THE P-BLOCK ELEMENTS

CHEMISTRY

Single Correct Answer Type

1.	Nitric oxide is:		
	a) Acidic towards litmus		
	b) Basic towards litmus		
	c) Neutral towards litmus		\wedge
	d) Amphoteric		
2.	The last member of inert gas family is:		
	a) Krypton b) Radon	c) Xenon	d) Argon
3.	Helium –oxygen mixture is used by deep by sea dive	•	, , ,
	a) Helium is much less soluble in blood than nitroge	n	0 1
	b) Nitrogen is much less soluble in blood than helium	n	
	c) Due to high pressure deep under the sea nitrogen	and oxygen react to give p	oisonous nitric oxide
	d) Nitrogen is highly soluble in water		
4.	Among the fluorides below, the one which does not	exist is	
	a) CF ₄ b) HeF ₄	c) XeF ₄	d) SF ₄
5.	The percentage of nitrogen in air remains almost co	nstant due to:	
	a) The fixation of nitrogen		
	b) The activity of symbiotic bacteria		
	c) The effect of lightening and bacteria		
	d) The nitrogen cycle in nature	, ,	
6.	The metal which does not form ammonium nitrate	by reaction with dilute nitr	ic acid is
	a) Al b) Fe	c) Pb	d) Mg
7.	The following acids have been arranged in the order	of decreasing acid strengt	h. Identify the correct order
	ClOH(I) BrOH(II) IOH(III)		
	a) $I > II > III$ b) $II > I > III$	c) $III > II > I$	d) $I > III > II$
8.	H ₂ S exhibits:		
	a) Oxidizing properties b) Reducing properties	c) Basic properties	d) None of these
9.	Liquid oxygen is:		
	a) Colourless b) Pale yellow	c) Pale blue	d) Dark blue
10.			
	a) Birkeland and Eyde's process		
	b) Haber's process		
	c) Contact's process		
	d) Fischer-Tropsch's process		
11.	The decreasing values of bond angles from NH ₃ (10)	7°)to SbH ₃ (91°) down the	group 15 of the periodic
	table is due to		
	a) Increasing <i>bp-bp</i> repulsion	b) Increasing <i>p</i> - orbital cl	•
	c) Decreasing <i>lp-bp</i> repulsion	d) Decreasing electroneg	ativity
12.	8		N 0
	a) NH ₄ Cl b) NH ₄ NO ₃	c) $(NH_4)_2CO_3$	d) NH ₄ OH
13.	Which of the following statement is wrong?	A # 6.3	1 11
	a) The stability of hydrides increases from NH ₃ to B	1H ₃ in group 15 of the perio	odic table
	b) Nitrogen cannot form $d\pi - p\pi$ bond		
	c) Single N—N bond is weaker than the single P—P	bond	
	d) N ₂ O ₄ has two resonance structure		

14.	Which is monoatomic?			
	a) Oxygen	b) Fluorine	c) Neon	d) Nitrogen
15.	Which gas can be collecte	d over water?		
	a) NH ₃	b) N ₂	c) SO ₂	d) HCl
16.	In the reaction,	2	, <u>-</u>	
	·	\rightarrow 2KOH + O ₂ + A, the co	mnound Ais:	
	a) KIO ₃	b) I ₂ O ₅	c) HIO ₃	d) I ₂
17.	, ,	, = 0	, ,	u) 12
17.	In the reaction, MnO_4^- +	$I^- \xrightarrow{Alkaline \text{ solution}} [X]; [X] i$	S:	
	a) 10_3^-	b) IO ₄	c) I ₂	d) IO ⁻
18.	Number of hydroxyl grou	ps present in pyrosulphuri	c acid is:	Y
	a) 3	b) 4	c) 2	d) 1
19.	Which is not an acid salt?			A
	a) $Na_4P_2O_7$	b) NaH ₂ PO ₃	c) NaH ₂ PO ₂	d) $Na_3HP_2O_6$
20.	In fisher-Ringe's method	of separation of noble gas n	nixture from air, Is u	sed.
	a) 90% CaC ₂ +10%CaCl ₂		b) Coconut charcoal	
	c) Soda lime +potash solu	ution	d) 90% CaCO ₃ +10% urea	
21.		es two gases on reacting wi	th conc. H_2SO_4 is:	Y
	a) Si	b) C	c) S	d) P
22.	•	ed to dry KNO_3 , brown fum		s are of:
	a) SO ₂	b) SO ₃	c) N ₂ 0	d) NO ₂
23	· -	um hydroxide fluorine reac	, =	w) 1.0 ₂
20.	a) NaF and OF ₂	b) NaF + O_3	c) O_2 and O_3	d) $NaF + O_2$
24		ion energy is minimum in:		uj Nai 1 02
44.		b) Cl ₂	c) Br ₂	4) I
25	a) F ₂	, -	2 2	d) I ₂
25.		not the characteristic of int	ernalogen compounds?	
	a) They are more reactive			
		e but none of them is explo	sive	
	c) They are covalent in na			
		points and are highly volati	le	
26.	Which is soluble in water			
	a) AgCl	b) AgBr	c) AgI	d) AgF
27.		ECl_3 , where $E = B$, P, As, or		
	a) $B > P = As = Bi$	b) B > P > As > Bi	c) $B < P = As = Bi$	d) $B < P < As < Bi$
28.	Colour of iodine solution	can be discharged by shaki	-	of:
	a) H ₂ O ₂	b) Sodium sulphide	c) Sodium thiosulphate	d) Sodium sulphate
29.	Sulphuric acid has great a	ffinity for water because		
	a) It hydrolyses the acid		b) It decomposes the acid	
	c) Acid forms hydrates w	ith water	d) Acid decomposes wate	r
30.	Major credit for the disco	very of noble gases is given	to:	
	a) Cavendish	b) Ramsay	c) Rayleigh	d) None of these
31.	In XeF ₂ , XeF ₄ , XeF ₆ , the nu	umber of lone pairs of Xe is	respectively	
	a) 3, 2, 1	b) 1,2,3	c) 2, 3, 1	d) 4, 1, 2
32.	Which of the following ha	s pp-dp bonding?		
	a) NO ₃			
	b) SO ₃ ²⁻			
	c) BO ₃ ³⁻			
	d) CO ₃ ²⁻			
33.	, ,	ucad to by SO		
JJ.	Acidified iodates are redu		c) Iodine	d) None of these
24	a) Iodites Anhydrone is:	b) Iodide	c) Iodine	d) None of these
54	Annvarone is:			

	a) HClO ₄				
	b) HClO ₃				
	c) Anhydrous magnesium perchlorate				
	d) Anhydrous calcium perchlorate				
35.	In Kipp's apparatus, H ₂ S is prepared:				
	a) Continuously b) By FeS + conc. H ₂	SO_4 c) By FeS + dil. H_2SO_4	d) By Fe + dil. H_2SO_4		
36.	The mixture of conc. HCl and HNO_3 in the ratio	3: 1 contains:			
	a) ClO ₂ b) NOCl	c) NCl ₃	d) N_2O_4		
37.	Pure nitrogen can be prepared from				
	a) NH ₄ OH b) NH ₄ NO ₂	c) $Ba(NO_3)_2$	d) Ca ₃ N ₂		
38.	Fluorine can be free from HF by passing the mi	xture through:			
	a) H ₂ O b) An alkaline soluti	on c) Conc. H ₂ SO ₄	d) NaF		
39.	Fluorine is usually obtained from:		A . Y		
	a) Fluorspar b) Fluorapatite	c) Cryolite	d) Tetrafluoromethane		
40.	Mark the strongest acid				
	a) HI b) HBr	c) HCl	d) HF		
41.	The most basic hydride is				
	a) NH ₃ b) PH ₃	c) AsH ₃	d) SbH ₃		
42.	Cl ₂ is used in the extraction of:		, , ,		
	a) Pt b) Au	c) Both (a) and (b)	d) None of these		
43.	A hydride of nitrogen having lowest oxidation in		,		
	a) NH ₃ b) N ₃ H	c) N ₂ H ₄	d) N_2H_2		
44.	Chlorine acts as a bleaching agent only in prese	_	, , ,		
	a) Dry air b) Moisture	c) Sunlight	d) Pure oxygen		
45.	Swimming pools are disinfected by bubbling th		, ,		
	a) Br ₂ b) Cl ₂	c) 0 ₂ enriched air	d) N ₂		
46.	A glass tube containing molten antimony break				
	a) Expansion b) Exothermic react	,			
47.	Oxygen is paramagnetic. The unpaired electron	·	,		
	a) Antibonding orbitals b) Bonding orbitals	c) <i>p</i> – orbitals	d) <i>f-</i> orbitals		
48.	By warming a paste of bleaching powder with a	- -	.,,		
	a) H ₂ b) N ₂	c) N ₂ O ₃	d) N_2O_4		
49.	H ₃ PO ₂ has the name and basicity respectively:	<i>J</i>) <u> </u>		
	a) Phosphorous acid and two				
	b) Hypophosphorous acid and two				
	c) Hypophosphorous acid and one				
	d) Hypophosphoric acid and two				
50.	The correct order of acidic nature is:				
	a) $Cl_2O_7 > SO_2 > P_4O_{10}$ b) $CO_2 > N_2O_5 > SO_6$	O_3 c) $Na_2O > MgO > Al_2O_3$	d) $K_2 O > CaO > MgO$		
51.	The van der Waal's forces are the greatest in:		, _		
	a) Neon b) Argon	c) Krypton	d) Xenon		
52.	Starch paper moistened with KI solution turns		,		
	a) Iodine liberation				
	b) Oxygen liberation				
	c) Alkali formation				
	d) Ozone reacts with litmus paper				
53.	Which one is correct statement?				
	a) Basicity of H ₃ PO ₄ and H ₃ PO ₃ is 3 and 3 respec	ctively			
	b) Acidity of H ₃ PO ₄ and H ₃ PO ₃ is 3 and 3 respec				
	c) Acidity of H ₃ PO ₄ and H ₃ PO ₃ is 3 and 2respec	•			
	d) Basicity of H ₃ PO ₄ and H ₃ PO ₃ is 3 and 2 respe				

54.	Ammonia water is a good a) Is weakly basic	l cleaning agent because it:		
	b) Emulsifies grease			
	c) Leaves no residue who	an wined out		
	d) All are true	en wipeu out		
55	A clathrate is defined as a			
33.	a) Cage compound		c) Mixture	d) Solid solution
5 6		b) Liquid crystal	c) mixture	a) solia solution
30.	The acid employed for et a) HCl	b) HClO ₄	o) HE	d) Agua ragia
5 7	,	, .	c) HF	d) Aqua regia
57.	H ₂ SO ₄ reacts with sugar		a) A gulphonating agent	d) Nana of those
ΓO	a) A dehydrating agent	b) An oxidizing agent	c) A sulphonating agent	d) None of these
58.	Ordinary oxygen contain		-) Ait C 016 017 -	d) O-15 018 : t
5 0	a) Only O ¹⁶ isotope	b) Only O ¹⁷ isotope	c) A mixture of 0^{16} , 0^{17} a	ind) Unly U ²³ Isotope
59.	Metal halide which is inse		.) IZD .	D C CI
	a) AgF	b) AgI	c) KBr	d) CaCl ₂
60.	Phosphine is:	15.4.11		
	a) Basic	b) Acidic	c) Amphoteric	d) Neutral
61.	Antimony dissolves in aq			<i>,</i> , , , , , , , , , , , , , , , , , ,
	a) SbCl ₃	b) Sb ₂ O ₅	c) SbCl ₅	d) $Sb(NO_3)_3$
62.	.	olourless solid is prepared		
	a) Heating NH ₄ NO ₂ with		b) Dehydrating HNO ₃ with	
	c) Dehydrating HNO ₃ with		d) Heating a mixture of H	INO_2 and $Ca(NO_3)_2$
63.	Ammonium compound n	ot used as a fertilizer is:		
	a) $(NH_4)_2SO_4$			
	b) $(NH_4)_2CO_3$	4		
	c) NH_4NO_3			
	d) CAN(calcium ammoni	um nitrate)		
64.	At ordinary temperature	and pressure, among halo	gens, chlorine is a gas, broi	mine is a liquid and iodine is
	a solid. This is because:			
	a) The specific heats are	in the order $Cl_2 > Br_2 > I_2$		
	b) Intermolecular forces	among molecules of chlori	ne are the weakest and tho	se of iodine the strongest
	c) The order of density is	$\operatorname{sI}_2 > \operatorname{Br}_2 > \operatorname{Cl}_2$		
	d) The order of stability i	$s I_2 > Br_2 > Cl_2$		
65.	Sulphur forms the chlori	$des S_2Cl_2$ and SCl_2 . The equ	uivalent mass of Sulphur in	SCl ₂ is 16 g/mol. Therefore,
	the equivalent mass of Su	llphur in S ₂ Cl ₂ is:		
	a) 32 g/mol	b) 16 g/mol	c) 64 g/mol	d) 8 g/mol
66.	Javelle water is:			
	a) Aqueous solution of N	aOCl		
	b) Used as bleaching age	nt		
	c) Both (a) and (b)			
	d) None of the above			
67.	The strongest acid is:			
	a) H ₃ PO ₂	b) H ₃ PO ₃	c) $H_4P_2O_7$	d) H ₃ PO ₄
68.	Orthophosphoric acid on	heating gives:		
	a) Phosphine			
	b) Phosphorus pentoxide			
	c) Phosphorus acid			
	d) Metaphosphoric acid			
69.	Which oxide is more acid	lic?		
	a) Al ₂ O ₃	b) Na ₂ O	c) MgO	d) CaO
	= =	· =	. =	

70.	$SO_2 + H_2S \rightarrow \text{product, the}$	final product is		
	a) H_2SO_3	b) H ₂ SO ₄	c) $H_2S_2O_3$	d) $H_2O + S$
71.	Which of the following is	not oxidised by 0 ₃ ?		
	a) KI	b) FeSO ₄	c) KMnO ₄	d) K_2MnO_4
72.	The gas used for inflating	the tyres of aeroplanes is:		
	a) H ₂	b) He	c) N ₂	d) Ar
73.	F ₂ is formed by the reacti	on of K ₂ MnF ₆ with:		
	a) SbF ₅	b) MnF ₃	c) KrF ₆	d) MnF ₄
74.	Which statement is not co	rrect for nitrogen?		
	a) It has a small size		b) It does not readily read	et with 0_2
	c) It is a typical non-meta	l	d) d -orbitals are available	e for bonding
75.	Which is not oxdised by M	InO_2 ?		
	a) F	b) Cl	c) I ₂	d) I
76.	Passing H ₂ S gas through	nitric acid produces:		
	a) Rhombic sulphur	b) Monoclinic sulphur	c) Colloidal sulphur	d) Plastic sulphur
77.	Schweitzer's reagent is:			V
	a) $[Cu(NH_3)_4]SO_4$	b) $[Ag(NH_3)_2]Cl$	c) [Cu(NH ₃) ₂]Cl	d) K_4 Fe(CN) ₆
78.	Industrial name of H ₂ S ₂ O ₇	is	.10	
	a) Pyrosulphuric acid	b) Marshall's acid	c) Oleum	d) All of these
79.	Which does not give oxyg	en on heating?		
	a) HgO	b) KMnO ₄	c) KClO ₃	d) $(NH_4)_2Cr_2O_7$
80.	Which of the following pa	irs is obtained on heating a	ammonium dichromate?	
	a) N ₂ and H ₂ O	b) N ₂ O and H ₂ O	c) NO ₂ and H ₂ O	d) NO and NO ₂
81.	Which reaction is not feas	sible?	$G_{i}X_{i}Y_{i}$	
	a) $2KI + Br_2 \rightarrow 2KBr + I_2$	4	b) $2KBr + I_2 \rightarrow 2KI + Br_2$	2
	c) $2KBr + Cl_2 \rightarrow 2KCl + l$	Br ₂	d) $2H_2O + 2F_2 \rightarrow 4HF +$	0_2
82.	The conjugate base of H ₂ I	PO ₄ is:		
	a) HPO ₄ ²⁻	b) P ₂ O ₅	c) H ₃ PO ₄	d) PO ₄ ³⁻
83.	Reaction of solid KMnO ₄ v	with conc. H ₂ SO ₄ produces	manganese heptoxide (Mn	₂ 0 ₇) in:
	a) Solution state	b) Solid state	c) Fine powder	d) None of these
84.	Caro's acid is:			
	a) $H_2S_2O_3$	b) H ₂ S ₂ O ₈	c) H ₂ SO ₃	d) H_2SO_5
85.	Which of the following is	not oxidized by MnO ₂ ?		
	a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
86.	Which is an ozonide?	Y		
	a) KO ₃	b) NH ₄ O ₃	c) Cr_2O_3	d) Both (a) and (b)
87.	Which statement is false f	or ozone?		
	a) It is obtained by silent	electric discharge on oxyge	en	
	b) It is an endothermic co	mpound		
	c) It can be obtained by the	ne action of ultraviolet rays	s on oxygen	
	d) It cannot be regarded a	s an allotrope of oxygen		
88.	Which is true with regard	to the properties of PH ₃ ?		
	a) PH ₃ is insoluble in wat	er	b) PH ₃ has fishy smell	
	c) PH ₃ is neutral towards	litmus	d) PH ₃ is not much stable	
89.	Nitric acid is generally lig	ht yellow due to the presen	nce of:	
	> ****	b) NO	c) NO ₂	d) N_2O_5
	a) NH ₃	6) 110	-) 2	, = 5
90.		osphere cause the formation	_	<i>J</i> 2 3
90.		•	_	d) H ₂ O ₂
90. 91.	The lightning bolts in atm	osphere cause the formation	on of:	

	b) Trigonal bipyramid		
	c) Octahedral		
	d) Pentagonal bipyramid		
92.	What may be expected to happen, when phosphir	ne gas is mixed with chlorir	ne gas?
	a) PCl ₅ and HCl are formed and the mixture cools	down	_
	b) PH ₃ · Cl ₂ is formed with warming up		
	c) The mixture cools down only		
	d) PH ₃ and HCl are formed and the mixture warm	าร บท	
93.	$HClO_4 + P_2O_5 \rightarrow (A)$ and (B) A and B are	P	
,	a) HClO ₃ , H ₃ PO ₄ b) Cl ₂ O ₆ + HPO ₃	c) ClO_2 , H_2PO_4	d) Cl ₂ O ₇ HPO ₂
94	The formula of zinc phosphite is:	c) dio 2, 1121 04	d) Cl ₂ O ₇ , HPO ₃
<i>)</i> 1.	a) ZnHPO ₃ b) Zn(PO ₄) ₃	c) $Zn_2(PO_4)_3$	d) $\operatorname{Zn}_3(\operatorname{PO}_3)_2$
95	The bonds present in N_2O_5 are:	c) Zn ₂ (1 O ₄) ₃	u) Zli3(1 03)2
95.	a) Only ionic		4
	b) Only covalent		0 7
	c) Covalent and coordinate		
0.0	d) Covalent and ionic	1 - C(1 - 1 - 14)	
96.	Uranium isotopes are usually separated by using		
o =	a) F ₂ b) Cl ₂	c) Br ₂	d) I ₂
97.	Which of the following halogen oxides is ionic?	170	D 010
	a) I ₄ O ₉ b) I ₂ O ₅	c) BrO ₂	d) ClO ₃
98.	Which gas is used to improve the atmosphere of o	_	
	a) H ₂ b) O ₂	c) 0 ₃	d) N_2O
99.	Which of the following is responsible for depletio		
	a) Polyhalogens b) Ferrocene	c) Fullerenes	d) Freons
100.	H ₂ SO ₄ and H ₂ SO ₃ can be distinguished by the add	dition of:	
	a) Litmus solution b) FeCl ₃ solution	c) NaHSO ₄ solution	d) Magnesium powder
101.	$NaNH_2 + N_2O \longrightarrow X + NaOH + NH_3$ what is the X?		
	a) NaN ₂ b) Na ₃ N	c) NaN ₃	d) None of these
102.	Ripening of fruits can be carried out in presence of	of	
	a) Na ₂ SO ₄ b) NaCl	c) CaC ₂	d) CaCl ₂
103.	Which is most thermodynamically stable allotrop	ic form of phosphorus?	
	a) Red b) White	c) Black	d) Yellow
104.	F ₂ is isolated by:	•	
	a) Electrolysis of HF		
	b) Electrolysis of KHF ₂		
	c) Electrolysis of Na ₃ AlF ₆		
	d) Electrolysis of NaF/HF		
105.	Observe the following statements		
	I. Bleaching powder is used in the preparation of	chloroform.	
	II. Bleaching powder decomposes in the presence		
~	III. Aqueous KHF ₂ is used in the preparation of flu		
	The correct combination is		
	a) I,II and III are correct	b) Only II is correct	
	c) Only I and III are correct	d) Only I and II are cor	rect
106	Which form of P shows chemiluminescence?	aj omy rana mare cor	Teet
100.	a) White P b) Black P	c) Red P	d) None of these
107	Which of the following oxyacids of phosphorus is	•	•
10/.		= =	
100	a) H ₃ PO ₂ b) H ₃ PO ₃	c) H ₃ PO ₄	d) $H_4P_2O_6$
TAR.	Radon is a noble gas. Its radioactivity is used in the		d) Throadd
	a) Typhoid b) Cancer	c) Cough and cold	d) Thyroid

109	Which of the following	statement is true?		
	a) H ₃ PO ₃ is a stronger a	cid than H ₂ SO ₃		
	b) In aqueous medium	HF is a stronger acid than H(Cl	
	c) HClO ₄ is a weaker ac	id than HClO ₃		
	d) HNO ₃ is a stronger a	cid than HNO ₂		
110.	Number of lone pairs o	f electrons on Xe atoms in Xe	eF ₂ ,XeF ₄ and XeO ₃ molecule	e are respectively
	a) 3, 2 and 1	b) 4, 3 and 2	c) 2, 3 and 1	d) 3, 2 and 0
111.	. When a lead storage ba	ttery is discharged:		
	a) SO ₂ is evolved			
	b) Lead sulphate is con	sumed		\sim
	c) Lead is formed			
	d) H ₂ SO ₄ is consumed			
112.	On heating silver nitrat	e strongly is obtained fi	nally:	
	a) NO ₂	b) 0 ₂	c) Silver metal	d) All
113.	Pure phosphine is not	combustible while impure p	phosphine is combustible, t	this combustibility is due to
	the presence of:			V
	a) P ₂ H ₄	b) N ₂	c) PH ₅	d) P_2O_5
114.	In the contact process of	of H ₂ SO ₄ , SO ₃ dissolves in su	alphuric acid to give:	
	a) Permonosulphuric a			
	b) Thiosulphuric acid			
	c) Pyrosulphuric acid			
	d) Perdisulphuric acid			
115.	When chlorine water is	exposed to sunlight, O ₂ is li	berated. Hence:	
	a) Hydrogen has little a	iffinity to O_2	$G_{\lambda}X^{\gamma}$	
	b) Hydrogen has more	affinity to 0_2		
	c) Hydrogen has more	affinity to chlorine		
	d) It is a reducing agent		Y	
116.	The number of electron	ns in a halogen in its outern	nost orbit in comparison w	ith corresponding noble gas
	is:			
	a) One electron less	b) One electron more	c) Two electrons less	d) Two electrons more
117.	The deep blue colour p	roduced on adding excess of	ammonia to copper sulpha	te solution is due to the
	presence of:			
	a) Cu ²⁺	b) $[Cu(NH_3)_2]^{2+}$	c) $[Cu(NH_3)_4]^{2+}$	d) $[Cu(NH_3)_6]^{2+}$
118.	Which of the following	oxo-acids of chlorine is forn	ned on shaking chlorine wa	ter with freshly precipitated
	yellow oxide of mercur	y?		
	a) HClO ₃	b) HClO ₂	c) HClO	d) HClO ₄
119.	Phosphorus is present	in bones as:		
	a) $Ca_3(PO_4)_2$	b) FePO ₄	c) Ca ₃ P ₂	d) Cu ₃ P ₂
120.	Paramagnetic molecule	e is:		
	a) Oxygen	b) Nitrogen	c) Hydrogen	d) Chlorine
121.	Which is a poison?			
	a) Hg ₂ Cl ₂	b) As_2O_3	c) NaHCO ₃	d) NaCl
122	Which of the following	is a tribasic acid?		
	a) H ₃ PO ₄	b) HPO ₃	c) $H_4P_2O_7$	d) $H_4p_2O_6$
123.	Presence of sulphide io	n cannot be confirmed by:		
	a) BaCl ₂	b) (CH ₃ COO) ₂ Pb	c) Sodium nitroprusside	d) Dil. H ₂ SO ₄
124.	End product of the hyd	rolysis of XeF ₆ is		
	a) XeF ₄ O	b) XeF ₂ O ₂	c) XeO ₃	d) XeO ₃
125.	In PO_4^{3-} ion, the formal	charge on each oxygen atom	n and P—0 bond order resp	ectively are:
	a) -0.75, 1.25	b) -3, 1.25	c) -0.75, 1.0	d) -0.75, 0.6

126	The lightest, non-inflamm	able gas is:		
	a) H ₂	b) He	c) N ₂	d) Ar
127	Which of the following ch	loride is water insoluble?		
	a) HCl	b) AgCl	c) Both a and b	d) None of the above
128	Which radical can bring a	bout the highest oxidation	state of a transition metal?	
	a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
129	Excess of PCl ₅ reacts with	conc. H ₂ SO ₄ giving		
	a) Chlorosulphonic acid		b) Thionyl chloride	
	c) Sulphuryl chloride		d) Sulphurous acid	
130	Conc. H ₂ SO ₄ displaces HC	l from sodium chloride bec	ause:	κv
	a) Conc. H ₂ SO ₄ is stronge	r than HCl		4
	b) HCl is a gas whereas H ₂			
		uble in water than chloride	es	A . Y
	= =	ble in water than chlorides		
131	Which of the following ha	logens can replace others f	orm their salt solutions?	
	a) I ₂	b) Br ₂	c) F ₂	d) Cl ₂
132		100° d 0_2 is passed over the	e reaction rate increases:	
	a) Fe + Mo	b) $ZnO + Cr_2O_3$	c) $V_2 O_5$	d) zymase
133	Metal reacts with Sulphur	= -		
	a) Sulphide	b) Sulphite	c) Sulphate	d) Thiosulphate
134	•	graphite having metallic lu	, ,	, ,
	a) I ₂	b) Si	c) Cl ₂	d) Br ₂
135	Ozone turns benzidine pa	per:		· -
	a) Violet	b) Brown	c) Blue	d) Red
136	•	ined by the interaction of C	l ₂ with a:	,
	a) Dilute solution of Ca(O	Hb) Concentrated solution	oc) Dry CaO	d) Dry slaked lime
137	Which statement is incorr	•		
	a) Chlorine can bleach a v	vet piece of cloth		
	b) Iodine stain can be rem	noved by hypo solution		
	c) Bromine can be prepar	ed from carnallite		
	d) Bromine is liberated w	hen iodine is passed throug	gh an acidified KBr solution	l
138	The bond Br—Cl is:	(X)		
	a) Polar	b) Non-polar	c) True covalent	d) Coordinate
139	Which element is extra	cted commercially by the	electrolysis of an aqueo	us solutions of one of its
	compounds?			
	a) Sodium	b) Aluminium	c) Chlorine	d) Bromine
140	$\rm CN^-$ ion and $\rm N_2$ are isoele	ctronic but in contrast to C	N^- , N_2 is chemically inert b	ecause of:
	a) Low bond energy			
	b) Absence of bond polari	ty		
	c) Unsymmetrical electro	n distribution		
	d) Presence of more num	ber of electrons in bonding	orbitals	
141	Which of the following ga	ses exists more abundantly	in nature than the others?	
	a) Helium	b) Neon	c) Argon	d) Krypton
142	Which inert gas has the hi	ighest boiling point?		
	a) Xe	b) Kr	c) Ar	d) Ne
143	Which characteristic is no	ot correct about H ₂ SO ₄ ?		
	a) Reducing agent	b) Oxidizing agent	c) Sulphonating agent	d) Highly viscous
144	XeF ₄ exists as under or	dinary atmospheric condit	ions.	
	a) Solid	b) Liquid	c) Gas	d) None of these
145	A gas, that relights glowing	ig splinter, is		
	a) H ₂	b) O ₂	c) N ₂	d) NO ₂

146.	The percentage of p -chara	acter in the orbitals forming	g P-P bond in P ₄ is	
	a) 25	b) 33	c) 50	d) 75
147.	Fermy's salt is:			
	a) HF	b) KHF ₂	c) NaCl	d) KClO ₃
148.	Which among the followir	ng factors is the most impor	rtant in making fluorine the	e strongest oxidizing agent?
	a) Electron affinity		b) Ionisation enthalpy	
	c) Hydration enthalpy		d) Bond dissociation ener	gy
149.	Halogens are:			
	a) Gases under ordinary c	conditions		
	b) Electronegative in natu	ıre		
	c) Fuming liquids			
	d) The gases found in atm	osphere		
150.	Hydrogen sulphide reacts	s with lead acetate forming	g a black compound whicl	n reacts with H_2O_2 to form
	another compound. The c	olour of the compound is:		
	a) Black	b) Yellow	c) White	d) pink
		orm KHF $_2$. The compound c		V ·
	a) K^+ , F^- and H^+	b) K^+ , F^- and HF	c) K^+ and $[HF_2]^-$	d) [KHF] ⁺ and F ₂
152.	Which compound does no	ot give NH ₃ on heating?		
	a) $(NH_4)_2SO_4$	b) $(NH_4)_2CO_3$	c) NH ₄ NO ₂	d) NH ₄ Cl
153.	When conc. H ₂ SO ₄ is disti	lled with P_4O_{10} , the produc	t formed is:	
	a) SO ₂	b) S ₂ O ₄	c) SO ₃	d) S_2O_3
154.	Radon was discovered by:	:		
	a) Dorn	b) Ramsay	c) Rayleigh	d) None of these
155.	The general formula of hy	pophosphorous acid is:		
	O	O	O	O
	a) H—P—OH	b) H—P—OH	c) HO—P—OH	d) HO—P—COOH
		b) II I OII		
	H	ÓН	ÓН	ÓН
156.	Ammonia on catalytic oxid	dation gives an oxide from	which nitric acid is obtaine	d. The oxide is:
	a) NO	b) NO ₂	c) N_2O_3	d) N_2O_5
157.	Which oxide reacts with b			
	, -	b) CaO	c) ZnO	d) N_2O_5
158.	0_2 is denser than air and	therefore it is collected in:		
	a) Spirit	b) H ₂ 0	c) Mercury	d) Kerosene
159.	The structural formula of	hypophosphorus acid is		
	0	O	O	0
	a) P	b) P	c) P	d) P
	Н Н ОН	H OH OH	H L OH	HO OH OH
160	Which compound is prepa	ared by the following reacti	11	OH
100.	Ni	1	on:	
1	$\frac{\text{Xe} + 2\text{F}_2}{\text{(1:5 volume ratio)}} \frac{\text{Ni vess}}{673\text{K}, 5-6}$	5 atm		
5	a) XeF ₂	b) XeF ₆	c) XeF ₄	d) XeOF ₂
161.	Which one of the following	g oxides of nitrogen dimeri	ses into a colourless solid ,	liquid on cooling?
	a) N ₂ O	b) NO	c) N_2O_3	d) NO ₂
162.	Which ion cannot be prec	ipitated from water?		
	a) Cl ⁻	b) NO ₃	c) SO_4^{2-}	d) All of these
163.	The correct order of solub	oility in water for He, Ne, Ar	r, Kr, Xe is	
	a) $Xe > Kr > Ar > Ne > B$	He	b) $Ar > Ne > He > Kr > 3$	Xe
	c) He $>$ Ne $>$ Ar $>$ Kr $>$ 2	Xe	d) Ne $>$ Ar $>$ Kr $>$ He $>$ 3	Xe
164	Ozone acts as:			

165.	a) An oxidizing agent Correct order of reactivity	b) A reducing agent	c) Bleaching agent	d) All of these
1.00	a) I ₂ >Br ₂ >Cl ₂ >F ₂	b) $Br_2>I_2>Cl_2>F_2$	c) $Cl_2>Br_2>I_2>F_2$	d) $F_2>Cl_2>Br_2>I_2$
166.		ution of KClO ₃ with iodine		J) WCI
1.67	a) KIO ₃	b) KClO ₄	c) KIO ₄	d) KCl
167.		s treated with carbon dioxi	ae:	
	a) Chlorine is evolved	mad		
	b) Calcium chloride is forc) No reaction occurs	meu		
	d) It absorbs the gas			
168	,	operties does not correspo	nd to the order?	
100.	HI < HBr < HCl < HF	operties does not correspo	nd to the order.	
	a) Thermal stability	b) Reducing power	c) Ionic character	d) Dipole moment
169	. ClO_2 is an anhydride of:	b) Reducing power	c) forme character	d) Dipole moment
10)	a) Chlorous acid (HClO ₂)			
	b) Chloric acid (HClO ₃)			
	c) Mixed anhydride of HC	lO ₂ and HClO ₂		
	d) None of the above	3	4/3	
170.	. Red P can be obtained by	white P by		
	=	st in an inert atmosphere	b) Distilling it in an inert a	atmosphere
	c) Dissolving it in CS ₂ and	-	d) Melting it and pouring	•
171.	. In the halogen group chlo	rine is a gas, bromine is a l	iquid and iodine exists as s	solid crystals. Then the next
	halogen astatine (At) wou			
	a) Solid at room temperat	ture		
	b) Having higher electron	egativity		
	c) Solid with higher IP)	
	d) Least atomic size			
172.	. A solution of chlorine in w	vater contains:		
	a) HOCl only			
	b) HCl only			
	c) HCl and HOCl			
450	d) HCl, HOCl and chlorine			
1/3.	. Helium gives a characteris	7	a) Wallana linaa	d) C l:
171	a) Orange and red lines		c) Yellow lines	d) Green lines
1/4.	a) Is monoatomic	lo not posses virbrational e	b) Is chemically inert	
	c) Has completely filled sl	halls	d) Is diamagnetic	
175	. H_2S is far more volatile th		u) is diamagnetic	
1/3.		electronegative than oxygen	n atom	
		lectronegative than sulphu		
	c) H ₂ O has bond angle of	_	· utom	
	d) Hydrogen is loosely bo			
176.	Holme's signals can be giv	-		
	a) $CaC_2 + CaCO_3$	b) CaC ₂ + CaCN ₂	c) $CaC_2 + Ca_3P_2$	d) $Ca_3P_2 + CaCN_2$
177.	. Atomicity of sulphur in rh		, 2 3 2	, , , ,
	a) 8	b) 2	c) 4	d) 6
178.	=	hrough concentrated solut		=
	a) KClO ₄	b) KClO ₃	c) KClO ₂	d) KClO
179.	. The dipole moment of NF	3 is less than NH ₃ because:		
	a) F is more reactive than			
	b) NH ₂ forms associated r	nolecules		

c) The resultant of the bond polarity is less		
d) The resultant of the individual polarities is oppose	ed by the polarity of lone p	air
180. Which of the following oxides of nitrogen is the anhy	dride of nitrous acid?	
a) NO b) N ₂ O ₄	c) N_2O_3	d) N_2O_5
181. Aqueous solution of Na ₂ S ₂ O ₃ on reaction with Cl ₂ gives	ves:	
a) Na ₂ S ₄ O ₆ b) NaHSO ₄	c) NaCl	d) NaOH
182. Halogen molecules are:	,	
a) Monoatomic and form X_2^{2-} ions		
b) Diatomic and form <i>X</i> ⁻ ions		
c) Diatomic and form X_2^{2-} ions		
d) Monoatomic and form X_2^- ions		
183. Least stable oxide of chlorine is		
a) Cl ₂ O b) ClO ₂	c) Cl ₂ O ₇	d) ClO ₃
184. Bromine water is decolourised by:	C) G12O7	uj cios
a) SO_2 b) C_2H_4	c) C ₂ H ₂	d) All of these
185. Fluorine reacts with water to give	C) G2112	uj Ali oi tilese
S	c) HF and O ₂	d) HF and O ₃
a) HF, O ₂ and O ₃ b) HF and F ₂	, -	•
186. The electronic configurations of four elements are	given below. Which elem	ent does not belong to the
same family as others?) for 10 2 o 5	1) [4
a) [Xe]4 f^{10} , $5d^{10}$, $6s^2$ b) [Kr]4 d^{10} , $5s^2$	c) [Ne] $3s^2$, $3p^5$	d) [Ar] $3d^{10}$, $4s^2$
187. Among the noble gases, xenon reacts with fluorine to	_	
a) It has highest ionisation energy	b) It has lowest ionisation	=-
c) Its size is largest	d) It is the most readily a	vailable gas
188. Which of the following is most volatile?		
a) HF b) HCl	c) HBr	d) HI
189. Which phosphorus reacts with KOH solution to prod		
a) White phosphorus b) Red phosphorus	c) Both a and b	d) None of these
190. In the treatment of leukaemia is used.		
a) White phosphorus b) Red phosphorus	c) Scarlet phosphorus	d) P ³² isotope
191. Argon was discovered by:		
a) Cavendish b) Lavoisier	c) Rayleigh	d) Thomson
192. Among K, Ca, Fe and Zn, the element which can form	n more than one binary con	npound with chlorine is
a) Fe b) Zn	c) K	d) Ca
193. Red P is used in making:		
a) Air freshners		
b) Red plastics		
c) Red dyes for plastics		
d) Safety match-striking surface		
194. On heating $(NH_4)_2Cr_2O_7$, the gas evolved is 'X'. The s	ame gas is obtained by hea	ating:
a) NH_4NO_2 b) NH_4NO_3	c) $Mg_3N_2 + H_2O$	d) $Na_2O_2 + H_2O$
195. Ozone with KI solution produces		
a) IO ₃ b) I ₂	c) Cl ₂	d) HI
196. Ammonium nitrate decomposes on heating into	-	-
a) Ammonia and nitric acid	b) Nitrous oxide and water	er
c) Nitrogen, hydrogen and ozone	d) Nitric oxide, nitrogen o	
197. What is a product obtained in the reaction of HgCl ₂ a		y 0
a) (CN) ₂	b) Hg(CN)Cl	
c) $Hg[Hg(CN)_2Cl_2]$	d) Addition compound H	$gCl_2 \cdot Hg(CN)_2$
198. In order to prevent the hot metal filament from getti	-	_
bulb is filled with:	<u> </u>	

400	a) CH ₄	b) An inert gas	c) CO ₂	d) Cl ₂		
199	199. Which of the following is incorrect? a) O_2 is weaker oxidant that) O_2 has larger bond lengte) Both O_2 and O_3 are parad) O_2 is linear and O_3 are i					
000			gtc) Both O_2 and O_3 are particles	rad) O_2 is linear and O_3 are i		
200). Which of the following ha) H 0 0	D II G O		
004	a) $H_2S_2O_6$	b) H ₂ S ₂ O ₈	c) $H_2S_2O_3$	d) $H_2S_4O_6$		
201	. Which of the following is) A	1)		
000	a) N	b) Bi	c) As	d) p		
202	2. The weakest acid is	13.40) 1101	Dun		
200	a) HI	b) HBr	c) HCl	d) HF		
203	B. In the preparation of H_2S	=		\wedge		
	a) SO ₂ is dissolved in H ₂ S	-		4 , 7		
	b) SO ₂ is dissolved in wat					
	c) SO ₃ is dissolved in con-			4		
20	d) SO ₃ is dissolved in dilu			4		
204	. Which element is most me		a) Austina aura	JV Dith		
205	a) Phosphorus	b) Arsenic	c) Antimony	d) Bismuth		
205	5. Concentrated nitric acid r	=	2 11010	D HOIO		
20/	a) HI	b) HOI	c) H0I0 ₂	d) HOIO ₃		
206	b. Electron affinity for a nob	ie gas is approximately equ	iai to:			
	a) That of halogens					
	b) Zero					
	c) That of oxygen family					
205	d) That of nitrogen family		A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
207	7. Ozonization of water is ca	irried out to remove:				
	a) Bacterial impurities					
	b) Bad tastec) Excess of chlorine pres	ont				
	d) Calcium and magnesium					
200	B. Welding of magnesium ca	-	o of			
200	a) Xe	b) He	c) Kr	d) Ne		
200). Which noble gas is not for		C) Ki	u) NC		
20.	a) Rn	b) Kr	c) Ne	d) Ar		
210). Which of the following is:		c) Ne	u) m		
21(a) KI	b) FeSO ₄	c) KMnO ₄	d) K ₂ MnO ₄		
211	The m. p. and b. p. is lowe		c) mino4	uj 1121·11104		
4 11	a) He	b) Ne	c) Xe	d) Ar		
212	2. The reaction of the type 2			u) III		
	a) Fluorine or chlorine	112 0	b) Chlorine only			
	c) Chlorine and bromine	only	d) F, Cl, Br, all			
213	3. Chlorine, bromine and iod	_		hle hecause:		
	a) They are non-metals		8. o up or the persoune tu			
~~	b) They are electronegative	ve				
		ns in the outermost shells	of their atoms			
-	d) They are generally univ					
214	I. Nitric acid whether dilute					
	a) Reacts with Al to give I					
	b) Reacts with Al to give N	-				
	c) Reacts with Al to give N	=				
	d) Hardly affects Al					
215	5. NH ₃ can be collected by the	ne displacement of:				
	a) Mercury	b) Water	c) Brine	d) Conc. H ₂ SO ₄		

216	. The number of \emph{p} -electrons	s in bromine atom is:		
	a) 17	b) 7	c) 15	d) 12
217	. Which species has the larg	gest dipole moment?		
	a) NH ₃	b) PH ₃	c) AsH ₃	d) SbH ₃
218	. A gas reacts with CaO, but	not withNaHCO ₃ . The gas	is:	
	a) CO ₂	b) Cl ₂	c) N ₂	d) 0 ₂
219	. Nitrogen can be purified f	rom the impurities of oxide	es of nitrogen and ammonia	by passing through:
	a) conc. HCl			
	b) Alkaline solution of pyr	ogallol		
	c) A solution of K ₂ Cr ₂ O ₇ a	icidified with H ₂ SO ₄		(V)
	d) A solution of KOH (aq.)			
220	. Which statement is correc	et?		
	a) Noble gases are not fou	nd in nature		
	b) Some compounds of no	ble gas elements are know	n	
	c) Atmospheric air is free	from noble gases		
	d) None of the above			
221	. Calcium phosphide is:		. (4	Y
	a) Ca ₃ P	b) Ca ₃ P ₂	c) Ca ₂ P ₃	d) CaP ₂
222	. Which of the following ine	ert gas liquefies easily?		
	a) He	b) Kr	c) Ne	d) Ar
223	. Compounds containing co	ordinate bonds is:		
	a) 0 ₃	b) SO ₃	c) H_2SO_4	d) All of these
224				ence of chloroform a violet
				and a colourless solution is
		ns the presence of the follo		
	a) Iodide	b) Bromide	c) Chloride	d) Iodide and bromide
225	· Which forms strong $p\pi$ – π			
	a) N	b) As	c) P	d) Bi
226		number of bond pairs and	lone pairs of electrons pres	ent respectively are:
	a) 2, 6			
	b) 2, 8			
	c) 2, 10			
	d) 2, 9	X Y		
227	. Nitric acid may be kept in			
	a) Ag	b) Sn	c) Pb	d) Al
228		4Cl is almost half the expec	ted value because it:	
	a) Is salt of a strong acid			
	b) Sublimes on heating			
	c) Dissociates completely			
220	d) None of the above	C45.1 1		
229	. The least stable hydride o	= - -	-) A-II	ווים וג
220	a) NH ₃	b) PH ₃	c) AsH ₃	d) BiH ₃
230	·	e in the formation of chloro		d) Augon lama
221	a) Sodium lamp	b) Neon lamp	c) Mercury lamp	d) Argon lamp
231	. Which of the following is a		c) VoE	d) V ₀ O
72 7	a) XeOF ₄ . The most abundant eleme	b) XeOF ₂	c) XeF ₂	d) XeO ₃
4 34	a) 0	b) Si	c) H	d) C
233	. Blasting of TNT is done by	•	C) 11	u) C
	a) NH ₄ Cl	b) NH ₄ NO ₃	c) NH ₄ NO ₂	d) $(NH_4)_2SO_4$
	~, ····4 ··	~, 4 3	~, ····4···	~, \····4/2004

234.	234. Man dies, when nitrous oxide is inhaled in large quantities because it:					
	a) Is poisonous					
	b) Causes laughing hysteria					
	c) Decomposes haemoglo					
	d) Reacts with organic tis					
235.	The chemical used for coo	= =				
	a) NH ₄ Cl	b) NH ₄ OH	c) liquid NH ₃	d) CO ₂		
236.	SO ₂ can act as strong oxid	5 5	N. 1. 1. 1.	D. M. C.I.		
	a) Acidic medium	b) Basic medium	c) Neutral medium	d) None of these		
237.	Nitrogen gas is absorbed	-) II .			
222	a) Aluminium carbide	b) Calcium carbide	c) Ferrous sulphate	d) Calcium hydroxide		
238.		\rightarrow ClO ₃ ⁻ + 2Cl ⁻ (aq.) is ar	example of :	A Y		
	a) Oxidation reaction					
	b) Reduction reaction			4		
	c) Disproportionation rea			0 1		
220	d) Decomposition reaction					
239.	liberates oxygen from		3.E. 4.4	D.I.		
240	a) P	b) Na	c) F ₂	ra) I ₂		
240.	=	netal is soluble in excess of		וא פי		
241	a) Cr	b) Cu	c) Fe	d) Bi		
241.		6] is the basis for the form	ation of xenon fluorides. If	is is decause		
	a) O_2 and Xe have compared to O_2 and O_3					
	b) Both O ₂ and Xe are gas		^ \ \			
	c) O_2 and Xe have compared.	rable ionisation energies	(A)			
242	d) Both a and c	M II hand angle in the h	vedwiden MII. madvelly bee	nomes alegan to 00° an asing		
		//	yariaes MH ₃ gradually bed	comes closer to 90° on going		
	from N to Sb. This shows					
	a) The basic strength of the		_			
		s are used for <i>M</i> —H bondin	g			
	c) The bond energies of /		from the control atom			
242		trons become farther apart	from the central atom			
243.	Sequence of acidic charac					
	a) $SO_2 > CO_2 > CO > N_2$					
	b) $SO_2 > N_2O_5 > CO > C$					
	c) $N_2O_5 > SO_2 > CO > C$	-				
	d) $N_2O_5 > SO_2 > CO_2 > C$		2000			
244.		red by heating in a furr	iace.			
	a) Bone-ash, sodium chlo					
	b) Bone-ash, silica and co					
	c) Bone-ash, silica and lin					
245	d) Bone-ash, coke and lim					
	Which oxide of nitrogen i	=	a) N O	4) NO		
	a) N ₂ 0	b) NO ₂	c) N_2O_5	d) NO		
	In KI solution, I ₂ readily (a) I ⁻		a) I/I	9) M		
		b) KI ₂	c) KI ₃	d) KI ₂		
44/.	Consider the following co Sulphur dioxide	mpounus				
	Hydrogen peroxide					
	Ozone					
		s identify those that can act	as bleaching agent			
	a) 1 and 3	s identify those that can act	= =	d) 1.2 and 2		
	aj I aliu 3	b) 2 and 3	c) 1 and 2	d) 1,2 and 3		

	-	s of sulphur differ in:		
-		b) Molecular weight	c) Chemical properties	d) Chemical structure
	atomic element of n			
-	muth	b) Phosphorus	c) Antimony	d) None of these
		t of all detected in solar chro		
a) He		b) Neon	c) Argon	d) Krypton
	cid used in lead stor	•		
-	ric acid	b) Sulphuric acid	c) Hydrochloric acid	d) Phosphoric acid
_	gen used in the prep	aration of insecticides is:		
a) I ₂		b) Cl ₂	c) Br ₂	d) F ₂
	h halogen acid is a li	quid?		
a) HF		b) HCl	c) HBr	d) HI
254. Halor				
-	= =	b) $C_2F_4Br_2$	c) CCl ₃ F	d) CF ₃ Br
		act with conc. HNO_3 , becaus	se:	
=		l into xanthoproteins		
-	iter is removed by t	he acid	, (4	Y
=	n gets burnt			
=	rocellulose is forme			
256. The p	air of species having	g identical shape for molecu		
a) Xe	F_2, IF_2^-	b) BF ₃ , NH ₃	c) CF ₄ , SF ₄	d) PCl ₅ , ICl ₅
257. Whic	n of the following pa	irs are correctly matched?		
	ber process		Manufacture of ammonia	
	blanc process		Manufacture of sulphuri	
	keland -Eyed proce	SS	Manufacture of nitric aci	
	lvay process	using the codes given below	Manufacture of sodium o	arbonate
	and 4	b) 1,2,3,and 4	c) 1,2and 4	d) 1,3and 4
-		possess distorted geometry		uj 1,5aliu 4
a) Cl-		b) IF ₃	c) IF ₅	d) IF ₇
-		from which one of the com	· ·	uj II 7
a) KC	-	b) CaCl ₂	c) CCl ₄	d) KClO ₃
,		family has the highest cate	•	u) Kolo3
a) 0x		b) Sulphur	c) Selenium	d) Tellurium
-		ed over CuO gas evolved is	c) Scienium	u) renurium
a) N ₂	i ileateu ivii3 is pass	b) N ₂ 0	c) HNO ₃	d) NO ₂
-	oble gas used in the	preparation of first noble g	•	u) NO2
a) Xe	obie gas useu ili ule	b) He	c) Cr	d) Rn
-	is used extensively a	•	c) G	u) Kii
	hydrating agent	b) Catalytic agent	c) Reducing agent	d) Preservative
4	en differs from sulpl		c) Reducing agent	u) rieseivative
	otropy	iui iii;		
	rmation of ions			
		n the outermost orbit		
=		i the outermost orbit		
-	ture of hydrides	lt would give CO with het a	and dil U CO, and also doso	lourises Pr. wester?
		lt would give SO ₂ with hot a		
a) Na		b) NaHSO ₄	c) Na ₂ SO ₄	d) Na ₂ S
	-	chromate, the gas evolved i		d) Nitria avida
a) 0x		b) Ammonia ne following fertilizers incre	c) Nitrogen	d) Nitric oxide
a) KN		ic ronowing let unzers incre	lases the actually 01 8011:	

	b) NH ₂ CONH ₂		
	c) (NH ₄) ₂ SO ₄		
	d) Superphosphate of lime		
268.	The halogen showing maximum coordination number	er of sulphur in SX,, halides	sis
_00.	a) Cl b) Br	c) F	d) I
269	BCl ₃ is a planar molecule whereas NCl ₃ is pyramidal	•	u) I
20).	a) BCl ₃ has no lone pair of electrons but NCl ₃ has a lo		
	b) B—Cl bond is more polar than N—Cl bond	one pair or electrons	
	c) Nitrogen atom is smaller than boron atom		
	d) N—Cl bond is more covalent than B—Cl bond		
270.	The bond angle in Cl_2O molecule is:		
_, 0.	a) 180° b) 105°	c) 90°	d) 111°
271	Mark the wrong statement. Halogens are all coloured	•	w) 111
2,1	a) This is due to absorption of visible light by their n		xcitation of outer electrons
	to higher energy levels	iorecures resulting in the ex	actuation of outer electrons
	b) The small F ₂ molecules absorb high energy violet	radiation and annear vello	WAZ
	c) Large I ₂ molecule absorb low energy yellow and g		
	d) The excitation energy required by the small fluor		
	atom		equired by the large reame
272.	Which reaction can be used to prepare phosphoric a	cid?	
,,	a) $P_2O_3 + H_2O \xrightarrow{20^{\circ}C}$ b) $P_2O_3 + H_2O \xrightarrow{80^{\circ}C}$	2 E°C	d) P + conc. $HNO_3 \rightarrow$
252		c) $P_2O_3 + H_2O \xrightarrow{25 \text{ C}}$	$u_j = v_j $
2/3.	Which gas is filled in electric bulbs/tubes?		J) II.
274	a) O_2 b) N_2	c) Ar	d) He
2/4.	Iodine is formed when potassium iodide reacts with		J) N - CO
275	a) ZnSO ₄ b) CuSO ₄	c) $(NH_4)_2SO_4$	d) Na ₂ SO ₄
2/5.	The interatomic distances in H_2 and Cl_2 molecules a	re 74 and 198 pm respecti	very. The bond length of HCI
	is: a) 272 pm b) 136 pm	a) 124 nm	d) 240 nm
276		c) 124 pm	d) 248 pm
270.	Mg on heating to redness in an atmosphere of N ₂ and		** *
277	a) NH ₃ b) H ₂ The bleaching action of bleaching powder is due to	c) N ₂	d) 0 ₂
2//.	a) Nascent hydrogen b) Nascent oxygen	c) Nascent chlorine	d) None of these
270		c) Nascent chiornie	u) None of these
2/0.	In the preparation of O ₂ from KClO ₃ , MnO ₂ acts as: a) Activator b) Catalyst	c) Ovidizing agent	d) Dehydrating agent
270	Which noble gas has highest and least polarisability	c) Oxidizing agent	u) Denyurating agent
2/9.	a) He, Xe b) Ne, Kr	c) Kr, Ne	d) Xe, He
280	Nitrolim, a nitrogeneous fertilizer, is:	c) Ki, Nc	uj Ac, IIc
200.	a) Ca ₃ H ₂ b) Ca(CN) ₂	c) CaCN ₂	d) CaCN ₂ + C
281	H_2S cannot be dried by passing over conc. H_2SO_4 because	-	uj caciv ₂ i c
201	a) The acid oxidises it	lause.	
	b) The acid combines with H ₂ S to form a salt		
	c) Both form complex		
	d) It dissolves in the acid		
282	The chemical name of bleaching powder is:		
202.	a) Calcium chloro hypochlorite		
	b) Calcium hypochlorite		
	c) Calcium chlorate		
	d) Calcium perchlorate		
283	The following are some statements related to VA gro	oup hydrides	
20.	I. Reducing property Increases from NH ₃ to BiH ₃	1 3:	

	II. I endency to donate lone pair decreases from NH ₃ to BiH ₃					
	III. Thermal stability of hydrides decreases from NH ₃ to BiH ₃					
	IV. Bond angle of hydrides	decreases from NH ₃ to BiH	3			
	The correct statements are	e				
	a) I, II, III and IV	b) I, III and IV	c) I, II, IV	d) I and IV		
284.	The deficiency of iodine in	diet causes				
	a) Rickets	b) Night blindness	c) Beri -beri	d) Goitre		
285.	The number of $P - O - P$	oonds in cyclic metaphospl	noric acid is	•		
	a) Zero	b) Three	c) Two	d) Four		
286.	Which noble gas is more s	oluble in water?				
	a) He	b) Ar	c) Ne	d) Xe		
287.	An important method of fi	•				
	a) Fischer-Tropsch's proce	-		A Y		
	b) Haber's process					
	c) Frasch's process					
	d) Solvay's process					
200	Which statement about no	phla gasas is not correct?				
200.	a) Xe forms XeF ₆	ible gases is flut cullect:	4 4			
	b) Ar is used in electric bu	lha				
	=					
	c) Kr is obtained during ra	-				
200	d) He has the lowest b. p. a					
289.	Noble gases are group of e	elements which exhibit ver				
	a) High chemical activity		b) Much paramagnetic pro	operties		
	c) Minimum electronegati	-	d) Low chemical activity			
290.	On passing H ₂ S through ac		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	a) FeCl ₂	b) $Fe_2(SO_4)_3$	c) FeS	d) FeSO ₄		
291.	$HPO_3 + H_2O \xrightarrow{Heat}$? The pro-	oduct is:				
	a) $H_4P_2O_7$	b) H ₃ PO ₃	c) H ₃ PO ₄	d) P ₂ O ₅		
292.	Ozone reacts with:		<i>y y y y y y y y y y</i>	, <u> </u>		
	a) C ₂ H ₄	b) C ₂ H ₂	c) C ₆ H ₆	d) All of these		
293.	The inert gas abundantly f		7 0 0	,		
	a) Xe	b) Kr	c) He	d) Ar		
294.	When SO ₂ gas is passed th		•	-,		
	a) The solution becomes c					
	b) A white precipitate is fo	·				
	c) No change takes place	, inica				
		rless and a white precipita	ite is formed			
295	The reaction of chlorine w					
2) 3.	a) COCl ₂	b) CO ₂ Cl ₂	c) HOCl	d) H ₂ Cl ₂ O ₂		
206	The mixture of noble gases	, <u> </u>	c) Hou	u) 11201202		
290.						
	a) Ramsay-Rayleigh's first					
	b) Ramsay-Rayleigh's seco					
	c) Fischer and Ringe's met					
207	d) Dewar's coconut charco	-				
297.	The boiling points of halog		=			
	=	-	on leading to higher stabili	ty		
		s due to increase in electro	= -			
		ncrease with increase in nu	mber of electrons per mol	e		
	d) None of the above					
298.	NCl ₃ on hydrolysis yields:					

	and NOCl	b) NO and HCl	c) NH ₃ and HOCl	d) N ₂ O and NH ₃
	strongest oxidizing a			
a) H ₃	=	b) HNO ₃	c) H ₃ PO ₃	d) HNO ₂
	•	trengths of hydrogen halid	es is:	
=	F < HCl < HBr < HI			
-	Cl < HI < HBr < HF			
-	Cl < HBr < HI < HF			
-	one of these			
		soluble in water due to		
=	pole-dipole interacti		b) Dipole-induced dipole	interaction
=	duced dipole-induce	=	d) Hydrogen bonding	
	ation state exhibited			
a) +0		b) +4	c) 0	d) All of these
	volatile nature of H ₂	•		
	drogen bonding	b) Van der Waals' forces		d) None of these
		dium nitroprusside solutio	on:	
-	eautiful violet colour	-	, (4	Y
=	complex [Fe(CN) ₅ NC	_		
=	ne complex Na ₄ [Fe(C	N) ₅ NOS] is formed		
=	l of the above			
305. The 1				
	$2SO_2 + O_2 + 2H_2$	$_2O \rightarrow 2H_2SO_4$		
	example of :			
	nthesis of H ₂ SO ₄			
	nalysis of H ₂ SO ₄			
=	splacement reaction			
•	ouble decomposition			
_	=		turpentine respectively are	
, ,	, CH ₄	b) 0 ₂ , 0 ₃	c) SO_2 , CH_4	d) $N_2 O_1 O_3$
	e turns tetramethyl l			
a) Gr		b) Violet	c) Red	d) Black
			O_4 on his cotton shirt, after	a while, the splashed parts
		. This is happened because	-	
_	ehydrates the cotton	with burning	b) Causes the cotton reac	
-	eats up the cotton	, *	d) Removes the elements	of water from cotton
=	regia is a mixture of:			
=	$HCl + HNO_3$	b) $3HNO_3 + HCl$	c) $H_3PO_4 + H_2SO_4$	d) $HCl + CH_3COOH$
	oond angle in H ₂ S is:			V0
-)9°28'	b) 104°51'	c) 120°	d) 92.5°
		phuric acid by contact proc	-	
	lter dust particles		b) Remove impurities	_
	onvert SO ₂ to SO ₃		d) Test the presence of du	ist particles
	oxide insoluble in wa			
a) Te	-	b) SO ₂	c) PoO ₂	d) SeO ₂
			the preparation of chlorine	??
	$HCl + O_2 \longrightarrow 2H_2O +$			
	$VaCl + 2H_2O \rightarrow 2Nac$			
=	$nO_2 + 4HCl \rightarrow MnCl$	=		
-	$Mg_2OCl_2 + O_2 \longrightarrow 4M$	$gO + 2Cl_2$		
314 The o	geometry of XeF _c is			

	a) Tetrahedral		b) Pentagonal bipyramida	al
	c) Octahedral		d) Square planar	
315.	Chlorine acts as a bleachir	ng agent only is presence of	f	
	a) Dry air	b) Moisture	c) Sunlight	d) Pure oxygen
316.	Which one of the following	g pentafluorides cannot be	formed?	
	a) PF ₅	b) AsF ₅	c) SbF ₅	d) BiF ₅
317.	SO ₂ oxidises:			
	a) Mg	b) $K_2Cr_2O_7$	c) KMnO ₄	d) All of these
318.	Which of the following has	s highest proton affinity?		
	a) NH ₃	b) PH ₃	c) H ₂ O	d) H ₂ S
319.	Nuclear fusion produces:		-	
	a) Argon	b) Deuterium	c) Helium	d) Krypton
320.		c acid when kept in open a	=	, , , ,
	explanation for it is that	1 1	1	
		oric acid emits strongly sm	elling HCl gas all the time	
		th the emitted HCl gas to fo		
		as for moisture in air result		liquid solution which
	appears like a cloudy si		3.1	1.
			rochloric acid pulls moistu	re of air towards itself. This
		s of water and hence the cl		
321.	•	separation of noble gases, t		is kept in contact with
021.		. Which one of the followin		_
	charcoal?	. Which one of the following	is suscous innicures is not t	adsorbed on to the
	a) Ar, Kr	b) Xe, Ar	c) He, Ne	d) Xe, Kr
322	=	s used by chlorine atom in		uj he, m
<i>322</i> .	a) sp	b) sp^2	c) sp^3	d) None of these
222	The oxidation state of N is	· ·	c) sp	u) None of these
343.		ilighest III.		
	a) N ₃ H			
	b) NH ₃			
	c) N ₂ H ₄			
224	d) NH ₂ OH	an ion		
324.	Formula of rhombic Sulph		a) C	4) C
225	a) S ₂	b) S	c) S ₄	d) S ₈
325.	The noble gases are unrea	-		
	a) Have the same number			
	b) Have an atomicity of or			
	c) Are gases with low den		1 11	
226		configuration or closed vale	=	
326.		oper sulphate solution to fo		D. G
	a) Copper	b) Copper phosphide	c) Copper phosphate	d) Copper phosphite
	Desicchlora is			
	a) Anhydrous Ba(ClO ₄) ₂		b) Anhydrous CaCl ₂	
	c) Anhydrous Mg(ClO ₄) ₂		d) Conc H ₂ SO ₄	
328.		first prepared a stable con		
	a) Neil Bartlett	b) Reyleigh	c) Ramsay	d) Rutherford
329.	= =	rical conductivity of seleniu	ım:	
	a) Increases			
	b) Decreases			
	c) Remains same			
	d) First decreases then inc	rreases		

330. For H ₃ PO ₃ and H ₃ PO ₄ the correct choice is			
a) H ₃ PO ₃ is dibasic and reducing	b) H ₃ PO ₃ is dibasic a	nd non-reducing	
c) H ₃ PO ₃ is tribasic and reducing	d) H ₃ PO ₃ is tribasic a	d) H ₃ PO ₃ is tribasic and non reducing	
331. When chlorine reacts with dil. NaOH under co	old conditions, the oxidation s	state of chlorine changes from	
zero to			
a) -1 and $+5$ b) $+1$ and $+4$	c) +5 and +3	d) -1 and +1	
332. Yellow ammonium sulphide is:			
a) $(NH_4)_2S$ b) $(NH_4)_2S_x$	c) $(NH_4)_2S_8$	d) $(NH_4)_2S_4$	
333. Sulphuric acid is used:			
a) In lead storage batteries			
b) As a dehydrating agent			
c) In making fertilizers			
d) All of the above			
334. Hydrolysis of NCl ₃ gives NH ₃ and X which of t	the following is X?		
a) HClO ₄ b) HClO ₃	c) HOCl	d) HClO ₂	
335. How many lone pairs are associated with xer	non atom in XeF ₂ , SeF ₄ and Xe	F ₆ respectively?	
a) 1, 2 and 3 b) 2, 3 and 1	c) 3, 2 and 1	d) 4, 3 and 2	
336. Nitrous oxide			
a) Is an acidic oxide	b) Is a mixed oxide		
c) Support the combustion of sulphur	d) Highly soluble in l	not water	
337. The number of unpaired electrons in the p -su			
a) 1 b) 2	c) 3	d) 4	
338. $(NH_4)_2Cr_2O_7$ on heating liberates a gas. The	same gas will be obtained by	•	
a) Heating NH ₄ NO ₃	b) Heating NH ₄ NO ₂		
c) Treating H ₂ O ₂ with NaNO ₂	d) Treating Mg ₃ N ₂ w	rith H ₂ O	
339. Fluorapatite is a mineral of:	3 33 1	-	
a) F ₂ b) Br ₂	c) P	d) As	
340. Least malleable and ductile metal is:	9	•	
a) Au b) Ag	c) Ni	d) Bi	
341. Which of the following is not correct?	•	•	
Silent electric			
30_2			
$\Delta H = -284.5KJ$			
b) Ozone undergoes addition reaction with u	_		
c) Sodium thiosulphate reacts with I ₂ to form		dium iodide.	
d) Ozone oxidises lead sulphide to lead sulph	ate		
342. Laughing gas is prepared by heating			
a) NH ₄ Cl b) NH ₄ NO ₃	c) $NH_4Cl + NaNO_3$	d) $(NH_4)_2SO_4$	
343. A certain element forms a solid oxide which was a	when dissolved in water form	s an acidic solution. The element	
is:			
a) Neon b) Sodium	c) Phosphorus	d) sulphur	
344. NO ₂ cannot be obtained by heating:			
a) KNO_3 b) $Pb(NO_3)_2$	c) $Cu(NO_3)_2$	d) AgNO ₃	
345. The product obtained by heating $(NH_4)_2SO_4$	and KCNO is		
a) Ammonia b) Ammonium cya	anide c) Urea	d) Hydrocyanic acid	
346. The silver halide, which is least soluble in NH	H ₄ OH, is:		
a) AgF b) AgCl	c) AgBr	d) AgI	
347. Fermings salt is			
a) HF b) KHF ₂	c) NOCl	d) KClO ₃	
348. H ₃ PO ₃ is			

- a) A dibasic acid
- b) A tribasic acid
- c) Monobasic

b) $PH_3 > NH_3 > AsH_3 > SbH_3$

d) $SbH_3 > AsH_3 > PH_3 > NH_3$

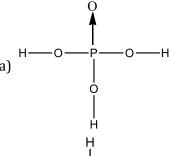
b) To obtain low temperature

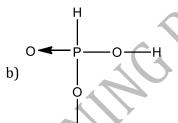
d) In readiotherapy for treatment of cancer

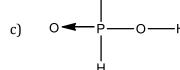
d) Neutral

- 349. Correct order of decreasing thermal stability is as
 - a) NH₃>PH₃>AsH₃>SbH₃
 - c) $AsH_3 > PH_3 > NH_3 > SbH_3$
- 350. Most electropositive halogen is:
 - a) F

b) Cl


c) Br


d) I


- 351. Argon is used
 - a) In filling airships
 - c) In high temperature welding
- 352. K₂CS₃ can be called potassium:
 - a) Sulphocyanide
- b) Thiocarbide
- c) Thiocarbonate
- d) Thiocyanate

- 353. Which of the following has S—S bond
 - a) H₂ S₂O₆
- b) H₂S₂O₇
- c) $H_2 S_2 O_8$
- d) Mustard gas

354. The structure of orthophosphoric acid is

- 355. Bleaching action of chlorine is due to:
 - a) Reduction
- b) Oxidation
- c) Chlorination
- d) Hydrogenation
- 356. In clatherates of xenon with water, the nature of bonding between xenon and water molecule is
 - a) Dipole induced dipole interaction
- b) Coordinate

c) Hydrogen bonding

- d) Covalent
- 357. Asthma patients use a mixture of....for respiration.
 - a) O_2 and H_2
- b) O2 and He
- c) 0_2 and Ar
- d) O₂ and Ne
- 358. When ammonium nitrate is heated at 250°C the gas evolved is
 - a) N

b) NH₃

c) N_2O_3

d) N₂O

- 359. Fluorine gas is stored in:
 - a) Copper vessels
- b) Steel vessels
- c) Both (a) and (b)
- d) None of these

- 360. Conc. HNO₃ reacts with iron to:
 - a) Render iron passive
 - b) Give ferrous nitrate and nitric oxide
 - c) Give ferric nitrate and ammonium nitrate
 - d) Give ferric nitrate and nitrogen dioxide
- 361. Which one of the following statements is not true?
 - a) Among halide ions, iodine is the most powerful reducing agent
 - b) Fluorine is the only halogen that does not show variable oxidation state
 - c) HOCl is stronger acid than HOBr
 - d) HF is a stronger acid than HCl
- 362. In nitroprusside ion, the iron and NO exist as Fe^{II} and NO⁺ rather than Fe^{III} and NO. These forms can be differentiated by:
 - a) Estimating the concentration of iron
 - b) Measuring the concentration of CN⁻

	c) Measuring the solid sta	_		
0.60	d) Thermally decomposin	= =		
363.	-	ed by passing excess of chlo		15.44
264	a) NCl ₃	b) HCl	c) N ₂	d) H ₂
364.	The basicity of H ₃ PO ₄ is	1.0	2.4	ו ר
265	a) 2	b) 3	c) 4	d) 5
365.		embling iodine in propertie		1) ml
266	a) Astatine	b) Lead	c) Radium	d) Thorium
366.	=	m of interhalogen compour		n n a
265	a) IF ₇	b) ClF ₃	c) ICl	d) BrCl ₇
36/.	Which one is true peroxid) D O	D 60
260	a) NO ₂	b) MnO ₂	c) BaO ₂	d) SO ₂
368.		passed through bromine wa		_
	a) HCl	b) HBr	c) H ₂ S	d) SO ₂
369.	= -	s possible but not NCl ₅ whil	le in case of phosphorus, Po	ll ₃ as well as PCl ₅ are
	possible. It is due to	451		
	a) Lower electronegativity		4 (4	<i>Y</i>
	b) Lower tendency of H bo			
	c) Availability of vacant <i>d</i>			
	=	l while N in gaseous state a	t room temperature	
370.	The bonds present in perr	nitric acid are:		
	a) Ionic bonds			
	b) Covalent bonds			
	c) Semipolar bonds or dat			
0=4	d) Coordinate and covaler			
371.	-	es platinum is used as a cata	, -	
	a) Oxidation of ammonia		b) Hardening of oils	
0.70	c) Productions of synthetic		d) Synthesis of methanol	
3/2.	-	llow region of the sun's spe		D. II
252	a) Na	b) Ne	c) Kr	d) He
373.	•		-	ate which can be used in
		thes. The gas and halate res	•	D GL N GLO
274	a) Br ₂ , KBrO ₃	b) Cl ₂ , KClO ₃	c) I ₂ , NaIO ₃	d) Cl ₂ , NaClO ₃
3/4.	Correct statement about v		N. T	1) 1. 1. 1. 1. 20%
275	a) It ignites at 240°C		c) It is not poisonous	d) It ignites at 30°C
3/5.	Ammonia reacts with exce		A NIL CLASING	D.M LHCl
056	a) N ₂ and NH ₄ Cl	b) NCl ₃ and HCl	c) NH ₄ Cl and NCl ₃	d) N ₂ and HCl
376.		liffuse through rubber and		D. II
255	a) Xe	b) Ne	c) Ar	d) He
3//.	7 -	formation of following con	=	1) (0) 1 (0)
270	a) Acrolein	b) Chlorine nitrate	c) Peroxy acetyl nitrate	d) SO ₂ and SO ₃
	_	yellow precipitate when be	oiled with an excess of nitr	ic acid and ammonium
V	molybdate and red precip		National and	DII l l
270	a) Orthophosphate	b) Pyrophosphate	c) Metaphosphate	d) Hypophosphate
3/9.	Nitrous acid reacts with H) NO + 60	D.M. C.I
200	a) $NO_2 + SO_2$	b) $NO + SO_2$	c) $NO + SO_3$	d) None of these
<i>3</i> 80.		reducing, (b) oxidising and	u (<i>c</i>) complexing, the set of	properties snown by CN
	ion towards metal species		2)	d) = L
204	a) <i>a, b, c</i>	b) <i>b</i> , <i>c</i>	c) c, a	d) a, b
381.	Sea-weeds are important		A 1 - 1	1) D'
	a) Iron	b) Chlorine	c) Iodine	d) Bromine

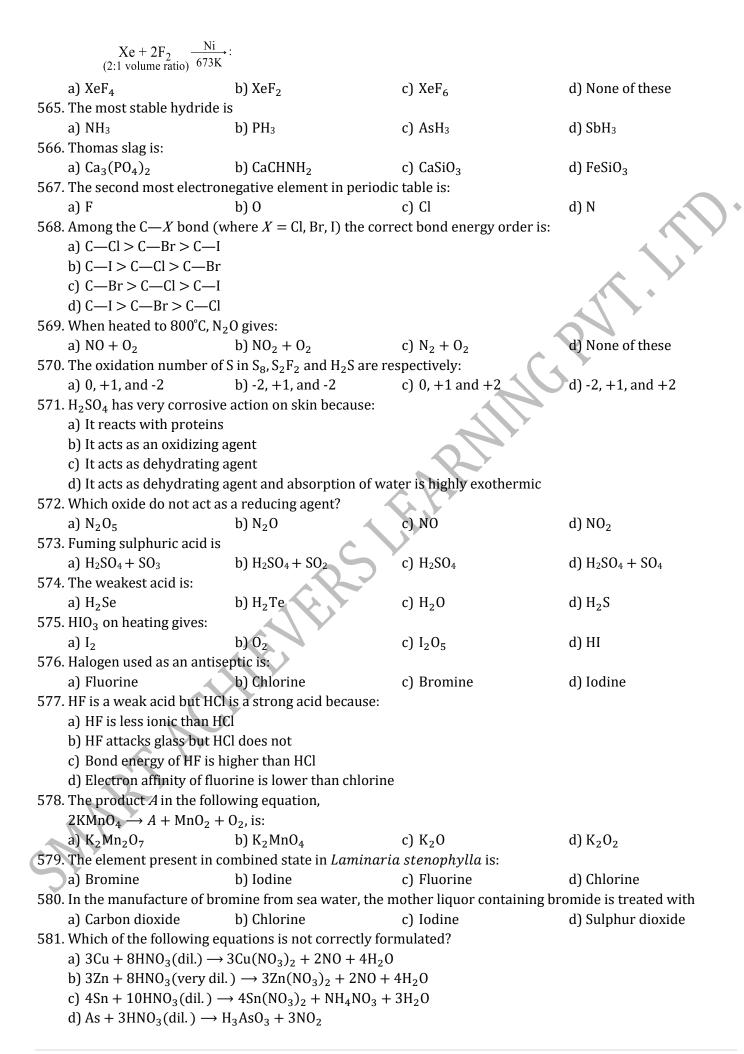
382.	CAN pellets are coated wi	th calcium silicate because:	:	
	a) CAN is explosive	b) CAN is hygroscopic	c) CAN is water soluble	d) None of these
383.	Yellow phosphorus is kep	t in:		
	a) Water	b) Ether	c) Alcohol	d) Kerosene
384.	F ₂ combines with all non-	metals directly except:		
	a) N ₂	b) P	c) Xe	d) Kr
385.		g has lowest bond dissocia	tion energy?	
	a) Cl —Cl	b) F —F	c) Br —Br	d) I —I
386.	Ozone reacts with moist i		,	
	a) HIO ₃	b) I ₄ O ₉	c) IO ₅	d) I_2O_5
387.	, ,		Molten sodium and molter	, _ 0
	a) Medium for extracting			, , , , , , , , , , , , , , , , , , ,
	b) Catalysts			A Y
	c) Metal refiners			
	d) Electrodes in batteries			
388	Oxidation of metals by HN	IO. does not depend on:	4	
300.	a) Nature of metal	b) Conc. of HNO ₃	c) Temperature	d) Catalyst
200	_	-	s, the particles of ore float b	
309.	a) Their surface is not eas	-		recause
	•	my wetted by water	b) They are light	ahawaa
200	c) They are insoluble	raia airraa	d) They bear electrostatic	charge
390.	XeF ₆ on complete hydroly		a) Wa	J) W.
201	a) XeO ₃	b) XeO	c) XeO ₂	d) Xe
391.	The zero group members		N 11	15 411 - C+1
202	a) Inert gases	b) Rare gases	c) Noble gases	d) All of these
392.		ectrons are present on Xe in		15.4
	a) 1	b) 2	c) 3	d) 4
393.	Hypophosphorous acid, H			
	a) A monobasic acid	b) A Tribasic acid	c) A Dibasic acid	d) Not acidic at all
394.	The ionization potential o			
	a) The electron affinity of			
	b) The electronegativity o			
	c) The ionization potentia	al of Xatom		
	d) None of the above	\		
395.	Which oxide of chlorine is	most powerful oxidizing a	gent?	
	a) Cl ₂ 0	b) ClO ₂	c) Cl_2O_6	d) Cl ₂ O ₇
396	In Ostwald process of mai	nufacturing of HNO3 catalys	st used is	
	a) MO	b) Fe	c) Mn	d) Pt
397	. In the reaction,			
	$HNO_3 + P_4O_{10} \rightarrow 4HPO_3$	+X		
	the product X is			
	a) N_2O_3	b) N ₂ O ₅	c) NO ₂	d) H ₂ O
398.	Given are H ₃ PO ₂ , H ₃ PO ₃ , H	₃ PO ₄ and H ₄ P ₂ O ₇ , which of t	the above oxoacids results i	nto two series of salts?
	a) H ₃ PO ₂	b) H ₃ PO ₃	c) H_3PO_4	d) $H_4P_2O_7$
399.	Which of the following is a	a mixed anhydride?	•	
	a) NO	b) NO ₂	c) N_2O_5	d) N ₂ O
400.	. Pure N ₂ can be obtained b	DV:		
	a) Heating barium azide		c) Both (a) and (b)	d) None of these
401.	_	-	a compound X. The hydridi	=
	a) sp^2	b) <i>sp</i> ³	c) <i>sp</i>	d) <i>dsp</i> ²
402			drop of H ₂ SO ₄ is added to it	· ·
	a) It turns red to blue	b) It turns blue to red	c) It gets destroyed	d) It is unaffected
			_	

403. Which noble ga	s does not form clathrates?		
a) Xe	b) Kr	c) He	d) Ar
404. Strongest reduc	cing agent is:		
a) H ₂ O	b) H ₂ S	c) H ₂ Se	d) H ₂ Te
405. Most abundant	element in earth's crust is:		
a) 0	b) Se	c) S	d) Te
406. Which reaction	yields the greatest quantity of	chlorine from a given quantity	y of hydrochloric acid?
a) Warming con	nc. HCl with ${\rm MnO_2}$		
b) Warming con	nc. HCl with PbO ₂		
c) Mixing conc.	HCl with KMnO ₄		\sim
	aching powder with HCl		
407. Superphosphat	e of lime is		
a) A mixture of	normal calcium phosphate and	l gypsum	× , ,
b) A mixture of	primary calcium phosphate an	d gypsum	
c) Normal calci	um phosphate		
d) Soluble calci	um phosphate		~
408. In Birkeland an	d Eyde process, the temperatur	re of the electric arc is about:	
a) 1500°C	b) 4000°C	c) 3000°C	d) 2000°C
409. Sulphides of wh	nich element are not precipitate	ed in acidic or alkaline mediur	n?
a) K	b) Ca	c) Al	d) All of these
410. Select the corre	ect statement.		•
a) Sodium meta	al is stored under kerosene		
b) One of the ox	xides of carbon is a basic oxide		
c) Metals can fo	orm only basic oxides		
d) To prevent c	combination of white phosphor	us with oxygen it is kept in ke	rosene
411. SO ₂ is dried by:			
a) CuO	b) HNO ₃	c) P ₂ O ₅	d) Anhyd. CaCl ₂
412. When Zn reacts	s with very dilute nitric acid it p	produces?	
a) NO	b) NH ₄ NO ₃	c) NO ₂	d) H ₂
413. The geometry of	of H ₂ S and its dipole moment ar	re:	
a) Angular and	non-zero b) Angular and zero	c) Linear and zero	d) Linear and non-zero
414. Graham's salt is	3:		
a) Sodium alum	ıinosilicate		
b) Sodium hexa	ametaphosphate		
c) Ferrous amn	noniumsulphate		
d) Potassium ch	hromium sulphate		
415. Yellow oils of su	ulphur is/are		
a) H ₂ S	b) H ₂ S ₁ , H ₂ S ₃	c) H ₂ SO ₄	d) CS ₂ , NH ₂ CSNH ₂
416. In the atmosph	ere N_2 is present as element w	rith O ₂ because:	
a) N ₂ is more re	eactive		
b) N ₂ is inert			
c) N ₂ does not i	react with 0_2		
d) N ₂ is actively	participating in the reaction		
417. Percentage of a	rgon in air is about:		
a) 10 per cent			
b) 0.1 per cent			
c) Much less th	an 0.1 per cent		
d) 1 per cent			
418. Select the incor	rect statement among the follo	wing	
•	germicide for purification of ai		
b) In O ₃ ,0—0 b	oond length is identical with tha	at of molecular oxygen	

	c) O ₃ molecule is angular i	in shape.		
	d) O ₃ is an oxidizing agent			
19	. For advertisement the col		tain	
	a) He	b) Ne	c) Ar	d) Kr
120	. Which reaction cannot be	•	•	,
	$2VRr \perp H CO \rightarrow V CO$			
	a) $R_2 \times R_3 \times R_2 \times R_3 \times R_4 \times R_4 \times R_5 \times R$	74 21151		
	NaCl + $H_2SO_4 \rightarrow NaHS$	SO. + HCl		
	b) Conc	104 HGI		
	c) NaHSO ₄ + NaCl \rightarrow Na ₂	ያለ ተ ዝር <u>ነ</u>		
				Y
	d) $CaF_2 + H_2SO_4 \rightarrow CaSO$ Conc.	4 T 2111		
121				A
t Z I	. The principal source of he		a) Dadi	4) AU - CA
	a) Air	b) Monazite sand	c) Radium	d) All of these
łZZ	. Heat of vaporisation of NF	-) II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D C 1 1 11 11 1
	a) Its basic nature	b) Its polar nature	c) Hydrogen bonding	d) Solubility in water
123	. Which is an essential trace			
	a) Fe	b) Ca	c) Na	d) I ₂
124	. Which coagulates white of	= =		
		b) Metaphosphoric acid	c) Hypophosphoric acid	d) Pyrophosphoric acid
125	. The fluoride which does n	ot exist is:		
	a) CF ₄	b) SF ₆	c) HeF ₄	d) XeF ₄
ł26	. The solubility of iodine in	-		
	a) Chloroform	b) Alcohol	c) Potassium iodide	d) Sodium hydroxide
127	. Sal volatile is:	4		
	a) NH ₄ Cl	b) (NH ₄) ₂ SO ₄	c) $(NH_4)_2CO_3$	d) NH_4NO_3
128	. Halogen acid used in the p	oreparation of aqua regia is	5:	
	a) HF	b) HBr	c) HCl	d) HI
129	. Bromine is liberated when	n an aqueous solution of Kl	Br is treated with	
	a) Dil H ₂ SO ₄	b) I ₂	c) Cl ₂	d) SO ₂
130	. In nitrogen family, the H—	– <i>M—</i> H bond angle in the h	ydrides gradually becomes	d) SO ₂ s closer to 90° on going from
	N to Sb. This shows that g	radually:		
	a) The basic strength of th	ne hydrides increases		
	b) Almost pure <i>p</i> -orbitals	are used for <i>M</i> —H bonding	g	
	c) The bond energies of M	—H bond increase		
	d) The bond pair-lone pair	r of electrons show lesser i	repulsion due to decreasin	g electronegativity trend
131	. NH ₄ Cl is used to clean me	tal surfaces because:		
	a) It dissociates into NH ₃	and HCl on heating		
	b) NH ₃ forms a soluble co	mplex with the metal		
	c) NH ₄ Cl forms a volatile	chloride		
	d) None of the above			
132	. Which reagent can separa	te nitric oxide from nitrou	s oxide?	
	a) Sodium nitroprusside s	solution		
	b) FeSO ₄ Solution			
	c) Nessler's reagent			
	d) Ammoniacal silver nitra	ate solution		
133	. The shape and hybridisati			
-	a) Triangular planar, sp^3	5		
	b) Pyramidal, $sp^3 d^2$			
	c) Tetrahedral, sp^3			
	, 			

	d) Bent T, $sp^3 d$		
434	. The anhydride of pyrosulphuric acid is:		
	a) SO_2 b) S_2O_3	c) SO ₃	d) S_2O_7
435	. Which one is strongest oxidizing agent?		
	a) HClO b) HClO ₂	c) HClO ₃	d) HClO ₄
436	. Which is not an oxo-acid of chlorine?		
	a) HClO b) HClO ₂	c) HClO ₃	d) HClO ₅
437	. A greenish-yellow coloured gas is liberated on heating	,	, ,
	a) KBr + HCl b) KI + HCl	c) MnO ₂ + HCl	d) NaCl + H ₂ SO ₄
438	. What are the products obtained when ammonia is re	-	
	a) N ₂ and NCl ₃ b) N ₂ and HCl	c) N ₂ and NH ₄ Cl	d) NCl ₃ and HCl
439	PH ₃ produces smoky rings when it comes in contact		
	a) It is inflammable		A . Y
	b) It combines with water vapours		
	c) It combines with nitrogen		
	d) It contains impurity of P ₂ H ₄		
440	The least stable anion of oxo-acids of chlorine is	C ₄	
	a) ClO ⁻ b) ClO ₂ ⁻	c) ClO ₃	d) ClO ₄
441	. Among H_2O , H_2S , H_2Se and H_2Te , the one with higher	, ,	, 1
	a) H ₂ O because of H-bonding		
	b) H ₂ Te because of high mol. wt.		
	c) H ₂ S because of H-bonding		
	d) H ₂ Se because of low mol. wt.		
442	. Non-combustible hydride is:		
	a) PH ₃ b) AsH ₃	c) SbH ₃	d) NH ₃
443	In H ₃ PO ₃ :		, ,
	a) Each hydrogen atom is attached to oxygen atom		
	b) Two hydrogen atoms are attached to oxygen atom	1S	
	c) One atom of H is attached to oxygen atom		
	d) None of the above		
444	. In the known interhalogen compounds the maximum	n number of halogen atoms	is:
	a) 4 b) 5	c) 7	d) 8
445	. Which of the following is the life saving mixture for a	an asthma patient?	,
	a) Mixture of helium and oxygen	b) Mixture of neon and ox	ygen
	c) Mixture of xenon and nitrogen	d) Mixture of argon and o	
446	. Which species is not known?	,	7.5
	a) XeF ₆ b) XeF ₄	c) XeO_3	d) KrF ₆
447	. The reaction of the type $2X_2 + S \longrightarrow SX_4$, is shown by	sulphur when X is	
	a) Fluorine or chlorine	b) Chlorine only	
	c) Chlorine and bromine only	d) F, Cl Br all	
448	. Oxygen reacts with each of the following elements re	eadily, except:	
	a) P b) Na	c) S	d) Cl
449	Cane sugar reacts with concentrated HNO ₃ to give:		
	a) CO ₂ and H ₂ O b) Oxalic acid	c) Carbonic acid	d) CO and H ₂ O
450	. Phosgene is the name of:		
	a) A phosphorus compound		
	b) A phosphonium compound		
	c) Carbonyl chloride		
	d) Phosphorus halide		
451	. H ₂ S is not a/an		

a) Reducing agentb) Acidic452. The idea which prompted Bartlett to prepare first e	c) Oxidising agent	d) None of these
a) High bond energy of Xe—F	ever compound of noble gas	was.
b) Low bond energy of F—F in F ₂		
	cimilar	
c) Ionization energies of O ₂ and xenon were almost	Sillilai	
d) None of the above	ir ic incorrect?	
453. Which of the following statements regarding sulphut a) SO ₂ molecule is paramagnetic.	ar is incorrect:	
b) The vapour at 200°C consists mostly of S ₈ rings.		
c) At 600 C the gas mainly consists of S ₂ molecules.		
d) The oxidation state of sulphur is never less than	⊥1 in its compounds	Y
454. Which of the following is a solid in nature?	T4 III its compounds.	
a) N_2O_3 b) N_2O	c) NO	d) N ₂ O ₅
455. On heating copper nitrate strongly is finally obta	•	u) N ₂ O ₅
a) Copper b) Copper oxide	c) Copper nitrite	d) Copper nitride
456. Which of the following dissolves in water but does	,	
a) SO ₂ b) OF ₂	c) SCl ₄	d) \$0 ₃
457. The colour of I_2 is violet because it:	C) 3G14	u) 303
a) Absorbs violet light		
b) Does not absorb light		
c) Absorbs yellow and green light		
d) None of the above		
458. Compounds formed when the noble gases get entra	nned in the cavities of cryst	al lattices of certain organic
and inorganic compounds are known as:	pped in the edvices of cryst	an lattices of certain of gains
a) Interstitial compounds	V),	
b) Clathrates	Y	
c) Hydrates		
d) Picrates		
459. The mineral clevite on heating gives:		
a) He b) Xe	c) Ar	d) Ra
460. Bromine can be liberated from potassium bromide		,
a) Iodine solution b) Chlorine water	c) Sodium chloride	d) Potassium iodide
461. Which element is not considered as 'chalcogens'?	.,	.,
a) Selenium b) Oxygen	c) Sulphur	d) Polonium
462. When lead nitrate is heated it produces	., _L	.,
a) NO ₂ b) NO	c) N_2O_5	d) N ₂ O
463. Which is the most easily liquefiable rare gas?		,
a) Xe b) Kr	c) Ar	d) Ne
464. The outermost electronic configuration of group 15	•	,
a) ns^2np^1 b) ns^2np^2	c) ns^2np^3	d) ns^2np^4
465. The noble gas used in atomic reactor ,is	, ,	, ,
a) Krypton b) Oxygen	c) Neon	d) Helium
466. Atom that requires high energy of excitation is:		,
a) F b) Cl	c) Br	d) I
467. In modern process phosphorus is manufactured by	:	
a) Heating a mixture of phosphorite mineral with sa	and and coke in electric fur	nace
b) Heating calcium phosphate with coke		
c) Heating bone-ash with coke		
d) Heating the phosphate mineral with sand		
468. Which property is most important in making fluoring	ne the strongest oxidising h	alogen?


	a) Bond dissociation energ	gy		
	b) Ionisation enthalpy			
	c) Hydration enthalpy			
	d) Electron affinity			
469.	Which has maximum vapo	our pressure or most volati	le or low b.p.?	
	a) HCl	b) HI	c) HF	d) HBr
470.	Amphoteric oxide is:			
	a) Sb ₄ O ₆	b) N_2O_5	c) Bi ₂ O ₃	d) Na ₂ 0
471.	Bone black is polymorphic	c form of		
	a) Phosphorus	b) Sulphur	c) Carbon	d) Nitrogen
472.	In which case, the order of	f acidic strength is not corr	ect?	
	a) HI>HBr>HCl		b) HIO ₄ >HBrO ₄ >HCIO ₄	
	c) HCIO ₄ >HCIO ₃ >HCIO ₂		d) $HF>H_2O>NH_3$	
473.	Which compound does no	t has S—S bond?		
	a) Na ₂ S ₂ O ₄	b) Na ₂ S ₄ O ₆	c) Na ₂ S ₂ O ₃	d) Na ₂ S ₂ O ₇
474.	The chamber acid contains	s H ₂ SO ₄ .		
	a) 10.20%	b) 35.45%	c) 67.80%	d) 82.90%
475.	Compound of Sulphur use	d in electrical transformer	is:	
	a) SO ₂	b) H ₂ S	c) SO ₃	d) SF ₆
476.	The inert gases producing			
	a) He and Ne	b) Ar and Ne	c) Kr and Ne	d) Ar and Xe
477.	The fertilizer named 'Nitro	= = =		
	a) $CaO + N_2$	b) $CaC + N_2$	c) $CaC_2 + N$	d) $CaC_2 + N_2$
478.		concentrated H ₂ SO ₄ reddi	sh brown gas is evolved. Th	ie gas is
	a) Bromine		b) HCl	
	c) Mixture of bromine and		d) None of the above	
479.	Sulphur trioxide can be ob	otained by which of the foll		
	a) $S + H_2SO_4 \xrightarrow{\Delta}$	b) $H_2SO_4 + PCl_5 \xrightarrow{\Delta}$	c) $CaSO_4 + C \xrightarrow{\Delta}$	d) $Fe_2(SO_4)_3 \stackrel{\Delta}{\rightarrow}$
480.	The metallic form of phosp	phorus is:		
	a) White P	b) Red P	c) β-black P	d) α-black P
481.	The atomic weight of nobl	e gases is obtained by usin	g the relationship:	
	a) Atomic weight = equiva	alent weight × valency		
	b) Atomic weight = equiva	alent weight/valency		
	c) Atomic weight = $\frac{V\epsilon}{Equival}$	alency		
	d) 2× VD= molecular weig			
402			anally avalved if the eaid in	
404.	a) Dilute	b) Very dilute	usually evolved if the acid is	
102	Which one of the following	•	c) Moderately strong	d) Concentrated
405.	a) $XeO_3 + 6HF \rightarrow XeF_6 + 3$	-	ulius is flot leasible:	
	b) $3XeF_4 + 6H_2O \rightarrow 2Xe + 6H_3O \rightarrow 2Xe + 6H$			
1	c) $2XeF_2 + 2H_2O \rightarrow 2Xe + H_2O \rightarrow 2Xe + H_2$			
	d) $XeF_6 + RbF \rightarrow Rb[XeF_7]$			
	Fixation of nitrogen means	-		
TUT.	a) Reaction of nitrogen wi			
	b) Conversion of free atmo		ogen compounds	
	c) Decomposition of nitrog	=	= -	
	d) The action of denitrifying	= = = = = = = = = = = = = = = = = = = =	-	
485	-	_	t and concentrated KOH. Th	ne products formed are KF
100.	H_2O and O_2 . The molar rat			producto formed die M
	a) 1 : 1 : 2	b) 2 : 1 : 0.5	c) 1 : 2 : 1	d) 2 : 1 : 2
	,	,	,	,

486. Slow acting filti ogenous i	er tilizer among the followi	ing is	
a) NH ₂ CONH ₂	b) NH ₄ NO ₃	c) CaNCN	d) KNO ₃
487. Liquor ammonia is			
a) Ammonium hydroxide		b) Liquefied ammonia gas	5
c) Concentrated solution	of NH₃in water	d) A solution of NH ₃ in alc	ohol
488. In ramsay and rayleigh's i	isolation of noble gases froi	m air, the nitrogen of the ai	r is finally converted into
a) NaNO ₂ Only	b) NO and NO ₂	c) NaNO ₃ Only	d) NaNO ₂ and NaNO ₃
489. Superphosphate of lime is	•	, ,	, -
a) Cement industry	b) Glass industry	c) Agriculture	d) metallurgy
490. Noble gases are:	-,	·) <u>0</u>	
a) Colourless			
b) Odourless			
c) Tasteless and non-infla	ammahle		AY
d) All of the above	iiiiiiabic		
491. Nitric acid is used in the r	nanufacture of		4
a) TNT	b) Picric acid	a) NH NO	d) All of these
•	•	c) NH ₄ NO ₃	u) All of tilese
492. The symbol Rn represent		a) Dhanima	J) Dl J:
a) Radium	b) Radon	c) Rhenium	d) Rhodium
493. The gas which is absorbed			
a) NH ₃	b) N ₂	c) CO	d) NO
494. Conc. HNO ₃ is heated with			
a) N ₂ 0	b) NO	c) NO ₂	d) N_2O_5
495. Cold fire is related to		A. XX	
a) White P	b) Red P	c) PH ₃	d) P_2O_5
496. The non-existent species			
a) XeF ₅	b) BrF ₅	c) SbF ₅	d) PF ₅
497. In Kroll and ICl process of	-	=	
a) Ne	b) Ar	c) Kr	d) Xe
498. A 500 g toothpaste sampl			
a) 250	b) 200	c) 400	d) 1000
499. PCl ₃ on hydrolysis gives			
a) HPO ₃	b) H ₃ PO ₂	c) H_3PO_4	d) H_3PO_3
500. Which halogen does not s	how bleaching property?		
a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
501. Which of the following is	called stranger gas?		
a) N ₂ 0	b) Xe	c) Cl ₂	d) N ₂
502. Noble gases possess:			
a) High ionization potent	ial		
b) Zero electron affinity			
c) High electrical conduct	tance		
d) All of the above			
503. What would happen when	n a solution of potassium cl	nromate is treated with an	excess of dilute nitric acid?
a) CrO_4^{2-} is reduced to $+3$	=	b) CrO_4^{2-} is oxidized to +	
c) $Cr_2O_7^{2-}$ and H_2O are for		d) Cr^{3-} and $Cr_2O_7^{2-}$ are for	
504. A green yellow gas reacts			
	nd halate respectively are		
a) Br ₂ , KBrO ₃	b) Cl ₂ , KClO ₃	c) I ₂ , NaIO ₃	d) Cl ₂ , NaClO ₃
505. When plants and animals	· - ·	· - ·	· -
a) Nitrates	b) Nitrides	c) Ammonia	d) Elements of nitrogen
506. Which of the following sp	•	•	a, mements of fill ogell
500. Willen of the following sp	ceres is not a pseudonande	•	

a) CNO ⁻	b) RCOO ⁻	c) OCN-	d) NNN ⁻			
507. Dilute HNO ₃ reacts with						
a) $Ca(OH)_2 \cdot Ca(NO_3)_2$	b) $CaO \cdot Ca(NO_3)_2$	c) $2CaO \cdot Ca(NO_3)_2$	d) None of the above			
508. Sulphur is soluble in:						
a) Water	b) Dilute HCl	c) Ether	d) CS ₂			
509. Which of the following is	formed by xenon?					
a) XeF ₇	b) XeF ₄	c) XeF ₅	d) XeF ₃			
510. The oxide which is solid	at room temperature is:					
a) N ₂ O	b) NO	c) N_2O_4	d) N_2O_5			
511. Which hydride possesses	s the maximum complex for	ming nature?				
a) NH ₃	b) PH ₃	c) BiH ₃	d) SbH ₃			
512. Bad conductor of electric	city is:					
a) H ₂ F ₂	b) HCl	c) HBr	d) HI			
513. The van der Waals' force	s in halogens decrease in th	ie order:				
a) $F_2 > Cl_2 > Br_2 > I_2$	b) $I_2 > Br_2 > Cl_2 > F_2$	c) $Br_2 > Cl_2 > F_2 > I_2$	d) $Cl_2 > Br_2 > I_2 > F_2$			
514. The word argon means:			V			
a) Noble	b) Now	c) Strange	d) Lazy			
515. SO ₂ reacts with chlorine	to form:	1				
a) Sulphur monochloride		1/3				
b) Sulphur dichloride						
c) Sulphuryl chloride						
d) Sulphur trichloride						
516. Which hydride does not	exist?					
a) SbH ₃	b) AsH ₃	c) PH ₅	d) N_2H_4			
517. Ozone is formed by the in	nteraction of water with:					
a) Chloride	b) Chlorine	c) Fluorine	d) Fluoride			
518. PCl ₅ exists but NCl ₅ does	not because:	y				
a) Nitrogen has no vacan	a) Nitrogen has no vacant ' d 'orbitals					
b) Lower tendency of H-l	oond formation in P than N					
c) Lower electronegativi	ty of P than N					
d) Occurrence of P in soli	id state while N ₂ in gaseous	state at room temperature)			
519. Which reaction is not val	id?					
a) $HCl + F_2 \rightarrow HF + Cl_2$		b) HF + $Cl_2 \rightarrow F_2 + HCl$				
c) $Zn + HCl \longrightarrow ZnCl_2 + H$	2	d) Al + HCl \rightarrow AlCl ₃ + H ₂				
520. Arrange the acids (I) H ₂ S	80_3 , (II) $\mathrm{H_3PO_3}$, and (III) HC	10_3 in the decreasing order	of acidic nature.			
a) I > III > II	b) $I > II > III$	c) $III > I > II$	d) $II > III > I$			
521. With excess of chlorine, a	ammonia forms:					
a) NCl ₃	b) NOCl ₂	c) N ₂	d) NH ₄ Cl			
522. Oxalic acid when heated	with conc H ₂ SO ₄ , gives out					
a) CO and CO ₂	b) CO ₂ and H ₂ S	c) H ₂ O and CO ₂	d) Oxalic sulphate			
523. The anhydride of hypoch	lorous acid is:					
a) ClO ₃	b) ClO ₂	c) Cl ₂ O ₅	d) Cl ₂ O			
524. On bubbling F ₂ in 2% sol	ution of NaOH, the product	formed are:				
a) OF ₂	b) NaF	c) H ₂ O	d) All of these			
525. I ₂ dissolves in KI solution	due to the formation of					
a) KI_2 and I^-	b) K^+ , I^- and I_2	c) I ₃	d) None of these			
526. The correct order of boil	ing points of the hydrides o	f nitrogen family is				
a) NH ₃ >PH ₃ >AsH ₃ >SbH	3	b) PH ₃ <ash<sub>3< NH₃< SbH</ash<sub>	I_3			
c) NH ₃ <ph<sub>3< SbH₃< Asl</ph<sub>	H_3	d) NH ₃ <ph<sub>3<ash<sub>3<sbh<sub>3</sbh<sub></ash<sub></ph<sub>	3			
527. In which process sulphur	is not used?					
a) Protection of grape wi						

	b) Manufacture of H ₂ SO ₄			
	c) Manufacture of black s	hoe polish		
	d) Vulcanization of rubbe	r		
528.	When the mineral clevite	is heated, it give off the ine	rt gas	
	a) Helium	b) Xenon	c) Radon	d) Argon
529.	In NH ₃ and PH ₃ , the comr	non is		
	a) Basic nature	b) Odour	c) Combustibility	d) None of these
530.	Oxygen is not readily read	•	, ,	,
	a) P	b) Cl	c) Na	d) S
531.	Most acidic oxide among	,		
	a) Cl ₂ O ₅	b) Cl ₂ O	c) Cl ₂ O ₃	d) Cl ₂ O ₇
532	Which one has the highes		0) 0.203	all dizer
002.	a) 0—0	b) S—S	c) Se—Se	d) Te—Te
533	KMnO ₄ is prepared by:	0) 0 0	cj de de	a) for fe
555.	a) Passing Cl ₂ through K ₂	MnO. solution		
	b) Passing O ₂ through K ₂			
	c) Reaction of KOH with H	•		
		-	4 (4	
Г 24	d) Fusing KON with MnO ₂		sintum of	
534.	• •	e laboratory by heating a m		1) I/D . + II/Cl
- 2-	a) $MgBr + H_2SO_4$	b) $MgBr_2 + Cl_2$	c) $KBr + MnO_2 + H_2SO_4$	d) KBr + HCl
535.		NH ₃ forms with explosion:	A MITT TO A TO A	IN AUT AUT
5 0.6	a) NH ₄ I	b) N ₂	c) $NH_4I + N_2 + I_2$	d) NI ₃ NH ₂
536.		concentrated H ₂ SO ₄ reddis		5
	a) Mixture of bromine and	d HBr	b) HBr	
	c) Bromine		d) None of the above	
537.	-	ble gases is most reactive?	/	
	a) He	b) Ne	c) Ar	d) Xe
538.	=	inert gas was prepared by:		
	a) Rayleigh and Ramsay			
	b) Bartlett			
	c) Frankland and Lockyei			
	d) Cavendish			
539.	The function of $Fe(OH)_3$ is	•		
	a) To remove arsenic imp	urity	b) To detect colloidal imp	
	c) To remove moisture		d) To remove dust particle	es
540.	Which is incorrect for ble	aching powder?		
	a) Highly soluble in water	•		
	b) Light yellow coloured p	powder		
	c) Oxidizing agent			
	d) Reacts with dilute acid	to release chlorine		
541.	Molecule with a three ele	ctron bond is:		
^ \	a) Cl ₂	b) NO	c) H ₂ 0	d) Cl ₂ O
542.	Phosphorus pentoxide ca	nnot be used to dry:		
	a) Nitrogen	b) Ammonia	c) Hydrogen sulphide	d) Sulphur dioxide
543.	=	eatment with steam produc	es	
	a) $NH_3 + CaO$	b) NH ₃ + CaHCO ₃	c) $NH_3 + CaCO_3$	d) $NH_3 + Ca(OH)_2$
544.	=	g statements regarding hel	=	` '
		nd sustain powerful super c		
	b) It is used in gas-cooled	=		
		oons instead of hydrogen b	ecause it is lighter and non	-inflammable
		c agent for carrying out exp	-	

545.	Hydrogen bromide is drie	ed by passing the gas throug	gh:				
	a) Quick lime	b) Anhydrous CaCl ₂	c) KOH pellets	d) Conc. H ₂ SO ₄			
546.	The ion that cannot under	rgo disproportionation is:					
	a) ClO ₄	b) ClO ₃	c) ClO_2^-	d) ClO ⁻			
547.	Which of the following is	the most basic oxide?					
	a) Bi ₂ O ₃	b) SeO ₂	c) Al ₂ O ₃	d) Sb_2O_3			
548.	Which one is the anhydric	de of HClO ₄ ?					
	a) ClO ₂	b) Cl ₂ O ₇	c) Cl ₂ 0	d) Cl ₂ O ₆			
549.	Phosphine is generally pr	epared in the laboratory?					
	a) By heating phosphorus	in a current of hydrogen		KV			
	b) By heating white phosp	phorus with aqueous solution	on of caustic potash				
	c) By decomposition of P2	H ₄ at 110°C					
	d) By heating red phosph	orus with an aqueous soluti	ion of caustic soda				
550.	In P ₄ O ₆ the number of oxy	gen atoms bonded to each	P atom is:				
	a) 1.5	b) 2	c) 3	d) 4			
551.	The most abundant inert	gas in air is:		V			
	a) He	b) Ne	c) Ar	d) Kr			
552.	When concentrated H ₂ SO	4 is added to dry KNO3, bro	wn fumes evolve. These fu	mes are of:			
	a) SO ₂	b) SO ₃	c) NO ₂	d) NO			
553.	White phosphorus reacts	with caustic soda to give PI	$\rm H_3$ and $\rm NaH_2PO_2$. This reac	tion is an example of:			
	a) Oxidation						
	b) Reduction						
	c) Neutralisation						
	d) Oxidation and reduction	n					
554.	The molecular formula of	dithionic acid is					
	a) $H_2S_2O_4$	b) H ₂ S ₂ O ₆	c) $H_2S_2O_5$	d) $H_2S_2O_7$			
555.	The correct order of pseu	dohalide ,polyhalide and in	terhalogen are				
	a) BrI_2^- – ,OCN $^-$,IF $_5$	b) IF ₅ , BrI ₂ ,OCN ⁻	c) OCN ⁻ ,IF ₅ , BrI ₂	d) OCN ⁻ , BrI ₂ ,IF ₅			
556.	The substance which is	solid at room temperature	e forms ionic compounds	and reacts with hydrogen			
	forming a hydride, the aq	ueous solution of which is a	icidic, could be				
	a) Al	b) Na	c) Br ₂	d) I ₂			
557.	When I2 is passed through	n KCI,KF and KBr solutions					
	a) Cl2 and Br2 are evolved		b) Cl ₂ is evolved				
	c) Cl_2 , Br_2 and F_2 are evol	lved	d) None of the above				
558.	When I ₂ is dissolved in CO	El_4 , the colour that results is	S				
	a) Colourless	b) Brown	c) Bluish green	d) Violet			
559.	Oxide of nitrogen which is	s soluble in alcohol is:					
	a) NO ₂	b) N ₂ 0	c) N_2O_3	d) NO			
560.	The correct order of redu	cing abilities of hydrides of	V group elements is				
,	a) NH ₃ <ph<sub>3<ash<sub>3<sbh<sub>3</sbh<sub></ash<sub></ph<sub>	<bih₃< td=""><td>b) NH₃>PH₃>AsH₃>SbH₃</td><td>>BiH₃</td></bih₃<>	b) NH ₃ >PH ₃ >AsH ₃ >SbH ₃	>BiH₃			
	c) $NH_3 < PH_3 < AsH_3 < SbH_3$	<bih₃< td=""><td>d) $SbH_3 > BiH_3 > AsH_3 > N$</td><td>$H_3 > PH_3$</td></bih₃<>	d) $SbH_3 > BiH_3 > AsH_3 > N$	$H_3 > PH_3$			
561.	Available chlorine is liber	ated from bleaching powde	er when it:				
	a) Is heated	b) Reacts with water	c) Reacts with acid	d) Reacts with alkali			
562.	562. A salt of sulphurous acid is called:						
	a) Sulphate	b) Sulphurate	c) Sulphite	d) Sulphide			
563.	563. The sides of safety matches contains						
	a) Red phosphorus + sar	ıd powder	b) P ₄ S ₃				
	c) Ca ₃ (PO) ₄ + glass pieces		d) KClO ₃ , KNO ₃ , sulphur +	antimony			
564.	Which compound is prepa	ared by the following reacti	564. Which compound is prepared by the following reaction?				

582. P ₄ O ₁₀	has short and long	P— 0 bonds. The number o	f short P— O bonds in this	compound is:		
a) 1		b) 2	c) 3	d) 4		
583. Which	of the following ac	ts as fluoro Lewis acids?				
a) Rul	5	b) SbF ₅	c) AsF ₅	d) All of these		
584. A radi	oactive element X d	ecays to give two inert gase	es. <i>X</i> is:			
a) $^{238}_{92}$	U	b) ²²⁶ ₈₈ Ra	c) ₉₀ Th	d) ₈₉ Ac		
585. Which	one of the followin	g can be purified by sublim	nation?			
a) F ₂		b) Cl ₂	c) Br ₂	d) I ₂		
586. Noble	gases do not occur	in:				
a) Nat	ure	b) Ores	c) Atmosphere	d) Sea water		
587. Ammo	onia is:					
a) Pol	ar solvent	b) Non-polar	c) Paramagnetic	d) None of these		
588. The tr	eatment of Cu with	dilute HNO ₃ gives	_			
a) N ₂ (b) NO	c) NH ₄ +	d) NO ₂		
•	g statement about H	INO ₃ is:				
		erted into xanthoproteins				
=	O ₃ acts as a dehydr	-	Ć.			
	xists in two canonic		1			
-	O_3 acts as an oxidiz					
=	-	aOH solution gives				
=	$2SO_3 + H_2S$	b) $Na_2S_2O_3 + Na_2S$	c) $Na_2S_2O_3 + NaHSO_3$	d) $Na_2SO_3 + SO_2$		
	onegativity of an in		0) 1.422203 (1.411003	a) 1.a2003 1 002		
a) Hig		b) Low	c) Negative	d) Zero		
, ,	conductor of electri	•	o) Hogadine	u) 2010		
a) Yel		b) Red p	c) Violet P	d) Black P		
-		xide which is gas at room t		a) Black I		
	lrogen	b) Phosphorus	c) Sodium	d) Sulphur		
	•		e, boaram	a) baipitai		
	594. Helium was discovered by: a) Frankland and Lockyer					
b) Ray	-	(10)				
c) Rar	=					
-	ne of these	4 V)				
=	es not act as					
	aching agent	b) Oxidising agent	c) Reducing agent	d) Dehydrating agent		
-	$+ P_4 + H_2O \rightarrow ?$	b) Oxidising agent	c) Reducing agent	a) Denyarating agent		
	+ NaH2PO2	b) PH ₃ + Na ₂ PO ₄	c) $PH_3 + Na_2HPO_2$	d) $H_3PO_4 + NaO$		
-	y linkage is present	•	c) 1113 Naziii 02	uj 1131 04 1140		
	o's acid	b) Pyrosulphuric acid	c) Sulphurous acid	d) Dithionic acid		
-	requires catalyst?	b) i yrosuipiiai ie aeia	c) surphurous acid	a) Ditilionic acia		
	$0_2 \rightarrow SO_2$	b) $2S O_2 + O_2 \rightarrow 2SO_3$	c) $C + O_2 \longrightarrow CO_2$	d) All of the above		
		used in very low temperatu	•	u) All of the above		
a) He	for the following is			9) N		
	blo gas forming me	b) Ne aximum number of compou	c) H ₂	d) N ₂		
	oble gas for fiffing file	b) Ne		4) n°		
a) Xe	ogon totmovido N. C	•	c) Ar	d) He		
		0 ₄ , is a mixed anhydride bed	cause it:			
	a) Is a mixture of N_2O_3 and N_2O_5					
=	b) Decomposes into two oxides of nitrogenc) Reacts with water to form nitric acid					
=						
=	cts with water to fo					
ouz. A aep	olarizer used in dry	patteries is:				

a) KOH b) NH ₂ OH	c) MnO ₂	d) Na ₃ PO ₄			
603. Which one of the following statements regard	ling helium is incorrect?				
a) Is is used to fill gas balloons instead of hydrogen because it is lighter and non- inflammable					
b) It is used as a cryogenic agent for carrying	b) It is used as a cryogenic agent for carrying out experiments at low temperatures.				
c) It is used to produce and sustain powerful	_				
d) It is used in gas cooled nuclear reactors.					
604. Which of the following is not obtained by dire	ect reaction of constituent elem	nents?			
a) XeO ₃ b) XeF ₂	c) XeF ₆	d) XeF ₄			
605. White phosphorus is	,				
a) A monoatomic gas	b) P ₄ a tetrahedral sol	id			
c) P ₈ , a crown	d) A linear diatomic m				
606. Sides of match box have coating of					
a) Potassium chlorate, red lead	b) Antimony sulphide	red phosphorus			
c) Potassium chlorate, antimony sulphide	d) Antimony sulphide	-			
607. A positive chromyl chloride test is given by a					
a) Br b) Cl	c) SO ₃ ²⁻	d) I-			
608. Zinc and cold dil. HNO ₃ reacts to produce?	3, 223	*			
a) NO b) NO ₂	c) NH ₄ NO ₃	d) ZnNO ₃			
609. In presence of moisture, SO ₂ can	ej mianos	aj zinvos			
a) Act as oxidant b) Act as reductant	c) Gain electron	d) Not act as reductant			
610. Which has the highest molar heat of vaporizat		a) Not act as reductant			
a) HBr b) HCl	c) HF	d) HI			
611. SO ₂ can be used as:	c) III	u) 111			
a) Bleaching agent b) Disinfectant	c) Antichlor	d) All of these			
612. When sugar is treated with concentrated sulp		-			
a) Oxidized b) Dehydrated	c) Reduced	d) sulphonated			
	y -	u) suipilollateu			
613. Liquid ammonia is used for refrigeration beca	,	und			
a) It is basic	b) It is a stable compo				
c) It has a high dipole moment	d) It has a high heat o	rvaporisation			
614. The smog is essentially caused by the presence					
a) O_2 and N_2	b) O_2 and O_3	1			
c) O_3 and N_2	d) Oxides of sulphur a	•			
615. Boiling of dil. HCl acid does not increase its	concentration beyond 20.24	per cent because hydrochloric			
acid:					
a) Is very volatile					
b) Is extremely soluble in water					
c) Forms a constant boiling mixture					
d) Forms a saturated solution at this concentr					
616. Concentrated hydrochloric acid when kept in	n open air sometimes produc	es a cloud of white fumes. The			
explanation for it is that:					
a) Strong affinity of HCl gas for moisture in air	r results in forming of droplets	s of liquid solution which			
appears like a cloudy smoke					
b) Due to strong affinity for water conc. HCl p	ulls moisture of air towards its	self. The moisture forms			
droplets of water and hence the cloud					
c) conc. HCl emits strongly smelling gas all the					
d) Oxygen in air reacts with the emitted HCl gas to form a cloud of chlorine gas					
617. Atomicity of phosphorus is:					
a) 1 b) 2	c) 3	d) 4			
618. Each of the following is true for white and red					
a) Can be oxidised by heating in air	b) Are both soluble in	CS ₂			

c) Consists of same kind of atoms		d) Can be converted into one another	
619. The <i>M</i> —Cl bond energies	are different in:		
a) PCl ₅	b) PCl ₃	c) CCl ₄	d) NCl ₃
620. Most acidic oxide is:	· ·	-	
a) As_2O_3	b) P ₂ O ₃	c) Sb ₂ O ₃	d) Bi ₂ O ₃
621. King of chemicals is:	<i>J</i>	, 2 3	, <u>, , , , , , , , , , , , , , , , , , </u>
a) HNO ₃	b) H ₂ SO ₄	c) HCl	d) None of these
622. Fluorine is the best oxidis		0) 1101	a) Hone of these
a) Highest electron affinit		b) Highest E _{red}	
	-y		
c) Highest E _{oxid}		d) Lowest electron affinity	y
623. Which bond has the great		_	
a) H—Cl	b) H—Br	c) H—I	d) H—F
624. Berthelot's salt is:			
a) KClO ₃	b) KIO ₃	c) KBrO ₃	d) None of these
625. The strongest oxidizing a	gent among the following is	5:	
a) Ozone	b) Oxygen	c) Fluorine	d) Chlorine
626. All the elements of the ox	ygen family are:	, (4	Y
a) Non-metals	b) Metalloids	c) Radioactive	d) Polymorphic
627. As the number of —OH gr	oups increases in hypopho	sphorus acid phosphorus a	icid and phosphoric acid
the acidic strength			
a) Increases		b) Decreases	
c) Remains nearly same		d) Remains appropriately	same
628. Nitric acid oxidizes sulph	ur to:		
a) SO ₂	b) SO ₃	c) H ₂ SO ₃	d) H ₂ SO ₄
629. Which one is correct if HO			w) 112004
a) $HCl + HF \rightarrow H_2Cl^+ + F$		ner in riquiu state.	
b) HCl + HF \rightarrow No reacti		Y	
c) $HCl + HF \rightarrow H_2F^+ + ($			
	11		
d) None of the above			
630. Red phosphorus is chemi			
a) It does not contain P—			
b) It does not contain tetr			
c) It does not catch fire in	•		
d) It has a polymeric stru	Y		
631. Which acid is not formed	•	•	
a) HPO ₃	b) $H_4P_2O_7$	c) H_3PO_4	d) H_3PO_3
632. To make nitrogen dioxide		ed through U-tube:	
a) Containing FeSO ₄ solut			
b) Containing NaOH solut	ion		
c) Kept in freezing mixtu	re		
d) Kept in boiling water			
633. Sulphur does not combine	e with which of the followir	ng halogens to form a comp	ound?
a) Cl ₂	b) Br ₂	c) I ₂	d) F ₂
634. If Na ₂ SO ₃ is left open in a	ir, we get:	-	· -
a) Na ₂ S	b) Na ₂ SO ₄	c) NaHSO ₄	d) NaHSO ₃
635. Which is planar molecule			
a) XeO ₄	b) XeF ₄	c) XeOF ₄	d) XeO ₂ F ₂
636. Bacteria convert molecula	•) u) L L
a) NO ₃	b) Amino acids	c) NO ₂	d) NH ₃
637. Nitric acid (conc.) oxidize	•	- , - · - <u> </u>	.) 3

	a) H ₃ PO ₄	b) P ₂ O ₃	c) H ₃ PO ₃	d) $H_4P_2O_7$	
638	638. The acidity of hydrides of O, S, Se, Te varies in the order				
	a) $H_2O > H_2S > H_2Se > H_2$		b) $H_2O < H_2S < H_2Se < H$		
	c) $H_2S > H_2O > H_2Se > H_2$		d) $H_2Se > H_2S > H_2O > H_2'$	Ге	
639	_	anhydride of perchloric aci			
	a) Cl ₂ O ₇	b) Cl ₂ O ₅	c) Cl_2O_3	d) HCIO	
640		decay the organic nitrogen	n is converted into inorgani	c nitrogen .The inorganic	
	nitrogen in the form of				
	a) Ammonia	b) Elements of nitrogen	c) Nitrates	d) Nitrides	
641	. Minimum bond length wi				
	a) H ₂ S	b) HF	c) H ₂ 0	d) ICI	
642	_	s no action with starch solu	ution?		
	a) F ₂ and Cl ₂	b) Br ₂	c) I ₂	d) None of these	
643	. H_2S on passing through K				
	a) K_2SO_3	b) S	c) K ₂ MnO ₄	d) MnO_2	
644		happen when phosphine g		as?	
	-	ed and the mixture cools do	own	Y	
	b) $PH_3 \cdot Cl_2$ is formed with	h warming up		•	
	c) PCl ₃ and HCl are forme	ed and the mixture warms i	up		
	d) The mixture only cools				
645	. The compound that gives	chorine like smell is:			
	a) CHCl ₃	b) CaOCl ₂	c) Chloretone	d) None of these	
646	. Hyponitrous acid is:				
	a) HNO ₂	b) HNO ₄	c) $H_2N_2O_2$	d) CaN ₂	
647	$. P_4 + 3NaOH + 3H_2O \longrightarrow A + 3$	NaH_2PO_2 here A is			
	a) NH ₃	b) PH ₃	c) H ₃ PO ₄	d) H_3PO_3	
648	. A gas X is passed throug	gh water to form a saturat	ted solution. The aqueous	solution on treatment with	
	AgNO ₃ gives a white pred	cipitate. The saturated aque	eous solutions also dissolv	es Mg ribbon with evolution	
	of colourless gas Y. X and	Yare respectively:			
	a) CO ₂ , Cl ₂	b) Cl ₂ , CO ₂	c) Cl ₂ , H ₂	d) H ₂ , Cl ₂	
649	. In which reaction there is	no change in valency and t	the oxidation state?		
	a) $SO_2 + H_2S \rightarrow 2H_2O +$	3S			
	b) $2Na + 0 \rightarrow Na_20$				
	c) $Na_2O_2 + H_2SO_4 \rightarrow Na$	$_{2}SO_{4} + H_{2}O_{2}$			
	d) $4KClO_3 \rightarrow 3KClO_4 + K$	(Cl			
650	. Oxygen gas can be prepar	red from solid KMnO ₄ by:			
	a) Dissolving the solid in	dil. HCl			
	b) Dissolving the solid in	dil. H ₂ SO ₄			
	c) Treating the solid with	H ₂ gas			
	d) Strongly heating the so	olid			
651	. In solid state of noble gas	es, the atoms are held toge	ther by:		
	a) Ionic bonds	b) Hydrogen bonds	c) Van der Waals' forces	d) Hydrophobic forces	
652	. Potassium manganate (K	$_{2}MnO_{4}$) is formed when:			
		aqueous K ₂ MnO ₄ solution	L		
	b) Manganese dioxide is f	used with potassium hydro	oxide in air		
	c) Potassium permangana	ate reacts with conc. Sulph	uric acid		
	d) None of the above	•			
653	. Phosphorus pentoxide is	widely used as			
	a) Bleaching agent	b) Dehydrating agent	c) Oxidising agent	d) Reducing agent	
654		$\xrightarrow{\text{I}_2\text{SO}_4} \text{CO} + \text{H}_2\text{O}; \text{H}_2\text{SO}_4 \text{ acts}$			
	1 1	55 . 11 ₂ 5,11 ₂ 554 deta			

a) Reducing agent	b) Oxidising agent	c) Dehydrating agent	d) All of these
655. Which are hydrolysed by	water?		
a) XeF ₂	b) XeF ₄	c) XeF ₆	d) All of these
656. Weldon mud is:			
a) MnO ₂	b) $Mn(OH)_2$	c) 2CaO·MnO ₂	d) Mn_2O_3
657. In the manufacture of H ₂ S	50_4 the nitrated acid from t	he Gay-Lussac's tower is ch	nemically:
a) H ₂ SO ₄ ·NO ₂	b) H ₂ SO ₄ · NO	c) H ₂ SO ₄ · 2NO	d) HSO ₄ · NO
658. In PCl ₅ , phosphorus unde		, , ,	
a) sp^2 -hybridisation	b) sp^3 -hybridisation	c) sp^3d -hybridisation	d) sp^3d^2 -hybridisation
659. The perhalate ion with ma			
a) ClO ₄	b) BrO ₄	c) IO ₄	d) ClO-
660. If two litre of air is passed	, ,		,
-	olume finally obtained will	-	A LUCION AND A LUC
a) 200 mL	b) 20 mL	c) Zero	d) 10 mL
661. What products are expect	•	•	
a) HClO ₃ and Cl ₂ O	b) HClO ₂ and HClO ₄	c) HCl and Cl ₂ O	d) HCl and HClO ₃
662. On exciting Cl ₂ molecule h	•	c) Tici and Ci20	u) fici and ficios
a) Cl	b) Cl ⁻	c) Cl ⁺	d) All of these
	U) GI	C) GI	d) All of these
663. Smelling salt is:	b) (NII) DO	a) NII Cl	4) (MIL.) CO
a) $(NH_4)_2SO_4$	b) (NH ₄) ₃ PO ₄	c) NH ₄ Cl	d) $(NH_4)_2CO_3$
664. Sulphate ion has geor	=	3 m 2 3 3 1 1	D.M Cil
a) Trigonal	b) Square planar	c) Tetrahedral	d) None of these
665. Sulphur in $+$ 3 oxidation s	-		D.D. 1.1 ().1
a) Dithionous acid	b) Sulphurous acid	c) Thiosulphuric acid	d) Pyrosulphuric acid
666. Oleum is			
a) Fuming H ₂ SO ₄	b) Oil of vitriol	c) Castor oil	d) Caro's acid
667. A helium atom on losing a	in electron becomes:		
a) α -particle			
b) Hydrogen atom			
c) Positively charged heli			
d) Negatively charged hel			
668. Concentrated nitric acid of	on heating decomposes to g	ive:	
a) O ₂ and N ₂	b) NO	c) 0 ₂	d) NO_2 and O_2
669. Bromine is obtained on a	commercial scale from:		
a) Caliche	b) Carnallite	c) Common salt	d) Cryolite
670. The blue coloured gas is:			
a) F ₂	b) 0 ₃	c) NO	d) Cl ₂
671. The catalyst used in Habe	r's process for synthesis of	NH ₃ is:	
a) Pt	b) V ₂ O ₅	c) Fe	d) Mo
672. The mixture of conc. HCl a	and HNO ₃ made in 3:1 ratio	contains	
a) ClO ₂	b) NOCl	c) NCl ₃	d) N_2O_4
673. H ₂ S does not produce me	tallic sulphide with	, ,	, <u>-</u> .
a) ZnCl ₂	b) COCl ₂	c) CuCl ₂	d) CdCl ₂
674. Large deposits of sulphur	-		, ,
a) Flowers of sulphur	b) H ₂ SO ₄	c) H ₂ SO ₃	d) Free sulphur
675. Which of the following do	= -	2-3	, r
a) KrF ⁻ [SbF ₆] ⁻	b) [KrF ₃] ⁻ [SbF ₄] ⁺	c) KrF ⁺ [MoOF ₅]	d) KrF ⁺ [WOF ₅] ⁻
676. In XeO ₃ , Xe is:	-, [3] [4]	-) [2]	, [0. 5]
a) sp^3 -hybridized	b) sp^2 -hybridized	c) <i>sp</i> -hybridized	d) sp^3 d-hybridized
677. When H ₂ S reacts with hal	· · ·	-, -, -, -, -, -, -, -, -, -, -, -, -, -	, 5p & 11, 01141204
o with ha	000110, 11010601101		

	a) Are oxidized	b) Are reduced	c) Form Sulphur halides	d) None of these		
678	. Gaseous HCl is a poor co	onductor of electricity, wh	ile its aqueous solution is	a good conductor. This		
	because:					
	a) H ₂ O is a good conducto	or of electricity				
	b) A gas cannot conduct electricity, but a liquid can					
	c) HCl gas does not obey	Ohm's law, whereas the sol	ution does			
	d) HCl ionizes in aqueous	solution				
679	. Oxygen exhibits positive of	oxidation state in				
	a) CO	b) F ₂ 0	c) NO	d) N ₂ O		
680	. The poisson's ratio for ine	ert gases is:				
	a) 1.40	b) 1.66	c) 1.34	d) None of these		
681	. The noble gas which is no	ot found in atmosphere?				
	a) Ne	b) Ar	c) Rn	d) Kr		
682	. Which is not correct for w	white phosphorus (P_4) ?				
	a) Six P—P sigma bonds					
	b) Four P—P single bonds			V		
	c) Four lone pair of electr	rons	, (4	Y		
	d) P—P—P angle of 60°					
683		S, P and C gives respectively				
	a) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₄ and		b) HIO ₃ , H ₂ SO ₄ , H ₃ PO ₃ and	CO_2		
	c) HIO_{2} , H_2SO_4 , H_3PO_4 and		d) I ₂ O ₅ , SO ₂ , P ₂ O and CO ₂			
684	. Which of the following ca					
	a) He ²⁺	b) He ⁺	c) He	d) He ₂		
685		displaces three halogens fro				
	a) Br	b) F	c) CI	d) I		
686	. Which of the following ph		/			
	a) White	b) Red	c) Black	d) All stable		
687	. Ozone reacts with dry iod	-)	13.4.0		
	a) IO ₂	b) I ₂ O ₃	c) I_2O_4	d) I ₄ O ₉		
688	=	ion of light and appears yel		1) p. 1		
600	a) Yellow	b) Green	c) Violet	d) Red		
689	. The hybridization and bo		-) - · · · · · · · · · · · · · · · · · ·	D M Cil		
600	a) sp^2 ,120°	b) sp^3 ,109° 28'	c) sp^2 ,109° 28'	d) None of these		
690	. The substance used in sm		a) Calaium fluarida	d) Calaium nhaanhida		
C 01	a) Sodium chloride	, .	c) Calcium fluoride	d) Calcium phosphide		
691	. Which is cyclic phosphate		a) Na D O	d) Na D O		
(02	a) $Na_5P_3O_{10}$	b) Na ₆ P ₄ O ₁₃	c) $Na_4P_4O_{12}$	d) Na ₇ P ₅ O ₁₆		
092	. PCl ₅ does not react with:	b) C II NII	a) C II OII	9) II CO		
602	a) CH ₃ COOH . Elements O, S, Se and Te a	b) $C_2H_5NH_2$	c) C ₆ H ₅ OH	d) H ₂ SO ₄		
093	a) Metals	b) Rare earth metals	c) Coinage metals	d) Chalcogens		
604	. Phosphine is produced by		c) Comage metals	u) Chalcogens		
054	a) CaC ₂	b) HPO ₃	c) Ca ₃ P ₂	4) b 0		
605	. Which of the following is	-	C) Cd ₃ r ₂	d) P_4O_{10}		
093	=	b) 0 ₂	c) Ar	4) no		
606	a) N_2 . Which of the following co	, _	C) AI	d) He		
070	a) H ₃ PO ₂	b) H ₃ PO ₃	c) H ₃ PO ₄	d) H ₄ P ₂ O ₇		
697	Which pair gives Cl_2 at ro		C) 1131 O4	uj 1141 2 0 7		
071	a) Conc. HCl + KMnO ₄		c) NaCl + MnO ₂	d) NaCl + Conc. HNO ₃		
	,	-,	- , - · · · · · · · · · · · · · ·	. ,		

698. Which of the following oxide does not form acidic aqueous solution?

is

a) N_2O_3	b) NO ₂	c) N_2O_5	d) NO
699. Which one below is a pse			
a) I ₃	b) IF ⁻	c) ICl	d) CN ⁻
700. The Nessler's reagent co			
a) Hg ₂ +	b) Hg ²⁺	c) Hg ₂	d) Hg ₄ ²⁻
701. Interhalogen compounds	s are:		
a) Ionic compounds			
b) Coordinate compound	ls		
c) Molecular compounds	3		
d) Covalent compounds			
702. Fluorine does not show p	oositive oxidation states be	cause:	
a) It is a most electroneg	ative element		
b) It forms only anions in	nionic compounds		
c) It cannot form multipl			
-	electron pair repulsion due		
703. Poison for platinum, a ca	talyst in contact process of	H ₂ SO ₄ is:	
a) S	b) P	c) As	d) C
704. The solubility of iodine in	n water is greatly increased	l by:	•
a) Adding an acid			
b) Boiling the solution			
c) Cooling the solution			
d) Adding potassium iod	ide		
705. The catalyst used in the p	preparation of red P from y	ellow P is:	
a) I ₂	b) Ni	c) ZnO	d) Fe
706. Which one of the following	ng is present as an active in	gredient in bleaching powo	der for bleaching action?
a) CaCl ₂	b) CaOCl ₂	c) Ca(OCl) ₂	d) CaO ₂ Cl
707. Nitrogen dioxide		,	
a) Does not dissolve in w	vater		
b) Dissolves in water for	ming nitric acid		
c) Dissolves in water to f	form a mixture of nitrous a	nd nitric acid	
d) Dissolves in water to f	form nitrous acid and gives	off oxygen	
708. The gas used in gas therr	nometer is:		
a) He	b) O ₂	c) Xe	d) Ne
709. Mixture of O ₂ and N ₂ O is	used as:		
	b) Anaesthetic	c) In welding	d) Oxidizing agent
710. Which of the following ac	cids does not attack Cu and	Ag?	
a) Dilute HNO ₃	b) Dilute HCl	c) Conc. H ₂ SO ₄	d) Aqua regia
711. Number of isotopes of ox	xygen is:	<u> </u>	,
a) 1	b) 3	c) 2	d) 0
712. The angular shape of ozo	one molecule (0_3) consists		,
a) 2 sigma and 2 π -bonds			
b) 1 sigma and 1 π -bond			
c) 2 sigma and 1 π -bond			
d) 1 sigma and 2 π -bonds			
713. Bromine vapour turns m			
a) Brown	b) Red	c) Blue	d) Colourless
714. Nitric oxide is prepared l		,	,
a) Cu	b) Sn	c) Zn	d) Fe
715. The allotrope of Sulphur		,	, -
a) Rhombic sulphur	b) Monoclinic sulphur	c) Plastic sulphur	d) Flowers of sulphur
- •	- •		

	716. Concentrated $\mathrm{H_2SO_4}$ is not used to prepare HBr from KBr because it:			
a) Oxidizes HBr				
b) Reduces HBr				
c) Causes disproportionation of HBr				
d) Reacts too slowly with KBr				
717. There is an ozone layer at a height of about	: 29 kilometres above the surface	e of the earth. Which of the		
following statements is true?				
a) It is harmful because ozone is dangerous to				
b) It is beneficial because oxidation reactions	_	e of ozone		
c) It is beneficial because ozone cuts out the u				
d) It is harmful because ozone cuts out the im	portant radiations of the sun which	ch are vital for		
photosynthesis				
718. Cl ₂ on passing through Na ₂ SO ₃ solution gives				
a) Na ₂ S b) Na ₂ SO ₄	c) NaHSO ₃	d) NaHS		
719. SO ₂ reduces:				
a) Mg b) H ₂ S	c) KMnO ₄	d) All of these		
720. The brown yellow colour often shown by nitr	ic acid can be removed by:	Y		
a) Bubbling air through the warm acid		7		
b) Boiling the acid				
c) Passing ammonia through acid				
d) Adding a little Mg powder				
721. Which one will liberate Br ₂ from KBr?		15. 61		
a) I_2 b) SO_2	c) HI	d) Cl ₂		
722. The halide which does not give a precipitate v		15.7-		
a) F ⁻ b) Cl ⁻	c) Br ⁻	d) I ⁻		
723. HF present as impurity in gaseous F_2 , can be		1) 0 01		
a) P ₂ O ₅ b) NaF	c) H ₂ SO ₄	d) CaCl ₂		
724. In pyrophosphoric acid the number of hydrox		15 -		
a) 4 b) 3	c) 5	d) 7		
725. Deep sea divers used to respirate is a mixture		D 0 11 16		
a) Oxygen and nitrogen b) Oxygen and argo		d) Oxygen and helium		
726. Which of the following gives M^{3+} ion most real		15.70		
a) P b) N	c) Sn	d) Bi		
727. Oxygen is more electronegative than sulphur,	yet H_2S is acidic while H_2O is neu	itral. This is because:		
a) Water is a highly associated compound				
b) H—S bond is weaker than H—O bond				
c) H ₂ S is a gas while H ₂ O is a liquid	al acceptance			
d) The molecular weight of H ₂ S is more than t	that of H ₂ U			
728. HI reacts with HNO ₃ to form:) W/O	D.MO I		
a) 0_2 b) N_2O	c) HIO ₃	d) $NO_2 + I_2$		
729. Phosphate + conc. $HNO_3 + (NH_4)_2 MoO_4$ solu	ition \rightarrow Yellow precipitate.			
The composition of yellow precipitate is:	M O	DAM DO M O		
a) $(NH_4)_3PO_4 \cdot MoO_3$ b) $(NH_4)_3PO_4 \cdot 12N_4$	5 - 1 - 2 - 1 - 5			
730. Density of nitrogen gas prepared from air is s		en prepared by chemical		
reaction from a compound of nitrogen becaus	se aerial nitrogen contains:			
a) CO ₂				
b) Argon				
c) Some N ₂ molecules analogous to O ₂	×15 · ·			
d) Greater amount of N ₂ molecules derived fr	om N ¹³ isotope			
731. Antichlor is a compound:				

	a) Which absorbs chloring					
	b) Which removes Cl ₂ from a material					
	c) Which liberates Cl ₂ from bleaching powder					
	d) Which acts as a catalyst in the manufacture of Cl ₂					
732.	32. When F_2 reacts with hot and concentrated NaOH then following will be obtained					
	a) O ₂	b) H ₂	c) Na ₂ O	d) Na		
733	The geometry of XeOF ₄ m		0) 1.020	u) IIu		
, 55.	a) Tetrahedral	b) Square pyramidal	c) Square planar	d) Octahedral		
734	Oleum is	b) square pyramidai	c) Square planar	a) Octanicarai		
751.	a) Castor oil	b) Oil of vitriol	c) Fuming H ₂ SO ₄	d) None of these		
735	Which reacts rapidly with		, ,	a) None of these		
733.		b) Red P		4) N O		
726	a) White P		c) N ₂	d) N ₂ O		
/30.	The chief source of iodine	in which it is present as so		4		
	a) Carnallite		b) Sea weeds			
7 27	c) Caliche	1 1 1 1 1	d) Iodine never exists as s	oaium iodate		
/3/.	As the atomic number of t	-	halogens:	X.		
	a) Lose the outermost elec	= = = = = = = = = = = = = = = = = = =	4 (4	Y		
	b) Become lighter in colou	r		•		
	c) Become less dense					
	d) Gain electrons less read	=				
738.	An interhalogen compoun					
	a) IF ₅	b) I ₃	c) CN	d) $(CN)_2$		
739.	Phosphine is not collected	in air because:				
	a) It is poisonous					
	b) It absorbs moisture					
	c) It catches fire spontane	ously in air				
	d) It is combustible					
740.	Bones glow in the dark, be	ecause:				
	a) They contain a shining	material				
	b) They contain red phosp	horus				
	c) White phosphorus char	nges into red phosphorus				
	d) White phosphorus und	ergoes slow combustion w	ith air			
741.	Oxygen exhibits positive o	xidation state with:				
	a) F	b) Br	c) Cl	d) I		
742.	Which gives carbon with o	conc. H ₂ SO ₄ ?				
	a) Formic acid	b) Ethyl alcohol	c) Oxalic acid	d) Starch		
743.	The atom larger in size as					
	a) Ne	b) F	c) He	d) All of these		
744.	In the reaction,	,	,	,		
		$SO_4 + 2H_2O + SO_2$, H_2SO_4 i	is:			
	a) Reducing agent	b) Oxidant	c) Catalyst	d) Dehydrating agent		
745.		_	Flime is a mixture of Ca(H ₂)			
	Y					
	a) CaSO ₄ · 2H ₂ O	b) $CaSO_4 \cdot H_2O$	c) $CaSO_4 \cdot \frac{1}{2}H_2O$	d) CaSO ₄		
746.	What is the oxidising agen	t chlorine water?	_			
	a) HCl	b) HCIO ₂	c) HOCI	d) None of these		
747.	Which of the following hal		•	•		
	a) Iodine	b) Fluorine	c) Chlorine	d) Bromine		
748.	Vegetable colouring matte	•	•	•		
	a) Oxidation	b) Reduction	c) Sulphonation	d) Unsaturation		
749.	White phosphorus (P_4) do		, 1	•		

	a) Six P — P single bond		b) Four P – P single bond	
	c) Four lone pairs of elect	rons	d) $P - P - P$ angle of 60°	
750.	The anhydride of nitrous	acid is:		
	a) N_2O_3	b) NO	c) N ₂ O	d) N_2O_4
751.	XeF ₂ on hydrolysis gives		2	, 2 1
	a) XeO ₃	b) XeO	c) Xe	d) XeO ₂
752.	•	C is used to separate a mix		, 2
	a) Ar and Kr	b) Ne and Ar	c) He and Kr	d) He and Ne
753	. Paramagnetic oxide of ch	_	ej ne una m	a) He and He
, 55.	a) ClO_3	b) Cl ₂ O ₆	c) Cl ₂ 0	d) None of these
751.	· · · · · ·	cing power of hydrogen hal	, <u>-</u>	a) None of these
7 54.	a) $HI > HBr > HCl > HF$	ling power of flydrogen har	1005 15.	
	=			A
	b) HF > HI > HBr > HCl			4
	c) HI > HF > HBr > HCl			4 7
	d) None of these	11 (1 (1	_	
/55.	Nitrogen does not combin			13.76
	a) Ca	b) Al	c) Ag	d) Mg
756.	=	the strongest oxidising age		<i>"</i>
	a) HOCI	b) HCIO ₂	c) HCIO ₃	d) HCIO ₄
757.	= -	which trend occurs as the a	atomic number increases?	
	a) Ionic radius decreases			
	b) Ionization potential de			
	c) Covalent character in A	MX_2 decreases (where $M=$	metal and X =halogen)	
	d) None of the above			
758.	What is the product form	ed when phosphorus trioxi	de is dissolved in water?	
	a) HPO ₃	b) H ₃ PO ₄	c) H ₃ PO ₃	d) HPO ₂
759.	Approximately what perc	entage of air by volume get	s used in a process of comb	oustion?
	a) 20%	b) 10%	c) 35%	d) 55%
760.	There is no $S - S$ bond is			
	a) $S_2O_4^{2-}$	b) $S_2 O_3^{2-}$	c) $S_2 O_5^{2-}$	d) $S_2O_7^{2-}$
761.	· - ·	nn be increased in presence		, ,
	a) SbF ₅	b) H ₂ 0	c) HClO ₄	d) None of these
762.		ement among the following	•	,
· • -	a) Ozone reacts with SO ₂	_	•	
		OH(aq) in the presence of a	r to give Na ₂ SiO ₂ and H ₂ O	
	c) Cl ₂ reacts with excess of	, =,	ir to give itazoros ana iizo	
		strong NaOH solution to g	ive NaRr NaRrO, and HaO	
763	. S—S bond is not present i		ive rabi, rabi 04 and 1120	
, 05.	a) $S_2 O_7^{2-}$	b) S ₄ O ₆ ²⁻	c) $S_2O_4^{2-}$	d) $S_2O_3^{2-}$
761	Which of the following ox	,	c) 3 ₂ 0 ₄	u) 3 ₂ 0 ₃
/ 04.			a) Poth (a) and (h)	d) None of those
765	a) Mn_2O_7	b) CrO ₃	c) Both (a) and (b)	d) None of these
	_	=	ompared to that of nitrogen	even though they belong
	to the same group. It is du		13.75	
	a) Inert nature of nitroger		b) Reactivity of phosphore	
.	c) Larger size of phospho		d) Dissimilar electronic co	ontiguration
/66.	Which of the following is	•		N 6 1 .
	a) White phosphorus	b) Sodium	c) Potassium	d) Calcium
767.	The formula of iodine ace			
	a) I(CH ₃ COO)	b) $I(CH_3COO)_3$	c) $I_2(CH_3COO)$	d) $(CH_3COO)_2I$
768.	Phosphine is not evolved	when:		

		oiled with a strong solution	of Ba(OH) ₂	
	b) Phosphorus acid is hea	ted		
	c) Calcium hypophosphite	e is heated		
	d) Metaphosphoric acid is	heated		
769). The last orbit of argon wo	uld have electrons		
	a) 2	b) 6	c) 8	d) 18
770). Xenon directly combines	with:		
	a) Oxygen	b) Rubidium	c) Fluorine	d) Chlorine
771	. Structure of XeF ₅ ⁺ ion is			
	a) Trigonal bipyramidal	b) Square pyramidal	c) Octahedral	d) Pentagonal
772	2. Thermal stability of hydro		er:	
	a) HI > HBr > HCl > HF			
	b) HI > HF > HBr > HCl			A . Y
	c) HI > HBr > HF > HCl			
	d) HF > HCl > HBr > HI			
773	B. Iodine is fromed when KI	reacts with solution of		
	a) CuSO ₄	b) (NH ₄) ₂ SO ₄	c) ZnSO ₄	d) FeSO ₄
774	ł. The strongest reducing ag			
	a) F ⁻	b) CI ⁻	c) Br	d) I ⁻
775	5. In Birkeland Eyde process	s, the raw material used is		,
	a) Air	b) NO ₂	c) HNO ₃	d) NH ₃
776	5. Liquid flow from a higher	, <u>-</u>	, ,	, ,
	vessel in which it is placed		55 1	1 0
	a) Alcohol	b) Liquid He	c) Liquid N ₂	d) water
777	. Which is not correct for N			,
		used as anaesthetic agent	>	
	b) It is nitrous oxide			
	c) It is not a linear molecu	ıle		
	d) It is least reactive of all			
778	3. The strongest acidic oxide			
	a) SO ₂	b) SO_3	c) P_2O_5	d) Sb_2O_3
779	O. Apatite is an ore of	(X)	, 2 3	, <u> </u>
	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
780). The sulphur molecule (S_8)		,	,
	a) Cubical structure	Y		
	b) Spherical structure			
	c) Tetrahedral structure			
	d) W-shaped ring structur	re e		
781	Copper turnings when he	ated with concentrated sulp	phuric acid will give	
	a) H ₂ S	b) SO ₂	c) SO ₃	d) 0 ₂
782	2. PCl ₅ is prepared by the ac	tion of Cl ₂ on:		, <u>-</u>
	a) P_2O_3	b) P ₂ O ₅	c) H_3PO_3	d) PCl ₃
783	3. Chlorine water on cooling	deposits greenish-yellow		, ,
	a) Cl ₂ · 2H ₂ O	b) Cl ₂ · H ₂ O	c) $Cl_2 \cdot 3H_2O$	d) $Cl_2 \cdot 8H_2O$
784	. Which inert gas have high	, <u> </u>	, , ,	, , ,
	a) Xe	b) Ar	c) Kr	d) He
785	5. Metaphosphoric acid is:	-	-	-
	a) H ₃ PO ₂	b) HPO ₃	c) H ₃ PO ₃	d) H ₃ PO ₄
786	$5. H_3PO_3$ has non ionisab	, ,	- 5	
	a) 3	b) 1	c) 2	d) None of these

787.	Dry bleach caused by	1) 60) II O	D 0	
700	a) Cl ₂	b) SO ₂	c) H_2O_2	d) 0 ₃	
788.	Ammonia is dried over				
	a) Slaked lime		b) Calcium chloride		
	c) Phosphorus pentoxide		d) Quick lime		
789.	The bond dissociation ene				
	a) $Cl_2 > I_2 > Br_2$	b) $I_2>Br_2>Cl_2$	c) $I_2=Cl_2=Br_2$	d) $Cl_2>Br_2>I_2$	
790.	Which is correct statemen				
	a) Nitric oxide is isoelectronic with CO ₂				
	b) Nitric oxide is diamagne				
	c) Nitric oxide is an endot	-			
	d) Nitric oxide gas is used	=			
791.	The noble gas which behar	ves abnormally in liquid sta	ate is:		
	a) Xe	b) Ne	c) He	d) Ar	
792.	Which of the following is o	correct with reference to pr	rotonic acids?		
	a) PH_3 is more basic than	NH ₃		V ·	
	b) PH ₃ is less basic than N	H_3	. C 4	Y	
	c) PH ₃ is as basic as NH ₃				
	d) PH ₃ is amphoteric while	e NH ₃ is basic			
793.	Amongst the following, the	e basic oxide is			
	a) Bi_2O_3	b) Sb ₂ O ₃	c) $N_2 O_5$	d) P_2O_5	
794.	One gas bleaches the color	ur of the flowers by reducti	on while the other by oxid	ation. The gases are:	
	a) CO and CO ₂	b) H ₂ S and Br ₂	c) SO ₂ and Cl ₂	d) NH ₃ and SO ₃	
795.	Cl ₂ O ₆ is an anhydride of:	4			
	a) HClO ₃	b) HClO ₂	c) HClO ₄	d) Mixed anhydride of HCl	
796.	In the upper layers of the	atmosphere ozone is forme	ed by the:		
	a) Combination of oxygen	molecules			
	b) Action of electric discha				
	c) Action of ultraviolet ray				
	d) None of the above				
797.	Inert gases such as helium	behave like ideal gases ov	er a wide range of tempera	ture. However, they	
	•		•	low temperature there is a:	
	a) Weak attractive force b			1	
	b) Weak repulsive force be				
	c) Strong attractive force				
	d) Strong repulsive force b				
798.		l in smoke screens because	e it:		
	a) Burns to form soot				
	b) Gives PH ₃ which forms	smoke			
	c) Immediately catches fir				
	d) Is a gas which brings te				
799.	The inert gas obtained fro	=			
	a) He	b) Ne	c) Ar	d) Kr	
800.	Sulphur does not exist as S	,	·) ···	w.)	
000.	a) It is less electronegative		b) It is not able to constitu	ite mπ-mπ honds	
	c) It has ability to exhibit of		d) Of tendency to show va	= =	
801.		ch reacts with NaOH solution			
J J I.	a) NO ₂	b) N ₂ O ₅	c) N_2O_3	d) NO	
802		catalyst in lead chamber pr			
	a) NO	b) N ₂ 0	c) N_2O_3	d) N ₂ O ₅	
803	The non-existent compoun	· -	-J ^ 2 ~ 3	J ^ · · 2 ~ 5	
		-			

a) PH ₄ I b) AsH ₃	c) SbCl ₂	d) As_2O_3
804. A colourless gas on passing through bromine water of	-	
a) HCl b) HBr	c) CO ₂	d) SO_2
805. When silver chloride dissolves in ammonia, it forms?		
a) Ag(NH ₃)Cl b) Ag(NH ₃) ₂ Cl	c) $Ag(NH_3)_3Cl$	d) $Ag(NH_3)_4Cl$
806. Which of the following pairs has bleaching property?		
a) O_3 and NO_2 b) O_3 and H_2S	c) SO ₂ andCl ₂	d) Cl ₂ and NO ₂
807. Which of the following is not a hydride?		
a) HCl b) CaH ₂	c) CsH	d) LiH
808. Iron is dropped in dil HNO_3 it gives		
a) Ferric nitrate	b) Ferric nitrate and NO ₂	
c) Ferrous nitrate and ammonium nitrate	d) Ferrous nitrate and nit	ric oxide
809. Pnicogens are the elements of group?		
a) 15 b) 13	c) 8	d) Zero
810. The percentage of available chlorine in a commercial	l sample of bleaching powd	ler is:
a) 12% b) 35%	c) 58%	d) 85%
811. Complete fertilizer is that supplies to the soil:	, (4	Y
a) S, K, and N b) N, K and P	c) S, K and P	d) S and N
812. The element which liberates O_2 from water is:		
a) Na b) Ca	c) F	d) N
813. SF ₆ exists but OF ₆ does not because:		
a) d -orbitals of sulphur are vacant and are vacant an	_	5
b) More bonding electrons can be accommodated in		
c) Sulphur has larger ionization energy than oxygen		
d) The difference of electronegativity is less between	A Y	
814. N ₂ O ₄ molecule is completely changed into 2NO ₂ mol		_
a) -10°C b) 140 - 150°C	c) 420°C	d) -40°C
815. Out of (i) XeO ₃ (ii) XeOF ₄ and (iii) XeF ₆ , the molecular		
a) (i) and (ii) only b) (i) and (iii) only	c) (ii) and (iii) only	d) (i), (ii) and (iii)
816. Chlorous acid and its salts (chlorites) are:		
a) Good oxidising agents		
b) Good reducing agents		
c) Good bleaching agents		
d) Good oxidising and bleaching agents		
817. Antimony burns in chlorine to form:) (I O (I	1) Cl Cl
a) SbCl ₃ b) SbCl ₂	c) SbOCl ₂	d) SbCl ₅
818. Bromargyrite is a mineral of:) T	l) D
a) Pb b) Sn	c) I ₂	d) Br ₂
819. Helium is used in gas balloons instead of hydrogen b	ecause:	
a) It is lighter than H ₂		
b) It is non-combustible		
c) It is more abundant than H ₂		
d) Its leakage can be detected easily		
820. Reaction of PCl ₃ and PhMgBr would give	h) Chlanchanana	
a) Bromobenzene	b) Chlorobenzene	
c) Triphenylphosphite	d) Dichlorobenzene	
821. Which does not give ammonia with water?	c) CoCN	d) Ca(CN)
a) Mg ₃ N ₂ b) AIN	c) CaCN ₂	d) Ca(CN) ₂
822. Bond length is maximum in:	a) IICl	9) IIE
a) HI b) HBr	c) HCl	d) HF
823. Nitrogen molecule is chemically less active because i	t nas a between two ni	u ogen atoms.

a) Single bond	b) Double bond	c) Triple bond	d) Coordinate bond			
824. If Cl ₂ gas is passed int	o aqueous solution of KI cont	taining some CCl ₄ and the m	nixture is shaken, then:			
a) Upper layer becom	es violet					
b) Lower layer becom	b) Lower layer becomes violet					
c) Homogeneous viole	et layer is formed					
d) None of the above	-					
•	er of bond pair and lone pair	of electrons on nitrogen ato	om are:			
a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 0			
826. Cl ₂ is used in the man	•					
a) Chloroform	b) CCl ₄	c) Westron	d) All of these			
827. Which element shows	•	,				
a) 0	b) S	c) Se	d) All of these			
828. N ₂ 0 is formed on read	,	.,				
a) Cu	b) Hg	c) Ag	d) Fe			
829. The inert gases presen	, 0	-, 8				
a) He and Ne	b) He, Ne and Ar	c) He, Ne, Ar and Kr	d) He, Ne, Ar, Kr and Xe			
830. Orthophosphoric acid	•	0, 110, 110, 111	3,,,			
a) 1	b) 2	c) 3	d) 4			
	non with water, the nature of		•			
a) Covalent	non with water, the nature of	bonding between kenon at	ia water molecule is.			
b) Hydrogen bonding						
c) Coordinate						
d) Dipole-induced dip	ole					
832. Which one is least sol		A. V.				
a) BaF ₂	b) CaF ₂	c) SrF ₂	d) MgF ₂			
· -	ved in NaOH, we get solution		u) Mgi 2			
a) NaNO ₂	ved in Naori, we get solution	b) NaNO ₃				
c) Mixture of NaNO ₂	and NaNO	d) NaNO ₄				
•	F_2 , OCl ₂ and OBr ₂ show the or	•				
	b) $OF_2 > OB_2 > OCl_2$		d) OCL > OBr. > OF.			
	as hybridisation and structur		u) 001 ₂ > 011 ₂ > 01 ₂			
a) sp^3 tetrahedral		c) $sp^3 d^2$ pyramidal	d) $cn^3 d^3$ actahodral			
	phorus is X and the PPP bond					
a) $X=4$, $Y=90^{\circ}$	b) $X=4, Y=60^{\circ}$	c) $X=3$, $Y=120^{\circ}$	d) <i>X</i> =2, <i>Y</i> =180°			
837. Bottle of PCl ₅ is kept s		C) A=3,1=120	u) A=2,1=180			
a) Explodes	b) Get oxidized	c) Is volatilized	d) Reacts with moisture			
, ,	•		•			
	arbidity appears while passin	ig n ₂ s gas even in the abser	ice of it group radicals. This			
is because:	I the minture of impurity					
	I the mixture as impurity					
	re precipitated as sulphides					
	H ₂ S gas by some acid radical					
2 .	re precipitated as hydroxides	3				
	ulphate ion by iodine gives:) a o?-	D 0 02-			
a) SO_3^{2-}	b) SO ₄ ²	c) $S_2 O_8^{2-}$	d) $S_4 O_6^{2-}$			
	s contains NH ₄ NO ₃ because li	igntening in the sky causes	tne air to react and produce			
oxides of nitrogen and) (0	1) N. 1.1			
a) H ₂	b) NH ₃	c) CO ₂	d) Noble gases			
	ules of water needed to conve					
a) 2	b) 3	c) 4	d) 5			
X4/ Which of the following	g is the correct order of incre	asing enthalny of vanorizat	ion /			

a) NH ₃ <ph<sub>3<ash<sub>3</ash<sub></ph<sub>	b) AsH ₃ <ph<sub>3<nh<sub>3</nh<sub></ph<sub>	c) PH ₃ <ash<sub>3<nh<sub>3</nh<sub></ash<sub>	d) NH ₃ <ash<sub>3<ph<sub>3</ph<sub></ash<sub>
843. Which of the following w	as previously known as mu	riatic acid?	
a) Cl ₂	b) Br ₂	c) HCl	d) H_2SO_4
844. Which metal forms an an	nphoteric oxide?		
a) Cr	b) Fe	c) Cu	d) Zn
845. H ₂ SO ₄ is added while pre	eparing a standard solution	of Mohr's salt to prevent:	
a) Hydration	b) Reduction	c) Hydrolysis	d) Complex formation
846. The element which catch	es fire in air at 30°C and is s	stored under water is	
a) Sodium	b) Phosphorus	c) Magnesium	d) Zinc
847. Which are solid?			
a) XeF ₂	b) XeF ₄	c) XeF ₆	d) All of these
848. Cl ₂ O is an anhydride of:	•	- 0	
a) HClO ₄	b) HOCl	c) Cl_2O_3	d) HClO ₂
849. Ammonium dichromate i	s used in some fireworks. T	, = 0	
a) CrO ₃	b) Cr_2O_3	c) Cr	d) $CrO(O_2)$
850. An element forms a gased	, <u> </u>	ng in water gives an acid so	, <u>=</u> /
a) S	b) Na	c) P	d) H
851. PCl ₃ and cold water react			
a) H ₃ PO ₃	b) H ₃ PO ₂	c) H ₄ P ₂ O ₇	d) H ₃ PO ₄
852. Ammonia on heating with	•		., .
a) NH ₄ HCO ₃	b) $(NH_4)_2CO_3$	c) NH ₂ COONH ₄	d) $(NH_4)_2CO$
853. The acid which forms tw	,		472 -
a) H ₃ PO ₄	b) H ₃ PO ₃	c) H ₃ BO ₃	d) H ₃ PO ₂
854. The structure of white ph	, , ,	7, 73, 73	
a) Square planar	b) Pyramidal	c) Tetrahedral	d) Trigonal planar
855. Which of the following is	, ,		,g
a) I ₂	b) Br ₂	c) Cl ₂	d) F ₂
856. It 20% nitrogen is preser			
a) 144	b) 70	c) 100	d) 140
857. Which sulphide is insolul		•	u) 110
a) SnS	b) As ₂ S ₃	c) Sb ₂ S ₃	d) Bi ₂ S ₃
858. Which one is most basic		0) 00203	u) 21203
a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
859. Which oxide is alkaline?	5) 4	c) 21	w)
a) P_2O_3	b) B ₂ O ₃	c) Bi ₂ O ₃	d) As_2O_3
860. Fluorine oxidises HSO ₄ t	· - ·	0) 21/203	u)110203
a) $S_2O_3^{2-}$	b) S ₂ O ₈ ²⁻	c) $S_4O_6^{2-}$	d) SO ₂
861. Oleum is chemically	5) 5208	c) 040 ₆	u) 502
a) H ₂ SO ₃	b) H ₂ SO ₅	c) H ₂ S ₂ O ₇	d) H ₂ S ₂ O ₈
862. Among halogens maximu	-	c) 1125 207	uj 1125 208
a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
863. Which statement is false?	=	c) bromme	u) louine
a) Radon is obtained from			
b) Helium is an inert gas.			
_	bble gas in the atmosphere i	с На	
	-	3 110.	
d) Xe is the most reactive among the noble gases. 864. Freons are used as:			
a) Refrigerant	h) Catalyst	c) Ovidant	d) None of these
865. Sulphur molecule exists a	b) Catalyst	c) Oxidant	uj none oi mese
=		c) S	d) C
a) S ₂	b) S ₄	c) S ₆	d) S ₈

b) Ferric hydroxide				
d) Activated coconut charcoal				
sly because:				
c) SO_3^{2-}	d) $S_2O_7^{2-}$			
c) CClF ₃	d) All of these			
, ,	, Y			
c) 24 <i>N</i>	d) 36 <i>N</i>			
-,				
c) One	d) Zero			
	2, 2010			
	d) 18			
c) o	(u) 10			
c) NH ₂	d) N ₂ H ₄			
	u) 11/211/4			
	d) CaCO ₃			
	u) CaCO ₃			
	d) Noble gages			
c) naiogelis	d) Noble gases			
) NIII+	1) CI=			
C) NH ₄	d) Cl ⁻			
. 45	D 00			
c) 47	d) 28			
c) $3Ca_3(PO_4)_2 \cdot CaF_2$	d) $3Ca_3(PO_4)_2 \cdot CaCl_2$			
	d) $H_2S_2O_5$			
c) Rickets	d) cancer			
lution, insoluble in hot wat	er and nitric acid. The salt X			
c) SO_4^{2-}	d) CO ₃ ²⁻			
c) $H_2S_2O_3$	d) $H_2S_2O_8$			
ough:				
ction of				
	d) I ₂ soluation			
	a, 12 0010001011			
	d) +8, 120°			
that decomposes without leaving any solid residue is				
i	d) Activated coconut charsely because: c) SO ₃ ²⁻ c) CClF ₃ c) 24 N c) One l of P in PCl ₃ is: c) 8 c) NH ₃ ? c) BaSO ₄ a by: c) Halogens c) NH ₄ ⁺ c) 47 c) 3Ca ₃ (PO ₄) ₂ ·CaF ₂ c) H ₂ S ₂ O ₈ isease in which bones decay c) Rickets lution, insoluble in hot wat c) SO ₄ ²⁻ c) H ₂ S ₂ O ₃ bugh: ction of c) Cl ₂ de in it respectively are c) +6, 103° rate, sodium nitrate and an			

a) Ammonium nitrate	b) Sodium nitrate	c) Silver nitrate	d) Lead nitrate
887. Ammonia and phosphin	e resemble each other in:		
a) Solubility in water			
b) Forming salt with acid	d		
c) Stability			
d) Reducing character			
888. In the compound of type		ple bonding of the type:	
a) p $\pi-\mathrm{d}\pi$	b) $d\pi - d\pi$	c) $p\pi - p\pi$	d) No multiple bonding
889. Tear gas is:			
a) COCl ₂	b) CaOCl ₂	c) NH ₃	d) CCl ₃ ·NO ₂
890. Which statement is not o	correct about (CN) ₂ ?		4 , 7
a) It is poisonous gas			
b) It is called pseudohalo	=		
c) It is named as cyanog	en		4/ }
d) None of the above			0 /
891. When ammonium chlori			11
a) Pungent odour	b) Smell of rotten eggs	c) Smell of ammonia	d) No smell
892. When phosphine is bubb			
a) Silver	b) Silver phosphide	c) Silver oxide	d) None of these
893. Hydrolysis of one mole of		roduces:	
a) Two moles of sulphur			
b) Two moles of peroxo	_		
_	c acid and one mole of pero		
		phuric acid and hydrogen p	peroxide
894. Which has the same elec	-	c) Pb ⁴⁺	الري 4) m:4+
a) Ag ³⁺	b) Cu ²⁺	c) Po··	d) Ti ⁴⁺
895. Glacial phosphoric acid i		a) II D O	9) II DO
a) H ₃ PO ₄ 896. Which of the following p	b) HPO ₃	c) $H_4P_2O_7$	d) H ₃ PO ₂
	uid at room temperature—		
b) The most electronega		·DIOIIIIIE	
c) The most reactive hal			
d) The strongest oxidizing	_		
897. Nitrous oxide is known a			
a) Laughing gas		c) Breathing gas	d) Exercising gas
898. The number of hydrogen	b) Eustratory gus		,
a) Zero	b) One	c) Two	d) Three
899. Which of the following is	•	0) 1.10	a, in ee
a) Ammonia is used as r			
	and C is known as nitrolim		
		wn as superphosphate of lir	ne
d) Hydrolysis of NCl ₃ giv	•	real Land	
900. Which halide does not h			
a) SbCl ₃	b) AsCl ₃	c) PCl ₃	d) NF ₃
901. The noble gas mixture is	2 0	, ,	
a) Ne and Xe	b) He and xe	c) Ar and Kr	d) He and Ne
902. In the reaction $H_2S + O_3$,	,	,
a) H_2O, S, O_2		c) $H_2O + S$	d) $SO_2 + H_2$
903. When PCl ₅ reacts with si		· -	,
shows that sulphuric aci		· - ·	-

	.) II		101-1-2-2-6-1-1	. 11 11.
	a) Has two hydroxyl grou	ps in its structure	b) Is a derivative of sulph	
	c) Is a dibasic acid		d) Has greater affinity for	water
904	. Caliche is:			
	a) Crude saltpetre	b) Impure nitre	c) Impure carnallite	d) Ashes of sea-weeds
905	. The number of paired elec	ctron in oxygen molecule a	re	
	a) 14	b) 8	c) 16	d) 12
906	. The number of sigma bon	,	3, _ 3	-,
700	a) 6	b) 16	c) 20	d) 7
007	•	•	CJ 20	u) /
907	. Bleaching action of SO_2 is			
	a) Reduction	b) Hydrolysis	c) Oxidation	d) Acidic nature
908	. Nitrogen is produced whe	en NaNO ₂ is heated with:		
	a) NH ₄ Cl	b) NH ₄ NO ₃	c) $(NH_4)_2CO_3$	d) NH ₄ OH
909	. The structural formula of	hypophosphorous acid is		
	0	о—-н	Ο	0
	ĬĬ			
	<u> </u>	 	II P	II P.
	a) P	b) [\	c) H OH	d) OH OH
	н^ `он			
	Ĥ	ОН	ОН	ÓН
Q10	. Which of the following co	mnounds gives chlorine di	ovide when it reacts with S	Os in the presence of acid?
710	-	= =		-
044	a) Sodium chloride	b) Sodium chlorate	c) Sodium perchlorate	d) Sodium chlorite
911	. The hydride of group 16 e			mation is
	a) H ₂ Te	b) H ₂ O	c) H ₂ S	d) H ₂ Se
912	. The noble gas which form	s interstitial compounds is	^ \	
	a) Helium	b) Argon	c) Neon	d) Xenon
913	. Iodine may be liberated fr	, ,		
710	a) H ₂ SO ₄	b) NaHSO ₃	c) KMnO ₄	d) HCl
014	. Which oxide is of differen		c) Kimo ₄	u) IICI
714		7.7	-) T:O	J. N O
~ · -	a) MnO ₂	b) PbO ₂	c) TiO ₂	d) Na ₂ O ₂
915	. Oxide of nitrogen used as			
	a) NO		c) N_2O_3	d) N_2O_5
916	. When excess of KI is adde	d to copper sulphate soluti	ion:	
	a) Cuprous iodide is form	ed		
	b) I ₂ is liberated	X Y		
	c) Potassium iodide is oxi	dized		
	d) All of the above			
017		s cimilar to		
717	. The spectrum of helium is		3 L:+	1) 11 . +
040	a) H	b) Na	c) Li ⁺	d) He ⁺
918	. The reaction of P_4 with X	leads selectively to P_4O_6 th		
	a) dry O ₂		b) A mixture of O ₂ and N ₂	
	c) Moist O ₂		d) O ₂ in the presence of ac	ueous NaOH
919	. PH₄I + NaOH forms:			
	a) PH ₃	b) NH ₃	c) P_4O_6	d) P_4O_{10}
920	. When fluoride is heated w	- 0	0	7 4 10
,_0	a) HF	b) MnF ₂	c) F ₂	d) None of these
021	•	· -	CJ I ²	u) None of these
921	. Which would quickly abso	- -		
	a) Alkaline solution of pyr	=		
	b) Concentrated sulphurio	c acid		
	c) Lime water			
	d) Alkaline solution of cop	pper sulphate		
922	. The compound used as re	= =		
	F	_		

a) CCl ₄	b) COCl ₂	c) CF ₄	d) CF ₂ Cl ₂
923. Phosphine is not obta	ained by the reaction when:		
a) White P is heated	with NaOH		
b) Red P is heated wi	th NaOH		
c) Ca ₃ P ₂ reacts with	water		
d) Phosphorus trioxi	de is boiled with water		
924. Nitrogen forms 0x	rides.		
a) 3	b) 4	c) 5	d) 6
925. Some of the reasons	of reacting NH ₃ with hydrogen	n chloride are given below. T	The incorrect is:
a) The nitrogen atom	of NH ₃ gains electrons		
b) NH ₃ can give a pai	r of electrons		
c) A proton in HCl ca	n accept an electron pair from	NH ₃	
d) The Cl ⁻ ion formed	d has a stable configuration		
926. The compound of Sul	phur that can be used as refrig	gerant is:	
a) S ₂ Cl ₂	b) SO ₂	c) SO ₃	d) H_2SO_4
927. Oxygen can be obtain	ed from bleaching powder by	:	V
 a) Adding dilute acid 		. C 4	Y
b) Passing carbon did	oxide		
c) Heating with a cob	oalt salt		
d) Adding alkalies			
928. The catalyst used in t	the manufacture of ammonia is	3	
a) V ₂ O ₅	b) Pt	c) Fe	d) Ni(CO) ₄
929. F ₂ is largely used in:			
a) Making Freon	b) Making Teflon	c) Rocket fuels	d) All of these
930. Substance used in Ho	-		
a) NH ₃	b) PH ₃	c) PH ₅	d) P_2O_5
	owing combines with Fe (II) ic	-	
a) NO	b) N ₂ 0	c) N_2O_3	d) N_2O_5
	f ozone are used up when it re		N 99
a) H_2O_2	b) PbS	c) KI	d) SO ₂
933. Which can act as an a) 11010	D. II. O.
a) HNO ₃	b) H ₃ PO ₄	c) HClO ₄	d) H ₂ O
	on to cuprous ion in presence of		D II CO
a) KOH	b) H ₂ 0	c) KCNS	d) H_2SO_4
-	n NaOH, smell of NH ₃ is obtain		1) CH COO-
a) NH ₄ ⁺	b) NO ₃	c) NO ₂	d) CH ₃ COO ⁻
	the manufacture of HNO ₃ by O	c) Vanadium pentoxide	d) Dlatinum gauge
a) Platinum black	, ,	c) vanadium pentoxide	d) Platinum gauze
937. Which is used in vulc		a) CE	4) C Cl
a) SF ₆	b) SF ₄	c) SF ₂	d) S ₂ Cl ₂
	me is obtained from the reacti with phosphoric acid	OII OI:	
	e with hydrochloric acid		
c) Calcium phosphate	_		
d) Bones with gypsur			
939. The anhydride of orth			
a) P_4O_{10}	b) P_2O_5	c) P ₄ O ₆	d) P ₂ O ₃
940. Which is bad conduct	, - 0	~J *4~6	~J · Z · 3
a) H_2F_2	b) HCl	c) HBr	d) HI
941. Which compound has	•	<i>5)</i>	~, · · · ·
a) Thionyl chloride—			

b) Sulphuryl chloride— SO ₂ Cl ₂						
c) Oleum— H ₂ S ₂ O ₆						
d) Phosphorus oxychloride—POCl ₃						
942. Chromium dissolves in dil. H_2SO_4 to form $Cr(H_2O)_6^{2+}$	42. Chromium dissolves in dil. H_2SO_4 to form $Cr(H_2O)_6^{2+}$. The colour of the ion is:					
a) Blue b) Green	c) Yellow	d) Orange				
943. The oxide that is not reduced by hydrogen in the hot		, .				
a) Ag_2O b) Fe_2O_3	c) CuO	d) K ₂ O				
944. Bleaching action of SO ₂ is due to its	,	, 2				
a) Oxidizing property b) Acidic property	c) Basic property	d) Reducing property				
945. The chloric acid and chlorates are:	·	of the state of th				
a) Good oxidizing agents						
b) Bleaching agents						
c) Undergo disproportionation on heating		A . Y				
d) All of the above						
946. The oxidation number of xenon in XeOF ₂ is						
a) Zero b) 2	c) 4	d) 3				
947. Which metal liberates H ₂ with dil. nitric acid?						
a) Zn b) Cu	c) Mn	d) Hg				
948. When dry chlorine is passed over silver chlorate at 4		w) 11g				
a) Cl ₂ O b) ClO ₂	c) ClO ₃	d) ClO ₄				
949. FeCl ₃ solution on reaction with SO ₂ changes to:	cy dio3	u) 5.54				
a) $FeCl_2$ b) $Fe_2(SO_4)_3$	c) $Fe_2(SO_3)_3$	d) FeSO ₄				
950. Which of the following is known as Berthelot's salt?	c) 1 c ₂ (bo ₃) ₃	4) 1 0004				
a) (NaPO ₃) ₆ b) NaOCl	c) KClO ₃	d) KHF ₂				
951. Pb reacts with dilute HNO ₃ gives	c) Reio3	uj mii 2				
a) NO b) NH ₄ NO ₃	c) N ₂ O ₅	d) NO ₂				
952. The chemical used for cooling in refrigeration or in n	•	u) NO ₂				
		d) Liquid MU				
, 1	c) NH ₄ Cl	d) Liquid NH ₃				
953. If an allotropic form changes slowly to a stable form.		d) Nana of those				
a) Enantiotropy b) Dynamic allotropy 954. The percentage of N ₂ in air is:	c) Monotropy	d) None of these				
	a) Poth (a) and (b)	d) Nana of those				
a) 75% by weight b) 78.7% by volume 955. Xenon best reacts with:	c) Both (a) and (b)	d) None of these				
a) The most electropositive element						
•						
b) The most electronegative elementc) The hydrogen halides						
d) Non-metals						
956. 98% H ₂ SO ₄ is:	a) Azaatwania miutuwa	d) Nama afthaga				
a) Pyrosulphuric acid b) Oleum	c) Azeotropic mixture	d) None of these				
957. Excess of KI reacts with CuSO ₄ solution and then Na	$_2$ S $_2$ O $_3$ solution is added to 1	it. Which of the statement is				
incorrect for this reaction?	-) N - C O :: d:d	d) C., I :- fd				
a) Evolved I ₂ is reduced b) CuI ₂ is formed	c) Na ₂ S ₂ O ₃ is oxidised	d) Cu ₂ I ₂ is formed				
958. The gas used in the manufacture of ice-cream is:	-) NO	J) M O				
a) CO ₂ b) N ₂ O	c) NO	d) N_2O_3				
959. A white precipitate is obtained on hydrolysis of:	a) DiCl	J) A - Cl				
a) PCl ₅ b) NCl ₃	c) BiCl ₃	d) AsCl ₃				
960. The equation, $2KClO_3 \rightarrow 2KCl + 3O_2$ indicates all of	the following, except:					
a) New compounds are formed						
b) The reaction is exothermic						
c) The law of conservation of mass is obeyed						

d) The amount of KClO ₃ decomposes				
61. In a given sample of bleaching powder the percentage of available chlorine is 49. The volume of chlorine				
obtained if 10 g of the sample is treated with HCl at NTP is:				
a) 1.5 litre b) 3.0 litre	c) 15.0 litre	d) 150 litre		
962. Which one has the highest percentage of nitrogen?				
a) Calcium nitrate	b) Ammonium sulphate			
c) Urea	d) Ammonium nitrate			
963. Which has maximum pH in aqueous solution?				
a) NaClO b) NaClO ₂	c) NaClO ₃	d) NaClO ₄		
964. Which of the following is not a drying and dehydra	ting agent?	\sim		
a) Silica gel b) P ₂ O ₅	c) Conc. H ₂ SO ₄	d) Hydrated CaCl ₂		
965. The compound that attacks pyrex glass is:				
a) XeF ₂ b) XeF ₄	c) XeF ₆	d) None of these		
966. In the reaction $K + SO_2 \rightarrow$, the products are:				
a) $KO_2 + S$ b) $K_2SO_3 + K_2S_2O_3$	c) K ₂ SO ₄	d) None of these		
967. Cl(OH)is:	•	V ·		
a) An oxide b) A chloride	c) A hydride	d) An acid		
968. Which of the following occurs in free state?				
a) N b) P	c) As	d) Sb		
969. Which one is not an acid salt?		,		
a) NaH ₂ PO ₂ b) NaH ₂ PO ₃	c) NaH ₂ PO ₄	d) None of these		
970. Oxygen is gas but sulphur is solid because:				
a) Oxygen is composed of discrete molecules while	sulphur is polymeric			
b) Molecular weight of sulphur is much higher than	A- // -			
c) Oxygen is a stronger oxidizing agent than sulph				
d) Boiling point of sulphur is much higher than tha				
971. In contact process impurities of arsenic are remove				
a) $Al(OH)_3$ b) $Fe(OH)_3$	c) Cr(OH) ₃	d) Fe_2O_3		
972. Concentrated sulphuric acid does not act as:	-) - (-)3	- 7 - 2 - 3		
a) Efflorescent b) Hygroscopic	c) Oxidizing agent	d) Sulphonating agent		
973. Which halogen does not react with water?	3, 3 3 8 8	, , , , , , , , , , , , , , , , , , ,		
a) F ₂ b) Cl ₂	c) Br ₂	d) I ₂		
974. Which hydride is most acidic?	·) <u>2</u>	- 7 2		
a) H ₂ O b) H ₂ S	c) H ₂ Te	d) H ₂ Se		
975. The discovery of isotopes began with the experime		wy 11200		
a) Xe b) Kr	c) Ar	d) Ne		
976. In the oxo-acids of chlorine Cl— O bond contains:	-,			
a) $d\pi - d\pi$ bonding b) $p\pi - d\pi$ bonding	c) $p\pi - p\pi$ bonding	d) None of these		
977. Arsenic acid is:	c) ph - ph boliding	a) None of these		
a) H ₃ AsO ₃ b) H ₃ AsO ₄	c) H ₂ AsO ₄	d) HAsO ₄		
978. The halogen that is most readily reduced is:	$C_1 \Pi_2 ASO_4$	uj IIASO4		
a) Chlorine				
b) Bromine				
c) Iodine				
d) Fluorine	hur in CO are			
979. The bond angle O—S—O and hybridization of sulp.	-	d) None of these		
a) $119.5 \degree, sp^3$ b) $119.5 \degree, sp^2$	c) $109^{\circ}28'$, sp^3	d) None of these		
980. Which of the element of nitrogen family produce m				
a) N b) P	c) As	d) Sb		
981. Halogens are placed in the VIIA group or gp. 17 of t	ne periodic table, because:			

	a) They are non-metals			
	b) They are very reactive			
	c) They are electronegati	ve		
	d) They have 7 electrons	in outermost orbit		
982.	Nitrosyl chloride is:			
	a) NOCl	b) NOCl ₂	c) NO ₂ Cl ₂	d) N ₂ OCl ₂
983.	Which of the following give	ves M ³⁻ ion most readily?		
	a) P	b) N	c) Sn	d) As
984.	There is very little differe	ence in acid strength in the	acids H_3PO_4 , H_3PO_3 , H_3PO_2	because:
	a) Phosphorus in these ac	cids exists in different oxida	ation states	
	The hydrogen in these	acids are not all bound to t	he phosphorus and have sa	nme number of
	b) unprotonated oxygen			
	c) Phosphorus is highly e	lectronegative element		
	d) Phosphorus oxides are	e less basic		
985.	Among the following mol	ecule (i) XeO ₃ (ii) XeOF ₄	(iii)XeF ₆	
	Those having same numb	er of lone pairs on Xe are		V
	a) (i) and (iii) only	b) (i) and (ii) only	c) (ii) and (iii) only	d) (i), (ii) and (iii)
986.	Which possesses highest	percentage of ionic charact	er?	
	a) HCl	b) HBr	c) HF	d) HI
987.	Bleaching powder slowly	loses its activity when it st	ands in air. This is due to:	
	a) Reaction with moisture	e to liberate O ₂		
	b) Auto oxidation			
	c) Loss of CaCl ₂			
	d) Formation of Ca(OH) ₂	4		
988.	Which statement is false?			
	a) NH ₃ is a Lewis base		>	
	b) NH ₃ molecule is triang	ular planar		
	c) NH ₃ does not act as red	ducing agent		
	d) NH ₃ (liquid) is used as	a solvent		
989.	The number of hydrogen	atom(s) attached to phosp	horus atom in hypophorus	acid is ?
	a) Three	b) One	c) Two	d) Zero
990.	Which one of the following	ng cations does not form a c	omplex with ammonia?	
	a) Ag ⁺	b) Cu ²⁺	c) Cd ²⁺	d) Pb ²⁺
991.	In the laboratory H_2S gas	is prepared by using black	lumps and dil. H_2SO_4 . The b	olack lumps are
	a) FeSO ₄	b) MnO ₂	c) FeS	d) FeSO ₃
992.	Nuclear fusion produces			
	a) Argon	b) Deuterium	c) Helium	d) Krypton
993.	Which possesses least sta			
	a) PH ₃	b) P_2H_6	c) P_2H_5	d) PH ₆ ⁺
994.		hermal stability of hydroge	, ,	
1	a) HI>HCI <hf>HBr</hf>	b) HCI <hf>HBr<hi< th=""><th>c) HF>HCl>HBr>HI</th><th>d) HI>HBr>HCl>HF</th></hi<></hf>	c) HF>HCl>HBr>HI	d) HI>HBr>HCl>HF
995.	Noble gases can be separa	-		
	a) Passing them through			
	b) Electrolysis of their co	-		
	c) Adsorption and desorp	otion on coconut charcoal		
	d) None of the above			
996.	-	atements is not valid for ox		
		trahedral four coordinated	= =	
		tleast one $P = 0$ unit and o		
	c) Orthophosphoric acid	is used in the manufacture	of triple superphosphate	

	d) Hypophosphorous acid	•		
997.	Which statement is not tru	ue for astatine?		
	a) It is less electronegativ	e than iodine		
	b) It exhibits only -1 oxida	ation state		
	•		ules will be larger than bet	ween the iodine molecules
	d) It is composed of diator		and this be target than bet	
000	•		which is definitely a metal	Lice
990.	=		s, which is definitely a metal	
000	a) Tellurium	b) Selenium	c) Sulphur	d) Polonium
999.	The increasing order of re			
			c) $Cl_2 < Br_2 < I_2 < F_2$	d) $I_2 < Cl_2 < Br_2 < F_2$
100	Coconut charcoal at - 100	°C adsorbs a mixture of:		
0.				
	a) He and Kr	b) Ar, Kr and Xe	c) Kr and Xe	d) He and Ne
100	Clathrates are			
1.				
	a) Non-stoichiometric cor	npounds	b) Complex compounds	
	c) Interstitial compounds	-	d) Ionic compounds	
100	•	ses bleach a certain substar		
	i wo pungent smening gas	ses bleach a certain substai	ice. The gases may be.	
2.	2.61 1.60		A NULL MANU	D 0 100
400	a) Cl ₂ and SO ₂	b) Cl ₂ and NH ₃	c) NH ₃ and PH ₃	d) O ₂ and CO ₂
	Nitrogen is an essential co	onstituent of all:		
3.				
	a) Proteins	b) Fats	c) Proteins and fats	d) None of these
100	Mark the halogen which s	hows electropositive chara	icter:	
4.		4		
	a) F	b) Cl	c) Br	d) I
100	Which of the following is	called Berthelot's salt?		
5.	G			
	a) (NaPO ₃) ₆	b) NaOCl	c) KClO ₃	d) KHF ₂
100	, ,	s behind no residue on heat		w, 1111 2
6.	Ti compound which leaves	belling no residue on near	tilig is.	
0.	a) Cy(NO)	b) KNO ₃	a) NII NO	d) None of these
100	a) $Cu(NO_3)_2$	3	c) NH ₄ NO ₃	d) None of these
	Phosphine on reaction wi	th hydrobromic acid gives:		
7.				
	a) PBr ₃	b) PH ₄ Br	c) PBr ₅	d) P_2H_4
100	Bleaching powder has the	molecular formula:		
8.				
	a) CaClO ₃	b) CaClO	c) CaOCl ₂	d) $Ca(OCl)_2$
100	Six volumes of oxygen, on	complete ozonisation, forr	n Volumes of ozone.	
9.		-		
	a) 2	b) 4	c) 6	d) 3
101	Jodine solution stained on	clothes can be removed by	•	-) -
0.	Tourist Boracion Stanica on	e crotiles can be removed b	, .	
0.	a) NaCl	b) NaBr	c) Na ₂ S ₂ O ₃	d) Na ₂ S ₄ O ₆
101	•	•		$u_1 Na_2 s_4 o_6$
	The substance which does	s not liberate oxygen on tre	eaument with ozofie is	
1.				
	a) PbS	b) HCl	c) SO ₂	d) Hg
	In the reaction $CaS + H_2S$	→, the products are:		
2.				
	a) $CaS_2 + H_2$	b) $CaS_3 + H_2$	c) $CaS_5 + H_2$	d) Ca + S
101	HI cannot be prepared by	heating KI with conc. H ₂ SC) ₄ because:	

3.					
	a) H ₂ SO ₄ is stronger acid	than HI			
	b) HI is stronger acid than H ₂ SO ₄				
	c) H_2SO_4 is an oxidizing agent				
		_			
101	d) HI is more volatile than			Cartal areas	
	Lead nitrate on neating gr	ves lead oxide, nitrogen dic	oxide and oxygen. The reac	tion is known as:	
4.					
	a) Combustion	b) Combination	c) Displacement	d) Decomposition	
101	Which hydride is the strong	ngest base?			
5.					
	a) AsH ₃	b) NH ₃	c) PH ₃	d) SbH ₃	
101	Which forms maximum co	, ,	, ,		
6.				A Y	
0.	a) E	b) Cl	c) Br	a) t	
101	a) F	•	С) Бі	d) I	
	Claude's process is used in	n the manufacture of:	4		
7.					
	a) N ₂	b) NH ₃	c) N ₂ 0	d) NO ₂	
101	Which is a saline oxide?				
8.					
	a) Na_2O_2	b) BaO ₂	c) Na ₂ 0	d) Fe_2O_3	
101		the strong tendency to for	, -	- 7 - 2 - 3	
9.	Willen See of elements has	the strong tendency to for	in dinoils.		
7.	-) N O F	LIRC CL	-) A- C- P-	J) Cl. T. I	
400	a) N, O, F	b) P, S, Cl	c) As, Se, Br	d) Sb, Te, I	
	Light blue colour of nitrou	is acid is due to dissolved:			
0.					
	a) 0 ₂	b) N ₂	c) N ₂ 0	d) N_2O_3	
102	Which one of the followin	g pairs of reactants does no	ot form oxygen when they r	eact with each other?	
1.					
	a) F ₂ , NaOH solution (hot,	conc.)	b) F ₂ , H ₂ O		
	c) Cl ₂ , NaOH solution (col		d) CaOCl ₂ , H ₂ SO ₄ , (dilute,	small amount)	
102			teristics: (i) It is both a pro-	•	
				-	
2.			t reacts readily with basic a	and actuic oxides. (iv) it	
	oxidses Fe at boiling point				
	a) H ₂ 0	b) CO ₂	c) H_2O_2	d) NO	
102	Most unstable hydride is				
3.					
	a) NH ₃	b) PH ₃	c) AsH ₃	d) BiH ₃	
102		ctronic structure similar to	=		
4.					
1.	a) Nitride ion	b) Chloride ion	c) Fluoride ion	d) Sodium ion	
102				d) Sodium ion	
	The gaseous mixture used	l by deep sea divers for res	piration is:		
5.					
		b) He $+ O_2$ mixture	c) Ar + O_2 mixture	d) Ne + O_2 mixture	
102	A gas that cannot be collected	cted over water is			
6.					
	a) SO ₂	b) N ₂	c) 0 ₂	d) PH ₃	
102	· -	ufacture of safe matchsticks	- -	, J	
7.	mon 15 asea in the mant				
/.	a) Dad what	h) Culmhu	a) Calami	d) 1476/46 1 1	
405	a) Red phosphorus	b) Sulphur	c) Selenium	d) White phosphorus	
	Bond angle in O ₃ molecule	e is:			
8.					

102	a) 108° 29'	b) 108° 28'	c) 116° 90' quid state and behave as si	d) 120°
102 9.	The hobie gas which show	vs abiioi iiiai beliavioui iii ii	quiù state and benave as si	aper muid is
٠.	a) Ne	b) He	c) Ar	d) Xe
103	Which of the following is a		-,	,
0.	Ü	, , , , , , , , , , , , , , , , , , ,		
	a) PF ₃	b) SbCl ₃	c) AsCl ₃	d) NF ₃
103	NH ₃ has a much higher bo	oiling point than PH_3 becau	se:	
1.				
	a) NH ₃ has a higher molec			
	b) NH ₃ undergoes umbrel			
	c) NH ₃ forms hydrogen be		1 (1 1	
102	• •	ds whereas PH_3 contains c		onic configuration will be
2.	All element belongs to gro	oup 15 and time period of t	the periodic table. Its electr	ome comiguration will be
۷.	a) $1s^2 2s^2 2p^3$	b) 1s ² 2s ² 2p ⁴	c) $1s^2 2s^2 2p^6 3s^2 3p^3$	d) $1s^2 2s^2 2p^6 3s^2 3p^2$
103	The reagent used for testi	•	c) 15 25 2p 55 5p	2) 15 25 2p 55 5p
3.			40	
	a) Bayer's reagent	b) Nessler's reagent	c) Fenton's reagent	d) Molisch reagent
103	Elements of nitrogen fami	ly having allotropic forms	are:	
4.				
	a) N, Sb, Bi	b) N, P, As, Sb	c) As, Sb, Bi	d) P, As, Bi
	An example of tetrabasic a	acid is:		
5.	2011 1 1 11			
	a) Orthophosphorus acid			
	b) Orthophosphoric acidc) Metaphosphoric acid	C)		
	d) Pyrophosphoric acid	.0.7		
103	Phosphoric acid is syrupy	liquid due to:		
6.	J 13			
	a) Strong covalent bond	b) Van der Waals' forces	c) Hydrogen bonding	d) None of these
103	Two oxides of nitrogen NO	O and NO_2 react together at	253°K and form a compou	nd of nitrogen <i>X. X</i> reacts
7.		er compound of nitrogen I		
	The shape of the anion of			
400		b) Triangular planar	c) Square planar	d) Pyramidal
	The noble gas which form	s maximum number of con	npounds is	
8.	a) Ar	h) Цо	a) No	d) Vo
103	a) Ar When conc. H ₂ SO ₄ is heate	b) He acid is con P_2O_{5} , the acid is con	c) Ne	d) Xe
9.	When cone. 112504 13 head	205, the acid is con	verteu into	
	a) Sulphure trioxide			
	b) Sulphur dioxide			
	c) Sulphur			
	d) A mixture of sulphur di	ioxide and sulphur trioxide		
104	The most reactive allotrop	pic form of phosphorus is:		
0.				
40.	a) Red phosphorus	b) Yellow phosphorus	c) Black phosphorus	d) Violet phosphorus
	P_2O_5 when treated with co	oia water gives:		
1.	a) Orthophoenhoric said	b) Metaphosphoric acid	c) Pyrophosphoric acid	d) Hypophoenhoric acid
104		represented by which of th		d) Hypophosphoric acid

2.					
	a) Na ₂ P ₂ O ₄	b) Na ₄ P ₂ O ₅	c) Na ₄ P ₂ O ₇	d) Na ₂ P ₂ O ₅	
104	Which of the following(s) when heated give nitrogen gas?				
3.			. 0		
	a) (NH ₄) ₂ Cr ₂ O ₇	b) Ba (N ₃) ₂	c) NH ₄ NO ₃	d) Both a and b	
104	Ozone is readily dissolved	, , ,	,	,	
4.	, , , , , , , , , , , , , , , , , , ,				
	a) Water	b) Turpentine oil	c) Carbon disulphide	d) Ammonia	
104	When AgNO ₃ is heated str	-			
5.	8 - 3	. 07, L			
	a) NO and NO ₂	b) NO ₂ and N ₂ O	c) NO and O ₂	d) NO_2 and O_2	
104	Agron was discovered by	2 2 2 2 2	2) 2 2 2 2	7) 12 1 12	
6.	6			A Y	
	a) Rayleigh		b) Ramsay		
	c) Both (a) and (b)		d) Frankland and Lockeye	er .	
104	Phosphorus compound us	ed as drving agent and des			
7.	1 1	7 0 0			
	a) PCl ₃	b) PCl ₅	c) P_4O_{10}	d) P ₄ O ₆	
104	How many bonding electro	, ,		7 4 0	
8.	, , , , , , , , , , , , , , , , , , ,	F	r or		
	a) 6	b) 12	c) 4	d) 8	
104	Which of the following doe	es not react with fluorine?			
9.	<u> </u>				
	a) Kr	b) Ar	c) Xe	d) All of these	
105	Which of the following ca	uses damage to the buildi	ng containing calcium and	responsible for cough and	
0.	choking in human?		> '		
	a) Sulphur	b) Carbon	c) Nitrogen dioxide	d) Sulphur dioxide	
105	CIO ⁻ disproportionate into				
1.					
	a) CI ⁻ and O	b) CI ⁻ and CIO ₃	c) CI and O	d) CI ⁻ and O ⁻	
105	Hydrofluoric acid is not pr	reserved in glass bottles be	cause:		
2.					
	a) It reacts with the visible	e part of light			
	-	m oxide of the glass compo			
		nium oxide of the glass con	nposition		
	d) It reacts with the silicon				
	SO ₂ acts as temporary blea	nching agent but Cl ₂ acts as	permanent bleaching agen	t. why?	
3.					
		action but SO ₂ due oxidatio			
		lation but SO ₂ due to reduc	tion.		
1	c) Both of the above				
	d) None of the above				
	Liquid ammonia bottles be	e opened after cooling then	n in ice for some time. It is	because liquid NH ₃ :	
4.	.				
	a) Brings tears in the eyes				
	b) Has a high vapour press	sure			
	c) Is a corrosive liquid				
105	d) Is a mild explosive	aan namarra hath	and nitrogen of the size in	a it is passed over it at	
		can remove both oxygen a	nd nitrogen of the air when	i it is passed over it at	
5.	1000°C.	h) CaCl	c) CaCN	d) Ca(CN)	
	a) CaC ₂	b) CaCl ₂	c) CaCN ₂	d) Ca(CN) ₂	

105 6.	The crystals of ferrous su	phate on heating give:		
0.	a) Fe0 + SO ₂ + H ₂ O b) Fe ₂ O ₃ + H ₂ SO ₄ + H ₂ O c) Fe ₂ O ₃ + SO ₂ + H ₂ SO ₄ + d) FeO + SO ₃ + H ₂ SO ₄ +	_		
105 7.	Which one of the followin	g reactions does not occur	?	
	a) $F_2 + Cl^- \rightarrow 2F^- + Cl_2$	<u>.</u>	b) $Cl_2 + 2F^- \rightarrow 2Cl^- + F_2$	2
	c) $Br_2 + 2I^- \rightarrow 2Br^- + I_2$	2	d) $Cl_2 + 2Br^- \rightarrow 2Cl^- + l$	Br ₂
105	By the action of hot conc l	H ₂ SO ₄ , phosphorus change	s to	
8.				
	a) Phosphorous acid		b) Metaphosphoric acid	
105	c) Pyrophosphoric acid	11.2	d) Orthophosphoric acid	
	Which is an amphoteric o	xide?		0 1
9.	a) SO ₂	b) B ₂ O ₃	c) ZnO	d) Na ₂ O
106	Anhydride of nitric acid is	, = 0	C) ZIIO	uj Na ₂ O
0.	Timiyariae of merie acia is	•		,
0.	a) NO	b) N ₂ O ₃	c) N ₂ O ₄	d) N ₂ O ₅
106	Which of the following att	, - 0	3) = 12 = 4)2 - 3
1.	· ·	<u> </u>		
	a) HCl	b) HF	c) HI	d) HBr
106	Which property of white	phosphorus is common to r	ed P?	
2.		4	Y	
	a) It is soluble in carbon of	-		
	b) It shows chemilumines		•	
	=	ic soda solution to give pho	osphine	
100	d) It burns when heated is		mirrod muodroog ablorino	and at we are town a water we?
3.	which one of the followin	g pairs of substances when	mixed, produces chlorine	gas at room temperature?
Э.	a) NaCl and MnO ₂	4 14 1	b) NaCl and HNO ₃ (conc)	
	c) NaCl and H ₂ SO ₄ (conc)		d) HCl (conc) and KMnO ₄	
106		as sulphur exhibits valency		
4.			,	
	a) S is bigger atom			
	b) Ionization potential of	sulphur is more		
	c) S being less electroneg			
	d) Presence of <i>d</i> -orbitals			
		ements is good conductor o	f electricity?	
5.		l-) Cl-	-) D:	J) All afthan
106	a) As Which one is known as oi	b) Sb	c) Bi	d) All of these
6.	Willell offe is known as of	OI VILLIOI:		
0.	a) H ₂ S ₂ O ₇	b) H ₂ SO ₃	c) H ₂ S ₂ O ₈	d) H ₂ SO ₄
106	:	olution to manufacture chl		~, ···2004
7.	<i>j</i> = <i>j</i> = = ==========================			
	a) Dennis cell	b) Gray cell	c) Nelson cell	d) Solvay cell
106	The correct order of acidi	c strength is:		
8.				
	a) $Al_2O_3 < SiO_2 < P_2O_3 $	SO_2		

106 9.	b) $SiO_2 < SO_2 < Al_2O_3 < SO_2$ c) $Al_2O_3 < SiO_2 < SO_2 < SO_2$ d) $SO_2 < P_2O_3 < SiO_2 < AO_2$ Ozone molecule has §	P_2O_3 P_2O_3		
	a) Linear Which is not true for ozon	b) Triangular e?	c) Tetrahedral	d) None of these
	a) It oxidizes lead sulphidb) It oxidizes potassium idc) It oxidizes mercuryd) It cannot act as bleaching	odide ng agent		
107	The strongest oxidizing ag	gent is:		4
	a) HNO ₃ The oxidation states of ph	b) H ₂ SO ₄ osphorus vary from:	c) H ₂ SO ₃	d) H ₂ S ₂ O ₃
2.	•			
	a) -1 to $+3$	b) -3 to $+3$	c) -3 to $+5$	d) -5 to +1
	The following elelment for	rms a molecule with eight o	of its own atoms	
3.	>	12.0		15 =
107	a) Si	b) S	c) Cl	d) P
	The correct order of acidic	c nature of oxides is in the	order	
4.	a) $NO < N_2O < N_2O_3 < NO_2 < N_2O_3$	N ₂ ∩ _r	b) N ₂ O< NO< N ₂ O ₃ < NO ₂	<n<sub>2O₅</n<sub>
	c) $N_2O_5 < NO_2 < N_2O_3 < NO_2 < NO_3 < NO_3 < NO_4 < NO_5 < $		d) $N_2O_5 < N_2O_3 < NO_2 < NO_3$	
107	Bleaching powder is mixe		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5.	01	, ,	,	
	a) HCl and HClO	b) HClO ₂ and HCl	c) HClO and HClO ₂	d) HCl and HClO ₃
107	In compounds of type ECl	$_3$, where $E = B$, P, As or Bi	the angles $Cl - E - Cl$ for d	ifferent <i>E</i> are in the order
6.				D.D D 4 D.
107	-		c) $B < P = As = Bi$	d) $B < P < As < Bi$
7.	Bleaching properties of bl	eaching powder are due to	its:	
7.	a) Oxidizing properties			
	b) Reducing properties	Y		
	c) Basic properties			
	d) Disinfecting properties			
107	One mole of calcium phos	phide on reaction with exc	ess water gives	
8.				
	a) One mole of phosphoru	s pentoxide	b) Two moles of phosphir	
107	c) One mole of phosphine	and tondon arres forms com	d) Two moles of phospho	ric acid
9.	Which noble gas has the le	east tendency to form comp	Douilus:	
9.	a) He	b) Ne	c) Kr	d) Xe
108	Mixture used on tips of ma		~, ····	~, 110
0.				
	a) S + K	b) Antimony sulphide	c) $K_2Cr_2O_7 + S + red P$	d) $K_2Cr_2O_7 + K + S$
108	A dark brown solid (X) re	acts with $\mathrm{NH_3}$ to form a mi	ld explosive which decomp	ooses to give a violet
1.	= , ,	cts with H_2 to give an acid	(Y). (Y) can also be prepare	ed by heating its salt with
	H ₃ PO ₄ . X and Y are	12.00		
	a) Cl ₂ , HCl	b) SO_2 , H_2SO_4	c) Br ₂ , HBr	d) I ₂ , HI

108 2.	The catalyst used in the m	anufacture of H ₂ SO ₄ by cor	ntact process is	
۷.	a) V ₂ O ₃	b) V ₂ O ₅	c) FeO	d) Cu
108	Which one is the stronges	•	c) 100	a) da
3.	Timen one is the stronges	eroudoning agone.		
0.	a) NH ₃	b) AsH ₃	c) SbH ₃	d) PH ₃
108	•	ing statements are correct?	•	u) 1 113
4.	-	s neutral whereas SO_3 is ac		
	* *	basic whereas nitrous oxid		
		inc oxides are amphoteric.		
	, ,	s acidic whereas phosphor		
	, , <u>-</u>	neutal whereas sulphur dic	=	
	a) (ii) and (iii)	b) (i) and (iv)	c) (i) and (iii)	d) (ii) and (iv)
108	Aqua fortis is:	2) (-) ()	·) (-) ()	3, (3) 111 (1)
5.				
0.	a) HNO ₃	b) HNO ₂	c) H ₂ NO ₂	d) $H_2N_2O_2$
108	Which among the following	· -		27-12-2
6.		-8	4/3	
	a) HF	b) HCl	c) HBr	d) HI
108	Which does not liberate 0	•		• •
7.		2 6		
	a) MgO	b) NaNO ₃	c) Pb ₃ O ₄	d) KClO ₃
108	Late discovery of F ₂ is due	, ,		, 3
8.	V 2	4		
	a) High reactivity	4		
	b) High ionization potenti	al	>	
	c) High electronegativity			
	d) High electron affinity			
108	Peroxy acids are			
9.	·	410		
	a) $H_2S_2O_3$, $H_2S_4O_6$	b) $H_2S_4O_6$, H_2SO_5	c) H_2SO_5 , $H_2S_2O_8$	d) $H_2S_2O_3$, $H_2S_2O_8$
109	The pale-yellow coloured		, , , , , , , , , , , , , , , , , , , ,	
0.				
	a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂
109	Which of the following is a	a pseudohalogen?		
1.				
	a) lCl ₃	b) lCl ₂	c) $(CN)_2$	d) N ₃
109	Cl ₂ reacts with CS ₂ in pres	sence of I ₂ catalyst to form		
2.				
	a) CHCl ₃	b) C ₂ H ₅ Cl	c) CCl ₄	d) C_2H_6
109	HBr and HI reduce sulphu	ric acid; HCl can reduce Kl	MnO ₄ and HF reduces:	
3.				
	a) H ₂ SO ₄	b) KMnO ₄	c) $K_2Cr_2O_7$	d) None of these
109	A substance X when heate	d with sulphuric acid liber	ates a gas which turns star	ch paper blue. The
4.	substance is:			
	a) NaCl	b) NaBr	c) NaI	d) NaNO ₃
109	NO ₂ is not obtained on hea	ating		
5.				
	a) AgNO ₃	b) KNO ₃	c) $Cu(NO_3)_2$	d) $Pb(NO_3)_2$
109	Concentrated H ₂ SO ₄ has g	reat affinity for:		
6.				

109 7.	a) H ₂ S How can you synthesise n	b) H ₂ O itric oxide in the laboratory	c) CO ₂ y?	d) O ₂
109	a) Zinc with cold and diluce) Copper with cold and d Number of $p\pi - d\pi$ bonds	ilute HNO ₃	b) Zinc with concentrated d) Heating NH ₄ NO ₃	HNO ₃
8.	a) Four	b) Two	c) Three	d) zero
109	Which acid has P—P linka	,	c) Tillee	u) zero
9.	winen deld has i i mike	.gc.		
٠.	a) Hypophosphoric acid			
	b) Pyrophosphoric acid			\)'
	c) Metaphosphoric acid			A Y
	d) Orthophosphoric acid			
110		ted hydrochloric acid on po	otassium chlorate we get th	nis mixture of gases:
0.	-		- 4	
	a) $CO_2 + Cl_2$	b) $0_2 + Cl0_2$	c) $Cl_2 + ClO_2$	d) $O_2 + Cl_2 + ClO_2$
110	Generally H ₂ O exists as a	liquid while H ₂ S as a gas be	ecause:	
1.				
	a) H ₂ O shows hydrogen b	onding		
	b) Molecular weight of H ₂	S is higher		
	c) Bond angle in H ₂ O is la	=		
	d) Size of '0' atom is smal			
	Ammonium salts are oxid	ized in the soil to nitrites by	y:	
2.				
	a) Denitrifying bacteria			
	b) Nitrifying bacteria			
	c) Ammonifying bacteria			
110	d) Nitrosifying bacteria	zturo of		
3.	Bleaching powder is a mix	ature or.		
Э.	a) Calcium hypochlorite a	nd calcium chloride		
	b) Calcium chlorate and ca			
	c) Calcium hypochlorite a			
	d) Calcium chlorate and ca			
110		nrough nitric acid, the prod	uct is	
4.	X .			
	a) Rhombic S	b) Amorphous S	c) Prismatic S	d) None of these
110	The chemical formula for	tartar emetic is:		
5.				
	a) CH(OH)COOH	b) CH(OH)COONa	c) CH(OH)COOK	d) CH(OH)COOSbO
	CH(OH)COOK	СН(ОН)СООК	СН(ОН)СООК	СН(ОН)СООК
	Iodine imparts brown col	our to:		
6.	-) TAT-1	L) D		D Cl.1 C
110	a) Water	b) Benzene	c) Alcohol	d) Chloroform
	Neon is extensively used i	11;		
7.	a) Cold storage units			
	b) Organic compounds			
	c) Medicines			

	d) Coloured electric disch	•		
	Fluorine exhibits an oxida	ation state of only -1 becau	se	
8.	N. 70	1		
	a) It can readily accept an	i electron	b) It is very strongly elect	=
110	c) It is a non metal		d) It belongs to halogen fa	amily
110 9.	When oxygen is passed th	nrough a solution of Na ₂ SO	₃ we get:	
	a) Na ₂ SO ₄	b) Na ₂ S	c) NaHSO ₄	d) NaH
111	F_2 on treatment with met	hane gives:		
0.				
	a) CH ₂ F ₂	b) CH ₃ F	c) CHF ₃	d) All of these
111	Coloured oxide is nitroger	n is:		
1.				
	a) N ₂ 0	b) NO	c) N_2O_4	d) NO ₂
111 2.	Oxalic acid on dehydratio	n by conc. H ₂ SO ₄ gives:	4	0/1
	a) $C + CO_2$	b) CO	c) CO ₂	d) $CO + CO_2$
111	Which of the following is	the life saving mixture for	an asthma patient?	<u> </u>
3.	_	_	18	
	a) Mixture of helium and	oxygen	b) Mixture of neon and ox	xygen
	c) Mixture of xenon and r		d) Mixture of argon and o	
111	SO ₂ reacts with Cl ₂ to yiel	ld:		
4.				
	a) Thionyl chloride	4	G X Y	
	b) Carbonyl chloride	4		
	c) Sulphuryl chloride		>	
	d) Sulphur monochloride		y	
111	Which element is used in	the preparation of pesticio	les?	
5.				
	a) Arsenic	b) Bismuth	c) Antimony	d) Nitrogen
111	Which of the following is	not a peroxy acid?		
6.				
	a) Perphosphoric acid	b) Pernitric acid	c) Perdisulphuric acid	d) Perchloric acid
111	White phosphorus is:	Y		
7.		Y		
	a) Strong poison	b) Mild poison	c) Non-poisonous	d) None of these
111	Which on heating with co	nc. H ₂ SO ₄ gives violet vapo	ours?	
8.	\bigcirc			
	a) Iodide	b) Nitrate	c) Sulphate	d) Bromide
111	Formation of ozonide is:			
9.				
	a) Addition reaction	b) Substitution reaction	c) Decomposition	d) None of these
112	Which blue liquid is obtai	ned on reacting equimolar	amounts of two gases at -	30°C?
0.				
	a) N_2O_4	b) N ₂ O	c) N_2O_3	d) N_2O_5
112	Which of the following is	oxidised in air?		
1.				
	a) CH ₄	b) H ₂ O	c) NaCl	d) White phosphorus
	Which statement is not co	orrect?		
2.	a) Mhita and wadll	omia nogat visith al-li e	voom tommoratur	
	a) with and red phospho	orus react with chlorine at	room temperature	

	c) White phosphorus is li	netastable, while red phosp ghter than red phosphorus ighly poisonous, while red	3	
112 3.	Which element does not f	orm stable diatomic molec	cules?	
	a) Iodine	b) Phosphorus	c) Nitrogen	d) Oxygen
112	H ₂ S is a:			
4.				
	a) Weak dibasic acid			
	b) Weak monobasic acid			
	c) Strong dibasic acid			
440	d) Strong monobasic acid			
	Ozone oxidises moist sulp	ohur to:		4
5.	a) CO	h) CO	a) II CO	d) Mana of these
112	a) SO ₂ Which element reacts with	b) SO ₃ :h chlorine to give pentachl	c) H ₂ SO ₄	d) None of these
6.	Willen element reacts wit	in cinorine to give pentacin	ioriue:	
0.	a) P	b) As	c) Sb	d) All of these
112	•	,	n compound X. The oxidation	,
7.				
	a) +2	b) +4	c) +6	d) 0
112	Anomalous behavior of ox	xygen is due to:		•
8.				
	a) High electronegativity	4	G,Y'	
	b) Small atomic size	4		
	c) Non-availability of <i>d</i> -or	rbitals		
	d) All of the above			
	In oxo-acids of halogen, X	Y = 0 bond is formed as a re	esult of:	
9.	a) d = d = avarlanning	b) n = n = averlanning	a) d = m = avarlanning	d) either of these
112	Fuming nitric acid is:	b) $p\pi - p\pi$ overlapping	c) $d \pi - p \pi$ overlapping	a) either of these
0.	running meric acid is.	177		
0.	a) Conc. $HNO_3 + NO_2$	b) Conc. $HNO_2 + NO_2$	c) Conc. $HNO_3 + N_2O_3$	d) Conc. HNO ₃ + NO
113		ed with conc. H_2SO_4 and so	, , ,	w) conc
1.			2 2 7	
	a) Chromic chloride			
	b) Chromous chloride			
	c) Chromyl chloride (CrO	₂ Cl ₂)		
	d) Chromic sulphate	_		
	Ozone is used for purifying	ig water because		
2.				
	a) It dissociates and relea			
	b) Do not leave any foul sc) Kills bacteria, cyst, fung			
	d) All of the above	gi allu acts as a biociue.		
113	Nitrogen is a relatively in:	active element because:		
3.	Tricrogen is a relatively in	active ciement because.		
	a) Its atom has a stable el	ectronic configuration		
	b) It has a low atomic rad	-		
	c) Its electronegativity is			
	d) Dissociation energy of			

	The following species wil	l not exhibit disproportion	ation reaction	
4.	a) CIO ⁻	b) CIO ₂	c) CIO ₃	d) CIO ₄
113	•	, <u>-</u>	room temperature from cor	
5.	8 -	r - r - r - 20	P	
	a) MnO ₂	b) H ₂ S	c) KMnO ₄	d) Cr_2O_3
113	Arsine is:			
6.				
	a) Solid	b) Liquid	c) Supersaturate liquid	d) Gas
	The arrangement of oxyg	en atoms around phosphor	rus atoms in P_4O_{10} is:	
7.	.) p	10.0 - 1.1 - 1 - 1	.) (D. Transaction I and
112	a) Pyramidal Most of the elementary or	b) Octahedral	c) Square planar	d) Tetrahedral unds. For example, chlorine
8.				ver, can be obtained only by
0.	the electrolysis of a fluori		morie acia. I laorine, nowe	ver, can be obtained only by
	a) Fluorine is a highly rea		4	
		st chemical oxidizing agen	t	
	c) Fluorine is highly poise		1	
	d) It is easy to electrolyse	a fluoride	18	
113	The number of different of	oxides of chlorine is:		
9.				
	a) 3	b) 4	c) 5	d) 6
	The gas which does not sl	how oxidizing and bleachir	ng properties is:	
0.	a) Chlarina	h) 0	Ochobou dianida	J) N:4: J -
111	a) Chlorine	b) Ozone	c) Sulphur dioxide	d) Nitrous oxide
1.	Annioma is generally ma	nufactured for fertilizers b	ly the reaction.	
1.	a) $2NH_4Cl + Ca(OH)_2 -$	\rightarrow CaCl ₂ + 2H ₂ O + 2NH ₂		
		discharge in a mixture of N	and H ₂	
	c) By reducing the bypro	- 3	2 2	
			ssure and moderate tempe	rature over a catalyst
114	Which halide of nitrogen	is least basic?		
2.				
	a) NF ₃	b) NCl ₃	c) NI ₃	d) NBr ₃
	Reagent used to distingui	sh H_2O_2 and O_3 is:		
3.	a) DhC	b) Starch and iodine	a) VMnO4	d) Planching novedon
111	a) PbS Which one liberates Br ₂ f	•	c) KMnO4	d) Bleaching powder
4.	which one liberates br ₂ i	IUIII KDI :		
1.	a) I ₂	b) HI	c) Cl ₂	d) SO ₂
114	Which chloride is explosi		-)2	., <u>.</u>
5.				
	a) PCl ₃	b) AsCl ₃	c) NCl ₃	d) SbCl ₃
114	Extra pure N ₂ can be obta	ined by heating		
6.				
	a) NH ₃ with CuO	b) NH ₄ NO ₃	c) $(NH_4)_2 Cr_2O_7$	d) Ba $(N_3)_2$
	Tincture of iodine is:			
7.) I III 1 10 1 1	••		
	a) I ₂ , KI and rectified spir	it		
	b) I ₂ and rectified spirit			
	c) KI and rectified spirit			

	d) I ₂ and water			
	What are the products for	med in the reaction of xen	on hexafluoride with silicor	ı dioxide?
8.	a) VaC:O + HE	h) VoE + C:E	a) VaOE + CiE	d) VaO + C:E
111	a) XeSiO ₄ + HF	b) $XeF_2 + SiF_4$	c) $XeOF_4 + SiF_4$	d) $XeO_3 + SiF_2$
	Mixture of sand and iodin	e can be separated by:		
9.	a) D'and that a standard	1 Charles		
	a) Dissolving in water and	=		
	b) Fractional crystallization	on		
	c) Sublimation			
	d) Separation is not possi			\wedge
	Cl ₂ gas is evolved as bypr	oduct in the manufacture o	of all the following elements	s except:
0.				
	a) Mg	b) Na	c) Al	d) K
	Which is more suitable fo	r storing concentrated ${ m H_2S}$	50 ₄ ?	
1.				
	a) Copper vessel	b) Aluminium vessel	c) Earthen vessel	d) Glass vessel
115	Sodium nitrate on heating	g with zinc dust and caustic	c soda gives:	
2.				
	a) NaNO ₂	b) NH ₃	c) NO ₂	d) N ₂ O
115	Which of the following for	rms vortex ring?		
3.				
	a) P ₂ O ₅	b) PH ₃	c) NH ₃	d) P_4O_{10}
115	When radioactive minera	ls like clevite, monazite and	d pitchblende are heated to	1273 k in vacuo the noble
4.	gas obtained is			
	a) Rn	b) Kr	с) Не	d) Ne
115	Diamagnetic oxide of chlo			
5.	5		Y	
	a) ClO ₃	b) Cl ₂ O ₆	c) ClO ₂	d) None of these
115	Best absorbent for SO ₂ is:		, 2	,
6.	Σ	\ \(\frac{1}{2}\)		
	a) H ₂ SO ₄	b) KOH(aq.)	c) Water	d) CaCl ₂ anhyd.
115	In which reaction does SQ		·, ·······	.,,
7.		2		
	a) Acidified KMnO ₄	b) Acidified K ₂ Cr ₂ O ₇	c) Acidified C ₂ H ₅ OH	d) H ₂ S
115			ave as an oxidizing agent Id	, <u>-</u>
8.	in one of the following rec	actions thros does not bene	ave as an omaizing agent ia	circity it
0.	a) $I_2 + 10HNO_3 \rightarrow 2HIO_3$	$\pm 10N\Omega_2 \pm 4H_2\Omega$		
	b) $3Cu + 8HNO_3 \rightarrow 3Cu(1)$			
	c) $4Zn + 10HNO_3 \rightarrow 4Zn($	•		
	d) $2HNO_3 + P_2O_5 \rightarrow 2HPO_3$			
115	Bleaching powder is an ex			
	bleacining powder is an ex	Rample of.		
9.	a) An acidic salt	h) A gomploy golt	a) A double colt	d) A mixed calt
116	, ,	b) A complex salt	c) A double salt	d) A mixed salt
	-	air to form A. an oxide of S	sulphur. A is dissolved in wa	iter to give an acid. The
0.	basicity of this acid is	1.3.2	.) 1	D
111	a) 2	b) 3	c) 1	d) zero
	When ammonia is dissolv	ea in water:		
1.	N 7- 1			
	a) It loses a proton			
	b) It loses an electron			
	c) It gains a proton from v	water molecule		

	d) It gains an electron from	m water molecule		
116	The $S - S - S$ bond angle	in S ₈ molecule is		
2.				
	a) 109.5°	b) 105°	c) 110°	d) 60°
116	Which of the following is	planar?		
3.		•		
	a) XeF ₂	b) XeO ₂ F ₂	c) XeO ₃ F	d) XeF ₄
116	Which oxide of N is neutra	, <u> </u>	0) 110031	4
4.	Timen omae of it is near			
••	a) N_2O_3	b) N ₂ O ₅	c) N ₂ O ₄	d) N ₂ O
116	I_2 can exist in the oxidation		c) N ₂ O ₄	u) N ₂ O
5.	12 can exist in the oxidation	m states.		
Э.	a) 1 1 2 F	b) 1 +1 +2	a) 12 15 17	d) 1 (1 +2 +F +7
116	a) -1, +1, +3, +5	=	c) +3, +5, +7	a)-1,+1,+3,+5,+/
	Ozone is manufactured by	carrying silent electric dis	scharge using:	4 7
6.				
	a) Siemens ozonizer			
	b) Brodie's ozonizer		, (4	Y
	c) Siemens and Halske's o	ozonizer		
	d) All of the above			
116	Which forms new compou	and in air?		
7.				
	a) H ₂ 0 in air	b) 0_2 in air	c) N ₂ in air	d) Phosphorus in air
116	Which statement regarding	ng He is incorrect?		
8.			G X Y	
	a) It is used in gas cooled	nuclear reactor	X)'	
	b) It is used as a cryogenic	c agent for carrying out exp	periment at low temperatur	·e
		nd sustain powerful superc	_	
	_	_	e it is lighter and non-comb	ustible
116	Reactivity of NO is due to:			
9.	reactivity of two is due to.			
٠.	a) Its low molecular weig	ht		
	b) Its gaseous state			
	c) Odd electron			
	d) None of the above			
117	•	n be done in an atmospher	a of	
	weluling of magnesium ca	in de done in an admospher	e or:	
0.	-) 0	h) II.	a) M	۹) ۱۱۱ - ۲۰۱۰
117	a) 0_2	b) He	c) N ₂	d) All of these
	Colloidal sulphur is obtain	ned by the action of HNO_3	on:	
1.		13.11.0) (1 (1	D 0 0 0
445	a) H ₂ S	b) HgS	c) CaS ₂	d) CaS ₂ O ₃
	Treatment of CS ₂ with exc	cess of Cl ₂ gives:		
2.				
	a) CCl ₄	b) CHCl ₃	c) Carbon black	d) C ₂ H ₅ Cl
	The oxygen family is char	acterised by the electronic	configuration:	
3.				
	a) $ns^2 np^4$	b) $ns^2 np^2$	c) $ns^1 np^3$	d) $ns^2 np^5$
117	Which one of the followin	g noble gases is used in mi	ner's cap lamps?	
4.				
	a) Helium	b) Neon	c) Argon	d) Krypton
117	Colour of bromine in CS ₂	is:		

5.				
	a) Green	b) Orange	c) Yellow	d) Red
117	Bleaching powder on stan	ding forms mixture of:	•	•
6.				
	a) $CaO + Cl_2$	b) HOCl + Cl ₂	c) $CaCl_2 + Ca(ClO_3)_2$	d) $CaO + CaCl_2$
117	Which statement is not co	rrect?		
7.				
	a) Xe is the most reactive	among the rare gases		
	b) He is an inert gas			
	c) Radon is obtained from	-		
		e gas found in atmosphere	is He	
	Which acid can combine w	vith its own salt again?		
8.)	13.770)	D 44
445	a) HF	b) HBr	c) HCl	d) HI
		number of compounds that	t can react with PCl ₅ to give	$POCl_3$ is O_2 , CO_2 , SO_2 , H_2O_3
9.	$H_2 SO_4, P_4O_{10}$	1.3.2		12.4
110	a) 1	b) 2	c) 3	d) 4
	when water is added in co	onc. H_2SO_4 the reaction is e	exothermic because:	
0.	a) II CO da riagona			
	a) H₂SO₄ is viscousb) Hydrates of H₂SO₄ are	formed		
	c) H ₂ SO ₄ is corrosive	iormeu		
	d) None of the above			
118	Polyanion formation is ma	aximum in		
1.	1 organion formación is me	Amium m		
	a) Nitrogen	b) Sulphur	c) Oxygen	d) Boron
118	, ,	ses in water shows the orde		,
2.	, ,			
	a) He $>$ Ar $>$ Kr $>$ Ne $>$ 2	Xe		
	b) He > Ne > Ar > Kr > X	Xe		
	c) $Xe > Kr > Ar > Ne > H$	l e		
	d) None of the above			
118	Solid Cl ₂ O ₆ exists as:			
3.	\wedge			
	a) $ClO_2^+ \cdot ClO_4^-$	b) Covalent species	c) $(ClO_3)_2$	d) None of these
118	Which of the element liste	ed below occurs in allotrop	ic forms?	
4.				
	a) Sulphur	b) Copper	c) Iodine	d) Silver
	Concentrated HNO ₃ reacts	s with I ₂ to gives		
5.		12.7707		N
110	a) HI	b) HOI	c) HIO ₃	d) HOIO ₂
	Noble gases are adsorbed	by:		
6.	a) Finely divided Pd and F	0+		
	b) Colloidal Pd	· l		
	c) Coconut charcoal			
	d) All of the above			
118	In which of the following,	NH3 is not used?		
7.	01 0110 10110 111116,	J-2 2 400 4.		
	a) Tollen's reagent			
	b) Nessler's reagent			

		analysis of IV group basic ra		
		analysis of III group basic ra		
	The element than oxidizes	s water to oxygen with evol	lution of heat is:	
8.	a) Eluorino	h) Chlorino	a) Indina	d) Promino
110	a) Fluorine Which of the following co	b) Chlorinempounds is not an "interps	c) Iodine	d) Bromine
9.	which of the following co.	impounds is not an interps	eudonaiogen :	
<i>)</i> .	a) Cl ₂ N ₃	b) BrCN	c) CICN	d) ICN
119	Which is called stranger g	_		
0.	0 0	,		
	a) Kr	b) Xe	c) He	d) Ne
119	The ratio of the gases obta	ained on dehydration of HC	OOH and H ₂ C ₂ O ₄ by conc.	H ₂ SO ₄ is:
1.				
	a) 1 : 2	b) 2 : 1	c) 1 : 3	d) 3: 1
119	Peroxy compound is:			
2.				
	a) $H_2S_2O_8$	b) $H_2S_4O_8$	c) $H_2S_2O_6$	d) $H_2S_2O_3$
	During bleaching of chlori	ine an antichlor is used to:		
3.	2.77			
	a) Enhance bleaching acti			
	b) Eliminate last traces of	= =		
	c) Remove greases from td) Liberate oxygen	ine fibre		
110	T-shaped interhalogen co	mnound is	A. V.	
4.	1-snaped internalogen co	inpound is	X y y	
••	a) ClF ₃	b) ICl	c) ClF ₅	d) IF ₅
119	The catalyst used in Deaco	-	y 3) 3
5.	J			
	a) Al_2O_3	b) CuCl ₂	c) AlCl ₃	d) MnO ₂
119	Nitre cake is:			
6.				
	a) NaHSO ₄	b) NaNO ₃	c) NaNO ₂	d) Na ₂ SO ₄
	Helium is used in balloons	s in place of hydrogen beca	use it is	
7.				
	a) Incobusible	, *	b) Lighter than hydrogen	1
110	c) Radioactive		d) More abundant than hy	drogen
	The O—O bond length in	ozone is:		
8.	a) 1.27 Å	b) 1.21 Å	c) 1.34 Å	d) 1.48 Å
110		apparatus stops on closing		u) 1.40 A
9.	The teaction in the hipp s		, the outlet, because.	
1	a) The acid becomes weal	k		
	b) Gas starts coming out f			
	c) A protective film is form	-		
	d) The contact between su	ulphide and the acid is brok	en by the presence of gas	collected in the free surface
	of the middle chamber			
120	Sulphur hepto oxide is an	anhydride of		
0.				
	a) $H_2S_2O_8$	b) H ₂ S ₂ O ₇	c) H_2SO_4	d) H_2SO_5
120	Hydrolysis of PI ₃ yields:			
1.				

	a) Monobasic acid and a s			
	b) Monobasic acid and dib			
	c) Dibasic acid and tribasi			
120	d) Monobasic acid and tri	basic acid		
	Which is not poisonous?			
2.		12.50		D 01 **
	a) NH ₃	b) PH ₃	c) AsH ₃	d) SbH ₃
	What is the number of sig	ma (σ) and pi (π) bonds pr	resent in sulphuric acid mo	lecule?
3.				
	a) 6σ , 2π	b) 6σ , 0π	c) 2σ , 4π	d) 2σ , 2π
120	In sulphate ion the oxidat	ion state of sulphur is +6 a	nd the hybridization state (of sulphur is:
4.				
	a) sp^2	b) sp^3	c) $d^2 s p^3$	d) sp^3d^2
120	The element evolving two	different gases on reaction	n with conc. Sulphuric acid	is
5.				
	a) P	b) C	c) Hg	d) S
120	Which statement is correct	ct?		
6.			4()	
	a) Ozone is a resonance h	vbrid of oxvgen		
	b) Ozone is an allotropic r	·		
	c) Ozone is an isomer of o			
	d) Ozone has no relations			
120	-	ith Na_2SO_3 solution, the co	mnound formed is	
7.	when sulphur is bolied w.	$1011 \text{ Na}_2 \text{ SO}_3 \text{ Solution, the co}$	inpound formed is	
/.	a) Codium thiogulahata	h) Codium gulphoto	a) Cadium gulphida	d) Codium novaulahata
120	a) Sodium thiosulphate	b) Sodium sulphate	c) Sodium sulphide	d) Sodium persulphate
	Number of valence electro	ons used in the Lewis struc	ture of SO ₄ are:	
8.	-) 22	L) 20	-) 10	J) N 6 41
120	a) 22	b) 20	c) 18	d) None of these
	The shape of IF ₇ molecule	: IS:		
9.		A Y		
	a) Octahedral			
	b) Pentagonal bipyramida	ır		
	c) Tetrahedral	X Y		
	d) Trigonal bipyramidal			
	The strongest acid among	st the following is		
0.				
	a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₄
121	In ordinary Cl ₂ gas Cl ³⁵ ar	nd Cl ³⁷ are in the ratio:		
1.				
	a) 1 : 3	b) 3 : 1	c) 1 : 1	d) 1 : 2
121	Which group is called buff	fer group of the periodic ta	ble?	
2.				
	a) I	b) VII	c) VIII	d) Zero
121	Gradual addition of electr	onic shells in the noble gas	es causes a decrease in the	ir
3.				
	a) Ionisation energy	b) Density	c) Boiling point	d) Atomic radius
121	Colour of iodine solution i	s disappeared by shaking i	t with aqueous solution of	
4.				
	a) Na ₂ S	b) $Na_2S_2O_3$	c) Na ₂ S	d) Na ₂ SO ₄
124	S—S bond is not present i		_	

a) $H_2 S_2 O_4$	b) H ₂ S ₂ O ₆	c) $H_2 S_2 O_8$	d) None of these
Which one among the fol	lowing non-metals is liquid	at 25°C?	
a) Promino	h) Culphur	a) Dhaanharus	d) carbon
a) Bromine	b) Sulphur	c) Phosphorus	d) carbon
A radioactive element is:			
a) Sulphur	b) Polonium	c) Tellurium	d) Selenium
Metalloid among the follo	owing is:		
5	S		^\
a) ()	h) c	c) To	d) Po
•	•		ujro
The basic character of ny	drides of the v-group elem	ents decreases in the order	
a) $NH_3 > SbH_3 > PH_3 >$	· AsH ₃	b) $SbH_3 > AsH_3 > PH_3 >$	NH ₃
c) $NH_3 > PH_3 > AsH_3 >$	SbH ₃	d) $SbH_3 > PH_3 > AsH_3 >$	NH ₃
2 At room temperature. H ₂	O is liquid while H ₂ S is a ga		
,			
a) Electronogativity of O	ia anastan than C	4 4	
= = =	-		
	•		
c) Association takes plac	e in H ₂ O due to H-bonding	while no H-bonding in H ₂ S	
d) O and S belong to diffe	erent periods		
The correct order for dec	creasing acidic strength of o	exoacids of gp.15 is:	
a) $HNO_0 > H_0ShO_0 > H_0$	$AsO_{\star} > H_{\circ}PO_{\star}$	A. VY	
		V	
, , , , , ,	J . J		
Chlorine gas can be dried	l by passing over:		
a) Ouick lime			
b) Soda lime			
c) Caustic potash sticks	474		
c) Gaustic potasii sticks			
1) C			
d) Concentrated sulphur			
d) Concentrated sulphur Which of the following be			
•			
•		c) N—F	d) N—N
Which of the following beat a) N—Cl	onds will be most polar? b) 0—F	•	d) N—N
Which of the following beat a) N—Cl	onds will be most polar?	•	d) N—N
a) N—Cl The metal which forms a	onds will be most polar? b) 0—F mide on passing NH ₃ on it a	at 300°C is:	
a) N—Cl The metal which forms a a) Magnesium	onds will be most polar? b) O—F mide on passing NH ₃ on it a b) Lead	•	d) N—N d) sodium
a) N—Cl The metal which forms a	onds will be most polar? b) O—F mide on passing NH ₃ on it a b) Lead	at 300°C is:	
a) N—Cl The metal which forms a a) Magnesium The first noble gas comp	onds will be most polar? b) O—F mide on passing NH ₃ on it a b) Lead	at 300°C is: c) Aluminium	d) sodium
a) N—Cl The metal which forms a a) Magnesium	onds will be most polar? b) O—F mide on passing NH ₃ on it a b) Lead	at 300°C is:	
a) N—Cl The metal which forms a a) Magnesium The first noble gas comp	onds will be most polar? b) 0—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄	at 300°C is: c) Aluminium	d) sodium
a) N—Cl The metal which forms a a) Magnesium The first noble gas compa	onds will be most polar? b) 0—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄	at 300°C is: c) Aluminium	d) sodium
a) N—Cl The metal which forms a a) Magnesium The first noble gas compa a) XeF ₂ Sulphurous acid can be u	onds will be most polar? b) O—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄ sed as:	c) Aluminium c) XePtF ₆	d) sodium d) XeOF ₄
a) N—Cl The metal which forms a a) Magnesium The first noble gas compa a) XeF ₂ Sulphurous acid can be u a) Oxidizing agent	b) 0—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄ sed as: b) Reducing agent	c) Aluminium c) XePtF ₆ c) Bleaching agent	d) sodium
a) N—Cl The metal which forms a a) Magnesium The first noble gas compa a) XeF ₂ Sulphurous acid can be u a) Oxidizing agent	onds will be most polar? b) O—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄ sed as:	c) Aluminium c) XePtF ₆ c) Bleaching agent	d) sodium d) XeOF ₄
a) N—Cl The metal which forms a a) Magnesium The first noble gas compa a) XeF ₂ Sulphurous acid can be u a) Oxidizing agent The ease of liquefaction of	b) 0—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄ sed as: b) Reducing agent of noble gases decreases in	c) Aluminium c) XePtF ₆ c) Bleaching agent	d) sodium d) XeOF ₄
a) N—Cl The metal which forms a a) Magnesium The first noble gas composite a) XeF ₂ Sulphurous acid can be u a) Oxidizing agent The ease of liquefaction of a) He > Ne > Ar > Kr >	b) 0—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄ sed as: b) Reducing agent of noble gases decreases in	c) Aluminium c) XePtF ₆ c) Bleaching agent	d) sodium d) XeOF ₄
a) N—Cl The metal which forms a a) Magnesium The first noble gas compa a) XeF ₂ Sulphurous acid can be u a) Oxidizing agent The ease of liquefaction of	b) 0—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄ sed as: b) Reducing agent of noble gases decreases in	c) Aluminium c) XePtF ₆ c) Bleaching agent	d) sodium d) XeOF ₄
a) N—Cl The metal which forms a a) Magnesium The first noble gas composite a) XeF ₂ Sulphurous acid can be u a) Oxidizing agent The ease of liquefaction of a) He > Ne > Ar > Kr >	b) 0—F mide on passing NH ₃ on it a b) Lead ound obtained was: b) XeF ₄ sed as: b) Reducing agent of noble gases decreases in Xe He	c) Aluminium c) XePtF ₆ c) Bleaching agent	d) sodium d) XeOF ₄
	A radioactive element is: a) Sulphur Metalloid among the follo a) O The basic character of hy a) NH ₃ > SbH ₃ > PH ₃ > c) NH ₃ > PH ₃ > AsH ₃ > At room temperature, H ₂ a) Electronegativity of O b) Difference in the bond c) Association takes place d) O and S belong to difference order for december of the correct order for december or	A radioactive element is: a) Sulphur b) Polonium Metalloid among the following is: a) 0 b) S The basic character of hydrides of the V-group element a) NH ₃ > SbH ₃ > PH ₃ > AsH ₃ c) NH ₃ > PH ₃ > AsH ₃ > SbH ₃ At room temperature, H ₂ O is liquid while H ₂ S is a gatal a) Electronegativity of O is greater than S b) Difference in the bond angles of both the molecul c) Association takes place in H ₂ O due to H-bonding d) O and S belong to different periods The correct order for decreasing acidic strength of or a) HNO ₃ > H ₃ SbO ₄ > H ₃ AsO ₄ > H ₃ PO ₄ b) H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ SbO ₄ > HNO ₃ c) HNO ₃ > H ₃ PO ₄ > H ₃ AsO ₄ > H ₃ SbO ₄ d) HNO ₃ > H ₃ AsO ₄ > H ₃ PO ₄ > H ₃ SbO ₄ Chlorine gas can be dried by passing over: a) Quick lime	A radioactive element is: a) Sulphur b) Polonium c) Tellurium Metalloid among the following is: a) 0 b) S c) Te The basic character of hydrides of the V-group elements decreases in the order a) NH ₃ > SbH ₃ > PH ₃ > AsH ₃ b) SbH ₃ > AsH ₃ > PH ₃ > AsH ₃ c) NH ₃ > PH ₃ > AsH ₃ > SbH ₃ d) SbH ₃ > PH ₃ > AsH ₃ > AsH ₃ > AsH ₃ > PH ₃ > AsH ₃ > PH ₃ > AsH ₃ > AsH ₃ > PH

122 8.	The reason why conc H ₂ S	O ₄ is used largely to prepa	re other acids is that conc F	I_2SO_4	
	 a) Is highly ionised c) Has high specific gravity and density A cold, green flame can be made by passing CO₂ o 		b) Is dehydrating agent d) Has a high boiling point ver warm:		
9.					
123 0.	a) Bronze Which one of the followin	b) White P g reacts with glass?	c) Grey Sn	d) Green candles	
	a) H ₂ SO ₄ Super halogen is:	b) HF	c) HNO ₃	d) K ₂ Cr ₂ O ₇	
	a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂	
	The gas which is supported	er of combustion is:			
2.	a) NH ₃	b) N ₂ O	c) NO ₂	d) N ₂ O ₅	
123 3.	The halide that cannot act	, <u>-</u>	C) NO ₂	u) N ₂ O ₅	
	a) SiCl ₄	b) SnCl ₄	c) CCl ₄	d) SF ₄	
	Which gives off oxygen or	n moderate heating?			
4.	a) Cupric oxide	b) Mercuric oxide	c) Zinc oxide	d) Aluminium oxide	
123	Which is the true covalent	•	c) Zilic Oxide	a) Aluminium Oxide	
5.		4			
	a) I ₂ O ₄	b) I ₂ O ₅	c) I ₂ O ₈	d) I ₄ O ₉	
	Which element out of He,	Ar, Kr and Xe forms least n	umber of compounds?		
6.	a) Kr	b) Xe	c) Ar	d) He	
123	Which one is the anhydric		C) AI	u) He	
7.	, and the second				
	a) ClO ₂	b) Cl ₂ O ₇	c) Cl ₂ O	d) Cl ₂ O ₆	
	Dry bleaching is done by:				
8.	a) Cl ₂	b) SO ₂	c) 0 ₃	4) H O	
123	Which chemical contains	_	c_{j} c_{3}	d) H ₂ O ₂	
9.		······			
	a) Fischer salt	b) Epsom salt	c) Fermy's salt	d) Spirit of salt	
	Which reaction represent	s the oxidizing behaviour o	of H ₂ SO ₄ ?		
0.	a) 2DCl + H CO - 2DO	OCI + 2HCI + CO CI			
	a) $2PCl_5 + H_2SO_4 \rightarrow 2PO$ b) $2NaOH + H_2SO_4 \rightarrow NaOH$				
7	c) NaCl + $H_2SO_4 \rightarrow NaHS$	= = =			
	d) $2HI + H_2SO_4 \rightarrow I_2 + S$	-			
124	Which statement is wrong	= =			
1.			_		
		elong to the same group of	periodic table		
	b) Oxygen is a gas while Sc) Both show +2, +4 and	•			
	d) H_2S shows no hydrogen				
124	Concentrated sulphuric ac	=			
2.	•	•			

124 3.	a) NaCl A solution of SO ₂ in water	b) NaF reacts with H ₂ S precipitat	c) NaOH ing sulphur. Here SO ₂ acts a	d) NaBr as:
124	a) An oxidizing agent Sulphuric acid has great a	b) A reducing agent ffinity for water because	c) An acid	d) A catalyst
4. 124	a) Acid decomposes water c) It decomposes the acid Correct order of electron a		b) It hydrolyses the acid d) Acid forms hydrates wi	ith water
5.124	a) F>Cl>Br>I The correct order of acidit	b) I>Br>Cl>F ty of halogenic acids is	c) Cl>F>I>Br	d) Cl>F>Br>I
6.1247.	a) HF <hcl<hbr<hi c)="" hi<hcl<hbr<hf="" is:<="" pearl="" td="" white=""><td></td><td>b) HI<hbr<hcl<hf d) HF<hbr<hi<hcl< td=""><td>SALL.</td></hbr<hi<hcl<></hbr<hcl<hf </td></hcl<hbr<hi>		b) HI <hbr<hcl<hf d) HF<hbr<hi<hcl< td=""><td>SALL.</td></hbr<hi<hcl<></hbr<hcl<hf 	SALL.
	a) BiOCl The nitrate which when h splinter is:	b) SbOCl eated gives-off a gas or a m	c) NOCl lixture of gases which cann	d) AsOCl ot relight a glowing
	a) Sodium nitrate	b) Ammonium nitrate gagent in its reaction with:	c) Lead nitrate	d) Potassium nitrate
125 0.	a) Ba(OH) ₂ Nitric oxide is prepared by	b) Zn y the action of cold dil. HNO	c) KOH) ₃ on :	d) H ₂ C ₂ O ₄
	a) Fe Which of the following ha	b) Cu logen acids has the lowest	c) Sn melting point?	d) Zn
	a) HF The lone pair present on N	b) HCl N family hydrides more eas	c) HBr ily participates in bond for	d) HI mation in:
	a) AsH ₃ Which does not react with	b) PH ₃ 1 KMnO ₄ solution?	c) NH ₃	d) SbH ₃
	a) 0 ₃ Noble gases are prepared		c) H ₂ S	d) H ₂ SO ₃
^	a) Condensation of gasesb) Fractionation of liquidc) Removal of nitrogen andd) Fractionation of liquid	oxygen id oxygen from air		
125 5.	When an aqueous solution	n of hypochlorite is heated:		
	a) Chlorine is evolvedb) Chlorite is formedc) Chlorate is formedd) Chlorine peroxide is formed	rmed		
	Sodium chromite is:			
6.	a) Na ₂ CrO ₄	b) Na ₂ Cr ₂ O ₄	c) Na ₂ Cr ₂ O ₇	d) Cr ₂ (SO ₄) ₃

	5 Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild					
7.	explosive.					
	a) It is a mild explosive		b) It generates high vapour pressure			
125	c) Both a and b		d) It is a lachrymatory			
	Which is the most volatile	e compound?				
8.	-) HCl	F) III	a) IID	בון (ג		
125	a) HCl	b) HI	c) HBr	d) HF		
9.	in nalogen's group which	elements has highest elect	ron annity:			
9.	a) F	b) Cl	c) Br	d) I		
126		water to oxygen exotherma	,	u) i		
0.	Willell Halogells Oxidises (water to oxygen exotherme	my.			
0.	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine		
126	Chlorine is mixed with dri	•	o) Bromme	a) found		
1.		8				
	a) Bacteria are killed					
	b) Dirt is removed		Ć.			
	c) Water is cleaned		10			
	d) Suspension is removed					
126	In smoke screens calcium	phosphide is used, because	e it:			
2.						
	a) Catches fire easily					
	b) Burns and gives soot					
	c) Forms phosphine which	h gives smoke				
	d) None of the above					
	The non-metallic element	whose molecules contain	maximum number of its ato	oms is:		
3.		12.0) A	l) D		
126	a) 0	b) Si	c) As	d) P		
	Aqua-regia is					
4.	a) 1:3 conc. HNO ₃ and cor	ac HCl	b) 1:2 conc. HNO ₃ and con	ac HCl		
	c) 3:1 conc. HNO ₃ and cor		d) 2:1 conc. HNO $_3$ and con			
126	XeO_2F_2 is obtained by par		uj 2.1 conc. mvo ₃ and con	10. 1101		
5.	neozi z is obtained by par	ddi by di biy sis bi				
٥.	a) XeOF ₄	b) XeF ₆	c) Both (a) and (b)	d) None of these		
126		, 0	individual halogen because	•		
6.			O .			
	a) Two halogens are pres	ent in place of one				
	b) They are more ionic					
	c) Their bond energy is le	ss than the bond energy of	the halogen molecule			
	d) They carry more energ	у				
126	Oxalic acid when heated v	vith conc. H_2SO_{4} , gives				
7.						
	a) H ₂ O ₂ and CO ₂	b) CO and CO ₂	c) H ₂ O ₂ and CO	d) CO ₂ and H ₂ S		
	Which of the following iso	otopes is present in largest	amount?			
8.	> -16	1.5 - 17	> -10			
40.	a) 0^{16}	b) 0 ¹⁷	c) 0 ¹⁸	d) All in equal amounts		
	Who observed helium firs	t on the earth?				
9.	a) I athaw Ma	h) Damar	a) Charalt	J) D 41 C 1		
	a) Lothar Meyer	b) Ramsay	c) Sheele	d) Rutherford		

127 0.	7 The group 15 or VA group elements are commonly known as:				
0.	a) Halogens	b) Normal elements	c) Pnictogens	d) None of these	
127	, ,	=	e of electrons involved per		
1.					
	a) 8	b) 4	c) 3	d) 6	
	Sulphuric acid reacts with	n PCl ₅ to yield:			
2.	a) Thionyl chloride	b) Sulphuryl chloride	c) Phoenhoric acid	d) Sulphur monochlorid	
127	•	mpounds can not be stored	c) Phosphoric acid	a) Sulphul monochioria	
3.	winen of the following co	impounds can not be stored	a iii giass vesseis.		
	a) XeF ₄	b) XeF ₆	c) XeO ₃	d) XeF ₂	
127	Which is tribasic acid?				
4.					
	a) H ₃ PO ₂	b) H ₃ PO ₄	c) H ₄ P ₂ O ₇	d) H_3PO_3	
	Which substance chars w	hen warmed with conc. H ₂	SO ₄ ?	X.	
5.	a) Protein	b) Fat	c) Hydrocarbon	d) Carbohydrate	
127	•	with conc. H_2SO_4 and MnO_2		d) Carbonyurate	
6.	vinen naonae is neatea v	vien cone. 112004 and 141102	the gas evolved is.		
	a) HF	b) F ₂	c) SF	d) None of these	
127	The compound of sulphur	used as a solvent in rubbe	er industry is		
7.					
	a) SO ₂ (OH)Cl	b) SO ₂	c) SO ₃	d) S ₂ Cl ₂	
	Which one can be used to	test for H ₂ S gas?			
8.	a) A smell of rotten egg	C '			
	b) A violet colouration wi	th sodium nitroprusside			
	c) Turning lead acetate pa				
	d) All of the above				
127	When H ₂ S is passed throu	igh nitric acid solution, the	product formed is:		
9.	4				
	a) Milk of Sulphur	b) colloidal Sulphur	c) γ – sulphur	d) β – sulphur	
	Sulphurous anhydride is:				
0.	a) SO ₂	b) SO ₃	c) HSO ₃	d) SO ₃ ²⁻	
128	, ,	in ozonized oxygen is abou	- 0	u) 30 ₃	
1.	The percentage of ozone i	in ozomzeu oxygen is ubou			
	a) 10%	b) 40%	c) 80%	d) 100%	
128	The weakest acid among	the following is:			
2.					
	a) HClO	b) HBr	c) HClO ₃	d) HCl	
	White phosphorus may be	e separated from red phos	phorus by:		
3.	a) Sublimation	b) Distillation	a) Dissolving in CS	d) None of those	
128		l angles in H ₂ S, NH ₃ , BF ₃ ar	c) Dissolving in CS ₂	d) None of these	
4.	The correct or der or bolle	. a	14 JII 14 101		
	a) $H_2S < NH_3 < BF_3 < Si$	H_4			
	b) $NH_3 < H_2S < SiH_4 < H_3$	•			
	c) $H_2S < NH_3 < SiH_4 < F_4$	BF_3			

	d) H ₂ S < SiH ₄ < NH ₃ < B Solid PCl ₅ exists as:	F_3				
5.	a) PCl ₅	b) PCl ₄ ⁺	c) PCl ₆	d) PCl ₄ and PCl ₆		
128	Among the fluorides given		, ,	uj i ci ₄ anu i ci ₆		
6.	2					
	a) NaF	b) CaF ₂	c) SF ₆	d) IF ₅		
128	Ammonia is soluble in wat	ter because it is:	-			
7.						
	a) A polar molecule	b) Bronsted base	c) Both (a) and (b)	d) None of these		
	Formula of iodine phospha	ate is:				
8.						
120	a) I ₃ PO ₄	b) I ₂ (PO ₄) ₃	c) IPO ₄	d) I ₂ PO ₄		
	The tetrahedral nature of	the three bonds in a chlora	te ion (CIO_3) is due to:			
9.	a) The presence of a lone p	nair of alactrons	4			
	b) sp^3 -hybridization	pair of electrons				
	c) sp^2 -hybridization		4/15			
	d) Trigonal bipyramidal sh	nape of ion				
129	Which acid on keeping for	•	colour?			
0.						
	a) HF	b) HCl	c) HBr	d) HI		
129	Potassium chlorate on hea	nting with conc. H ₂ SO ₄ give	es:			
1.						
	a) Chlorine dioxide	b) HClO ₄	c) KHSO ₄	d) All of these		
	In the reaction, $HNO_3 + P_4$	$0_{10} \rightarrow 4HPO_3 + x$, the pro	duct x is			
2.	a) NO ₂	b) N ₂ O ₅	a) N. O	4) II O		
129	Which has the strongest be	, = 0	c) N_2O_3	d) H ₂ O		
3.	willen has the strongest b	ona.				
	a) F – Br	b) F – Cl	c) F – F	d) Cl – Br		
129	The forces of cohesion in l	A		,		
4.						
	a) Covalent	b) Ionic	c) Van der Waals'	d) Metallic		
	When molten sulphur is su	uddenly cooled by pouring	into water, it takes the form	n of		
5.						
120	a) Milk of sulphur	b) Colloidal sulphur	c) Flower of sulphur	d) Plastic sulphur		
	Which does not react with	H_2SO_4 to form H_2 ?				
6.	a) Al	b) Pb	c) Zn	d) Mg		
129	A certain compound when	•		, ,		
7.		-	queous solution of pH 3 ne			
	in the compound are:		4			
	a) C, S, O	b) C, H, Na	c) C, H, S	d) C, H, Ca		
129	The starting material in Bi	rkeland and Eyde's proces	s for the manufacture of HI	NO ₃ is:		
8.						
	a) NH ₃	b) NO ₂	c) Air	d) Chile saltpetre		
	Anhydride of sulphuric act	id is:				
9.	.) (0	1) (0	-) II C O	D II CO		
	a) SO ₂	b) SO ₃	c) $H_2S_2O_3$	d) H_2SO_3		

	30 The essential element of nitrogen fixation is:				
0.	.) 7	h) C	-) M-	מ (ג	
120	a) Zn	b) Cu	c) Mo	d) B	
	which one of the followin	g configuration represents	a noble gas?		
1.	a) 1 a ² 2 a ² 2 m ⁶ 2 a ²		b) 1 a 2 2 a 2 2 m 6 2 a 1		
	a) $1s^2$, $2s^2$ $2p^6$, $3s^2$ c) $1s^2$, $2s^2$ $2p^6$		b) $1s^2$, $2s^2$ $2p^6$, $3s^1$ d) $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$, 4.	-2	
120	, ,	m maluhalida iam?	a) 15 ⁻ , 25 ⁻ 2p ⁻ , 35 ⁻ 3p ⁻ , 4a	S ⁻	
	Which halogen do not form	m polynalide ion?			
2.	a) E	b) Cl	a) Dr	4) I	
120	a) F	•	c) Br	d) I	
3.	Oxygen is manufactured b	y fractional distination of:			
3.	a) H ₂ O	b) H ₂ O ₂	c) Na ₂ O ₂	d) Liquid air	
130	Which is not the property	·	$C_1 Na_2 O_2$	u) Liquiu aii	
4.	willen is not the property	of introgen:			
1.	a) Hydrogen bonding	b) Catenation	c) Supporter of life	d) Low b.p.	
130		niscus after reaction with o		и) цом в.р.	
5.	Willelf filetal loses its file.	inseus arter reaction with or	zone.		
O.	a) Ag	b) Hg	c) Pb	d) Cu	
130	The two electrons in heliu	, ,	,, , ,	,	
6.					
	a) Occupy different shells				
	b) Have different spins				
	c) Have the same spins	4			
	d) Occupy different subsh	ells of the same subshell			
130	Which of the following is a	not tetrahedral?	> '		
7.		26			
	a) SCl ₄	b) SO ₄ ²⁻	c) Ni(CO) ₄	d) NiCl ₄ ²⁻	
130	The hydrolysis of PCl ₃ pro	oduces:			
8.					
	a) $H_3PO_3 + HClO$	b) $H_3PO_3 + HCl$	c) $H_3PO_4 + HCl$	d) $PH_3 + HClO$	
130	NaOH can absorb:				
9.					
	a) N_2O_5	b) NO	c) N ₂ O	d) All of these	
131	The electron affinity of ha	logens shows the order:			
0.					
	a) $I > Cl > F > Br$		c) $F > Cl > I > Br$	d) $F > I > Cl > Br$	
131	On heating ozone its volument	mes:			
1.					
	a) Decreases to half				
1	b) Becomes double				
	c) Increases to 3/2 times				
	d) Remains unchanged				
	Which non-metal does no	t combine directly with Cl ₂	, Br ₂ and I ₂ ?		
2.					
	a) Carbon	b) Nitrogen	c) Oxygen	d) All of these	
	Oleum or fuming H ₂ SO ₄ is	5:			
3.	.	2 1 11			
	a) A mixture of conc. H ₂ SO		1		
	b) Sulphuric acid which gi	ives fumes of sulphur dioxi	ae		

	d) A mixture of sulphuric acid and nitric acid N_2 forms NCl_3 , whereas P can form both PCl_3 and PCl_5 why?						
4.	 a) P has low lying 3 d orbi b) N₂ atom is larger than c) P is more reactive tows d) None of the above 	P in size	bonding but N ₂ does not ha	ve low lying 2 <i>d</i> orbital			
1315.	Which of the following is	pseudohalogen?					
131 6.	a) IF ₇ The decreasing order of b	b) (CN) ₂ o.p. or m.p. of halogens is:	c) ICl ₂	d) I ₃			
	a) $I_2 > Br_2 > Cl_2 > F_2$ Nitrogen (I) oxide is prod	b) $F_2 > Cl_2 > I_2 > Br_2$ luced by:	c) $Cl_2 > Br_2 > I_2 > F_2$	d) $F_2 > I_2 > Cl_2 > Br_2$			
	a) Thermal decompositiob) Disproportionation ofc) Thermal decompositiod) None of the above	N_2O_4	TING				
131 8.	SO_3 on reacting with cond	c. HCl gives:	07				
131 9.	a) Chlorosulphonic acid An inorganic compound p	b) Cl ₂ + H ₂ SO ₃ producing organic compout	c) $Cl_2 + H_2SO_4$ and on heating is:	d) None of these			
122	a) Sodamide	b) Ammonium cyanate	c) Sodalime	d) Potassium cyanide			
0.	Formula of calcium chlori	~Q~					
132 1.	a) CaClO ₂ The gas not absorbed by o	b) Ca(ClO ₂) ₂ coconut charcoal is	c) Ca(ClO ₃) ₂	d) Ca(ClO ₄) ₂			
132	a) He A black sulphide when tre	b) Ne eated with ozone becomes	c) Ar white. The white compound	d) Kr l is:			
	a) ZnSO ₄ Sulphur on oxidation with	b) CaSO ₄ n hot sulphuric acid gives:	c) BaSO ₄	d) PbSO ₄			
	a) SO ₃ Which loses weight on ex	b) SO ₂ posure to the atmosphere?	c) H ₂ SO ₄	d) None of these			
4.	a) Conc. H ₂ SO ₄ b) NaOH						
132 5.	c) Anhyd. AlCl ₃ d) Saturated aqueous solu The correct order of heat	ution of CO ₂ of formation of halogen ac	ids is?				
132		=	c) HCl>HF>HBr>HI phosphorus pentoxide and	d) HCl>HBr>HF>HI phosphorus trioxide are			
 6. 132. 	respectively a) 5, 5 Rhombic and monoclinic	b) 6, 5 sulphur are:	c) 5, 6	d) 6, 6			

7.				
	a) Isobars	b) Isomers	c) Isotopes	d) Allotropes
132	Copper turning on heating	g with conc.H ₂ SO ₄ produce		
8.				
	a) H ₂ S	b) O ₂	c) SO ₃	d) SO ₂
132	Which one of the followin	g represents noble gas con	figuration?	
9.				
	a) $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d^{10}$,	$4s^2 4p^64d^{10}$,		
	5s ² ,5	p ⁶ 5d ⁶ ,6s ²		
	b) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,			
		$p^6 5d^1$, $6s^2$		
	c) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,	$4s^2 4p^64d^{10}$		
	, $5s^25p^6$			
	d) 1s ² ,2s ² 2p ⁶ ,3s ² 3p ⁶ 3d ¹⁰ ,	4s ² 4p ⁶ 4f ¹⁴ ,5s ² 5p ⁶ 5d ¹		
			4	
	Which of the following is	more acidic in nature?		X .
0.	.) HGIO	L) HCIO	2 HGIO 4 4	D HCIO
122	a) HCIO	b) HCIO ₂	c) HCIO ₃	d) HCIO ₄
	The lattice energy of lithiu	ım halides in the following	order	
1.	a) 1:E > 1:Cl > 1:Dm > 1:1	•	b) I:I > I:D > I:Cl > I:E	1
	a) LiF > LiCl > LiBr > Lilc) LiCl > LiF > LiBr > Lil		b) LiI > LiBr > LiCl > LiF d) LiBr > LiCl > LiF > LiI	
122	•	ı ı potassium iodide solution		
2.	Tourne readily dissolves in	i potassium iouide solution	giving	
۷.	a) I ⁻	b) KI ⁻	c) KI ₂	d) KI ₃
133	•	g is not true at room tempe		uj M3
3.	Willest one of the following	g is not true at room tempt	ratare and pressure.	
	a) P_4O_{10} is a white solid		b) SO ₂ is a colourless gas	
	c) SO ₃ is a colourless gas		d) No ₂ is brown gas	
133	,	and H ₂ Te one having higher		
4.	0 2 2 2		•	
	a) H ₂ S because of hydrog	en bonding	b) H ₂ Se because of lower	molecular weight
	c) H ₂ Te because of higher	molecular weight	d) H ₂ O because of hydrog	en bonding
133	Which of the following ac	id posses oxidising, reducir	ng and complex forming pro	operties?
5.		Y		
	a) HCl	b) H ₂ SO ₄	c) HNO ₂	d) HNO ₃
133	The number of π -bonds p	resent in NCl ₃ is:		
6.				
	a) 1	b) 2	c) 3	d) None of these
	Ammonium chloride is re	moved from its mixture by:	:	
7.				
	a) Filtration	b) Distillation	c) Sublimation	d) A magnet
	White smoke is formed w	hen ammonia gas meets wi	ith:	
8.) TAT .	1) 1101) II (O	DIMO
122	a) Water	b) HCl	c) H ₂ SO ₄	d) HNO ₃
	Pure Cl ₂ is prepared on he	eaung:		
9.	a) NaCl	h) D+Cl	c) CuCl	d) All of those
121	a) NaCl	b) PtCl ₄ 1 refrigeration because of it	c) CuCl ₂	d) All of these
0.	Liquiu ammonia is useu ii	i i cii igei alion because oi n	ເວ	
υ.	a) High dipole moment		b) High heat of vaporisation	on
	a, mon arpore moment		-, mon near or vaporisation	~

134	c) High basicity The acid used in soft drin	ks is:	d) All of the above	
1.				
134	a) H ₃ PO ₄ Which of the elements of	b) H ₃ PO ₃ group VA does not show all	c) HPO ₃ lotropy?	d) H ₃ PO ₂
2.				
	a) N	b) Bi	c) P	d) As
134	In the electrothermal pro-	cess, the compound displac	ced by silica from calcium p	hosphate is
3.				
	a) Calcium phosphide		b) Phosphine	
	c) Phosphorus		d) Phosphorus pentoxide	
134	It is possible to obtain oxy	gen from air by fractional	distillation because:	
4.				
	, , ,	group of periodic table from	n nitrogen	
	b) Oxygen is more active to	•	4	
	c) Oxygen has higher boil	0.		
	d) Oxygen has lower dens	sity than nitrogen	, (4	Y
	NH ₃ is an example of:			
5.				
	a) Molecular hydride	b) Polymeric hydride	c) Metallic hydride	d) Interstitial hydride
134	When SO ₂ reacts with nit	rous acid, the compound fo	rmed is:	
6.				
	a) H ₂ S	b) S	c) SO ₃	d) H_2SO_4
134	Among the halogens, the	one which is oxidized by ni	tric acid is	
7.				
	a) Iodine	b) Bromine	c) Fluorine	d) Chlorine
	Which is most basic of the	e following oxides?		
8.				N 41 0
	a) Na ₂ O	b) BaO	c) As_2O_3	d) Al_2O_3
	Which is stronger acid?			
9.)	1) 17 20)	D. V.
	a) H ₂ SeO ₄	b) H ₂ SO ₄	c) H ₂ TeO ₄	d) H ₂ O
	Ammonia on reaction wit	h hypochlorite anion, can f	orm	
0.)	D WYO
40=	a) NO	b) N ₂ H ₄	c) NH ₄ Cl	d) HNO ₂
	Which of the following co	mpounds do not exist?		
1.) W MGI DG	LAN MOL MO) pal pa wal	D. DO. D. M.G.
425	a) N ₄ , NCl ₅ , PO ₂	b) N ₂ , NCl ₃ , NO ₂	c) PCl_5 , P_2O_5 , NCl_3	d) PO_2 , P_4 , NCl_3
	Oxidation of ammonia by	CuO yields:		
2.		LINO	.) NO	D NO
405	a) N ₂	b) N ₂ O ₅	c) NO	d) NO ₂
	For chrome plating the ele	ectrolytic bath contains:		
3.) 11010 1 11 00	10 Ch	L) I/ C . O	D Character Labore
125		b) Chromic acid and conc		d) Chromic sulphate
_			ontainer. It is subjected to	
4.			.what is the volume of ozon	
125	a) 50	b) 60	c) 30	d) 40
	what is the correct order	of occurrence (% by weigh	it) in air of Ne, Ar and Kr?	
5.	-) N-> A-> U	la) Aus Nas II a	a) Aus IV. a M	J) M -> 17 -> A -
125	a) Ne>Ar>Kr	b) Ar>Ne>Kr	c) Ar>Kr>Ne	d) Ne>Kr>Ar
135	The source of most of the	noble gases is:		

6.				
	a) Decay of radioactive m	ninerals		
	b) The atmospheric air			
	c) The natural gases com	ing out of the earth		
	d) The decay of rocks			
135	Incorrect statement for p	yrophosphorus acid H ₄ P ₂	0_5 is	
7.				
	a) It contains p in +5 oxi	dation state	b) It is dibasic acid	
	c) It is strongly reducing	in nature	d) In contains one P—0	—P bond
135	$SO_2 + H_2S \rightarrow product.$ The	e final product is		
8.				
	a) H ₂ O+S	b) H ₂ SO ₄	c) H_2SO_3	d) H ₂ S ₂ O ₃
135	Pure HBr gas may be ol	btained by heating sodiun	n bromide with syrupy p	hosphoric acid and not with
9.	concentrated sulphuric a	cid because concentrated s	ulphuric acid is:	
	a) More volatile	b) Less stable	c) A weaker acid	d) An oxidizing agent
136	Fertilizer having the high	est nitrogen percentage is:		
0.			. (*
	a) Calcium cyanamide	b) Urea	c) Ammonium nitrate	d) Ammonium sulphate
136	Which gas is evolved by t	the treatment of magnesium	n with very dilute solution	n on HNO ₃ ?
1.				
	a) N ₂	b) NO ₂	c) H ₂	d) H_2O
136	In colour discharge tubes	s, which is used?		
2.				
	a) Ne	b) Ar	c) Kr	d) He
	Which of the following hy	ydrogen halides has the hig	hest boiling point?	
3.				
	a) HI	b) HBr	c) HCl	d) HF
136	Which of the following st	atement is not true?		
4.				
	a) HF is stronger than HC			
	<u> </u>	lide is the most powerful re	educing agent	
	c) Radon is obtained from	-		
	d) Xe is most reactive gas			
	In which of the following	chlorine is not used:		
5.				D 4 1 4 6
	a) As germicide	b) As oxidant	c) As cutting tool	d) As disinfectant
	Solubility of iodine in wa	ter may be increased by ad	ding	
6.) all 1		125	
	a) Chloroform		b) Potassium iodide	
400	c) Carbon disulphide		d) Sodium thiosulphate	
_	Platinum, palladium and	iridium are called noble me	etals because	
7.	2 416 1 1 1 1	1.1		
_	a) Alfred nobel discovere			
	b) They are found in nation			
		ous and pleasing to look at		
126		s many common reagents	, TATI , 1	
		nfectant for purification of	_	germs are killed. But
8.		stroyed. It is due to disprop		1) (-0 (1 - 1 (0
126	a) CaCl ₂ and Cl ₂	b) CaCl ₂ and Ca(ClO ₃) ₂	cj cao and ci ₂	d) CaO, Cl ₂ and CaCl ₂
	Marshall's acid is:			
9.				

	a) $H_2S_2O_5$ The word neon signifies:	b) H ₂ S ₂ O ₈	c) H ₂ SO ₃	d) H ₂ SO ₅
	a) New Paramagnetic oxide is:	b) Old	c) Strange	d) None of these
1. 137 2.	a) NO Fluorosis disease is cause	b) N_2O_4 d due to the reaction of	c) P_4O_6 with excess of fluorine in	d) N ₂ O ₅ the body.
۷.	a) Ca	b) Mg	c) Fe	d) K
137	Among the halogens, the o	one which is oxidised by nit	tric acid is	
3.) FIL 1	137.10	2011	n n
127	a) FluorineWhich has the lowest boil	b) Iodine	c) Chlorine	d) Bromine
4.	which has the lowest boll	ing point:		
	a) NH ₃	b) PH ₃	c) SbH ₃	d) BiH ₃
	The elements S, Se, Te can	have two positive oxidation	on states. Which one of the	following is correct?
5.	2.44	13 . 2 . 1 . 4	2 + 4 - 1 + 0	
127	a) +4 and +6 The basicity of orthophosy	b) +2 and +4	c) +4 and +8	d) +2 and +6
6.	The basierty of of thophos	phoric acid is		
	a) 2	b) 4	c) 3	d) 5
137	Which sulphide is used in	the manufacture of "strike	anywhere" matches?	
7.) D C	l) n c		D.M. C.I.
127	a) P ₂ S ₅ Euchlorine is a mixture of	b) P ₂ S ₃	c) Sb ₂ S ₃	d) None of these
8.	Lucinornic is a mixture or	<u> </u>		
	a) $Cl_2 + ClO_2$	b) Cl ₂ + Cl ₂ 0	c) $Cl_2O_3 + ClO_2$	d) $Cl_2O + Cl_2O_3$
137	Liquid oxygen:			
9.	N			
	a) Is an important constitutionb) Is used for artificial res			
	c) Mixed with finely divid	-		
	d) All of the above			
	Acetic acid is added while	preparing a standard solut	tion of $CuSO_4 \cdot 5H_2O$ to pre	vent:
0.	a) Hydration	b) Reduction	c) Hydrolysis	d) Complex formation
138	XeF ₂ molecule is	b) Reduction	c) flydfolysis	u) Complex formation
1.	2			
	a) Square planar		b) Trigonal bipyramidal	
2.	c) Trigonal planar		d) Linear	
138 2.	lodine is placed between t	two liquids $\mathrm{C_6H_6}$ and water	:	
۷.	a) It dissolves more in C ₆ I	H ₆		
	b) It dissolves more in wa			
	c) It dissolves equally in b			
120	d) Does not dissolve in bo		l.: lCIINO 2	
138 3.	wnich of the following ox	ide of nitrogen is the anhyd	iriae of HNU ₃ ?	
J.	a) NO	b) N ₂ O ₃	c) N ₂ O ₅	d) N ₃ O ₄
138	The most stable allotropic	· - ·	, <u>L</u> J	, <u>, , , , , , , , , , , , , , , , , , </u>

4.							
	a) Rhoi	mbic sulp	hur	b) Monoclinic sulphur	c) Plastic sulphur	d) Flowers of sulphur	
138	B Permonosulphuric acid is known as						
5.							
	a) Mars	shall's ac	id	b) Caro's acid	c) Sulphuric acid	d) None of these	
138	The rea	action bet	tween c	opper and hot conc. H_2SO_4 §	gives:		
6.							
	a) SO ₃			b) SO ₂	c) $Cu(OH)_2$	d) H ₂	
138	Chlorin	e bleach	es only i	n the:			
7.							
	-	ence of ac	cid	b) Presence of alkali	c) Absence of moisture	d) Presence of moisture	
	HNO ₃ c	oxidises:					
8.	.) II O			LILC	.) ((0	D All (CA)	
120	a) H_2O_2	_	and ana	b) H ₂ S	c) SO ₂	d) All of these	
138 9.	The P -	- P — P D	ona ang	le in white phosphorus is		0 1	
9.	a) 60°			b) 90°	c) 120°	d) 109°28′	
139	,	solation (of fluori	ne, a number of difficulties		,	
0.	in the i	Solution	or maorr	ne, a number of annearces	were encountered. Which so	accinent is correct.	
0.	a) The	potential	l reauire	ed for the discharge of the fl	uoride ions is the lowest		
	-	=	=	most glass vessels			
	=			us HF gives ozonized oxyge	n		
	d) All o	f the abo	ve				
139	Match l	List I witl	h List II	and select the answer using	the codes given below:		
1.	Code	List	Code	List II			
	A	XeF ₄	1	Distorted			
	В	XeF ₆	2	octahedral Tetrahedral			
	C	XeO ₃	3	Square			
		11113		planar			
	D	XeO ₄	4	Trigonal			
	2.4.4	D 1 C	2.0.2	pyramidal) 4 4 8 4 6 2 8 2	D 4 2 D 4 C 4 D 2	
120	,	B-1, $C-1$	•	elements is radioactive?	c) A-1,B-4,C-2,D-3	a) $A-3,B-1,C-4,D-2$	
2.	VVIIICII	or the lor	iowing e	elements is radioactive:			
۷.	a) Oxyg	zen (b) Selenium	c) Polonium	d) Tellurium	
139	, .	-	ssed thr	ough acidified solution of H	•	aj renariam	
3.	***********			ough defunited bolderon of 11	201		
	a) H ₂ S0	O_3 is form	ned	b) H ₂ SO ₄ is formed	c) Sulphur sol is formed	d) H ₂ SO ₅ is formed	
139	· -			ing reactions of Xenon com		, 2 3	
4.	4 >	*			•		
	a) 3XeI	$F_4 + 6H_2$	$0 \rightarrow 2X$	$Xe + XeO_3 + 12HF + 1.5 O_2$			
	b) 2XeI	$F_2 + 2H_2$	$0 \rightarrow 2X$	$Ce + 4HF + O_2$			
	c) $XeF_6 + RbF \rightarrow Rb[XeF_7]$						
	d) XeO ₃	₃ + 6HF -	\rightarrow XeF ₆	$+3H_2O$			
	Which	blue liqui	id is obt	ained on reacting equimola	r amounts of two gases at -3	30°c?	
5.	\			13.17.0) W 0	D. W. O.	
100	a) N_2O		1 •	b) N_2O_3	c) N_2O_4	d) N_2O_5	
	Which	one is mo	ost elect	ronegative?			
6.	a) ()			h) E	a) U	4) Cl	
	a) 0			b) F	c) H	d) Cl	

	NH ₃ gas is dried over:			
7.	a) Anhydrous CaCl ₂	b) P ₂ O ₅	c) Quick lime	d) Conc. H ₂ SO ₄
139	The largest bond angle ex	· - ·	e) Quien inne	uj concinzo 4
8.	8 8			
	a) H ₂ Se	b) NH ₃	c) H ₂ 0	d) H ₂ S
139	· -	gth of oxo-acids of chlorine	, <u>-</u>	, <u>.</u>
9.	_	_		
	a) $HClO < HClO_2 < HClO$	$_3 < HClO_4$		
	b) $HClO_4 < HClO_2 < HClO_3$) < HClO ₃		(V
	c) $HClO < HClO_2 < HClO$	$_3 < HClO_4$		
	d) None of the above			
140	The correct order of bond	d angles and stability of hyd	drides given below is:	
0.				
	a) $NH_3 > PH_3 > AsH_3 >$			
	b) $NH_3 > AsH_3 > PH_3 >$	-		
	c) $SbH_3 > AsH_3 > PH_3 >$	_	, (4	
	d) $PH_3 > NH_3 > AsH_3 >$			7
	The reaction of P ₄ with ac	queous NaOH gives		
1.) P(011)	1) P.O.) DOWN	D DV
4.40	a) $P(OH)_3$	b) P ₂ O ₅	c) P(OH) ₅	d) PH ₃
		ourless gas with irritating si	$mell.[Y] + K_2Cr_2O_7 + H_2SO$	$0_4 \rightarrow$ Green solution [X] and
2.	[Y] are:	l-) Cl= HCl	-) C2= II C	4) CO2= CO
140	a) SO_3^{2-} , SO_2	b) Cl ⁻ , HCl	C) 57, H ₂ 5	d) CO_3^{2-} , CO_2
3.	The smell of nitrogen dio	xide is:		
3.	a) Pleasant	b) Pungent	c) Not known	d) All are wrong
140	•	rea reacts with nitrous acid	•	u) All are wrong
4.	The gas obtained when a	rea reacts with hitrous acid	113.	
1.	a) N ₂	b) NO	c) N ₂ O	d) NO ₂
140	The species that does not		c) 1120	u) 110 ₂
5.	The species that accomo	contain peromae fon is		
	a) PbO ₂	b) H ₂ O ₂	c) SeO ₂	d) BaO ₂
140	Phosphine is prepared by		, -	, -
6.				
	a) P and HNO ₃	b) P and H ₂ So ₄	c) P and NaOH	d) P and H ₂ S
140	Which of the following do	oes not react with AgCl?		
7.				
	a) $Na_2S_2O_3$	b) NH ₄ OH	c) NaNO ₃	d) Na_2CO_3
140	The oxidizing property of	f nitric acid is due to:		
8.				
	a) Its concentration			
	b) The positive valency o	f N		
	c) Its dilution			
	-	-	of nitrogen in its highest sta	te of oxidation
	The reaction showing end	dothermic nature and redu	ction of halogen is:	
9.	1			
	a) $F_2 + \frac{1}{2} O_2 \longrightarrow F_2 O$			
	b) $Cl_2 + O_2 \rightarrow Cl_2O$			
	, <u>, , , , , , , , , , , , , , , , , , </u>			

- c) $F_2 + H_2O \rightarrow 2HF + \frac{1}{2}O_2$
- d) None of the above
- 141 Calcium carbide when heated with nitrogen forms:

0.

- a) Ca₃N₂
- b) Ca(CN)₂
- c) CaCN₂
- d) $Ca(CNO)_2$

ACTIVE SITE TUTORIALS

 Date
 : 23-07-2019

 Time
 : 23:30:00

 CHEMISTRY

Marks: 5640

7.THE P-BLOCK ELEMENTS

						ANS	W	ER K	ŒY	:					
1)	С	2)	b	3)	a	4)		165)	d	166)	a	167)	a	168)	b
5)	d	6)	c	7)	a	8)	b	_	С	170)	a	171)	a	172)	d
9)	c	10)	a	11)	d	12)	d		c	174)	a	175)	b	176)	d
13)	a	14)	c	15)	b	16)	d		a	178)	b	179)	d	180)	С
17)	a	18)	c	19)	a	20)	a	404	b	182)	b	183)	a	184)	d
21)	b	22)	d	23)	a	24)	d	185)	a	186)	С	187)	b	188)	d
25)	d	26)	d	27)	b	28)	c	189)	a	190)	d	191)	С	192)	a
29)	c	30)	b	31)	a	32)	b	193)	d	194)	a	195)	b	196)	b
33)	c	34)	c	35)	c	36)	b	197)	d	198)	b	199)	С	200)	b
37)	b	38)	a	39)	a	40)	a	201)	c	202)	đ	203)	c	204)	d
41)	a	42)	c	43)	a	44)	b	205)	c	206)	b	207)	a	208)	b
45)	a	46)	a	47)	a	48)	b	209)	a	210)	c	211)	a	212)	a
49)	c	50)	a	51)	d	52)	a	213)	С	214)	d	215)	a	216)	a
53)	d	54)	d	55)	a	56)	C	217)	a	218)	b	219)	d	220)	b
57)	a	58)	c	59)	b	60)	a	221)	b	222)	b	223)	d	224)	a
61)	c	62)	c	63)	b	64)	b	225)	a	226)	b	227)	d	228)	c
65)	a	66)	c	67)	c	68)	d	229)	d	230)	b	231)	d	232)	a
69)	a	70)	d	71)	C	72)	b	233)	b	234)	b	235)	C	236)	c
73)	a	74)	d	75)	a	76)	С	237)	b	238)	C	239)	C	240)	b
77)	a	78)	C	79)	d	80)	a	241)	d	242)	d	243)	d	244)	d
81)	b	82)	a	83)	a	84)	d	245)	b	246)	C	247)	d	248)	a
85)	a	86)	d	87)	d	88)	b	,	a	250)	a	251)	b	252)	b
89)	C	90)	a	91)	d	92)	a	253)	a	254)	b	255)	a	256)	a
93)	d	94)	a	95)	C	96)	a	257)	d	258)	d	259)	d	260)	b
97)	a	98)	C	99)	d	100)	b	261)	a	262)	a	263)	a	264)	d
101)	C	102)	C	103)	С	104)	b	265)	a	266)	C	267)	С	268)	C
105)	d	106)	a	107)	a	108)	b	269)	a	270)	b	271)	d	272)	d
109)	d	110)	a	111)	d	112)	d	,	C	274)	b	275)	b	276)	a
113)	a	114)	C	115)	С	116)		277)	b	278)	b	279)	d	280)	d
117)	C	118)	C	119)	a	120)		281)	a	282)	a	283)	a	284)	d
121)		122)	a	123)	a	124)		285)	b	286)	d	287)	b	288)	c
125)	a	126)	b	127)	b	128)		289)	d	290)	a	291)	С	292)	d
129)		130)	a	131)	С	132)		293)	d	294)	d	295)	a	296)	d
133)	a	134)	a	135)	С	136)		297)	c	298)	c	299)	b	300)	a
137)	d	138)	a	139)	C	140)		301)	b	302)	d	303)	a	304)	d
141)	C L	142)	a	143)	a L	144)		305)	a	306)	b	307)	b	308)	d
145)	b L	146)	d	147)	b	148)		309)	a	310)	d h	311)	d h	312)	C
149)	b	150)	c	151)	c	152)		313)	c	314)	b	315)	b	316)	d h
153) 157)	c	154)	a L	155)	a	156)		317)	a	318)	a	319)	c	320)	b
157) 161)	C	158)	b b	159)	a	160)		321)	C	322)	C b	323)	a	324)	d
161)	d	162)	b	163)	a	164)	a	325)	d	326)	b	327)	a	328)	a

329)	a	330)	a	331)	d	332)	b	533)	a	534)	c	535)	c	536)	c
333)	d	334)	c	335)	c	336)	c	537)	d	538)	b	539)	a	540)	a
337)	b	338)	b	339)	c	340)	d	541)	b	542)	b	543)	c	544)	С
341)	a	342)	b	343)	c	344)	a	545)	b	546)	a	547)	a	548)	b
345)	c	346)	d	347)	b	348)	a	549)	b	550)	c	551)	С	552)	С
349)	a	350)	d	351)	c	352)	С	553)	d	554)	b	555)	d	556)	d
353)	a	354)	a	355)	b	356)	a	557)	d	558)	d	559)	b	560)	a
357)	b	358)	d	359)	c	360)	a	561)	c	562)	c	563)	a	564)	b
361)	d	362)	c	363)	b	364)	b	565)	a	566)	a	567)	b	568)	a
365)	a	366)	d	367)	c	368)	d	569)	c	570)	a	571)	d	572)	a
369)	c	370)	d	371)	a	372)	d	573)	a	574)	c	575)	C	576)	d
373)	b	374)	d	375)	b	376)	d	577)	c	578)	b	579)	b	580)	b
377)	b	378)	a	379)	a	380)	c	581)	b	582)	d	583)	d	584)	b
381)	c	382)	b	383)	a	384)	a	585)	d	586)	d	587)	a	588)	a
385)	d	386)	a	387)	d	388)	d	589)	b	590)	b	591)	d	592)	d
389)	a	390)	a	391)	d	392)	a	593)	d	594)	a	595)	d	596)	a
393)	a	394)	a	395)	a	396)	d	597)	a	598)	b	599)	a	600)	a
397)	b	398)	b	399)	b	400)	a	601)	d	602)	c	603)	c	604)	a
401)	b	402)	b	403)	c	404)	d	605)	b .	606)	b	607)	b	608)	c
405)	a	406)	d	407)	b	408)	c	609)	b	610)	d	611)	d	612)	b
409)	d	410)	a	411)	c	412)	b	613)	d	614)	d	615)	c	616)	C
413)	a	414)	b	415)	b	416)	b	617)	d	618)	b	619)	a	620)	b
417)	d	418)	b	419)	b	420)	a	621)	b	622)	c	623)	d	624)	a
421)	b	422)	c	423)	d	424)	b	625)	c	626)	d	627)	c	628)	d
425)	C	426)	C	427)	c	428) 🗸	C	629)	a	630)	d	631)	d	632)	c
429)	C	430)	d	431)	a	432)	b	633)	C	634)	b	635)	b	636)	d
433)	d	434)	c	435)	a	436)	d	637)	a	638)	b	639)	a	640)	a
437)	C	438)	d	439)	d	440)	a	641)	b	642)	a	643)	b	644)	a
441)	a	442)	d	443)	b	444)		645)	b	646)	c	647)	b	648)	C
445)	a	446)	d	447)	a	448)	d	649)	C	650)	d	651)	C	652)	b
449)	b	450)	C	451)	С	452)	C	-	b	654)	C	655)	d	656)	C
453)	d	454)	d	455)	b	456)		657)	d	658)	C	659)	b	660)	b
457)	C	458)	b	459)	a	460)	b	661)	d	662)	a	663)	С	664)	С
461)	d	462)	a	463)	a	464)	C	,	a	666)	a	667)	С	668)	d
465)	d	466)	a	467)	a	468)		669)	b	670)	b	671)	C	672)	b
469)	a	470)	a	471)	a	-		673)	b	674)	d	675)	b	676)	a
473)	d	474)	C	475)	d	-		677)	b	678)	d	679)	b	680)	b
477)	d	478)	a	479)	d	480)		681)	C	682)	b	683)	a	684)	d
481)	d	482)	d	483)	a	484)		685)	b	686)	b	687)	d	688)	C
485)	b	486)	C	487)	C	488)		689)	a	690)	d	691)	C	692)	b
489)	C	490)	d	491)	d	492)		693)	d	694)	C	695)	C	696)	C
493)	d 1.	494)	d	495)	a	-		697)	a	698)	d	699)	d	700)	d
497)	b	498)	C	499)	d	500)		701)	d	702)	a	703)	C	704)	d
501)	b	502)	d L	503)	C	504)		705)	a	706)	b	707)	C	708)	a
505)	C h	506)	b d	507) 511)	d	508)		709)	b	710)	b	711)	b	712)	a
509)	b b	510) 514)	d d	511) 515)	a	512) 516)		713)	C	714)	a h	715)	a	716) 720)	a
513) 517)	b	514) 518)	d	515) 510)	C h	516) 520)	C	717) 721)	C	718) 722)	b	719)	C h	720) 724)	a
517) 521)	c	518) 522)	a	519) 523)	b d	-		721) 725)	d d	722) 726)	a d	723) 727)	b b	724) 728)	a d
521) 525)	a	522) 526)	a h	523) 527)	d	524) 528)		725) 729)	d h	726) 730)	d h	727) 731)	b b	728) 732)	d
525) 529)	C	526) 530)	b h	527) 531)	C d	-		729) 733)	b b	730) 734)	b	731) 735)	b a	732) 736)	a
529)	a	530)	b	531)	d	532)	IJ	/ 33 J	U	734)	C	735)	a	736)	С

737)	d	738)	a	739) c	740) d	ł	941)	c	942)	a	943) d	944)	d
741)	a	742)	d	743) a	744) t)	945)	d	946)	c	947) c	948)	b
745)	a	746)	c	747) a	748) t)	949)	a	950)	c	951) a	952)	d
749)	b	750)	a	751) c	752) d	ł	953)	c	954)	c	955) b	956)	c
753)	a	754)	a	755) c	756) d	ı	957)	b	958)	a	959) c	960)	b
757)	b	758)	c	759) a	760) d	ł	961)	a	962)	c	963) a	964)	d
761)	a	762)	d	763) a	764) c	:	965)	c	966)	b	967) d	968)	a
765)	C	766)	a	767) b	768) d	ł	969)	a	970)	a	971) b	972)	a
769)	c	770)	c	771) b	772) d	ı	973)	d	974)	c	975) d	976)	b
773)	a	774)	d	775) a	776) t)	977)	b	978)	d	979) b	980)	b
777)	c	778)	b	779) a	780) d	ı	981)	d	982)	a	983) b	984)	b
781)	b	782)	d	783) d	784) a	ı	985)	d	986)	c	987) b	988)	b
785)	b	786)	b	787) d	788) d	ı	989)	c	990)	d	991) c	992)	c
789)	d	790)	c	791) c	792) l)	993)	d	994)	c	995) c	996)	d
793)	a	794)	c	795) d	796) d	:	997)	b	998)	d	999) a	1000)	b
797)	c	798)	b	799) a	800) t)	1001)	a	1002)	a	1003) a	1004)	d
801)	a	802)	a	803) c	804) d	ı	1005)	c	1006)	C	1007) b	1008)	c
805)	b	806)	c	807) a	808) c	:	1009)	b	1010)	c	1011) c	1012)	c
809)	a	810)	b	811) b	812) c	:	1013)	c	1014)	d	1015) b	1016)	a
813)	a	814)	b	815) d	816) d	ł	1017)	a	1018)	c	1019) a	1020)	d
817)	a	818)	d	819) b	820) c	:	1021)	c	1022)	a	1023) d	1024)	b
821)	d	822)	a	823) c	824) t)	1025)	b	1026)	a	1027) a	1028)	c
825)	d	826)	d	827) d	828) d	ı	1029)	b	1030)	d	1031) c	1032)	c
829)	d	830)	c	831) d	832) a	1	1033)	b	1034)	b	1035) d	1036)	c
833)	c	834)	c	835) b	836) d)	1037)	b	1038)	d	1039) a	1040)	b
837)	d	838)	c	839) d	840) l)	1041)	b	1042)	c	1043) d	1044)	b
841)	b	842)	c	843) c	844)	ı	1045)	d	1046)	c	1047) c	1048)	a
845)	c	846)	b	847) d	848) l)	1049)	b	1050)	d	1051) b	1052)	d
849)	b	850)	a	851) a	852) c	:	1053)	b	1054)	b	1055) a	1056)	c
853)	b	854)	c	855) d	856) ł)	1057)	b	1058)	d	1059) c	1060)	d
857)	d	858)	a	859) c	860) ł)	1061)	b	1062)	d	1063) d	1064)	d
861)	c	862)	b	863) c	864) a	ì	1065)	c	1066)	d	1067) c	1068)	a
865)	d	866)	d	867) c	868) a	ı	1069)	b	1070)	d	1071) a	1072)	c
869)	d	870)	d	871) d	872) c	3	1073)	b	1074)	b	1075) a	1076)	a
873)	a	874)	b	875) d	876) c	:	1077)	a	1078)	b	1079) a	1080)	C
877)	C	878)	b	879) a	880) ł)	1081)	d	1082)	b	1083) c	1084)	c
881)	C	882)	C	883) c	884) c	3	1085)	a	1086)	d	1087) a	1088)	a
885)	C	886)	a	887) b	888) a	ì	1089)	c	1090)	b	1091) c	1092)	c
889)	d	890)	d	891) c	892) t)	1093)	d	1094)	c	1095) b	1096)	b
893)	c	894)	d	895) b	896) d	l	1097)	c	1098)	a	1099) a	1100)	c
897)	a	898)	c	899) b	900) d	l	1101)	a	1102)	b	1103) c	1104)	d
901)	d	902)	a	903) a	904) a	ı	1105)	d	1106)	c	1107) d	1108)	b
905)	a	906)	b	907) a	908) a	ı	1109)	a	1110)	d	1111) d	1112)	d
909)	a	910)	b	911) b	912) a	ı	1113)	a	1114)	c	1115) a	1116)	d
913)	b	914)	d	915) a	916) d	l	1117)	b	1118)	a	1119) a	1120)	c
917)	b	918)	b	919) a	-		1121)		1122)		1123) b	1124)	a
921)	a	922)	d	923) b	-		1125)		1126)		1127) c	1128)	d
925)	a	926)	b	927) c	-		1129)		1130)		1131) c	1132)	c
929)	d	930)	b	931) a	-		1133)		1134)		1135) c	1136)	d
933)	c	934)	c	935) a	•		1137)		1138)	b	1139) d	1140)	d
937)	d	938)	c	939) a	940) a	ı	1141)	d	1142)	a	1143) c	1144)	c
												n 1	00

1145)	c	1146)	d	1147)	b	1148)	c	1281)	a	1282)	d	1283)	c	1284)	c
1149)	c	1150)	c	1151)	d	1152)	b	1285)	d	1286)	d	1287)	c	1288)	c
1153)	b	1154)	c	1155)	b	1156)	b	1289)	b	1290)	d	1291)	d	1292)	b
1157)	d	1158)	d	1159)	d	1160)	a	1293)	c	1294)	c	1295)	d	1296)	b
1161)	c	1162)	b	1163)	d	1164)	d	1297)	c	1298)	c	1299)	b	1300)	c
1165)	d	1166)	c	1167)	d	1168)	d	1301)	c	1302)	a	1303)	d	1304)	c
1169)	c	1170)	b	1171)	a	1172)	a	1305)	b	1306)	b	1307)	a	1308)	b
1173)	a	1174)	d	1175)	b	1176)	c	1309)	a	1310)	b	1311)	c	1312)	d
1177)	d	1178)	a	1179)	d	1180)	b	1313)	c	1314)	a	1315)	b	1316)	a
1181)	b	1182)	c	1183)	a	1184)	a	1317)	a	1318)	a	1319)	b	1320)	b
1185)	c	1186)	d	1187)	b	1188)	a	1321)	a	1322)	d	1323)	b	1324)	d
1189)	a	1190)	b	1191)	a	1192)	a	1325)	b	1326)	d	1327)	d	1328)	d
1193)	b	1194)	a	1195)	b	1196)	a	1329)	c	1330)	d	1331)	a	1332)	d
1197)	a	1198)	a	1199)	d	1200)	a	1333)	c	1334)	d	1335)	C	1336)	d
1201)	b	1202)	a	1203)	a	1204)	b	1337)	c	1338)	b	1339)	b	1340)	b
1205)	b	1206)	b	1207)	a	1208)	d	1341)	a	1342)	b	1343)	d	1344)	c
1209)	b	1210)	d	1211)	b	1212)	d	1345)	a	1346)	d	1347)	a	1348)	a
1213)	a	1214)	b	1215)	c	1216)	a	1349)	b	1350)	b	1351)	a	1352)	a
1217)	b	1218)	c	1219)	c	1220)	c	1353)	b	1354)	d	1355)	b	1356)	b
1221)	c	1222)	d	1223)	c	1224)	d	1357)	a	1358)	a	1359)	d	1360)	b
1225)	c	1226)	d	1227)	b	1228)	d	1361)	C	1362)	b	1363)	d	1364)	a
1229)	b	1230)	b	1231)	a	_		1365)		1366)	b	1367)	d	1368)	b
1233)	C	1234)	b	1235)	b	1236)	d	1369)	b	1370)	a	1371)	a	1372)	a
1237)	b	1238)	C	1239)	d	1240)	d	1373)	b	1374)	b	1375)	a	1376)	C
1241)	C	1242)	d	1243)	a	1244)	d	1377)	C	1378)	a	1379)	d	1380)	c
1245)	d	1246)	a	1247)	a	1248)	b	1381)	d	1382)	a	1383)	C	1384)	a
1249)	d	1250)	b	1251)	b))	1385)		1386)	b	1387)	d	1388)	d
1253)		1254)	d	1255)				1389)		1390)		1391)		1392)	C
1257)		1258)		1259)		_		1393)		1394)		1395)		1396)	
1261)		1262)		1263)		-		1397)		1398)		1399)		1400)	
1265)		1266)		1267)		_		1401)		1402)		1403)		1404)	
1269)		1270)		1271)		•		1405)		1406)		1407)	C	1408)	d
1273)		1274)		1275)		-		1409)	a	1410)	C				
1277)	d	1278)	d	1279)	b	1280)	a								
		7					ļ								
			7												
		_ >													
M															

THE P-BLOCK ELEMENTS

CHEMISTRY

: HINTS AND SOLUTIONS :

are

1 (c)

N₂O and NO are neutral oxides of nitrogen.

2 (b)

> Zero group members ₂He, ₁₀Ne, ₁₈Ar, ₃₆Kr, ₅₄Xe and ₈₆Rn.

3

In blood He is much less soluble than nitrogen, hence $He \rightarrow O_2$ mixture is used by deep sea divers in preference to $N_2 \rightarrow O_2$ mixture.

4 (b)

HeF4 does not exist

5

It is a fact, follow fixation of N_2 .

6 (c)

> Al, Fe, Mg all reduce dilute HNO3 into NH4NO3 while pb gives NO with dilute nitric acid $3Pb+8HNO_3 \rightarrow 3pb(NO_3)_2+2NO+4H_2O$ dilute

7 (a)

> Acid strength decreases from HClO to HIO as the electronegativity of halogen decrease

8

S in H₂S has lowest oxidation number.

9 (c)

It is a fact.

10 (a)

It is a fact.

11 (d)

NH₃>PH₃>AsH₃>SbH₃

As the electronegativity of central atom decreases bonded electron polarises towards central atom more, so, repulsion increases and bond angle increases.

12 **(d)**

 $NaNO_2 + NH_4OH \rightarrow NH_4NO_2 + NaOH$ $NH_4NO_2 \rightarrow N_2 + 2H_2O$

 $: NH_4NO_2$ is unstable, so it is prepared by reaction of NaNO2 and NH4OH.

13 **(a)**

The stability of hydrides decreases down the gp., i.e., from NH₃ to BiH₃ which can be observed enthalpy. The from their bond dissociation correct order is NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃.

 NH_2 **Property** PH3 AsH₃

SbH₃ BiH₃

 $\Delta_{\rm diss} H^{\Theta}(E-H)/{\rm kJmol}^{-1}$ 389

255

14 **(c)**

Noble gases are monoatomic.

15

Rest all are soluble in H20

16 **(d)**

 $2KI + H_2O + O_3 \rightarrow 2KOH + O_2 + I_2$

17 (a)

 $2KMnO_4 +$

 $2KOH + 2MnO_2 + KIO_3$

Oxidant Reductant

18 **(c)**

Pyrosulphuric acid is $H_2S_2O_7$ or $H_2SO_4 + SO_3$ $HO - SO_2 - OH + SO_3$.

19 (a)

 $Na_4P_2O_7$ is a salt of strong acid and strong base, so it is a neutral salt

20 (a)

> In Fischer Ringe's method, air free from moisture and CO2 is passed over a heated mixture of (800°C) of 90% $CaC_2 + 10\% CaCl_2$ in an iron tube, when following reactions take place

$$CaC_2+N_2 \xrightarrow{800^{\circ}C} CaCN_2+c$$

2C+0→2CO

 $C+O_2 \longrightarrow CO_2$

 $2CaC_2+3CO_2 \rightarrow 2CaCO_3+5C$

 $CuO+CO\rightarrow Cu+CO_2$

CO₂ gas is now absorbed by KOH solution .Thus, a mixture inert gases is obtained.

21 (b)

 $C + 2H_2SO_4 \longrightarrow CO_2 + 2SO_2 + 2H_2O$

22

 $4KNO_3 + 4H_2SO_4$

 \rightarrow 4KHSO₄ + 2H₂O + 4NO₂ + O₂

23 (a)

> F₂ on reaction with NaOH gives different products under different conditions.

(i) F_2 + dil, cold NaOH

 $2F_2 + 2NaOH(cold)(dil) \rightarrow 2NaF + H_2O + OF_2$

oxygen diflouride

(ii) F_2 +hot,conc.NaOH $4F_2$ +NaOH (hot)(dil) \rightarrow 4NaF+2 H_2 O+ O_2

24 **(d)**

The bond energies of F_2 , Cl_2 , Br_2 , and I_2 are 159, 243, 193 and 151 J/mol.

26 **(d)**

AgF is soluble in water and rest all halides of Ag are insoluble.

27 **(b)**

 BCl_3 is sp^2 -hybridized (120°). PCl_3 , $AsCl_3$, $BiCl_3$ are sp^2 -hybridized with one lone pair. The bond angle is contracted down the group.

28 **(c)**

$$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$$

29 **(c)**

 H_2SO_4 forms hydrate with water. That's why it has great affinity towards water.

30 **(b)**

Ramsay discovered many (Kr, Xe, Ne) of these gases

33 **(c)**

$$2KIO_3 + 5SO_2 + 4H_2O \longrightarrow K_2SO_4 + 4H_2SO_4 + I_2$$

34 **(c)**

Used as desiccant.

35 **(c)**

It is a fact. FeS + $H_2SO_4 \rightarrow FeSO_4 + H_2S \uparrow$

36 **(b)**

$$HNO_3 + 3HCl \rightarrow NOCl + 2H_2O + 2Cl$$

37 **(b**

$$NH_4NO_2 \rightarrow N_2 + 2H_2O$$

38 **(a)**

Fluorine reacts with H₂O.

39 **(a)**

Fluorspar is CaF₂.

40 (a)

HI is strongest acid because H-I bond is weakest bond

41 (a)

NH₃ is a stronger base because lone pair is easily available for donation

42 **(c)**

It is used in extractions of metals like Au, Pt, e.g.,

$$\begin{aligned} & \text{PtCl}_4 \xrightarrow{873K} \text{Pt} + 2\text{Cl}_2 \\ & 2\text{AuCl}_3 \xrightarrow{463K} 2\text{Au} + 3\text{Cl}_2 \end{aligned}$$

43 **(a)**

N in NH_3 has -3 oxidation number, the lowest value of oxidation number of N.

44 **(b)**

$$Cl_2 + H_2O \rightarrow 2HCl + [O]$$
 nascent oxygen

45 **(a**

Cl₂ has disinfectant and antibacterial nature.

46 **(a)**

 $Sb(l) \rightarrow Sb(s)$. Vol. of Sb(s) > Vol. of Sb(l)

47 **(a**)

Follow molecular orbital diagram for O_2 .

48 **(b**

$$3CaOCl_2 + 2NH_3 \rightarrow 3CaCl_2 + N_2 + 3H_2O$$

49 **(c**)

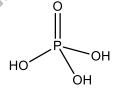
H₃PO₂ is monobasic acid.

50 (a)

Acidic character of oxides increases along the period.

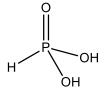
51 **(d)**

Due to higher at. weight.


52 **(a)**

$$O_3 + 2KI + H_2O \longrightarrow 2KOH + O_2 + I_2$$

$$I_2 + Starch \rightarrow Blue$$


53 **(d)**

Orthophosphoric acid (H_3PO_4) is a tribasic acid because it has three replaceable hydrogen atoms. Hence the basicity of H_3PO_3 is 3. Its structure is as

H₃PO₄ (tribasic acid)

While phosphorous acid(H_3PO_4) dibasic acid because it has two replaceable hydrogen atoms. Hence the basicity of H_3PO_3 is 2 .Its structure is as

H₃PO₃ (dibasic acid)

54 (d)

These are facts.

55 **(a**)

Clathrate compounds are formed not by action of valence bonds but by molecules imprisonment. Inert gases do so with metals.

58 **(c)**

It is a fact.

59 **(b)**

AgI is a covalent compound so it is insoluble in water

60 **(a)**

PH₃ is basic in nature.

61 **(c)** It is a fact.

- 62 **(c)** $4 \text{ HNO}_2 + P_4O_{10} \rightarrow 2N_2O_5 + 4\text{HPO}_3$
- 63 **(b)** It is a fact.
- 65 **(a)** Eq. of S = Eq. of Cl; $\frac{64}{E} = \frac{71}{35.5}$ $\therefore E = 32$
- 66 **(c)** It is a fact.

72 **(b)**

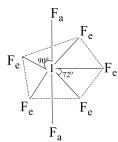
- 67 **(c)**Although each possesses nearly same strength.
- 68 **(d)** $2H_3PO_4 \rightarrow 2HPO_3 + 2H_2O$
- 69 (a) Al_2O_3 is amphoteric. Rest all are basic oxide.
- 70 **(d)** SO_2 acts as an oxidising agent particularly when treated with stronger reducing agents. SO_2 oxidises H_2S into S $SO_2 + 2H_2S \rightarrow 2H_2O + S$
- 71 **(c)**Mn in KMnO₄ has highest oxidation state. It acts only as strong oxidant.
- He is lightest (after H_2), non-inflammable gas. 73 (a)
- $K_2MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}$ 74 (d)
- 74 **(d)** $N_7 \rightarrow 1s^2 2s^2 2p^3$ d-orbitals are absent in nitrogen
- 75 **(a)**Fluorine cannot be oxidized because it is the most electronegative element of periodic table.
- 76 (c)
 H₂S is oxidized to colloidal sulphur or amorphous sulphur by HNO₃.
 77 (a)
- It is a fact.

 78 (c)

 H₂S₂O₇ (pyrosulphuric acid) is industrially known as oleum.
- as oleum. 79 **(d)** $(NH_4)_2Cr_2O_7 \rightarrow N_2 + 4H_2O + Cr_2O_3$ 80 **(a)**

chromic oxide and water.

$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + 4H_2O$$


Ammonium dichromate on heating gives nitrogen,

- 81 **(b)**I₂ cannot oxidise Br⁻ to Br₂
- 82 (a) $\text{H}_2\text{PO}_4^- \overset{-\text{H}^+}{\longrightarrow} \underset{\text{Conjugate base}}{\text{HPO}_4^{2-}}$

83

84 (d)

- (a) $2KMnO_4 + 2H_2SO_4$ $\rightarrow (MnO_3)_2SO_4 + K_2SO_4 + 2H_2O$ $(MnO_3)_2SO_4 + H_2O \rightarrow Mn_2O_7 + H_2SO_4$ Red-brown liquid
- Caro's acid is the name for H₂SO₅ or peroxosulphu 85 **(a)**
- F⁻ is oxidized only by electrolysis. 86 **(d)**
- KO_3 and NH_4O_3 are ozonides. 87 **(d)**
- O₃ is an allotrope of O₂.
 (b)
 PH, is sparingly soluble in water and ha
 - PH₃ is sparingly soluble in water and has fishy smell
- 89 (c) NO_2 on dissolution in HNO_3 imparts yellow colour.
- 91 **(d)**The structure is pentagonal bipyramid having sp³d³. Hybridization as given below:

- $F_{\rm e}$: Equatorial fluorine F_a : Apical fluorine $F_{\rm e}-I-F_{\rm e}=72^{\circ}$ (5 angles); $F_{\rm e}-I-F_a=90^{\circ}$ (10 angles). $F_{\rm e}-I$ bond length = $1.858\pm0.004{\rm \AA}$ F_a-I bond length = $1.786\pm0.007{\rm \AA}$. (a) $PH_3+4Cl_2 \rightarrow PCl_5+3HCl$; $\Delta H=$
- 92 **(a)** $PH_{3} + 4Cl_{2} \rightarrow PCl_{5} + 3HCl; \qquad \Delta H = +ve$ 93 **(d)** $2HClO_{4} + P_{2}O_{5} \rightarrow Cl_{2}O_{7} + 2HPO_{3}$ 94 **(a)**Salts of $H_{3}PO_{3}$ are called as phosphite (HPO_{3}^{2-}).
- 96 **(a)**UF₆ is gas and thus, rate of diffusion of uranium he isotopes is different.
- 97 **(a)**

It is $I(IO_3)_3$, *i. e.*, iodine iodate.

98 **(c)**

Ozone readily decomposes to give O_2 and thus, improves the percentage of O_2 at crowded places.

99 **(d)**

Chlorofluoro carbon or cfc' on exposure to UV rays in upper strata of atmosphere dissociates to give free chlorine radicals which results in

100 **(b)**

FeCl₃ acts as oxidant whereas H₂SO₃ acts as reductant.

101 (c)

$$NaNH_2+N_2O \xrightarrow{190^{\circ}C} NaN_3+ NaOH+NH_3$$

102 (c)

Calcium carbide is used for ripening of fruits

103 (c)

Black phosphorous is highest thermodynamic stable form in red , black , white and yellow allotropic forms of phosphorus because its ignition temperature is highest hence it is inert and has a layer structure.

104 **(b)**

On electrolysis F₂ is collected at anode.

105 (d)

Reaction s of ethyl alcohol with bleaching powder to form chloroform takes place as $\text{CH}_3\text{CH}_2\text{OH} + \text{Cl}_2 \rightarrow \text{CH}_3 \text{ .CHO} + 2\text{HCl} \\ \text{CH}_3\text{CHO} + 3\text{Cl}_2 \rightarrow \text{CCl}_3 \text{ .CHO} + 3\text{HCl} \\ 2\text{CCl}_3 \text{ .CHO} + \text{Ca}(\text{OH})_2 \rightarrow 2\text{CHCl}_3 + (\text{HCOO})_2\text{Ca} \\ \text{Decomposition of bleaching powder is catalysed} \\ \text{by cobalt chloride.}$

 $2CaOCl_2 \xrightarrow{CoCl_2} 2CaCl_2 + O_2$

106 (a)

Phosphorus glows in dark due to $P_4 + 5O_2 \rightarrow P_4O_{10} + light$.

107 (a)

Hypophosphorus acid (H_3PO_2) is monobasic acid which act as reducing agent in this molecule two P-H bonds are responsible for its reducing character and one O-H bond is responsible for its monobasic acid character.

108 (b)

Radon is used in cancer therapy.

109 (d)

$$H \longrightarrow O \longrightarrow \bigwedge^+ \bigvee_{O^-} H \longrightarrow O \longrightarrow N = O$$

Polarity along O—H in HNO₃is more in comparison to —O—H in HNO₂.

110 (a)

The number of lone pairs of electron on Xe atom

decomposition of O_3 causing depletion of ozone layer.

$$Cl^{\bullet} + O_3 \rightarrow ClO^{\bullet} + O_2$$

 $ClO^{\bullet} + O_3 \rightarrow Cl^{\bullet} + 2O_2$

in XeF₂, XeF₄ and XeF₆ are 3, 2 and 1 respectively

111 (d)

During discharge of battery H_2SO_4 is used up.

112 **(d)**

$$AgNO_3 \xrightarrow{\Delta} Ag + NO_2 + \frac{1}{2}O_2$$

113 (a)

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

114 (c)

$$H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$$
 (Pyrosulphuric acid).

115 (c)

$$Cl_2 + H_2O \rightarrow 2HCl + \frac{1}{2}O_2$$

116 (a)

Halogen ns^2np^5 ; noble gas ns^2np^6 .

117 (c)

$$CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$$
; $Cu(NH_3)_4^{2+}$ is blue in colour.

118 (c)

$$HgO + 2Cl_2 + H_2O \rightarrow HgCl_2 + 2HClO$$

119 (a)

Bones contain $Ca_3(PO_4)_2$.

120 (a)

O₂ has two unpaired electrons.

121 **(b)**

 As_2O_3 is poison.

122 (a)

H₃PO₄ is tribasic acid because it has three replaceable hydrogen atoms.

123 **(a)**

 $(CH_3COO)_2$ Pb gives black ppt, sodium 138 (a) nitroprusside gives violet colour, dil. H₂SO₄ produces rotten egg smell with S²⁻ions.

124 (c)

The end product of the hydrolysis of XeF₆ is XeO₃ $XeF_{6} = \frac{H2O}{-2HF} XeOF_{4} = \frac{H2O}{-2HF} XeO_{2}F_{2} = \frac{H2O}{-2HF} XeO_{3}$

Formal charge on oxygen =
$$\frac{\text{Total charge}}{\text{NO. of atoms}} = -\frac{3}{4} = -0.75$$

Also bond order of each P—0 bond is 1.25.

126 **(b)**

He is lightest (after H_2), non-inflammable gas.

127 **(b)**

AgCl is water insoluble chlorine.

128 (a)

F⁻ possesses smallest size.

129 **(c)**

PCl₅ reacts with conc. H₂SO₄ to give sulphuryl chloride by replacing its hydroxyl group with chlorine atoms.

$$SO_2(OH)_2 + 2PCl_5 \rightarrow SO_2Cl_2 + 2POCl_3 + 2HCl$$

 H_2SO_4

sulphuryl chloride

sulphuric acid

130 (a)

$$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl \uparrow$$

131 (c)

I₂ is placed above Cl₂, Br₂ and F₂ electrochemical series. The non-metal placed below, replaces the other from its salt solution.

132 (c)

 V_2O_5 is catalyst for the reaction, $SO_2 + \frac{1}{2}O_2$

$$\rightarrow$$
 SO:

133 (a)

 $M + S \longrightarrow Metal sulphide$

134 (a)

Iodine develops same metallic nature among halogens and forms some compounds like metals, e.g., iodine phosphate.

135 (c)

It is a test for ozone.

136 **(d)**

$$3Ca(OH)_2 + 2Cl_2$$

$$\rightarrow Ca(OCl)_2 + CaCl_2 \cdot Ca(OH)_2$$

$$\cdot H_2O + H_2O$$

137 (d)

I₂ is placed above Br₂ in electrochemical series and the halogen placed below replaces the other from its salt solution.

Both Br and Cl have different electronegativity.

139 (c)

It is a fact.

140 **(b)**

CN⁻ is polar and anionic species. N₂ is non – polar molecule with high bond energy.

141 (c)

Gas	Abundance in
	air by
	volume(ppm)
Helium	5.2
Neon	18.2
Argon	93.4
Krypton	1.1
Xenon	0.09

142 (a)

143 (a)

S in H_2SO_4 has +6 oxidation no. and thus, H_2SO_4 can act only as oxidant and not reductant.

144 (a)

XeF₄ is solid.

145 **(b)**

Since fuels burn faster in the presence of oxygen. When a glowing splinter comes in contact with oxygen, it relights. This is also a test for oxygen.

in 146 (d)

In P_4 , each P is sp^3 hybridised so that the percentage of *p*-character in these orbitals is 75%

148 (c)

 F_2 has the most negative ΔG° value which is dependent on hydration enthalpy.

149 **(b)**

All are non

- metals. F_2 , $Cl_2(gas)$, $Br_2(liquid)$, $I_2(solid)$.

150 (c)

$$Pb(CH_3COO)_2 + H_2S \rightarrow PbS + 2CH_3COOH,$$

 $PbS + 2H_2O_2 \rightarrow PbSO_4 + 2H_2$

151 (c)

$$KF+HF \rightarrow KHF_2 \rightleftharpoons K^+ + [HF_2]^-$$

152 (c)

$$NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$$

153 (c)

$$P_4O_{10} + 2H_2SO_4 \rightarrow 2SO_3 + 4HPO_3$$

154 (a)

It is a fact.

155 **(a)**

Hypophosphorous acid is H_3PO_2 .

156 (a)

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

157 **(c)**

ZnO is amphoteric.

158 **(b)**

It is a fact.

159 (a)

H₃PO₂ is hypophosphorus acid

160 (c)

Follow methods of preparation of Xe fluorides.

161 (d)

 NO_2 is brown reactive gas with pungent odour, paramagnetic but dimerise to solid N_2O_4 .

162 **(b)**

Nitrates of all the metals are water soluble.

163 (a)

164 (d)

All are properties of ozone.

165 (d)

Halogens are very reactive due to high electronegativity, high electron affinity and comparatively low bond energies. The reactivity of halogen decreases with increase in atomic number. The correct order of reactivity of halogens is

$$F_2>Cl_2>Br_2>I_2$$

166 (a)

$$2\text{KClO}_3 + \text{I}_2 \longrightarrow 2\text{KIO}_3 + \text{Cl}_2$$

167 **(a**

$$CaOCl_2 + CO_2 \rightarrow CaCO_3 + Cl_2$$

168 **(b)**

Reducing power increase in the order as HF < HCl < HBr < HI

169 **(c)**

$$2ClO_2 + H_2O \rightarrow HClO_3 + HClO_2$$

170 **(a)**

Red p is obtained from white p by heating it with a catalyst in an inert atmosphere.

172 **(d)**

$$Cl_2 + H_2O \rightarrow HCl +$$

HClO; also some Cl₂ exists in dissolved state.

173 **(c)**

This is a fact.

174 (a)

Since, noble gases are monoatomic, these do not possess vibrational energy as monoatomic molecules do not vibrate.

175 **(b)**

This causes H-bonding in H₂O.

177 (a)

Rhombic sulphur occurs in S_8 molecules giving an atomicity of 8

178 **(b)**

When chlorine is passed into hot concentrated solution of KOH, potassium chlorate is formed. $6KOH+3Cl_2\rightarrow 5KCl+KCIO_3+3H_2O$

180 (c)

$$2HNO_2 \rightarrow H_2O + N_2O_3$$

181 **(b)**

$$4\text{Cl}_2 + \text{Na}_2\text{S}_2\text{O}_3 + 5\text{H}_2\text{O} \rightarrow 2\text{NaHSO}_4 + 8\text{HCl}_3$$

182 **(b)**

Halogens exist as X_2 and the ion possesses stable noble gas configuration ns^2np^6 .

183 **(a)**

The stability of oxides increases with increase in oxidation state of halogen.

Oxide oxidation state of halogen

 Cl_2O

 ClO_2

 ClO_3 +6

 Cl_2O_7 +7

∴ Cl₂O is least stable oxide of chlorine.

184 **(d**)

The colour of Br_2 water is discharged by an unsaturated molecule due to addition of Br_2 on C=C, or by SO_2 ; $SO_2 + 2H_2O + Br_2 \rightarrow 2HBr + H_2SO_4$

185 (a)

$$2F_2 + 2H_2O \rightarrow 4HF + O_2$$

 $3F_2 + 3H_2O \rightarrow O_3 + 6HF$

186 **(c)**

Rest all are transition elements $(n-1)d^{10} ns^2$. Choice (c) represents chlorine.

187 **(b)**

Fluorine is the strongest oxidizing agent and Xe has the lowest ionisation energy among the noble gases and has little tendency to lose electrons

188 (d)

The bond strength of H—*X* decreases from HF and HI because the dissociation energy of H—*X* bond decreases from HF to HI.

Hydrogen halide :H—F H—Cl H—Br H—I Dissociation energy : $566 ext{ } 431 ext{ } 366 ext{ } 299 ext{ } (kJ mol^{-1})$

HI is most volatile.

189 (a)

White phosphorous on heating with aqueous solution of KOH produce phosphine (PH₃)gas $P_4 + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$

190 (d)

P³² is radioactive.

192 (a)

A binary compounds is that compound which is formed by two different elements. Metals or elements which shows variable oxidation states can form more than one binary compound. In the given compounds Fe shows +2 and +3 oxidation states. So, it can form two binary compounds with chlorine as FeCl₂ and FeCl₃.

193 **(d)**

Due to less reactivity.

194 (a)

$$(NH4)2Cr2O7 \xrightarrow{\triangle} N2 + Cr2O3 + 4H2O$$

$$NH4NO2 \xrightarrow{\triangle} N2 + 2H2O$$

195 **(b)**

$$0_3 \rightarrow 0_2 + [0]$$

 $2KI + H_2O + [0] \rightarrow 2KOH + I_2$
 $2KI + H_2O + O_3 \rightarrow 2KOH + I_2 + O_2$

197 (d)

 $\begin{array}{ll} \operatorname{HgCl_2} & + \operatorname{Hg(CN)_2} \to \operatorname{HgCl_2} \cdot \operatorname{Hg(CN)_2} \\ \operatorname{Mercuric\ Mercuric\ } & \operatorname{Addition\ compound\ } \\ \operatorname{Chloride\ cyanide\ } & \end{array}$

198 **(b)**

These do not support combustion.

199 **(c)**

 O_2 is paramagnetic; O_3 is diamagnetic.

200 **(b)**

H₂S₂O₈ (Marshall's acid)has 0—0 linkage.

207 **(a)**

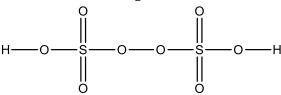
 $\mathbf{0}_3$ is antibacterial in nature and thus, used as sterilizing agent.

208 **(b)**

Welding of Mg is done in the atmosphere of He due to its inert and non-inflammable nature

209 (a)

Rn is radioactive.


210 **(c)**

(a)
$$2KI + H_2O + O_3 \longrightarrow 2KOH + O_2 + I_2$$
 oxidised (b)

$$2FeSO_4 + H_2SO_4 + O_3 \longrightarrow Fe_2(SO_4)_3 + H_2O + O_2$$
oxidised

(c) KMnO₄+O₃ \rightarrow no reaction

Structure of H₂S₂O₈ is given as follows:

201 **(c)**

N, P are non-metals, As, Sb are metalloids or semimetals, Bi is metal in gp. 15

202 **(d)**

HF is the weakest acid.

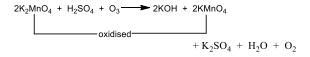
203 **(c)**

Follow contact process for H₂SO₄.

204 **(d)**

Metallic character increases down the gp.

205 **(c)**


$$10HNO_3 + I_2 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O$$

206 **(b)**

Noble gases have completely filled electronic configuration of outermost shell and thus, have no scope for addition of an electron in them.

Because in $KMnO_4$, oxidation state of Mn is +7. Hence, it is the highest oxidation state of Mn, so $KMnO_4$ is not oxidized by ozone.

(d)

Boiling points of H_2 , He, N_2 Ar are : -259°C, -268.98°C, -195.8°C, -185.7°C respectively.

212 (a)

Fluorine and chlorine are more electronegative than sulphur, so they can displace it form it salt

213 **(c)**

It is a reason for the given fact.

214 (d)

Al becomes passive in HNO₃.

215 (a)

It reacts with rest of all reagents.

216 (a)

Br has the configuration.

$$1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$$

217 (a)

Dipole moment of gp. 15 hydrides decreases down the gp.

218 **(b)**

$$2CaO + 2Cl_2 \rightarrow CaCl_2 + Ca(ClO)_2$$

219 (d)

Oxides of nitrogen are acidic and are dissolved in KOH (alkali).

220 **(b)**

Compounds of Xe, Kr and Rn are known.

221 **(b)**

It is a fact.

222 **(b)**

The maximum temperature at which gas can be liquefied is called its critical temperature. The gas which have high boiling point will change into liquid and so critical temperature of gas will be more

224 (a)

$$2KI + Cl_2 \rightarrow I_2 + 2KCl$$

$$I_2 + CCl_4 \longrightarrow Violet \xrightarrow{Excess \text{ of}} Colourless + I_2$$

225 (a)

Only N_2 has $1\sigma + 2\pi$ bonds in its molecule.

227 **(d)**

Only Al among these does not react with HNO₃.

228 (c)

$$NH_4Cl \rightarrow NH_3 + HCl$$

$$egin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 1 \end{array}$$

∴ Calculated mol. wt. ∝ 1 molecule

Experimental mol. wt. $\propto 2$ molecule

229 **(d)**

Thermal stability of hydrides of nitrogen family decreases gradually from NH₃ to BiH₃.

230 **(b)**

When an electric discharged is passed through Ne

gas in a tube at low pressure, an orange red light is produced which is effective in the formation of chlorophyll and is used in green houses

231 (d)

XeO₃ is an explosive compound when dry and its explosion power is 22 times more than TNT

232 (a)

The most abundant element in the earth crust is oxygen.

233 **(b)**

It is a fact.

234 **(b)**

It is a fact.

236 **(c)**

 ${\rm SO}_2$ acts as reducing agent in aqueous medium, as acid in basic medium and oxidizing agent in neutral medium.

237 **(b)**

$$CaC_2 + N_2 \rightarrow CaCN_2 + C$$

238 **(c)**

 Cl_2 is oxidised $(Cl_2^0$

$$\rightarrow$$
 Cl₂⁵⁺ + 10*e*) and reduced (Cl₂
 \rightarrow 2Cl⁻)as well.

239 (c)

$$F_2 + H_2O \rightarrow 2HF + \frac{1}{2}O_2$$

240 **(b)**

Cu hydroxide forms complex with NH₃.

241 (d)

The first ionisation energy of xenon is quite close to that of oxygen and the molecular diameter of xenon and oxygen are almost identical.

Based on the above facts it is suggested that since oxygen combines with PtF₆, so xenon should also form similar compounds with PtF₆.

242 (d)

The bond pair gets farther apart from central atom due to increasing bond length and thus, lone pair on central atom causes more contraction in bond angles.

243 **(d)**

CO is neutral.

244 (d)

$$Ca_3(PO_4)_2 + 3SiO_2 \rightarrow 3CaSiO_3 + P_2O_5$$

 $2P_2O_5 + 10C \rightarrow P_4 + 10CO$

245 **(b)**

NO2 is a brown coloured gas

246 **(c)**

$$KI + I_2 \rightarrow KI_3$$

247 (d)

 SO_2 , H_2O ans O_3 all of these act as bleaching agent.

248 (a)

Allotropes have different crystalline nature.

249 **(a)**

P exists as P₄, Sb exists as Sb₄.

250 (a)

He was detected first in solar atmosphere.

251 **(b)**

The electrolyte used in battery is 38% H₂SO₄.

252 **(b)**

Cl₂ is used in preparation of DDT-an insecticide.

253 (a)

Due to H-bonding, HF exists in dimeric (H_2F_2) liquid state.

254 **(b)**

Halon-1301 is $\mathrm{CF_3Br}$. The first figure 1 represents no. of C atoms, the second figure represents no. of F atoms, the third figure 0 represents the no. of Cl atoms and last figure 1 represents the Br atom

255 **(a)**

It is a test for proteins.

256 (a)

Both XeF_2 and IF_2^- are linear species but the central atoms Xe and I undergo sp^3d hybridisation with all the three equatorial positions occupied by lone pairs of electrons

257 (d)

Haber process — NH₃, birkeland –eyde process – HNO₃, solvay process — Na₂CO₃.

258 (d)

In rest all molecules the central non-metal atom possesses lone pair of electron which gives rise to distorted geometry.

259 **(d**)

$$2KClO_3 + I_2 \rightarrow 2KIO_3 + Cl_2$$

260 **(b)**

In VIA gp, sulphur possesses the maximum tendency for catenation. The catenation order : C > Si \approx S > P > N > 0

261 **(a)**

 $3CaO+2NH_3\rightarrow 3Ca+N_2+3H_2O$

∴ N₂gas is evolved when CaO reacts with NH_{3.}

262 (a)

Bartlett prepared first compound of Xe as $Xe^+[PtF_6]^-$, a red orange crystalline solid. $Xe + PtF_6 \longrightarrow Xe^+[PtF_6]^-$

263 (a)

P₂O₅ is very good dehydrating agent.

265 (a)

 $Na_2\ SO_3$ reacts with hot and dil, H_2SO_4 to give SO_2 gas which decolourise bromine water

$$Na_2SO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + SO_2 + H_2O$$

 $Br_2 + H_2O \longrightarrow 2HBr + [O]$

$$SO_2+[0] \rightarrow SO_3$$

decolourisation of bromine water

266 **(c)**

$$(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O$$

267 (c)

$$(NH_4)_2SO_4 + H_2O \rightarrow NH_4OH + H_2SO_4$$

268 (c)

Fluorine due to its very high electronegativity oxidises sulphur to its highest oxidation state and thus, forms SF_6 where S shows its maximum coordination number

269 **(a)**

B in BCl₃ is sp^2 -hybridised; N in NCl₃ has sp^3 -hybridisation with one lone pair of electron.

270 **(b)**

 ${\rm Cl_2O}$ has sp^3 -hybridized oxygen atom with two lone pairs.

271 **(d)**

Excitation energy of F(2p-electrons) is more than excitation energy of iodine (5p-electrons).

272 (d)

Rest all will give H_3PO_3 .

273 (c)

It is an use of Ar.

274 **(b)**

$$CuSO_4 + 2KI \rightarrow CuI_2 + K_2SO_4$$

 $2CuI_2 \rightarrow 2CuI + I_2$
Cuprous iodide

275 **(b)**

Atomic radius of H⁺ + atomic radius of Cl =
$$\frac{74}{2}$$
 + $\frac{198}{2}$

276 **(a)**

$$3Mg + N_2 \rightarrow Mg_3N_2$$

 $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$

277 **(b)**

In presence of slight amount of a dil acid, bleaching powder loses oxygen. Due to this nascent oxygen, it shows oxidizing and bleaching properties,

$$2CaOCl_2 + H_2SO_4 \rightarrow CaCl_2 + CaSO_4 + 2HClO$$

 $HClO \rightarrow HCl + [O]$

278 **(b)**

$$2KClO_3 \xrightarrow{MnO_2} 2KCl + 3O_2$$

279 **(d)**

Xe due to largest size more polarisable. He due to smallest size least polarisable.

280 (d)

Nitrolim is $CaCN_2 + C$.

281 (a)

$$H_2S + H_2SO_4 \rightarrow SO_2 + 2H_2O + S$$

283 (a)

The reducing property of the hydrides of VA group increases from NH₃ to BiH₃

 $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$

The tendency to donate lone pair or basic strength decreases from NH₃ to BiH₃

 $NH_3>PH_3>AsH_3>SbH_3>BiH_3$

Thermal stability of VA group hydrides deceases from NH₃ to BiH₃

 $NH_3>PH_3>AsH_3>SbH_3>BiH_3$

Bond angle of VA group hydrides decreases from NH_3 to BiH_3 .

NH₃>PH₃>AsH₃>SbH₃>BiH₃

284 (d)

The deficiency of iodine in diet causes goitre.

285 **(b)**

3-OH groups are present hence, it is tribasic

286 **(d)**

The solubility increases with increase is mol. wt.

287 **(b)**

It is a fact.

288 **(c)**

He is obtained during radioactive decay.

289 (d)

Zero group element show less chemical activity because this group element have 8 electrons in outermost orbit

290 (a)

$$2FeCl_3 + H_2S \rightarrow 2FeCl_2 + 2HCl + S$$

291 **(c**)

$$HPO_3 + H_2O \rightarrow H_3PO_4$$

292 (d)

 O_3 forms ozonides with each molecule having C=C bond or $C\equiv C$ bond.

293 (d)

Argon is found abundantly in the atmosphere.

294 (d_.

$$SO_2 + 2CuCl_2 + 2H_2O \xrightarrow{KCNS} Cu_2Cl_2 + H_2SO_4 + White$$

2HC

295 (a)

$$CO + Cl_2 \rightarrow COCl_2$$

296 (d)

This is a method to separate noble gases.

297 **(c**)

It is a reason for the given fact.

298 (c)

$$NCl_3 + 3H_2O \rightarrow NH_3 + 3HOCl$$

299 **(b**

HNO₃ is strongest oxidant among all.

300 (a)

Larger is the bond length, easier is its dissociation and more is acidic nature in halogen acids.

301 **(b)**

 $0 < H^{\delta^+}$

Dipole of water H^{δ^+} includes dipole in noble gases which interact and causes solubility in water

302 (d)

Oxidation state of S is 0 in S_8 Oxidation state of S is +4in SF_4 Oxidation state of S is +6 in H_2SO_4 S shows 0,+4 and +6 oxidation states. In fact S shows 0,-2,+2,+4 and +6 oxidation states,

303 (a)

H-bonding in H₂SO₄ makes it a viscous liquid.

304 (d)

$$Na_2Fe(CN)_5NO + Na_2S \rightarrow [Na_4Fe(CN)_5NOS]$$
Violet Complex

305 (a)

It is a fact.

306 **(b)**

Pyrogallol absorbs 0₂

Turpentine oil and oil of cinnamon absorbs O_3 .

307 **(b)**

A test for ozone.

308 (d)

Concentrated $\rm H_2SO_4$ has dehydrating property. When cellulose comes in contact with conc $\rm H_2SO_4$, it removes water from cotton leaving only black carbon in the form of charred particles

$$(C_6H_{12}O_6)_x \rightarrow 6C + 6H_2O$$

Charred particles

309 (a)

$$3HCl + HNO_3 \rightarrow NOCl + 2H_2O + 2Cl$$

310 (d)

 $\mathrm{H}_2\mathrm{S}$ has sp^3 -hybridization with two lone pair, having V-shaped geometry, *i. e.*,

311 (d)

Dust is a colloid which shows tyndall effect. Hence,tyndall box is used to test the presence of dust in gaseous mixture, as dust decreases the effectiveness of catalyst.

312 **(c)**

 PoO_2 is insoluble oxide of gp. 16.

313 (c)

This is a laboratory method for preparation of Cl₂.

314 **(b)**

 XeF_6 show sp^3d^3 hybridisation, it will give pentagonal bipyramidal geometry, but due to presence of lone pair of electron, shape will be distorted octahedral

315 **(b)**

Bleaching action of Cl_2 is only in presence of moisture where nascent oxygen is displaced from H_2O

$$Cl_2 + H_2O \rightarrow HCl + HClO$$

 $HClO \rightarrow HCl + [O]$

316 **(d)**

The +5 oxidation state of Bi is unstable due to

323 (a)

N has $-\frac{1}{3}$, -3, -2, -1 oxidation states in N₃H, NH₃, N₂H₄ and NH₂OH respectively.

324 (d)

S₈ has puckered ring structure.

325 (d)

Ti has configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^2$, $4s^2$. Thus, Ti^{4+} has configuration $1s^2$, $2s^22p^6$, $3s^23p^6$, *i.e.*, of Ar.

326 **(b)**

$$3\text{CuSO}_4 + 2\text{PH}_3 \rightarrow \text{Cu}_3\text{P}_2 + 3\text{H}_2\text{SO}_4$$

327 (a)

Anhydrous $Ba(ClO_4)_2$ is an effective drying agent. It is used under the trade name desicchlora

328 (a)

Neil Bartlett prepared first noble gas compound, xenon hexafluoride (IV)

330 (a)

The structure of H₃PO₃ is given as

inert pair effect. Thus, BiF₅cannot be formed.

317 (a)

Mg is reductant and thus, can be oxidized.

318 (a)

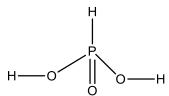
 $\mathrm{NH_{3}}$ is stronger base among all these.

319 **(c)**

$$_1H^1 + _1H^2 \rightarrow _2He^3 + \text{energy}$$
. This is fusion.

320 **(b)**

$$2HCl + \frac{1}{2}O_2 \longrightarrow H_2O + Cl_2$$


321 (c)

Only He and Ne are remained unadsorbed on the coconut charcoal at -100°c (173K) as their boiling points are less than -100°c .(He=4K, Ne=27K).

322 (c)

 ClO_2^- has sp^3 hybridisation and two lone pairs on halogen which produces V-shape bent structure

In this structure two —OH group are present, so it is dibasic acid. In it one P—H bond is present, so it provides hydrogen and due to such hydrogen it acts as reducting agent.

331 (d)

When chlorine reacts with dilute and cold NaOH sodium chlorine and sodium hypochlorite are formed.

 $2NaOH(cold) + Cl_2 \longrightarrow NaCl + NaClO + H_2O$

Sodium

hypochloride

Let oxidation state of Cl in NaCl is x

$$+1 + x = 0$$

$$X = -1$$

Let oxidation state of Cl in NaClO is x.

NaClO

$$+1 + x - 2 = 0$$

x - 1 = 0

x = +1

 \therefore oxidation states of chlorine changes from 0 to -1 and +1.

332 **(b)**

It is a fact.

333 (d)

These are uses of H₂SO₄.

334 (c)

Hydrolysis of NCl_3 gives NH_3 or NH_4OH and HCIO as

 $NCl_3+4H_2O \rightarrow NH_4OH+3HOCl$

335 (c)

Xe in XeF₂, XeF₄,

XeF₆ has sp^3d , sp^3d^2 and sp^3d^3 hybridisation wit electrons respectively.

336 (c)

 $\ensuremath{\text{N}}_2\ensuremath{\text{O}}$ is itself non-combustible but supports combustion

$$S + 2N_2O \rightarrow SO_2 + 2N_2$$

338 **(b)**

$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 \uparrow + Cr_2O_3 + 4H_2O$$

 $NH_4NO_2 \rightarrow N_2 \uparrow + 2H_2O$

339 **(c)**

Fluorapatite is $CaF_2 \cdot 3Ca_3(PO_4)_2$.

340 (d)

It is a fact.

341 (a)

The formation of ozone from oxygen is an endothermic reaction not exothermic reaction.

$$3O_2 \xrightarrow{\text{Electric}} 2O_3;$$

 $\Delta H = 287 \text{ kJ}$

So, statement

$$\Delta H = -284.5 \text{ kJ}$$

Is not correct statement.

342 **(b)**

$$NH_4NO_3 \rightarrow N_2O + 2H_2O$$

(Laughing gas)

343 (c)

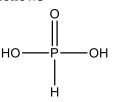
P₂O₅ is solid acidic oxide.

344 (a)

$$KNO_3 \stackrel{\Delta}{\rightarrow} KNO_2 + \frac{1}{2}O_2$$

345 (c)

$$(NH_4)_2SO_4 + KCNO \rightarrow NH_4CNO + K_2SO_4$$


NH₂CONH₂ urea

346 (d)

AgI is insoluble in NH₄OH.

348 (a)

The structure of phosphorous acid H₃PO₃ is as follows

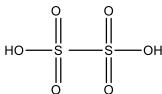
As it has two —groups, hence it shows dibasic character

349 (a)

The thermal stability of the hydrides of nitrogen family or group 15 elements decreases on moving downwards in the group. Therefore, NH_3 is the most stable and BiH_3 is the least stable. The stability of the hydride of group 15 elements decreases in the order.

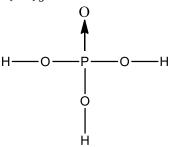
NH₃>PH₃>AsH₃>SbH₃> BiH₃

350 (d)


The electropositive character increases down the group, eg., I(CH₃COO)₃, IPO₄, etc., are ionic.

352 **(c)**

K₂CS₃ is potassium thiocarbonate.


353 (a)

Only H₂S₂O₆contains S—S bond. Its structure is

354 (a)

Orthophosphoric acid(H_3PO_4) is a tribasic acid. Hence, its structure can be represented as $O \leftarrow P(OH)_3$.

$$(lp + \sigma bp = 1 + 3 = 4)$$

Hence hybridization of p in H_3PO_4 is sp^3 and thus it is tetrahedral in shape.

355 **(b)**

$$Cl_2 + H_2O \rightarrow 2HCl + [O]$$

356 (a)

Clatherate formation involves dipole induced dipole attraction (:

water is polar molecule and Xe is non – polar).

357 **(b)**

Divers use He + 0_2 mixture for respiration in place of $N_2 + O_2$. The N_2 was found to dissolve in blood at high pressure during diving and after it, the N₂ gas comes out from blood causing painful nerve bursting. The mixture is also used for 372 (d) respiration by asthma patients.

358 (d)

Ammonium nitrate on heating at 250°C gives N₂O.

359 (c)

F₂ has low reactivity for Cu and steel.

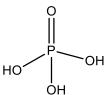
360 (a)

Due to the formation of thin oxide film on iron surface.

361 (d)

HF is weaker acid due to H-bonding.

362 **(c)**


Fe(II) has four unpaired electrons $(3d^6)$ where Fe(III) has five unpaired electrons $(3d^5)$. This can be obtained by measuring magnetic moment of molecule in solid state.

363 **(b)**

$$NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$$

364 **(b)**

Yhe structure of H₃PO₄ is

It can loose three H+ ions so its basicity is three.

366 **(d)**

Chlorine, being only a slightly stronger oxidizing agent than bromine can not oxidise it to +7oxidation state as is required for the formation of the compound BrCl₇

367 (c)

The true peroxide contains $O_2^{2-}(0-0)^{2-}$ ion. : Out of given choices only BaO_2 has O_2^{2-} in its structure.

 \therefore BaO₂ is true peroxide.

368 (d)

$$SO_2 + 2H_2O + Br_2 \rightarrow 2HBr + H_2SO_4$$

369 (c)

Nitrogen does not have *d*-orbitals

370 **(d)**

Pernitric acid is HNO₄.

371 (a)

Platinum acts as catalyst in the oxidation of ammonia to form nitric oxide . This reaction is used in the ostwald 's method of nitric acid

preparation.

$$4NH_3+5O_2 \rightarrow 4NO+6H_2O$$

 $2NO+O_2 \rightarrow 2NO_2$
 $4NO_2+O_2+2H_2O \rightarrow 4HNO_3$

Frankland and Lockyer pointed out the new D₃ line observed in the yellow region of the sun's spectrum observed by Jonsen in 1868 was due to a new element which they named Helium. It was the first noble gas to be discovered. The two known line D₁ and D₂ were of sodium

373 **(b)**

$$3Cl_2(g) + 6KOHaq. \xrightarrow{\Delta} KClO_3 + 5KCl + 3H_2O$$
(Green yellow (Used in fireworks and safety match box)

374 (d)

It is a fact

375 **(b)** $NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$

376 **(d)**

He, because of its small size can diffuse through rubber, glass PVC etc. easily

378 (a)

Orthophosphate + Amm. Molybdate
$$\xrightarrow{\text{HNO}_3}$$
 yellow ppt

Red ppt

379 (a)

$$2HNO_2 + H_2SO_4 \rightarrow 2NO_2 + SO_2 + 2H_2O$$

380 (c)

CN
$$^-$$
 acts as complexing agent and reducing agent.
 CuSO $_4$ + 2KCN \rightarrow Cu $_2$ (CN) $_2$ + K $_2$ SO $_4$ + (CN) $_2$

(Reducing agent)

$$Cu_2(CN)_2 + 6KCN \rightarrow 2K_3Cu(CN)_4$$
 (Complexing agent)

381 (c)

Laminaria-a sea-weed containing iodine as iodide.

382 **(b)**

It is a fact.

383 (a)

Yellow P is readily oxidized in air and thus, kept in water.

384 (a)

 N_2 does not combine directly with F_2 .

385 **(d)**

Lowest bond dissociation energy is of I₂.

386 **(a)**

$$50_3 + I_2 + H_2O \rightarrow 2HIO_3 + 5O_2$$

387 (d)

This is a use of molten Na and S.

388 (d)

Catalyst has no role in oxidation by HNO₃.

389 (a)

In the froth- floatation process, froths are produced by blowing air through water containing pine oil and ore. Ore particles are not wetted by water, hence these being lighter, comes out to the surface with froths and extracted . The impurities are watted by water and becomes heavy .Thus, these settle down.

390 **(a)**

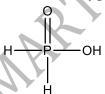
$$XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$$

391 (d)

Zero group members are less abundantly found and thus, called as rare gases; due to their least reactivity they are called inert gases; on account of some compounds formed by Kr, Xe, they are named noble gases.

392 (a)

Xe in XeOF₄ has sp^3d^3 -


hybridisation with one lone pair of electron.

393 (a)

Hypophosphorous acid is a monobasic acid as it forms one type of salts e.g. sodium hydrogen phophite (NaH_2PO_2)

$$NaOH + H_3PO_2 \longrightarrow NaH_2PO_2 + H_2O$$

Hydrophosphorus acid has two hydrogen atoms attached to phosphorus and one hydrogen atom attached to oxygen atom(which is ionisable), i.e.,

394 (a)

$$X + e \rightarrow X^{-}; \quad \Delta H = -A;$$

 $X^{-} \rightarrow X + e; \quad \Delta H = +A.$

395 (a)

Oxidizing nature of oxides decreases with increasing oxidation number of central atom.

396 **(d)**

Oswald process of manufacturing of HNO₃

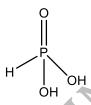
$$4NH_3+5O_2 \xrightarrow{Pt} 4NO+6H_2O+heat$$

$$2NO+O_2 \xrightarrow{50^{\circ}C} 2NO_2(g)$$

$$3NO_2+H_2O\rightarrow 2HNO_3+NO$$

∴ Pt is catalyst in Oswald process.

397 **(b)**


$$4HNO_3+P_4O_{10} \longrightarrow 4HPO_3+2N_2O_5$$

Dinitrogen pentoxide

The product is dinitrogen pentoxide (N₂O₅)

398 **(b)**

Phosphorus acid (H_3PO_3) is a diprotic acid . It forms two series of salt such as $NaH_2\ PO_3$ and $Na_2\ HPO_3$ but none of the type $NaPO_3$ with NaOH. Its structure is as

399 **(b)**

$$+4$$
 $+5$
2 NO₂ + H₂O \rightarrow HNO₂+ HNO₃
mixed acid
anhydride

400 (a)

$$Ba_3N_2 \xrightarrow{\Delta} 3Ba + N_2$$

401 **(b)**

When SO_3 is dissolved in heavy water D_2SO_4 is formed as

$$SO_3 + D_2O \longrightarrow D_2SO_4$$
(X)

The hybridization state of S in D₂SO₄ is sp³

403 (c)

He, Ne. Due to its very small size and low molecular weight, these possess weak forces of attraction.

404 (d)

The reducing nature of hydrides increases down the group.

405 (a)

Most abundant element is oxygen on earth's crust.

406 **(d)**

It is a fact.

407 **(b)**

Superphosphate of lime is a mixture of calcium dihydrogen phosphate and gypsum and is obtained by treating phosphatic rock with conc $\rm H_2SO_4$

$$Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O$$

 $\rightarrow Ca(H_2PO_4)_2 \cdot 2H_2O + 2CaSO_4$
 $\cdot 2H_2O$

superphosphate 425 (c)

of lime

408 **(c)**

 $N_2 + O_2 \xrightarrow{3000^{\circ}C} 2NO$; very high temperature is required for dissociation of N₂.

410 (a)

Some metals form amphoteric oxides, e.g., ZnO; white P is kept in water. Carbon forms neutral (CO) and acidic oxides (CO_2).

411 (c)

SO₂ is an acidic oxide and can be dried by an acidic dehydrating agent.

412 **(b)**

 $4Zn + 10HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O_3$ (Very dil.)

413 (a)

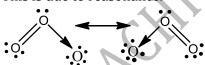
 H_2S has V-shape geometry (sp^3 -hybridisation with two lone pair on S atom).

414 **(b)**

Graham's salt is $Na(PO_3)_6$ used as water softener.

416 **(b)**

N₂ possesses high bond energy and thus, is inert.


417 (d)

It is due to heavier gas argon (at. wt. 40) present with N₂ (at. wt. 28) obtained from atmosphere. Ar is about 1% in air; the most abundant inert gas in atmosphere.

418 **(b)**

In O_{3} ,0—0 bond length is identical with that of molecular oxygen. It is found to be intermediate of 0—0 and 0=0 bond length.

This is due to reasonance.

In ozone, bond angle of 0—0—0 is 116.8° and bond length(0—0)is 1.278 Å.

419 **(b)**

For advertisement the coloured discharged tubes contains Ne.

420 (a)

HBr is strong reducing agent and will be oxidized $\frac{1}{437}$ (c)

421 **(b)**

It is a fact.

422 (c)

Heat of vaporization of NH₃ is higher in compariso

Deficiency of I₂ causes goitre disease which is relat

424 **(b)**

It is a fact.

Rest all are known.

426 (c)

Iodine has the least affinity for water and is only slightly soluble in it. However, it dissolves in 10% aqueous solution of KI due to the formation of a complex ion ie, I_3^-

 $I_2 + KI \rightleftharpoons KI_3$ or $I_2 + I^- \rightleftharpoons I_3^-$

(Complex ion)

427 (c)

carbonate having ammonium Commercial (NH₄)₂CO₃, NH₄HCO₃ and NH₄OCONH₂ is known as sal volatile.

428 **(c)**

Aqua regia is 1 part HNO_3 and 3 parts HCl.

429 (c)

A more electronegative halogen can displace less electronegative halogen

 $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$

430 (d)

As the electronegativity decreases from N to Sb, the repulsion between bond pair-lone pair decreases.

431 (a)

Basic impurities on surface are removed by HCl, Acidic impurities are removed by NH₃.

432 **(b)**

FeSO₄ solution absorbs NO to give FeSO₄NO.

433 **(d)**

I in ICl₃ has sp^3d -hybridisation having two lone pair of electrons and thus, shape is bent T inspite of trigonal bipyramidal.

434 (c)

Pyrosulphuric acid is H₂S₂O₇. Both SO₃ and H₂S₂O + 6 oxidation state.

435 (a)

The oxidizing power of oxo-acids of chlorine decreases with increase with increase in oxidation no. of chlorine.

436 (d)

Cl can exhibit maximum oxidation state of +7.

 $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$ (Greenyellow)

438 (d)

Ammonia on reaction with excess of chlorine gives nitrogen trichloride.

 $NH_3+3Cl_2 \rightarrow NCl_3+3HCI$

excess

439 (d)

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

440 (a)

The thermal stability of the anions of oxo-acids of chorine increase with increasing oxidation number of halogen

442 (d)

NH₃ is non-combustible gas.

444 (d)

e.g., IF₇; 7 atoms of F and one of I.

445 (a)

Mixture of helium and oxygen is the life saving mixture for asthma patient because helium is less soluble in blood than nitrogen.

446 (d)

Except Xe fluorides (XeF₂, XeF₄, XeF₆), fluorides of Kr and Rn known are KrF₂, KrF₄ and RnF₂.

447 (a)

Element/elements having more electronegativity than(sulphur) can react with it to form compound of type SX_4 .

- : Fluorine and chlorine are more electronegative than sulphur.
- \therefore F and Cl can form compound of S X_4 type with S.

448 (d)

Reactivity of oxygen with chlorine is minimum because of low electronegativity difference.

449 **(b)**

$$C_{12}H_{22}O_{11} \xrightarrow{[0]} 6H_2C_2O_4$$

450 **(c)**

COCl₂ is called phosgene.

451 **(c)**

1. H₂S acts as a reducing agent, because it can reduce PbO into PbS.

$$PbO+H_2S \rightarrow PbS+H_2O$$

- (b)it is acidic in nature . In chalcogens, the acidic nature of hydride increases from H_2O to H_2Te .
 - (c) it is not an oxidizing agent.

452 **(c)**

This was a reason for the given fact.

453 **(d)**

Oxidation states of sulphur are

|--|

2	n	S
	i	S_8
0	n	
+	i	$S_2O_3^2$
2	n	
+	i	SO
4	n	2
+	i	SO
6	n	3

455 **(b)**

$$Cu(NO_3)_2 \rightarrow CuO + 2NO_2 + \frac{1}{2}O_2$$

456 **(b)**

 OF_2 dissolves in water but does not give any oxyacid solution, while SO_2 , SCl_4 and SO_3 give oxyacid solution in water.

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

Sulphurous acid

$$SCl_4 + 3H_2O \rightarrow H_2SO_3 + 4HCl$$

Sulphurous acid

$$SO_3 + H_2O \rightarrow H_2SO_4$$

Sulphuric acid

457 **(c)**

▶ Thus, I₂ shows complementary colour.

458 **(b)**

This is a fact or definition of clathrates of inert gases.

459 (a)

It is a fact. The radioactive mineral, clevite, monazite, pitchblende, uranite give He either on heating to 1000° C in vacuum or on heating with H_2SO_4 .

460 **(b)**

$$Cl_2 + 2KBr \rightarrow 2KCl + Br_2$$

461 **(d)**

In group 16 and period VI the oxyge, sulphur, selenium are chalcogens (ore forming) while polonium being radioactive forms a less number of compounds and is not considered as chalcogens.

462 (a)

Lead nitrate on ignition furnish lead oxide and nitrogen dioxide with evolution of O_2 gas.

$$2Pb(NO_3)_2 \xrightarrow{300-400^{\circ}C} 2PbO+4NO_2+O_2$$

463 **(a)**

Xe is most easily liquefible rare gas because interatomic interactions increases with increasing atomic number.

464 **(c)**

It is a fact.

465 (d)

In atomic reactors, helium gas is used. It is also used in filling lighter air-crafts such as air ships weather balloons etc.

467 (a)

 $Ca_3(PO_4)_2 + 3SiO_2 \rightarrow 3CaSiO_3 + P_2O_5$ $2P_2O_5 + 10C \rightarrow P_4 + 10CO$

468 (c)

 $\frac{1}{2}F_2 + e + aq. \longrightarrow F^-(aq.); \Delta H = H_d - EA - H_h$ Heat of hydration being exothermic and maximum for fluorine because of its smaller size and thus, more negative value for ΔH is obtained

for reduction of F_2 . Thus, F_2 is strong oxidant.

469 (a)

The lower is b.p., more is vapour pressure; b.p. order is:

HCl < HBr < HI < HF.

470 (a)

Sb is semi-metal and thus, forms amphoteric oxides.

471 (a)

Bone black is polymorphic form of phosphorus. The other forms of phosphorus. The other forms of phosphorus. The other forms of phosphorus and red phosphorus.

472 **(b)**

The acidic strength of oxy acids decreases downwards in a group.

The correct order of acidic strength of oxy - acids of halogen is

HIO₄>HBrO₄>HIO₄

473 (d)

The structure of the given compounds are as

474 (c)

It is a fact.

475 (d)

Due to its chemically inert nature.

476 (d)

The inert gases producing maximum number of compounds are Ar(argon) and Xe(xenon) due to their low ionisation energy.

477 **(d)**

 $CaC_2 + N_2 \rightarrow CaCN_2 + C$

478 (a)

$$2KBr + 3H_2SO_4 + MnO_2$$

 $\rightarrow 2KHSO_4 + MnSO_4 + 2H_2O$
 $+ Br_2$

479 (d)

 $Fe_2(SO_4)_3$ on heating gives $SO_3Fe_2(SO_4)_3$ $+3S0_{3}$

480 **(d)**

It is a fact.

482 (d)

It is a fact.

483 (a)

XeF₆ has much tendency to hydrolyse. The reverse reaction is more spontaneous.

 $XeF_6+3 H_2O \longrightarrow XeO_3+6HF$

484 **(b)**

It is a fact.

$$2F_2 + 4KOH \rightarrow 4KF + O_2 + 2H_2O$$

486 (c)

Slow acting nitrogenous fertilizer is one which decomposes slowly. out of given choices CaNCN (or CaCN₂ or calcium cyanamide) decomposes very slowly.

$$CaNCN+2H_2O \rightarrow CaCO_3+NH_2CONH_2$$

$$\begin{array}{c} NH_2CONH_2 + \ H_2O \longrightarrow CO_2 + NH_3 \\ NH_3 \stackrel{Nitrifying\ bacteria}{\longrightarrow} \ Soluble\ nitrates \rightarrow plants \end{array}$$

487 **(c)**

Liquor ammonia is concentrated solution of ammonia in water while liquid ammonia is liquefied ammonia gas.

488 (d)

Rayleigh -ramsay separation method $N_2+O_2 \xrightarrow{Electric \, spark} 2NO$

 $2N0+0_2 \rightarrow 2N0_2$

 $2NaOH+2NO_2 \rightarrow NaNO_2+NaNO_3+H_2O$

489 (c)

As fertilizer. It is

$$Ca(H_2PO_4)_2 \cdot H_2O + 2(CaSO_4 \cdot 2H_2O).$$

490 (d)

These are characteristics of noble gases.

491 (d)

All are prepared using HNO_3 as one of the reagents.

492 **(b)**

Rn is the symbol for radon.

493 (d)

FeSO₄ · NO is formed.

494 (d)

$$2HNO_3 + P_2O_5 \rightarrow N_2O_5 + 2HPO_3$$

495 (a)

The phenomenon of phosphorescence shown by white phosphorus is called cold fire

496 (a)

Xe forms XeF₂, XeF₄or XeF₆ compounds with fluor

497 **(b)**

To provide inert atmosphere.

498 (c)

ppm of F =
$$\frac{\text{Wt. of F}}{\text{Wt. of paste}} \times 10^6 = \frac{0.2}{500} \times 10^6 = 400$$

499 (d)

$$3H_2O + PCl_3 \rightarrow H_3PO_3 + 3HCl$$

500 (d)

I₂ itself imparts violet colour.

501 **(b)**

Xe is meant stranger

502 (d)

These are characteristics of noble gases.

503 **(c)**

$$2Cr_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$$

504 **(b)**

A halate will be formed from halogen and the greenish yellow gas is Cl_2 . The halate which is used in fireworks and safety matches is KClO_3 $3\text{Cl}_2 + 6\text{KOH} \rightarrow \text{KClO}_3 + 5\text{HCl} + 3\text{H}_2\text{O}$

505 **(c)**

The inorganic nitrogen exists in the form of ammonia, which may be lost as gas to the atmosphere, may be acted upon by nitrifying bacteria or may be taken up directly by plants

506 **(b)**

Pseudohalides are uninegative groups which show certain characteristics of halide ions, e.g., CN^- , $SeCN^-$, SCN^- , N_3^- , OCN^- , NCO^-

507 **(d)**

$$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2$$

508 (d)

It is a fact.

509 **(b)**

XeF₂, XeF₄, XeF₆ are formed by xenone

510 **(d**)

N₂O₅ is white crystalline solid which melts at 30°C

511 (a)

Lone pair density is maximum in NH_3 due to its small size.

512 **(a)**

H₂F₂ is weakly ionized due to H-bonding.

513 **(b)**

Larger is size and mol. wt. more are van der Waals' forces among molecule.

515 (c)

$$SO_2 + Cl_2 \rightarrow SO_2Cl_2$$

516 (c)

PH₅ is not known.

517 **(c)**

$$3H_2O + 3F_2 \rightarrow 6HF + O_3$$

518 (a)

Nitrogen does not possess 2d-subshell and thus, cannot excite its 2s paired electron to get unpaired whereas phosphorus does so on account of availability of 3d-subshell.

519 **(b)**

A more electronegative halogen displaces less electronegative halogen from its halide. Fluorine is more electronegative than chlorine hence, it can displace Cl from HCl while chlorine cannot displace fluorine from HF. Therefore, the following reaction is not valid.

 $HF + Cl_2 \rightarrow F_2 + HCl$

520 **(c)**

More is the electronegativity of central atom (of non-metal) more is acidic nature of oxo-acid.

521 (a)

$$2NH_3 + 3Cl_2 \rightarrow 2NCl_3 + 3HCl$$

522 **(a)**

COOH

$$\begin{array}{ccc} & \xrightarrow{\text{Conc H}_2\text{SO}_4} \text{H}_2\text{O} + \text{CO} + \text{CO}_2 \\ \text{COOH} & & \end{array}$$

523 (d)

(d)

524 **(d)**

$$2F_2 + 2NaOH \rightarrow 2NaF + OF_2 + H_2O$$

525 **(c)**

 I_2 forms complex ion I_3^- in KI solution due to which it dissolves in it.

 Cl_2O and HClO both have Cl in + 1 oxidation state.

526 **(b)**

The boiling point of NH_3 is higher due to the presence of hydrogen bonding .the order of boiling point of hydrides of nitrogen family is as $Hydride: PH_3 < AsH_3 < NH_3 < SbH_3$

B.P. :185 218 239.6 256.

527 **(c)**

Rest all are uses of H₂SO₄.

528 **(a)**

Clevite is uranium mineral, on heating it gives He

529 (a)

 $\ddot{\text{N}}\text{H}_3$ and PH_3 both are basic because of the presence of lone pair of electrons

530 **(b)**

Both O and Cl is electronegative elements so O does not readily react with Cl

531 **(d)**

In case of Cl_2O_7 , Cl has +7 oxidation state(oxidation state) and also have highest oxygen content . So it is most acidic.

532 **(b)**

Sulphur possesses maximum bond energy for catenation in VI gp. members.

533 (a)

$$2K_2MnO_4 + Cl_2 \rightarrow 2KCl + 2KMnO_4$$

535 (c)

On rubbing liquor $\mathrm{NH_3}$ with $\mathrm{I_2}$ flakes, a dark brown ppt. of ammoniated nitrogen iodide, $\mathrm{NH_3}$ · $\mathrm{NI_3}$ is obtained, which decomposes quickly on drying into $\mathrm{NH_4I} + \mathrm{I_2} + \mathrm{N_2}$.

$$8NI_3 \cdot NH_3 \rightarrow 5N_2 + 9I_2 + 6NH_4I$$

536 **(c)**

$$2KBr + 2H_2SO_4 + MnO_2 \xrightarrow{\Delta} 2KHSO_4$$

+ $MnSO_4 + 2H_2O + Br_2$

537 **(d)**

Lower is the ionization potential of an element more would be its reducing power and also reactivity.

As we move down the group, the reactivity of noble gases increase due to the decrease ionization energy. Hence, xenon is most reactive.

538 **(b)**

Bartlett prepared first compound of Xe as $Xe^+[PtF_6]^-$, a red orange crystalline solid. $Xe + PtF_6 \rightarrow Xe^+[PtF_6]^-$

539 **(a)**

The function of $Fe(OH)_3$ in the contact process is to remove arsenic impurity. Fe $(OH)_3$ is a positive sol, hence it removes arsenic impurity which is a negative sol.

540 (a)

A clear solution in water is not formed because of

542 **(b)**

P₂O₅ reacts with NH₃ in presence of moisture.

543 (c)

Calcium cyanamide on treatment with steam produces NH_3 and $CaCO_3$. $CaNCN+3H_2O{\longrightarrow}2NH_3+CaCO_3$

544 **(c)**

Helium is twice as heavy as hydrogen, its lifting power is 92% of that of hydrogen. Helium has the lowest melting point of any element which makes liquid helium an ideal coolant for many extremely low temperature application such as crystals, a sophisticated measuring instrument based on super conducting magnet and cryogenic research where, temperature close to absolute zero are needed

545 **(b)**

Rest all react with HBr.

546 (a)

Cl in ClO_4^- has highest oxidation number and can be

547 **(a)**

 Bi_2O_3 is most basic; SeO_2 , Al_2O_3 and Sb_2O_3 are am

548 **(b)**

$$2HClO_4 \rightarrow H_2O + Cl_2O_7$$

549 **(b)**

$$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$

550 **(c)**

Each P in P₄O₆ has 3P—O bonds;

551 **(c)**

It is due to heavier gas argon (at. wt. 40) present with N_2 (at. wt. 28) obtained from atmosphere. Ar is about 1% in air; the most abundant inert gas in atmosphere.

552 **(c)**

$$4\mathsf{KNO}_3 + 4\mathsf{H}_2\mathsf{SO}_4$$

$$\rightarrow$$
 4KHSO₄ + 4NO₂ + 2H₂O + O₂

553 **(d)**

$$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$

P is oxidised (zero to + 1 oxidation state inNaH₂PO₂) as well as reduced (zero to - 3 oxidation state in PH₃).

554 **(b)**

 $H_2S_2O_4$ —dithionous acid $H_2S_2O_6$ —dithionic acid

H₂S₂O₅—disulphurous acid

H₂S₂O₇— disulphuric acid

555 **(d)**

Pseudohalide they are comination of more than one electronegative atoms which one unit negative charge, e.g. OCN⁻, CN⁻.

Polyhalide ions the complex ions which are fromed by reaction of halogens among themselves are called polyhalide ions e.g., I₃⁻, BrI₂⁻.

Interhalogens they are the compounds which are formed halogen react among themselves. one of the halogens behave as cation and other acts as aninon e. g. IF₅, ICl₅, BrF₃.

556 (d)

Iodine also forms ionic compounds in +3 state.

557 **(d)**

Upper halogen can replace lower halogen from their compounds solution because a more electronegation halogen displaces less electronegative halogen from its halide.

558 (d)

 $CCl_4 + I_2 \rightarrow Violet colour$

559 **(b)**

It is a fact.

560 (a)

The reducing character of the hydrides of group v elements depends upon the stability of hydrides. With progressive decrease in stability the reducing character of hydrides increases as we move down the group. Thus ammonia being stable has least reducing ability. The order of reducing abilities of V group hydrides is NH₃<PH₃<AsH₃<SbH₃<BiH₃

561 (c)

$$\begin{array}{c} {\rm CaOCl_2 + 2CH_3COOH} \\ \longrightarrow {\rm (CH_3COO)_2Ca + \atop Available \atop chlorine} \\ + {\rm H_2O} \end{array}$$

562 (c)

Salts of H_2SO_3 or SO_3^{2-} are called sulphite.

563 (a)

The head of match stick contains KCIO₃,KNO₃ sulphur and antimony

The sides of match box contains red phosphorus and sand powder.

P₄S₃is used in strike any where matches.

564 **(b)**

Follow methods of preparation of Xe fluorides.

565 (a)

Thermal stability of the hydrides decrease gradually from NH₃ to BiH₃. This is due to the reason that atomic size of the element increases down the group and N—H bond strength decreases.

566 (a)

 $Ca_3(PO_4)_2$ is called Thomas slag.

567 **(b)**

The electronegativity order is F > 0 > N > Cl.

568 (a)

The atomic size increases from Cl to I.

569 (c)

$$N_2 O \stackrel{\Delta}{\rightarrow} N_2 + \frac{1}{2} O_2$$

Find out oxidation no. in each.

571 (d)

It is a reason for the given fact.

572 (a)

N₂O₅ is an anhydride of HNO₃ $2HNO_3 \rightarrow N_2O_5 + H_2O$

Therefore, it can act only as oxidising agent

573 **(a)**

Oleum is fuming sulphuric acid.

$$H_2 SO_4 + SO_3 \longrightarrow H_2S_2O_7$$

oleum or pyrosulphuric acid

574 **(c)**

The basic character of hydrides decreases down the group or acidic character increases down the group. Also H₂O is neutral.

575 **(c)**

$$2HIO_3 \longrightarrow I_2O_5 + H_2O$$

576 (d)

I₂ possesses antiseptic nature.

578 (b)

$$2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$$

579 **(b)**

It is a fact.

580 **(b)**

Cl₂ being a stronger oxidizing agent, oxidises bromide present in the mother liquor to Br₂.

2Br⁻ + Cl₂

$$Cl_2$$

$$\rightarrow$$
 Br₂ + 2Cl⁻

from mother liquor

bromide

581 **(b)**

$$4\text{Zn} + 10\text{HNO}_3 \longrightarrow 4\text{Zn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3\text{H}_2\text{O}$$

V. dil.

582 (d)

 P_4O_{10} has 4P=0 bonds in it which are shorter than P—0 single bonds; each P atom has 3P—0 and 1P=0 bonds, i.e., total 4P-0 linkages.,

583 (d)

Fluorides react with these fluoro Lewis acids to form adducts. For example, XeF2 gives complexes of the type $XeF_2 \cdot 2MF_5$ and $XeF_2 \cdot MF_5$

584 **(b)**

$$_{88} Ra^{226} \rightarrow _{86} Rn^{222} + _{2} He^{4}$$

585 (d)

In the sublimation the solid substance converts

into vapours directly. Iodine is found in solid state while F₂ and Cl₂ are found in gaseous state and Br₂ is found in liquid state. so, iodine can be purified by sublimation.

587 (a)

NH₃ is a polar molecule.

588 (a)

 $4Cu+10 HNO_3 \rightarrow 4Cu(NO_3)_2+5H_2O+N_2O$

589 **(b)**

Rest all are characteristics of HNO₃.

590 **(b)**

$$3S + 4NaOH \xrightarrow{Boiling} Na_2S_2O_3 + Na_2S$$

591 (d)

These do not possess the tendency to react.

592 (d)

Black P is metallic form of P.

593 (d)

SO₂ is gas.

594 (a)

It Is a fact.

595 (d)

SO₂ acts as a reducing agent, oxidising agent and as a bleaching agent. It does not act as dehydrating agent.

596 (a)

$$P_4$$
 + $3NaOH+3H_2O \xrightarrow{\Delta}$ PH_3 + $3NaH_2PO_2$

white phosphorus

phosphine sod.

hypophosphate

598 **(b)**

Plantinished asbestos or vanadium pentaoxide $(V_2 O_5)$ is used as catalyst in the preparation of sulphur trioxide from SO₂ and oxygen.

$$2SO_2 + O_2 \xrightarrow{\text{Pt, asbestos}} 2SO_3 + \text{Heat}$$

599 (a)

Liquid helium us used in very low temperature thermometer

600 (a)

Xenon forms maximum number of chemical compounds because it has lowest ionization potential among noble gases. (i.e., among the He, Ne, Kr and Xe).

601 (d)

$$N_2O_4 + H_2O \rightarrow HNO_2 + HNO_3$$

602 **(c)**

MnO₂ is used as depolariser in Lechlanche cell.

603 **(c)**

Helium is not used to produce and sustain

powerful superconducting magnets. All others are the uses of helium.

604 (a)

XeF₂, XeF₄ and XeF₆ can be directly prepared

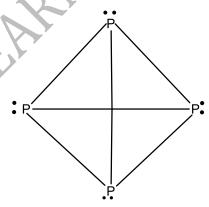
$$Xe + F_2 + \xrightarrow{\text{Ni tube}}_{673 \text{ K}} XeF_2;$$

$$Xe + 2F_2 \xrightarrow{673 \text{ K}} XeF_4$$

$$Xe + F_2 + \frac{\text{Ni tube}}{673 \text{ K}} XeF_2;$$

$$Xe + 2F_2 \xrightarrow{673 \text{ K}} XeF_4$$

$$Xe + 3F_2 \xrightarrow{523-573 \text{ K}} XeF_6$$


$$Xe + 3F_2 \xrightarrow{50-60 \text{ atm}} XeF_6$$

XeO₃ is obtained by the hydrolysis of XeF

$$XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$$

605 **(b)**

Phosphorus exists in several allotropic forms. out of them red and white are most common or red phosphorus is most stable form of phosphorus.white phosphorus or yellow phosphorus is the most reactive and poisonous allotrope of phosphorus. it is solid at room temperature it catches fire in air hence kept in water it has tetrahedral structure.

White phosphorus (tetrahedral solid)

606 **(b)**

Red phosphorus and antimony sulphide are used for coating of sides of match box

607 **(b)**

Chromyl chloride test is for Cl⁻.

608 (c)

$$Zn + 10 HNO_3 \longrightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$$
Ammonium
nitrate

∴ Zn reacts with cold dil HNO₃to produce NH₄NO₃ With dil. HNO_3 it produces $-N_2O$ (nitrous oxide) With conc. HNO_3 it produces $-NO_2$ (nitrous oxide)

609 **(b)**

In presence of moisture ,SO₂ acts as a reducing agent as it gives nascent hydrogen. It reduces hydrogen peroxide into water.

 $SO_2+2H_2O \longrightarrow H_2SO_4+2H$ $H_2O_2+2H \longrightarrow 2H_2O$

610 **(d)**

Due to large size of iodine, in HI strong van der Waals' forces are present, Hence, it has highest molar heat of vaporization

611 (d)

SO₂ has all these properties.

613 (d)

Liquid ammonia is used in refrigeration because it has high heat of vaporisation

615 **(c)**

20.24% HCl

+ H₂O mixture is azeotropic mixture boils at 110°C

616 **(c)**

It is a fact.

617 **(d)**

P exists as P_4 .

618 **(b)**

White phosphorus is soluble in CS₂ whereas red phosphorus is insoluble in it

619 (a)

In PCl₅ two P—Cl bonds are axially located and three are equatorial. Thus, two P—Cl bonds are weaker than other three.

620 **(b)**

The acidic character of oxides decreases down the group.

621 **(b)**

King of chemicals is H_2SO_4 . The economy of a country is measured in terms of consumption of H_2SO_4 .

622 **(c)**

Fluorine has Highest $E_{\rm red}^{\circ}$ (equal to + 2.9 V) due to which it can easily accept an electron and hence it is the best oxidising agent.

623 **(d)**

F is most electronegative halogen.

624 **(a)**

It is a fact.

625 **(c)**

The strongest oxidizing agent among all elements i

626 **(d)**

All the elements of gp. 16 show polymorphism or allotropy.

627 **(c)**

Although thre number of -OH groups is increasing in H_3PO_2 (1 OH group), H_3PO_3 (2 OH group) and H_3PO_4 (3 OH group), yet acidity does not increase much. This is due to the fact that the number of unprotonated oxygen, responsible for enhancement of acidity due to inductive effect, remains the same, as a result dissociation constant also remains nearly same.

628 **(d)**

$$6HNO_3 + S \rightarrow H_2SO_4 + 6NO_2 + 2H_2O_3$$

629 **(a)**

In liquid state, HF shows proton donor tendency and HCl acts as proton acceptor.

630 **(d)**

It is a reason for the given fact.

631 (d)

Rest all acids have +5 oxidation state as in P_2O_5 . In H_3PO_3 oxidation state of P is +3.

632 (c)

 NO_2 is converted into liquid state.

633 **(c)**

Rest all halogens react with Sulphur.

634 **(b)**

$$Na_2SO_3 \xrightarrow{[0]} Na_2SO_4$$

635 **(b)**

Xe in XeF₄ has sp^3d^2 -hybridisation with two lone pair of electrons giving rise to square planar geometry.

636 (d)

It is a fact. Follow fixation of N_2 .

637 (a)

$$P_4 + 20HNO_3 \rightarrow 4H_3PO_4 + 20NO_2 + 4H_2O$$

638 **(b)**

Theacidic nature increases from H_2O to H_2Te . The increase in acidic character of hydrides on moving down the group may be explained in terms of bond length of H—M bond, larger is bond length lesser is bond energy and thus easier is ionization of H—M bond or easier is proton donor nature. Hence,

 $H_2O < H_2S < H_2Se < H_2Te$

639 **(a)**

Chlorine heptaoxide (Cl_2O_7) is the anhydride of perchloric acid.

 $2HCIO_4 \xrightarrow{\Delta} Cl_2O_7 + H_2O$

640 (a)

The inorganic nitrogen exists in the form of ammonia .which may be lost as gas to atmosphere may be acted upon by nitrifying bacteria or may be taken up directly by plants.

641 **(b)**

F has smallest size.

642 (a)

F₂ and Cl₂ have no action on starch solution; Br₂ t

643 **(b)**

$$2KMnO_4 + 5H_2S + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5S$$

644 (a)

$$PH_3 + 4Cl_2 \rightarrow PCl_5 + 3HCl$$

645 **(b**)

Bleaching powder liberates Cl₂ on standing.

646 **(c)**

Hyponitrous acid is $H_2N_2O_2$ or HNO.

647 **(b)**

This is the laboratory method of preparing phosphine gas.

 $P_4+3NaOH+3H_2O \longrightarrow PH_3+3NaH_2PO_2$ phosphine

648 (c)

$$Cl_2 + H_2O \rightarrow HOCl + HCl$$

(X)

 ${\rm AgNO_3 + HCl \longrightarrow AgCl + HNO_3}$

 $\rm Mg + 2HCl \longrightarrow MgCl_2 + H_2$

 (Y_{j})

649 (c)

Each element on two sides of change has same oxidation no.

650 **(d)**

$$2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + 4MnO_2 + O_2$$

651 (c)

A gas is converted into liquid or solid state by increasing van der Walls' forces.

652 **(b)**

$$2MnO_2 + 4KOH + O_2 \longrightarrow K_2MnO_4 + 2H_2O$$

653 **(b)**

Phosphorus pentoxide acts as a powerful dehydrating agent. It dehydrates HNO_3 to N_2O_5 , H_2SO_4 to SO_3 , $HCIO_4$ to Cl_2O_7 etc.

$$4 \text{ HNO}_3 + P_4O_{10} \longrightarrow 2N_2O_5 + 4HPO_3$$

$$2H_2SO_4 + P_4O_{10} \longrightarrow 2SO_3 + 4HPO_3$$

$$4 \text{ HCIO}_4 + P_4O_{10} \longrightarrow 2Cl_2O_7 + 4 \text{ HPO}_3$$

654 (c)

 $\rm H_2SO_4$ acts as dehydrating agent in following reaction

$$HCOOH \xrightarrow{H_2SO_4} CO + H_2O$$

655 (d)

All these are hydrolysed in presence of water.

656 **(c)**

 $2CaO \cdot MnO_2$ is called weldon mud.

657 (d)

It is a fact
$$(2H_2SO_4 + 2NO + O_2$$

 $\rightarrow 2NO \cdot HSO_4 + 2H_2O)$

658 (c)

P in PCl₅ has sp^3d -hybridization.

659 **(b)**

Perhalates are strong oxidants and their oxidizing nature order is: $BrO_4^- > ClO_4^- > IO_4^-$

660 **(b)**

About 1/100th part of air is mixture of inert gases.

661 **(d)**

3HOCI→2HCl+HCIO₃

663 **(c)**

 $\mathrm{NH_4Cl}$ sublimes and decomposes partially to smell $\mathrm{NH_3}$.

664 (c)

S in SO_4^{2-} is sp^3 -hybridized.

665 **(a)**

Dithionous acid $(H_2S_2O_4)$ has sulphur in + 3 oxidation state

666 (a)

Oleum is $\rm H_2S_2O_7$ which is obtained by dissolving $\rm SO_3$ in $\rm H_2SO_4$ and is also called as fuming sulphuric acid

667 **(c)**

 $He \rightarrow He^+$

668 **(d)**

$$HNO_3 \rightarrow 4NO_2 + 2H_2O + O_2$$

669 **(b)**

Carnallite is K, Mg chloride and bromide.

670 **(b)**

 O_3 is a blue coloured gas.

671 (c)

$${\rm N_2 + 3H_2} \stackrel{\rm Fe}{
ightarrow} {\rm 2NH_3}$$
 (Mo is promoter).

672 **(b)**

$$3HCl + HNO_3 \rightarrow NOCl + 2H_2O + Cl_2$$

673 **(b)**

Phosgene does not contain any metal in it. Therefore, it will not produce metal sulphide with $\rm H_2O$. All others give corresponding metal sulphides such as Cds, Zns and CuS

674 (d)

Sulphur occurs in native form in the volcanic region.

675 **(b)**

 ${\rm KrF_2}$ is a ${\rm F^-}$ donor and form complexes with ${\rm F^-}$ acceptors where, only cationic species or Kr will be present

676 **(a)**

 ${\rm XeO_3}$ has sp^3 -hybrization with trigonal pyramid geometry.

677 **(b)**

$$Cl_2 + H_2S \longrightarrow 2HCl + S; S^{2-} \longrightarrow S^0 + 2e.$$

678 **(d**)

It is a reason for the given fact.

679 **(b)**

In F_2O the oxidation state of O is + 2 *ie*, positive whereas, in other compounds such as CO, NO, N_2O it is -2

680 **(b)**

Poisson's ratio $\gamma = \frac{c_p}{c_v} = 1.66$, because inert gases are monoatomic.

681 **(c)**

Noble gases are present in atmosphere in minute quantities except Rn, which is radioactive and is formed by decay of Ra.

682 **(b)**

P₄has six P—P bonds, four lone pair of electrons ar

683 (a)

$$I_{2}+10 \text{ HNO}_{3} \xrightarrow{\Delta} 2\text{HIO}_{3}+10\text{NO}_{2}+4\text{H}_{2}\text{O}$$

$$S+6 \text{ HNO}_{3} \xrightarrow{\Delta} \text{H}_{2}\text{SO}_{4}+6\text{NO}_{2}+2\text{H}_{2}\text{O}$$

$$P_{4}+20 \text{ HNO}_{3} \xrightarrow{\Delta} 4 \text{ H}_{3}\text{PO}_{4}+20\text{NO}_{2}+4\text{H}_{2}\text{O}$$

$$C+4 \text{ HNO}_{3} \xrightarrow{\Delta} \text{CO}_{2}+4\text{NO}_{2}+2\text{H}_{2}\text{O}$$

684 **(d)**

The bond order for $He_2 = 0$ and thus molecules is non-existent.

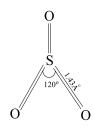
685 **(b)**

$$\begin{split} F_2 + 2Cl^- &\to Cl_2 + 2F^- \\ F_2 + 2Br^- &\to Br_2 + 2F^- \\ F_2 + 2I^- &\to I_2 + 2F^- \end{split}$$

686 **(b**)

Due to the less reactivity, red phosphorus is most stable

687 **(d)**


$$90_3 + 2I_2 \rightarrow I_40_9 + 90_2$$

688 (c)

Yellow colour is complementary colour to violet.

689 (a)

 ${\rm SO_3}$ has sp^2 -hybridization on S atom having geometry.

690 (d)

$$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$$

PH₃ contain P_2H_4 an as impurity which on burning gives P_2O_5 and white smoke

691 (c)

It is a fact.

692 **(b)**

An important reaction of PCl_5 is to replace OH gp. by Cl.

693 (d)

Chalcogens are ore forming elements.

694 **(c)**

$$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$$

695 **(c)**

Ar is more soluble in water than $\rm O_2$ and $\rm N_2$ and also He

696 **(c)**

it ionizes in three steps because three – OH groups are present

697 (a)

 $2KMnO_4 + 16HCl$

$$\rightarrow$$
 2KCl + 2MnCl₂ + 8H₂O + 5Cl₂

698 **(d)**

All other oxides of nitrogen except N₂O and NO are acidic nature.

699 (d)

Pseudohalide ion and pseudohalognes There are certain monovalent negative ions made up of two or more electronegative atoms which exhibit properties similar to these of halide ions. Such ions are known as pseudohalide ions. Just as halide ions, pseudohalide ions have also corresponding dimeric molecules these are called pseudohalogens and show properties similar to those of halogens, eg, Cl⁻ and CN⁻

700 (d)

Nessler's reagent is K₂HgI₄.

701 (d)

Due to smaller electronegativity differences in

between two halogens.

702 (a)

It is a reason for the given fact.

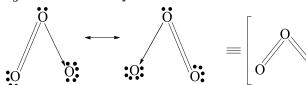
703 **(c)**

As acts as poison for Pt in contact process.

704 (d)

$$I_2 + 2KI \rightarrow 2KI_3$$
 (Water soluble).

705 (a)


Traces of iodine accelerate the transformation of white P into red P at relatively lower temperature.

707 (c)

$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$

712 (a)

O₃ is a resonance hybrid of

713 (c)

$$2KI + Br_2 \rightarrow 2KBr + I_2$$

Starch $+I_2 \rightarrow Blue$ colour.

714 (a)

$$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO$$

715 (a)

$$S_R \xrightarrow{95.6^{\circ}C} S_M$$

716 (a)

719 (c)

Mn in KMnO₄ can be reduced; because only KMnO₄ is oxidant.

720 **(a**

 NO_2 is given out during the process which is responsible for yellow colour of HNO_3 .

721 **(d)**

Chlorine can replace bromine from KBr solution. as it is placed above bromine in VIIA group in periodic table.

 $Cl_2+2KBr \rightarrow 2KCl +Br_2$

722 **(a)**

AgF is water soluble.

723 **(b)**

$$NaF + HF \rightarrow NaHF_2$$

725 (d)

An oxygen-helium mixture is used for artificial respiration in deep sea diving instead of air because nitrogen present in air dissolves in blood under high pressure when sea diver goes into deep sea. When he comes to the surface, nitrogen bubbles out of the blood due to decrease in pressure, causing pains. This disease is called bends

726 **(d)**

708 **(a)**

It is a use of He.

709 **(b)**

 $N_2 O$ has anaesthetic nature used in dental surgery.

710 **(b)**

Rest all acids act as oxidant and oxidise Cu and Ag. Note Cu and Ag are placed below H in electrochemical series and do not liberate H_2 from acids.

711 **(b)**

$$0^{16}, 0^{17}$$
, and 0^{18}

HBr is reducing agent, H₂SO₄ is oxidizing agent.

717 **(c)**

It is a fact.

718 **(b)**

$$Na_2SO_3 + Cl_2 + H_2O \rightarrow Na_2SO_4 + 2HCl$$

Due to inert pair effect.

727 **(b)**

It is a reason for the given fact.

728 **(d)**

$$2HI + 2HNO_3 \rightarrow I_2 + 2NO_2 + 2H_2O$$

729 **(b)**

$$H_3PO_4 + 21HNO_3 + 12(NH_4)_2MoO_3$$

 $\rightarrow (NH_4)_3[PMo_{12}O_{40}]$
 $+ 21NH_4NO_3 + 12H_2O_3$

730 **(b)**

Air contains 1% argon which is heavier than N_2 .

731 **(b)**

It is the nature and use of antichlor.

732 (a)

 F_2 on reaction with hot and conc. Alkali gives sodium fluoride and oxygen.

$$2F_2+4NaOH\rightarrow 4NaF+O_2+2H_2O$$

733 **(b)**

 ${
m XeOF_4}$ gives sp^3d^3 hybridisation. Due to presence of one lone pair it gives square pyramidal geometry

734 (c)

Oleum is obtained by dissolving sulphur trioxide in $\ensuremath{H_2SO_4}$

$$SO_3 + H_2SO_4$$
 (conc.) $\longrightarrow H_2S_2O_7$

oleun

Oleum is also called fuming sulphuric acid because it fumes in moist air due to sulphur trioxide.

735 **(a)**

It is a characteristic of white phosphorus.

736 **(c)**

Caliche is crude chile salt petre (NaNO $_3$) which contains about 0.02% iodine as sodium iodate (NaIO $_3$), from which iodine is extracted

737 **(d)**

The electron affinity of halogens decreases down the group.

738 (a)

Interhalogen compounds are made up of two halogen atoms.

739 **(c)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

740 (d)

 $P+O_2 \longrightarrow phosphorus$ oxide + light, the phenomenon is called chemiluminescence, *i. e.*, the phenomenon of emitting light as a result of chemical change.

741 (a)

 F_2O is formed.

F is more electronegative than oxygen.
Oxygen is second most electronegative element.

742 **(d)**

$$(C_6H_{12}O_5)_n \xrightarrow{H_2SO_4} C + H_2O$$

743 (a)

Ne has van der Waals' radius, whereas in O_2 , covalent radius is reported.

744 **(b)**

$$Ag \rightarrow Ag^+ + e$$

745 (a)

$$Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O$$

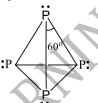
 $\rightarrow Ca(H_2PO_4)_2 \cdot H_2O + 2CaSO_4$
 $\cdot 2H_2O$

746 (c)

Chlorine acts as oxidising and bleaching agent in the presence of moisture. Chlorine reacts with water forming HCl and HCIOz. HCIO further decomposes to give nascent oxygen which is responsible for oxidising and bleaching properties of chlorine. Thus in chlorine water, oxidising agent is HOCI.

$$\begin{array}{c} \text{Cl}_2 + \text{H}_2\text{O} \longrightarrow \text{HCl} + \text{HCIO} \\ \text{HCIO} \longrightarrow \text{HCl} + \text{O} \\ \hline \text{Cl}_2 + \text{H}_2\text{O} \longrightarrow 2\text{HCl} + \text{O} \end{array}$$

747 (a)


$$F_2$$
 gases Cl_2 gases $Br_2 \rightarrow liquid$ $I_2 \rightarrow solid$

748 **(b)**

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$$

Coloured matter + H \rightarrow Colourless.

749 **(b)**

P₄ molecules,

Bond angle = 60°

Six P - P single bonds, lone pair = 4

750 **(a)**

N in N_2O_3 and HNO_2 has +3 oxidation state.

751 **(c)**

$$2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$$

752 **(d)**

ClO₃ has 41 electrons and thus, atleast one electro

754 **(a)**

753 **(a)**

The reducing power of halide ions is:

$$I^- > Br^- > Cl^- > F^-$$

755 **(c)**

Rest all react directly with N₂.

756 (d)

Perchloric acid (HClO₄)is the strongest acid among these because the acidic character of oxoacid increases with increasing the oxidation number of a particular halogen atom.

757 **(b**)

Ionization potential decreases down the gp.

758 (c)

When phosphorus trioxide is dissolved in water phosphorous acid (H_3PO_3) is formed $P_4O_6+6H_2O\longrightarrow 4H_3PO_3$

759 (a)

It is a fact. Air contains 20% $\rm O_2$ and supports in combustion.

760 **(d)**

761 (a)

SbF₅ is a strong electron pair acceptor. $H_2F_2 + SbF_5 \rightleftharpoons [H_2F]^+ [SbF_6]^-$ Lewis acid Lewis base

762 **(d)**

Br₂ reacts with hot and strong NaOH solution to give NaBr, NaBrO₃ and H₂O.

764 **(c)**

Mn₂O₇ gives HMnO₄ and CrO₃ gives H₂CrO₄ with I

765 (c)

Pentavalency in phosphorus is more stable than that of nitrogen due to the larger size of phosphorus atom

766 (a)

∴ White phosphorus is most reactive and most important allotrope of phosphorus. It is insoluble in water. ∴It is kept in water to prevent it from catching fire.

767 **(b)**

 $I(CH_3COO)_3$ is an ionic compound.

768 **(d)**

Rest all give PH_3 .

769 (c)

 $Ar_{18} \rightarrow 2, 8, 8$

770 **(c)**

Xe reacts directly with fluorine to form fluorides.

771 **(b)**

In XeF_5^+ , Xe atom has only seven electrons, ie, $5s^2$ $5p^5$. Here, two 5p electrons are promoted

to 5d sub level. Then 5s, three 5p and two 5d orbitals hybridize to give six sp^3d^2 hybrid orbitals in an octahedral geometry. Out of these, five orbitals are singly occupied which form sigma bonds with five F atoms. The sixth hybrid orbital is occupied by a lone pair in trans position giving a square pyramidal structure

772 (d)

It is an experimental fact.

773 **(a)**

Iodine I^- being a strong redcing agent reduces Cu^{2+} ions to Cu^+ ions and itself gets oxidized to iodine.

 $2 CuSO_4 + 4KI \longrightarrow Cu_2I_2 + I_2 + 2K_2SO_4$

774 **(d)**

The reducing power of halide ions decreases in the order

 $I^- > Br^- > CI^- > F^-$

Hence, I⁻ is the strongest reducing agent.

776 **(b)**

Liquid He is a unique liquid as it exists in two forms, He(I) and He(II). He(I) is a normal liquid with normal properties. On cooling to 2.19 K and 38 mm pressure it changes to He(II) with abrupt changes in many physical properties such as density, dielectric constant and specific heat. He(II) is super fluid or quantum mechanical liquid. It has very high heat of conductance (600 times of Cu), low viscosity (1/100 of H_2 gas) and flat meniscus (a low surface tension).

777 (c)

N₂O is linear molecule.

778 **(b)**

The acidic character of oxides increases with increase in non-metallic nature and oxidation number of central atom.

779 (a)

Apatite is $CaF_2.3Ca_3$ (PO₄)_{2.} It is an ore of fluorine with calcium.

780 (d)

S₈ has puckered ring structure.

781 **(b)**

 $Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$

782 **(d**

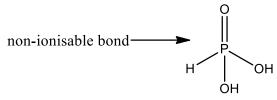
 $PCl_3 + Cl_2 \rightarrow PCl_5$

783 **(d)**

It is a fact.

784 **(a)**

The boiling point of inert gases increases with increases in molecular weight due to increase in van der Waal's forces.


- ∴ Xe has largest size, among inert gases.
- ∴ Xe has highest boiling point.

785 **(b)**

HPO₃ is called metaphosphoric acid.

786 **(b)**

Structure of H₃PO₃ is

788 (d)

Quick lime CaO is used to dry ammonia as with other given dehydrating agents ammonia reacts. $4NH_3+CaCl_2 \longrightarrow CaCl_2$. $4NH_3$

$$4NH_3+2P_2O_5 \longrightarrow 4NH_4PO_3$$

Ca(OH)₂ is never used as dehydrating agent.

789 **(d)**

The bond dissociation energy of Cl₂, Br₂, and I₂ is as

$$\begin{array}{lll} \mbox{Molecule} & : \mbox{Cl}_2 \mbox{ } > \mbox{Br}_2 \mbox{ } > \mbox{I}_2 \\ \mbox{Dissociation} & : 242.6 \mbox{ } 192.8 \mbox{ } 151.1 \end{array}$$

Enthalpy (kJ mol^{-1})

790 (c)

$$N_2 + O_2 \xrightarrow{Arc} 2NO; \Delta H = +ve.$$

791 (c)

Liquid He is a unique liquid as it exists in two forms, He(I) and He(II). He(I) is a normal liquid with normal properties. On cooling to 2.19 K and 38 mm pressure it changes to He(II) with abrupt changes in many physical properties such as density, dielectric constant and specific heat. He(II) is super fluid or quantum mechanical liquid. It has very high heat of conductance (600 times of Cu), low viscosity (1/100 of H_2 gas) and flat maniscus (a low surface tension).

792 **(b)**

The basic character of hydrides decreases down the gp.

793 (a)

Lower electronegativity and lower oxidation state of the central atom favours the formation of more basic oxide of element. Therefore, Bi₂O₃ is most basic oxide

794 (c)

 SO_2 bleaches by reduction, Cl_2 by oxidation.

795 (d)

$$Cl_2O_6 + H_2O \rightarrow HClO_3 + HClO_4$$

796 **(c)**

$$30_2 \xrightarrow{UV} 20_3$$

798 **(b)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

$$Ca_3P_2 + H_2O \rightarrow 3Ca(OH)_2 + PH_3$$

P₂H₄ is also produced.

799 (a)

It is a fact.

800 **(b)**

Sulphur does not form $p\pi - p\pi$ bond due to its larger size, hence does not exist as S_2 molecules.

801 **(a**

$$2NaOH + 2NO_2 \rightarrow NaNO_2 + NaNO_3 + H_2O$$

802 **(a)**

$$2SO_2 + O_2 \xrightarrow{NO} 2SO_3$$

804 (d

$$SO_2 + Br_2 + H_2O \rightarrow SO_3 + 2HBr$$

805 **(b)**

$$AgCl + 2NH_3 \rightarrow Ag(NH_3)_2Cl$$

806 **(c)**

The pair of SO_2 and Cl_2 has bleaching property. In presence of moisture, SO_2 acts as a bleaching agent.

$$SO_2+2H_2O \rightarrow H_2SO_4+2[H]$$

The nascent hydrogen bleaches the colour of the substance, thus SO₂ bleaches by reduction while Cl₂ bleaches by oxidation.

$$H_2O + Cl_2 \rightarrow HCl + HClO$$

$$HClO \rightarrow HCl + [O]$$

[0] + coloured substance \rightarrow colourless substances

807 (a)

HCl is better called chloride.

808 (c)

Iron is oxidized to ferrous nitrate and nitric acid is changed to ammonium nitrate.

4Fe+10 HNO₃
$$\rightarrow$$
4Fe(NO₃)₂+NH₄NO₃+3H₂O dil.

809 **(a)**

Members of group 15 or VA of periodic table are called pnicogens .they include N, P, As, Sb and Bi.

810 **(b)**

It is a fact.

812 (c)

$$F_2 + H_2O \rightarrow 2HF + \frac{1}{2}O_2$$

813 (a)

It is a reason for given fact.

814 **(b)**

It is a fact.

815 (d)

Each has one lone pair on Xe atom.

816 (d)

HClO

 \rightarrow HCl

+ [0]. Thus, oxidizing and bleaching agents.

817 (a)

$$2Sb + 3Cl_2 \rightarrow 2SbCl_3$$

818 (d)

Bromargyrite is a mineral of bromine.

819 **(b)**

He is lightest (after H₂), non-inflammable gas.

820 (c)

When phosphorus trichloride reacts with phenyl magnesium bromide (Grignard's reagent), all the three chlorine atoms of PCl₃ are replaced by phenyl group of phenyl magnesium bromide and triphenyl phosphine is obtained

821 (d)

Rest all reacts with water to give NH₃.

822 (a)

Bond length increases with size of the atom involved in bonding.

823 **(c)**

N≡N. This possesses high bond energy.

824 **(b**)

$$2KI + Cl_2 \rightarrow 2KCl + I_2; I_2 + CCl_4$$

 $\rightarrow Violet colour$

(lower layer because CCl₄ is heavier than water).

826 (d)

Cl₂ reacts with C₂H₂ to give westron and westroso

827 **(d)**

Each member of gp. 16 show polymorphism.

828 **(d**

829 (d)

The abundance ratio is: Ar (0.93%); Ne (0.0018%); He (0.0005%); Kr (0.0001%); Xe (0.00001%); Rn much less.

830 (c)

$$H_3PO_4 \rightleftharpoons H^+ + H_2PO_4^-$$

$$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$$

 $HPO_4^{2-} \rightleftharpoons H^+ + PO_4^{3-}$

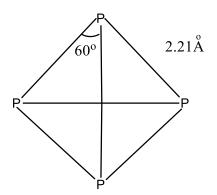
832 (a)

The solubility of alkaline earth metal fluorides decreases down the group.

833 (c)

Nitrogen dioxide (NO_2) exists as a dimer N_2O_4 . When it is dissolved in sodium hydroxide or any other alkali, a mixture of nitrate and nitrite is obtained.

834 (c)


O atom in each has sp^3 -hybridisation. Due to increase in electronegativity of halogen from Br to F, the lone pair-bond pair repulsion causes decrease in bond angle.

835 **(b)**

 ${\rm XeF_4}$ has sp^3d^2 hybridization of Xe atom having two positions occuelectrons.

836 **(b)**

White phosphate has the molecular formula p₄ both in solid and vapour state at moderate temperature. The four atoms present in the molecule are arranged at the corners of tetrahedron so the ppp bond angle is 60°. At higher temperature(above 700°C)it dissociates to give diatomic molecules as

837 (d)

 $4P + 5O_2 \rightarrow P_4O_{10} + light$. This phenomenon is called chemiluminescence

838 (c)

Oxidising agent such as NO_3^- , SO_3^{2-} oxidise H_2S to give turbidity of S (colloidal) in water.

839 (d)

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$$

840 **(b)**

It is a fact.

841 **(b)**

 $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$

842 (c)

Order of increasing enthalpy of vaporisation is $PH_3 < AsH_3 < NH_3$

The enthalpy of NH₃ is higher due to the H-bonding.

843 (c)

Lavoisier named it as muriatic acid. Cl₂ was named as oxymuriatic gas or acid.

844 (d)

ZnO is amphoteric.

845 (c)

 $FeSO_4 + 2H_2O \rightarrow Fe(OH)_2 + H_2SO_4$; addition of H_2SO_4 to this solution reverses back the

850 (a)

 SO_2 is a gas anhydride of H_2SO_3 ; P_2O_3 and P_2O_5 are solids.

851 (a)

PCl $_3$ and cold water reacts to produce *ortho* phosphorus acid (phosphorus acid)H $_3$ PO $_3$ PCl $_3$ +3HOH \longrightarrow H $_3$ PO $_3$ +3HCI

853 **(b)**

H₃PO₃ is dibasic acid forming NaH₂PO₃ and Na₂HI

854 **(c)**

It is a fact.

855 **(d)**

Fluorine is the stronger oxidizing agent. It will oxidise other halide ions to halogens in solution or even dry

$$F_2 + 2X^- \rightarrow 2F^- + X_2$$

856 **(b)**

If 20 g N then wt. is 100.

If 14 g N then wt. is $\frac{100 \times 14}{20} = 70$

Atleast one N atom in one molecule should be present to give minimum mol. wt.

857 (d)

Sulphides of As, Sb, Sn are soluble in yellow ammonium sulphide.

858 (a)

Stronger is acid, weaker is its conjugate base. The acidic character (on the basis of bond length) of halogen acids is:

$$HF < HCl < HBr < HI$$
.

859 (c)

$$\underbrace{P_2O_3 \quad A_2O_3 \quad B_2O_3}_{\text{Acidic oxides}} \qquad \underbrace{Bi_2O_3}_{\text{Alkaline}}$$

860 **(b)**

$$\mathrm{F_2} + 2\mathrm{HSO_4^-} \longrightarrow \mathrm{S_2O_8^{2-}} + 2\mathrm{HF}$$

861 **(c)**

Oleum is chemically H₂S ₂O₇ (pyrosulphuric acid).

hydrolysis of FeSO₄.

846 **(b)**

Because of very low ignition temperature (303 K) of phosphorus it is always kept under water

848 **(b)**

 $Cl_2O + H_2O \rightarrow 2HClO$; Cl has + 10xidation state in Cl_2O and HOCl.

849 **(b)**

$$(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + 4H_2O$$
(Green)

362 **(b)**

Chlorine forms maximum (six) oxides.

863 **(c)**

Ar is most abundant noble gas in air.

864 (a)

It is a use of freons.

865 **(d)**

S exists as octa-atomic in nature.

866 (d)

Noble gases are adsorbed by coconut charcoal. the adsorption of different noble gases occur at different temperatures, hence charcoal is used to separate these gases.

Helium is not adsorbed by charcoal (as it is very difficulty liquefiable gas).

867 (c)

It is a reason for the given fact.

869 **(d)**

Chloro-fluoro carbons are called freons.

870 (d)

Analytical reagent grade H_2SO_4 has normality = 36 N.

872 **(c)**

5 of P and 3 of Cl = 8.

873 (a)

 N_3H is hydrazoic acid. It easily gives a proton. Its salts are called azides (N_3^-) .

875 **(d)**

Ionisation energy increases along the period.

876 **(c)**

K₂HgI₄ gives brown ppt. with NH₄⁺.

877 **(c)**

NH₂CONH₂ is urea; 60 g urea has 28 g nitrogen.

878 **(b)**

Phosphate mineral is phosphorite, $Ca_3(PO_4)_2$.

879 (a)

S forms two thionic acids. Dithionic acid $H_2S_2O_6$ and polythionic acid $H_2S_nO_6$ (n=3, 4, 5, 6).

880 **(b)**

The disease caused by the constant touch with white phosphorus is called phossy jaw

881 (c)

PbSO₄ is insoluble in water and acids.

882 (c)

$$H_2S_2O_3$$
0
||
 $HO - S - S - OH$

883 (c)

N atom on NH_3 has one lone pair of electrons on it for coordination.

884 (c)

$$2KBr + Cl_2 {\longrightarrow} 2KCl + Br_2 \\ Hence, by the action of chlorine with KBr,$$

bromine gas can be produced.

885 **(c)**

The oxidation state of Xe in XeO_3 can be calculated as

$$XeO_{3}, x+(-2\times 3) = 0$$

 $X=+6$

 XeO_3 has Sp^3 hybridisation with bond angle = 103° .

886 (a)

$$NH_4NO_3(s) \xrightarrow{\Delta} 2H_2O \uparrow +N_2O \uparrow$$
 $NaNO_3(s) \xrightarrow{\Delta} NaNO_2 + O_2 \uparrow$
 $2AgNO_3(s) \xrightarrow{\Delta} 2Ag(s) + 2NO_2(g) + O_2(g)$
Lunar caustic
 $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 \uparrow +O_2 \uparrow$

887 **(b)**

$$NH_3 + HCl \rightarrow NH_4Cl$$

 $PH_3 + HCl \rightarrow PH_4Cl$

888 (a)

PO X_3 has sp^3 -hybridized, P having vacant d-orbitals. p-of O atom and d- of P undergoes $p\pi - d\pi$ bonding.

889 (d)

Nitrochloroform $CCl_3 \cdot NO_2$ is called tear gas.

890 (d)

All are the characteristics of $(CN)_2$.

891 (c)

Ammonium salts on heating with NaOH, give ammonia gas which has characteristic smell.

 $NH_4Cl+NaOH \xrightarrow{\Delta} NH_3\uparrow+H_2O+NaCl$

892 **(b)**

$$3AgNO_3 + PH_3 \longrightarrow Ag_3P + 3HNO_3$$

893 (c)

$$H_2S_2O_6 + H_2O \rightarrow H_2SO_4 + H_2SO_5$$

894 **(d)**

Ti has configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^2$, $4s^2$. Thus, Ti^{4+} has configuration

 $1s^2$, $2s^22p^6$, $3s^23p^6$, i.e., of Ar.

895 **(b)**

It is a fact.

896 (d)

Strongest oxidant is F_2 .

898 (c)

Pyrophosphorous acid is H₄P₂O₅,

899 **(b)**

A mixture of calcium cyanmide $CaCN_2$ and coke (C) is called nitrolim. It is used as fertilizer and can be prepared by passing nitrogen on CaC_2 .

$$CaC_2 + N_2 \xrightarrow{1100^{\circ}C} CaCN_2 + C$$
nitrolim

900 **(d)**

 NF_3 is not hydrolysed because neither N nor F has d-orbitals.

901 (d)

When the mixture of noble gas is cooled in a coconut bulb at 173 k then Ar, Kr and Xe are adsorbed on charcoal while He and Ne are not adsorbed.

902 (a)

$$H_2S + O_3 \longrightarrow H_2O + O_2 + S$$

903 (a)

$$PCl_5 + HO \longrightarrow S \longrightarrow Cl \longrightarrow S \longrightarrow Cl + POCl_3 + H_2O$$

$$O$$

 PCl_5 attacks —OH group and replace it by —Cl group. Hence, reaction of PCl_5 with H_2SO_4 shows the presence of two —OH group in H_2SO_4 .

904 (a)

Caliche is $NaNO_3 + NaIO_3(0.2\%)$.

905 (a)

 $\rm O_2$ molecule has total number of 16 electrons out of which two electrons are unpaired giving a paramagnetic nature while 14 electrons are paired

906 **(b)**

Follow text.

907 (a)

$$2 \mathrm{H}_2\mathrm{O} + \mathrm{SO}_2 \rightarrow \mathrm{H}_2\mathrm{SO}_4 + 2 \mathrm{[H]}$$

[nascent hydrogen]

Coloured flower $+ 2[H] \rightarrow Colourless flower$

908 (a)

$$NaNO_2 + NH_4Cl \xrightarrow{\Delta} NaCl + N_2 + 2H_2O$$

909 (a)

The formula of hypophosphorus acid is H₃PO₂.

910 **(b)**

Commercially chlorine dioxide is prepared by passing SO₂ gas into a mixture of sodium chloride and H₂SO₄ having NaCl in traces.

911 (b)

Oxygen due to its smaller size has more electron density in H₂O and thus, has more tendency to donate its lone pair for complex formation

912 (a)

Only He forms interstitial compounds since, the atomic size of He is smallest and matches the size of the interstices available is the lattice of most of the heavy metals

913 **(b)**

$$2NaIO_3 + 5NaHSO_3$$

 $\rightarrow 2Na_2SO_4 + 3NaHSO_4 + I_2$
 $+ H_2O$

914 (d)

Na₂O₂ is peroxide.

915 (a)

$$2SO_2 + O_2 \xrightarrow{NO} 2SO_3$$

$$2Cu^{2+} + 2I^{-} \rightarrow Cu_{2}^{2+} + I_{2}$$

917 **(b)**

Both He and Na give yellow lines but of different wavelengths.

918 **(b)**

White phosphorus on reaction with limited supply of oxygen gives lower oxide P₄O₆. Therefore, $air(O_2 + N_2)$ is a good source for controlled supply of oxygen and the best choice for controlled oxidation of white phosphorus into lower oxide P₄O₆.

919 (a)

$$PH_4I + NaOH \rightarrow NaI + PH_3 + H_2O$$

HF is formed which is liquid.

921 (a)

A characteristic of alkaline pyrogallol is to absorb (

922 (d)

Freons (chlorofluoro carbons) are used as refrigerant.

923 **(b)**

Red P does not react with NaOH.

924 **(c)**

$$N_2O$$
, NO , N_2O_3 , N_2O_4 and N_2O_5 .

925 **(a)**

$$NH_3 + HCl \rightarrow NH_4^+ + Cl^-$$

926 **(b)**

In household refrigeration, SO_2 is used as refrigerant. It is condensed by compression and cooling is caused when liquid SO2 is allowed to evaporate.

927 **(c)**

$$2CaOCl_2 \xrightarrow{CoCl_2} 2CaCl_2 + O_2$$

928 (c)

When nitrogen and hydrogen in the ratio of 1:3 are mixed at high temperature (750 K) at 200-250 atm pressure and in the presence of Fe and Mo, ammonia is obtained. This process is called Haber's process.

$$N_2(g) + 3H_2(g) = \frac{\text{Fe.Mo}}{750\text{K}} 2\text{NH}_3(g)$$

200-250 atm

In this process finely divided iron (Fe) acts as catalyst and molybdenum (Mo) acts as catalyst promoter.

929 (d)

These are uses of F₂.

930 **(b)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P2 H4. This property is used in Holme's signal.

931 (a)

$$FeSO_4 + NO \rightarrow FeSO_4 \cdot NO$$
 (brown)

932 (d)

$$3SO_2 + O_3$$

 \rightarrow 3SO₃. In rest all cases O₂ is given out.

933 (c)

HClO₄ is strong acid:

$$HClO_4 + H_2SO_4 \rightarrow ClO_4^- + H_3SO_4^+$$

934 (c)

$$SO_2 + 2CuCl_2 + 2H_2O \xrightarrow{KCNS} Cu_2Cl_2 + H_2SO_4 + 2HCI$$

White

935 (a)

All ammonium salts on heating with any alkali give NH₃.

936 **(d)**

$$4NH_3 + 5O_2 \xrightarrow{Pt \text{ gauze}} 4NO + 6H_2O$$

937 (d)

S₂Cl₂ is used in vulcanisation of rubber and as chlc

938 (c)

$$Ca_{3}(PO_{4})_{2} + 2H_{2}SO_{4} + 5H_{2}O$$

 $\rightarrow Ca(H_{2}PO_{4})_{2} \cdot H_{2}O + 2CaSO_{4}$
 $\cdot 2H_{2}O$

939 (a)

P₄O₁₀ and H₃PO₄ both have

+ 5 oxidation state for P.

940 (a)

H₂F₂ being weak acid is slightly ionized.

Oleum is $H_2S_2O_7$.

942 (a)

$$Cr + H_2SO_4[Cr(H_2O)_6^{2+}]SO_4; Cr(H_2O)_6^{2+}$$
 is blue.
Dil.

944 (d)

SO₂ acts as bleaching agent due to its reducing property.

 $SO_2 +2H_2O \rightarrow H_2SO_4 +2H$

Coloured matter $+[H] \rightarrow$ colourless matter.

945 (d)

HClO₃ and ClO₃ both possess these properties.

 $+\frac{3}{2}$ O₂} oxidation and bleaching properties

$$Cl^{5+} \longrightarrow Cl^{7} + 2e$$

$$e + Cl^{5+} \longrightarrow Cl^{-}$$
Disproportionation

Suppose the oxidation state of Xe in XeOF₂ is xx + (-2) + 2(-1) = 0;x - 2 - 2 = 0

$$x - z - z =$$

$$\Rightarrow x = +4$$

947 (c)

Only Mg and Mn liberate H₂ from dil. HNO₃.

$$2AgClO_3 + Cl_2 \rightarrow 2AgCl + ClO_2 + O_2$$

949 (a)

$$2 \text{FeCl}_3 + \text{SO}_2 + 2 \text{H}_2 \text{O} \rightarrow 2 \text{FeCl}_2 + \text{H}_2 \text{SO}_4 + 2 \text{HCl}$$

950 **(c)**

KClO₃ is known as Berthelot's salt

951 (a)

Pb reacts with dilute HNO₃ to produce NO $3Pb+8 HNO_3 \rightarrow 3Pb(NO_3)_2+2NO+4H_2O$

952 (d)

Liquid NH₃; due to high heat of evaporation.

953 (c)

(i)enantiotropy when two forms of a solid substance exist together in equilibrium with each other at a particular temperature under normal pressure e,g,

 $S_R \rightleftharpoons S_M$

(ii) dynamic allotropy if different allotropic forms exist in equilibrium over a range of temperature.

(iii)monotropy if an allotropic form change slowly to a stable form e.g.,

 $O_3 \rightarrow O_2$

∴ Monotropy is correct answer.

954 (c)

These are facts.

955 **(b)**

Xe reacts with P and O, the most electronegative elements.

956 **(c)**

Azeotropic mixture of H₂SO₄

957 **(b)**

$$2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$$

 $I_2 + 3Na_2S_2O_3 \rightarrow 2Na_2S_4O_6 + 2NaI$

958 **(a)**

As a refrigerant.

959 (c)

BiOCl is formed.

961 (a)

10 g bleaching powder will produce 4.9 g $Cl_2 = \frac{4.9 \times 22.4}{71}$ litre Cl_2 .

962 (c)

In Ca(NO₃)₂; % of N =
$$\frac{20}{164}$$
 × 100 = 17.07%
In (NH₄)₂SO₄; % of N = $\frac{28}{132}$ × 100 = 21.21%
In NH₂CONH₂; % of N = $\frac{28}{60}$ × 100 = 46.66%
In NH₄NO₃; % of N = $\frac{28}{80}$ × 100 = 35.00%

963 (a)

 $NaClO + H_2O \rightarrow NaOH + HClO$; the HClO is weakest acid among halogen oxo-acids and thus, pH is maximum.

964 (d)

Anhydrous CaCl₂ can be used as dehydrating 967 (d) agent.

965 (c)

It is a characteristic of XeF₆:

$$2XeF_6 + SiO_2 \rightarrow 2XeOF_4 + SiF_4;$$

 $2XeOF_4 + SiO_2 \rightarrow 2XeO_2F_2 + SiF_4;$
 $2XeO_2F_2 + SiO_2 \rightarrow 2XeO_3 + SiF_4.$

966 **(b)**

$$4K + 3SO_2 \longrightarrow K_2SO_3 + K_2S_2O_3$$

971 (b)

Arsenic purifier chamber in contact process possesses $Fe(OH)_3$ which reacts with As_2SO_3 .

972 (a)

H₂SO₄ is hygroscopic agent.

973 (d)

Rest all react with water.

974 (c)

The basic character of hydrides down the group.

975 (d)

It is a fact.

976 **(b)**

Cl is sp^3 -hybridized having electrons in d-orbitals and p-electrons of oxygen, gives rise to $p\pi$ - $d\pi$ bonding to Cl—O bond.

977 **(b)**

Arsenic acid is H₃AsO₄.

978 (d)

$$F + e \rightarrow F^-$$

 E_{RP}^{0} is maximum for fluorine.

979 **(b)**

 SO_2 has sp^2 -hybridization with one lone pair on S atom having geometry.

980 **(b)**

Phosphorus, element of nitrogen family (V group), produces maximum number of oxy acids.

$$H_3PO_2$$
, HPO_2 , H_3PO_3 , $H_4P_2O_5$, HPO_3 , H_3PO_4 , $H_4P_2O_5$ (c)

981 **(d)**

Each member 17 gp. possesses ns^2np^5 configuration.

982 (a)

NOCl is nitrosyl chloride.

993 (d)

PH₆⁺ is not known.

994 (c)

In a group, $\Delta G f^{\circ}(HX)$ changes from negative to positive downwards.

It is an acid. $HClO \rightarrow ClO^- + H^+$.

968 (a)

Nitrogen gas is major component of air.

969 (a)

H₃PO₂ is monobasic acid and only one H is replaceable.

970 (a)

It is a reason for the given fact.

983 **(b)**

N is most electronegative among N-family.

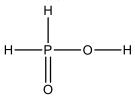
984 **(b)**

This is a reason for the given fact.

986 (c)

F has more electronegativity than other halogens.

987 **(b)**


On long standing it undergoes auto-oxidation as , $6CaOCl_2 \rightarrow Ca(ClO_3)_2 + 5CaCl_2$.

988 **(b)**

NH₃ is pyramidal.

989 **(c)**

Hypophosphorus acid(H₃ PO₂) is amonobasic acid and has only one ionisable H two Hatoms are directly attached to phosphorus thus the correct statement is (c).

990 (d)

Rest form all complex with NH_3 , e.g., $Ag(NH_3)_2^+$; $Cu(NH_3)_4^{2+}$; $Cd(NH_3)_4^{2+}$.

991 (c)

In laboratory ,H₂S is prepared by treating ferrous sulphide(black lumps) with dil .H₂SO₄ $FeS+ H_2SO_4 \rightarrow FeSO_4 + H_2S$

$$_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{4}$$

 $HF(g)\Delta G = -273.20 \text{ kJ mol}^{-1}1$

 $HF(g)\Delta G = +1.72 \text{ kJ mol}^{-1}$

Thus HF is thermally stable and HI not.

Thus,s HF>HCI>HBr>HI.

995 (c)

Coconut charcoal possesses characteristic property for adsorbing different noble gases at different temperatures.

996 (d)

Hypophosphorus acid is monoprotic acid as only o 101 (c) Attached on O are ionisable.

997 (b)

It also exhibits +1 oxidation states like Cl, Br and

998 (d)

Metallic character increases down the group.

The reactivity of halogens decreases down the gp.

100 **(b)**

It is a fact.

100 (a)

Clathrates are non-stoichiometic compounds where the ratio of guest and host molecules does not correspond to ideal chemical formula

100 (a)

Both possess pungent odour and act as bleaching

100 (a)

It is a fact. 3

100 (d)

The metallic character is developed to considerable extent in I2. It is violet crystalline, lustrous solid having the tendency to form I³⁺ cation.

100 (c)

Potassium chlorate (KCLO₃) is known as Berthelot's salt. It is the salt of chlorine acid, HCIO₃.

100 (c)

6 $NH_4NO_3 \xrightarrow{\Delta} N_2O(g) + 2H_2O(g)$

100 **(b)**

 $7 \longrightarrow PH_3 + HBr \longrightarrow PH_4Br$

100 (c)

Simple representation of bleaching powder is $CaOCl_2$. It is a mixture of $Ca(OCl)_2 + CaCl_2$. $Ca(OH)_2 \cdot H_2O$, *i. e.*, calcium chlorohypochlorite.

 $60_2 \rightarrow 40_3$

101 (c)

 $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$

101 (c)

1 $3SO_2 + O_3 \rightarrow 2SO_3$ $2Hg + O_3 \longrightarrow Hg_2O + O_3$ $2HCl+O_3 \rightarrow Cl_2+O_2+H_2O$

 $PbS + 4O_3 \longrightarrow PbSO_4 + 4O_2$

 $CaS + 4H_2S \rightarrow CaS_5 + 4H_2$ Polysulphide

101 (c)

H₂SO₄ is oxidant and HI is strong reductant.

101 **(d)**

Decomposition involves breaking up of a molecule into its fragments.

$$Pb(NO_3)_2 \rightarrow PbO + NO_2 + \frac{1}{2}O_2$$

101 **(b)**

Basic character of hydrides decreases down the 5 gp.

101 (a)

Fluorine forms Xe fluorides. 6

101 (a)

It is a fact. 7

101 (c)

8 Alkali metal oxides are saline oxides.

101 (a)

All are non-metals and possess strong electronegative nature.

102 (d)

 N_2O_3 is blue coloured.

102 **(c)**

 $Cl_2+2NaOH \rightarrow NaCl+NaClO+H_2O$ Cold,dil.

> Chlorine reacts with cold and dilute NaOH to give sodium hypochlorite.

102 (a)

2 These are characteristics of H₂O.

102 (d)

In VA group the thermal stability of hydrides decreases from NH₃ to BiH₃ hence, BiH₃ is the most unstable hydride.

 $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$

102 **(b)**

Both P^{3-} and Cl^{-} has $1s^{2}$, $2s^{2}2p^{6}$, $3s^{2}3p^{6}$ configuration.

102 **(b)**

Divers use He + 0_2

mixture for respiration in place of $N_2 + O_2$. The N₂ was found to dissolve in blood at high pressure during diving and after it, the N₂ gas comes out from blood causing painful nerve

bursting. The mixture is also used for respiration by asthma patients.

102 (a)

SO₂ is soluble in water $H_2O + SO_2 \rightarrow H_2SO_3$

sulphurous acid

102 (a)

Due to less reactivity of red phosphorus, it is used in the manufactures of safe matchsticks

102 (c)

It is a fact. 8

103 (d)

Due to absence of *d*-orbitals in N-atom, it cannot accept electrons from H₂O for hydrolysis of NF₃

103 **(c)**

It is a reason for the given fact. 1

103 (c)

General valence shell electronic configuration of 15 th group elements is $ns^2 np^3$ where n=period number.

103 **(b)**

K₂HgI₄ gives brown ppt. with NH₃.

103 **(b)**

Except Bi, rest all VA members show allotropy.

103 (d)

Pyrophosphoric acid is H₄P₂O₇ having 4H attached on 4 oxygen atoms.

103 (c)

H₃PO₄ is syrupy liquid due to more sites available for H-bonding.

103 **(b)**

$$7 \qquad \text{NO} + \text{NO}_2 \xrightarrow{253^{\circ}\text{C}} \text{N}_2\text{O}_3$$

$$(X)$$

 $N_2O_3+H_2O\longrightarrow 2HNO_2$

 \therefore Anion of y is NO_2^-

Its shape is triangular planar.

103 (d)

 XeF_2 , $XeOF_2$, XeF_4 , $XeOF_4$, XeF_6 , XeO_3

When conc. H₂SO₄ is heated with P₂O₅, the acid is converted into sulphur trioxide.

$$2 H_2SO_4 + 2 P_2O_5 \rightarrow 2SO_3 + 4HPO_3$$

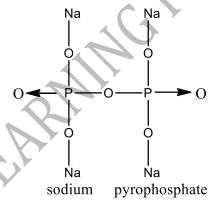
sulphur trioxide

104 **(b)**

The reactivity of yellow or white phosphorus is maximum.

104 **(b)**

Metaphosphoric acid is HPO₃;


 $P_2O_5 + H_2O \rightarrow 2HPO_3$

104 **(c)**

Sodium pyrophosphate is represented by 2 Na₄P₂O₇.It is sodium salt of pyrophosphoric acid (H₄P₂O₇). Which may be considered to be made up by two molecules of *ortho* phosphoric acid eliminating one molecule of H₂O.

$$2 \text{ H}_3\text{PO}_4 \xrightarrow{-H_2o} \text{H}_4\text{P}_2\text{O}_7$$

pyrophosphoric acid

104 (d)

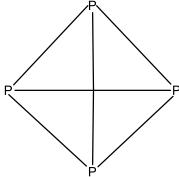
104 **(b)**

4 It is a fact.

104 (d)

5
$$2AgNO_3 \rightarrow 2AgNO_2 + O_2$$

$$\downarrow$$


$$2Ag + 2NO_2$$

104 (c)

 P_4O_{10} is a dehydrating agent. 7

104 (a)

 \therefore Bondings electrons in white phosphorus = 6

Structure of white phosphorus

104 **(b)**

9 Compounds of Ar with fluorine are not known because of higher ionization energy of Ar.

105 (d)

O SO_2 dissolves in H_2O in presence of oxygen to give $H_2SO_42SO_2 + 2H_2O + O_2 \rightarrow 2H_2SO_4$ H_2SO_4 or H_2SO_3 (solution of SO_2 in H_2O) reacts with marble to damage it as well as responsible for cough and choking in human body.

105 **(b)**

1 The hypochlorites disproportionate on heating as follows.

$$3CIO^- \rightarrow 2CI^- + CIO_3^-$$

105 (d)

2 $SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$ $SiF_4 + 2HF \rightarrow H_2SiF_6$

105 **(b)**

3 Cl₂ acts as permanent bleaching agent because its bleaching action is due to oxidation

$$Cl_2+H_2O\rightarrow 2HCl+[O]$$

Organic colouring matter $+[0] \rightarrow$ colourless matter

While SO_2 acts as temporary bleaching agent because its bleaching action is due to reduction.

 $SO_2+2H_2O \rightarrow H_2SO_4+2[H]$

Colouring matter $+2[H] \rightarrow$ colourless matter.

105 **(b)**

4 If not cooled properly, on opening the cork, the liquid will bump out.

105 **(a)**

$$\begin{array}{ccc}
5 & \text{CaC}_2 + \frac{5}{2}O_2 \longrightarrow \text{CaO} + 2\text{CO}_2 \\
& \text{CaC}_2 + \text{N}_2 \longrightarrow \text{Ca(CN)}_2.
\end{array}$$

105 (c)

FeSO₄ · 7H₂O
$$\stackrel{\Delta}{\rightarrow}$$
 FeSO₄ + 7H₂O;
2FeSO₄ $\stackrel{\Delta}{\rightarrow}$ Fe₂O₃ + SO₂ + SO₃

105 **(b)**

With progressive increase in atomic number, the reduction potential of halogen decreases thus

oxidizing power also decreases. Hence a halogen with lower atomic number will oxidise the halide ion of higher atomic number and therefore will liberate them from their salt solution.

$$Cl_2 + 2F^- \longrightarrow 2CI^- + F_2$$

is not possible.

105 (d)

$$8 P_4 + 6H_2SO_4 \rightarrow 4H_3PO_4 + 6SO_2$$

9 ZnO reacts with acids and alkalies both.

106 (d)

0 Nitrogen in both N₂O₅ and HNO₃ possesses + 5oxidation state.

106 **(b)**

1
$$SiO_2 + 6HF \rightarrow [SiF_6]^{2-} + 2H^+ + 2H_2O$$

2 Rest all three properties are shown by white phosphorus.

106 **(d)**

3 $2KMnO_4 + 3H_2SO_4 + 10HCl$

$$\rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5Cl_2$$

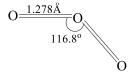
106 **(d)**

4 This is a reason for the given fact.

106 (c)

5 Bi is metal.

106 **(c)**


7 It is a method to get Cl₂.

106 (a)

8 Acidic character of oxides increases along the period.

106 **(b)**

9 0₃ has no unpaired electron in its structure.

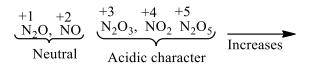
107 (d)

0 0_3 is used as dry bleaching agent.

107 (a)

1 The oxidizing power of HNO_3 is maximum among

107 (c)


2 -3 in PH₃ and +5 in PCl₅.

107 **(b)**

3 Sulphur exists as S₈.

107 **(b)**

4 The acidic character of oxides increases with increase in the oxidation number of element.

107 (a)

5 Bleaching powder is CaOCl₂ having Ca²⁺, Cl⁻ and C

107 (a)

6 B > P > As > Bi

As we go down the group, bond angle decreases, since the repulsion between the bonded pairs of electrons decrease

107 (a)

7
$$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + HOCl + HCl$$

 $HOCl \rightarrow HCl + [O]$

107 **(b)**

8
$$Ca_3P_2 + 3H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$$

107 (a)

9 Due to highest IP, electrons are more tightly held with nucleus.

108 **(c)**

0 It is a fact.

108 (d)

1
$$X = I_2, Y = HI$$

 $3I_2 + 2NH_3 \rightarrow NH_3 \cdot NI_3$
(explosive)
 $8NI_3 \cdot NH_3 \rightarrow 5N_2 + I_2 + 6NH_4I$
 $I_2 + H_2 \rightarrow 2HI$
(Y)

 $3\text{NaI} + \text{H}_3\text{PO}_4 \xrightarrow{\Delta} \text{Na}_3\text{PO}_4 + 3\text{HI}$

108 **(b)**

 V_2O_5 (vanadium pentaoxide) is used as a catalyst in the manufacture of H_2SO_4 by contact process since, it is not easily poisoned.

108 (c)

4 (i) carbon monoxide is neutral and SO_3 is acidic. (ii)aluminium and zinc oxides are amphoteric, so aluminium and zinc oxides react with both as acid and base.

$$\begin{split} &\text{Al}_2\text{O}_3 + 6\text{HCl} \ \ {\longrightarrow} 2\text{AlCl}_3 + 3\text{H}_2\text{O}\text{(with acid)} \\ &\text{Al}_2\text{O}_3 + 2\text{NaOH} + 3\text{H}_2\text{O} {\longrightarrow} 2\text{NaAl}\text{(OH)}_4\text{(with base)} \\ &\text{ZnO} + \text{H}^+ {\longrightarrow} \text{Zn}^{2+} + \text{H}_2\text{O}\text{(in acid)} \end{split}$$

 $ZnO+2OH^- +H_2O \rightarrow [Zn(OH)_4]^{2-}$ (in base) Hence, (i) and (iii) are correct.

108 (a)

5 It is a fact.

108 (d)

Among halides of hydrogen intermolecular H-bonding is present. So when we go top to bottom in halogen group, size of I⁻ ion increases and the intermolecular H- bonding becomes weak and easily gives H+ in aqueous solution. So, it works as

a strong acid.

Acidity decreases in the order HI>HBr>HCI>HF

108 (a)

7 Rest all gives O_2 on heating.

108 (a)

8 This was a reason for late discovery of F_2 .

108 (c)

9 H_2SO_5 (Caro's acid) and $H_2S_2O_8$ (Marshall's acid) contain one peroxyacids – 0 – 0 – linkage

109 **(b)**

F₂ is pale-yellow; Cl₂ is green-yellow; Br₂ is dark yellow-brown; I₂ is violet .

109 (c)

1 $(CN)_2$ is called pseudohalogen.

109 (c)

²
$$CS_2 + 3Cl_2 \xrightarrow{I_2} CCl_4 + S_2Cl_2$$

109 (c)

4
$$2\text{NaI} + 2\text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{SO}_2 + \text{H}_2\text{O} + \text{I}_2$$

109 **(b)**

5
$$KNO_3 \xrightarrow{\Delta} KNO_2 + \frac{1}{2}O_2$$

109 **(b)**

6 H₂SO₄ is a very good hygroscopic agent.

109 (c)

NO (Nitric oxide) is synthesized in lab by copper with cold and dilute HNO_{3.}

$$3Cu+8 HNO_3 \longrightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$$

dil. Nitric oxide

109 (a)

8 XeO₄ is formed by promoting one 5s and there 5p-electrons of Xe to higher energy. 5d orbitals giving eight unpaired orbitals hybridize to give sp^3 hybridisation which form sigma bonds with four O atoms. The four unhybridised singly occupied 5d orbitals form four $p\pi - d\pi$ bonds with oxygen atoms

110 (c)

$$0 \qquad 2KClO_3 + 4HCl \rightarrow 2KCl + Cl_2 + 2ClO_2 + 2H_2O$$

110 (a)

1 H-bonding in H₂O develops abnormal properties.

110 **(b)**

2 It is a fact.

110 (c)

3 It is a mixture of $Ca(OCl)_2 \cdot 4H_2O$ + $CaCl_2Ca(OH)_2 \cdot H_2O$

110 (d)

$$\begin{array}{cc} 4 & \text{H}_2\text{S} + 2\text{HNO}_3 \rightarrow 2\text{NO}_2 + \text{S} + 2\text{H}_2\text{O} \\ & \text{(colloidal sulphur)} \end{array}$$

110 (d)

5 It is a fact.

110 (c)

Alcoholic solution of I₂ is brown.

110 (d)

It is a use of Ne. 7

110 **(b)**

Fluorine exhibits an oxidation state of only -1 because it is very strongly electronegative element (maximum electronegativity in the periodic table)..

110 (a)

 $2Na_2SO_3 + O_2 \rightarrow 2Na_2SO_4$

 F_2 reacts with CH_4 even in dark to show substitutive 113 (a)

111 (d)

 NO_2 is brown gas and N_2O_3 is blue-coloured 113 (c) liquid.

111 (d)

 $\mathrm{H_2C_2O_4} \xrightarrow{\mathrm{H_2SO_4}} \mathrm{H_2O} + \mathrm{CO} + \mathrm{CO_2}$

111 (c)

 $SO_2 + Cl_2 \rightarrow SO_2Cl_2$

111 (d)

Perchloric acid is not a peroxy acid while perphosphoric acid, pernitric acid and perdisulphuric acid are the example of peroxy acid.

111 (a)

 $2NaI + 2H_2SO_4 \rightarrow Na_2SO_4 + I_2 + SO_2 + 2H_2O$

111 (a)

Ozone undergoes addition reactions at C—C unsaturation.

112 (c)

 $NO(g) + NO_2(g) \rightarrow N_2O_3(l)$

112 **(d)**

 $P_4 + 5O_2 \rightarrow P_4O_{10}$; white phosphorus gets easily oxidised because it is highly reactive

112 (a)

Red phosphorus is less reactive. 2

P forms tetra-atomic molecule.

112 (a)

 $H_2S \rightleftharpoons H^+ + HS^ HS^- \rightleftharpoons H^+ + S^{2-}$

112 (c)

 $S + H_2O + 3O_3 \rightarrow H_2SO_4 + 3O_2$

All show +5 covalency.

112 (c)

Xenon hexafluoride reacts with silica to form XeOF₄ as

 $2 \text{ XeF}_6 + \text{SiO}_2 \longrightarrow \text{XeOF}_4 + \text{SiF}_4$

The oxidations state of xenon in XeOF4 is calculated as

x -2-1

XeOF₄

 $x+(-2)+4\times(-1)=0$

x-2-4=0

x=+6

112 (d)

These are reasons for the given fact.

112 **(c)**

Halogen's d-orbital forms π -bonds with p-orbital 9 of oxygen.

It is a fact.

 $2NaCl + K_2Cr_2O_7 + 4H_2SO_4$ 1 \rightarrow Na₂SO₄ + 2KHSO₄ + CrO₂Cl₂

113 (c)

Ozone is used for purifying water because ozone kills bacteria, cysts, mold ,parasites ,viruses, contaminates etc. It is one of the effective way of eliminating microorganism in the water. Ozone is most effective oxidant. It inactivates and oxidises organic matter, contaminates, pesticides, viruses and bacteria faster than chlorine. Ozone do not form TMH which have unpleasant odour and also carcinogenic. Ozone is very good biocide, ozone also absorts UV radiation.

113 (d)

3 Due to N≡N bond.

113 (d)

In disproportionation reaction, compounds are simultaneously formed that contain a given element in a more oxidised and more reduced state than the intial one. CIO₄ In oxidation number of Cl is +7 and it cannot increases it further so CIO₄ will not get oxidized and so will not undergo disproportionation reaction.

113 (c)

 $2MnO_4^- + 16H^+ + 10Cl^ \rightarrow 2Mn^{2+} + 5Cl_2 + 8H_2O$

113 **(d)**

AsH₃ is gas.

113 **(d)**

7 P_4O_{10} is tetrahedral in nature.

113 **(b)**

It is a reason for the given fact.

113 (d)

Cl₂O, ClO, ClO₂, Cl₂O₆, Cl₂O₇, ClO₄ are oxides of chlc

9

114 (d)

0 N₂O has neither oxidant nor reductant nature.

114 **(d**)

1 By Haber's process.

114 (a)

The basic character of halides of N is: $NF_3 < NCl_3 < NBr_3 < NI_3$.

114 **(c)**

 H_2O_2 decolourises KMnO₄ but O₃ not.

114 (c)

4 $Cl_2 + 2KBr \rightarrow Br_2 + 2KCl$

114 (c)

5 It is a fact.

114 (d)

6 Ba $(N_3)_2 \rightarrow Ba(s) + 3N_2(g)$

Azide salt of barium can be obtained in purest form as well as the decomposition product contain solid Ba as by product alongwith gaseous nitrogen hence to additional step of separation is required.

Other reaction are

$$NH_4 NO_3 \xrightarrow{Heat} N_2O + 2H_2O$$

$$2 \text{ NH}_3 + 3 \text{CuO} \xrightarrow{\text{Heat}} 3 \text{Cu} + 3 \text{H}_2 \text{O} + \text{N}_2$$

$$(NH_4)_2Cr_2O_7 \xrightarrow{\text{Heat}} Cr_2O_3 + 4H_2O + N_2$$

114 **(b)**

7 I₂+alcohol is tincture of iodine used as antiseptic.

114 (c)

8 $2XeF_6 + SiO_2 \rightarrow SiF_4 + 2XeOF_4$

114 **(c)**

9 I₂ possesses sublimation nature.

115 (c)

0 Electrolysis of MgCl₂, NaCl, KCl in fused state gives Cl₂ as byproduct. Electrolysis of Al₂O₃ in fused state gives O₂ as byproduct.

115 (d)

1 Rest all reacts with H₂SO₄.

115 **(b)**

2 NaNO₃ + 8H \rightarrow NaOH + 2H₂O + NH₃ Zn + 2NaOH \rightarrow Na₂ZnO₂ + 2H

115 **(b)**

Phosphine forms vortex rings of P_2O_5 when it comes in contact of air .These rings are in the form of white smoke .They are used in making smoke screen in warfare.

115 (c)

4 These radioactive minerals have entrapped He atoms, produced from particle, which they give on

heating in Vacuo.

115 **(b)**

5 Rest all $(ClO_3 = 41 \text{ electrons}, ClO_2 = 33 \text{ electrons})$ have unpaired electrons.

115 **(b)**

6 SO₂ is acidic and KOH is basic.

115 (d)

7 $SO_2 + 2H_2S \rightarrow 2H_2O + 3S; S^{2-}$ changes to S^0 .

115 (d)

8 In the reaction,

 $2HNO_3+P_2O_5 \longrightarrow 2HPO_3+N_2O_5$

 $HNO_3\,does$ not behave as an oxidising agent because in this reaction $P_2O_5\,shows$ dehydrating property . It removes water molecule from HNO_3

115 (d)

9 A mixed salt is one which gives more than one type of cations or anions, e. g., $Ca^{2+} + OCl^- + Cl^-$

116 **(a)**

 $0 \quad 4\text{FeS} + 70_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 4\text{SO}_2$

$$SO_2 + H_2O \rightarrow H_2SO_3$$

H₂SO₃ is dibasic acid.

116 **(c)**

 $1 \qquad NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$

116 (d)

In the formation of XeF_4 , sp^3d^2 hybridisation occurs which gives the molecule an octahedral structure. The xenon and four fluorine atoms are coplanar while the two equitorial positions are occupied by the two lone pairs of electron

116 (d)

4 N₂O and NO are neutral oxides of N.

116 **(d)**

-1 due to most electronegative nature and +3, +5,
 +7 due to excitation of *p*-electrons to *d*-orbitals;
 +1 also with less electronegative elements.

116 (c)

6 First two are simply methods of preparation of O_3 . Manufacture is done by (c) only.

116 (d)

7 $P_4 + O_2 \rightarrow P_4 O_{10} \text{ or } P_4 O_6$

116 **(d)**

8 Rest all are uses of He. He is heavier than H₂.

116 (c)

9 It is a fact.

117 **(b)**

0 In N_2 and O_2 , Mg will react on heating with them

and welding is not possible.

117 (a)

1 HNO_3 oxidizes H_2S to colloidal sulphur. $H_2S + 2HNO_3 \rightarrow 2NO_2 + 2H_2O + S$

117 (a)

2 $CS_2 + 2Cl_2 \rightarrow CCl_4 + 2S$

117 (a)

3 Each member of gp. 16 or VIA has ns^2np^4 configuration with two unpaired p-electrons.

117 **(d)**

4 Krypton is used in miner's cap lamps.

117 **(b)**

5 Solution of Br₂ in CS₂ is orange in colour.

117 (c)

On long standing it undergoes auto-oxidation as, $6\text{CaOCl}_2 \rightarrow \text{Ca}(\text{ClO}_3)_2 + 5\text{CaCl}_2$.

117 (d)

7 Ar is most abundant inert gas in air.

117 **(a**)

8 KF + HF \rightarrow KHF₂

117 (d)

9 PCl₅ produces POCl₃ with the following reagents PCl₅+ SO₂ \rightarrow POCl₃+SOCl₂ PCl₅+H₂O \rightarrow POCl₃+2HCl 6PCl₅+P₄O₁₀ \rightarrow 10POCl₃

118 **(b)**

0 On hydration, energy is given out.

118 **(b)**

1 Polyanion formation is maximum in sulphur. this is due to the fact that sulphur shows maximum catenation in the group .

118 **(c)**

The solubility of noble gases increases with increase in mol. wt. due to increase in van der Waals' forces. However, these are sparingly soluble.

118 (a)

3 It is a fact.

118 (a)

4 Sulphur is found in following allotropic forms:
(a)monoclinic (b)rhombic (c)plastic

119 (c)

 $5 I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O$

118 (d)

6 All these adsorb inert gases.

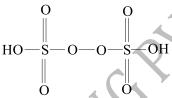
118 **(b)**

Potassium tetraiodo mercurate (II) ie $K_2[HgI_4]$ dissolve in KOH solution to give Nessler's reagent . Nessler's reagent is used to test NH_4^+ ions.

118 (a)

 $F_2 + H_2 O \rightarrow 2HF + \frac{1}{2}O_2; \quad \Delta H = -ve.$

118 (a)


Pseudohalide ions combine together to form interpseudohalogen compounds. Cl_2N_3 is not an interpseudohalogen.

119 (a)

1 $HCOOH \xrightarrow{H_2SO_4} H_2O + CO$ $H_2C_2O_4 \xrightarrow{H_2SO_4} H_2O + CO + CO_2$

119 (a)

2 $H_2S_2O_8$ has 0—0 bond in it.

119 (a)

4 ClF₃, where Cl is sp^3d hybridised, has a T-shape structure due to presence of two lone pairs of electrons on Cl atom

119 **(b)**

 $^{5} \quad 4HCl + O_{2} \xrightarrow{CuCl_{2}} 2H_{2}O + 2Cl_{2}(Deacon's process).$

119 **(a)**

6 Nitre cake is NaHSO₄.

119 (a)

Helium(He) is a non-flammable(incombustible) gas and its lifting power is 93% as compared to flammable hydrogen gas, due to these reasons it is used in filling balloons and other lighter air – crafts.

119 (a)

8 It is a fact.

119 (d)

9 It is a reason for the given fact.

120 **(a)**

 $0 S_2 O_7 + H_2 O \to H_2 S_2 O_8$

120 **(b)**

 $1 \quad PI_3 + 3H_2O \rightarrow + \underset{(Dibasic)}{H_3PO_3} + \underset{(Monobasic)}{3HI}$

120 **(a)**

2 Rest all are poisonous hydrides.

120 **(b)**

4 S in SO_4^{2-} is sp^3 -hybridized.

120 **(b)**

5 Only carbon reacts with conc. H₂SO₄ to give two different gases

 $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$

While other elements react with conc. H_2SO_4 with the evolution of only one type of gas.

120 **(b)**

 O_3 is an allotrope of O_2 .

120 (a)

 $Na_2SO_3 + S \rightarrow Na_2S_2O_3$

120 (d)

Each O and S has six valence electrons in it.

120 **(b)**

I atom in IF₇ possesses sp^3d^3 -hybridisation to develop pentagonal bipyramidal shape.

121 (d)

As the oxidation number of halogen increases, acidic character increases

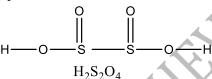
121 **(b)**

The 3 : 1 ratio of Cl^{35} : Cl^{37} gives average at. wt. of 122 (c) 35.5 to chlorine.

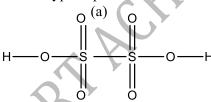
121 **(d)**

Zero group is called as buffer group because it lies between highly electronegative halogens and highly electropositive alkali metal elements.

121 (a)

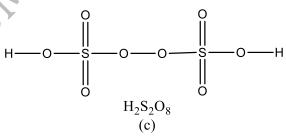

As the number of shells increases, size increases and the effective nuclear charge on the outermost electron decreases. Thus, IE decreases

121 **(b)**


$$4 2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$$

121 (c)

5



hyposulphurous acid

 $H_2S_2O_6$

dithionic acid

Marshall's acid

.. Marshall's acid does not have s-s bond

121 (a)

Bromine is a liquid at room temperature 6

121 **(b)**

₈₄Po is the only radioactive element of gp 16.

121 (c)

Oxygen and Sulphur are non-metals; Te is 8 metalloid, Po is metal.

121 (c)

 $NH_3 > PH_3 > AsH_3 > SbH_3$ On moving down the group atomic size increases and availability of lone pair decreases hence basic character decreases

122 **(c)**

H₂O contain hydrogen bond while no hydrogen bonding is present in H₂S

The acidic character decreases down the gp. 1

122 **(d)**

2 Rest all reacts with Cl₂.

122 (c)

Greater is electronegativity difference more is 3 polarity. Electronegativities of N, Cl, O, F are 3.0, 3.0, 3.5 and 4.0 respectively.

122 (d)

4 Na + NH₃
$$\rightarrow$$
 NaNH₂ + $\frac{1}{2}$ H₂

122 (c)

5 Bartlett prepared first compound of Xe as Xe⁺[PtF₆]⁻, a red orange crystalline solid. $Xe + PtF_6 \rightarrow Xe^+[PtF_6]^-$

122 (d)

Oxidation number of S in H_2SO_3 is +4 which lies between minimum (-2) and maximum (+6)values and can thus increase or decrease.

122 **(b)**

The ease of liquefaction decreases with decrease in critical temperature. Also, critical temperature of a gas is lowered with increase in mol. mass.

122 (d)

Concentrated H₂SO₄ is less volatile, *ie*, it has high boiling point

122 **(b)**

$$9 \quad 4P + 5CO_2 \rightarrow 2P_2O_5 + 5C$$

123 **(b)**

Silica(SiO₂) is present in the glass. This silica reacts with hydrofluoric acid.

$$SiO_2+4HF \longrightarrow SiF_4+2H_2O$$

 $SiF_4+2HF \rightarrow H_2SiF_6$

fluorosilicic acid Note: HF is used for the etching of glass. 123 (a)

The most reactive nature of F₂ brings it the name super halogen.

123 **(b)**

N₂O does not burn itself but supports combustion 124 (a) 2

123 (c)

Carbon cannot expand its octet due to absence of d-orbitals.

123 **(b)**

⁴
$$HgO \rightarrow Hg + \frac{1}{2}O_2$$

 I_2 forms I_2O_1 , I_2O_3 , I_2O_5 and I_2O_7 oxides.

123 (d)

Due to (i) Small atomic size (ii) High ionization energy (iii) Absence of *d*-orbital, helium does not form any compound

123 **(b)**

 $2HCIO_4 \rightarrow Cl_2O_7 + H_2O$ Hence, Cl₂O₇ is the anhydride of HCIO₄

123 **(c)**

It is a fact.

123 (d)

Spirit of salt is a solution of HCl.

124 (d)

$$0 2I^- \rightarrow I_2 + 2e$$
$$2e + S^{6+} \rightarrow S^{4+}$$

124 (c)

Oxygen shows only -2, -1 and +2(in F_2 0) oxidation states.

124 **(d)**

Concentrated sulphuric acid, being a strong acid, oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options.

$$+6$$
 -1 $+6$ -1
 $H_2 SO_4 + NaBr \rightarrow NaHSO_4 + HBr$
-1 $+6$ 0 $+4$
 $2HBr + H_2SO_4 \rightarrow 2H_2O + Br_2 + SO_2$

reduction

124 **(a)**

$$3 S^{4+} + 4e \rightarrow S;$$

$$S^{2-} \rightarrow S + 2e$$

The great affinity of H₂SO₄ for water is because it forms hydrates with water

124 **(d)**

Usually electron affinities decreases on moving down a group but fluorine due to its smaller size has a low value of electrons affinity in comparison to chlorine because the incoming electon experience greater repulsion. Thus, the order of electron affaffinity is as Cl>F>Br>I.

The correct order of acidity strength of halogen acids is HF<HCl<HBr<HI This is due to the reason that as the size of halogen increases H—Xbond becomes weaker and thus, H—Xeasily donate proton. Hence, HI is the strongest acid and HF is the weakest acid.

124 (a)

7 It is a fact.

124 **(b)**

 $NH_4NO_3 \rightarrow N_2O + 2H_2O$; N_2O does not burn and thus, does not supporter of combustion. Rest all nitrates give O_2 which is supporter of combustion.

124 (d)

9
 $H_2C_2O_4 \xrightarrow{H_2SO_4} CO + CO_2 + H_2O$

125 **(b)**

$$0 3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$$

125 (c)

Basic character (the tendency to donate lone pair) is maximum in NH₃.

125 **(a)**

O₃ has no action with KMnO₄.

125 **(d)**

It is a method to obtain noble gases.

125 (c)

$$\begin{array}{ccc} 5 & 3 \text{NaOCl} & \longrightarrow & \text{NaClO}_3 & + 2 \text{NaCl} \\ & \text{Hypochlorite} & \text{Chlorate} \end{array}$$

125 **(b)**

Chromite ion is $Cr_2O_4^{2-}$ 6

125 (c)

Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive.

125 (a)

Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more volatile

125 **(b)**

The energy liberated when an electron is added to an isolated gaseous atom is called electron affinity. Thus, as the size increase lesser energy is liberated and hence electron affinity decrease .But the electron affinity of Cl is higher than the electron affinity of F although F has smaller size. This is because the imcoming electron, in case of F experience a greater force of repulsion from the outer electrons of F. Thus to overcome the repulsion some relased energy is utilized. Hence lesser energy is released. Thus the electron affinity is highest for Cl.

126 **(a)**

Fluorine reacts with water liberating 0₂ exothermally

$$2F_2 + 2H_2O \rightarrow 4HF + O_2$$

126 **(c)**

2
$$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$$

126 **(d)**

3 P exists as
$$P_4$$
.

126 (a)

Aqua-regia is the mixture of 3 part conc. HCl and 1 part conc. HNO₃. It is a very strong acid which can dissolve noble metals.

126 (c)

5
$$XeOF_4 + H_2O \rightarrow XeO_2F_2 + 2HF$$

 $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$

It is a reason for the given fact.

126 **(b)**

7 COOH +Conc.H₂SO₄
$$\rightarrow$$
CO+CO₂ +H₂O
|
COOH

Oxalic acid

Concentrated H₂SO₄ is a strong dehydrating agent.

126 (a)

 0^{16} is the most abundant isotope of oxygen.

9 On passing H₂S through an oxidant, colloidal Sulphur is formed.

128 (a)

SO₂ is anhydride of H₂SO₃.

128 **(a)**

It is a fact

128 (d)

2 It is a fact.

White phosphorus is soluble in CS₂ but red P is not.

128 (c)

The bond angles are 92°, 106°51′, 109°28′ and 120°

In solid state PCl₅ is ionic having PCl₄ and PCl₆ ions.

128 (d)

126 **(b)**

Ramsay found it during decay of radio isotopes. 9

127 (c)

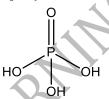
Group 15 members are called pnictogens, a collective name for this family.

127 **(b)**

1
$$8e + 2N^{5+} \rightarrow N_2^+$$

127 **(b)**

2
$$HO - SO_2 - OH + 2PCl_5 \rightarrow Cl - SO_2 - Cl + 2POCl_3 + 2HCl$$


127 **(b)**

XeF₆ cannot be stored in glass vessels because it 3 reacts with SiO₂ of the glass to give highly explosive XeO₃

$$2XeF_6 + 3SiO_2 \rightarrow 2XeO_3 + 3SiF_4$$

127 **(b)**

H₃PO₄ is tribasic acid.

127 (d)

5
$$C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12C + 11H_2O$$

The process is called charring.

127 (a)

In case of fluorides and chlorides, HF and HCl gases are given out on heating with conc. H₂SO₄ and MnO₂. In bromides and iodides Br₂ and I₂ are given out.

127 (d)

8 All these tests are used to detect the presence of H₂S.

 $IF_5 + F_2 \rightarrow IF_7$

128 (c)

NH₃ is polar as well as base and thus, soluble in water.

128 (c)

 IPO_4 is an ionic compound ($I^{3+}PO_4^{3-}$).

 ClO_3^- has sp^3 -hybridization.

129 (d)

HI being least stable decomposes with time to yield $H_2 + I_2$. The I_2 is dissolved in HI to develop brown colour in solution.

129 (d)

1

$$3KClO_3 + 3H_2SO_4$$

 $\rightarrow 3KHSO_4 + HClO_4 + 2ClO_2$
 $+ H_2O$

The reaction occurs with explosion.

129 **(b)**

2 $4HNO_3 + P_4O_{10} \rightarrow 4HPO_3 + 2N_2O_5$

129 (c)

3 F – F more strong bond compare to F – Cl, F – Br and Cl – Br bond

129 (d)

When molten sulphur is suddenly cooled by pouring into water it converts into plastic form

129 **(b)**

6 Rest all react with H₂SO₄ to give H₂.

129 (c)

7 The oxides are CO_2 , H_2O and SO_2 respectively.

129 (c)

8 N₂ and O₂ present in air are allowed to react to form NO and then NO₂.

129 **(b)**

9 Both SO₃ and H₂SO₄ have Sulphur in + 6 oxidation state.

130 **(c)**

0 It is a fact.

130 (c)

1 $1s^2 2s^2 2p^6 \rightarrow \text{Neon}$ It is noble gas

130 (a)

2 F does not have d-orbital in 2nd shell.

130 **(d)**

3 A commercial method to prepare O_2 .

130 **(c)**

4 N_2 is not supporter of life.

130 **(b)**

5 Hg reacts with O_3 to form HgO which sticks on walls.

130 **(b)**

6 He has $11, 1s^2$ configuration.

130 **(a)**

7 SCl₄ has sp^3d —hybridization and possesses seesaw structure.

130 **(b)**

8 $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$

130 (a)

9 N₂O₅ is acidic. NaOH an alkali, can absorb acidic ox

131 **(b)**

0 Notice that electron affinity of Cl is more than F.

131 (c)

 $1 \quad 20_3 \rightarrow 30_2$

131 (d)

None of these react directly with halogens (Cl₂, Br₂

2

131 **(c)**

3 Oleum is $H_2S_2O_4 + SO_3$.

131 **(a)**

4 N_2 forms NCl_3 , while P can form both PCl_3 and PCl_5 nitrogen does not give a pentahalide due to the non availability of 2d-orbital ,whereas p has low lying 3d-orbital which can be used for bonding.

131 **(b)**

5 (CN)₂ is known as pseudohalogen

131 **(a)**

6 B.p. and m.p. decrease with decrease in mol. wt.

131 **(a)**

7 $NH_4NO_3 \rightarrow N_2O + 2H_2O_3$

131 (a)

8 $SO_3 + HCl \rightarrow SO_2(OH)Cl$ Chlorosulphonic acid

131 **(b)**

 $0 \qquad \text{NH}_4\text{CNO} \xrightarrow{-\text{H}^+} \text{NH}_2\text{CONH}_2$ Urea

132 **(b)**

Salts of $HClO_2(ClO_2^-)$ is chlorite) are called chlorite.

132 **(a)**

1 He gas is not adsorbed by coconut charcoal.

132 **(d**)

PbS is black which is oxidized to PbSO₄ by ozone.

132 **(b)**

 $3 \qquad S + 2H_2SO_4 \longrightarrow 3SO_2 + 2H_2O$

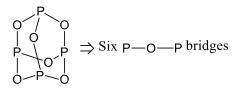
132 (d)

4 CO₂ gets evaporated slowly.

132 **(b)**

5 The order of bond dissociation energy of hydrogen halide (or halogen acid) is as Hydrogen halide dissociation HF >HCl >HBr >HI

Bond dissociation


Energy KJ mol⁻¹ 566 431 366 299 Bond dissociation energy \propto heat of formation As bond dissociation energy decreases the heat of formation of halogen acids also decreases. Hence, the order of heat of formation of halogen acids is HF > HCl > HBr > HI

132 **(d)**

 P_2O_5 , ie, P_4O_{10}

$$\begin{array}{c|c}
 & O \\
 & O \\$$

 P_2O_3 ie, P_4O_6

132 (d)

 S_R and S_M are allotropic forms of Sulphur.

Copper turing on heating with conc. H₂SO₄ produce SO₂.

 $Cu+2 H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$

132 **(c)**

Option(c) has noble gas configuration as it has 8 electrons in valence shell.

133 (d)

The acidity of oxyacids of halogens increases with increase in oxidation state of halogen.

Oxidation state of Cl in HCIO=+1

Oxidation state of Cl in $HCIO_2 = +3$

Oxidation state of Cl in HCIO₃=+5

Oxidation state of Cl in $HCIO_4 = +7$

Hence, HCIO₄ has highest acidity among oxyacids of chlorine.

133 (a)

LiF > LiCl > LiBr > LiI (Lattice energy) 1

133 **(d)**

Iodine readily dissolves in potassium iodide

133 **(c)**

NH₄Cl has sublimation nature, *i.e.*, tendency to convert directly into vapour state from solid state.

133 **(b)**

 $NH_3 + HCl \rightarrow NH_4Cl$ (White fumes)

 $PtCl_4 \rightarrow PtCl_2 + Cl_2$

134 **(b)**

Liquid ammonia helps in cooling of things due to its high heat of vaporisation. Therefore, it is used in refrigeration.

134 (a)

As stabilizer.

134 **(b)**

Bi does not show allotropy while, the allotropes of other elements are as follows

N → α and β nitrogen

As → Yellow and Grey forms

P → White, Red and Black forms

Sb → Yellow and Grey forms

134 **(d)**

In electrothermal process silica is heated with calcium phosphate when phosphorus pentoxide is obtained .It is then reduced by coke in electric

solution giving KI₃.

 $KI + I_2 \longrightarrow KI_{3(aq)}$

 $KI_3(aq) \rightleftharpoons K^+ + (aq) + I_3^-(aq)$

Note: I2 is more soluble in an aqueous solution of KI than in pure water, it is due to the formation of polyhalide (I_3^- ion).

133 **(c)**

SO₃ is colourless, crystalline transparent solid at room temperature.

133 **(d)**

H₂O containing H-bond due to which it have highest boiling point

133 **(c)**

5 HNO₂ can be either reduced to nitric acid (NO) or oxidised to nitric acid and hence it acts both as an oxidising as well as reducing agent

$$2HNO_2 \rightarrow 2NO + H_2O + O$$

 $HNO_2 + O \rightarrow HNO_3$

133 **(d)**

 NCl_3 has sp^3 -hybridized N atom.

furnace to get white phosphorus.

$$2Ca_3(PO_4)_2 + 6SiO_2 \xrightarrow{\Delta} 6CaSiO_3 + P_4O_{10}$$

$$P_4O_{10}+10C \xrightarrow{\Delta} P_4 + 10CO$$

134 (c)

It is a reason for the given fact.

5 NH₃ is a molecular hydride.

134 **(d)**

 $SO_2 + 2HNO_2 \rightarrow H_2SO_4 + 2NO$

134 (a)

Reducing properties increase from F to I so, it oxidise by nitric acid

 $I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O$

134 **(a)**

8 Alkali metal oxides are most basic.

134 **(b)**

The acidic character of oxo-acids decreases down the gp.

135 **(b)**

 $3NH_3 + OCl^- \rightarrow NH_2 - NH_2 + NH_4Cl + OH^-$

135 (a)

PO₂ and NCl₅ cannot exist 1

135 **(a)**

 $3CuO + 2NH_3 \rightarrow 3Cu + N_2 + 3H_2O$ 2

135 **(b)**

3 It is a fact.

135 (d)

 $30_2 \rightarrow 20_3$

 $3\text{vol } O_2 = 2\text{vol } O_3$

$$x \text{ vol } O_2 = \frac{2}{3}x \text{ vol } O_3$$

$$x + \frac{2}{3}x = 100L$$

$$\frac{5}{3}x = 100 \text{ or } x = 60L O_2$$

Volume of $O_3 = \frac{2}{3} \times 60 = 40$ L

135 **(b)**

The correct order of occurrence in air is Ar>Ne>Kr

135 **(b)**

Most of the noble gases are obtained from air.

135 (a)

In pyrophosphorous acid p is in +3 oxidation state.

135 (a)

In the reaction SO₂ and H₂S, SO₂ acts as oxidizing agent and H₂S acts as reducing agent.

 $SO_2+2H_2S\rightarrow 2H_2O+3s\downarrow$

136 **(b)**

Marshall's acid is the name for $H_2S_2O_8$ or perdisulphuric acid.

137 (a)

Neon is Greek language signifies 'new'.

137 (a)

Due to one unpaired electron in it.

137 **(a)**

 $Ca + F_2$

 \rightarrow CaF₂ (an insoluble compound responsible for fl 137 (d)

137 **(b)**

Nitric acid oxidises iodine into iodic acid (HIO_3) . $10HNO_3+I_2 \longrightarrow 3HIO_3+10NO_2+4H_2O$

Iodic acid

137 **(b)**

B.p. of molecules increases with increase in mol. wt. NH₃ however shows H-bonding and has high b.p.

135 (d)

9 HBr is strong reducing agent and will be oxidized \text{\text{\$k\$}}

136 **(b)**

About 46% N is present in urea.

136 (c)

Magnesium and dilute HNO₃reacts to produce H₂

 $Mg+2 HNO_3 \rightarrow Mg(NO_3)_2 + H_2 \uparrow$

136 (d)

In HF, the molecules aggregate because of intermolecular hydrogen bonding. Hence, it has highest boiling point

136 (a)

HF is a weak acid due to intermolecular hydrogen bonding

136 **(c)**

Rest all are uses of chlorine. 5

136 **(b)**

The solubility of I₂ in water increase by the addition of KI due to formation of polyhalide ion, i.e. I₃-

 $KI+I_2 \rightarrow KI_3$

136 **(d)**

Platinum, palladium and iridium are not attacked by strong acids. So these are called noble metals.

136 **(b)**

8 $CaCl(OCl) \rightarrow Ca(ClO_3)_2 + CaCl_2$

137 (a)

S, Se and Te are typically tetravalent in their compounds with oxygen. They show +6 oxidation state in fluorides.

137 (c)

7 It is a fact.

These are the uses of liquid oxygen.

138 (c)

 $CuSO_4 + 2H_2O \rightarrow Cu(OH)_2 + H_2SO_4;$ Addition of CH₃COOH reverses the hydrolysis of CuSO₄.

138 **(d)**

1 XeF_2 has sp^3d hybridization with linear shape

138 (a)

 I_2 is more soluble in C_6H_6 than in water.

138 (c)

 $2HNO_3 \rightarrow N_2O_5 + H_2O$ Nitric acid

138 **(b)**

 $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$

 $Cl_2 + H_2O \rightarrow 2HCl + [O]$

139 (d)

Xe in XeF₄, XeF₆, XeO₃ and XeO₄ possess sp^3d^2 , sp^3d^3 , sp^3 and sp^3 -hybridisation respectively.

139 (c)

Polonium, the last member of oxygen family is radioactive

139 (c)

3 In cold solution S passes in colloidal state.

139 (d)

 $XeO_3 + 6HF \rightarrow XeF_6 + 3H_2O$ is not possible because F⁻ is strong reducing agent and XeO₃ is strong oxidant. However the reverse reaction occurs $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$

139 **(b)**

Equimolar amounts of NO(g) and NO₂(g) at -30°c give $N_2O_3(1)$ which is ablue liquid.

$$NO(g)+NO_2(g) \xrightarrow{-30^{\circ}C} N_2O_3(I)$$
 blue

139 **(b)**

Fluorine is the most electronegative element in Periodic Table

139 (c)

NH₃ reacts with rest of all.

139 **(b)**

NH₃ has one lone pair of electrons. Rest all two lone pairs on central atom. The angle contracts due to lone pair effect.

139 **(c)**

As the oxidation number of central atom in oxoacids increases, acidic nature increases.

140 (a)

0 The bond angles and stability in hydrides decrease from N to Sb due to decreasing electronegativity of central atom.

140 (d)

 $P_4+3NaOH+3H_2O\longrightarrow3NaH_2PO_2+PH_3$

140 (a)

138 (d)

7

HNO₃ is strong oxidant and oxidizes these all.

138 (a)

White phosphorus exists as P4 units where, four P atoms lie at the corners of a regular tetrahedron with $P - P - P = 60^{\circ}$

139 (d)

All were difficulties in isolation of F_2 .

$$SO_3^{2-} + H_2SO_4 \rightarrow SO_2 + SO_4^{2-} + H_2O_3^{2-} + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O_3^{2-} + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O_3^{2-} + H$$

140 **(b)**

NO2 is pungent smelling gas. 3

140 (a)

 $NH_2CONH_2 + HNO_2 \rightarrow 2N_2 + CO_2 + 3H_2O$

140 (a)

5 The —0—0—linkage is called peroxide linkage.

Except for PbO₂, all the given choices have -0-0-linkage because all are peroxide.

 $H_2O_2 \rightarrow hydrogen peroxide$

 $BaO_2 \rightarrow barium peroxide$

 $SeO_2 \rightarrow selenium peroxide$

140 (c)

6 $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$

140 (c)

7 Rest all react with AgCl.

140 (d)

8 It is a reason for the given fact.

140 (a)

 $F_2 + \frac{1}{2} O_2 \rightarrow F_2 O$ is endothermic and F2 is reduced here, O2 is oxidized. In (b) Cl2 is oxidised. In (c) no doubt F2 is reduce but it is exothermic reaction.

141 (c)

 $CaC_2 + N_2 \rightarrow CaCN_2 + C$