PHYSICS

Q. 1 In series LCR circuit voltage drop across resistance is 8 volt and across capacitor is 12 volt. Then :
(A Voltage of the source will be leading current in the circuit
(B) Voltage drop across each element will be less than the applied voltage
(C) power factor of circuit will be $4 / 3$
(D) None of these
[D]
Sol. \quad Since, $\cos \theta=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{\mathrm{IR}}{\mathrm{IZ}}=\frac{8}{10}=\frac{4}{5}$
($\cos \theta$ can never be greater than 1)
Also, $\mathrm{Ix}_{\mathrm{C}}>\mathrm{Ix}_{\mathrm{L}} \quad \Rightarrow \mathrm{X}_{\mathrm{C}}>\mathrm{X}_{\mathrm{L}}$ Current will be leading
In a LCR circuit

$$
\mathrm{V}=\sqrt{\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2}} \quad=\sqrt{(6-12)^{2}+8^{2}}
$$

$\mathrm{V}=10$; which is less than voltage drop across capacitor .
Q. 2 A bulb is rated at $100 \mathrm{~V}, 100 \mathrm{~W}$, it can be treated as a resistor. Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb to operate the bulb at its rated power with the help of an ac source of 200 V and 50 Hz .
(A) $\frac{\pi}{\sqrt{3}} \mathrm{H}$
(B) 100 H
(C) $\frac{\sqrt{2}}{\pi} \mathrm{H}$
(D) $\frac{\sqrt{3}}{\pi} H$
[D]
Sol. From the rating of the bulb, the resistance of the bulb can be calculated.

For the full to be operated at its rated value the rms current through it should be 1A
Also,
rms $=\frac{V_{\text {rms }}}{Z} \therefore 1=\frac{200}{\sqrt{100^{2}+(2 \pi 50 L)^{2}}} \Rightarrow L=\frac{\sqrt{3}}{\pi} H$

Q. 3

A 50 Hz ac source of 20 volts is connected across R and C as shown in figure. The voltage across R is 12 volt. The voltage across C is -
(A) 8 V
(B) 16 V
(C) 10 V
(D) not possible to determine unless values of R and C are given
Sol. $\quad \mathrm{V}_{\text {source }}=\sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{C}}^{2}}$
$\therefore \mathrm{V}_{\mathrm{C}}=\sqrt{\mathrm{V}_{\text {Source }}^{2}-\mathrm{V}_{\mathrm{R}}^{2}}$
$=\sqrt{(20)^{2}-(12)^{2}}$
$=16 \mathrm{~V}$
Q. 4 The e.m.f $E=4 \cos 1000 t$ volts is applied to an $L-R$ circuit containing inductance 3 mH and resistance 4Ω. The amplitude of current is -
(A) $4 \sqrt{7} \mathrm{~A}$
(B) 1.0 A
(C) $\frac{4}{7} \mathrm{~A}$
(D) 0.8 A
[D]
Sol. $\quad \mathrm{i}_{0}=\frac{\mathrm{v}_{0}}{\mathrm{Z}}$,
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+(\omega \mathrm{L})^{2}}$
$=\sqrt{4^{2}+\left(1000 \times 3 \times 10^{-3}\right)^{2}}=5 \Omega$
$\mathrm{i}_{0}=\frac{4}{5}$
$\mathrm{i}_{0}=0.8 \mathrm{~A}$
Q. 5 A $750 \mathrm{~Hz}, 20$ volt source is connected to a resistance of 100 ohm , an inductance of 0.1803 henry and a capacitance of $10 \mu \mathrm{~F}$, all in series. The time in which the resistance (thermal capacity $=2$ joule $/{ }^{\circ} \mathrm{C}$) will get heated by $10^{\circ} \mathrm{C}$ is -
(A) 348 sec
(B) 328 sec
(C) 248 sec
(D) 228 sec

Sol. [A]

$$
\begin{aligned}
& I_{r m s}=\frac{E_{\text {rms }}}{Z}=\frac{E_{v}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}} \\
& \quad=0.023 \mathrm{amp} \\
& \therefore H=I^{2} R t=2 \times 10 \\
& \text { or }(0.023)^{2} \times 100 \times \mathrm{t}=20
\end{aligned}
$$

$$
\therefore \mathrm{t}=\frac{20}{(0.023)^{2} \times 100}=348 \mathrm{sec}
$$

Q. 6 An AC ammeter is used to measure current in a circuit. When a given direct current passes through the circuit, the AC ammeter reads 3 ampere. When another alternating current passes through the circuit, the AC ammeter reads 4 ampere. Then the reading of this ammeter if DC and AC flow through the circuit simultaneously, is -
(A) 3 amper
(B) 1 ampere
(C) 7 ampere
(D) 5 ampere

Sol. [D]
Quantity of heat liberated in the ammeter of resistance R
(i) due to direct current of 3 ampere $=[(3) 2 \mathrm{R} / \mathrm{J}]$
(ii) due to alternating current of 4 ampere

$$
=\left[(4)^{2} \mathrm{R} / \mathrm{J}\right]
$$

Total heat produced per second
$=\frac{(3)^{2} R}{J}+\frac{(4)^{2} R}{J}=\frac{25 R}{J}$
Let the equivalent alternating current be I ampere; then $\frac{\mathrm{I}^{2} \mathrm{R}}{\mathrm{J}}=\frac{25 \mathrm{R}}{\mathrm{J}}$
or $\mathrm{I}=5 \mathrm{amp}$
Q. 7 If $i_{1}=3 \sin \omega t$ and $i_{2}=4 \cos \omega t$, then i_{3} is -

(A) $5 \sin \left(\omega t+53^{\circ}\right)$
(B) $5 \sin \left(\omega t+37^{\circ}\right)$
(C) $5 \sin \left(\omega t+45^{\circ}\right)$
(D) $5 \cos \left(\omega \mathrm{t}+53^{\circ}\right)$

Sol. [A]
From Kirchoff's current law,
$\mu_{3}=i_{1}+1_{2}=3 \sin \omega t+4 \sin \left(\omega t+90^{\circ}\right)$
$=\sqrt{3^{2}+4^{2}+2(3)(4) \cos 90^{\circ}} \sin (\omega t+\phi)$
where $\tan \phi=\frac{4 \sin 90^{\circ}}{3+4 \cos 90^{\circ}}=\frac{4}{3}$

$$
\therefore \mathrm{i}_{3}=5 \sin \left(\omega \mathrm{t}+53^{\circ}\right)
$$

Q. 8 For An alternating current :
(A) r.m.s value may be equal to peak value
(B) average value may be equal to peak value
(C) r.m.s value may be equal to average value
(D) All of the above

Sol. [D]
If AC is the square wave then all these three options are possible
Q. 9 For an alternating current -
(A) r.m.s. value may be equal to peak value
(B) average value be equal to peak value
(C) r.m.s. value be equal to average value
(D) All of the above

Sol. [D]
If AC is the square wave then all these three options are possible.
Q. 10 A circuit element is placed in a closed box. At time $\mathrm{t}=0$, a constant current generator supplying a current of I amp is connected across the box. Potential diff. across the box varies according to graph as shown in the figure. The element in the box is -

(A) a resistance of 2Ω
(B) a battery of emf 6 V
(C) an inductance of 2 H
(D) a capacitance

Sol. [D]
[D]

$\mathrm{I}=\frac{\mathrm{dq}}{\mathrm{dt}}$
$q=i t+a$
$\mathrm{V}=\frac{\mathrm{q}}{\mathrm{c}}$
$\mathrm{V}=\frac{\mathrm{it}+\mathrm{a}}{\mathrm{c}}$
$\therefore \mathrm{V}$ is proportional to time.
Q. 11 A circuit element is placed in a closed box. At time $t=0$, a constant current generator supplying a current of I amp is connected across the box. Potential diff. across the box varies according to graph as shown in the figure. The element in the box is -

(A) a resistance of 2Ω
(B) a battery of emf 6 V
(C) an inductance of 2 H
(D) a capacitance

Sol. [D]
$\mathrm{I}=\frac{\mathrm{dq}}{\mathrm{dt}}$
$\mathrm{q}=\mathrm{it}+\mathrm{a}$
$\mathrm{V}=\frac{\mathrm{q}}{\mathrm{C}}$
$\mathrm{V}=\frac{\mathrm{it}+\mathrm{a}}{\mathrm{C}}$
$\therefore \mathrm{V}$ is proportional to time
Q. 12 An alternating current changes from a complete cycle in 1μ s, then the frequency in Hz will be -
(A) 10^{-6}
(B) 50
(C) 100
(D) 10^{6}
[D]
Q. 13 In an ac circuit, the current is given by $\mathrm{i}=4 \sin \left(100 \pi \mathrm{t}+30^{\circ}\right)$ ampere. The current becomes maximum first time (after $t=0$ at l ? equal to -
(A) $(1 / 200) \mathrm{sec}$
(B) $(1 / 300) \mathrm{sec}$
(C) $(1 / 50) \mathrm{sec}$
(D) None of these
[B]
Q. 14 The r.m.s. value of potential due to superposition of given two alternating potentials $\mathrm{E}_{1}=\mathrm{E}_{0} \sin \omega \mathrm{t}$ and $\mathrm{E}_{2}=\mathrm{E}_{0} \cos \omega \mathrm{t}$ will be -
(A) E_{0}
(B) $2 \mathrm{E}_{0}$
(C) $\mathrm{E}_{0} \sqrt{2}$
(D) 0
[A]
Q. 16 The current through a wire changes with time according to the equation $I=\sqrt{t}$. The correct value of the rms current within the time interval $\mathrm{t}=2$ to $\mathrm{t}=4 \mathrm{~s}$ will be -
(A) $\sqrt{3} \mathrm{~A}$
(B) 3 A
(C) 3 A
(D) None of these
[A]
Q. 17 In a circuit an A.C. current and a D. C. current are supplied together. The expression of the instantaneous current is given as

$$
\mathrm{i}=3+6 \sin \omega \mathrm{t}
$$

Then the rms value of the current is -
(A) 3
(C) $3 \sqrt{2}$
(B) 6
(D) $3 \sqrt{3}$
[D]
Q. 18 In a certain circuit $\mathrm{E}=200 \cos (314 \mathrm{t})$ and $I=\sin (314 t+\pi / 4)$. Their vector representation is

Q. 20 In an A.C. circuit, a capacitor of $1 \mu \mathrm{~F}$ value is connected to a source of frequency $1000 \mathrm{rad} / \mathrm{sec}$. The value of capacitive reactance will be-
(A) 10Ω
(B) 100Ω
(C) 1000Ω
(D) $10,000 \Omega$
[B]
Q. 21 In pure inductive circuit, the curves between frequency f and inductive reactance $1 / \mathrm{X}_{\mathrm{L}}$ is -
(A) $\frac{1}{\mathrm{x}_{\mathrm{L}}} \uparrow \longrightarrow \mathrm{f}$
(B) $\frac{1}{X_{L}}$

(D)

[C]
Q. 22 In the series circuit shown in the figure the voltmeter reading will be -

(A) 300 V
(B) 900 V
(C) 200 V
(D) 100 V
[C]
Q. 23 The series combination of resistance R and inductance L is connected to an alternating source of e.m.f. $\mathrm{e}=311 \mathrm{sin}(100 \pi \mathrm{t})$. If the value of wattless current is 0.5 A and the impedance of the circuit is 311Ω, the power factor will be -
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\frac{1}{\sqrt{5}}$
[B]
Q. 24 In the adjoining A.C. circuit the voltmeter whose reading will be zero at resonance is-

Q. 29 The frequency of an alternating current is 50 Hz , then the time to complete one cycle for current vector will be-
(A) 20 ms
(B) 50 ms
(C) 100 ms
(D) 1 s
[A]
Q. 30 The sinusoidal voltage wave changes from 0 to maximum value of 100 volt. The voltage when the phase angle is 30° will be -
(A) 70.7 volt
(B) 50 volt
(C) 109 volt
(D) -100 volt
[B]
Q. 31 If the frequency of ac is 60 Hz the time difference corresponding to a phase difference of 60° is -
(A) 60 s
(B) 1 s
(C) $1 / 60 \mathrm{~s}$
(D) $1 / 360 \mathrm{~s}$
[D]
Q. 32 An LCR series circuit with 100Ω resistance is connected to an AC source of 200 V and angular frequency 300 radians per second. When only the capacitance is removed, the current lags behind the voltage by 60°. When only the inductance is removed, the current leads the voltage by 60°. Then the current and power dissipated in LCR circuit are respectively
(A) $1 \mathrm{~A}, 200$ watt
(B) $1 \mathrm{~A}, 400$ wath
(C) $2 \mathrm{~A}, 200$ watt
(D) $2 \mathrm{~A}, 400$ watt [D]

When capacitance is removed
$\tan \theta=\frac{\omega \mathrm{L}}{\mathrm{R}}$ or $\omega \mathrm{L}=100 \tan 60^{\circ}$
when inductance is removed
$\tan \phi=\frac{1}{(\omega \mathrm{C})(\mathrm{R})}$ or $\frac{1}{\omega \mathrm{C}}=100 \tan 60^{\circ}$
So $Z=R=100 \Omega$
$\mathrm{I}=\mathrm{V} / \mathrm{R}=200 / 100=2 \mathrm{~A}$
Power $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}=4 \times 100=400 \mathrm{~W}$
A 100 volt AC source of frequency 500 Hz is connected to a $\mathrm{L}-\mathrm{C}-\mathrm{R}$ circuit with $\mathrm{L}=8.1 \mathrm{mH}$, $\mathrm{C}=12.5 \mu \mathrm{~F}$ and $\mathrm{R}=10 \Omega$, all connected in series. The potential difference across the resistance is -
(A) 100 V
(B) 200 V
(C) 300 V
(D) 400 V

Sol. $\quad \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$
Q. 39 In a series A.C. circuit $X_{L}=300 \Omega, X_{C}=200 \Omega$ and $\mathrm{R}=100 \Omega$ the impedance of circuit is -
(A) 600Ω
(B) 200Ω
(C) 141Ω
(D) None of these
[C]
Q. 40 When a material is inserted inside the inductor, current increases then the nature of material is -

Fig.
(A) ferromagnetic
(B) paramagnetic
(C) diamagnetic
(D) ferrimagnetic

$$
\begin{aligned}
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+(\mathrm{L} \omega)^{2}}=\sqrt{(50)^{2}+(0.2 \times 250)^{2}} \\
& \\
& =\sqrt{2500+(50)^{2}}=50 \sqrt{2} \\
& \therefore \mathrm{P}=\left(\frac{200}{\sqrt{2}}\right)^{2} \times \frac{50}{50 \sqrt{2}} \times \frac{1}{50 \sqrt{2}} \\
& \\
& =200 \text { watt }
\end{aligned}
$$

Q. 42 Rms value of the saw-tooth voltage of peak value V_{0} as shown in figure -

(A) $\frac{\mathrm{V}_{0}}{2}$
(B) $\frac{\mathrm{V}_{0}}{\sqrt{2}}$
(C)
(D) $\frac{\mathrm{V}_{0}}{\sqrt{3}}$
[D]

Sol.
Sol. L should decrease so that z
$=\sqrt{\mathrm{X}_{\mathrm{L}}^{2}+\mathrm{R}^{2}}$ decreases.

$$
v_{\text {rms }}=\sqrt{\frac{\int_{0}^{T} v^{2} d t}{T}}=\sqrt{\frac{\int_{0}^{T}\left(-v_{0}+\frac{2 v_{0} t}{T}\right)^{2} d t}{T}}
$$

Q. 41 In the given circuit the average power developed is -

$V=200 \sin (250 t)$ volt
(A)

(B) 200 watt
(C) $150 \sqrt{2}$ watt
(D) $200 \sqrt{2}$ watt
[B]
Sol. $\quad \mathrm{P}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \cos \phi$

$$
\begin{aligned}
P & =V_{\text {rms }} \frac{V_{\text {rms }}}{Z} \frac{R}{Z} \\
& =\frac{V_{\text {rms }}^{2}}{Z^{2}} R
\end{aligned}
$$

Q. 43 The voltage E and the current I in an instrument are represented by the equations:

$$
\begin{aligned}
& E=2 \cos \omega t \text { Volt } \\
& I=2 \sin \omega t \text { Amp. }
\end{aligned}
$$

The power dissipated in the instrument will be-
(A) Zero
(B) 1.0 W
(C) 4 W
(D) 2.0 W
Q. 44 The ratio of apparent power and average power in an A.C. circuit is equal to -
(A) Reciprocal of power factor
(B) Efficiency
(C) Power factor
(D) Form factor
Q. 45 An ac circuit resonates at a frequency of 10 kHz . If its frequency is increased to 11 kHz , then :
(A) Impedance will increase by 1.1 times
(B) Impedance will remain unchanged
(C) Impedance will increase and become inductive
(D) Impedance will increase and become capacitive
[C]
Q. 46 In a series LCR circuit with an AC source $\mathrm{R}=300 \Omega, \mathrm{C}=20 \mu \mathrm{~F}, \mathrm{~L}=1 \mathrm{H}, \mathrm{E}_{\mathrm{rms}}=50 \mathrm{~V}$ and $v=\frac{50}{\pi} \mathrm{~Hz}$. The potential difference across the capacitor is -
(A) 50 V
(B) $\frac{50}{\sqrt{2}} \mathrm{~V}$
(C) 40 V
(D) $\frac{40}{\sqrt{2}} \mathrm{~V}$
[A]
Sol. $\quad X_{C}=\frac{1}{\mathrm{C} \omega}=\frac{1}{20 \times 10^{-6} \times 2 \pi \times \frac{50}{\pi}}=500 \Omega$
$\mathrm{X}_{\mathrm{L}}=\mathrm{L} \omega=\mathrm{L} \times 2 \pi \times \frac{50}{\pi}=100 \Omega$
$I_{r m s}=\frac{E_{r m s}}{2}=\frac{50}{\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}}$

$$
=\frac{50}{\sqrt{(300)^{2}+(500-100)^{2}}}
$$

$$
=\frac{50}{500}=\frac{1}{10} \mathrm{~A}
$$

$\mathrm{V}_{\mathrm{C}}=\mathrm{I}_{\mathrm{rms}} \times \mathrm{X}_{\mathrm{C}}$

$$
=\frac{1}{10} \times 500 \mathrm{~V}
$$

$$
=50 \mathrm{~V}
$$

Q. 47 A $60 \mathrm{~W} / 120 \mathrm{~V}$ bulb is connected to a $240 / 60 \mathrm{~Hz}$ supply with an inductance in series. Find the value of imductance so that bulb gets correct poltage -
(A) $\frac{2.3}{\pi} \mathrm{H}$
(B) $2 \sqrt{3} \mathrm{H}$
(C) $\pi \mathrm{H}$
(D) $\frac{2 \sqrt{3}}{\pi} \mathrm{H}$
[D]
Sol. $\quad \mathrm{R}=\frac{(120)^{2}}{60}=240 \Omega$ we require $\mathrm{i}=0.5 \mathrm{~A}$
or $|\mathrm{Z}|=480 \Omega$
$\mathrm{X}_{\mathrm{L}}=\sqrt{480^{2}-240^{2}}=240 \sqrt{3} \Omega$

$$
\mathrm{L}=\frac{240 \sqrt{3}}{60 \times 2 \pi}=\frac{2 \cdot \sqrt{3}}{\pi} \mathrm{H}
$$

Q. 48 An inductor $10 \Omega / 60^{\circ}$ is connected to a 5Ω resistance in series. Find net impedance -

Fig.
(A) 15Ω
(B) 12Ω
(C) 13.2Ω
(D) 18Ω
[C]
Sol. $\quad 10=\sqrt{\mathrm{r}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}$ and $\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{r}}=\tan 60$
$10=\sqrt{\mathrm{r}^{2}+(\mathrm{r} \sqrt{3})^{2}}$ or $\mathrm{r}=5 \Omega, \mathrm{X}_{\mathrm{L}}=5 \sqrt{3} \Omega$
$Z=\sqrt{(5+5)^{2}+(5+\sqrt{3})^{2}}=\sqrt{175}=13.2 \Omega$
$\tan \phi=\frac{X_{L}}{R+r}=\frac{5 \sqrt{3}}{10}$
or $\phi=\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$.
Q. 49 We have two cables of copper of same length. In one, only one wire of cross-section area A and in second ten wires each of cross-section area $\mathrm{A} / 10$ are present. When A.C. and D.C. flow in it. Choose the correct cable for better efficiency-
(A) Only one wire for D.C. and the other for A.C
(B) Only one wire for A.C. and the other for D.C.
(C) Any wire for D.C. but only multy-wire cable for A.C.
(D) Only one wire for D.C. and only multy-wire packet for A.C.
[C]
Q. 50 A unknown circuit element X is connected in series with a resistor R to an ac source. If $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AC}}$ (rms value), then X is-

(A) Pure resistor
(B) Pure capacitor
(C) Pure conductor
(D) Combination of conductor \& capacitor at resonance
Sol. At resonance
$\mathrm{V}_{\mathrm{BC}}=0$
$\therefore \mathrm{V}_{\mathrm{AB}}$ become equal to V_{AC}

