delta T=(m s \Delta T)_{\text {water }}+(m s \Delta T)_{\text {flask }}$
$50 \mathrm{~L}_{\mathrm{f}}+50 \times \mathrm{T} \times(40-0)$
$=200 \times 1 \times(70-40)+\mathrm{W}(70-40)$
or $50 \mathrm{~L}_{\mathrm{f}}+200=(200+\mathrm{W}) 30$
or $5 \mathrm{~L}_{\mathrm{f}}=400+3 \mathrm{~W}$
Now the system contains $(200+50) \mathrm{gm}$ of water
at $40^{\circ} \mathrm{C}$, so when further 80 gm of ice is added.
$80 \mathrm{~L}_{\mathrm{f}}+80 \times 1 \times(10-0)$

$$
=250 \times 1 \times(40-10)+\mathrm{W}(40-10)
$$

or $80 \mathrm{~L}_{\mathrm{f}}+800=(250+\mathrm{W}) 30$
or $80 \mathrm{~L}_{\mathrm{f}}=670+3 \mathrm{~W}$
Solving equation (i) and (ii),
$\mathrm{L}_{\mathrm{f}}=90 \mathrm{cal} / \mathrm{gm}$ and $\mathrm{W}=\frac{50}{3} \mathrm{gm}$
Q. 4 Heat is absorbed by a body but its temperature does not change. Which of the following statements explains the phenomenon?
(A) Only kinetic energy of vibration increases
(B) Only potential energy of intermolecular force field increases
(C) No increase in internal energy takes place
(D) Increase in kinetic energy is balanced by decrease in potential energy
Sol. [B]
Only potential energy will increase as
$\mathrm{U}=\mathrm{K} . \mathrm{E}+\mathrm{P} . \mathrm{E}$
Q. 5 If specific heat of a substance is infinite, it means-
(A) Heat is given out
(B) Heat is taken in
(C) No change in temperature takes place whether
heat is taken in or given out
(D) All of the above

Sol. [C]
$\mathrm{Q}=\mathrm{m} . \mathrm{c} \cdot \Delta \theta \Rightarrow \mathrm{c}=\frac{\mathrm{Q}}{\mathrm{m} \cdot \Delta \theta} ;$ when $\Delta \theta=0 \Rightarrow \mathrm{c}=\infty$
Q. 62 gm ice at $0^{\circ} \mathrm{C}$ is mixed with 5 gm steam at $100^{\circ} \mathrm{C}$ in a calorimeter of negligible heat capacity. At equilibrium the calorimeter will contain -
(A) $\frac{13}{3}$ gm steam and water at $100^{\circ} \mathrm{C}$
(B) $\frac{1}{3}$ gm ice and water at $0^{\circ} \mathrm{C}$
(C)only water at temperature $67^{\circ} \mathrm{C}$
(D) none of these

Sol. [A]
Heat given by steam $=$ Heat taken by ice.
Q. 7 A copper block of mass 2 kg is heated to a temperature of $500^{\circ} \mathrm{C}$ and then placed in a large block of ice at $0^{\circ} \mathrm{C}$. What is the maximum amount of ice that can melt? The specific heat of copper is $400 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ and latent heat of fusion of ice is $3.5 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}$:
(A) $\frac{4}{3} \mathrm{~kg}$
(B) $\frac{6}{5} \mathrm{~kg}$
(C) $\frac{8}{7} \mathrm{~kg}$
(D) $\frac{10}{9} \mathrm{~kg}$
[C]
Sol. $2 \times 400 \times 500=\mathrm{m} \times 3.5 \times 10^{5}$
$4=\mathrm{m} \times 3.36 \Rightarrow \mathrm{~m}=\frac{4}{3.56} \mathrm{~kg}=\frac{40}{35}=\frac{8}{7} \mathrm{~kg}$
Q. 8 Evaporation of perspiration is an important mechanism for temperature control in warmblooded animals. What mass of water must evaporate from the surface of an 80 kg human body to cool it $1^{\circ} \mathrm{C}$? The specific heat capacity of the human body is approximately $1 \mathrm{cal} \mathrm{g}^{-1}\left({ }^{\circ} \mathrm{C}\right)^{-1}$, and the latent heat of vaporisation of water at body temperature $\left(37^{\circ} \mathrm{C}\right)$ is $577 \mathrm{cal} \mathrm{g}^{-1}$.
(A) 139 g
(B) 128 g
(C) 110 g
(D) 109 g

Sol. [A]

$$
80 \times 1000 \times 1=m \times 577
$$

$\mathrm{m}=\frac{8000}{577}=139 \mathrm{gm}$
Q. 9 A stream of photons impinging normally on a completely absorbing screen in vacuum exerts a pressure P . If I is the irradiance then -
(A) $\mathrm{P}=\frac{2 \mathrm{I}}{\mathrm{c}}$
(B) $P=I c$
(C) $P=\frac{I}{c}$
(D) $\mathrm{P}=2 \mathrm{Ic}$

Sol.[C] Pressure $=\frac{\mathrm{F}}{\mathrm{A}}=\frac{\mathrm{P} \times \mathrm{n}}{\mathrm{At}}=\frac{\mathrm{h}}{\lambda} \times \frac{\mathrm{n}}{\mathrm{At}}$
Irradiance $=$ Intensity $=I=\frac{\text { nhc }}{\lambda A t}$
Q. 105 g of steam at $100^{\circ} \mathrm{C}$ is passed into 6 g of ice at $0^{\circ} \mathrm{C}$. If the latent heats of steam and ice are 540 $\mathrm{cal} / \mathrm{g}$ and $80 \mathrm{cal} / \mathrm{g}$, then the final temperature is :
(A) $0^{\circ} \mathrm{C}$
(B) $50^{\circ} \mathrm{C}$
(C) $30^{\circ} \mathrm{C}$
(D) $100^{\circ} \mathrm{C}$
[D]
Sol. $6<3$
So, temp of mixture is $100^{\circ} \mathrm{C}$
Q. 11 The temperatures of equal masses of three different liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when A and B are mixed is $16^{\circ} \mathrm{C}$. When B and C are mixed it is $23^{\circ} \mathrm{C}$. The temperature when A and C are mixed will be -
(A) $15^{\circ} \mathrm{C}$
(B) $18.2^{\circ} \mathrm{C}$
(C) $20.25^{\circ} \mathrm{C}$
(D) $24.5^{\circ} \mathrm{C}$

Sol. $\quad[C] \mathrm{ms}_{\mathrm{A}} \times 4=\mathrm{ms}_{\mathrm{B}} \times \Rightarrow 4 \mathrm{~s}_{\mathrm{A}}=3 \mathrm{~s}_{\mathrm{B}}$
$\mathrm{ms}_{\mathrm{B}} \times 4=\mathrm{ms}_{\mathrm{C}} \times 5 \Rightarrow 4 \mathrm{~s}_{\mathrm{B}}=5 \mathrm{~s}_{\mathrm{C}}$
By (i) \& (ii)
$16 \mathrm{~s}_{\mathrm{A}}=15 \mathrm{~s}_{\mathrm{C}}$
$\mathrm{ms}_{\mathrm{A}}(\theta-12)=\mathrm{ms}_{\mathrm{C}}(28-\theta)$
By (i) \& (iv)
$\theta=20.25^{\circ} \mathrm{C}$
Q. 12 The temperature of a body on Kelvin scale is found to be x K . When it is measured by a Fahrenheit thermometer, it is found to be $x^{\circ} F$. Then x is :
(A) 301.25
(B) 574.25
(C) 313
(D) 40 .
[B]
Sol. $\frac{x-273}{373-273}=\frac{f-32}{212-32}$
$\Rightarrow x-273=\frac{5}{9}(x-32)$
$\Rightarrow 9 x-9 \times 273=5 \mathrm{x}-160 \Rightarrow \mathrm{x}=574.25$
Q. 13 A substance of mass m kg requires a power input of P watts to remains in the molten state at its melting point. When the power is turned off, the sample completely solidifies in time t sec . What is the latent heat of fusion of the substance?
(A) $\frac{\mathrm{Pm}}{\mathrm{t}}$
(B) $\frac{\mathrm{Pt}}{\mathrm{m}}$
(C) $\frac{\mathrm{m}}{\mathrm{Pt}}$
(D) $\frac{\mathrm{t}}{\mathrm{Pm}}$

Sol. [B] Heat lost in $\mathrm{t} \sec =\mathrm{mL}$ or heat lost per $\sec =\frac{\mathrm{mL}}{\mathrm{t}}$.
This must be the heat supplied for keeping the substance in molten state per sec.

$$
\therefore \frac{\mathrm{mL}}{\mathrm{t}}=\mathrm{P} \quad \text { or } \quad \mathrm{L}=\frac{\mathrm{Pt}}{\mathrm{~m}}
$$

Q. 14 Which of the curves in figure represents the relation between Celsius and Fahrenheit temperature-

(A) 1
(B) 2
(C) 3
(D) 4

Sol. [A] $\frac{\mathrm{C}}{5}=\frac{\mathrm{F}-32}{9} \Rightarrow \mathrm{C}=\left(\frac{5}{9}\right) \mathrm{F}-\frac{20}{3}$. Hence graph between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ will be a straight line with positive slope and negative intercept.
Q. 15 Two liquids A and B are at $32^{\circ} \mathrm{C}$ and $24^{\circ} \mathrm{C}$. When mixed in equal masses the temperature of the mixture is found to be $28^{\circ} \mathrm{C}$. Their specific heats are in the ratio of -
(A) $3: 2$
(B) $2: 3$
(C) $1: 1$
(D) $4: 3$

Sol. [B]
$\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=\frac{\mathrm{R}_{1}^{3}}{\mathrm{R}_{2}^{3}} \times \frac{\rho_{1}}{\rho_{2}} \times \frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}$
Q. 16 Boiling water is changing into steam. At this stage the specific heat of water is-
(A) <1
(B) ∞
(C) 1
(D) 0

Sol. [B]
$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{m} \cdot \Delta \theta} ;$ as $\Delta \theta=0$, hence c becomes $\left.\infty.\right]$
Q. 17 A 1 kg cube of ice of volume 1000 ml at temperature $0^{\circ} \mathrm{C}$ is placed in a cylinder of cross sectional area $200 \mathrm{~cm}^{2}$. If ice melts only on top surface by absorbing heat from environment at a rate 80 cal per second. The time when ice lifts from base of cylinder is -
(given density of water $1000 \mathrm{~kg} / \mathrm{m}^{3}$)
(A) 4 min .10 sec .
(B) 8 min .20 sec .
(C) will never lift
(D) more than 10 min.

Sol. [B] Ice will float when completely immersed.
Q. 18 In an energy recycling process X g of steam at $100^{\circ} \mathrm{C}$ becomes water at $100^{\circ} \mathrm{C}$ which converts Y g of ice at $0^{\circ} \mathrm{C}$ into water at $100^{\circ} \mathrm{C}$. The ratio of X / Y will be -
(A) $1 / 3$
(B) $2 / 3$
(C) 3
(D) 2

Sol. [A]
Sp. heat of vaporization $=22.68 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
$=\mathrm{X} \times 10^{-3} \times 22.68 \times 10^{5}$
$=\mathrm{Y} \times 10^{-3} \times 3.36 \times 10^{5}+\mathrm{Y} \times 10^{-3} \times 4200 \times 100$
$\therefore \frac{X}{Y}=\frac{1}{3}$
Q. 19 If a thermometer reads freezing point of water as $20^{\circ} \mathrm{C}$ and boiling point as $150^{\circ} \mathrm{C}$, how much thermometer read when the actual temperature is $60^{\circ} \mathrm{C}-$
(A) $98^{\circ} \mathrm{C}$
(B) $110^{\circ} \mathrm{C}$
(C) $40^{\circ} \mathrm{C}$
(D) $60^{\circ} \mathrm{C}$

Sol. [A] Temperature on any scale can be converted into other scale by $\frac{\mathrm{x}-\mathrm{LFP}}{\mathrm{UFP}-\mathrm{LFP}}=$ constant for all scales
$\frac{x-20}{150-20}=\frac{60}{100} \Rightarrow x=98^{\circ} \mathrm{C}$
Q. 20 Liquids A and B are at $30^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. When mixed in equal masses, the temperature of the mixture is found to be $26^{\circ} \mathrm{C}$. Their specific heats are of ratio -
(A) $3: 2$
(B) $1: 1$
(C) $2: 3$
(D) $4: 3$
-
Sol. $\quad[A] \mathrm{ms}_{\mathrm{A}}(30-26)=\mathrm{ms}_{\mathrm{B}}(26-20)$
$4 \mathrm{~s}_{\mathrm{A}}=6 \mathrm{~s}_{\mathrm{B}} \Rightarrow \frac{\mathrm{s}_{\mathrm{A}}}{\mathrm{s}_{\mathrm{B}}}=\frac{3}{2}$
Q. 21 A body A of mass 0.5 kg and specific heat 0.85 is at a temperature of $60^{\circ} \mathrm{C}$. Another body B of mass 0.3 kg and specific heat 0.9 is at a temperature of $90^{\circ} \mathrm{C}$. When they are connected to a conducting rod, heat will flow from -
(A) A to B
(B) B to A
(C) heat can't flow
(D) first from A to B, then B to A

Sol.[B] Heat flows from a body at higher temperature to a body at tower temperature. So heat will flow from B to A.
Q. 2210 gm of ice at $0^{\circ} \mathrm{C}$ is mixed with 10 gm steam at $100^{\circ} \mathrm{C}$ in a container of negligible heat capacity. Amount of steam in the mixture after some time will be $\left(\mathrm{S}_{\mathrm{w}}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}, \mathrm{L}_{\mathrm{v}}=540 \mathrm{cal} / \mathrm{gm}\right.$, $\left.\mathrm{L}_{\mathrm{f}}=80 \mathrm{cal} / \mathrm{gm}\right)-$
(A) 0 gm
(B) $\frac{20}{3} \mathrm{gm}$
(C) $\frac{10}{3} \mathrm{gm}$
(D) None of these
[B]
Sol. Amount of steam required to convert all the ice in water at $100^{\circ} \mathrm{C}$ is $\frac{10}{3} \mathrm{gm}$.
Q. 23 The ratio of densities of two substance is 2:3 and their specific heats are in the ratio $3: 4$. The ratio of their thermal capacities for unit volume is -
(A) $1: 1$
(B) $1: 2$
$\begin{array}{lll}\text { (C) } 2: 1 & \text { (D) } 8: 9\end{array}$

Sol.[B] $\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{\mathrm{m}_{1} \mathrm{~S}_{1}}{\mathrm{~m}_{2} \mathrm{~S}_{2}}=\frac{\mathrm{p}_{1} v \mathrm{~S}_{1}}{\mathrm{p}_{2} \mathrm{vS}_{2}}=\frac{2}{3} \times \frac{3}{4}=\frac{1}{2}$
Q. 24 The absolute zero temperature in Fahrenheit is -
(A) $-273^{\circ} \mathrm{F}$
(B) $-32^{\circ} \mathrm{F}$
(C) $-460^{\circ} \mathrm{F}(\mathrm{D})-132^{\circ} \mathrm{F}$

Sol. [C] $\frac{\mathrm{F}-32}{9}=\frac{\mathrm{K}-273}{5} \Rightarrow \frac{\mathrm{~F}-32}{9}=\frac{0-273}{5}$
$\Rightarrow \mathrm{F}=-459.4^{\circ} \mathrm{F}=-460^{\circ} \mathrm{F}$
Q. 25 Latent heat of ice is $80 \mathrm{cal} \mathrm{g}^{-1}$ and $\mathrm{J}=4.2 \mathrm{~J} \mathrm{cal}^{-1}$.

A boy can melt 60 gram ice in 1 minute by chewing. His power is -
(A) 4800 W
(B) 336 W
(C) 1.33 W
(D) 0.75 W
[B]
Q. 26 Heat required to convert one gram of ice at $0^{\circ} \mathrm{C}$ into steam at $100^{\circ} \mathrm{C}$ is -
(A) 100 cal
(B) 0.01 kcal
(C) 716 cal
(D) 1 kcal
[C]
Q. 2780 gm of water at $30^{\circ} \mathrm{C}$ is poured on a large block of ice at $0^{\circ} \mathrm{C}$. The mass of ice that melts is -
(A) 160 gm
(B) 80 gm
(C) 40 gm
(D) 30 gm

Sol. [D]

Heat released by water
$\Delta \mathrm{Q}=80 \times 1 \times 30=2400 \mathrm{cal}$
Mass of Ice melt

$$
\begin{align*}
& 2400=\mathrm{m} \times 80 \quad[\Delta \mathrm{Q}=\mathrm{mL}] \tag{i}\\
& \therefore \mathrm{m}=\frac{2400}{80}=30 \mathrm{gm}
\end{align*}
$$

Q. 28 One gm of ice at $0^{\circ} \mathrm{C}$ is added to 5 gm of water at $10^{\circ} \mathrm{C}$. If the latent heat is $80 \mathrm{cal} / \mathrm{gm}$, the final temperature of the mixture is -
(A) $5^{\circ} \mathrm{C}$
(C) $-5^{\circ} \mathrm{C}$
(B) $0^{\circ} \mathrm{C}$
(D) none of these
[B]
Q. 29 One gm of ice is mixed with one gm of steam. After thermal equilibrium is reached, the temperature of mixture is -
(A) $100^{\circ} \mathrm{C}$
(B) $55^{\circ} \mathrm{C}$
(C) $75^{\circ} \mathrm{C}$
(D) $0^{\circ} \mathrm{C}$
[A]

Which one of the following would raise the temperature of 20 gm of water at $30^{\circ} \mathrm{C}$ most when mixed with :
(A) 20 gm of water at $40^{\circ} \mathrm{C}$
(B) 40 gm of water at 35°
(C) 10 gm of water at $50^{\circ} \mathrm{C}$
(D) 4 gm of water at $80^{\circ} \mathrm{C}$
[D]

Sol. $\mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{~s}_{1} \mathrm{~T}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2} \mathrm{~T}_{2}}{\mathrm{~m}_{1} \mathrm{~s}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2}}$,
T is maximum, If we take 4 gm of water at $80^{\circ} \mathrm{C}$
Q. 31 When 300 J of heat is added to 25 gm of sample of a material its temperature rises from $25^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$. The thermal capacity of the sample and specific heat of the material are respectively given by -
(A) $15 \mathrm{~J} /{ }^{\circ} \mathrm{C}, 600 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
(B) $600 \mathrm{~J} /{ }^{\circ} \mathrm{C}, 15 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{kg}$
(C) $150 \mathrm{~J} /{ }^{\circ} \mathrm{C}, 60 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$
(D) none of these
Q. 3270 calories are required to raise the temperature of 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$. The amount of heat required (in calories) to raise the temperature of the same gas through the same range $\left(30^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$ at constant volume is -
(A) 30
(B) 50
(C) 70
(D) 90
[B]
Q. 33 The heat required to convert one kg of ice to water is -
(A) latent heat of vaporisation specific heat
(C) molar specific heat
(D) latent heat of fusion
[D]
Q. 34 A liquid of mass m and specific heat C is heated to a temperature 2 T . Another liquid of mass ($\mathrm{m} / 2$) and specific heat 2 C is heated to a temperature $2 T$. If these two liquids are mixed, the resulting temperature of the mixture is -
(A) $(2 / 3) \mathrm{T}$
(B) $(8 / 5) \mathrm{T}$
(C) $(3 / 5) \mathrm{T}$
(D) $(3 / 2) \mathrm{T}$
[D]
Q. $35 \quad 10 \mathrm{gm}$ of ice at $-20^{\circ} \mathrm{C}$ is added to 10 gm of water at $50^{\circ} \mathrm{C} . S_{\text {water }}=1 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}, \mathrm{S}_{\text {ice }}=0.5 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$. $\mathrm{L}_{\mathrm{f}_{\mathrm{ice}}}=80 \mathrm{cal} / \mathrm{gm}$. The resulting temperature is -
(A) $-20^{\circ} \mathrm{C}$
(B) $15^{\circ} \mathrm{C}$
(C) $0^{\circ} \mathrm{C}$
(D) $50^{\circ} \mathrm{C}$
[C]
Sol. Some ice will left in the mixture.
Q. 36 Liquids A and B are at $30^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. When mixed in equal masses, the temperature of the
mixture is found to be $26^{\circ} \mathrm{C}$. Their specific heats are in the ratio of -
(A) $3: 2$
(B) $1: 1$
(C) $2: 3$
(D) $4: 3$
[A]
Q. 37 The densities of two materials X and Y are in the ratio $1: 3$. Their specific heats are in the ratio 3 :

1. If we take same volumes of the two substances, the ratio of their thermal capacities will be :
(A) $1: 1$
(B) $1: 3$
(C) $1: 6$
(D) $1: 9$
[A]
Sol. $\quad \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{\mathrm{P}_{1} \mathrm{Vs}_{1}}{\mathrm{P}_{2} \mathrm{Vs}_{2}}=\frac{1}{3} \times \frac{3}{1}=1: 1$
Q. 38 Two tanks A and B contains water at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively, calculate the amount of water that must be taken from each tank to prepare 40 kg of water at $50^{\circ} \mathrm{C}$ -
(A) $24 \mathrm{~kg}, 16 \mathrm{~kg}$
(B) $16 \mathrm{~kg}, 24 \mathrm{~kg}$
(C) $20 \mathrm{~kg}, 20 \mathrm{~kg}$
(D) $30 \mathrm{~kg}, 10 \mathrm{~kg}$

Sol. $\quad m_{1} \times 1(50-30)=m_{2}(80-50) \quad \ldots$ (i)
$\mathrm{m}_{1}+\mathrm{m}_{2}=40 \mathrm{~kg}$
Q. 39 Two liquids are at temperature $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. When same mass of both of them is mixed, the temperature of the mixture is $32^{\circ} \mathrm{C}$. What is the ratio of the their specific heats ?
(A) $1 / 3$
(B) $2 / 3$
(C) $1 / 5$
(D) $2 / 5$
[B]
Sol. $\quad \mathrm{ms}_{\mathrm{A}}(32-20)=\mathrm{ms}_{\mathrm{B}}(40-32)$
$12 \mathrm{~s}_{\mathrm{A}}=8 \mathrm{~s}_{\mathrm{B}}$
$\frac{\mathrm{s}_{\mathrm{A}}}{\mathrm{s}_{\mathrm{B}}}=\frac{2}{3}$
Q. 40 The minimum mass of ice at $0^{\circ} \mathrm{C}$ required to just condense m grams of steam at $100^{\circ} \mathrm{C}$ is: (latent heat of steam and ice are $540 \mathrm{cal} / \mathrm{g}$ and $80 \mathrm{cal} / \mathrm{g}$ respectively)
(A) 5.4 m
(B) 7 m
(C) 3 m
(D) 6.75 m
[C]
Sol. Let m_{1} is mass of ice required
then, $\quad m_{1} \times 80+m_{1} \times 1 \times 100=540 \mathrm{~m}$

$$
180 \mathrm{~m}_{1}=540 \mathrm{~m} \Rightarrow \mathrm{~m}_{1}=3 \mathrm{~m}
$$

Q. 41 Two bodies of specific heats S_{1} and S_{2} having same heat capacities are combined to form a single composite body. Specific heat of composite body is -
(A) $\mathrm{S}_{1}+\mathrm{S}_{2}$
(B) $\frac{S_{1}+S_{2}}{2}$
(C) $\frac{2 \mathrm{~S}_{1} \mathrm{~S}_{2}}{\mathrm{~S}_{1}+\mathrm{S}_{2}}$
(D) $\frac{1}{\mathrm{~S}_{1}}+\frac{1}{\mathrm{~S}_{2}}$
[C]
Sol. $\quad m_{1} \mathrm{~s}_{1}=\mathrm{m}_{2} \mathrm{~s}_{2}$
$\mathrm{m}_{1} \mathrm{~s}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{s} \ldots$ (2)
$\mathrm{s}=\frac{\mathrm{m}_{1} \mathrm{~s}_{1}+\mathrm{m}_{2} \mathrm{~s}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{2 \mathrm{~m}_{1} \mathrm{~s}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\left(\therefore \mathrm{~m}_{1} \mathrm{~s}_{1}=\mathrm{m}_{2} \mathrm{~s}_{2}\right)$
$=\frac{2 \mathrm{~m}_{1} \mathrm{~s}_{1}}{\mathrm{~m}_{1}+\frac{\mathrm{m}_{1} \mathrm{~s}_{1}}{\mathrm{~s}_{2}}}=\frac{2 \mathrm{~s}_{1} \mathrm{~s}_{2}}{\mathrm{~s}_{1}+\mathrm{s}_{2}}$
Q. 42 The steam point and ice point of a mercury thermometer are marked as 80° and 10°. At what temperature on centigrade scale the reading of this thermometer will be 59° ?
(A) $70^{\circ} \mathrm{C}$
(B) $60^{\circ} \mathrm{C}$
(C) $80^{\circ} \mathrm{C}$
(D) None of these
[A]
Sol. $\frac{T-10}{80-10}=\frac{T_{C}}{100} ; T^{\prime}=59^{\circ}$
Q. 43

300 g of water at $25^{\circ} \mathrm{C}$ is added to 100 g of ice at $0^{\circ} \mathrm{C}$. The amount of ice melts is -
(A) 6.25 g
(B) 93.75 g
(C) 100 g
(D) none of the above
[B]
Sol. heat release by water $=\mathrm{m} \mathrm{sd} \theta$
$=300 \times 1 \times 25$
$=7500 \mathrm{Cal}$.
amount of Ice melts from this heat
$d \mathrm{Q}=\mathrm{mL}$

$$
\mathrm{m}=\frac{\mathrm{dQ}}{\mathrm{~L}}=\frac{7500}{80}=93.75 \mathrm{~g}
$$

Q. 44 A temperature difference of $5^{\circ} \mathrm{C}$ on Celsius scale corresponding to the following temperature difference in the Fahrenheit scale -
(A) 9°
(B) 41°
(C) 2.8°
(D) 15°
[A]
Sol. $\frac{\mathrm{C}}{5}=\frac{\mathrm{F}-32}{9}$
$\frac{\Delta \mathrm{C}}{5}=\frac{\Delta \mathrm{F}}{9}$
$\Delta \mathrm{F}=9 \times \frac{5}{5}=9^{\circ}$
Q. $45 \quad 250 \mathrm{gm}$ of water and equal volume of alcohol of mass 200 gm are replaced successively in the same calorimeter and cool from $60^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ in 130 sec and 67 sec respectively. If the water equivalent of calorimeter is 10 gm . The specific heat of alcohol in $\mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$ is -
(A) 1.30
(B) 0.67
(C) 0.62
(D) None of these [C]

Sol. Hint : Rate of heat loss are equal in both case.
Q. 462 kg ice at $-20^{\circ} \mathrm{C}$ is mixed with 5 kg water at $20^{\circ} \mathrm{C}$ in an insulating vessel having negligible heat capacity. Calculate the final mass of water remaining in container.
Given \quad sp. heat water $=4.186 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$
sp. heat Ice $=2.092 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$
Latent heat of fusion of ice $=334.7 \mathrm{~kJ} \mathrm{Kg}^{-1}$
(A) 7 kg
(B) 6 kg
(C) 4 kg
(D) 2 kg
[B]
Sol. Heat that can be given to ice by water
$=5 \mathrm{~kg} \times 1 \times(20-0)$
$\mathrm{Q}=100 \mathrm{kcal}$.
Energy required to raise temp of ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$
$\mathrm{E}=2 \mathrm{~kg} \times 0.5 \times(0-(-20)=20 \mathrm{kcal}$.
Heat available for $=\mathrm{Q}-\mathrm{E}$
Melting ice $=100-20=80 \mathrm{kcal}$.
$\mathrm{L}=80 \mathrm{cal} / \mathrm{gram}$
Ice that can be melted $=\frac{80 \mathrm{kcal}}{80 \mathrm{cal}}=1000 \mathrm{gram}=1$
kg.
Hence water left in container $=6 \mathrm{~kg}$
Q. 47 Water of volume 2 litre in a container is heated with a coil of 1 kW at $27^{\circ} \mathrm{C}$. The lid of the container is open and energy dissipates at rate of $160 \mathrm{~J} / \mathrm{s}$. In how much time temperature will rise from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$?
[Given specific heat of water is $4.2 \mathrm{~kJ} / \mathrm{kg}$]
(A) 8 min 20 s
(B) 6 min 2 s
(C) 7 min
(D) 14 min
[A]
Sol. Energy gained by water (in 1 s)
= energy supplied - energy lost
$=(1000 \mathrm{~J}-160 \mathrm{~J})=840 \mathrm{~J}$
Total heat required to raise the temperature of water from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$ is $\mathrm{ms} \Delta \theta$.
Hence, the required time

$$
\begin{aligned}
& \mathrm{t}=\frac{\mathrm{ms} \Delta \theta}{\text { rate by which energy is gained by water }} \\
& =\frac{2 \times\left(4.2 \times 10^{3}\right) \times 50}{840} \\
& =500 \mathrm{~s} \\
& =8 \mathrm{~min} 20 \mathrm{~s}
\end{aligned}
$$

Q. 48 One gram of ice is mixed with one gram of steam. After thermal equilibrium, the temperature of the mixture is -
(A) $0^{\circ} \mathrm{C}$
(B) $100^{\circ} \mathrm{C}$
(C) $55^{\circ} \mathrm{C}$
(D) $80^{\circ} \mathrm{C}$
[B]
Sol. Heat release when 1 gm steam convert into water at $100^{\circ} \mathrm{C}$ is $=\mathrm{mL}_{\text {cond }}$.

$$
=1 \times 536 \mathrm{cal}
$$

heat required to convert ice into water
at $100^{\circ} \mathrm{C}=\mathrm{mL}_{\text {fus. }}+\mathrm{mS}_{\mathrm{w}} \mathrm{d} \theta$

$$
=(1 \times 80)+1 \times 1 \times 100
$$

180 cal
Since 536 cal is greater than 180 cal so partial condensation will take place and the final temperature will be $100^{\circ} \mathrm{C}$
Q. 49 If x grams of steam at $100^{\circ} \mathrm{C}$ becomes water at $100^{\circ} \mathrm{C}$ which converts y grams of ice at $0^{\circ} \mathrm{C}$ into water at $100^{\circ} \mathrm{C}$, then the ratio x / y will be -
(A) $\frac{1}{3}$
(B) $\frac{27}{4}$
(C) 3
(D) $\frac{4}{27}$

Sol. [A] $\mathrm{x} \times 540=\mathrm{y} \times 80+\mathrm{y} \times 1 \times 100$
$\Rightarrow 540 \mathrm{x}=180 \mathrm{y}$ or $\frac{\mathrm{x}}{\mathrm{y}}=\frac{1}{3}$
Q. 50 Ice point and steam point on a particular scale reads 10° and 80° respectively. The temperature on ${ }^{\circ} \mathrm{F}$ scale when temperature on new scale is 45° is -
(A) $50^{\circ} \mathrm{F}$
(B) $112^{\circ} \mathrm{F}$
(C) $122^{\circ} \mathrm{F}$
(D) $138^{\circ} \mathrm{F}$
[C]
Sol. Relation between the two scales
$\frac{\mathrm{t}-10}{80-10}=\frac{\mathrm{F}-32}{180}$
$\mathrm{F}=\frac{18}{7}(\mathrm{t}-10)+32$

