HYDROGEN

CHEMISTRY

		Single Correct	t Answer Type		
1.	The percentage of para h	nydrogen in ordinary hydro	ogen increases when:		
	a) Temperature is lower				
	b) Temperature is increa	ased			
	-	and temperature is decrea	ised.		
	d) None of the above				
2.	Manufacture of H ₂ is ma				
	a) Lane's process	b) Bosch process	c) From natural gas	d) All of these	
3.	H_2O_2 on treatment with		Ć		
	a) H ₂	b) Oxygen	c) Hypochlorous acid	d) ClO ₂	
4.	Radioactive isotope of hy	-			
	a) Tritium	b) Deuterium	c) Para hydrogen	d) Ortho hydrogen	
5.	K_a of H_2O_2 is of the orde	r of		10	
	a) 10 ⁻¹²	b) ¹⁰⁻¹⁴	c) 10^{-16}	d) ^{10⁻¹⁰}	
6.	The hardness of water is			-	
0.	a) EDTA method	b) Titrimetic method	c) Conductivity method	d) Distillation method	
7.	The H $-$ 0 $-$ 0 bond ang	-	c) conductivity method	uj Distiliation metilou	
7.	a) 107.28°	b) 97°	c) 104.5°	d) 109.28°	
8.	,	ron to form H ⁺ ion. In this r		uj 109.20	
0.	a) Transition metals	b) Alkali metals	c) Halogens	d) Noble gases	
9.	$TiH_{1.73}$ is an example of		c) halogens	u) Noble gases	
9.			c) Motallic hydrido	d) Polymoric hydrido	
10	a) Ionic hydride b) Covalent hydride c) Metallic hydride d) Polymeric hydride D. The decomposition of H_2O_2 can be slowed down by the addition of small amount of phosphoric acid w				
10.	acts as:	² O ₂ can be slowed down by	y the addition of small amot	int of phosphoric actu which	
	a) Stopper	b) Detainer	c) Inhibitor	d) promoter	
11	The ortho and para hydr			u) promoter	
11.			nronerties		
	a) Same physical properties but different chemical properties b) Different physical properties but same chemical properties				
	c) Same chemical and ph		properties		
	d) Different, physical and				
12	The volume strength of 1				
12.	a) 4.8	b) 8.4	c) 4.2	d) 2.4	
13		s correct about heavy wate		u) 2.1	
10.		naximum density is known			
	b) It is heavier than wate		us neavy water		
	c) It is formed by the combination of heavier isotope of hydrogen and oxygen				
	d) None of the above		e of ny ar ogen and onygen		
14.	Which is not present in c	clear hard water?			
	a) Mg(HCO ₃) ₂	b) CaCl ₂	c) MgSO4	d) MgCO ₃	
		-) 00.0.2	,		
15	. Which of the following is not correct regarding the electrolytic preparation of H_2O_2 ?				
15.	Which of the following is a) Lead is used as cathod		electrolytic preparation of I b) 50% H ₂ SO ₄ is used	H ₂ O ₂ ?	

10		at an all Manual distilla		
16.			ation of Y gives $H_2 U_2$. The	e number of peroxy (0 - 0)
	bonds present in <i>X</i> and <i>Y</i>		a) 7 and 1	
17	a) 1.1	b) 1.2	c) Zero, 1	d) Zero, zero
17.		cidic ferrous sulphate solut	lons:	
	a) Electrons are gained b	-		
	b) Electrons are lost by F			
	c) There is no loss or gain			
10	d) Iron hydroxide precipi		2	
18.	•	actions produces hydrogen		
10	a) $H_2S_4O_8 + H_2O_8$	b) BaO + HCl	c) Mg + H_2O	d) $Na_2O_2 + 2HCl$
19.		of the following compound		
20	a) Na_2O_2	b) NaOH	c) Na_2O	d) KO ₂
20.		ts as both reducing and oxi		
21	a) H_2SO_4	b) H_2O_2	c) KOH	d) KMnO ₄
21.	=		eaviest isotope of hydrogen	
22	a) 3	b) 5	c) 4	d) 6
ΖΖ.			te and ether, ethereal layer	
22	a) Green	b) Red	c) Blue	d) Brown
23.		FeCl ₃ is reduced by passing		11 (5
24	a) ordinary H ₂	b) O_2	c) nascent H	d) H ₂
24.	Hydrogen does not comb			d) Cadima
25	a) Helium	b) Bismuth	c) Antimony	d) Sodium
25.	H_2 acts as an oxidant in it			4) 6
26	a) Br ₂	b) Ca	c) N ₂	d) S
26.	Of the two solvents H_2Oa		D More in D. O	d) Marain II O
27	a) Equally in both	b) Only in H_2O	c) More in D_2O	d) More in H ₂ O
27.		cium carbide react with hea		4) ()
20	a) $C_2 D_2$	b) CaD ₂	c) CaD_2O	d) CD ₂
20.			iute sulphunc aciu, same ga	as, which burns explosively
	in air, is evolved. The gas	b) N ₂	c) Cl ₂	4) H
20	a) 0 ₂ Heavy water is represent		C_{J} $C_{I_{2}}$	d) H ₂
29.	a) H_2 ¹⁸ 0	b) $D_2 O$	c) D ₂ ¹⁸ 0	d) H_2O at 4°C
20	Which is not a water soft		$CJD_2 = 0$	$d \int H_2 O dt 4 C$
50.			c) No. CO	
21	a) Calgon The boiling point of heavy		c) Na ₂ CO ₃	d) Na ₂ SO ₄
51.	a) 100°C	b) 101.4°C	c) 104°C	d) 102.5°C
22		erated from 15mL of 20 vo		u) 102.5 C
52.	a) 250mL	b) 300mL	c) 150mL	d) 200mL
22	Decomposition of H_2O_2 is	-	CJ ISOIIIL	d) 2001112
55.	a) KOH	b) MnO ₂	c) Acetanilide	d) Oxalic acid
34.	The boiling point of wate		cj Acctaining	uj oxane aciu
54.	a) Water molecule is line			
\checkmark	b) Water molecule is not			
	•	ess covalent bond between	H and O	
	d) Water molecules assoc			
35		H_2O_2 required to liberate S	$500 \mathrm{mL}$ O ₂ at NTP is:	
55.	a) 50 mL	b) 25 mL	c) 100 mL	d) 125 mL
36		airs of ions make the water		~, 120 III2
001	a) NH_4^+ , Cl^-	b) Ca^+ , HCO_3^-	c) Ca^{2+} , NO_3^-	d) Na ⁺ , SO ₄ ²⁻
	~,	~, 00, 11003	c) ou ,1103	-, na ,004

37.	Which of the following ga			
	a) SO ₂	b) NH ₃	c) H ₂	d) CO ₂
38.	Which will produce hard			
	a) Saturation of water wi	-		
	b) Addition of Na_2SO_4 to			
	c) Saturation of water wi	-		
20	d) Saturation of water wi	0 0		
39.		gas is utilised for the produ		d) None of these
4.0	a) Producer gas	b) Water gas	c) Coal gas	d) None of these
40.	Triple point of water is	h) 102 V	a) 272 V	
11	a) 203 K The hybridization of the	b) 193 K prbitals of oxygen in H ₂ O ₂ is	c) 273 K	d) 373 K
41.	a) sp^3d	b) sp	c) sp^2	d) <i>sp</i> ³
12	<i>,</i> .	airs will not produce dihydr	<i>,</i> .	uj sp
42.	a) Cu + HCl (dil.)	b) Fe + H_2SO_4	c) Mg + steam	d) Na + alcohol
43	Calgon used as water soft		cj mg + steam	
15.	a) Na ₂ [Na ₄ (PO ₃) ₆]	b) $Na_4[Na_2(PO_3)_6]$	c) Na ₂ [Na ₄ (PO ₄) ₂]	d) None of these
44	Permutit is:	5) mu ₄ [mu ₂ (103)6]	c) mu ₂ [mu ₄ (104)5]	
1 11	a) Hydrated sodium alum	ninium silicate		×
	b) Sodium hexa meta-pho			
	c) Sodium silicate	ophilo		
	d) Sodium meta-aluminat	te		
45.	-		ough rubber foaming mater	rial. This oxygen is released
	from:	51 0 50		
	a) Nitric oxide	b) Hydrogen peroxide	c) Water	d) CO_2
46.	Which is the poorest redu			
	a) Atomic hydrogen		b) Nascent hydrogen	
	c) Dihydrogen		d) All have same reducing	g strength
47.	, , ,	trial preparation of hydrog	, ,	g strength ₂) which of the following is
47.	In context with the indus the correct statement.		en from water gas (CO + H	
47.	In context with the indus the correct statement. a) CO and H ₂ are fraction	ally separated using differe	en from water gas (CO + H nces in their densities	
47.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso	ally separated using different proton in aqueous Cu_2Cl_2 so	en from water gas (CO + H nces in their densities	
47.	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through	ally separated using different orption in aqueous Cu_2Cl_2 so occlusion with Pd	en from water gas (CO + H nces in their densities olution	2) which of the following is
	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through d) CO is oxidised to CO ₂ v	ally separated using different orption in aqueous Cu_2Cl_2 so to occlusion with Pd with steam in the presence of the steam of the presence of the presence of the steam of the presence of the presenc	en from water gas (CO + H nces in their densities olution	2) which of the following is
47. 48.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO_2 w The number of radioactiv	ally separated using different orption in aqueous Cu_2Cl_2 so a occlusion with Pd with steam in the presence of re isotopes of hydrogen is:	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab	$_{2}$) which of the following is sorption of CO ₂ in alkali
48.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1	ally separated using different orption in aqueous Cu_2Cl_2 so n occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3	2) which of the following is
48.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO_2 w The number of radioactiv a) 1 The oxidation number of	ally separated using different orption in aqueous Cu ₂ Cl ₂ so n occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is	 2) which of the following is sorption of CO₂ in alkali d) None of these
48. 49.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1 The oxidation number of a) + 1	ally separated using different orption in aqueous Cu ₂ Cl ₂ so n occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3	$_{2}$) which of the following is sorption of CO ₂ in alkali
48. 49.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO_2 w The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volume	ally separated using different orption in aqueous Cu_2Cl_2 set to occlusion with Pd with steam in the presence of ve isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H_2O_2 is	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2	 2) which of the following is sorption of CO₂ in alkali d) None of these d) - 2
48. 49. 50.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volum a) 2.678 N	ally separated using different orption in aqueous Cu_2Cl_2 set to occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H_2O_2 is b) 5.336 N	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N	 2) which of the following is sorption of CO₂ in alkali d) None of these
48. 49. 50. 51.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volum a) 2.678 N Acidified solution of chro	ally separated using different orption in aqueous Cu_2Cl_2 set to occlusion with Pd with steam in the presence of ve isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H_2O_2 is b) 5.336 N mic acid on treatment with	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields:	 a) which of the following is sorption of CO₂ in alkali d) None of these d) - 2 d) 6.685 N
48. 49. 50. 51.	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volut a) 2.678 N Acidified solution of chroo a) $CrO_3 + H_2O + O_2$	ally separated using different orption in aqueous Cu_2Cl_2 set occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H ₂ O ₂ is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$
48. 49. 50. 51.	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through d) CO is oxidised to CO ₂ w The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volum a) 2.678 N Acidified solution of chroo a) $CrO_3 + H_2O + O_2$ The hair dyes available in	ally separated using different orption in aqueous Cu_2Cl_2 set occlusion with Pd vith steam in the presence of ve isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H ₂ O ₂ is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$ of the market generally contained	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4 ain two bottles, one contain	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$ hing the dye and the other
48. 49. 50. 51.	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volut a) 2.678 N Acidified solution of chroo a) $CrO_3 + H_2O + O_2$ The hair dyes available in hydrogen peroxide. Before	ally separated using different orption in aqueous Cu_2Cl_2 set occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H_2O_2 is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$ of the market generally contained re applying the dye, the two	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4 ain two bottles, one contain	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$ hing the dye and the other
48. 49. 50. 51.	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through d) CO is oxidised to CO ₂ w The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volut a) 2.678 N Acidified solution of chro a) $CrO_3 + H_2O + O_2$ The hair dyes available in hydrogen peroxide. Befor a) Is added to dilute the s	ally separated using different orption in aqueous Cu_2Cl_2 set of occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H ₂ O ₂ is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$ of the market generally contact re applying the dye, the two solution of the dye	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4 ain two bottles, one contain	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$ hing the dye and the other
48. 49. 50. 51.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO_2 w The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volue a) 2.678 N Acidified solution of chroo a) $CrO_3 + H_2O + O_2$ The hair dyes available in hydrogen peroxide. Befor a) Is added to dilute the se b) Oxidises the dye to give	ally separated using different orption in aqueous Cu_2Cl_2 set occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H_2O_2 is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$ of the market generally contained re applying the dye, the two colution of the dye e the desired colour	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4 ain two bottles, one contain	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$ hing the dye and the other
48. 49. 50. 51.	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volue a) 2.678 N Acidified solution of chro a) CrO ₃ + H ₂ O + O ₂ The hair dyes available in hydrogen peroxide. Befor a) Is added to dilute the s b) Oxidises the dye to giv c) Reduces the dye to giv	ally separated using different orption in aqueous Cu_2Cl_2 set of occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H ₂ O ₂ is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$ of the market generally contained re applying the dye, the two colution of the dye e the desired colour e the desired colour	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4 ain two bottles, one contain	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$ hing the dye and the other
48. 49. 50. 51. 52.	In context with the indust the correct statement. a) CO and H_2 are fraction b) CO is removed by abso c) H_2 is removed through d) CO is oxidised to CO_2 w The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volue a) 2.678 N Acidified solution of chroo a) $CrO_3 + H_2O + O_2$ The hair dyes available in hydrogen peroxide. Befor a) Is added to dilute the se b) Oxidises the dye to give	ally separated using different orption in aqueous Cu_2Cl_2 set occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H_2O_2 is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$ of the market generally contained re applying the dye, the two solution of the dye e the desired colour of the dye	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4 ain two bottles, one contain	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$ hing the dye and the other
48. 49. 50. 51. 52.	In context with the indust the correct statement. a) CO and H ₂ are fraction b) CO is removed by abso c) H ₂ is removed through d) CO is oxidised to CO ₂ v The number of radioactiv a) 1 The oxidation number of a) + 1 The normality of 30 volue a) 2.678 N Acidified solution of chro a) CrO ₃ + H ₂ O + O ₂ The hair dyes available in hydrogen peroxide. Befor a) Is added to dilute the s b) Oxidises the dye to giv c) Reduces the dye to giv d) Acidifies the solution of	ally separated using different orption in aqueous Cu_2Cl_2 set occlusion with Pd with steam in the presence of re isotopes of hydrogen is: b) 2 oxygen in hydrogen peroxi b) - 1 me H_2O_2 is b) 5.336 N mic acid on treatment with b) $Cr_2O_2 + H_2O + O_2$ of the market generally contained re applying the dye, the two solution of the dye e the desired colour of the dye	en from water gas (CO + H nces in their densities olution of a catalyst followed by ab c) 3 de is c) + 2 c) 8.034 N H_2O_2 yields: c) CrO ₅ + H_2O + K_2SO_4 ain two bottles, one contain	2) which of the following is sorption of CO_2 in alkali d) None of these d) - 2 d) 6.685 N d) $H_2Cr_2O_7 + H_2O + O_2$ hing the dye and the other

a) In the molecular weight b) In the nature of spin of protons c) In the nature of spin of protons d) In the number of the number of a solution containing 30.36g/L of H				
55. The bond energy of covalent 0—H bond in water is: a) Equal to bond energy of hydrogen bond b) Greater than bond energy of hydrogen bond c) Lesser than bond energy of hydrogen bond d) None of the above 56. Water acts as excellent solvent due to: a) Hydrogen bonding b) Keutral nature c) High dielectric constant d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? d) Polymeric 3. Akallne b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The O—O bond length in H ₂ O ₂ is: a) 1.48 Å c) 1.34 Å d) 1.01 Å d) 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fre b) It is reduced by H ₂ SO ₄ d) 1.01 Å 61. The strength in volumes of a solution containing 30.366/L of H ₂ O ₂ is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α-particles b) β-particles c) Y-rays d) Neutrons 73. The ratio of electron, proton and neutron in tritium is: a) 1.1 1.2 c)				
b) Greater than bond energy of hydrogen bond c) Lesser than bond energy of hydrogen bond d) None of the above 56. Water acts as excellent solvent due to: a) Hydrogen bonding b) Neutral nature c) High dielectric constant d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The 0O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ f. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ is a) 10 volume b) 20 volume c) 5 volume d) Neutrons 63. The ratio of electron, proton and neutron in trittum is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) 2 · 1 : 1 d) 1 : 2 : 1 4. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → PESO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ → 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
b) Greater than bond energy of hydrogen bond c) Lesser than bond energy of hydrogen bond d) None of the above 56. Water acts as excellent solvent due to: a) Hydrogen bonding b) Neutral nature c) High dielectric constant d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The 0O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ f. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ is a) 10 volume b) 20 volume c) 5 volume d) Neutrons 63. The ratio of electron, proton and neutron in trittum is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) 2 · 1 : 1 d) 1 : 2 : 1 4. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → H ₂ SO ₄ + H ₂ O c) PES + 4H ₂ O ₂ → PESO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ → 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
c) Lesser than bond energy of hydrogen bond d) None of the above 56. Water acts as excellent solvent due to: a) Hydrogen bonding b) Neutral nature c) High dielectric constant d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The 0—0 bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ 61. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, prot-on and neutron in tritium is: a) $1: 1: 1$ b) $1: 1: 2$ c) $2: 1: 1$ d) $1: 2: 1$ 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is aciting as a reducing agent? a) SO ₂ + H ₂ O ₂ \rightarrow H ₂ SO ₄ + H ₂ O c) PbS + H ₂ O ₂ \rightarrow H ₂ SO ₄ + H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2AgO + H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2AgO + H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2AgO + H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2AgO + H ₂ O d) Aluminates of calcium and sodium b) Hydrated silicate of aluminum and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
d) None of the above 56. Water acts as excellent solvent due to: a) Hydrogen bonding b) Neutral nature c) High dielectric constant d) None of the above 57. TiH _{1,73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The O—O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ 61. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritum is: a) 1: 1: 1 b) 1: 1: 2 c) 2: 1: 1 d) 1: 2: 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is aciting as a reducing agent? a) SO ₂ + H ₂ O ₂ \rightarrow H ₂ SO ₄ b) 2KI + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PbS + 4H ₂ O ₂ \rightarrow H ₂ SO ₄ b) 2KI + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PbS + H ₂ O ₂ \rightarrow H ₂ SO ₄ b) 2KI + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PbS + H ₂ O ₂ \rightarrow H ₂ SO ₄ b) Hydrated silicate of alumin and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
56. Water acts as excellent solvent due to:a) Hydrogen bondingb) Neutral naturec) High dielectric constantd) None of the above57. TiH _{1.73} is an example of which type of the hydride?a) Metallicb) Ionicc) Covalentd) Polymeric3) Metallicb) Neutralc) Strongly acidicd) Weakly acidic59. The O—O bond length in H ₂ O ₂ is:a) 1.54 Åb) 1.48 Åc) 1.34 Åd) 1.01 Å60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ becausea) It can catch fireb) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ 61. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ isa) 10 volumeb) 20 volumec) Tritium emits:a) 1: 1 : 1b) 1: 1: 2a) 1: 1 : 1b) 1: 1: 2d) Neutrons63. The ratio of electron, proton and neutron in tritum is:a) 1Cub) Auc) Cad) Ni64. Hydrogen directly combines witha) Cub) Auc) Cad) Ni65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent?a) SO ₂ + H ₂ O ₂ → H ₂ SO ₄ c) PbS + H ₂ O ₂ → PbSO ₄ + H ₂ Oc) PbS + H ₂ O ₂ → PbSO ₄ + H ₂ Od) Aluminates of calcium and sodiumc) Silicates of calcium and magnesiumd) Silicates of calcium and magnesium				
b) Neutral nature c) High dielectric constant d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The O—O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) Tritum emits: a) 1 · 1 · 1 b) 1 · 1 · 2 c) 2 · 1 · 1 d) 1 · 2 · 1 63. The ratio of electron, proton and neutron in tritum is: a) 1 · 1 · 1 b) 1 · 1 · 2 c) 2 · 1 · 1 d) 1 · 2 · 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ → H ₂ SO ₄ d) AgO ₂ + H ₂ O ₂ → O ₂ A + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
b) Neutral nature c) High dielectric constant d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The O—O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) Tritum emits: a) 1 · 1 · 1 b) 1 · 1 · 2 c) 2 · 1 · 1 d) 1 · 2 · 1 63. The ratio of electron, proton and neutron in tritum is: a) 1 · 1 · 1 b) 1 · 1 · 2 c) 2 · 1 · 1 d) 1 · 2 · 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ → H ₂ SO ₄ d) AgO ₂ + H ₂ O ₂ → O ₂ A + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
c) High dielectric constant d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The O—O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is ordiced by H ₂ SO ₄ d) None of these a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1: 1: 1 b) 1: 1: 2 c) 2: 1: 1 d) 1: 2: 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ → H ₂ SO ₄ b) 2KI + H ₂ O ₂ → 2KOH + I ₂ c) PbS + 4H ₂ O ₂ → PbSO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ → 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
d) None of the above 57. TiH _{1.73} is an example of which type of the hydride? a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The O—O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ 61. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) 2 : 1 : 1 d) 1 : 2 : 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is aciting as a reducing agent? a) SO ₂ + H ₂ O ₂ \rightarrow H ₂ SO ₄ b) 2KI + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PbS + 4H ₂ O ₂ \rightarrow PbSO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium b) Hydrated silicate of aluminium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
TH _{1,73} is an example of which type of the hydride?a) Metallicb) Ionicc) Covalentd) Polymeric58. An aqueous solution of hydrogen peroxide isa) Alkalineb) Neutralc) Strongly acidicd) Weakly acidic59. The O—O bond length in H ₂ O ₂ is:a) 1.54 Åb) 1.48 Åc) 1.34 Åd) 1.01 Å60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ becausea) It can catch fireb) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ 61. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ isd) None of these62. Tritium emits:a) 1 • 01 ± 1 ± 2c) 2 • 01 ± 1 ± 2c) 2 • 1 ± 1a) 1 • 1 ± 1b) 1 ± 1 ± 2c) 2 ± 1 ± 1d) 1 ± 2 ± 164. Hydrogen directly combines witha) Cub) Auc) Cad) Ni65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent?a) SO ₂ + H ₂ O ₂ → H ₂ SO ₄ b) 2KI + H ₂ O ₂ → 2KOH + I ₂ c) PbS + H ₂ O ₂ → PbSO ₄ + H ₂ Od) AgO ₂ + H ₂ O ₂ → 2Ag + H ₂ O + O ₂ 66.66. Permutit is the technical name given toa) Aluminates of calcium and sodiumb) Hydrated silicate of aluminium and sodiumc) Silicates of calcium and magnesiumb) Hydrated silicate of aluminium and sodium				
a) Metallic b) Ionic c) Covalent d) Polymeric 58. An aqueous solution of hydrogen peroxide is a) Alkaline b) Neutral c) Strongly acidic d) Weakly acidic 59. The O—O bond length in H ₂ O ₂ is: a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire b) It is reduced by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ c) It is oxidised by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ 61. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) 2 : 1 : 1 d) 1 : 2 : 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ \rightarrow H ₂ SO ₄ b) 2KI + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PDS + 4H ₂ O ₂ \rightarrow PDSO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PDS + 4H ₂ O ₂ \rightarrow PDSO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium b) Hydrated silicate of aluminum and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
58. An aqueous solution of hydrogen peroxide is a) Alkalineb) Neutralc) Strongly acidicd) Weakly acidic59. The O—O bond length in H_2O_2 is: a) 1.54 Åb) 1.48 Åc) 1.34 Åd) 1.01 Å60. Moist hydrogen peroxide cannot be dried over conc. H_2SO_4 because a) It can catch fire c) It is oxidised by H_2SO_4 d) It is reduced by H_2SO_4 61. The strength in volumes of a solution containing $30.36g/L$ of H_2O_2 is a) 10 volumed) None of these62. Tritium emits: a) α -particlesb) β -particlesc) γ -raysd) Neutrons63. The ratio of electron, proton and neutron in tritium is: a) $1 : 1 : 1$ b) $1 : 1 : 2$ c) $2 : 1 : 1$ d) $1 : 2 : 1$ 64. Hydrogen directly combines with a) Cub) Au c) Cad) Ni65. In which of the following reactions, H_2O_2 is aciting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesiumb) Hydrated silicate of aluminum and sodium c) Silicates of calcium and magnesium				
59. The 0—0 bond length in H_2O_2 is: a) 1.54 Åb) 1.48 Åc) 1.34 Åd) 1.01 Å60. Moist hydrogen peroxide cannot be dried over conc. H_2SO_4 because a) It can catch fire c) It is oxidised by H_2SO_4 b) It is reduced by H_2SO_4 61. The strength in volumes of a solution containing $30.36g/L$ of H_2O_2 is a) 10 volumeb) 20 volumec) 5 volume62. Tritium emits: a) α -particlesb) β -particlesc) γ -raysd) None of these63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1b) 1 : 1 : 2c) 2 : 1 : 1d) 1 : 2 : 164. Hydrogen directly combines with a) Cub) Auc) Cad) Ni65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesiumb) Hydrated silicate of aluminium and sodium d) Silicates of calcium and magnesium				
59. The 0—0 bond length in H ₂ O ₂ is: a) 1.54 Åb) 1.48 Åc) 1.34 Åd) 1.01 Å60. Moist hydrogen peroxide cannot be dried over conc. H ₂ SO ₄ because a) It can catch fire c) It is oxidised by H ₂ SO ₄ b) It is reduced by H ₂ SO ₄ d) It is decomposed by H ₂ SO ₄ 61. The strength in volumes of a solution containing 30.36g/L of H ₂ O ₂ is a) 10 volume b) 20 volumed) None of these62. Tritium emits: a) α-particles b) β-particlesc) γ-rays c) 2 · 1 · 1 · 1 b) 1 · 1 · 2 · 2 c) 2 · 1 · 1 d) Neutronsd) Neutrons63. The ratio of electron, proton and neutron in tritium is: a) 1 · 1 · 1 · b) 1 · 1 · 2 · c) 2 · 1 · 1 d) 1 · 2 · 1d) 1 · 2 · 164. Hydrogen directly combines with a) Cu b) Auc) Ca b) 2KI + H ₂ O ₂ → 2KOH + I ₂ c) PbS + 4H ₂ O ₂ → H ₂ SO ₄ b) 2KI + H ₂ O ₂ → 2KOH + I ₂ c) PbS + 4H ₂ O ₂ → PbSO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ → 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesiumb) Hydrated silicate of aluminium and sodium d) Silicates of calcium and magnesium				
a) 1.54 Å b) 1.48 Å c) 1.34 Å d) 1.01 Å 60. Moist hydrogen peroxide cannot be dried over conc. H_2SO_4 because a) It can catch fire b) It is reduced by H_2SO_4 c) It is oxidised by H_2SO_4 d) It is decomposed by H_2SO_4 61. The strength in volumes of a solution containing $30.36g/L$ of H_2O_2 is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) $2 : 1 : 1$ d) 1 : 2 : 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
a) It can catch fire b) It is reduced by H_2SO_4 c) It is oxidised by H_2SO_4 d) It is decomposed by H_2SO_4 61. The strength in volumes of a solution containing $30.36g/L$ of H_2O_2 is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) $2 : 1 : 1$ d) 1 : 2 : 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
c) It is oxidised by H_2SO_4 d) It is decomposed by H_2SO_4 61. The strength in volumes of a solution containing 30.36g/L of H_2O_2 is a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) 2 : 1 : 1 d) 1 : 2 : 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium b) Hydrated silicate of aluminium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
61. The strength in volumes of a solution containing 30.36g/L of H_2O_2 is a) 10 volumeb) 20 volumec) 5 volumed) None of these62. Tritium emits: a) α-particlesb) β-particlesc) γ-raysd) Neutrons63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1b) 1 : 1 : 2c) 2 : 1 : 1d) 1 : 2 : 164. Hydrogen directly combines with a) Cub) Auc) Cad) Ni65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesiumb) Hydrated silicate of aluminium and sodium d) Silicates of calcium and magnesium				
a) 10 volume b) 20 volume c) 5 volume d) None of these 62. Tritium emits: a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) 2 : 1 : 1 d) 1 : 2 : 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ \rightarrow H ₂ SO ₄ b) 2KI + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PbS + 4H ₂ O ₂ \rightarrow PbSO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium b) Hydrated silicate of aluminium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
62. Tritium emits: a) α-particlesb) β-particlesc) γ-raysd) Neutrons63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1b) 1 : 1 : 2c) 2 : 1 : 1d) 1 : 2 : 164. Hydrogen directly combines with a) Cub) Auc) Cad) Ni65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesiumb) Hydrated silicate of aluminium and sodium d) Silicates of calcium and magnesium				
a) α -particles b) β -particles c) γ -rays d) Neutrons 63. The ratio of electron, proton and neutron in tritium is: a) 1 : 1 : 1 b) 1 : 1 : 2 c) 2 : 1 : 1 d) 1 : 2 : 1 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H ₂ O ₂ is acting as a reducing agent? a) SO ₂ + H ₂ O ₂ \rightarrow H ₂ SO ₄ b) 2KI + H ₂ O ₂ \rightarrow 2KOH + I ₂ c) PbS + 4H ₂ O ₂ \rightarrow PbSO ₄ + 4H ₂ O d) AgO ₂ + H ₂ O ₂ \rightarrow 2Ag + H ₂ O + O ₂ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium b) Hydrated silicate of aluminium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
63. The ratio of electron, proton and neutron in tritium is:a) 1 : 1 : 1b) 1 : 1 : 2c) 2 : 1 : 1d) 1 : 2 : 164. Hydrogen directly combines witha) Cub) Auc) Cad) Ni65. In which of the following reactions, H_2O_2 is acting as a reducing agent?a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given toa) Aluminates of calcium and sodiumc) Silicates of calcium and magnesiumd) Silicates of calcium and magnesium				
a) $1: 1: 1$ b) $1: 1: 2$ c) $2: 1: 1$ d) $1: 2: 1$ 64. Hydrogen directly combines with a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium b) Hydrated silicate of aluminium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
64. Hydrogen directly combines with a) Cub) Auc) Cad) Ni65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ b) $2KI + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesiumb) Hydrated silicate of aluminium and sodium d) Silicates of calcium and sodium				
a) Cu b) Au c) Ca d) Ni 65. In which of the following reactions, H_2O_2 is acting as a reducing agent? a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium b) Hydrated silicate of aluminium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
65. In which of the following reactions, H_2O_2 is acting as a reducing agent?a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given toa) Aluminates of calcium and sodiumc) Silicates of calcium and magnesiumb) Hydrated silicate of aluminium and sodiumd) Silicates of calcium and magnesiumb) Hydrated solicate of aluminium and sodium				
a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$ b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$ c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$ 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium d) $AgO_2 + H_2O_2 \rightarrow 2Ag + H_2O + O_2$ b) Hydrated silicate of aluminium and sodium d) Silicates of calcium and sodium				
 66. Permutit is the technical name given to a) Aluminates of calcium and sodium c) Silicates of calcium and magnesium b) Hydrated silicate of aluminium and sodium d) Silicates of calcium and sodium 				
a) Aluminates of calcium and sodiumb) Hydrated silicate of aluminium and sodiumc) Silicates of calcium and magnesiumd) Silicates of calcium and sodium				
c) Silicates of calcium and magnesium d) Silicates of calcium and sodium				
The best method to test whether a clear liquid is water, is to:				
a) Taste the liquid				
b) Smell the liquid				
c) Add litmus paper				
d) Add few drops on anhydrous copper sulphate and look for colour change				
68. An inorganic compound liberates O_2 when heated, turns an acid solution of KI brown and reduces acidified				
$KMnO_4$. The substance is:				
a) H_2O_2 b) D_2O c) KNO_3 d) $Pb(NO_3)_2$				
69. Heavy water is qualified as heavy because it is:a) A heavy liquid				
b) An oxide of a heavier isotope of oxygen				
c) An oxide of deuterium d) Denser than water				
70. Permanent hardness can be removed by adding				
a) Cl_2 b) Na_2CO_3 c) Ca (OCl) Cl d) K_2CO_3				

71. The ionization energy of hydrogen is: a) Lower than alkali metals b) Lower than halogens c) Closer to alkali metals d) Closer to halogens 72. Which one of the following reactions represents the oxidising property of H_2O_2 ? a) $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$ b) $2K_3[Fe(CN)_6] + 2KOH + H_2O_2 \rightarrow 2K_4[Fe(CN)_6] + 2H_2O + O_2$ c) $Pb_2 + H_2O_2 \rightarrow PbO + H_2O + O_2$ d) $2KI + H_2SO_4 + H_2O_2 \rightarrow K_2SO_4 + I_2 + 2H_2O_4$ 73. Hydrogen peroxide is prepared in the laboratory by b) Adding MnO₂ to dil. H₂SO₄ a) Passing CO₂ into BaO₂ c) Adding Na₂O₂ to cold water d) Adding PbO₂ into KMnO₄ 74. Heavy water is a) Water at 0°C b) Water containing Fe, Cr, Mn c) D_20 d) Water obtained after a number of distillations 75. Ortho and para hydrogen differ in a) Nuclear charge d) Proton spin b) Nuclear reaction c) Electron spir 76. Hydrogen peroxide is manufactured by the auto-oxidation of: c) Naphthalene a) 2-ethylanthraquinol b) Anthraquinone d) Anthracene 77. What is the product of the reaction of H_2O_2 WITH Cl_2 ? a) $0_2 + HOCl$ b) $HCl + O_2$ c) $H_2O + HCl$ d) HCL + H_2 78. One mole of calcium phosphide on reaction with excess water gives: a) One mole of phosphene b) Two moles of phosphoric acid c) Two moles of phosphine d) One mole of phosphorus pentaoxide 79. Hydrogen may be prepared by heating a solution of caustic soda with: a) Mg b) Zn c) Fe d) Ag 80. H_2O_2 is manufactured these days a) By the action of H_2O_2 on BaO_2 b) By the action of H_2SO_4 on Na_2O_2 c) By electrolysis of 50% H₂SO₄ d) By burning hydrogen in excess of oxygen 81. On bubbling CO₂ through a solution of barium peroxide in water: a) 0_2 is formed b) H_2CO_3 is formed c) H_2O_2 is formed d) H_2 is formed 82. The most reactive state of hydrogen is: a) Atomic hydrogen b) Heavy hydrogen c) Molecular hydrogen d) Nascent hydrogen 83. The number of protons, electrons and neutrons respectively in a molecule of heavy water is: a) 10, 10, 10 b) 8, 10, 11 c) 10, 11, 10 d) 11, 10, 10 84. Ordinary hydrogen is a mixture at: a) 75% ortho $H_2 + 25\%$ para H_2 b) 25% ortho $H_2 + 75\%$ para H_2 c) 50% ortho $H_2 + 50\%$ para H_2 d) 99% para $H_2 + 1$ % ortho H_2 85. Heavy water freezes at: a) -3.8° C b) 3.8° C c) 0° C d) 3.2° C 86. The electronic configuration of deuterium is: a) 1s² b) $1s^1$, $2s^2$ c) $1s^2$, $2s^1$ d) 1s¹ 87. Smell of H_2O_2 resembles:

	a) Alcohol b) Alkali	c) Nitric acid	d) Chloroform
88.	Hydrogen produced in contact with substance which		
0.0	a) Ortho H ₂ b) Para H ₂	c) Active H	d) Nascent H
89.	H_2O_2 acts as an oxidizing agent in:		
	a) Neutral medium		
	b) Acidic medium		
	c) Alkaline medium		
	d) acidic as well as in alkaline medium		
90.	The concentration of H_2O_2 solution of '10 volume' is		
	a) 30% b) 3%	c) 1%	d) 10%
91.	Water possesses a high dielectric constant, therefore		
	a) It always contains ions	b) It is universal solvent	
	c) Can dissolve covalent compounds	d) Can conduct electricity	
92.	Tailing of mercury is a laboratory test for:		
	a) O ₃ b) Hg	c) Cl ₂	d) 0 ₂
93.	Which method cannot be used to remove hardness o	f water?	X ·
	a) Clark's method		*
	b) By adding washing soda		
	c) Calgon process		
	d) Filtration		
94.	Which of the following could act as a propellant for r	ockets?	
	a) Liq. H_2 + Liq. O_2 b) Liq. N_2 + Liq. O_2	c) Liq. H ₂ + Liq. N ₂	d) Liq. O ₂ + Liq. Ar
95.	When electric current is passed through an ionic hyd	ride in the molten state,	
	a) Hydrogen is liberated at the cathode		
	b) Hydrogen is liberated at the anode		
	c) Hydride ion migrates towards cathode	>	
	d) No reaction takes place		
96.	Deuterium was discovered by:		
	a) Urey b) Aston	c) Rutherford	d) Chadwick
97.	The percentage by weight of hydrogen in H_2O_2 is:		
	a) 50 b) 25	c) 6.25	d) 5.88
98.	Ortho and para-hydrogen differ in the:		
	a) Number of protons b) Molecular weight	c) Nature of spins of	d) Nature of spins of
		protons	electrons
99.	Decomposition of H_2O_2 is retarded by:	-	
	a) Acetanilide b) Alcohol	c) H ₃ PO ₄	d) All of these
100.	Heavy water possesses:	5 5 1	2
	a) Insoluble impurities like silica		
	b) Impurities like carbonates and bicarbonates of cal	cium and magnesium	
	c) High density and different physical properties tha	-	
	d) The capacity to expedite the rate of nuclear reaction		
101.	Which element forms maximum compound in chemi		
5	a) O b) H	c) Si	d) C
102	The bleaching properties of H_2O_2 are due to its:	,	,
_ • •	a) Reducing properties b) Oxidizing properties	c) Unstable nature	d) Acidic nature
103	. Which one of the following is called amphoteric solve	•	. ,
_00	a) Ammonium hydroxide	b) Chloroform	
	c) Benzene	d) Water	
104	. The colour of hydrogen is	-,	
201	a) Yellow b) Orange	c) Black	d) Colourless
105	The amount of H_2O_2 present in 1 L of 1.5 N H_2O_2 solutions	•	
100			

a) 25 a	b) 25 5 a	c) 3.0 g	d) 8.0 g
a) 2.5 g 106 . H ₂ O ₂ is prepared in the	b) 25.5 g Jahoratory when:	cj 5.0 g	u) 6.0 g
a) MnO_2 is added to dilute	-		
- –	bubbling through cold wa	ter	
	acidified solution of KMnO ₄		
d) Na_2O_2 is added to an a		Ļ	
-		ate occurs when H O	2 is added to it. This is due to:
a) Oxidation of KMnO ₄	ineu potassium permangan	late occurs when H_2O_2	
b) Reduction of KMnO ₄			\frown
c) Both oxidation and r	oduction of KMnO		
d) None of the above	eduction of KMn04		
108. Which hydride is neutra	12		
a) H_2S	b) H ₂ O	c) H ₂ Se	d) H ₂ Te
109. Hydrogen burns with:	0) II ₂ 0	cj 11 ₂ 5e	uj n ₂ re
a) Smoky flame	h) Vollour flama	c) Blue flame	d) Pale yellow flame
110. Zeolites are extensively	b) Yellow flame	cj blue liallie	u) rale yenow name
-		on a) Increasing the h	ardnessd) Mond's process
catalyst	iu b) Flepaling neavy wat	of water	larunessu) Monu's process
•	st hudrogon is.	of water	
111. Deuterium, an isotope o		a) Haaviaat	d) Lightagt
a) Radioactive	b) Non-radioactive	c) Heaviest	d) Lightest
112. Which is the lightest gas		c) Helium	d) Ourigon
a) Nitrogen	b) Hydrogen		d) Oxygen
113. Temporary harness is c	-		$d = C_{\alpha}(UC_{\alpha})$
a) $CaSO_4$	b) CaCl ₂	c) CaCO ₃	d) $Ca(HCO_3)_2$
114. H_2O_2 is:	h) Daramagnatic	c) Ferromagnetic	d) None of these
a) Diamagnetic 115. Commercial 11.2 volum	b) Paramagnetic		d) None of these
a) 1.0	b) 0.5	c) 11.2	d) 1.12
116. The life period of atomi		() 11.2	uj 1.12
a) Only five minute	c nyulogen is.		
b) Only one third of a se	econd		
c) Only two hour			
d) 10 second			
117. There is a sample of 20	volume of hydrogen perox	ide solution. Calculate	its strength
	b) 3.035%	c) 2.509%	d) 4.045%
,		,	nuric acid and excess of sodium
	volumes of hydrogen evolv		
a) 1 : 1	b) 1 : 2	c) 2 : 1	d) 9 : 4
119. Atomic hydrogen is obt	,	0) = 1 =	
a) Electrolysis of heavy	-		
b) Reaction of water wi			
c) Thermal decomposit	-		
	c discharge through hydrog	gen at low pressure	
120. Which loses weight on e			
a) Concentrated H_2SO_4			
b) Solid NaOH			
c) A saturated solution	of CO ₂		
d) Anhydrous sodium c	_		
121. Which can adsorb large			
a) Colloidal solution of			
b) Finely divided nickel	-		

c) Colloidal ferric hydro	xide		
d) Finely divided platinu	ım		
122. In the hydrogen peroxid	le molecule:		
a) Two hydrogen atoms	are connected to one of the	e oxygen	
b) All the four atoms are	e in the same plane		
c) The four atoms are a	rranged in a non-linear and	non-planar manner	
d) O—H bonds are pola	r but molecule is non-polar		
123. Fluorine reacts with wa	ter to form:		
a) Fluorine water	b) Oxygen	c) Ozone	d) Oxygen, ozone 🔷 🔹
124. The hardness of water s	ample containing 0.002 mo	le of magnesium sulpha	te dissolved in a litre of water
is expressed as			
a) 20ppm	b) 200ppm	c) 2000ppm	d) 120ppm
125. Adsorbed hydrogen by p	palladium is known as		
a) Nascent	b) Atomic	c) Heavy	d) Occluded
126. When hydrogen peroxid	le is added to acidified pota	ssium dichromate, a blu	e colour is produced due to
formation of			
a) CrO ₃	b) Cr ₂ O ₃	c) CrO ₅	d) CrO_4^{2-}
127. Which is false about H_2) ₂ ?		\mathbf{O}
a) Act as both oxidising	and reducing agent	b) Two OH bonds lie	in the same plane
c) Pale blue liquid		d) Can be oxidised by	ozone
128. The reaction of $H_2S + H$	$_20_2 \rightarrow S + 2H_20$ manifests		
a) Reducing action of H ₂	₂ 0 ₂	b) Oxidising nature o	fH ₂ O ₂
c) Alkaline nature of H_2	02	d) Acidic nature of H ₂	202
129. The reagent commonly	used to determine hardness	of water titrimetrically	<i>v</i> is
a) Oxalic acid	A		
b) Sodium thiosulphate			
c) Sodium citrate		<i>«</i>	
d) Disodium salt of EDT.	A		
130. Ordinary hydrogen has	preponderance of:		
a) Hydrogen atoms			
b) Deuterium atoms			
c) Tritium atoms	$\mathbf{A}\mathbf{V}$		
d) The above three are i			
131. Benzene is oxidized by H			
a) Phenol	b) Cyclohexane	c) Benzaldehyde	d) Benzoic acid
132. Which of the following i	=	-	
a) NH ₃	b) CH ₄	c) ZnH ₂	d) H ₂ O
133. If water is boiled for som	netime it becomes free from	1:	
a) Permanent hardness			
b) Temporary hardness			
c) Suspended matter			
d) Temporary hardness			
134. Polyphosphates are use		because they	
a) Form soluble comple	=		
b) Precipitate anionic sp			
c) Precipitate cationic s			
	xes with cationic species		
		ey unite to form one cub	be. Which of the following forces
are responsible to hold t	them together?		
a) Ionic interaction			

a) Ionic interaction

h) Van dan Waala' f	27222		
b) Van der Waals' fe			
c) Covalent interac			
d) Hydrogen bond f		o aco io hubblod into thio	colution Which of the
	n of H_2O_2 is 6.0. Some chlorid	e gas is bubbled into this	solution. which of the
following is correct			
	ant solution becomes 8.0		
	liberated from resultant soluti		
	ant solution becomes less than	6.0 and oxygen gas is libe	erated
	the resultant solution		
	ss of water can be removed by		
a) Adsorption	b) Exchange of ion	c) Precipitation	d) None of these
138. Hydrogen molecule			
a) Monoatomic and			
b) Diatomic and for	_		
c) Diatomic and for			\sim
d) Monoatomic and			~ ×
139. Hydrogen reacts wi			d) (I
a) Br_2	b) F_2	c) I_2	d) Cl_2
	ution of $CaCO_3$ contains 10 g o	c) 1000 ppm	
a) 10 ppm 141 Motol which doos n	b) 100 ppm ot react with cold water but ev		d) 10000 ppm
	b) K	c) Pt	d) Fe
a) Na 142 The pair that yields	the same gaseous product on		ujre
a) K and KO_2	b) Ca and CaH ₂	c) Na and Na_2O_2	d) Ba and BaO_2
143. The heaviest among		c_1 Na aliu Na ₂ O_2	u_j ba and $ba O_2$
a) Deuterium	b) Helium	c) Tritium	d) Hydrogen
	00 mL solution containing 5.1	Y '	
a) 0.15 <i>M</i>	b) 1.5 <i>M</i>	c) 3.0 <i>M</i>	d) 50.0 <i>M</i>
	s not displace hydrogen from a		u) 50.0 M
a) Hg	b) Zn	c) Al	d) Ca
, ,	obtained by passing hard wate	•	
a) Anion exchanger		b) Zeolite	
c) Cation exchange		d) Both anion and cat	tion exchanger
	umes of a solution containing 3		
a) 10 V	b) 5 V	c) 20 V	d) None of these
148. Hydrogen was disc		-)	
a) Scheele	b) Berzelius	c) Cavendish	d) Priestley
-	es free from ions when pas	-	-
groups.	1	5 5	5
a) Cl [−]	b) SO_4^{2-}	c) H ₃ 0 ⁺	d) Ca ²⁺
	of neutrons and protons in on		-
a) 3	b) 4	c) 5	d) 6
151. Water contracts on	heating:		2
a) To 100°C	b) From 0°C to 4°C	c) To 273 K	d) From 10°C to 20°C
152. Hydrogen combine	s directly with:	-	-
a) Ca	b) Cu	c) Zn	d) Fe
	olour of old lead paintings, bla	•	-
a) Converting PbO ₂			
b) Oxidising PbS to	PbSO ₄		
c) Converting PbCC	0 ₃ to Pb		

d) Oxidising PbSO ₃ to PbSO ₄		
154. 10 volumes of H_2O_2 has a strength of approxima		
a) 3% b) 30%	c) 10%	d) 5%
155. Ammonium persulphate solution on heating und		
a) H_2O_2 b) O_2	c) H ₂	d) $(NH_4)_2SO_4$
156. Which statement about zeolite is false?		
a) They are used as cation exchanger		
b) They have open structure which enables them	=	es
c) Zeolites are alumino silicates having three din		
d) Some of the SiO $_4^{4-}$ units are replaced by AlO $_4^{5-}$		
157. Which of the following metal evolves hydrogen of		
a) Fe b) Cu	c) Al	d) Mg
158. The reaction of water with sodium and potassium		
a) Endothermic	b) Reversible	
c) Exothermic	d) Irreversible and er	ndothermic
159. High boiling point of water is due to:		
a) Its high specific heat		
b) Hydrogen bonding		
c) High dielectric constant		
d) Low dissociation constant		
160. Ozone reacts with H_2O_2 to give oxygen. One volu	me of ozone gives:	
a) One volume of oxygen		
b) Half volume of oxygen		
c) 1.5 volume of oxygen		
d) Two volumes of oxygen		
161. Which of the following statements do not define	the characteristic property	y of water "water is a universal
solvent".?		
a) It has high liquid range		
b) It has very low dielectric constant		
c) It can dissolve maximum number of compoun	ds	
d) None of the above		
162. Sodium zeolite is:		
a) NaAlSi ₂ O ₆ b) Na ₂ Al ₂ Si ₂ O ₃	c) Na ₂ Al ₂ Si ₂ O ₈	d) NaAl ₂ Si ₂ O ₈
163. Acidified KMnO ₄ is decolourised by:		
a) Oxygen b) Hydrogen	c) Nitric oxide	d) Nascent hydrogen
164. The oxidizing property of H_2O_2 is best explained	by assuming that two oxy	gen atoms in its molecule are:
a) Bonded differently		
b) Bonded similarly		
c) Bonded covalently		
d) Bonded by hydrogen bonds		
165. H_2O_2 is stored in:		
a) Iron container after addition of stabilizer		
b) Glass container after addition of stabilizer		
c) Plastic container after addition of stabilizer		
d) None of the above		
166. Hydrogen is not used for:		
a) Manufacture of vegetable ghee		
b) Production of high temperature		
c) As rocket fuel with kerosene		
d) As a reducing agent		

167. H_2O_2 is concentrated by: a) Steam distillation b) Fractional distillation c) Freezing in freezing mixture d) Distillation under reduced pressure 168. Pure H_2 is obtained by the action of: a) Al over KOH b) NaH over H₂O c) Electrolysis of warm solution of Ba(OH)2 using Ni electrodes d) All of the above 169. Heavy water is manufactured in India at: a) Delhi d) None of the b) Trombay c) Bhilai 170. What is formed when calcium carbide reacts with heavy water? d) CD_2 b) CaD_2 c) Ca_2D_2O a) $C_2 D_2$ 171. The ionization of hydrogen atom gives: d) Hydroxyl ion a) Hydride ion b) Hydronium ion c) Proton 172. Which is not true in case of H_2O_2 ? a) It is more stable in basic solution b) It acts as strong oxidizing agent in acid and basic solutions c) It is decomposed by MnO_2 d) It behaves as reducing agent towards KMnO₄ 173. Which one of the following is a true peroxide? c) NO_2 b) MnO_2 d) BaO_2 a) SO_2 174. What is the volume of "20 volume H_2O_2 " required to get 5000 cm³ of oxygen at STP? a) 250 cm^3 b) 20 cm^3 d) ¹²⁵ cm³ $_{\rm Cl}$ 100 cm³ 175. The melting points of most of the solid substances increase with an increase of pressure. However, ice melts at a temperature lower than its usual melting point when the pressure is increased. This is because: a) Ice is less denser than water b) Pressure generates heat c) The chemical bonds break under pressure d) Ice is not a true solid 176. Heavy water was discovered by: b) Haber c) Urey and Washburn a) Nernst d) Aston 177. The maximum possible number of hydrogen bonds a water molecule can form is: a) 1 b) 2 c) 3 d) 4 178. H_2O_2 acts as antiseptic due to its: a) Reducing property b) Oxidizing property c) Bleaching property d) Acidic property 179. Hydrogen gas will not reduce: a) Heated cupric oxide b) Heated ferric oxide c) Heated stannic oxide d) Heated aluminium oxide 180. Which pair does not show hydrogen isotopes? a) Ortho and para hydrogen b) Protium and deuterium c) Deuterium and tritium d) Tritium and protium 181. The hardness of water is due to Metal ions. b) Mg^{2+} and K^+ c) Ca^{2+} and Mg^{2+} a) Ca^{2+} and Na^{+} d) Zn^{2+} and Ba^{2+} 182. Under what conditions of temperature and pressure, the formation of atomic hydrogen from molecular hydrogen will be favoured more? a) High temperature and low pressure

b) Low temperature and low pressure		
c) High temperature and high pressure		
d) Low temperature and high pressure		
183. Heavy hydrogen is used:		
a) In filling the balloons		
b) In studying reaction mechanism		
c) In calculating heat of formation		
d) Iron hydroxide precipitates		
184. The reaction, $H_2S + H_2O_2 \rightarrow S + 2H_2O$ manifests:		
a) Acidic nature of H_2O_2		\sim
b) Alkaline nature of H_2O_2		
c) Oxidizing nature of H_2O_2		
d) Reducing nature of H_2O_2		
185. Decomposition of H_2O_2 is accompanied by:		
a) Decrease in free energy		\sim
b) Increase in free energy	A	X
c) No change in free energy		
d) Evolution of heat		
186. Which of the following statements is correct? Diele		
a) Increases with dilution	b) Decreases with diluti	on
c) Is unaffected on dilution	d) None of the above	
187. Heavy water is not used for dinking because:		
a) It is poisonous		
b) It is costly		
c) Its physiological action is different from ordinar		
d) Its chemical properties are different from ordin	ary water	
188. Maximum density of heavy water is at: a) 0° C b) 4° C	c) 11.6° C	d) 3.8° C
189. The catalyst used in Bosch process of manufacture	,	uj 5.0 C
a) Finely divided Ni b) V_2O_5	c) Pd	d) $Fe_2O_3 + Cr_2O_3$
190. In which of the following reactions, H_2O_2 behaves	,	ujic ₂ 0 ₃ + 01 ₂ 0 ₃
a) Na ₂ SO ₃ (aq) + H ₂ O ₂ (aq) \rightarrow Na ₂ SO ₄ (aq) + H ₂ O		
b) $PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(aq)$		
c) $2KI(aq) + H_2O_2(aq) \rightarrow 2KOH(aq) + I_2(s)$.6)	
d) $\text{KNO}_2(aq) + \text{H}_2\text{O}_2(aq) \rightarrow \text{KNO}_3(aq) + \text{H}_2\text{O}(l)$		
191. Among CaH ₂ , NH ₃ , NaH and B ₂ H ₆ , which are coval	ent hydride?	
a) NH ₃ and B_2H_6 b) NaH and CaH ₂	c) NaH and NH_3	d) CaH ₂ and B_2H_6
.92. In which reaction hydrogen is not formed?	· · · · · · · · · · · · · · · · · · ·	2) carry and 2/116
a) Copper and hydrochloric acid		
b) Iron and sulphuric acid		
c) Magnesium and steam		
d) Sodium and alcohol		
193. The adsorption of hydrogen by metals is called		
a) Adsorption b) Occlusion	c) Hydrogenation	d) Dehydrogenation
194. A molten ionic hydride on electrolysis gives:	-,, 0 0000000	
a) H ⁺ ion moving towards the cathode		
b) H ⁺ ion moving towards the anode		
c) H_2 is liberated at anode		
d) H_2 is liberated at cathode		
195. Moist hydrogen cannot be dried over concentrated	H_2SO_4 because:	
a) It can catch fire		

b) It is reduced by H ₂ SO ₄		
c) It is oxidized by H_2SO_4		
d) It decomposes H_2SO_4		
196. Both temporary and permanent hardness are remo	oved on boiling water wi	th:
a) $Ca(OH)_2$ b) Na_2CO_3	c) CaCO ₃	d) CaO
.97. The weight percentage of deuterium in heavy wate	5 6	
a) 22 b) 11.11	c) 4	d) 20
98. Very pure hydrogen(99.9%) can be made by which	,	,
a) Mixing natural hydrocarbons of high molecular	= =	
b) Electrolysis of water	weight	
c) Reaction of salt like hydrides with water		
d) Reaction of methane with steam		
-		
99. Density of water is maximum at: $a > 0^{\circ}C$	a) 4°C	
a) 0°C b) 100° C	c) 4°C	d) 0 K
200. The most reactive isotope of H is:		\sim
a) 1H ¹		~ X
b) 1H ²		
c) ₁ H ³		
d) All the same reactivity		
01. Heavy water is used in atomic reactor as		
a) Moderator	b) Coolant	
c) Both moderator and coolant	d) Neither coolant no	
02. The exhausted Permutit is generally regenerated by	y percolating through it	a solution of:
a) Sodium chloride b) Calcium chloride	c) Magnesium chloric	le d) Potassium chloride
203. The best explanations for not placing hydrogen wit	h the group of alkali met	tals or halogens is:
a) Hydrogen can form compounds with all other el	ements	
b) Hydrogen is much lighter element than the alkal	i metals or the halogens	
c) The ionization energy of hydrogen is too high for	r group of alkali metals b	out too low for halogen group
d) None of the above		
204. Hydrogen molecule differs from chlorine molecule	in the following respect.	
a) Hydrogen molecule is non-polar but chlorine mo	olecule is polar	
b) Hydrogen molecule is polar while chlorine mole	ecule is non-polar	
c) Hydrogen molecule can form intermolecular hyd	drogen bonds but chlorir	ne molecule does not
d) Hydrogen molecule cannot participate in coordin		
05. The geometry of water molecule is same as that of:		
a) CO_2 b) C_2H_4	c) Chlorine oxide	d) Boron trifluoride
06. Hydrogen peroxide does not:		aj boron timuonae
06. Hydrogen peroxide does not: a) Liberate iodine from KI		aj boron timaonac
06. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow		aj boron timaonac
 06. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide 	, violet	dj boron ti maonae
 06. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₄ 	=	-
 06. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₂ 07. The most dangerous method of preparing hydrogenetic set of the set of the	n would be by the action	of dil. HCl and:
 a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₄ c) The most dangerous method of preparing hydrogen a) Zn b) Fe 	n would be by the action c) K	of dil. HCl and: d) Al
 206. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₂ 207. The most dangerous method of preparing hydrogen a) Zn b) Fe 208. When zeolite which is hydrated sodium aluminium 	n would be by the action c) K	of dil. HCl and: d) Al
 106. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₄ 107. The most dangerous method of preparing hydrogen a) Zn b) Fe 108. When zeolite which is hydrated sodium aluminium exchanged with 	n would be by the action c) K silicate is treated with h	of dil. HCl and: d) Al hard water, the sodium ions are
 206. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₂ 207. The most dangerous method of preparing hydrogeneration at the mixture of a solution and the solution of the sol	n would be by the action c) K silicate is treated with h c) Ca ²⁺ ion	of dil. HCl and: d) Al
 206. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₂ 207. The most dangerous method of preparing hydrogen a) Zn b) Fe 208. When zeolite which is hydrated sodium aluminium exchanged with a) H⁺ ions b) Mg²⁺ ion 209. Hydrolysis of one mole of peroxodisulphuric acid period. 	n would be by the action c) K silicate is treated with h c) Ca ²⁺ ion	of dil. HCl and: d) Al hard water, the sodium ions are
 206. Hydrogen peroxide does not: a) Liberate iodine from KI b) Turn the titanium salt yellow c) Give silver peroxide with moist silver oxide d) Turn the mixture of aniline, KClO₃ and dil. H₂SO₄ 207. The most dangerous method of preparing hydrogen a) Zn b) Fe 208. When zeolite which is hydrated sodium aluminium exchanged with 	n would be by the action c) K silicate is treated with h c) Ca ²⁺ ion	of dil. HCl and: d) Al hard water, the sodium ions are

d) One mole of sulphuric acid, one mole of peroxom	=	mole of hydrogen peroxide
210. During hydrogenation of oil the catalyst commonly	used is:	
a) Pd on CuCl ₂ b) Ni	c) Fe	d) $V_2 O_5$
211. Oxygen and hydrogen react to form water. This disc	covery was made by:	
a) Priestley b) Cavendish	c) Scheele	d) Newton
212. Which one of the following processes will produce l	hard water?	
a) Saturation of water with CaCO ₃	b) Saturation of water w	rith MgCO ₃
c) Saturation of water with $CaSO_4$	d) Addition of Na ₂ SO ₄ to	water
213. The oxygen atom of H_2O_2 used for oxidation is bound	nd by:	
a) Electrovalent bond b) Co-ordinate bond	c) Covalent bond	d) None of these
214. Which reaction shows oxidizing nature of H_2O_2 ?		
a) $H_2O_2 + 2KI \rightarrow 2KOH + I_2$		
b) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$		
c) $H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$		
d) NaClO + $H_2O_2 \rightarrow NaCl + H_2O + O_2$		
215. H_2O_2 is manufactured these days		\mathbf{v}
a) By burning hydrogen in excess of oxygen	Ć	
b) By the action of H_2O_2 on BaO_2	1	
c) By the action of H_2SO_4 on Na_2O_2		
d) By electrolysis of 50% H_2SO_4		
216. MnO ₂ liberates oxygen from a solution of H_2O_2 (the	e action being catalytic) on	lv if the solution is:
a) Basic b) Acidic	c) Neutral	d) None of these
217. Ionic hydrides react with water to give		
a) Hydride ions b) Acidic solutions	c) Protons	d) Basic solutions
218. Hydrogen is evolved by the action of cold dilute HN		
a) Fe b) Mg or Mn	<i>c</i>) Cu	d) Al
219. Hydrogen peroxide for the first time was prepared		
a) Priestley b) Thenard	c) Gay-Lussac	d) Bernard
220. Which pair does not show hydrogen isotopes?	cj duy hussue	aj bernara
a) <i>Ortho</i> hydrogen and <i>para</i> hydrogen	b) Protium and deuteriu	m
c) Deuterium and tritium	d) Tritium and protium	
221. The strength of 10 volume of H_2O_2 solution is	a) maana produm	
a) 10 b) 68	c) 60.70	d) 30.36
222. The conversion of atomic hydrogen into ordinary h	-	u) 50.50
a) Exothermic change	yurogen is.	
b) Endothermic change		
c) Nuclear change		
d) Photochemical change		
223. Para hydrogen is:		
a) Less stable than ortho hydrogen		
b) More stable than ortho hydrogen		
c) As stable as ortho hydrogen		
d) None of the above		
224. Some statements about heavy water are given below		
(i) Heavy water is used as a moderator in nuclear re		
(ii) Heavy water is more associated than ordinary v		
(iii) Heavy water is more effective solvent than ord:	mary water	
Which of the above statements are correct?		
a) (i) and (ii) b) (i), (ii) and (iii)	c) (ii) and (iii)	d) (i) and (iii)
225. H_2O_2 acts as a reducing agent in its:		
a) Reaction with a ferrous salt		

	1. 1							
b) Reaction with io								
c) Reaction with lea	-							
	MnO ₄ in acidic medium							
226. When hydrolith is t	-							
a) H ₂	b) H ₂ O ₂	c) N ₂	d) NaH					
227. Atomic hydrogen p	-							
a) CO ₂	b) CO	c) 0 ₂	d) C_2H_2					
228. K_a for H_2O_2 is of th								
a) 10 ⁻¹²	b) 10 ⁻¹⁴	c) 10 ⁻¹⁶	d) 10 ⁻¹⁰					
		not form gaseous product?	\sim					
a) $PbO_2 + H_2O_2 \rightarrow$	•	b) Acidified KMnO ₄	$+ H_2O_2 \rightarrow$					
c) PbS + $H_2O_2 \rightarrow$		d) $Cl_2 + H_2O_2 \rightarrow$						
230. The structure of H_2	0 ₂ is:							
		c) H—0—0—H	H					
a) H								
a) 0-0	b) 0 0 H		u) 0—0					
			Н					
231. Which cannot be ox	tidised by H_2O_2 ?		\mathbf{O}					
a) Na ₂ SO ₃	b) PbS	c) KI	d) 0 ₃					
232. A mixture of hydraz	zine and 40 to 60 per c	ent of H ₂ O ₂ solution is:	7					
a) Antiseptic	b) Rocket fuel	c) Germicide	d) Insecticide					
233. Hydrogen peroxide	is now generally prepa	ared on industrial scale by the:						
a) Action of H ₂ SO ₄	on barium peroxide							
b) Action of H ₂ SO ₄	on sodium peroxide							
c) Electrolysis of 50								
	en in excess of oxygen							
234. The equilibrium mo	olecular structure of hy	drogen peroxide is						
Planar as given b	-	b) Linear						
,H								
a) 0-0								
/ 0_0								
/ Н								
c) Tetrahedral		d) Non-planar						
2	H_2O_2 is 30 volume. Its	concentration in terms of molar	rity is:					
a) 9.1 <i>M</i>	b) 2.68 M	c) 2.5 <i>M</i>	d) 26.8 <i>M</i>					
236. H_2O_2 turns an acidi	fied solution ofto	2						
a) BaO ₂	b) PbO ₂	c) Na_2O_2	d) TiO ₂					
237. Tritium is obtained		, , , , , , , , , , , , , , , , , , , ,	, <u> </u>					
a) Nuclear reaction	-							
b) Passing steam ov								
c) Action of NaOH of								
d) Action of H_2SO_4								
		planes containing the hydrogen	n atom is:					
a) 100°	b) 90°	c) 109° 28′	d) 180°					
239. In laboratory, H_2O_2	,		~					
a) Cold $H_2SO_4 + Ba$								
b) HCl + BaO ₂	-							
c) conc $H_2SO_4 + Na$	a ₂ 0 ₂							
d) $H_2 + O_2$								
240. The formula of heav	vy water is:							
	-							

a) H_20^{10} b) D_20 c) T_20 d) H_20^{17} 241. Hydrogen resembles in many of its properties witk: a) Akali metals b) Halogens c) Both (a) and (b) d) None of these 242. Hydrogen is not obtained when zinc reacts with a) (odd water b) hot NaOl Isolution c) dil. H_2SO_4 d) dil. ItCl 243. The H-O-H angle in water molecule is about a) 105° b) hot NaOl Isolution c) dil. H_2SO_4 d) 90° 244. Hydrogen adsorbed on palladium is known as: a) Atomic H b) NaScent H c) Occluded H d) Heavy H 245. Hydrogen molecule is non-polar but chlorine molecule is hole following respect a) Hydrogen molecule is non-polar but chlorine molecule is non-polar c) Hydrogen molecule is accelerated by: a) Traces of acids b) Finely divided metals c) Actennitie due there molecule does not d) Hydrogen molecule is accelerated by: a) Traces of acids b) Finely divided metals c) Actennitie due there molecule does not d) Hydrogen molecule is accelerated by: a) Traces of acids b) Finely divided metals c) Actennitie d) 10°N NaCl solution 246. Decomposition of H_2O_2 solution c) 10°M MgCl solution d) 10°N NaCl solution 247. Which one of the following is used for reviving the exhauster 'permuti? a) Hole Sutting the following is used for reviving the exhauster is a solution with excess energy b) Bydrogen molecule with excess energy c) Hydrogen molecule with excess energy c) Hydrogen mole hydrogen exists d) An oxidant only b) Ar equitation the following will not give H ₂ O ₂ on hydrolysis? a) And how due to hydrogen exists b) Only ortho hydrogen exists c) Both para hydrogen exists b) Only ortho hydrogen exists b) Andy rotho hydrogen exists b) Andy rotho hydrogen exists c) Hydrogen proxide works as: a) At a oxidant only b) Ar equitation the hydrogen exist b) Angle rotho hydrogen is actal (Hydrogen exist) c) An acid only d) An oxida										
a) Alkali metalsb) Halagensc) Both (a) and (b)d) None of these242. Hydrogen is not obtained when zinc reacts witha) Cold waterb) hot NOI' solutionc) dil. H ₂ SO ₄ d) dil. HCl243. The H-O-H angle in water molecule is abouta) 105°b) 102°c) 180°d) 90°244. Hydrogen adsorbed on palladium is known as:a) Atomic Hb) Nascent Hc) 160°d) 90°244. Hydrogen molecule differs from chlorine molecule in the following respecta) Hydrogen molecule can form intermolecular in bond formation but chlorine molecule in populard) Heavy H245. Hydrogen molecule can form intermolecular hydrogen bonds but chlorine molecule can form intermolecular is non-polard) Heavy H246. Decomposition of H ₂ O ₂ is accelerated by:a) Traces of acidsb) Finely divided metalsc) Acetanilided) Alcohol247. Which one of the following is used for reviving the exhausted 'permutit?a) 10% NaCl solutiond) 10% NaCl solution248. The volume strength of 1.5 N H ₂ O ₂ solution isa) 16.8 Lb) 8.4 Lc) 4.2 Ld) 5.2 L249. Nascent hydrogen consists of:a) Hydrogen atoms with excess energyc) Hydrogen molecule differsd) Hordy nacl solution246. Decompositor is no excited stateb) 8.4 Lc) 4.2 Ld) 5.2 Ld) Sut249. Nascent hydrogen existsb) 10% 6.2 Ld) 5.2 Ld) 10% NaCl solution248. The volume strength of 1.5 N H ₂ O ₂ solution isa) Hydrogen atom with excess energyc) Hydrogen molecule differs3) Hydrogen atom with excess energyc) Hydrogen molecule differsd) 10% 6.2 Ld) 5.2	a) $H_2 O^{18}$ b) $D_2 O$	c) T ₂ 0	d) H ₂ O ¹⁷							
242. Hydrogen is not obtained when zinc reacts with a) Cold water b) hot NaOB solution c) dil. H ₂ SO ₄ d) dil. HCl 243. The H-O-H angle in water molecule is about a) 105° b) 102° c) 180° d) 90° 244. Hydrogen adsorbed on palladium is known as: a) Atomic H b) Nascent H c) Occluded H d) Heavy H 245. Hydrogen molecule is is non-polar tu chlorine molecule is polar b) Hydrogen molecule is non-polar tu chlorine molecule is non-polar b) Hydrogen molecule is non-polar tu chlorine molecule is polar b) Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule can 246. Decomposition of H ₂ O ₂ is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit? a) HG solution b) 10% GaCl ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution is a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen molecules with excess energy b) Hydrogen molecules with excess energy c) Hydrogen molecules with excess energy b) Hydrogen exist d) Jown tho hydrogen exist d) An oxidant only b) 18 ₂ O ₀ c) 13 d) Zero 255. The n/pratio for H ⁻¹ s: a) 1.6 b) 0.2 c) c) 3 d) Zero 254. The n/pratice solution for H ₂ O ₂ is a cell and an acid 252. Which of the following with for y ₀ or hydrogen in H ₂ O ₂ is c) 25 d) 50 C 255. C) 25 d) 50 C 255. M 255.	241. Hydrogen resembles in many of its properties	with:								
a) Cold water b) bh NAOHI solution c) dil. H_2SO_4 d) dil. HCl 243. The H-O-H angle in water molecule is non- a) 105° b) 102° c) 180° d) 90° 244. Hydrogen adsorbed on palladium is known as: a) Atomic H b) Nascent H c) Occulee H d) Heavy H 245. Hydrogen molecule differs from chlorine molecule in the following respect a) Hydrogen molecule is non-polar but chlorine molecule is polar b) Hydrogen molecule is non-polar but chlorine molecule is polar c) Hydrogen molecule can form intermolecule is is polar d) Hydrogen molecule can form intermolecule is non-polar c) Hydrogen molecule can form intermolecule is non-polar c) Hydrogen molecule can form intermolecule is non-polar d) Hydrogen molecule can form intermolecule is non-polar c) Hydrogen molecule can form intermolecule hydrogen bond formation but chlorine molecule can 246. Decomposition of H_0 o is a scelerated by: a) Traces of acids b) Finely divided metals c) Acctanilide 247. Which one of the following is used for reviving the exhausted 'permuti? a) HCl solution b) 10% CaCl, solution c) 10% MgCl, solution 248. The volume strength of 1.5 N H_0 solution is a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy c) Hydrogen molecule swith excess energy c) Hydrogen molecule with excess energy d) Solvated protons 250. At absolute zerce: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exists d) None of the following will not give H_0 on hydrolysis? a) HClO ₄ b) H_5Q_6 c) J Sol 251. Hydrogen peroxide works as: a) An oxidant only b) Areducant only c) An acid only d) An oxidant, areductart and an acid 252. Which of the following will not give H_0 on hydrolysis? a) HClO ₄ b) H_5Q_6 c) J Sol 254. The percentage by weight of hydrogen in H_2O 2 is: a) Na^+ b) Mg^{2+} c) A^{3+} d) Sol 255. Exhausted permuti due there in ton in	a) Alkali metals b) Halogens	c) Both (a) and (b)	d) None of these							
243. The H-O-H angle in water molecule is about a) 105° b) 102° c) 180° d) 90° 244. Hydrogen adsorbed on palladium is known as: a) Atomic H b) Nascent H c) Occluded H d) Heavy H 245. Hydrogen molecule is non-polar but chlorine molecule is non-polar c) Hydrogen molecule is non-polar but chlorine molecule is non-polar c) Hydrogen molecule can form intermolecular hydrogen bonds but chlorine molecule can 246. Decomposition of H ₂ O ₂ is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit? a) HCl solution b) 10% CaCl ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution is a solution for mation but chlorine molecule can 249. Nascent hydrogen consists of: a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen exists c) Both para and ortho hydrogen exist c) Both para and ortho hydrogen exist c) Both para and ortho hydrogen exist c) Both para and ortho hydrogen exist d) Novidant only d) An oxidant only d) An oxidant areductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ S ₅ d) HNO ₄ (pernitric acid) 253. The <i>n</i> /Tratito for ₁ H ¹ Is: a) HClO ₄ b) H ₂ S ₂ O ₈ c) J S. b) Only or ₁ H ¹ Is: a) HClO ₄ b) Mg ²⁺ c) A^{13+} d) S ⁴⁺ 256. Ethe molarity of pure water at 'C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen in or 0.68 g of H ₂ O ₂ is: a) 112mL b) 2.2 ml c) 5 mL d) 336mL	242. Hydrogen is not obtained when zinc reacts wi	th								
a)105°b)102°c)180°d)90°244. Ilydrogen adsorbed on palladium is known as: a)A)b)Nascent Hc)Occluded Hd)Heavy H245. Ilydrogen molecule is non-polar but chlorine molecule in the following respect a)Hydrogen molecule is non-polar but chlorine molecule is polarHydrogen molecule is non-polar but chlorine molecule is polarc)Hydrogen molecule can form intermolecular hydrogen bonds but chlorine molecule does not d)Hydrogen molecule can form intermolecular hydrogen bonds but chlorine molecule does not d)Hydrogen molecule can246. Decomposition of H_0_0 is a cacelerated by: a)Traces of acids b)Finely divided metals c)C)Cactanilide d)Hydrogen247. Which one of the following is used for reviving the exhausted 'permutit? a)HQ 10% NaCl solution b)Hydrogen consistsHydrogen consistsa)16.8 L b)b)Na 4.1 c)c)LJ 2.1249. Nascent hydrogen consists of: a)Hydrogen molecule swith excess energy b)Hydrogen molecule at with excess energy b)Hydrogen on suite at access c)Hydrogen existsa)Oliy para hydrogen exists c)Bohly para hydrogen existsHydrogen existsb)Oly ortho hydrogen exists c)Hydrogen percexide with excess c)Hydrogen c)a)An exidant only b)JC)Jb)An exidant onlyHydrogen in H_02 is: a)Hydrogen with excessc)Hydrogen onside with excessHydrogen c)Hydroge	a) Cold water b) hot NaOH solution	on c) dil. H_2SO_4	d) dil. HCl							
244. Hydrogen adsorbed on palladium is known as: a) Atomic H b) Nascent H c) Occluded H d) Heavy H 245. Hydrogen molecule iffers from chlorine molecule is polar b) Hydrogen molecule is non-polar but chlorine molecule is polar c) Hydrogen molecule can form intermolecular hydrogen bonds but chlorine molecule does not c) Hydrogen molecule cannor participate in coordination bond formation but chlorine molecule can 246. Decomposition of 11_2O_2 is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide 247. Which one of the following is used for reviving the exhausted 'permutit? a) HCl solution b) 10% CaCl solution c) 10% MgCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution c) 10% MgCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution is a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy b) Hydrogen atoms with excess energy c) Hydrogen atoms with excess energy b) Hydrogen atoms with excess energy c) Hydrogen atoms with excess energy c) Hydrogen atoms with excess energy c) Hydrogen proxide works as: a) An oxidant only b) Arceluctant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H_2O_2 on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ S ₂ S ₅ d) HNO ₄ (pernitric acid) 253. The n/pratio for $_1H^3$ is: a) HClO ₄ b) HyS ₂ O ₉ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 1.M b) 2.5 M c) 5.5 M 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg ²⁺ c) Al ³⁺⁺ d) S ³⁺⁺ 256. The molarity of pure water at 4* C is: a) 1.M b) 2.5 M c) 5.5 M 257. The gas used in the hydrogen atom of ois in presence of nickel as a catalyst is: a) 1.2 mL b) 2.4 mL c) 5.5 mL d) 336mL	243. The H-O-H angle in water molecule is about									
a) Atomic H b) Nascent H c) Occluded H d) Heavy H 245. Hydrogen molecule differs from chlorine molecule is polar b) Hydrogen molecule is non-polar but chlorine molecule is polar. b) Hydrogen molecule cann form intermolecular hydrogen bonds but chlorine molecule does not d) Hydrogen molecule cann form intermolecular hydrogen bonds but chlorine molecule does not d) Hydrogen molecule cann form intermolecular hydrogen bonds but chlorine molecule does not d) Hydrogen molecule cann form intermolecular hydrogen bond formation but chlorine molecule does not d) Hydrogen molecule cann form intermolecular hydrogen bond formation but chlorine molecule does not d) Hydrogen molecule cannot participate in corodination bond formation but chlorine molecule an 246. Decomposition of H_2O_2 is accelerated by: a) Traces of acids b) Finely divided metals c) Acetamilide d) Alcohool 247. Which one of the following is used for reviving the exhausted 'permutit' a) HCl solution b) 10% CaCl ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength 1.5 N H ₂ O ₂ solution is a) 1.6 A b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen anoticule with excess energy b) Hydrogen noiscules with excess energy c) Hydrogen noiscules with excess energy b) Hydrogen on sin excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exist b) Only ortho hydrogen exist d) None of the above 251. Hydrogen proxide works as; a) An axidant only c) An acid only d) An axidant only d) An axidant only c) An acid only d) Ma ² b) 2.5 M c) 2.5 Mich of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) 2.5 M c) 2.5 M c) 2.5 Mich of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) A^{2} c) A^{3} b) A^{2} c) A^{3} d) A^{3} b) A^{2} c) A^{3} d) A^{3} d) A^{3} d) A^{3} d) A^{3} d) $A^$	a) 105° b) 102°	c) 180°	d) 90°							
245. Itydrogen molecule differs from chlorine molecule in the following respect a) Hydrogen molecule is non-polar but chlorine molecule is polar b) Hydrogen molecule is polar while chlorine molecule is polar c) Hydrogen molecule is polar while chlorine molecule is polar d) Hydrogen molecule is polar while chlorine molecule is polar d) Hydrogen molecule is polar while chlorine molecule is polar d) Hydrogen molecule is polar while chlorine molecule is polar d) Hydrogen molecule canato participate in coordination bond formation but chlorine molecule does not d) Hydrogen molecule canato participate in coordination bond formation but chlorine molecule an 246. Decomposition of H ₂ O ₂ is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit'? a) HCl solution b) 10% CaCl ₂ solution c) 10% MgCl ₂ solution 248. The volume strength of 1.5 N H ₂ O ₂ solution is a) 16.8 L b) 8.4 L c) 4.2 L d) Solute protons 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy c) Hydrogen molecules with excess energy c) Hydrogen peroxide works as: a) Only para hydrogen exists c) Both para and ortho hydrogen exist c) Both para and ortho hydrogen in H ₂ O ₂ on hydrolysis? a) HCO ₄ b) H ₂ S ₂ O ₆ c) H ₂ S ₀ d) HNO ₄ (permitric acid) 253. The n/p ratio for ₁ H ³ is: a) 1 b) 2 c) 7 c) Ai ³ + c) A ³⁺ c) A ³⁺ d) Si ⁵ + d) Si ⁵ - d) Hydrogen d) Methane b) Ethane c) Ai ³⁺ c) So ⁶ d) Hydrogen d) Hydrogen d) Methane b) Ethane c) So ⁵ - d) Hydrogen d) Ai ⁵ - d) Ai	244. Hydrogen adsorbed on palladium is known as	::								
a) Hydrogen molecule is non-polar but chlorine molecule is polar b) Hydrogen molecule can form intermolecular bis non-polar c) Hydrogen molecule can form intermolecular hydrogen bools but chlorine molecule uses not d) Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule can 246. Decomposition of H ₂ O ₂ is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit? a) HCI solution b) 10% CaCl ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution c) 10% MgCl ₂ solution 249. Nascent hydrogen consists of: a) Hodrogen anotecules with excess energy b) Hydrogen molecules with excess energy c) Hydrogen noise used state d) Solvated protons 250. At absolute zero: c) Hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only c) An acidant only d) An oxidant, areductanit and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis7 a) HClo ₄ b) H ₂ S ₂ O ₈ c) H_2 SO ₅ d) HNO ₄ (permitric acid) 253. The n/pr tatio for 1 H ³ is: a) 1 b) 2 c) 3 c) 3 d) 2 ero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) $1 M$ b) $2 S M$ c) $5 M$ d) Sit^{4+} 255. Exhausted permutit does not containlon. a) Na ⁺ b) $M_2^{2}2M$ c) $A^{3^{3^{+}}$ d) $Si^{4^{+}}$ 256. The molarity of pure water at 4° C is: a) $1 M$ b) $2 S M$ c) $5 M$ d) $55.5 M$ 257. The gas used in the hydrogen and of oils in presence of incleal as a catalyst is: a) $1 M$ b) $2 S M$ c) $5 M$ d) $356 M$ 257. The question the divergenation of oils in presence of incleal as a catalyst is: a) $112mL$ b) $224mL$ c) $56mL$ d) $336mL$	a) Atomic H b) Nascent H	c) Occluded H	d) Heavy H							
b) Hydrogen molecule is polar while chlorine molecule is non-polar c) Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule does not d) Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule can 246. Decomposition of H ₂ O ₂ is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit'? a) HCl solution b) 10% CaCl ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution is a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy b) Hydrogen molecules with excess energy b) Hydrogen noise is excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only para hydrogen exists b) Only para hydrogen exist b) Only ortho hydrogen exist b) Only ortho hydrogen exist a) An oxidant only b) A reductant only b) A reductant only b) A reductant only c) An acid only d) An oxidant, a reductaat and an acid 252. Which of the tollowing will not give H ₂ O ₂ on hydrolysis? a) 1(C) b) H ₂ S ₂ O ₈ c) H ₂ S ₀ d) HNO ₄ (pernitric acid) 253. The n/p ratio for $_1$ H ¹ is: a) 1 b) 2 c) An acid only c) An axid only b) A reductant only b) A reductant only c) An axid ant age distand an acid 254. The pretentage by weight of hydrogen in H ₂ O ₂ is a) 1(C) b) $\frac{1}{8^2O_8}$ c) 25 c) 25 c) 25 c) 25 c) 25 c) 25 c) 25 c) 25 c) 25 c) 3 c) $\frac{1}{8^4^+}$ c) $\frac{1}{8^4^+}$ c) $\frac{1}{8^4^+$	245. Hydrogen molecule differs from chlorine mole	ecule in the following respect								
 c) Hydrogen molecule can form intermolecular hydrogen bonds but chlorine molecule does not d) Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule can 246. Decomposition of H₂O₂ is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit? a) HCl solution b) 10% CaCl₂ solution c) 10% MgCl₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H₂O₂ solution is a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) 16.9 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen ions in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exists d) None of the above 251. Hydrogen proxide works as: a) An oxidant only b) A reductant and an acid 252. Which of the following will not give H₂O₂ on hydrolysis? a) 10.0 hydrogen for 1⁴ h; a) 1 hydrogen in H₂O₂ siz c) An acid only d) 1 hylo 4.2 solution d) Zero 253. The <i>n/n</i> ratio for 1^{H¹} is: a) 1.4 hylo 4.2 solution b) 2.5 M c) 2.5 M d) Solvate d) Solvated protons 	a) Hydrogen molecule is non-polar but chlorin	ne molecule is polar								
d) Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule can 246. Decomposition of H ₂ O ₂ is accelerated by: a) Taces of acids b) Finely divided metals c) Acetanilide 47. Which one of the following is used for reviving the exhausted 'permutit'? a) HCl solution b) 10% CaCl, solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution a) 16.8 L b) 8.4 L c) 4.2 L 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy c) Hydrogen molecules with excess energy c) Hydrogen nois in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists c) Both para and ortho hydrogen exists c) Both para and ortho hydrogen exists c) Both para and ortho hydrogen exists d) None of the abov 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydroJ ₂ is: a) 1 b) 2 c a) 1 b) 2 c c) 2 d) HNO ₄ (permitric acid) 253. The n/p ratio for $_1$ H ¹ is: a) 1 b) 2 c a) 1 b) 2.5 m c) 25. Exhausted permutit does not contain	b) Hydrogen molecule is polar while chlorine	molecule is non-polar								
246. Decomposition of H ₂ O ₂ is accelerated by: a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit? a) HCl solution b) 10% CaCl ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution is a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen molecules with excess energy b) Hydrogen molecules with excess energy c) Hydrogen molecules with excess energy c) Hydrogen ins in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen proxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for _1H ¹ is: a) 1 b) 2 c) 3 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) S.88 b) 6.25 c) 25 d) Sol 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg ^{2²⁺} c) A ¹³⁺⁺ d) Si ⁴⁺ 256. The molarity of pure water at ⁴ C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of inckel as a catalyst is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of inckel as a catalyst is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is a) 112mL b) 224mL c) 56mL d) 336mL	c) Hydrogen molecule can form intermolecula	ar hydrogen bonds but chlori	ne molecule does not							
a) Traces of acids b) Finely divided metals c) Acetanilide d) Alcohol 247. Which one of the following is used for reviving the exhausted 'permutit? a) HCl solution b) 10% CaCl ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution c) 10% MgCl ₂ solution d) 10% NaCl solution a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy b) Hydrogen molecules with excess energy c) Hydrogen molecules with excess energy c) Hydrogen ons in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as a) An oxidant only b) A reductant only b) A reductant only b) A reductant only c) An acid only c) An acid only c) An acid only d) An oxidant, areductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HCO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (permitric acid) 253. The <i>n/p</i> ratio for ₁ H ¹ is: a) 1 b) 2 c) 25 C, 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 C) 3 d) Solvated permutit does not containion. a) Na ⁺ b) Mg ²⁺ c) Al ³⁺⁺ d) Si ⁴⁺ 255. The molarity of pure water at 4 ² C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) 1 M b) 2.2 ML c) 5 0 SonL d) 336mL	d) Hydrogen molecule cannot participate in co	pordination bond formation b	out chlorine molecule can							
247. Which one of the following is used for reviving the exhausted 'permutit?' a) HCl solution b) 10% CaCl solution c) 10% MgCl ₂ solution d) 10% NaCl solution 248. The volume strength of 1.5 N H ₂ O ₂ solution is a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy b) Hydrogen atoms with excess energy c) Hydrogen molecules with excess energy c) Hydrogen nois in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen persvike works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for _1H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) Sa8 b) 6.25 c) 25 b, d) Solvated permutit does not containion. a) Na ⁺ b) Mg ²⁺ c) Al ³⁺⁺ d) Sol ⁴⁺⁺ 256. The molarity of pure water at 4 ² C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) 1 M b) 2.5 M c) 5 M d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is a) 112mL b) 224mL c) 56mL d) 336mL	246. Decomposition of H_2O_2 is accelerated by:									
a) HCl solutionb) 10% CaCl ₂ solutionc) 10% MgCl ₂ solutiond) 10% NaCl solution248. The volume strength of 1. S N H ₂ O ₂ solution isa) 16.8 Lb) 8.4 Lc) 4.2 Ld) 5.2 L249. Nascent hydrogen consits of:a) Hydrogen atoms with excess energyb) Hydrogen molecules with excess energyc) 4.2 Ld) 5.2 L249. Nascent hydrogen molecules with excess energyc) Hydrogen ions in excited stated) Solvated protonsset (100, 100, 100, 100, 100, 100, 100, 100			d) Alcohol							
248. The volume strength of $1.5 \ N \ H_2 \ O_2$ solution is a) $16.8 \ D$ b) $8.4 \ C$ c) $4.2 \ L$ d) $5.2 \ L$ 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy b) Hydrogen molecules with excess energy c) Hydrogen ions in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist c) Both para and ortho hydrogen exist c) Both para and ortho hydrogen exist d) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give $H_2 O_2$ on hydroly: a) HClO₄ b) $4_2 S_2 O_8$ c) $4_2 S_0 S_5$ d) HNO₄(pernitric acid) 253. The <i>n/p</i> ratio for $_1 H^1$ is: a) 1 b) $2.5 \ M$ c) $2.5 \ M$ d) $5.5 \ M$ <lid) <math="">5.5 \ M</lid)> d) $5.5 \ M$<	247. Which one of the following is used for reviving	g the exhausted 'permutit'?								
a) 16.8 L b) 8.4 L c) 4.2 L d) 5.2 L 249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy b) Hydrogen molecules witt excess energy c) Hydrogen mole cules at the construction of the state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for 1H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is a) Sa ⁸ b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg ²⁺ c) Al^{3+} d) Si ⁴⁺ 256. The molarity of pure water at ⁶ C is: a) 1 b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalystis: a) 1 b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalystis: a) Ma ⁴ b) 2.5 M c) 5 M d) 53.5 M 257. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ o; 56mL d) 336mL	· · · -		on d) 10% NaCl solution							
249. Nascent hydrogen consists of: a) Hydrogen atoms with excess energy b) Hydrogen molecules with excess energy b) Hydrogen ions in excited state b) Glyotated protons 250. At absolute zero: a) Only para hydrogen exists a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exists c) Both para and ortho hydrogen exists d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) A 250 a) HClO ₄ b) H ₂ S ₂ O ₈ c) J b) C c) S a) 1 b) 2 c) 2 c) 3 d) Solvated permutit does not containion. a) 1 b) 2.5.5 c) 25 a) 1.M b) 2.5.M c) 5.5.M 255. Exhausted permutit does not containion. a) 1.M a) 1.M b) 2.5.M c) 5.5.M 255. The wolume of oxygen liberated from 0.68 gof H ₂ O ₂ is a) 1.4 a) 1.M b) 2.5.M c) 5.5.M										
a) Hydrogen atoms with excess energy b) Hydrogen molecules with excess energy c) Hydrogen ions in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H_2O_2 on hydrolysis? a) HClO ₄ b) $H_2S_2O_8$ c) H_2SO_5 d) HNO ₄ (pernitric acid) 253. The n/p ratio for $_1H^1$ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H_2O_2 is: a) Sol 88 b) 6.25 c) 25 d) Jon 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg^{2^+} c) A^{13^+} d) S^{14^+} 256. The molarity of pure water at 4° C is: a) $1M$ b) $2.5M$ c) $5M$ d) $5.5M$ 257. The gas used in the hydrogen tof of is in presence of inckel as a catalysts i: a) $1M$ b) $2.5M$ c) $5M$ d) $5.5M$ 257. The volume of oxygen liberated from 0.68 g of H_2O_2 is: a) Mathane b) Ethane c) ozone d) Hydrogen is: a) Methane b) Ethane c) ozone d) Hydrogen is: a) Methane b) Ethane c) ozone d) Hydrogen is: a) 112mL b) 224mL c) 56mL d) 336mL		c) 4.2 L	d) 5.2 L							
b) Hydrogen molecules with excess energy c) Hydrogen ions in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductaat and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The n/p ratio for 1H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The precentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) ^{Mg²⁺} c) Al ³⁺ d) ^{Si++} 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen in in presence of nickel as a catalyst is: a) 1 M b) 2.5 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) 3 Similar is: b) Hydrogen is: b) Ethane c) 0 Hydrogen is: a) 1 M b) 2.2 M c) 5 M d) 3 Similar is: b) Hydrogen is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d) 3 Similar is: b) 2.2 Mich c) 5 M d)										
c) Hydrogen ions in excited state d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H_2O_2 on hydrolysis? a) HClO ₄ b) $H_2S_2O_8$ c) H_2SO_5 d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1H^1$ is: a) 1 b) 2 c) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H_2O_2 is: a) Na ⁺ b) Mg^{2^+} c) A^{l3^+} d) S^{l4^+} 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogention of oils in presence of nickel as a catalyst is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 258. The volume of oxygen liberated from 0.68 g of H_2O_2 is: a) Methane b) Ethane c) ozone d) Hydrogen										
d) Solvated protons 250. At absolute zero: a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exists d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) Na ⁺ b) Mg^{2^+} c) A^{13^+} d) S^{14^+} 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg^{2^+} c) A^{13^+} d) S^{14^+} 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 5.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) 1 M b) 2.5 M c) 5 M d) 5.5 M 257. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is a) Methane b) Ethane c) ozone d) Hydrogen (b) Hydrogen										
250. At absolute zero:a) Only para hydrogen existsb) Only ortho hydrogen existsc) Both para and ortho hydrogen existd) None of the above251. Hydrogen peroxide works as:a) An oxidant onlyb) A reductant onlyc) An acid onlyd) An oxidant, a reductant and an acid252. Which of the following will not give H_2O_2 on hydrolysis?a) HClO ₄ b) $H_2S_2O_8$ c) An acid onlyd) An oxidant, a reductant and an acid253. The n/p ratio for $_1H^1$ is:a) 1b) 2c) 3d) 4b) 6.25c) 3d) 5.88b) 6.25c) 255. Exhausted permutit does not containion.a) Na ⁺ b) Mg^{2+} c) Al ³⁺ d) Si^{4+} 256. The molarity of pure water at 4° C is:a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H_2O_2 isa) 112mLb) 224mLc) 56mLd) 336mL										
a) Only para hydrogen exists b) Only ortho hydrogen exists c) Both para and ortho hydrogen exists d) None of the above 251. Hydrogen peroxide works as a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1H^1$ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of Hydrogen in H ₂ O ₂ is: a) Sa ⁸ b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) $^{Mg^{2+}}$ c) $^{Al^{3+}}$ d) $^{Si^{4+}}$ 256. The molarity of pure water at 4 C is: a) 1 b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is: a) 112mL b) 24mL c) 56mL d) 336mL	· ·	\mathbf{X}								
b) Only ortho hydrogen exists c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H_2O_2 on hydrolysis? a) HClO ₄ b) $H_2S_2O_8$ c) H_2SO_5 d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1H^1$ is: a) 1 b) 2 c) 3 d) HOl ₄ (pernitric acid) 254. The percentage by weight of hydrogen in H_2O_2 is: a) 5.88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg^{2^+} c) A^{13^+} d) S^{14^+} 256. The molarity of pure wet = at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H_2O_2 is a) 112mL b) 224mL c) 56mL d) 336mL										
c) Both para and ortho hydrogen exist d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) $^{Mg^{2+}}$ c) $^{Al^{3+}}$ d) $^{Si^{4+}}$ 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is a) 112mL b) 224mL c) 56mL d) 336mL		2								
d) None of the above 251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) $^{Mg^{2+}}$ c) $^{Al^{3+}}$ d) $^{Si^{4+}}$ 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen is: a) Methane b) Ethane c) ozone d) Hydrogen is: b) Ethane c) 24ML c) 56ML d) 336mL										
251. Hydrogen peroxide works as: a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysite a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) $^{Mg^{2+}}$ c) $^{Al^{3+}}$ d) $^{Si^{4+}}$ 256. The molarity of pure water at a C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen at a C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen at a C is: a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is: a) 112mL b) 24mL c) 56mL d) 336mL										
a) An oxidant only b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5,88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) 5,88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) $^{Mg^{2+}}$ c) $^{Al^{3+}}$ d) $^{Si^{4+}}$ 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen at 0 of oils in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is a) 112mL b) 224mL c) 56mL d) 336mL	,									
b) A reductant only c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 d) 2cro 255. Exhausted permutit does not containion. 255. Exhausted permutit does not containion. a) Na ⁺ b) $^{Mg^{2^+}}$ c) 25 d) 50 256. The molarity of pure wat 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen of oils in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ V a) 112mL b) 24mL c) 56mL d) 336mL										
c) An acid only d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 d) 3 d) Zero 255. Exhausted permutit does not containion. 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg ²⁺ c) Al ³⁺ d) Si ⁴⁺ 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presenter of nickel as a catallyst is: a) Methane b) Ethane c) ozone d) Hydrogen d) Hydrogen d) 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is: a) 112mL b) 224mL c) 56mL d) 336mL										
d) An oxidant, a reductant and an acid 252. Which of the following will not give H ₂ O ₂ on hydrolysis? a) HClO ₄ b) H ₂ S ₂ O ₈ c) H ₂ SO ₅ d) HNO ₄ (pernitric acid) 253. The <i>n/p</i> ratio for $_1$ H ¹ is: a) 1 b) 2 c) 3 d) Zero 254. The percentage by weight of hydrogen in H ₂ O ₂ is: a) 5.88 b) 6.25 c) 25 d) Jon 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg ²⁺ c) Al ³⁺ d) Si ⁴⁺ 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogen at of oils in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen d) Hydrogen d) Hydrogen d) Si ⁴⁺ 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is: a) 112mL b) 224mL c) 56mL d) 336mL										
252. Which of the following will not give H_2O_2 on hydrogena) HClO_4b) $H_2S_2O_8$ c) H_2SO_5 d) HNO_4 (pernitric acid)253. The <i>n/p</i> ratio for $_1H^1$ is:a) 1b) 2c) 3d) Zero254. The percentage by weight of hydrogen in H_2O_2 is:a) 5.88b) 6.25c) 25d) 50255. Exhausted permutit does not containion.a) Na ⁺ b) $^{Mg^{2+}}$ c) $^{Al^{3+}}$ d) $^{Si^{4+}}$ 256. The molarity of pure water at a C is:a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogen at or of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H_2O_2 is:a) 112mLb) 24mLc) 56mLd) 336mL										
a) $HClO_4$ b) $H_2S_2O_8$ c) H_2SO_5 d) HNO_4 (pernitric acid)253. The n/p ratio for $_1H^1$ is:a) 1b) 2c) 3d) Zero254. The percentage by weight of hydrogen in H_2O_2 is:a) 5.88b) 6.25c) 25d) 50255. Exhausted permutit does not containiona) Na ⁺ b) Mg^{2+} c) Al^{3+} d) Si^{4+} 256. The molarity of pure water at 4° C is:a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H_2O_2 isa) 112mLb) 224mLc) 56mLd) 336mL		vdrolvsis?								
253. The n/p ratio for $_1H^1$ is:a) 1b) 2c) 3d) Zero254. The percentage by weight of hydrogen in H_2O_2 is:a) 5.88b) 6.25c) 25a) 5.88b) 6.25c) 25d) 50255. Exhausted permutit does not containion.a) Na ⁺ b) Mg^{2^+} c) Al^{3^+} a) Na ⁺ b) Mg^{2^+} c) Al^{3^+} d) Si^{4^+} 256. The molarity of pure water at 4° C is:a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H_2O_2 isa) 112mLb) 224mLc) 56mLd) 336mL			d) HNO (pernitric acid)							
a) 1b) 2c) 3d) Zero254. The percentage by weight of hydrogen in H_2O_2 is:a) 5.88b) 6.25c) 25d) 50255. Exhausted permutit does not containion.c) A^{13+} d) S^{14+} a) Na ⁺ b) Mg^{2+} c) A^{13+} d) S^{14+} 256. The molarity of pure water at 4° C is:a) 1 Mb) 2.5 Mc) 5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H_2O_2 isa) 112mLb) 224mLc) 56mLd) 336mL		c) 11 ₂ 50 ₅	uj mo ₄ (permitre actu)							
254. The percentage by weight of hydrogen in H2O2 is:a) 5.88b) 6.25c) 25d) 50255. Exhausted permutit does not containion.a) Na ⁺ b) Mg^{2^+} c) A^{13^+} d) S^{14^+} 256. The molarity of pure water at 4° C is:a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H2O2 is:a) 112mLb) 224mLc) 56mLd) 336mL		c) 3	d) Zero							
a) 5.88 b) 6.25 c) 25 d) 50 255. Exhausted permutit does not containion. a) Na ⁺ b) Mg^{2+} c) A^{13+} d) S^{14+} 256. The molarity of pure water at 4° C is: a) 1 M b) 2.5 M c) 5 M d) 55.5 M 257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) Methane b) Ethane c) ozone d) Hydrogen 258. The volume of oxygen liberated from 0.68 g of H ₂ O ₂ is a) 112mL b) 224mL c) 56mL d) 336mL		-	uj Zero							
255. Exhausted permutit does not containion.a) Na+b) Mg^{2+} c) Al^{3+} d) Si^{4+} 256. The molarity of pure water at 4° C is:a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H_2O_2 isa) 112mLb) 224mLc) 56mLd) 336mL		-	d) 50							
a) Na+b) Mg^{2+} c) Al^{3+} d) Si^{4+} 256. The molarity of pure water at 4° C is: a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H_2O_2 is a) 112mLb) 224mLc) 56mLd) 336mL		cj 25	4,50							
256. The molarity of pure water at 4° C is:a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H2O2 isa) 112mLb) 224mLc) 56mLd) 336mL		. Al ³⁺	\sim Si ⁴⁺							
a) 1 Mb) 2.5 Mc) 5 Md) 55.5 M257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is: a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H2O2 is a) 112mLb) 224mLc) 56mLd) 336mL	\checkmark a) Na ⁺ b) ¹⁴ 8	c) ***	d) ^d							
257. The gas used in the hydrogenation of oils in presence of nickel as a catalyst is:a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H2O2 isa) 112mLb) 224mLc) 56mLd) 336mL	256. The molarity of pure water at 4° C is:									
a) Methaneb) Ethanec) ozoned) Hydrogen258. The volume of oxygen liberated from 0.68 g of H2O2 is a) 112mLb) 224mLc) 56mLd) 336mL	a) 1 <i>M</i> b) 2.5 <i>M</i>	a) 1 <i>M</i> b) 2.5 <i>M</i> c) 5 <i>M</i> d) 55.5 <i>M</i>								
258. The volume of oxygen liberated from $0.68 \text{ g of } \text{H}_2\text{O}_2$ isa) 112mLb) 224mLc) 56mLd) 336mL		resence of nickel as a catalyst	is:							
a) 112mL b) 224mL c) 56mL d) 336mL		•	d) Hydrogen							
259. Which hydride is an ionic hydride?		c) 56mL	d) 336mL							
	259. Which hydride is an ionic hydride?									

a) NH_3	b) H ₂ S	c) TiH _{1.73}	d) NaH
260. H_2O_2 reduces $K_3Fe(CN)$	-		
a) Neutral solution	b) Acidic solution	c) Alkaline solution	d) Non-polar medium
261. Point out the incorrect			
-	epends upon its soap cons		
	s is due to bicarbonates of	_	
-		es, chlorides and nitrates of	La and Mg
-	can be removed by boilin	-	
is:			d in the oxidation state of iron
a) $Fe^{2+} \rightarrow Fe^{3+}$	b) Fe \rightarrow Fe ²⁺	c) $Fe^{3+} \rightarrow Fe^{2+}$	d) $Fe^{2+} \rightarrow Fe^+$
263. Which of the following	is correct about heavy wa	ter?	
a) Water at 4°C having	maximum density is know	n as heavy water	
b) It is formed by the co	ombination of heavier isot	ope of hydrogen and oxyge	n
c) It is heavier than wa	ter		
d) None of the above			
264. Hydrogen is prepared o	on large scale for industria	l use	
a) by $Zn + H_2SO_4$	b) by Al + NaOH	c) by Na + C ₂ H ₅ OH	d) From water gas
265. Hydrogen is obtained b	y the action of an alloy of	silicon and iron with NaOH.	The process is called:
a) Wood process	b) Bosch process	c) Haber process	d) Silicol process
266. In transforming 0.01 m	ole of PbS to PbSO ₄ , the vo	olume of 10 volume H_2O_2 re	equired will be
a) 11.2mL	b) 22.4mL	c) 33.6mL	d) 44.8mL
267. Hydrogen peroxide wh	en added to a solution of p	ootassium permanganate ac	idified with sulphuric acid
a) Forms water only			
b) Acts as an oxidising a	agent		
c) Acts as a reducing ag	ent 🦰	\mathbf{V}	
d) Reduces sulphuric ad	cid State St		
268. Water is oxidised to oxy		, ,	
a) ClO ₂	b) KMnO ₄	c) H ₂ O ₂	d) Fluorine
269. The most abundant element		ought to be	
a) Carbon	b) Oxygen	c) Hydrogen	d) Nitrogen
270. In the preparation of hy			ogen is called:
a) Hydrogenation	b) iteateeloii	c) Dehydrogenation	d) Oxidation
271. The most abundant iso			
a) Tritium) b) Deuterium	c) Protium	d) Para-hydrogen
272. Which statement is not		oxide?	
a) Pure H_2O_2 is fairly st			
b) It sometimes acts as			
c) It acts as an oxidizing			
d) Aqueous solution of			
273. Which one is correct for			
a) It is 30% H ₂ O ₂ or 10	$0 \text{ vol. } \text{H}_2\text{O}_2$		
b) Its molarity is 8.8 <i>M</i>			
c) It is used as antisept	ic and germicide		
d) All of the above		order to acquire helium cor	figuration. It thus, resembles:
	cy to gain one electron in	order to acquire menuin con	
274. Hydrogen has a tenden a) Alkali metals	b) Noble gases	c) Halogens	d) Alkaline earth metals
274. Hydrogen has a tenden a) Alkali metals	b) Noble gases	=	-
274. Hydrogen has a tenden	b) Noble gases name given to: sphate	=	-

c) Sodium hexa meta-phosphate		
d) Hydrated sodium aluminium silicate		
276. For the bleaching of hair, the substance used is:		
a) SO ₂ b) Bleaching powder	c) H ₂ O ₂	d) 0 ₃
277. In solid hydrogen, the intermolecular bonding is:	, , , , , , , , , , , , , , , , , , , ,	2 3
a) Ionic b) Van der Waals'	c) Metallic	d) Covalent
278. The species that does not contains peroxide ions is	-	
a) PbO_2 b) H_2O_2	c) SrO_2	d) BaO_2
279. The critical temperature of water is higher than the	, -	
a) Fewer electrons than oxygen		
b) Two covalent bonds		
c) V-shape		
d) Dipole moment		
280. Pure H_2O_2 is:		
a) Colourless liquid		
b) A gas		\sim
c) Blue syrupy liquid	Ć	
d) Pale blue syrupy liquid		
281. When silicon is boiled with caustic soda solution, the	ne gas evolved is:	
a) O_2 b) SiH ₄	c) H ₂	d) None of these
282. In which of the following reactions hydrogen perox		, ,
a) $H_2SO_3 + H_2O_2 \rightarrow H_2SO_4 + H_2O_4$		
b) $2HI + H_2O_2 \rightarrow 2H_2O + I_2$		
c) $2\text{FeCl}_2 + 2\text{HCl} + \text{H}_2\text{O}_2 \rightarrow 2\text{FeCl}_3 + 2\text{H}_2\text{O}$		
d) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$	XY	
283. Which does not react with cold water?		
a) Mg_3N_2 b) CaC_2	c) COCl ₂	d) SiC
284. Deuterium resembles hydrogen in chemical proper	ties but reacts:	-
a) Slower the hydrogen		
b) Faster than hydrogen		
c) More vigorously than hydrogen		
d) Just as hydrogen		
CXY		
O Y		
CN'		
7		
*		

HYDROGEN

CHEMISTRY

						: ANSV		FD V	FV					
1)		2)	d	2)	h						0	171)	6	172) a
1) 5)	a	2)	d	3) 7)	b h	4) 9)	a h	169) 173)	b d	170) 174)	a	171) 175)	C	172) a 176) c
5) 9)	a	6) 10)	a	7) 11)	b h	8) 12)	b b	173) 177)	d d	174) 179)	a b	175) 179)	a d	
9) 13)	C	10) 14)	c d	11) 15)	b	12) 16)		177) 181)		178) 182)		179)		
13)	с b	14) 18)		13) 19)	C 2	10) 20)	c b	185)	C	182)	a	183J 187)	-	100
21)	C	10) 22)	C C	19) 23)	a c	20) 24)	a	185) 189)	a d	190)	a b	197)	a	400)
21) 25)	b	22) 26)	d	23) 27)	с а	24) 28)	a d	109) 193)	u b	190) 194)	с С	191)	a C	192) a 196) b
23) 29)	b	20) 30)	d	31)	a b	32)	u b	197)	d	194) 198)	b	199)	c	200) a
33)	c	34)	d	35)	a	36)	b	201)	c c	202)	a	203)	c	200) d 204) d
37)	c	38)	a	39)	b	40)	c	205)	c	202)	c	207)	c	201) d
41)	d	42)	a	43)	a	44)	a	209)	c	210)	b	207) 211)	b	200) a 212) c
45)	b	46)	c	47)	d	48)	a	213)	c	214)	a	211)	d	212) c 216) b
49)	b	50)	b	51)	c	52)	b	217)	d	218)	b	219)	b	220) a
53)	a	54)	b	55)	b	56)	c	221)	d	222)	a	223)	a	224) a
57)	а	58)	d	59)	b	60)	d	225)	d	-	a	227)	b	228) a
, 61)	а	62)	b	63)	b	64)	C	0000	С	230)	b	231)	d	232) b
65)	d	66)	b	67)	d	68)	а	233)	С	234)	d	235)	b	236) d
69)	С	70)	b	71)	d	72)	d	237)	а	238)	b	239)	а	240) b
73)	а	74)	С	75)	d	76)	С	241)	С	242)	а	243)	а	244) c
77)	b	78)	С	79)	b	80)	С	245)	d	246)	b	247)	d	248) b
81)	С	82)	а	83)	a	84)	а	249)	а	250)	а	251)	d	252) a
85)	b	86)	d	87)	С	88)	d	253)	d	254)	а	255)	а	256) d
89)	d	90)	b	91)	b	92)	а	257)	d	258)	b	259)	d	260) c
93)	d	94)	а	95)	b	96)	а	261)	d	262)	а	263)	b	264) d
97)	d	98)	С	99)	d	100)	С	265)	d	266)	d	267)	С	268) d
101)	b	102)	b	103)	d	104)	d	269)	С	270)	а	271)	С	272) d
105)	b	106)	b	107)	b	108)	b	273)	d	274)	С	275)	С	276) c
109]	C	110)	а	111)	b	112)	b	277)	b	278)	а	279)	d	280) d
113]	d	114)	a	115)	а	116)	b	281)	С	282)	d	283)	d	284) a
117]	a	118)	а	119)	d	120)	С							
121]		122)	С	123)	d	124)	b							
125]		126)	С	127)	b	128)	b							
129]		130)	а	131)	а	132)	С							
133]		134)	d	135)	d	136)	С							
137]		138)	С	139)	b	140)	d							
141]		142)	b	143)	b	144)	b							
145]		146)	d	147)	а	148)	С							
149]		150)	а	151)	b	152)	a							
153]		154)	а	155)	a	156)	d							
157]		158)	С	159)	b	160)	d							
161]		162)	С	163)	d	164)	a							
165)	C	166)	С	167)	d	168)	d							

HYDROGEN

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (a)

It is a fact.

2 (d) $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$ (Lane's process) $CO + H_2 + H_2O \xrightarrow{Fe_2O_3} CO_2 + 2H_2$ (Bosch process) $CH_4 + H_2O \xrightarrow{Ni-Cr} CO + 3H_2$

3 **(b)**

 $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$

4 **(a)**

The radioactive isotope of hydrogen is tritium. Its half-life is 12.16 yr. It shows β –disintegration.

$$^{3}_{1}\text{H} \rightarrow ^{3}_{2}\text{He} + ^{0}_{-1}e(\beta)$$

5 **(a)**

 H_2O_2 (hydrogen peroxide) is a corrosive volatile liquid. It is slightly acidic in nature. Its pK_a value is approximately 10^{-12} .

6 **(a)**

Ethylene diaminetetraacetic acid (EDTA) when treated with water, forms stable complex with metal ions and hence, remove hardness of water.

8 **(b)**

Alkali metals also form H⁺ ion by the loss of their c

9 **(c)**

Transitions metals form metallic hydrides.

10 (c) H₃PO₄ acts as negative catalyst for the decomposit
11 (b)

Ortho and para-hydrogen possess same electronic arrangement but different spin of nuclei.

12 **(b)**

Volume strength = $5.6 \times normality$

 $= 5.6 \times 1.5$

= 8.4

13 **(c)**

 D_2O had deuterium (heavier isotope of H) and O (t

14 **(d)**

MgCO₃ is insoluble in water.

15 **(c)**

 H_2O_2 can be prepared by electrolysis of 50% H_2SO_4 . In this method, hydrogen is liberated at cathode.

$$I_2SO_4 \rightleftharpoons 2H^+ + 2HSO_4^-$$

 $2\mathrm{HSO}_4 \rightarrow \mathrm{H}_2\mathrm{S}_2\mathrm{O}_8 + 2e^{-1}$

At anode :

$$_{2}S_{2}O_{8} + 2H_{2}O \rightarrow 2H_{2}SO_{4} + H_{2}O_{2}$$

At cathode : $2H^+ + 2e^- \rightarrow H_2 \uparrow$

16 **(c)**

A 30% solution of hydrogen peroxide can be obtained by the electrolysis of 50% sulphuric acid followed by vacuum distillation. The first product of electrolysis is perdisulphuric acid ($H_2S_2O_8$) which reacts with water during distillation to form H_2O_2 .

$$2H_2SO_4 \rightarrow 2H^+ + 2HSO_4^-$$
$$2HSO_4^- \rightarrow H_2S_2O_8 + 2e^- \text{ (At anode)}$$
$$H_2S_2O_8 + 2H_2O \rightarrow 2H_2SO_4 + H_2O_2$$

'X' is H_2SO_4 and 'Y' is $H_2S_2O_8$. So, 'X' and 'Y' contains zero and one peroxy bond respectively.

17 (b) $2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + \text{H}_2\text{O}_2 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2\text{H}_2\text{O}_2$ 18 (c) $Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$ 19 (a) $Na_2O_2 + H_2SO_4 \xrightarrow{Ice \ cold} Na_2SO_4 + H_2O_2$ \therefore H₂O₂ is formed by reaction of Na₂O₂ on dil H_2SO_4 20 **(b)** $0^{1-}_2 + 2e \rightarrow 20^{2-}$ (As oxidant) $0_2^{1-} \rightarrow 0_2^0 + 2e$ (As reductant) 21 (c)

22 (c)

$$K_2 Cr_2 O_7 + H_2 SO_4$$

$$\rightarrow K_2 SO_4 + H_2 Cr_2 O_7$$

$$4[H_2 O_2 \rightarrow H_2 O + O]$$

$$H_2 Cr_2 O_7 + 4O \rightarrow 2CrO_5 + H_2 O$$

 $\begin{array}{rl} K_2 Cr_2 O_7 + \ H_2 SO_4 + \ 4H_2 O_2 \\ & \rightarrow 2 Cr O_5 + \ K_2 SO_4 + \ 5 \ H_2 O_4 \end{array}$

Acidified $K_2Cr_2O_7$ is oxidised to blue peroxide of chromium (CrO₅) which is soluble in ether and produces blue coloured solution.

23 **(c)**

 $\operatorname{FeCl}_3 + [H] \longrightarrow \operatorname{FeCl}_2 + \operatorname{HCl}$

24 **(a)**

Helium is a noble gas and does not combine with hydrogen

25 **(b)**

 $Ca(s) + H_2(g) \rightarrow CaH_2$

26 (d)

 D_2O has higher viscosity which is responsible for low solubility of NaCl inspite of high dielectric constant.

27 (a)

 $Ca : C_2$

$$OD: D \xrightarrow{D_2O} C_2D_2 + Ca$$

OD: D

28 **(d)**

 $\begin{array}{l} \text{Zn} + \text{dil.}\,\text{H}_2\text{SO}_4 \longrightarrow \text{ZnSO}_4 + \text{H}_2\\ \text{Fe} + \text{dil.}\,\text{H}_2\text{SO}_4 \longrightarrow \text{FeSO}_4 + \text{H}_2\\ \text{Sn} + \text{dil.}\,\text{H}_2\text{SO}_4 \longrightarrow \text{SnSO}_4 + \text{H}_2 \end{array}$

Heavy water is the oxide of heavy hydrogen (deuterium), hence named heavy water. It is represented by D_2O . It is used in nuclear reactor as moderator.

30 **(d)**

Calgon, permutit and Na₂CO₃ are used for the rem(44 **(b)**

- 31 **(b)**
- It is a fact. 32 **(b)**

Quantity of $H_2O_2 = 15$ mL and volume of $H_2O_2 =$

20

We know that 20 volume of H_2O_2 means 1 L of this solution will give 20 L of oxygen at NTP.

Since, oxygen liberated from 1000mL (1L) of

 $H_2O_2 = 20$ L, therefore, oxygen liberated from 15mL of H_2O_2

$$=\frac{20}{1000}$$
 × 15 = 0.3 L = 300 mL.

33 (c)

Pure hydrogen peroxide is an unstable liquid and decomposes into water and oxygen either upon standing or heating.

$$2H_2O_2 \rightarrow 2H_2O + O_2;$$
 $\Delta H = -196.0 \text{ kJ}$

To prevent decomposition of H_2O_2 , phosphoric acid, acetanilide or glycerol are added. These acts as negative catalyst.

35 **(a)**

10 vol. H_2O_2 means that 1 mL H_2O_2 gives 10 mL O_2 ; thus, 50 mL H_2O_2 will give 500 mL O_2 . 38 **(a)**

CaSO₄ is soluble in water and provides Ca²⁺ ions to develop hardness. CaCO₃ and MgCO₃ are insoluble in water.

39 **(b)**

$$\begin{array}{c} \text{CO} + \text{H}_2 \ + \ \text{H}_2 \text{O} \\ \text{Water gas} \end{array} \xrightarrow{\text{Catalyst}} \text{CO}_2 + 2\text{H}_2 \end{array}$$

40 **(c)**

The triple point of any substance is that temperature and pressure at which the material can exist in all three phases (solid, liquid and gas) in equilibrium, specifically the triple point of water is 273. 16 K at 611.2 Pa

41 **(d)**

It is a fact.

42 **(a)**

Cu has E_{OP}^0 lesser than H.

43 **(a)**

Calgon is represented by sodium hexa metaphosphate, $(NaPO_3)_6$ or $Na_2[Na_4(PO_3)_6]$.

(a)

Permutit are complex inorganic salts like sodium alumino silicate $(Na_2Al_2SiO_3xH_2O)$ or zeolite (Na_2Z) where Z is $Al_2SiO_3xH_2O$.

(b)

45

It is a fact.

46 **(c)**

Because dihydrogen is less reactive

47 (d)

CO is oxidised to CO_2 with steam in the presence of a catalyst followed by absorption of CO_2 in alkali.

$$CO + H_2 + H_2O \xrightarrow{\text{Steam}} CO_2 + 2H_2$$

$$\downarrow \text{ KOH}$$

$$K_2CO_3$$

48 **(a)**

Only tritium is radioactive.

49 **(b)**

Oxidisation number of oxygen in hydrogen peroxide is -1.

 $\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$

1

peroxide linkage

50 **(b)**

Volume strength = $5.6 \times normality$

 $30 = 5.6 \times N$

 $N = \frac{30}{5.6} = 5.3$

 \Rightarrow

51 **(c)**

 $K_2Cr_2O_7 + H_2SO_4 \rightarrow K_2SO_4 + H_2Cr_2O_7$ $H_2Cr_2O_7 + 4H_2O_2 \rightarrow 2CrO_5 + 5H_2O$ Chromic acid

CrO₅ is blue peroxide of Cr

52 **(b)**

It is the property of H_2O_2 .

54 (b)
The *Ortho* and *Para* hydrogen differ in the nature of spin of protons. In *Ortho* hydrogen, the spin of proton are in the same direction, while in *para* hydrogen the spin of proton are in opposite direction.

55 **(b)**

Covalent bonding is stronger than H-bonding.

58 **(d)**

 $H_2O_2 \rightleftharpoons H^+ + HO_2^-$

59 **(b)**

It is a fact.

60 **(d)**

Moist H_2O_2 cannot be dried over conc. H_2SO_4 because it is decomposed by H_2SO_4 .

61 **(a)**

Strength of H₂O₂ in g/L = $\frac{68}{22.4} \times V$

Given strength of $H_2O_2 = 30.36 \text{ g/L}$

0r

$$= 10$$
 volumes

- 62 **(b)** ${}_{1}\mathrm{H}^{3} \rightarrow {}_{2}\mathrm{He}^{3} + -$
- 63 **(b)**
- 1:1:2::*e*:*p*:*n* 64 **(c)**

 $\rm H_2$ does not react with Au, Cu or Ni. with Ca, it gives $\rm CaH_2$

65 **(d)**

 H_2O_2 is acting as reducing agent in the reaction that involve increase in the oxidation state of oxygen H_2O_2 (*i.e.,* in which H_2O_2 is being oxidised).

Reduction (oxidising agent)

$$\begin{array}{c} | \\ +1 \\ \text{AgO} + \\ \text{H}_2\text{O}_2 \end{array} \rightarrow 2\text{Ag} + \\ \text{H}_2\text{O} + \\ \text{O}_2 \end{array}$$

Oxidation (reducing agent)

66 **(b)**

It is $Na_2Al_2Si_2O_8$. xH_2O

67 (d)
CuSO₄ + H₂O
$$\rightarrow$$
 CuSO₄ . 5H₂O
Anhydrous
(White) (Blue)

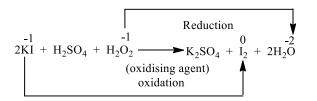
68 **(a)**

69

These are the oxidizing and reducing properties of **(c)**

Its (D₂O) molecular weight is 20 whereas mol. wt. (**b**)

Permanent hardness is removed by precipitating carbonates of Ca^{2+} and Mg^{2+} .


 $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow +2NaCl$

71 **(d)**

IE of H = -13.6 eV; IE of halogens = 13.0 for Cl; 17.4 for F.

(d) The reaction in which H_2O_2 is reduced while the

other reactant is oxidised, represents the oxidising property of H_2O_2 .

73 (a)

72

Hydrogen peroxide is prepared by the action of CO_2 on barium peroxide peroxide (BaO₂).

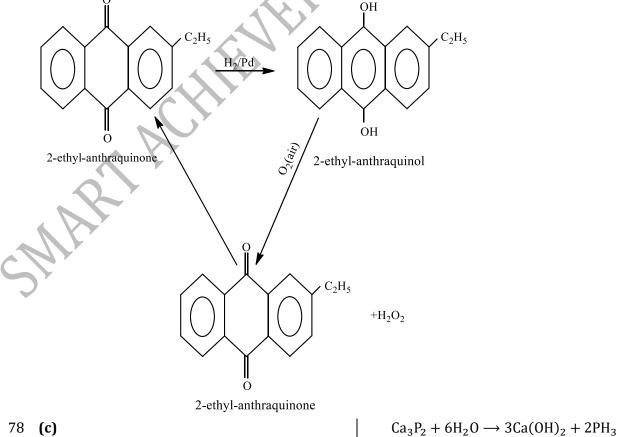
76 (c)

Industrial preparation of H₂O₂:

(A) By the electrolysis of 50 % H_2SO_4 : 50 % H_2SO_4 solution is electrolyzed at 0°C between Pt electodes. The perdisulphuric acid is formed.

 $H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$

At Anode;
$$2HSO_4^- \rightarrow H_2S_2O_8 + 2e$$


At Cathode ; $2H^+ + 2e \rightarrow H_2$

The obtained perdisulphuric acid gives H₂O₂ on hydrolysis.

 $H_2S_2O_8 + 2H_2O \rightleftharpoons H_2O_2 + 2H_2SO_4$

This H_2O_2 is separated by distillation at reduced pressure and thus, 30 % solution of H_2O_2 is obtained. (B) By the auto-oxidation of 2-ethyl-anthraquinol (Modern method) : Anthraquinol, in a mixture of benzene and *n*-heptanol on treatment with air gives H₂O₂ and 2-ethyl-anthraquinone. This 2-ethyl-anthraquinone on hydrogenation gives 2-ethyl-anthraquinol in presence of Pd catalyst.

It is a cyclic process and in it only H₂ is consumed, 2-ethyl-anthraquinone is reobtained during reaction.

 $BaO_2 + CO_2 + H_2O \rightarrow BaCO_3$ $+ H_2 O_2$

peroxide

barium

barium

hydrogen carbonate peroxide 79 **(b)**

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$

80 (c)

Electrolysis of 50% sulphuric acid is the commercial method for the preparation of hydrogen peroxide.

$$H_2SO_4 = H^+ + HSO_4^-$$

At anode

 $2\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{8} + 2e^{-}$

 $\mathrm{H}_2\mathrm{S}_2\mathrm{O}_8 + 2\mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{H}_2\mathrm{SO}_4 + \mathrm{H}_2\mathrm{O}_2$

At cathode

 $2H + 2e^- \rightarrow H_2$

81 **(c)**

 $BaO_2 + CO_2 + H_2O \rightarrow BaCO_3 + H_2O_2$

- 82 **(a)**
- It is a fact.

83 (a) $(H^2)_2 O^{16} \text{ or } D_2 O.$

- D has 1*n*, 1p and 1*e* O has 8*n*, 8*p* and 8*e*
- 84 **(a)**
- It is a fact. 85 **(b)**
 - It is a fact.
- 86 **(d)**

Electronic configuration of ${}_{1}H^{1}$ and ${}_{1}H^{2}$ is same.

87 **(c)**

It is a fact.

89 (d) In acid : $H_2O_2 + 2H^+ + 2e \rightarrow 2H_2O$ (slow) In alkali : $H_2O_2 + 2e \rightarrow 2OH^-$ (fast)

90 **(b)**

"10 volume H_2O_2 " means 1mL of its solution on decomposition at NTP, give 10 mL oxygen gas. Volume of oxygen formed from 100 mL of solution at NTP = 1000 ML.

> $2H_2O_2 \rightarrow 2H_2O + O_2$ 2 moles 1 mole

 2×34 g 22400 mL.

 \therefore 22400 mL O₂ formed at NTP by decomposition of 68 g H₂O₂.

 \therefore 1 mL O₂ formed at NTP from $\frac{68}{22400}$ of H₂O₂

 \div 1000 mL O_2 formed at NTP from

 $\frac{68 \times 1000}{22400} \text{ g H}_2\text{O}_2 = 3.035 \text{ g H}_2\text{O}_2$

So, concentration of "10 volume H_2O_2 "

= 3.0% approximately

92 **(a)**

 O_3 reacts with Hg to form Hg₂O which sticks on the walls of glass. This is called tailing of mercury, $O_3 + 2Hg \rightarrow Hg_2O + O_2$. The tailing is removed by the action of H₂O₂ on Hg₂O. H₂O₂ + Hg₂O \rightarrow 2Hg + H₂O + O₂

93 **(d)**

The ions responsible for hard water are soluble in water.

94 **(a)**

Liq. H_2 because of low atomic mass and high enthalpy of combustion and liq. O_2 a strong supporter for combustion.

95 **(b)**

$$M^+\mathrm{H}^- \rightarrow M^+ + \mathrm{H}^-$$

hydride ion

$$- \rightarrow \frac{1}{2} H_2 + e^-$$
 (at anode)

96 (a)

It is a fact.

97 **(d)**

 $34 \text{ g H}_2\text{O}_2$ has 2 g H_2 .

99 **(d)**

Acetanilide, alcohol, H_3PO_4 act as negative catalyst 100 **(c)**

 D_2O has different properties than H_2O .

101 **(b)**

Hydrogen forms maximum number of compounds in chemistry (not carbon).

102 **(b)**

$$\mathrm{H_2O_2} \rightarrow \mathrm{H_2O} + [0]$$

Amphoteric solvent dissolves both acids and bases.

 \therefore H₂O₂ is amphoteric solvent because it dissolves both acids and bases.

105 **(b)**

Meq. of H₂O₂ = 1000 × 1.5
∴
$$\frac{W}{34/2}$$
 × 1000 = 1000 × 1.5($E_{H_2O_2}$
= $M/2$)
∴ $W = 25.5$ g

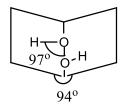
106 **(b)** $BaO_2 + CO_2 + H_2O \rightarrow H_2O_2 + BaCO_3$ 107 **(b)** $Mn^{7+} + 5e \rightarrow Mn^{2+}$. 108 **(b)** Its pH is 7. 109 (c) A characteristic of hydrogen. 111 **(b)** Deuterium $({}_{1}H^{2})$ has stable nuclei, because the ratio of $\frac{n}{n} = 1$. 118 (a) 113 (d) Bicarbonates of Ca and Mg are responsible for temporary hardness. 119 (d) 114 (a) It does not have impaired electrons. 115 (a) $1mL H_2O_2$ solution gives $11.2 mL O_2$ at NTP \therefore 100 mL H₂O₂ solution gives O₂ = 100 × 11.2 120 (c) 121 (a) $= 1120.0 \text{ mL } 0_2 \text{ at NTP}$ 122 (c) H₂O₂ decomposes as 123 (d) $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$ \therefore 22400 mL O₂ at NTP is obtained from 68g H₂O₂ 124 **(b)** \therefore 1 mL O₂ at NTP is obtined from 22400 g H₂O₂ \therefore 1120 mL O₂ at NTP is obtained from $=\frac{68}{22400} \times 1120$ $= 34 \, g$ $w = \frac{M \times m \times V}{1000}$ M = 1.0116 **(b)** It is a fact. 117 (a) $\left[\mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{H}_{2}\mathrm{O} + \frac{1}{2}\mathrm{O}_{2}\right] \times 2$ $2H_2O_2 \rightarrow 2H_2O +$ 0_{2} 68 g 22.4 L at NTP

 $: 22.4 \text{ L} \text{ O}_2$ at NTP is obtained by 68 g of H₂O₂ \therefore 20 L O₂ at NTP will be obtained by H₂O₂ $=\frac{68}{22.4} \times 20 = 60.7 \text{ g/L}$ \therefore 1000 mL O₂ at NTP is obtained by H₂O₂ = 60.7 g $\therefore \text{ Percentage strength} = \frac{60.7 \times 100}{1000} =$ $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ Atomic hydrogen is obtained by passing ordinary hydrogen through an electric arc. H₂ Electric arc, 2H; $\Delta H = 104.5$ kcal mol⁻¹ CO₂ escapes out slowly. Colloidal Pd has larger surface area. It is a fact. $2F_2 + 2H_2O \rightarrow 4HF + O_2$ $3F_2 + 6H_2O \rightarrow 6HF + 2O_3$ The hardness of water sample containing 0.02 mole of MgSO₄ dissolved in 1 L of water. Number of moles = mass/molecular mass 0.002 = mass/120mass = 0.24 g0.24 g mass of MgSO₄ in 1 L of water. $\therefore 10^3$ g of H₂O contains = 0.24 g of MgSO₄ $: 10^6 \text{ g of H}_2\text{ 0 contains} = \frac{0.24 \times 10^6}{10^3} \text{ g of MgSO}_4$ $= 0.24 \times 10^3 \text{ g}$ $= 0.24 \text{ g of MgSO}_4$ 10^6 g of water contains = 240 g of MgSO₄ $120~g~MgSO_4\equiv 100~g~of~CaCO_3$

240 g of MgSO₄ =
$$\frac{100 \times 240}{120}$$

= 200 g of CaCO₃

Hence, hardness of $H_2O = 200$ ppm.


126 **(c)**

 H_2O_2 oxidises the acidified potassium dichromate solution into blue peroxide of chromium, CrO_5 .

$$Cr_2O_7^{2-} + 2H^+ + 4H_2O_2 \rightarrow 2CrO_5 + 5H_2O_2$$

127 **(b)**

 H_2O_2 is pale blue liquid, it can be oxidised by ozone. H_2O_2 acts as both oxidising and reducing agent. The value of dipole moment of H_2O_2 is 2.1 D which suggests it cannot be planar. In fact it has open book like structure.

The two O- H bonds lie in different planes

129 (d)

It forms calcium and magnesium complex with EDTA salt

130 (a) Ordinary hydrogen mainly contains Protium $\binom{1}{1}$

132 **(c)**

 ZnH_2 is an example of interstitial hydride while NH_3 , CH_4 and H_2O are the examples of covalent hydride.

133 **(b)**

It is a fact. 134 **(d)**

Polyphosphateslikesodium150(a)hexametaphosphates, sodium tripolyphosphate orIn tSTPP) form soluble complexes with Ca2+, Mg2+151(b)present in hard waterIt is

136 **(c)**

 $H_2O_2 + Cl_2 \rightarrow 2HCl + O_2$

HCl is formed by the reduction of chlorine by H_2O_2 , hence pH further decreases.

It is a fact.

138 **(c)**

139 **(b)**

 H_2 is diatomic and forms H^- and H^+ ions.

$H_2 + F_2 \xrightarrow{\text{Dark}} 2HF$ 140 (d)

Hardness is expressed in g of $CaCO_3$ present in 10^6 g of H_2O .

141 (d) $3Fe_{\text{Red hot}} + 4H_2O(v) \rightarrow Fe_3O_4 + 4H_2$ 142 (b)

 $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + H_2$$
143 **(b)**

Atomic mass of helium $(_{2}He^{4})$ is maximum.

144 **(b)** $M = \frac{5.1 \times 1000}{34 \times 100} = 1.$

145 **(a)**

```
Hg is placed below H in electrochemical series.
```

146 (d)

Deionised or demineralised water is obtained by passing hard water through both cation and anion exchangers one after the other

147 **(a)**

Eq. wt. of $H_2O_2 = 17$

$$N = \frac{30.36}{17} = 1.78 \text{ N}$$

Volume strength = $5.6 \times normality$

$$= 5.6 \times 1.78 = 10$$
 V

148 **(c)**

It is a fact.

149 **(d)**

Water becomes hard when it contains dissolved salts of calcium, Mg of Fe such as chloride, sulphates, bicarbonates and carbonates.

(a) In tritium, it is three.

151 **(b)**

It is a fact.

152 **(a)**

Hydrogen reacts with active metals (like alkali and alkaline earth metals) form corresponding hydrides. $Ca(s) + H_2(g) \rightarrow CaH_2$

153 **(b)**

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_4$$

Per cent conc	:. of $H_2O_2 = \frac{17}{56} \times$	gives 20mL oxygen on decomposition at STP.
volume conc. of H_2O_2	$=\frac{17}{56} \times 10 = 3\%$ app.	Hence, 5000 cm ³ O ₂ will be obtained by $=\frac{5000}{20}$
156 (d)	56	$\frac{1}{20}$
	e characteristics of zeolites.	$= 250 \text{ cm}^3$
159 (b)		
Extra energy is require	ed to break these hydrogen	175 (a) $I_{aa} \rightarrow W_{aba}$
bonds.		Ice \rightleftharpoons Water; Also volume of ice >volume of water. Thus, an increase in pressure favours the
160 (d)		forward reaction.
$0_3 + H_2 0_2 \rightarrow 20_2 +$	H_2O	176 (c)
161 (b) Watar has high dialas	tria constant is 02 high	D_2O was discovered by Urey and Wash burn.
_	tric constant, <i>ie</i> , 82, high lissolve maximum number	177 (d)
	why it is used as universal	It is a fact.
solvent		178 (b)
162 (c)		An important property of H_2O_2 .
Sodium zeolite is u	sed for softening of water	179 (d)
having the formula Na	$a_2Al_2Si_2O_8$.	Stannic and ferric oxides are reduced to stannous a
163 (d)		180 (a) Ortho and para hydrogens are two forms of
,	.e., hydrogen at the moment	hudrogen which differ only in direction of onin of
- ,	re powerful reducing agent	proton.
than ordinary H ₂ . 164 (a)		
It is a fact.		Protium $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, deuterium $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and tritium $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$
165 (c)		are three isotopes of hydrogen. All of them have
	ses into water and oxygen	one proton and electron each. Protium has no
	n speeds up in the presence	neutron, deuterium has one neutron and tritium has two neutrons.
of metallic impurities	, or strong bases and on	
	nce, it is stored in plastic	181 (c)
container after additi	on of stabilizer.	Ca ²⁺ and Mg ²⁺ forms insoluble salts with soap.
166 (c)		182 (a)
It is a fact.		$H_2 \rightarrow H + H, \Delta H = +ve$
167 (d) It is a method to conc	entrate H ₂ O ₂	The reaction is favoured by low pressure and high
168 (d)	entrate 11202.	temperature 184 (c)
	$H + 2H_2O \rightarrow 2KAlO_2 + 3H_2$	$S^{2-} \rightarrow S^0 + 2e$
(Uyeno's methods)		186 (a)
$NaH + H_2O \rightarrow NaOH$	+ H ₂ and electrolysis of	Dielectric constant of H_2O_2 increases with
Ba(OH) ₂ . These all ar	e methods to prepared pure	dilution. It is 93.7 for pure H_2O_2 , 97 for 90%
H ₂ .		H_2O_2 and 120 for 65% H_2O_2 .
169 (b)		187 (c)
It is a fact.		It is a fact.
170 (a) CaC ₂ + 2D ₂ O \rightarrow Ca(0	$(D)_{2} + C_{2}D_{2}$	188 (c)
171 (c)		It is a fact (density of D_2O
$H \rightarrow H^+ + e$		= 1.1073 g/mL at 284.6 K).
172 (a)		189 (d)
H_2O_2 is di-basic acid	and thus, less stable in basic	It is a fact.
medium.		191 (a)
174 (a)		Hydrides are binary compounds of hydrogen.
'20 volume H_2O_2 ' mea	ans that 1mL of this $H_2 O_2$	

	These can be classified in four groups <i>viz</i> :		$\mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{8} + \mathrm{H}_{2}\mathrm{O} \longrightarrow \mathrm{H}_{2}\mathrm{SO}_{4} + \mathrm{H}_{2}\mathrm{SO}_{5}$				
	(i) Ionic hydrides <i>e.g.,</i> NaH, CaH ₂ , LiH etc.	210	(b) It is a fact.				
	(ii) Covalent hydrides <i>e.g.</i> , B ₂ H ₆ , NH ₃ , SbH ₃ etc.	211	(b)				
	(iii) Polynuclear hydrides <i>e.g.</i> , LiAlH ₄ , NaBH ₄ etc.	212	It is a fact.				
		212	Alkaline earth metal salts are causing hardness :				
	(iv) Interstitial hydrides, in which hydrogen is trapped in the interstial spaces of transition metals.		Temporary hardness caused by soluble Ca and Mg hydrogen carbonates. Calcium and magnesium soluble sulphates and chlorides cause permanent				
194			hardness.				
195	Ionic hydride has H^- ion. (c) Moist hydrogen cannot be dried over concentrated H_2SO_4 because it is oxidized by H_2SO_4 and catches fire.		$2I^{-} \rightarrow I_{2}^{0} + 2e$ $2e + O_{2}^{1-} \rightarrow 2O^{2-}$				
196	$\mathrm{H_2SO_4} + \mathrm{H_2} \longrightarrow 2\mathrm{H_2O} + \mathrm{SO_2} \uparrow$	215	Electrolysis of 50% sulphuric acid gives per disulphuric acid $(H_2S_2O_8)$ which on distillation yields 30% solution of hydrogen peroxide				
	$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$ Ca^{2+} of Mg ²⁺ ions are removed as insoluble carbor	216	(b)				
197	(d)	$MnO_2 + H_2SO_4 + H_2O_2 \rightarrow MnSO_4 + 2H_2O + O_2$ 217 (d)					
198	20 g D_2 O has 4 g deuterium. (b)	Ionic hydrides give basic solution when reacts					
270	Hydrogen of high purity is obtained by		with water <i>e.g.,</i>				
	electrolyzing aqueous barium hydroxide in presence of Ni electrodes.		$LiH + H_2O \rightarrow LiOH + H_2 \uparrow$				
	$2e + 2H_30^+ \rightarrow 2H_20 + \frac{1}{2}H_2$	218	(b) Only Mg and Mn react with cold dil. HNO ₃ to give H				
	$20\mathrm{H}^{-} \rightarrow \mathrm{H}_2\mathrm{O} + \frac{1}{2}\mathrm{O}_2 + 2e$	219	(b) Thenard obtained H_2O_2 for the first time.				
199	(c) It is a fact.	220	(a)				
200			<i>Ortho</i> and <i>para</i> hydrogen show different spin in a hydrogen molecule, hence, these are not the isotopes				
201		221	•				
	Heavy water is used as a moderator to slow down the speed of fast moving neutrons and as well as a		10 volume =1 volume of H_2O_2 gives 10 volume of O_2 at NTP.				
202	coolant (a)		$2H_2O_2 \rightarrow 2H_2O + O_2$				
	$CaZ + 2NaCl \rightarrow CaCl_2 + Na_2Z$		2(2+32) = 68 g 22400 mL at NTP				
203	(c) It is fact.		At NTP				
205	(c)		\therefore 22400 mL of O ₂ is obtained from				
206	Both are V-shaped. (c)						
	No such reaction exists.		$= 68 \mathrm{g} \mathrm{H}_2 \mathrm{O}_2$				
207	(c) Potassium reacts violently with acids.		\therefore 10 mL of O ₂ is obtained from				
209	-		$=\frac{68 \times 10}{22400} = 0.03035 \text{ g H}_2\text{O}_2$				
		1	Page 28				

 $1 \text{ mL of } H_2O_2$ solution contains

 $= 0.03035 \text{ g} \text{ H}_2 \text{ O}_2$

100 mL of H_2O_2 solution contains

 $= 0.03035 \times 100$

 $= 3.035 \text{ g} \text{ H}_2 \text{O}_2$

 \therefore Strength of 10 volume H₂O₂

 $= 3.035 \times 10$

= 30.35 g/L

222 **(a)**

Bond formation is exothermic.

223 **(a)**

Ortho-hydrogen is more stable and para form always try to convert in ortho form.

224 (a)

These are facts.

225 (d)

 $5e + Mn^{7+} \rightarrow Mn^{2+}$ $0_2^{1-} \rightarrow 0_2^0 + 2e$

226 (a)

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$$

227 (b)

 $2H + CO \rightarrow HCHO$

233 (c)

Industrial preparation of H_2O_2 :

(A) By the electrolysis of 50 % H_2SO_4 : 50 % H_2SO_4 solution is electrolyzed at 0°C between Pt electodes. The perdisulphuric acid is formed.

 $H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$

At Anode;
$$2HSO_4^- \rightarrow H_2S_2O_8 + 2$$

At Cathode; $2H^+ + 2e \rightarrow H_2$

The obtained perdisulphuric acid gives H_2O_2 on hydrolysis.

 $H_2S_2O_8 + 2H_2O \rightleftharpoons H_2O_2 + 2H_2SO_4$

This H_2O_2 is separated by distillation at reduced pressure and thus, 30 % solution of H_2O_2 is obtained. (B) **By the auto-oxidation of 2-ethyl-anthraquinol (Modern method) :** Anthraquinol, in a mixture of benzene and *n*-heptanol on treatment with air gives H_2O_2 and 2-ethyl-anthraquinone. This 2-ethyl-anthraquinone on hydrogenation gives 2-ethyl-anthraquinol in presence of Pd catalyst.

It is a cyclic process and in it only $\rm H_2$ is consumed, 2-ethyl-anthraquinone is reobtained

228 **(a)**

It is a fact.

229 **(c)**

Hydrogen peroxide oxidise lead sulphide into lead sulphate which is a solid.

 $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_4$

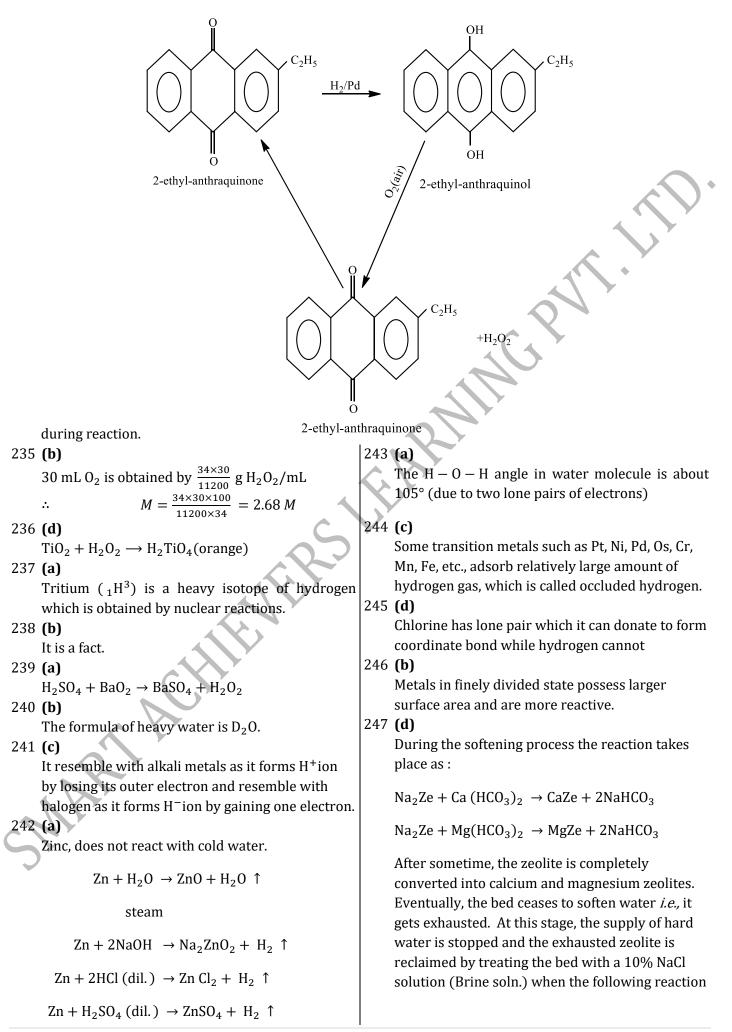
230 **(b)**

 H_2O_2 has open book structure.

231 **(d)**

 Na_2SO_3 is oxidised by H_2O_2 to Na_2SO_4

PbS is oxidised by H_2O_2 to PbSO₄


KI is oxidised by H_2O_2 to I_2

 ${\it O}_3$ cannot be oxidised by ${\rm H}_2{\rm O}_2$ but it is reduced to ${\rm O}_2$ by ${\rm H}_2{\rm O}_2$

$$H_2O_2 + O_3 \rightarrow H_2O + 2O_2$$

232 **(b)**

It is one of the uses of H_2O_2 .

takes place

CaZe or Mgze + 2NaCl \rightarrow Na₂Ze + CaCl₂ or MgCl₂ 261 (d) **Reclaimed** zeolite 248 (b) Volume strength = $5.6 \times normality$ 262 (a) $= 5.6 \times 1.5 = 8.4$ L 249 (a) 263 **(b)** Follow reactive nature of nascent hydrogen. 250 (a) It is a fact. 251 (d) These are characteristic properties of H_2O_2 . 264 (d) 252 (a) $HClO_4$ does not give H_2O_2 on hydrolysis. Rest all contains 0-0 bond and gives H_2O_2 on heating. 253 (d) $_{1}$ H¹ has no neutron, *i.e.*, n = 0, p = 1, $\frac{n}{n} = \frac{0}{1} = 0$ 254 (a) $34 \text{ g H}_2\text{O}_2$ has 2 g H265 (d) $\therefore 100 \text{ g H}_2\text{O}_2 \text{ has} \frac{2 \times 100}{34} = 5.88 \text{ g H}$ 255 (a) 266 (d) Permutit or zeolite is the aluminosilicate of sodium. It is used to remove hardness of water. It converts insoluble salts of Ca²⁺ and Mg²⁺ into soluble zeolites. It exchange these ions with Na⁺ and water becomes soft. Thus, exhausted permutit does not contain Na⁺ ions. 256 (d) $M_{\rm H_2O} = \frac{1000}{18 \times 1}$ = 55.6 257 (d) $+ H_2 \xrightarrow{Ni} Margarine(Ghee)$ Oil H_2O_2 decomposes as, Unsaturated 258 **(b)** $2H_2O_2 \rightarrow 2H_2O + O_2$ $2 \times 34 \text{ g}$ 22400mL $: 68 \text{ g of H}_2\text{O}_2 \text{ liberates } 22400 \text{ mL O}_2$ $\therefore 0.68 \text{ g of H}_2\text{O}_2 \text{ liberates} = \frac{0.68 \times 22400}{60}$ $= 224 \text{ mL } 0_2$

260 (c) H₂O₂ reduces potassium ferricyanide (alk. Solution)K₃Fe(CN)₆ to potassiun ferrocyanide. Permanent hardness in the name because this type of hardness is not removed by only boiling the water. $Fe^{2+} \rightarrow Fe^{3+} + e$ $0^{1-}_2 + 2e \rightarrow 20^{2-}$ Heavy water is formed by the combination of heavier isotope $(_1H^2 \text{ or } D)$ with oxygen. $2D_2 + O_2 \rightarrow 2D_2O$ heavy wate Industrially, hydrogen is prepared from water gas which is a mixture of carbon monoxide and hydrogen, by removing carbon monoxide by Bosch process or by liquefaction. $CO + H_2O \rightarrow CO_2 + H_2$ It is a fact. $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_4$ from the above equation $:: 1 \text{ mole of PbS required 4 moles of H}_2O_2$ 0.01 moles of PbS required 0.04 mole of H_2O_2 Weight of 0.04 mole $H_2O_2 = 1.36$ g 10 volume of H_2O_2 means, 1 mL of such solution of H_2O_2 on decomposition by heat produces 10mL of oxygen at NTP.

 $2H_2O_2 \rightarrow 2H_2O + O_2$

Thus 1mL of 10 volume H_2O_2 solution contains

 $=\frac{68}{22400} \times 10 \text{ g of H}_2\text{O}_2$ $= 0.030.35 \text{ g of } H_2 O_2$

 $: 0.03035 \text{ g of H}_2O_2 \text{ is present in 1 mL of 10}$ volume H_2O_2 .

$$\therefore 1.36 \text{ g of } \text{H}_2\text{O}_2 \text{ present in } \frac{1}{0.03035}$$
$$\times 1.36 \text{ mL of } 10 \text{ volume of } \text{H}_2\text{O}_2$$
$$= 44.81 \text{ mL}$$

267 **(c)**

+72K MnO₄ + 3H₂SO₄ + 5H₂O₂

+2

 $\rightarrow 2\text{MnSO}_4 + 8\text{H}_2\text{O} + 5\text{O}_2$

In this reaction hydrogen peroxide acts as a reducing agent and it reduces $\rm KMnO_4$ to $\rm Mn^{2+}$ ions.

0

268 (d)

Water is oxidised to oxygen by fluorine as

$$2F_2 + 2H_2O \rightarrow O_2 + 4HF$$

269 **(c)**

Hydrogen forms about 75% of the mass (total amount) of the universe. It has been estimated that more than 90% of all atoms in the universe are H-atoms. While most of the remaining atoms are of He.

The order of abundance of given elements in the universe is

H > 0 > C > N

270 (a)

```
It is a fact.
```

271 **(c)**

Protium is $_1H^1$.

272 **(d)**

 H_2O_2 is weak di-basic acid.

273 **(d)**

These are characteristics of perhydrol.

274 **(c)**

Both halogen (ns^2np^5) and hydrogen $1s^1$ have one electron short to attain configuration of nearest noble gas.

275 **(c)**

Calgon is sodium hexa meta

- phosphate $(NaPO_3)_6$ or $Na_2[Na_4(PO_3)_6]$.

276 **(c)**

It is one of the uses of H_2O_2 .

277 **(b)**

Covalent molecules occupy solid structure due to increasing van der Waals' forces.

- 278 **(a)** PbO₂ dose not contain -0-0- bond. It is lead dioxide.
- 280 **(d)**
- It is a fact.
- 281 **(c)**

$$Si + 2NaOH + H_2O \rightarrow Na_2SiO_3 + 2H_2$$

$$\underbrace{\overset{0}{\text{Cl}_2 + \text{H}_2\text{O}_2}}_{\text{I unit decrease}} \rightarrow 2\text{HCl}^{-1} + \overset{0}{\text{O}_2}$$

In this reaction, H_2O_2 works as a reducing agent

283 **(d)**

SiC is a covalent compound.

284 **(a)**

The reactivity order of isotopes decreases with increase in mass no.