THE D-AND F-BLOCK ELEMENTS

CHEMISTRY

Single Correct Answer Type

1.	On strongly heating AgN	10_3 we get:			
	a) AgNO ₂	b) Silver nitride	c) Ag	d) Ag ₂ O	
2.	Transition metals in the	eir compounds show:			
	a) Ionic bonds				
	b) Covalent bonds				
	c) Ionic and covalent bo	onds		A Y	
	d) Ionic and coordinate	bonds			
3.	$4K_2Cr_2O_7 \xrightarrow{\text{Heat}} 4K_2CrO_4$	$+30_2 + X$ In the above re	eaction. Xis		
	a) CrO_3	b) Cr ₂ O ₇	c) Cr ₂ O ₃	d) CrO ₅	
4.	Cynaide process is used	,	, , ,	3	
	a) Au	b) Ag	c) Cu	d) Both (a) and (b)	
5.	The colour of zinc sulph	, 0			
	a) Yellow	b) White	c) Brown	d) Black	
6.	The metal extracted by	•		,	
	a) Silver	b) Copper	c) Iron	d) Sodium	
7.	•	ogen gas on heating with h		,	
	a) Ag	b) Ni	c) Zn	d) Cu	
8.		netal ions is not coloured?		,	
	a) Ti ³⁺	b) Fe ³⁺	c) V ²⁺	d) Zn ²⁺	
9.	The process of extraction of Au and Ag ores is based on their solubility in:				
	a) NH ₃	b) HCl	c) HNO ₃	d) KCN	
10.	In the process of extract		, 3	,	
	Roasted gold ore				
	$+CN^- + H_2O \xrightarrow{O_2} [X] +$	OH			
		- On → [Y] + Au			
	Identify the complexes $ V - [A_{11}(CN)] = V - [A_{12}(CN)] = V -$		b) $V = [A_{11}(CN)] 13 - V$	= [7n(CN)] 12-	
	a) $X = [Au(CN)_2]^-, Y =$		b) $X = [Au(CN)_4]^{3-}, Y = [Zn(CN)_4]^{2-}$ d) $X = [Au(CN)_4]^-, Y = [Zn(CN)_4]^{2-}$		
11	c) $X = [Au(CN)_2]^-, Y =$			$= [Z\Pi(CN)_4]^-$	
11.	a) Na[Ag(CN) ₂]	e which of the following is	c) NaCl	d) HCl	
12			•	=	
14.	The magnetic moment μ , of transition metals is related to the number of unpaired elelctrnos n as				
	$a) \mu = n(n+2)^2$	b) $\mu = n^2(n+2)$	c) $\mu = \frac{1}{(n+2)}$	d) $\mu = \sqrt{n(n+2)}$	
13.		then pouring it into cold w			
	a) Zn dust	b) Granulated Zn	c) Hard Zn metal	d) Soft Zn metal	
14.	Percentage of gold in Fo	ool's gold is			
	a) Zero	b) 8	c) 16	d) 30	
15.	Copper sulphate is com	mercially made from coppe	er scrap by:		
	a) Dissolving in hot con	centrated sulphuric acid			
	b) Action of dilute sulph	=			
	c) Heating with sodium	sulphate			
	d) Heating with sulphur	-			
16.	Which of the following of	compounds has colour but	no unpaired electrons?		

	a) KMnO ₄			
	b) K ₂ MnO ₄			
	c) MnSO ₄			
	d) MnCl ₂			
17.	Mercury forms amalgams	with all except:		
	a) Al	b) Zn	c) Ni	d) Fe
18.	Granulated Zn is obtained	by:		
	a) Suddenly cooling molte	=		
	b) Adding molten Zn to wa			
	c) Heating Zn 100 to 150°			
	d) Dropping molten Zn dro			
19.	In the first transition serie	= = =	ron enters:	
	a) 5 <i>d</i> -orbital	b) 4 <i>d</i> -orbital	c) 3 <i>d</i> -orbital	d) 2 <i>d-</i> orbital
20.	Identity the ore not contai		,	
	a) Limonite	b) Siderite	c) Carnallite	d) Chalcopyrites
21.	Purest form of iron is	,	,	y Try
	a) Cast iron	b) Pig form	c) Wrought iron	d) Steel
22.	Which metal adsorbs hydr	, ,	o)rought.non	a.) 50001
	a) Pd	b) K	c) Al	d) Zn
23.	The most abundant ore of		0) 11.	u) III
_0.	a) Haematite	b) Limonite	c) Magnetite	d) Siderite
24	Metallic silver may be obta	=	of Magnetite	a) blactice
	a) Heating it in the curren	= -	b) Fusing it with sand	
	c) Treating with carbon m	=	d) Fusing it with Na ₂ CO ₃	
25.	Choose the correct statem		a) I using it with wazdog	
_0.	a) Transition elements ha)	
	b) Transition elements do	(
	c) Transition elements ex			
	d) Transition elements sho			
26.	Bessemer's converter is us	A		
_0.	a) Cast iron		c) Steel	d) Wrought iron
27.	Number of electrons prese		,	a) Wought non
_,.	a) 3	b) 1	c) 2	d) 4
28.	Which will reduce acidifie		•	u) 1
_0.		b) Mohr's salt	c) Chile saltpetre	d) White vitriol
29.	The lanthanoids contraction	=	of difficultipetre	a) white vierior
_,.	a) Atomic radii		b) Atomic as well as M^{3+}	radii
	c) Valence electrons		d) Oxidation states	
30.	Transition metals show pa	aramagnetism due to	a) omacion states	
00.	a) High lattice energy	aramagnetism ade to	b) Characteristics configu	ration
	c) Variable oxidation state	20	d) Unpaired electrons	ration
31	'Mercury' tree can be prep		a) onpunea electrons	
	a) By mixing up mercuric			
~	b) By adding Nessler's rea	=	olution	
	c) By pouring little mercu	=	olution	
	d) By heating mercuric ch			
32	When excess of SnCl ₂ is ac		a white nnt turning to gre	ev is obtained. This grew
J L .	colour is due to the format		, a mine ppe turning to gre	,, is obtained. This gity
	a) Hg ₂ Cl ₂	b) SnCl ₄	c) Sn	d) Hg ₂
33.	Among the following, the	_	•	~J04

		o) $K_2Cr_2O_7$	c) $K_3[Cu(CN)_4]$	d) VOSO ₄
34.	All the metals form oxides of			
	,	o) Barium	c) Silver	d) Lead
35.	Cinnabar is an ore of:	\		22.5
	•	o) Zinc	c) Silver	d) Mercury
36.	Heating mixture of Cu ₂ O an			N a aa
	, <u> </u>	o) CuO + CuS	c) $Cu + SO_3$	d) $Cu + SO_2$
37.	The substance that sublime	-		
	, , ,	o) AgCl	c) HgCl ₂	d) NaCl
38.	Actinides			\wedge
	a) Have variable valency		b) Include element 12	4 7
	c) Are all synthetic element		d) Have only short lived is	otopes
39.	The $3d$ -transition series con			1) 24
4.0		o) 21 to 30	c) 21 to 31	d) 21 to 29
40.	Which of the following is no			
	a) Variable oxidation states		b) Formation of coloured	compounds
4.4	c) Formation of interstitial	=	d) Natural radioactivity	<i>Y</i>
41.	An element which is highly	-		D 0
40	•	o) Mn	c) Hg	d) Ca
42.	Native silver metal forms a			
42		o) Oxygen	c) CO ₂	d) Ar
43.	Calamine is	.) M. CO	.) 7.00	D C - CO - + C - O
4.4	, ,	o) MgCO ₃	c) $ZnCO_3$	d) $CaCO_3 + CaO$
44.	Which series of elements ha			J) F. C. N: C.
4 5		o) Na, K, Rb, Cs	c) Li, Be, B, C	d) Fe, Co, Ni, Cu
45.	Which transition elements			d) C., C.,
1.0	-	o) Ru, Os	c) Ag, Au	d) Cu, Cr
40.	When I ⁻ is oxidized by Mn0			d) IO ⁻
17	a) 10_3^- k Which of the following com	o) I ₂	c) 10_4^-	•
47.	dichromate?	poullus is used as the star	ting material for the prepa	ration of potassium
	a) K_2SO_4 . $Cr_2(SO_4)_3$. 24 H_2O_4	(Chromo alum)		
	b) PbCrO ₄ (Chrome yellow)			
	c) FeCr ₂ O ₄ (Chromite)			
	d) PbCrO ₄ . PbO (Chrome re	d)		
48	Which metal makes steel su		es by maintaining the cuttir	ng edge of the blade?
10.		o) Al	c) W	d) C
49	Which form of iron is least of			u) u
17.		o) Cast iron	c) Mild steel	d) Wrought steel
50.	Amalgams are:	5) 4450 11 611	0) 1 11101 00001	a,ougocci
	a) Always solid			
	b) Highly coloured alloys			
	c) Alloys which contain me	rcury as one of the conten	nts	
	d) Compounds of mercury			
51.	Which of the following is a	poison?		
	=	o) BaSO ₄	c) HgCl ₂	d) NaHCO ₃
52.	Addition of high proportion	-		-
:=	manganese;	J		
	a) Gives hardness to steel a	nd can remove oxvgen an	d sulphur	
	b) Helps the formation of or		1	
	c) Can show highest oxidati			
	,			

	d) None of the above					
53.	Pick out the correct statements from the following.					
	I. Cobalt (III) is more stable in octahedral complexes.					
	II. Zinc forms coloured ions or complexes.					
	III. Most of the <i>d</i> -blo	ck elements and their compou	nds are ferromagnetic.			
	IV. Osmium shows (-	· ·			
	•	e stable in octahedral complex	tes.			
	a) 1 and 2	b) 1 and 3	c) 2 and 4	d) 1 and 4		
54.	Ferrous sulphate on l	•	,			
	a) SO ₃	b) SO ₂	c) Fe_2O_3	d) All of these		
55.	Hydrometallurgy is b	, <u>-</u>	, 2 3			
	a) Calcination	b) Roasting	c) Oxidation	d) Reduction		
56.	•	ansition elements, which of th	•	•		
		normal oxidation state, the zer	-			
	complexes.					
	-	ation state, the transition met	al shows basic character	and form cationic complexes.		
	=			(n), all the $4s$ and $4d$ electrons		
	c) are used for bondi			,,		
	Once the d^5 config	uration is exceeded, the tende	ncy to involve all the $3d$	electrons in honding		
	d) decreases.	aradion is eneceded, the tende	arcy to involve an the sa	erections in somanig		
57.		owing pairs of elements is calle	ed 'chemical twins' becau	ise of their very similar		
	chemical properties?	= =	ou chomical twins becat	abe of enem very similar		
	a) Mn and W	b) Mo and Tc	c) Fe and Re	d) Hf and Zr		
58		owing exist in the oxidation sta		a) 111 ana 21		
50.	a) B	b) Al	c) Ce	d) Ga		
59.	•	-		to it. Which of the statement is		
٥,,	incorrect for this read		120203 solution is duded	to it. Which of the statement is		
	a) CuI ₂ is formed	b) Na ₂ S ₂ O ₃ is oxidised	c) Cu ₂ I ₂ is formed	d) Evolved I ₂ is reduced		
60	-	n iron reacts with carbon?	cj dużiż is formed	a) Evolved 12 is reduced		
00.	a) FeC ₂	b) Fe ₃ C	c) FeC ₃	d) Fe ₂ C		
61	, -	ocyanide Na[Ag(CN) ₂], silver is	,	_		
01.	a) Tin	b) Zinc	c) Mercury	d) Calcium		
62	Which is used for ele	-	c) Mercury	u) Calcium		
02.	a) German silver	b) Beryllium bronze	c) Constantan	d) Fool's gold		
63	Monel metal is an allo	2	c) constantan	uj i ooi 3 golu		
05.	a) Cu, Ni, Fe, Mn		c) Cu, Sn, P	d) Cu, Zn		
64	Which metal is not us		c) Gu, 311, 1	u) Gu, Zii		
01.	a) Gold	b) Silver	c) Nickel	d) Tungsten		
65	Which is not true?	b) silvei	c) Mickel	u) Tungsten		
05.						
	a) ZnS is white solid which turns yellow on exposure to light					
7	 b) ZnS is precipitated on passing H₂S to aqueous Na₂ZnO₂ c) Basic zinc carbonate is ZnCO₃. 3Zn(OH)₂ 					
		$NH_3(g)$ to give $[Hg(NH_3)_4]Cl_2$				
66	· -	nydrometallurgical process, ba	ead on its property			
00.	a) Of being electropo		b) Of being less reactiv			
			=			
67	Which is less reactive	s which are water soluble	d) To form salts which	i are water soluble		
07.	a) Fe	e: b) Ni	c) Pt	d) Co		
6Ω	•	ion of zinc nitrate gives:	CJFL	a) Co		
00.	=	-	$_{\rm c}$) $7n(NO)$	d) NO		
	a) Zn	b) ZnO	c) $Zn(NO_2)_2$	u) NO		

09.	copper mitrate on strongly ne	= =		
	a) Cu b)	Cupric oxide	c) Cuprous oxide	d) cupric nitrate
70.	Which compound is used as a	purgative in medicine?)	
	a) HgCl ₂ b)	Hg_2Cl_2	c) CuCl	d) CuCl ₂
71.	Correct formula of calomel is			
	a) HgCl ₂ b)	HgCl ₂ . H ₂ O	c) Hg ₂ Cl ₂	d) HgSO ₄
72.	The reaction of K ₂ Cr ₂ O ₇ with	NaCl and conc H ₂ SO ₄ g	gives	
		Cr_2O_3	c) CrCl ₃	d) CroCl ₂
73.	A compound in which a metal	ion $M^{x+}(Z=25)$ has a s	spin only magnetic m	noment of $\sqrt{24}$ BM. The number of
	unpaired electrons in the com			
		5 and 3	c) 3 and 2	d) 4 and 3
74.	From an aqueous solution of z		•	
	a) Passing CO ₂	ourprioo, rior mar 2		proofficeed by
	b) Warming with NaHCO ₃			
	c) Adding Na ₂ CO ₃			
	d) Boiling with CaCO ₃			
75.	The catalyst used for the hydr	ogenation of vegetable	oils for making mars	parine is:
, 0.	a) Cu b)		c) Ni	d) Zn
76	Which of the following compo			d) Zii
, 0.		CuF ₂	c) MgF ₂	d) CuCl
77	Copper can be extracted from	-	c) 1161 2	d) dddi
, , .	= =	Dolomite	c) Malachite	d) Galena
78	Refining of impure copper wit			
70.	Cathode Anode	in zine impurity is to be	done by electrolysis	s using electrodes as
	a) Pure copper Pure zinc		b) Pure zinc	Pure copper
	c) Pure copper Impure co	nner	-	Impure zinc
70	Molten Ag absorbs about	· •	u) i ui c zinc	impure zine
19.	a) 10 b)		c) 40	d) 80
80	Which of the following ion is of		C) 40	u) 00
00.	_	La ³⁺	c) Tb ³⁺	d) Er ³⁺
01	,	A	,	s added to water. Heating the red
01.				I droplets of a metal appear on
	the cooler parts of the test tub		t coloured fullies and	diroplets of a filetal appear off
	<u>-</u>	HgI ₂	c) HgO	d) Pb ₃ O ₄
02	, , ,, ,,	- -	, ,	dj F 03 04 dation state is achieved by which
02.	one of them?	inc configurations of at	oms, the mgnest oxit	dation state is achieved by which
		$(m-1)d^{5}ma^{1}$	a) $(m - 1) d^3 ma^2$	d) $(n-1)d^5$, ns^2
02				
03.	The oxidation number of Mn i a) 2 b)			
0.4			c) 4	d) 6
04.	Iron sheets are galvanized ma	illy to:		
	a) Harden the surface			
	b) Increase lustre			
~	c) Prevent action of water	ad susakan		
0.5	d) Prevent action of oxygen ar	iu water		
გ 5.	Copper metal is not used:	ona		
	a) In taps and water connection			
	b) As an alloy in high speed do	IIIS		
	c) In electric motor coils			
0.6	d) In brass utensils In the equation,			
	601135100			

		$O_2 \rightarrow 4[M(CN)_2]^- + 40$	OH-	
	Identify the metal <i>M</i>	h) I	a) Cilares	J) 7:
07	a) Copper	b) Iron	c) Silver	d) Zinc
87.		nickel is carried out by usir	_	D CO
00	a) I ₂	b) Cl ₂	c) HCl	d) CO
88.	Lanthanide contraction is		12.4.	
	a) Shielding by 4 <i>f</i> -electro		b) Atomic number	
00	c) Effective nuclear charge		d) Size of 4 <i>f</i> -orbitals	
89.	Which of the following ion		> **E+	1) m/4+
0.0	a) Cu ⁺	b) Cu ²⁺	c) V ⁵⁺	d) Ti ⁴⁺
90.	Pig iron:			
	a) Contains carbon and of	ther impurities		
	b) Is pure form of iron			
	c) Is same as wrought iro	n		4
	d) Is same as steel		4	
91.	In aqueous solution Eu ²⁺			
	a) An oxidizing agent	b) A reducing agent	c) An acid	d) All of these
92.	Transition elements form			7
	a) Small cation size	b) Vacant <i>d</i> -orbitals	c) Large ionic charge	d) All are correct
93.		ating with BaO at 1100° C p		
	a) Ba + ZnCl ₂	b) BaCdO ₂	c) BaZnO ₂	d) $BaO_2 + Zn$
94.		valent ion has the largest a		le series?
	a) Ce	b) Pm	c) La	d) Lu
95.	Ferrous ion changes to <i>X</i>	ion, on reacting with acidifi	ed hydrogen peroxide. The	number of <i>d</i> -electrons
	present in X and its magn	etic moment (in BM) are, re	espectively	
	a) 6 and 6.93	b) 5 and 5.92	c) 5 and 4.9	d) 4 and 5.92
96.	Which of the following is	amphoteric oxide?		
	a) SO ₂	b) B ₂ O ₃	c) ZnO	d) Na ₂ O
97.	The valence shell electron	nic configuration of Cr ²⁺ ion	n is	
	a) $4s^0 3d^4$	b) $3p^64s^2$	c) $4s^23d^2$	d) $4s^23d^0$
98.	Which of the following or	e is an ore of copper?		
	a) Argentite	b) Haematite	c) Malachite	d) Calamine
99.	Chinese white is:			
	a) ZnS	b) ZnCO ₃	c) $ZnS + BaSO_4$	d) ZnO
100.	Cerium ($Z = 58$) is an im	portant member of the lant	hanides. Which of the follo	wing statement about
	cerium is incorrect?			
	a) The common oxidation	states of cerium are +3 an	nd +4	
	b) Cerium (IV) acts as an	oxidizing agent		
	c) The +4 oxidation state	of cerium is not known in	solutions	
	d) The +3 oxidation state	of cerium is more stable th	nan the +4 oxidation state	
101.	If orange-red colour is ab	sorbed from white light, the	e observed colour is:	
	a) Yellow	b) Orange	c) Blue	d) Violet
102.	Which forms interstitial o	ompounds?		
	a) Fe	b) Ni	c) Co	d) All of these
103.	Steel that is resistant to a	cids is:		
	a) Carbon steel	b) Molybdenum steel	c) Stainless steel	d) Nickel alloy steel
104.	Hardness of transition ele	ements is due to:		
	a) Large atomic size			
	b) Metallic bonding			
	c) Covalent bonds			

d)	d) High ionization energy			
105. W	Which does not possess all	lotropic forms?		
a)) C	b) Sn	c) Fe	d) P
106. W	Vhen hydrogen peroxide i	is added to acidified potass	sium dichromate, a blue col	our is produced due to
fo	ormation of			
a)) CrO ₃	b) Cr ₂ O ₃	c) CrO ₅	d) CrO ₄ ²⁻
107. In	n the extraction of Ag, Ag	₂ S is dissolved in:		
a)) HCl	b) HNO ₃	c) KCN	d) H ₂ SO ₄
108. T	he meniscus of mercury i	in a glass tube is:		
a)) Convex upwards	b) Concave	c) Plane	d) Convex inwards
109. T	he iron obtained from the	e blast furnace is called:		
a)) Pig iron	b) Cast iron	c) Wrought iron	d) Steel
110. W	Vhich one of the following	g has strongest metallic boı	nding?	
a)) Fe	b) Sc	c) V	d) Cr
111. T	he alloy which contains n	nickel is:		
-) Brass	b) Bell metal	c) Bronze	d) German silver
112. A	hard and resistant alloy	generally used in tip of nib	of pen is:	Y
a)) Os, Ir	b) Pt, Cr	c) V, Fe	d) Fe, Cr
113. T	he extraction of which of	the following metals invol	ves bessemerization?	
a)) Fe	b) Ag	c) Al	d) Cu
114. C	uCl absorbs			
-) CO ₂	b) SO ₂	c) H_2SO_4	d) CO
	rO ₃ dissolves in aqueous			
_) CrO ₄ ²⁻	b) $Cr(OH)_3^-$	c) CrO_7^{2-}	d) $Cr(OH)_2$
116. 0	ne of the following metal	s is obtained by leaching it		olution. Identify it.
-) Titanium	b) Vanadium	c) Silver	d) Zinc
	erman silver alloy contain	ins		
) Zinc, silver and copper		b) Nickel ,silver and coppe	
_) Germanium ,silver and (d) Zinc, nickel and copper	
	opper metal of high purit	- /-		
		b) Hydrogen reduction		d) Thermite process
	•	mide in hypo solution is du		
-		b) $Ag_2S_2O_3$	c) $[Ag(S_2O_3)]$	d) $[Ag(S_2O_3)_2]^3$
	Which of the following is a	•		
•		b) Solder	c) Magnalium	d) Type metal
	onsider the following sta			
		sic among hydroxides of lar		
-	_	s almost the same ionic rad	lii	
	III) Ce ⁴⁺ can act as an oxi			
	Which of the above is/are			
	, , , , ,	b) (II) and (III)	c) (II) only	d) (I) only
122. Ic	odide of Millon's base is:			
) V [Hal]	b) Hg < NH ₂ O — Hg — I		d) Ha(NII)I + Ha
a) $K_2[Hgl_4]$	O—Hg—I	c) $[\Pi g_2 \cup \Pi \Pi_2 \cup \Pi] \cdot \Pi_2 \cup \Pi$	d) $Hg(NH_2)I + Hg$
123. T	he alloy of steel that is us	sed for making automobile	parts and utensils is:	
) Stainless steel	b) Nickel steel	c) Tungsten steel	d) Chromium steel
-		e for platinum in jewellery	, ,	,
) Rolled gold	b) White gold	c) Purple of Cassius	d) Faraday's gold
-	,	e exhibited by transition m		, , , , , , , , , , , , , , , , , , , ,
) +7	b) +8	c) +6	d) +5

126. $Cl_2 + HgO \rightarrow ?$			
a) $Cl_2O + HgCl$	b) $Cl_2O + HgCl_2$	c) ClO + HgCl	d) $ClO + HgCl_2$
127. The following two reac	tions HNO ₃ with Zn are gi	ven as (equations are no	t balanced) $Zn + conc. HNO_3 -$
$Zn(NO_3)_2 + X + H_2O($	(A)		
$Zn + dil . HNO_3 \rightarrow Zn($	$(NO_3)_2 + Y + H_2O(B)$		
	the compounds X and Y res	pectively, are	
a) NO ₂ and NO	b) NO ₂ and NO ₂	c) NO and NO ₂	d) NO ₂ and NH ₄ NO ₃
128. Which of the following		-	
a) KL $3s^2p^6d^5$, $4s^1$		2010118 00 0101101011011 01011	
b) KL $3s^2p^6d^{10}$, $4s^2p^3$			
c) KL $3s^2p^6d^{10}$, $4s^24p^3$	L		
d) KLM $4s^2p^6d^{10}$, $5s^25$			
, ,	•	1 DM Thomosomo the	number of survived electrons
-	of a transition metal ion is	SV15 BM. Therefore, the	number of unpaired electrons
present in it, is	I-) 4	-) 1	3) 2
a) 3	b) 4	c) 1	d) 2
130. Which is not true in cas			
a) They are malleable a		4	
b) They have high melt	= = = =		
	body centred cubic and h	-	tructure only
	oxidation states although	-	. 4
131. Formation of coloured	solution is possible when		
a) Paired electrons		b) Lone pair of elect	trons
c) Unpaired electrons	. •	d) None of these	
132. Carbon in wrought iron	is present as	1371:1.	
a) Silicon carbide		b) Iron carbide	l l
c) Graphite	T. 1		de and partly as graphite
133. An element is in M^{3+} for			
a) Ca ²⁺	b) Sc ⁺	c) Ti ⁴⁺	d) Ti ³⁺
134. Each transition series of		244.1	
a) 12 elements	b) 10 elements	c) 14 elements	d) 8 elements
135. Lanthanide contraction		46.1	
	elding on outer electrons b		_
, , ,	elding on outer electrons b	-	nuclear charge.
-	uclear charge from Ce to I		, ,
	ling on outer electrons by	4f -electrons from the nu	aclear charge.
136. The properties of Zr an		13.5 (1.1.1)	CD
a) Both belong to <i>d</i> -blo			nme group of Periodic Table
c) Both have similar ra		d) Both have same i	
	e iron and NO exist as Fe ¹	¹ and NO ⁺ rather than Fo	e ^{III} and NO. These forms can be
differentiated by:			
a) Estimating the conce			
b) Measuring the conce			
=	state magnetic moment		
d) Thermally decompos		C	
138. Railway wagon axles an	e made by heating rods of	f iron embedded in chard	coal powder. The process is
known as			
a) Case hardening	b) Tempering	c) Sheradizing	d) Annealing
139. A substance which is no	=	S == (= 3	N
a) $Cr(ClO_4)_3$	b) KMnO ₄	c) TiCl ₃	d) VOBr ₂
140. Which pair of compour	ds is expected to show sir	nilar colour in aqueous r	nedium?

a) FeCl ₃ and CuCl ₂ 141. Lunar caustic is chem	b) VOCl ₂ and CuCl ₂ ically:	c) VOCl ₂ and FeCl ₂	d) FeCl ₂ and MnCl ₂
a) Silver chloride	b) Silver nitrate	c) Sodium hydroxide	d) Potassium nitrate
142. Lanthanoids and actir	•	,	
a) Electronic configur			
b) Oxidation state			
c) Ionisation energy			
d) Formation of comp	lex		
143. Horn silver is:			
a) AgCl	b) Ag ₂ S	c) SnS	d) AgNO ₃
144. Silver nitrate solution	gives a red precipitate with:	,	
a) Sodium iodide	b) Potassium chloride	c) Calcium nitrate	d) Sodium chromate
145. Of the following outer	electronic configurations of	atoms, the highest oxidatio	n state is achieved by which
one of them?			
a) $(n-1)d^8 ns^2$	b) $(n-1)d^5 ns^1$	c) $(n-1)d^3 ns^2$	d) $(n-1)d^5 ns^2$
146. Powdered silver ore is	s treated with NaCN solution	and air is bubbled through	
a) AgCN	b) Ag	c) Ag(CN) ₂	d) Na[Ag(CN) ₂]
147. Chromium has most s	table oxidation state of:)
a) +5	b) +3	c) +2	d) +4
148. Cuprous salts are gen	erally colourless while cupro	us oxide is:	
a) Green	b) Blue	c) Red	d) Yellow
149. Which of the following	g manganese oxide is amphot	teric?	
a) MnO ₂	b) Mn_2O_3	c) Mn_2O_7	d) MnO
150. Impurities of Cu and A	Ag from gold are removed by	$\langle \lambda, \lambda' \rangle$	
 a) Boiling impure gold 	d with dil.H ₂ SO ₄	b) Boiling impure gold w	vith conc.H ₂ SO ₄
c) Electrolytically		d) Both (b) and (c)	
•	statement among the following	_	
	how irregular and erratic	La and Lu have partia	ally filled d -orbitals and no
chemical propertie	s among themselves.	other partially filled	orbital.
•	arious lanthanoids is very	d) $4f$ and $5f$ -orbitals an	e equally shielded.
similar.			1,
	g ions form most stable comp	-	D = 21
a) Mn ²⁺	b) Ni ²⁺	c) Fe ²⁺	d) Cu ²⁺
	d in photography because the	y are:	
a) Photosensitive			
b) Soluble in hyposolu	ition		
c) Soluble in NH ₄ OH			
d) Insoluble in acids		: l	
	ing gives a gas which is also g	=	D.M. (C) + H. O
a) Heating NH ₄ NO ₂	b) Heating NH ₄ NO ₃	c) $Mg_3N_2 + H_2O$	d) Na(Comp.)+ H_2O_2
155. Gold dissolves in aqua	= =	a) Chlamaaywia aaid	d) Armorra mitmoto
a) Auric chloride	b) Aurous chloride	c) Chloroauric acid	d) Aurous nitrate
156. Essential constituent	=	a) Cilvon	d) Monguny
a) Fe	b) An alkali metal	c) Silver	d) Mercury
157. In blast furnace, iron	-	a) Carban	d) Cilian
a) Hot blast of air	 b) Carbon monoxide inoids series, the degree of co 	c) Carbon	d) Silica
a) $M^{4+} > M^{3+} > M0^{3}$		b) $MO_2^+ > MO_2^{2+} > M^{3+}$	
c) $M^{4+} > MO_2^{2+} > M^3$	- <i>-</i>	d) $MO_2^2 > MO_2^2 > M$ d) $MO_2^{2+} > MO_2^+ > M^{4+}$	
159. Stainless steel has iro	_	$u_1 m u_2 / m u_2 / M$	× 1 ¹¹
TO A DIGITILOS SIECI HAS II U	ii uiiu		

a) Cr	b) Cu	c) Co	d) Zn		
•	ct statement(s) among the followi		4) 211		
	(i) All the d and f -block elements are metals				
7.7	nd <i>f</i> -block elements form coloure				
` '	and f -block elements are paramag				
a) (i) only		c) (ii) and (ii)	d) All of these		
, , ,	he following pair will have effecti		u) 1111 01 011000		
a) Ti ²⁺ an			d) V^{2+} and Sc^{3+}		
•	he following compounds volatises				
a) FeCl ₃	b) HgCl ₂	c) CaCl ₂	d) MgCl ₂		
, ,	v is not valid for:	3, 20.2.2)82		
a) Cu and		c) Cr and Ar	d) Fe and Ag		
•	he following statements is not tru	•	1) 10 111111111111111111111111111111111		
	ourises KMnO ₄ solution				
b) It is a do					
=	on state of iron is +3				
,	rimary standard				
, .	ock element that exhibits maximu	m number of oxidation states is			
a) Sc	b) Ti	c) Mn	d) Zn		
•		$^{.2+}$, Mn ²⁺ , and Fe ²⁺ are 3, 4, 5 and 6			
	ons will have largest value of mag		or copecutively. The most of the		
a) V ²⁺	b) Cr ²⁺	c) Mn ²⁺	d) Fe ²⁺		
•	,	e during the smelting process of co	•		
=	$30_2 \rightarrow 2\text{FeO} + 2\text{SO}_2 \uparrow$	b) $Cu_2O + FeS \rightarrow Cu_2S -$	= =		
-	$-30_2 \rightarrow 2Cu_2O + 2SO_2 \uparrow$	d) FeO + SiO ₂ \rightarrow FeSiO ₃	. 100		
	he following is most stable?	3,700 , 0102			
a) V ³⁺	b) Ti ³⁺	c) Mn ³⁺	d) Cr ³⁺		
,	anhydrous copper sulphate on he	, ,	<i>u</i>		
a) CuSO ₄ .		c) CuO + SO ₃	d) SO ₃		
	not form complex with:	3, 222 , 233	, 3		
a) AgI	b) AgBr	c) AgCl	d) None of these		
, ,	ohide has a yellow colour?	-,8	,		
a) CuS	b) PbS	c) ZnS	d) CdS		
•	he following is not a property of t		.,		
	alency b) Catalytic prop		d) Colour		
-	an be distinguished by Fe ³⁺ ion by		.,		
a) BaCl ₂	b) AgNO ₃	c) NH ₄ SCN	d) None of these		
	of the following transition metal	-	,		
a) Co ²⁺	b) Ni ²⁺	c) Cu ²⁺	d) Zn ²⁺		
,	of group 11 and 12 are:	•	,		
a) Normal		ments c) Alkaline earth metals	d) Alkali metals		
176. Hard steel	-	•	,		
a) No carb	on b) 0.6-1.5% carbo	on c) 5% carbon	d) 0.5-0.2% carbon		
		pes not displace copper from sulph	•		
	reactive than copper		,		
<u>-</u>	of sulphate is deposited on it				
	of oxide is deposited on it				
	the above				
=	ws a jump in second ionization po	otential?			
a) Co	b) Ni	c) Zn	d) Cu		

179). Manganese steel contai	ns:		
	a) $Fe + C + Mn$	b) $Fe + C + Al$	c) Fe + Mn	d) Fe + Mn+ Cr
180). Which sets are the tran	sition elements?		
	a) Ti, Zr, Hf	b) V, Nb, Ta	c) Rh, Rb, Pd	d) All of these
181	. The extraction of nicke	l involves:		
	a) The formation of Ni($(CO)_4$		
	b) The decomposition of			
		hermal decomposition o	f Ni(CO) ₄	
	•	atalytic decomposition of	, , <u>, , , , , , , , , , , , , , , , , </u>	
182	2. Cu ₂ O is:	, in J	()4	
	_	er b) Copper(II) oxide	c) Red oxide of coppe	er d) Cupric oxide
183	= = =		hen KMnO ₄ acts as an oxidi	
		and MnO_4^{2-} , are respect		2
	a) 3, 5, 4 and 1	b) 4, 3, 1 and 5	c) 1, 3, 4 and 5	d) 5, 4, 3 and 1
184			-	ty coating can be seen over it.
101	This is chemically know		oistare, a green power, past	ty couting can be seen over it.
	a) Copper carbonate-co		b) Copper carbonate	-conner hydrovide
	c) Copper sulphate-cop	• •	d) Copper sulphide-c	
195	5. German silver is an allo	•	aj copper surplitac c	opper carbonate
105	a) Copper, zinc and nic	=		
	b) Copper and silver	KCI		
	c) Copper and tin			
	d) Copper, zinc and silv	or		
106	5. Incorrect statement is	'EI		
100		ud Uf ara sama basaysa d	of lanthanide contraction	
	b) Zn and Hg do not sho		or familiamue contraction	
	-	-	lanthanida hydravidae dag	raagag
			lanthanide hydroxides deci	leases
107	d) Protactinium is trans		anima an matala.	
10/	7is the best conduct	_	c) Au	d) All of these
100	a) Ag	b) Cu	,	d) All of these
186	B. Cu ²⁺ ions give precipita			d) D.,,,,,,,
100	a) Blue	b) Green	c) Red	d) Brown
189	O. Across the lanthanide s	series, the basicity of lan		
	a) Increases		b) Decreases	1.1
400	c) First increases and t		d) First decreases an	d then increases
190). A blue colouration is no			
		de dissolves in copper s	•	
		ution reacts with K ₄ [Fe(
	•	s with sodium ferrocyar		
		SO ₄ is dissolved in wate	r	
191	. Useful lanthanoid mem			
	a) Cerium	b) Lanthanum	c) Neodymium	d) Lutetium
192	2. Which of the following			
	a) Gadolinium	b) Lutetium	c) Lawrencium	d) Tantalum
193	B. Silver nitrate is usually	supplied in coloured bo	ittles because it is:	
	a) Oxidized in air			
	b) Decomposed in sunl	=		
	c) Explodes in sunlight			
	d) Reactive towards air			
194	. Mercury is purified by:			

	a) Solidifying			
	b) Distillation in vacuum			
	c) Treatment with dil. HN	0_3		
	d) Electrolytic method			
195.	. Pt black is			
	a) Pt metal mixed with Mi	nO_2		
	b) Velvety black power ob	otained by reduction of PtC	$ m l_4$ with glucose or sodium f	ormate
	c) Pt metal coated with bl	ack colour		
	d) None of the above			
196.		o which region of the Peric	odic Table?	
	a) Groups 3, 4 and 5	b) Groups 5, 6 and 7	c) Groups 4, 5 and 6	d) Groups 7, 8 and 9
197.		ectronic configuration repr		
	a) d^3	b) d^2	c) <i>d</i> ⁸	d) d^6
198	. Volatile metals Zn, Cd and	,	•,	
	a) Liquation	b) Distillation	c) Cupellation	d) Electrolysis
199	. Zinc, cadmium and mercu		e) dupenation	a) Electrorysis
177	a) d -block elements	b) <i>p</i> -block elements	c) s-block elements	d) <i>f</i> -block elements
200	•	nent about transition elem-		uj j block cicilicits
200.	a) The last electron enters		CIIG	
		between s and p -block elle	monts	
	•	tion element with smallest a	atomic radii	
201	d) Their common oxidation		(C)	
201.		oes of metals form the mos	A // W -	
	a) Alkali metals		b) Alkaline earth metals	
	c) Transition metals	Y (1) A + (2 (1) A +	d) All of these	
202.	In the reaction $SnCl_2 + 2H$)	1) vv. al
	a) Hg ₂ Cl ₂	b) Hg	c) HgCl	d) HgCl ₃
203.	. Mohr salt is made up of w			
	a) Ammonium sulphate a		b) Ammonium sulphate a	-
	c) Ammonium sulphate a		d) Ammonium sulphate a	nd magnesium sulphate.
204.	. Maximum oxidation state			
	,	b) MnO ₂	c) $[Fe(CN)_6]^{3-}$ and $[Co(Cl)_6]^{3-}$	Nd) MnO
205.	. Lanthanides are	X Y '		
	•	h period (atomic no. $= 90 \text{ t}$		
		enth period (atomic no. $= 9$		
		h period (atomic no. $= 58$ t	, , ,	
	d) 14 elements in the seve	enth period (atomic no. $= 5$	58 to 71) that are filling $4f$	sub-level.
206.	. By annealing, steel			
	a) Becomes soft		b) Becomes liquid	
	c) Becomes hard and brit	tle	d) Is covered with a thin f	ilm of Fe ₃ O ₄
207.	. Which chromium compou	ınd is widely used in tannir	ng of leather?	
	a) Cr ₂ O ₃	b) CrO ₂ Cl ₂	c) CrCl ₃	d) K ₂ SO ₄ . Cr ₂ (SO ₄) ₃ . 24H
208.	Purple of cassius is			
	a) Copper solution	b) Platinum solution	c) Gold solution	d) Copper solution
209.	. Which is obtained when S	0_2 is bubbled through a so	lution of CuCl ₂ ?	
	a) Cu	b) Cu ₂ Cl ₂	c) CuSO ₄	d) CuS
210.	•	eact with cold water but re	, .	-
	a) C, Ca, SO ₂	b) Fe, Al, Cl ₂	c) CO ₂ , Na, Mg	d) C, Fe, Mg
211.	. Which metal has the high	-	, <u>.</u> . , o	, .
	a) Pt	b) W	c) Pd	d) Au
	•	•	•	•

		n to prepare mercurous ch	iloride (calomel)	
a)	$)$ HgCl ₂ + Hg $\stackrel{\Delta}{\rightarrow}$	b) Hg + $Cl_2 \rightarrow$	c) $HgCl_2 + SnCl_2 \rightarrow$	d) Both (a) and (c)
		luctility in coinage metals i	ncrease in the order:	
a)) Cu, Ag, Au	b) Au, Ag, Cu	c) Ag, Au, Cu	d) Ag, Cu, Au
214. A	n acidified solution of KM	InO ₄ oxidizes:		
a)) Sulphates	b) Sulphites	c) Nitrates	d) Ferric salts
215. M	lagnetite is:			
a)) 2Fe ₂ O ₃ . 3H ₂ O	b) FeS ₂	c) Fe ₃ O ₄	d) Fe ₂ O ₃
216. Le	east paramagnetic prope	rty is shown by		
a)) Fe	b) Mn	c) Ni	d) Cu
217. P	latinum, Palladium, irridi	um, etc., are called noble n	netals because:	
a)) Alfred Nobel discovered	l them		
b)) They are inert towards	many common reagents		
c)	They are shining, lustro	us and pleasing to look		4 7
d]) They are found in native	e state		0 \mathcal{A}
218. Si	ilver obtained from arger	itiferous lead is purified by	<i>7</i> :	
a)) Distillation	b) Froth floatation	c) Cupellation	d) Reaction with KCN
219. Pa	aris green is:			
a)	$Cu(CH_3COO)_2$	b) $Cu_3(AsO_3)_2$. $2H_2O$	c) $Cu(CH_3COO)_2$. $3Cu(AsO)_2$	Od) $Co(AlO_2)_2$
220. V	ariable valency is shown	by		
a)) Normal elements	b) Transition elements	c) Typical elements	d) None of these
221. W	/hich statement about Hg	; is correct?		
a)) Hg is the only liquid me	tal	A 1/2-	
b)) Hg ²⁺ salts are more sta	ble than Hg ₂ ²⁺ salts		
c)) Hg forms no amalgam w	vith iron and platinum		
d]) All of the above			
222. M	lost abundant transition (element is:		
a)) Fe	b) Sc	c) Os	d) None of these
		g acts as an oxidizing agent		
a)) Np ⁴⁺	b) Sm ²⁺	c) Eu ²⁺	d) Yb ²⁺
224. W	hich of the oxide of man	ganese is amphoteric?		
a)) MnO ₂	b) Mn_2O_3	c) Mn_2O_7	d) MnO
225. W	Thich one of the following	g reactions will occur on he	eating AgNO ₃ above its mel	ting point?
a)	$) 2AgNO_3 \rightarrow 2Ag + 2NO_3$	$_{2}+0_{2}$	b) $2AgNO_3 \rightarrow 2Ag + N_2 + N_3 + N_3$	+ 30 ₂
c)	$2AgNO_3 \rightarrow 2AgNO_2 + 0$	O_2	d) $2AgNO_3 \rightarrow 2Ag + 2NO_3$	$0 + 20_2$
226. W	Thich of the following is p	paramagnetic?		
a)) CuCl ₂	b) CaCl ₂	c) CdCl ₂	d) None of these
227. W	hich does not give a pred	cipitate with excess of NaO	H?	
a)) HgCl ₂	b) HgNO ₃	c) FeSO ₄	d) ZnSO ₄
228. T	hermite is a mixture of ir	on oxide and:		
a)) Zn powder	b) K metal	c) Na–Hg	d) Al powder
229. R	uby copper is:			
a)) Cu ₂ 0	b) Cu(OH) ₂	c) CuCl ₂	d) Cu ₂ Cl ₂
230. T	he actinoids showing +7	oxidation state are		
a)) U, Np	b) Pu, Am	c) Np, Pu	d) Am, Cm
231. W	Which match is incorrect?			
a)) Ammonia soda process	 manufacture of potassiu 	m carbonate	
b)) Bessemer's process – m	anufacture of steel		
_	-	process – extraction of silv	er	
d)) Dow's process – manufa	acture of phenol		

	a) Steel is in between those of cast iron and wrought iron.					
	b) Cast iron is in between those of steel and wrought iron.					
	c) Wrought iron is in between those of steel and cast iron.					
	d) Steel is higher than tha					
233.	=	air is coloured in aqueous so	olution?			
	a) Sc^{3+} , Co^{2+}	b) Ni ²⁺ , Cu ⁺	c) Ni ²⁺ , Ti ³⁺	d) Sc ³⁺ , Ti ³⁺		
234.	ZnSO ₄ on heating to 800°		9, 111 , 11	.,		
-0 1	a) $ZnO + SO_2 + O_2$	b) $Zn + SO_2$	c) $ZnS + O_2$	d) $Zn + SO_2 + O_2$		
235		of transition metals is tha	, <u>-</u>	u) ZII + 502 + 02		
200.	a) Less	b) More	c) Equal	d) None of these		
236	. Spiegeleisn is an alloy of	b) More	c) Equal	d) None of these		
230.	a) Fe, Co and Cr	b) Fe, Co and Mg	c) Fe, Mg and C	d) Fe, C and Mn		
727		oup of transition metals is	,	u) re, c and mii		
237.	= =	b) Ru, Rh, Pd	c) Fe, CO, Ni	d) On In Dt		
າວດ	a) Cu, Ag, Au		C) FE, CO, MI	d) Os, Ir, Pt		
238.	Cadmipone is a mixture of		a) CaC and 7nCO	d) CoCO and 7nC		
220	a) CdS and BaSO ₄	b) CaSO ₄ and BaS		d) CaSO ₄ and ZnS		
239.		ig does not correctly repres	sent the correct order of the	e property indicated against		
	it?					
	=	reasing number of oxidation				
	=	Mn ³⁺ : increasing magnetic	moment			
	c) $Ti < V < Cr < Mn : incr$					
		reasing 2 nd ionization entha	A. V. V.			
240.		ation number of iron and ch				
	a) +3,+2	b) +3,+6	c) +2,+6	d) +2,+3		
241.	= =	es oxygen on moderate hea	_			
	a) Zinc oxide	b) Mercuric oxide	c) Aluminium oxide	d) Ferric oxide		
242.	=	he highest carbon content i				
	a) Cast iron	b) Wrought iron	c) Stainless steel	d) Mild steel		
243.	An ore of silver is:					
	a) Argentite	b) Stibnite	c) Haematite	d) Bauxite		
244.	Roasting of HgS in air pro					
	a) HgO	b) HgSO ₃	c) HgSO ₄	d) Hg		
245.	Transuranic elements be	gins with				
	a) Np	b) Cm	c) Pu	d) U		
246.	A solution when diluted v	with H ₂ O and boiled gives a	white ppt. On addition of e	excess NH ₄ Cl/NH ₄ OH, the		
		creases due to dissolution le	eaving behind a white gelat	inous precipitate. The		
	precipitate which dissolv	es in NH ₄ OH/NH ₄ Cl is:				
	a) $Zn(OH)_2$	b) $Al(OH)_3$	c) $Mg(OH)_2$	d) Ca(OH) ₂		
247.	Which of the following is	not correct about transition	n metals?			
	a) Their compounds are a	generally coloured.	b) They can form ionic or	covalent compounds.		
	c) Their melting and boil	ing points are high.	d) They do not exhibit var	riable valency.		
248.	Which one of the following	ng does not decolourise an a	acidified KMnO ₄ solution?			
	a) SO ₂	b) FeCl ₃	c) H ₂ O ₂	d) FeSO ₄		
249.	Which of the following pa	airs of elements cannot forn	n an alloy?			
	a) Zn, Cu	b) Fe, Hg	c) Fe, C	d) Hg, Na		
250.	. Which is known as purple	e of Cassius?				
	a) Colloidal silver solutio					
	b) Colloidal gold solution					
	c) Aqueous solution of so					

232. Carbon content of

	d) As ₂ S ₃ colloidal solution					
251	1. Which of the following ionic species will impart colour to an aqueous solution?					
	a) Cu ⁺ b) Zn ²⁺	c) Cr ³⁺	d) Ti ⁴⁺			
252	The outer electronic configuration of Gd (At. No 64)					
	a) $4f^3 5d^56s^2$ b) $4f^8 5d^06s^2$	c) $4f^4 5d^46s^2$	d) $4f^75d^1s^2$			
253	Mercury is a liquid metal because					
	a) It has a completely filled s-orbital.					
	b) It has a small atomic size.					
	c) It has a completely filled <i>d</i> -orbital that prevents <i>d</i>	l-d overlapping of orbitals	S			
	d) It has a completely filled d - orbital that causes d -	– d overlapping.				
254	Composition of azurite mineral is					
	a) CuCO ₃ . CuO b) Cu(HCO ₃) ₂ . Cu(OH) ₂	c) $2CuCO_3$. $Cu(OH)_2$	d) $CuCO_3$. $2Cu(OH)_2$			
255	What would happen when a solution of potassium cl	nromate is treated with an e	excess of dilute nitric acid?			
	a) Cr^{3+} and $Cr_2O_7^{2-}$ are formed					
	b) $Cr_2O_7^{2-}$ and H_2O are formed					
	c) CrO_4^{2-} is reduced to + 3 state of Cr					
	d) None of the above					
256	. Zn gives H_2 gas with H_2SO_4 and HCl but not with HN	0 ₃ because:				
	a) Zn acts as an oxidising agent when react with HN0					
	b) HNO ₃ is weaker acid than H ₂ SO ₄ and HCl					
	c) In electrochemical series Zn is above hydrogen					
	d) NO_3^- ion is reduced in preference to hydronium io	n				
257	Which of the following is also known as "Fools gold"					
	a) Wurtzite b) Iron pyrites	c) Chalcocite	d) Silver glance			
258	When steam is passed over heated iron, one of the page 1		, 0			
	a) FeO b) Fe ₂ O ₃	c) Fe ₃ O ₄	d) FeSO ₄			
259	In the electrolytic refining of zinc					
	a) Graphite is at the anode.	b) The impure metal is at	the cathode.			
	c) The metal ion get reduced at the anode.	d) Acidified zinc sulphate	is the electrolyte.			
260	Which pair of lanthanides is used in glass, blowers, g	oggles?				
	a) Np, Pu b) Pu, Gd	c) Fm, Ho	d) Pr, Ho			
261	One of the following metals forms a volatile compou	nd and this property is take	n advantage for its			
	extraction. This metal is					
	a) Iron b) Nickel	c) Cobalt	d) Tungsten			
262	Pig iron is converted into steel by reducing the amou	ınt of carbon contained in it	t, in a:			
	a) Blast furnace b) Pyrite burner	c) Bessemer's converter	d) None of these			
263	Which one of the following forms a complex of coord	lination number 2 with exce	ess of CN ⁻ ions?			
	a) Cu ⁺ b) Ag ⁺	c) Ni ²⁺	d) Fe ²⁺			
264	The radius of La^{3+} (Atomic number of $La = 57$) is 1.0	06 Å. Which one of the follo	wing given values will be			
	closest to the radius of Lu ³⁺ ?					
	(Atomic number of Lu=71)					
	a) 1.60 Å b) 1.40 Å	c) 1.06 Å	d) 0.85 Å			
265	When oxyhaemoglobin changes to deoxyhaemoglobi	in, Fe ²⁺ ion changes from				
	a) Diamagnetic to paramagnetic	b) Paramagnetic to diama	gnetic			
	c) Diamagnetic to ferromagnetic	d) Paramagnetic to ferron	nagnetic			
266	Which statement is incorrect?					
	a) Silver glance mainly contains silver sulphide					
	b) Gold is found in native state					
	c) Zinc blende mainly contains zinc chloride					
	d) Copper pyrites also contain Fe ₂ S ₃					

267. Amongst TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 a	nd NiCl4 ^{2–}		
(atomic no Ti=22, Co=27, Cu=2	9,Ni=28) the colour	less species are	
a) CoF_6^{3-} and $NiCl_4^{2-}$ b) TiF	$^{2-}_{6}$ and Co $^{3-}_{6}$,	c) Cu ₂ Cl ₂ and NiCl ₄ ²⁻	d) TiF_6^{2-} and Cu_2Cl_2
268. Among the following series of tra	ansition metal ions,	the one where all metal ior	is have $3d^2$ electronic
configuration is:			
a) Ti ³⁺ , V ²⁺ , Cr ³⁺ , Mn ⁴⁺			
b) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mn ⁷⁺			
c) Ti ⁴⁺ , V ³⁺ , Cr ²⁺ , Mn ³⁺			
d) Ti ²⁺ , V ³⁺ , Cr ⁴⁺ , Mn ⁵⁺			
269. Calomel (Hg ₂ Cl ₂) on reaction wi	th ammonium hydr	oxide gives	
a) HgO		b) Hg ₂ O	
c) NH ₂ — Hg— Hg— Cl		d) HgNH ₂ Cl	
270. Steel resistant to acid is:			
a) Carbon steel b) Mo	lybdenum steel	c) Stainless steel	d) Nickel steel
271. Non-stoichiometric compounds	are formed by:	•	
a) Alkali metals	•		
b) Transition elements		. (4	Y
c) Noble gases			•
d) More than one of the above el	ements		
272. d -block elements generally form	:		
	tallic hydrides	c) Interstitial hydrides	d) Salt-like hydrides
273. The element present in red blood	d cells of human blo	od is:	
a) Fe b) Ra		c) Co	d) All of these
274. The element which exhibit both	vertical and horizon	tal similarities are:	
a) Inert gas elements	4		
b) Representative elements		>	
c) Rare elements			
d) Transition elements			
275. Which occurs in nature in free st	ate?		
a) Fe b) Co		c) Ni	d) Pt
276. H ₂ S is passed in aqueous solutio	n of to give a wh	ite precipitate of ZnS.	
a) ZnCl ₂ b) Zn	$(NO_3)_2$	c) $(CH_3COO)_2Zn$	d) None of these
277. Which of the following are d -blo	ck elements but not	regarded as transition eler	nents?
a) Cu, Ag, Au b) Zn,	. Cd, Hg	c) Fe, Co, Ni	d) Ru, Rh, Pd
278. Which is the least soluble in wat	er?		
a) AgCl b) Ag	$_{2}S$	c) AgI	d) AgBr
279. Which of the following elements	is alloyed with copp	per to form brass?	
a) Bismuth b) Zin	ıc	c) Lead	d) Antimony
280. When KMnO ₄ reacts with acidific	ed FeSO ₄ :		
a) Only FeSO ₄ is oxidized			
b) Only KMnO ₄ is oxidized			
c) FeSO ₄ is oxidized and KMnO ₄	is reduced		
d) None of the above			
281. The nitrate of which metal leave	s metallic globule or	n heating strongly?	
a) $Cu(NO_3)_2$ b) Ag	NO_3	c) NaNO ₃	d) $Pb(NO_3)_2$
282. Mond process is used in the extr	-	-	-
a) Co b) Ni		c) Mo	d) Zn
283. Blue colour/precipitate will be o	btained when K ₄ [Fe	e(CN) ₆] reacts with:	
a) Fe(II) ions b) Cu	(II) ions	c) Fe(III) ions	d) Cu(I) ions
284. Two of the constituents of Germa	an silver are		

a) Ag + Cu	b) Ag + Zn	c) Cu + Zn	d) Cu + Sn
- -	posed to air for sometime. It become	•	•
a) K	b) Cu	c) Zn	d) Al
•	show variable valency, because:	c) Ziii	uj m
	y two electrons in outermost subs	hells	
· ·	ells are complete	mens	
•	ells are incomplete		
d) They are relat	-		
	tant uses of ferrous sulphate is in	the	
a) Manufacture	•		
b) Manufacture (
=	f hydrogen sulphide		
	f sulphur dioxide		A Y
288. Blue vitriol is:	i suipitut utomue		
a) CuSO ₄ . 7H ₂ O	b) ZnSO ₄ . 7H ₂ O	c) CuSO ₄ .5H ₂ O	d) FeSO ₄ . 7H ₂ O
	v variable valency because of	c) dusc4.51120	uj 1 000 41 / 1120
a) Complete <i>d</i> -su		c) 4s ² -subshell	d) None of these
, .	owing statement (s) is/are correct	,	
	own colour with ammonium thioc		Todo dila lerrie lerio.
	own colour with potassium ferricy		
	l colour with potassium thiocyana		
	l precipitate with potassium ferric		
	$\operatorname{Cu}(\operatorname{NO}_3)_2$ and $\operatorname{Cu}_2(\operatorname{CH}_3\operatorname{COO})_4$. $\operatorname{2H}_2$		
a) Dimer, monor		c) Monomer, monome	er d) Dimer, dimer
-	east stable at room temperature?	c) Monomer, monome	a biller, aimer
a) CuO	b) Ag ₂ 0	c) ZnO	d) Sb ₂ O ₃
•	owing metal is correctly matched		uj 55203
Metal	Ore	with its of c.	
a) Zinc	Calamine	b) Silver	lmenite
c) Magnesium	Cassiterite	•	Azurite
	on large scale from haematite(Fe ₂		
a) By reduction		- 3).	
b) By oxidation			
	followed by oxidation		
	ollowed by reduction		
	nanganese is amphoteric?		
a) MnO	b) MnO ₂	c) Mn ₂ O ₇	d) Mn_2O_3
296. Which among th	e following metals does not dissol		, <u> </u>
a) Pt	b) Pd	c) Au	d) Ir
297. The one which h	as lowest ox. no. of Hg:		•
a) $Hg(NO_2)_2$	b) HgCl ₂	c) $Hg(NO_3)_2$	d) Hg ₂ Cl ₂
298. The fraction of cl	hlorine precipitated by $AgNO_3$ solu	ution from $[Co(NH_3)_5Cl]$	Cl ₂ is:
a) 1/2	b) 2/3	c) 1/3	d) 1/4
299. Which statemen	t is correct?		
a) Cd rods are us	sed in atomic reactors to slow dow	n nuclear reaction	
b) Cd is a good a	bsorber of neutrons		
c) CdS is used as	pigment		
d) All of the abov	ve		
300. Acidified solution	n of chromic acid on treatment wi	th hydrogen peroxide yie	lds
a) $CrO_5 + H_2O$		b) $H_2Cr_2O_7 + H_2O + O$	O_2

	c) $Cr_2O_3 + H_2O + O_2$	d) $CrO_3 + H_2O + O_2$	
301	Substance used in glazing pottery is:	, , ,	
	a) ZnO b) ZnCl ₂	c) Alum	d) Calome
302	The brown ring complex compound is formulated as	•	
	a) +1 b) +2	c) +3	d) +4
303	. For the four successive transition elements (Cr, Mn, I	•	,
	there in which of the following order?		
	a) $Cr > Mn > Co > Fe$		
	b) $Mn > Fe > Cr > Co$		
	c) Fe > Mn > Co > Cr		
	d) Co > Mn > Fe > Cr		
	(At. Nos. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)		
304	. Which of the following methods can't be used to prep	oare anhydrous zinc chloric	de?
	a) Passing dry chlorine over heated zinc		
	b) Passing dry hydrogen chloride over heated zinc		
	c) Heating the crystal of $ZnCl_2 \cdot 2H_2O$		
	d) Distilling metallic zinc with mercury (II) chloride		
305	Prussian blue is due to formation of	4/3	
	a) $Fe[Fe(CN)_6]_3$ b) $Fe_2[Fe(CN)_6]$	c) $Fe_4[Fe(CN)_6]_3$	d) Fe ₃ [Fe(CN) ₆]
306	For which one of the following ions, the colour is not		a) 1 03[1 0 (01.)6]
	a) CrO_4^{2-} b) $Cu(NH_3)_4^{2+}$	c) $Ti(H_2O)_6^{3+}$	d) CoF ₆ ³⁻
307	. Which of the following statement is not correct?	0) 11(1120)6	a) 301 ₆
007	a) $La(OH)_3$ is less basic than $Lu(OH)_3$		
	b) In lanthanide series ionic radius of Ln ³⁺ ions decre	ease	
	c) Zn, Cd, Hg are colourless and are diamagnetic	cuse	
	d) Mn shows maximum oxidation state is +7	> Y	
308	. Which of the following lanthanide is commonly used	7	
500	a) Lanthanum b) Nobelium	c) Thorium	d) Cerium
309	Blueprint papers have a coating of:	c) morram	uj certuin
507	a) Mixture of potassium ferricyanide and ammonium	n ferric citrate or ferric oxa	late
	b) Sodium nitroprusside		
	c) Prussian blue		
	d) None of the above		
310	. Colour in transition metal compounds is attributed to	o:	
010	a) Small sized metal ions		
	b) Absorption of light in the UV region		
	c) Complete <i>ns</i> -subshell		
	d) $d - d$ transition		
311	. Which is not ferromagnetic?		
011	a) Fe b) Co	c) Ni	d) V
312	. Various methods have been employed for protecting		
	a) Zinc plating is more permanent than chrome plating	-	
	b) Zinc protects iron but gets corroded itself	6	
	c) Tin plating is cheap but unreliable		
	d) None of the above		
313	. A clock spring is heated to a high temperature and th	en suddenly plunged into (cold water. This treatment
5	will cause the metal to become:		
	a) Soft and ductile		
	b) More springy than before		
	c) Hard and brittle (case hardening)		
	, (

	d) Strongly magnetic			
314	. Which has the lowest melt	ing point?		
	a) Cs	b) Na	c) Hg	d) Sn
315	. The temperature of the sla	ng zone in the metallurgy o	of iron using blast furnace is	S
	a) 1200-1500°c	b) 1500-1600°c	c) 400-700°c	d) 800-1000°c
316	. Oxygen is absorbed by mo	lten Ag, which is evolved o	on cooling and the silver pa	rticles are scattered; the
	phenomenon is known as:			
		b) Spitting of silver	c) Frosting of silver	d) Hairing of silver
317	. Which of the following sta		_	
	a) Copper(I) Disproportio			
	Conner(I) can be stabili	7 -	soluble complex compound	ls such as CuCl ₂ and
	b) $\frac{\text{copper}(1)}{\text{Cu}(\text{CN})_2^-}$	J	1 1	2
	c) Copper(I) oxide is red p	oowder		A Y
	d) Hydrated CuSO ₄ is Cu(H			
318	. Which compound cannot h	=		
0 1 0	a) $Zn(OH)_2$	b) Cd(OH) ₂	c) $Hg(OH)_2$	d) HgCl ₂
319	. The colour of solution obta	, , , , ,	, 0, ,2	- -
01)	a) Orange	b) Brown	c) Red	d) Colourless
320	. Which of the following is t			•
320	a) Co $> Ni > Fe$	b) Fe $> Co > NI$	c) Fe $> Ni > Co$	d) Ni $> Co > Fe$
321	. Which of the following is k	•		u) N1 > 00 > 10
321	a) Silver nitrate	b) Silver sulphate	c) Silver chloride	d) Sodium sulphate
322	. Silver chloride dissolves ir	-		u) sourum surpmate
322	a) Ammonia is a better sol		it not in water because.	
	b) Silver ion forms a comp		/	
	c) Ammonia is a stronger		Y	
			nan that of ammonia molect	ıla
222	. Which metal is ferromagn		ian that of ammonia molect	uie
323			a) 7n	4) VI
224	a) Cr	b) Fe	c) Zn	d) Al
324	. Which of the following is c	b) MgSO ₄ · 7H ₂ O	a) Al (CO)	d) 7,,co 711 0
225			c) $Al_2(SO_4)_3$	d) $ZnSO_4 \cdot 7H_2O$
323	. The process of heating of s			
226	a) Annealing	b) Hardening	c) Tempering	d) Case hardening
320	. "925 fine silver" means an		b) 02 f 0/ Ag and 7 f 0/ Cu	
	a) 7.5 % of Ag and 92.5 %	Cu	b) 92.5 % Ag and 7.5% Cu	<u>[</u>
227	c) 80% Ag and 20% Cu	and the second in	d) 90% Ag and 10% Cu	
34/	The compound used in pre		a) 7 Cl	4) C-Cl
220	a) NaCl	b) HgCl ₂	c) ZnCl ₂	d) CaCl ₂
328	. In photography we use	L) NIII	a) A = Cl	J) A D
220	a) AgI	b) NH ₃	c) AgCl	d) AgBr
329	Brass, bronze and German			4) C
220	a) Zn	b) Fe	c) Al	d) Cu
330	Transition metal used for			D C l
204	a) Zn	b) Cu	c) Ag	d) Cd
331	. Which of the following ele		-	D.C.
200	a) V	b) Ti	c) Mn	d) Cr
332	Fulminating gold is:			
	a) CuFeS ₂			
	b) FeS ₂	**		
	c) $Au(NH_2) = NH \text{ or } AuN_2$	$_{2}H_{3}$		
	d) AuCl ₃			

333	. The transition metal present	in vitamin B ₁₂ is:		
	a) Fe b)	Со	c) Ni	d) Na
334	. The most convenient method	d to protect bottom of sh	ip made of iron is	
	a) Coating with red lead oxid	le	b) Connecting with 'Pb' bl	ock
	c) Connecting with 'Mg' block	k	d) White tin plating	
335	. The reaction $MnO_4^- + e \rightarrow M$	$1 nO_4^{2-}$ takes place in:		
	a) Basic medium			
	b) Acidic medium			
	c) Neutral medium			
	d) Both acidic and basic med	ium		
336	. Which metal is used in makir		dry cell?	
		Bi	c) Cr	d) Fe
337	. Railway wagon axles are mad			,
	as	,	F	
	a) Tempering b)	Case hardening	c) Sherardising	d) Annealing
338	. The methods chiefly used for	-		
	a) Self reduction and carbon		b) Self reduction and elect	
	c) carbon reduction and self		d) Cyanide process and ca	· ·
339	. The most stable oxidation sta		a) cyamac process and ca	
		+4	c) 0	d) +3
340	. In context of the lanthanoids			4) 10
510	a) There is a gradual decreas	=		ic number in the series
	b) All the members exhibit +		insers with mereasing atom	ne number in the series.
	c) Because of similar proper		nthanoids is not easy	
		- · · · · · · · · · · · · · · · · · · ·	on of compounds in +4 stat	te for all members of the
	d) series.	is results in the formation	on or compounds in 1 1 state	te for all illembers of the
341	. The matte obtained in the ex	traction of conner conta	inc:	
511		$SiO_2 + FeS$	c) FeS + Cu ₂ S	d) $CuS + SiO_2 + FeO$
342	. The electronic configuration	=	-	-
512	a) Overlapping of inner orbit		signed with degree of eer to	inity because of
	b) Free movement of electron			
	c) Small energy difference be			
	d) None of the above	ctween by and bu levels		
343	. In Mac Arthur forrest method	d silver is extracted from	n the solution of Na[Ag(CN). I by the use of
343		Mg	c) Cu	d) Zn
211	. Transition elements are colo	•	c) cu	u) Zii
344	a) Due to unpaired d -ellectro		b) Due to small size	
	c) Due to metallic nature)115	d) All of the above	
245	. Which one of the elements w	rith the following outen	•	owhibit the largest number
345	of oxidation states?	ith the following outer c	orbital configurations may (exmolt the largest number
		2.4342	a) 2.45.4.a1	d) 2 d5 d = 2
246		$3d^34s^2$	c) $3d^54s^1$	d) $3d^54s^2$
346	Lanthanide contraction occu			
	a) <i>f</i> -orbitals are incompletel	=		
	b) <i>f</i> -orbital electrons are eas	=	1 1 1 1 11	
	c) <i>f</i> -orbital do not come out			
0.45	d) <i>f</i> -orbital electron are poor		arge	
347	. Silver nitrate produces a blac	ck stain on skin due to:		
	a) Its corrosive action	1		
	b) Its reduction to metallic si	iver		
	c) Its strong reducing action			

	d) The formation of a com	plex compound		
348.	The most stable ion is:			
	a) Mn ²⁺	b) Sc ⁴⁺	c) Fe ²⁺	d) Mn ³⁺
349.	The $+3$ ion of which one of	of the following has half-fill	ed 4f sunshell?	
	a) La	b) Lu	c) Gd	d) Ce
350.	. Calomel may be freed from	n traces of metallic mercur	y by washing with:	
	a) dil. HNO ₃	b) dil. H ₂ SO ₄	c) Water	d) Aqua regia
351.	One of the following is fals	se for Hg:		
	a) It can evolve hydrogen	from H ₂ S		
	b) It is metal			
	c) It has high specific hear	t		
	d) It is less reactive than I	H_2		
352.	Brass is an alloy of:			
	a) Zn and Cu	b) Cu and Sn	c) Zn and Sn	d) Cu, Zn and sn
353.	. Maximum paramagnetism	in $3d$ -series is shown by:		
	a) Mn	b) Co	c) Ni	d) Fe
354.	The metal used for makin	g armoured steel for tanks	and domestic safes is:	
	a) Manganese	b) Aluminium	c) Lead	d) Chromium
355.	Which of the following me	etals has been used in maki	ing boats because it has res	istance to corrosion by
	seawater?			
	a) W	b) Cu	c) Ni	d) Ti
356.	Which ore contains both i	ron and copper?		
	a) Cuprite	b) Chalcocite	c) Chalcopyrite	d) Malachite
357.	$K_2Cr_2O_7 \xrightarrow{\Delta} K_2CrO_4 + O_2$	+ X. In the above reaction X	X is	
	a) CrO_3	b) Cr ₂ O ₇	c) Cr ₂ O ₃	d) CrO ₅
358.	-	, = ,	nloride solution is treated w	, ,
	a) KCN	b) KSCN	c) KCNO	d) $K_3[Fe(CN)_6]$
359.	•	h is known as ferrous meta	=	7 31 (70]
	a) Fe, Co, Ni	b) Ru, Rh, Pd	c) Os, Ir, Pt	d) Cr, Mn, Cu
360.	In the chemical reaction;			
	$Ag_2O + H_2O + 2e^- \rightarrow 2Ag$	+ 20H ⁻		
		b) Electrons are reduced	c) Silver is oxidised	d) Silver is reduced
361.	Which is not correct for tr	ransition metals?		
	a) Variable oxidation stat	es		
	b) Complex formation			
	c) Partially filled <i>d</i> -orbita	ls		
	d) All the ions are colourle	ess		
362.	Magnetic moment of [Ag($(CN)_2$] is zero. How many	unpaired electrons are thei	re?
	a) Zero	b) 4	c) 3	d) 1
363.	The first man-made atom	is:		
1	a) 0s	b) Na	c) Zr	d) Tc
364.	Amongst the following, th	e lowest degree of parama	gnetism per mole of the cor	npound at 298 K will be
	shown by			
	a) MnSO ₄ .4H ₂ O	b) NiSO ₄ .6H ₂ O	c) FeSO ₄ .6H ₂ O	d) CuSO ₄ .5H ₂ O
365.	Which compound does no	t dissolve in hot, dil. HNO_3	?	
	a) HgS	b) PbS	c) CuS	d) CdS
366.	. Heteropoly acids are form	ned by:		
	a) Be	b) Fe	c) Mo	d) Cr
367.	When mercury (I) chlorid thus collected consists of	e is heated and the vapour	so evolved are cooled, the	substance on sublimation

	a) Mercury and mercury		b) Mercury (II) chloride	
	c) Mercury (I) and merci	ury (II) chloride	d) Mercury	
368	. Steel contains:			
	a) 2.5-4.5%C	b) 0.5-1.5%C	c) 0.12-0.25%C	d) 1-2%C
369	. Silver halides are used in	photography because they	are:	
	a) Photosensitive			
	b) Soluble in hypo solution	on		
	c) Soluble in NH ₄ OH			
	d) Insoluble in acids			
370	. A lady's 18 carat gold we	dding ring has become disc	coloured with some minute	drops of mercury from a
		- -	ents would restore it to its	
	a) Place it in hot strong n	-		
	b) Place it in cold dilute h			A Y
	c) Heat it gently in a sand	•		
	d) Heat it in chlorine			
371	. Oxidation state of Hg in a	ımalgam is:	4	
,, <u> </u>	a) Zero	b) One	c) Two	d) Three
372		,	mestone is added because i	,
,, <u>L</u>	a) An oxidizing agent	b) A reducing agent	c) A flux	d) A precipitating agent
272	, ,		formed by adding excess of	
)/3	a) 4	b) 2	c) 6	d) 5
271	,		rnace and is stirred with gr	•
5/4		copper it is menteu in a ru	i nace and is surred with gr	een logs of wood. The
	purpose is:	anana in the hlister common	A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	= = = = = = = = = = = = = = = = = = =	gases in the blister copper		
		s to surfaces and oxidise th	em	
	c) To increase the carbon		1 1:1 . 1.6	.1 1
		-	rocarbon gases liberated fro	om the wood
3/5		generally made of alloys of) PI	D. F.
. . .	a) Mn	b) Co	c) Pb	d) Zn
376	. Which metal sulphide is			
	a) NiS	b) CoS	c) CuS	d) ZnS
377		s black on addition of NH ₄ (
	a) AgCl	b) PbCl ₂	c) Hg ₂ Cl ₂	d) Hg_2I_2
378		epresents ammonium moly		
	a) $(NH_4)_2MoO_4$		c) $(NH_4)_2MoO_3$	d) NH_4 . $12MoO_3$
379	. Gold and silver are called			
	a) They do not normally			
	b) Even acids cannot diss			
	c) They are used in jewel	-		
	d) They are worn by nob			
380	. The colour of $_{62}$ Sm $^{3+}$ is $_{1}$	yellow. The expected colou	r of ₆₆ Dy ³⁺ is	
	a) Yellow	b) Red	c) Blue	d) Green
381	. Which is not an ore of iro	on?		
	a) Haematite	b) Magnetite	c) Cassiterite	d) Limonite
382	. On adding excess of $\mathrm{NH_3}$	solution to CuSO ₄ solution,	the dark blue colour is due	to
	a) $[Cu(NH_3)]^+$	b) $[Cu(NH_3)_4]^{2+}$	c) $[Cu(NH_3)_2]^{2+}$	d) None of these
383	. Other forms of iron can b	e produced from:		
	a) Cast iron	b) Wrought iron	c) Pig iron	d) Steel
384	. The variety of iron havin	g highest melting point is:		
	a) Pig iron	b) Cast iron	c) Wrought iron	d) Steel

385.	Most of the transition met	tals are paramagnetic due t	o the presence of:	
		b) Completed <i>f</i> -orbitals	c) Unpaired electrons	d) None of these
386.	Spelter is:			
	a) Impure Cu	b) Impure zinc	c) ZnO	d) CuO
387.	Which of the following is p	philosopher's wool?		
	a) ZnO	b) HgO	c) Ag ₂ 0	d) CuO
388.	The density of transition r	metalsin a series.		
	a) Gradually increases	b) Gradually decreases	c) Remains constant	d) None of these
389.	Silver containing lead as in	mpurity is purified by		
	a) Poling	b) Cupellation	c) Lavigation	d) Distillation
390.	Which of the following ele	ements is present as the imp	purity to the maximum ext	ent in the pig iron?
	a) Phosphorus	b) Manganese	c) Carbon	d) Silicon
391.	The magnetic moment of	Cu ²⁺ ion is		
	a) 2.73	b) Zero	c) 1.93	d) 1.73
392.	Percentage of nickel in nic	ckel steel is:		
	a) 1.5%	b) 3.5%	c) 6.5%	d) 8.5%
393.	The formula of mercurous	s ion is:		
	a) Hg ⁺	b) Hg ₂ ⁺	c) Hg ₂ ²⁺	d) None of these
394.	Which pair consists only a	acidic oxides?		
	a) CrO_3 , Mn_2O_7	b) ZnO_2 , Al_2O_3	c) CaO, ZnO	d) Na_2O , Al_2O_3
395.	- 0 - ,	f the following metals invol	ves bessemerization?	, 2 2 3
	a) Fe	b) Ag	c) Al	d) Cu
396.	Nessler's reagent is:	, 0		
	a) KHgI ₄	b) K ₂ HgI ₄	c) K ₂ HgI ₄ + NaOH	d) KHgI ₄ + NaOH
397.		anide process is used in the		, 01
	a) Cu	b) Ag and Au	c) Fe	d) Cr
398.	Which is the chief ore of c	, ,	y-y	
	a) Galena	b) Copper pyrites	c) Sphalerite	d) Siderite
399.	Spiegeleisen is an alloy of:		·) ·[······	.,
0,,,	a) Fe and Mn	b) Fe, Mn and C	c) Fe, Mn and Cr	d) Fe and Cr
400.	,	(hydrated), the colourless		-,
100.	a) Cu ⁺	b) Cu ²⁺	c) Fe ²⁺	d) Mn ²⁺
401		oit positive oxidation states	,	uj Mi
101.	a) Their large size of the a		only. This is because of.	
	b) Their electropositive na			
	c) Their electronegative in			
	d) Their paramagnetic nat			
402	, .	oxidation number will act	25	
102.	a) An oxidizing agent	b) A base	c) An acid	d) None of these
102	The composition of bell m	•	c) All aciu	u) None of these
403.	a) Cu + Sn	b) Cu + Ni	c) Cu + Zn	d) Cu + Ag
404	The most correct stateme	•		u) Cu + Ag
404.		iit ioi ti alisitioii illetais is:		
	a) They possess low b.p.	offo at		
	b) They exhibit inert pair			
	c) They exhibit variable o			
405	d) They do not possess car			
405.	= =	trolytic refining of copper,	some metals present as im	purity settle as anode
	mud'.			
	These are	1.5 A J A	-) pl 1 g	D.C 1 A
	a) Fe and Ni	b) Ag and Au	c) Pb and Zn	d) Se and Ag

406. A compound of a metal i	on M^{x+} (Z = 24) has a spi	n only magnetic moment of	$\sqrt{15}$ Bohr Magnetons. The
number of unpaired elec	ctrons in the compound ar		
a) 2	b) 4	c) 5	d) 3
407. Lightest transition elem-	ent is:		
a) Fe	b) Sc	c) Os	d) Co
408. AuCl ₃ when heated in air	=		
a) Gold oxide	b) Gold perchlorate	c) Gold nitride	d) AuCl
409. White vitriol is:			
a) CuSO ₄ . 5H ₂ O	b) FeSO ₄ . 7H ₂ O	c) ZnSO ₄ . 7H ₂ O	d) NiSO ₄ . 5H ₂ O
410. The metal which liberate		H solution is:	\wedge
a) Zn	b) Cu	c) Ag	d) Fe
411. A yellow precipitate will	be obtained if $AgNO_3$ is a		
a) KIO ₃	b) KI	c) CHI ₃	d) CH ₂ I ₂
412. Which form of iron has l	owest percentage of carbo	n?	
a) Cast iron			
b) Wrought iron			
c) Steel			
d) All have same percen	tage		<i>y</i>
413. The element that does n	ot form a nitride is:		
a) Al	b) Mg	c) Ag	d) Ca
414. When dil. H ₂ SO ₄ is adde	d to aqueous solution of p	otassium chromate, yellow o	colour of solution turns to
orange colour. It indicat	es		
a) Chromate ions are re	duced.		
b) Chromate ions are ox	idised.	$\langle \lambda, \lambda' \rangle$	
c) Mono centric complex	x is converted into dicentr	ic complex.	
d) Oxygen gets removed			
415. Copper exhibits only $+2$	oxidation state in its stab	le compounds. Why?	
a) Copper is transition n			
	of copper are formed by ex		
c) Electron configuratio	n of copper in $+2$ state is [Ar] $3d^9 4s^0$.	
d) Copper gives coloured	d compounds in $+2$ state.		
416. In blast furnace the high	est temperature is in:		
a) Reduction zone	b) blug zone	c) Combustion zone	d) Fusion zone
417. Anhydrous ferric chloric	le is prepared by		
a) Dissolving $Fe(OH)_3$ in	n concentrated HCl.	b) Dissolving Fe(OH) ₃ in	ı dilute HCl.
c) Passing dry HCl over	heated iron scrap.	d) Passing dry Cl ₂ gas ov	er heated iron scrap.
418. Green vitriol is			
a) FeSO ₄ . 7H ₂ O	b) ZnSO ₄ . 7H ₂ O	c) CuSO ₄ .5H ₂ O	d) $CaSO_4.\frac{1}{2} H_2O$
			2 1120
419. Photographic films or pl			n au
a) Silver bromide	b) Silver oxide	c) Silver thiosulphate	d) Silver nitrate
420. During the extraction of	gold the following reaction	ons take place	
$Au + CN^- + H_2O \xrightarrow{O_2} [X]$			
[X] + Zn -	$\rightarrow [Y] + Au$		
X and Y are respectively	•		
a) $[Au(CN)_2]^-$ and $[Zn(C)]$	$(N)_6]^{4-}$	b) $[Au(CN)_4]^{2-}$ and $[Zn(CN)_4]^{2-}$	$(N)_4]^{2-}$
c) $[Au(CN)_4]^{3-}$ and $[Zn($	$(N)_4]^{2-}$	d) $[Au(CN)_2]^-$ and $[Zn(C)]$	$[N]_4]^{2-}$
421. Second series of transiti	· ==	- '	
a) Yttrium	b) Chromium	c) Zinc	d) Scandium
422. The electronic configura		-	-

	a) [Ne] $3s^23p^63d^44s^2$		b) [Ne] $3s^23p^63d^54s^1$	
	c) [Ne] $3s^23p^53d^54s^2$		d) [Ne] $3s^23p^53d^64s^1$	
423.	Which of the following be	longs to the actinoid series	of elements?	
	a) Y	b) Ta	c) U	d) Lu
424.	Which of the following sta	ntements is not true in rega	rd to transition elements?	
	a) All their ions are colour	rless		
	b) They show variable val	ency		
	c) They readily form com	plex compounds		
	d) Their ions contain part	ially filled d -elelctron level	S	
425.	Sterling silver:			
	a) Is an alloy of Ag + Cu			
	b) Contains 80% Ag $+ 20\%$	% Cu		
	c) Is used in jewellery			
	d) All of the above			
426.	The impurity of sulphur n	nakes the iron:		
	a) Fibrous	b) Red short	c) Cold short	d) Malleable
427.	In $Cu (Z = 29)$:		. C .	Y
	a) 13 electrons have spin	in one direction and 16 ele	ctrons in other direction	
	b) 14 electrons have spin	in one direction and 15 ele	ctrons in other direction	
	c) All the electrons have s	pin in one direction		
	d) None of the above			
428.	Which of the following ha	s the maximum number of	unpaired d -elelments?	
	a) Fe ²⁺	b) Cu ⁺	c) Zn	d) Ni ³⁺
429.	Zn cannot displace the fol	lowing ions from their aque	eous solutions:	
	a) Ag ⁺	b) Cu ²⁺	c) Fe ²⁺	d) Na ⁺
430.	The lanthanide contraction	n is responsible for the fac	that	
	a) Zr and Zn have the sam	e oxidation state	b) Zr and Hf have about th	ie same radius
	c) Zr and Nb have similar	oxidation state	d) Zr and Y have about the	e same radius
431.	Prussian blue is formed w	rhen:		
	a) Ferrous sulphate reacts			
	b) Ferric sulphate reacts v			
	c) Ferrous ammonium su	-		
	d) Ammonium sulphate re			
432.	On the extraction of iron,			
	a) CO	b) FeSiO ₃	c) MgSiO ₃	d) CaSiO ₃
433.		er by electrolysis, which is	incorrect?	
	a) Acidic solution of Cu(II	, ·		
	b) H ₃ 0 ⁺ ion is discharged			
	c) Anode is made of Impu	= =		
40.4	d) OH ⁻ is discharged at an			
434.	HgCl ₂ is reduced to Hg ₂ Cl			15 1777
405	a) CH ₃ COOH	b) CCl ₄	c) HCOOH	d) NH ₃
435.		compound that is both para	=	D W [G (ON)]
426	a) $K_2Cr_2O_7$	b) (NH ₄) ₂ [TiCl ₆]	c) VOSO ₄	d) $K_3[Cu(CN)_4]$
436.	Ferrous sulphate (FeSO ₄ .) C	12.14.1.1.1.
427	a) Vermillion	b) Glauber's salt	c) Green vitriol	d) Mohr's salt
43/.	=	does not take place in a bla		
	a) $CaCO_3 \rightarrow CaO + CO_2$	200	b) $CaO + SiO_2 \rightarrow CaSiO_3$	
120	c) $2Fe_2O_3 + 3C \rightarrow 4Fe +$	3CO ₂ e orbitals in inner transitio	d) $CO_2 + C \rightarrow 2CO$	
TJU.	THE HUMBEL OF HICOHIPIEU	c or bitais iii iiiiiti ti diisitio	11 CICIIICIICS 13.	

	a) 3	b) 4	c) 2	d) 1	
439.	The final step in the metall	lurgical extraction of Cu me	etal from Cu pyrites takes p	olace in a Bessemer	
	converter. The reaction taking place is:				
	a) $Cu_2S + O_2 \rightarrow 2Cu + SO$				
	b) $4Cu_2O + FeS \rightarrow 8Cu +$	_			
	c) $2Cu_2O + Cu_2S \rightarrow 6Cu +$	-			
	d) $Cu_2S + 2FeO \rightarrow 2CuO -$				
		last furnace involves the fo	llowing processes:		
	-	b) Reduction	c) Slag formation	d) All of these	
441.	The flux used in the smelti	•	-,		
		b) Magnesia	c) Silica	d) Coke	
	The magnetic moment of a	, ,	,		
		b) 1.87	c) 5.92	d) 2	
		ss, bronze and german silve	•		
		b) Mg	c) Al	d) Zn	
		not a member of $3d$ -transiti	1		
		b) Co	c) Au	d) Cu	
	The formula of azurite is	-,			
		b) 2CuCO ₃ . Cu(OH) ₂	c) CuCO ₃ . 2Cu(OH) ₂	d) $CuSO_4$. $Cu(OH)_2$	
	The formula of haematite i		1) 11 13 14 12	7 4 (-)2	
		b) Fe ₂ O ₃	c) FeCO ₃	d) FeS ₂	
		lue when treated with water	,	· y · - · <u>Z</u>	
		b) CuSO ₄ . 5H ₂ O	c) CoSO ₄	d) $Au_2(SO_4)_3$	
	Which metal does not forn	· · · · ·		7 2 473	
		b) Cu	c) Ag	d) Zn	
	Which of the following is c	•			
	a) Calomel is mercuric chlo	Y Company			
	b) Calomel is widely used a				
	c) Calomel is used medical	-			
	d) Calomel is freely soluble				
450.	The process used in obtain	ning metallic silver from arg	gentite is:		
	a) Fused mixture of Ag ₂ S a				
	b) Ag ₂ S is reduced with CO				
	c) Ag ₂ S is roasted to Ag ₂ O	which is reduced with C			
	d) Treating with NaCN solu	ution followed by metal dis	placement with zinc		
451.	Which one of the following	g pairs of substances on rea	ction will not evolve H ₂ ga	s?	
	a) Iron and H_2SO_4 (aq)				
	b) Iron and steam				
	c) Copper and HCl(g)				
	d) Sodium and ethyl alcoho	ol			
452.	Which statement about gro	oup 12 elements is wrong?			
	a) Zinc forms an alloy with	n copper			
	b) Zn ₂ ²⁺ is stable				
	c) Mercury gives compour	nds with $+1$ and $+2$ valenci	es		
	d) Hg is a liquid element				
453.	Which of the following is c	oated over iron articles to	protect iron from corrosion	n?	
	a) Paint	b) Zinc metal	c) Tin metal	d) All of these	
454.	The gas obtained by reacti	ons of K_4 Fe(CN) ₆ with con	c. H ₂ SO ₄ is		
	a) H ₂ S	b) CO	c) NO ₂	d) CO ₂	
455.	Blister copper is				

a) Impure Cu	b) Cu alloy	
c) Pure Cu d) Cu having 1% impurity		ourity
456. Effective magnetic moment of Sc ³⁺ ion is		
a) 1.73 b) 0	c) 5.92	d) 2.83
457. ZnS containing minute traces of MnS becomes:		
a) Deliquescent b) Phosphorescent	c) Hygroscopic	d) None of these
458. Platinum metal can be dissolved in:		
a) Hot concentrated hydrochloric acid		
b) Hot concentrated nitric acid		
c) Hot dilute sulphuric acid		
d) A mixture of hydrochloric and nitric acids		
459. Ruthenium carbonyl is:		
a) $Ru(CO)_4$ b) $Ru(CO)_5$	c) $Ru(CO)_8$	d) Ru(CO) ₆
$460. \ Preparation \ of looking \ mirrors involves the use$	of:	
a) Red lead		
b) Ammoniacal silver nitrate		
c) Ammoniacal AgNO ₃ +red lead		
d) Ammoniacal $AgNO_3$ +red lead + HCHO		O ,
461. In the dichromate dianion :		
a) 4 Cr—0 bonds are equivalent		
b) 6 Cr—0 bonds are equivalent		
c) all Cr—0 bonds are equivalent		
d) all Cr—O bonds are non-equivalent		
462. In the electrolytic purification of copper some g		D. W
a) Cathode b) Cathode mud	c) Anode mud	d) None of these
463. Percentage of gold in 21.6 carat gold is:	.) 10	1) 70
a) 21.6 b) 90	c) 10	d) 70
464. An explosion takes place when conc. H_2SO_4 is ac		
a) Mn ₂ O ₇ b) MnO ₂ 465. Which statement is not correct?	c) MnSO ₄	d) Mn_2O_3
 a) Fe(CO)₅ reacts with Br₂Cl₄ b) Carbonyl complexes are usually formed with 	transition motals	
c) All transition metals form mono metallic carb		
d) The decomposition of Ni(CO) ₄ to give Ni is us		ov Mond's process
466. Which is the common oxidation state of the first		
a) +2 b) +6	c) +8	d) +4
467. Which of the following is correct?	6) 10	uj i i
a) Duralumin: Al + Cu + Mg + Ag	b) German silver: Cu	+ Zn $+$ C
c) Gun metal: Cu + Zn + Sn	d) Solder: Pb + Al	7 ZH 7 G
468. As percentage of carbon increase in iron, its har		
a) Decreases b) Increases	c) Remains same	d) None of these
469. Which oxide of Mn is acidic in nature?	,	,
a) Mn0 b) Mn ₂ O ₇	c) Mn_2O_3	d) MnO ₂
470. Corrosive sublimate (HgCl ₂) can be used to dist		, <u>,</u>
a) Formic acid and acetic acid	b) Acetaldehyde and	butanone
c) Formaldehyde and propanone	d) All of the above	
471. KMnO ₄ in basic medium is used as		
a) Strong oxidising agent	b) Strong reducing a	gent
c) Strong hydrogenating agent	d) Poor reducing age	ent
472. d-block elements are arranged inof periodic t	able.	

	a) Three series	b) Six series	c) Two series	d) Four series
473	. Which one of the following	= =	=	
	a) Copper	b) Iron	c) Aluminium	d) Magnesium
474	. The spin only magnetic m			
	a) 3 BM	b) 6 BM	c) 4 BM	d) 5 BM
475	. Coinage alloy has the com	=		
	a) Ag + Cu + Ni	b) $Au + Ag + Cu$	c) $Au + Zn + Ag$	d) Ag + Fe + Cu
476	. Which of the following is ι		=	
	a) HgCl ₂	b) ZnCl ₂	c) Hg_2Cl_2	d) ZnO
477	. Rusting of iron in moist ai	r involves:		()
	a) Loss of electrons by Fe			
	b) Gain of electrons by Fe			
	c) Neither gain nor loss of	electrons		
	d) Hydration of Fe			
478		ed compound with acetic a	cid and potassium ferrocya	nide is obtained from a salt
	solution containing:			
	a) Cu	b) Cd	c) Sn	d) Hg
479	. What is the oxidation state			
	a) +3	b) 0	c) +2	d) +1
480	. Chrome green is			
	a) Chromium nitrate	b) Chromium sulphate	c) Chromium oxide	d) Chromium chloride
481	. Which lanthanoid compou	and is used as a most power	rful liquid lasers after disso	olving it in selenium
	oxychloride?			
	a) Cerium oxide	b) Neodymium oxide	c) Promethium sulphate	•
482	. A transition metal ion exis	ts in its highest oxidation s		
	a) A chelating agent		b) A central metal in a coo	ordination compound
	c) An oxidising agent		d) A reducing agent	
483	. For d -block elements the f	first ionisation potential is		
	a) $Zn > Fe > Cu > Cr$		b) $Sc = Ti < V = Cr$	
	c) $Zn < Cu < Ni < Co$		d) $V > Cr > Mn > Fe$	
484	. Metallic bond is stronger i		kali and alkaline earth met	als because of:
	a) More number of electro	ons including d -electrons		
	b) Large size of the atoms			
	c) Paramagnetism	. 7		
	d) Diamagnetism	,		
485	. Automobile engine blocks	are made up of:		
	a) Stainless steel			
	b) Nickel-chromium steel			
	c) Cast iron			
	d) Wrought iron			
486	. Silver amalgam is used in:			
	a) Silvering of mirror	b) Filling of teeth	c) Both (a) and (b)	d) None of these
487	. Which statement is not co	rrect?		
	a) Potassium dichromate	oxidises a secondary alcoh	ol into a ketone	
	b) Potassium permanagna	te is a weaker oxidising su	ıbstance than potassium di	chromate
		te is a stronger oxidizing s	ubstance	
	d) All of the above stateme			
488	. The pair of metals which o	lissolve in NaOH(aq .) is:		
	a) Al, Cu	b) Zn, Cd	c) Pb, Sn	d) Zn, Al
489	. The catalytic activity of the	e transition metals and the	ir compounds is ascribed t	o their

	a) Magnetic behavior		
	b) Chemical reactivity		
	c) Ability to adopt multiple oxidation states and their	r complexing ability	
	d) Unfilled d -orbitals		
490.	Acidified potassium dichromate is treated with hydr	ogen sulphide. In the react	ion the oxidation number of
	chromium:		
	a) Increases from +3 to +6		
	b) Decreases from +6 to +3		
	c) Remains unchanged		
	d) Decreases from +6 to +2		
491.	Zinc reacts with conc. H ₂ SO ₄ to produce:		
	a) ZnSO ₄ b) ZnCO ₃	c) Zn	d) None of these
492.	In which metal's metallurgical process carbon is use	d for reduction of metal ox	ides?
	a) Na b) Ag	c) Fe	d) Hg
493.	A metal which is 'not' affected by conc. H_2SO_4 , HNO_3	or alkalies forms a compo	and X. This compound X
	can be used to give a complex which finds its applica		
	a) Au b) Ag	c) Hg	d) Cu
494.	Lithopone, a white pigment, consists of:	10	
	a) Al ₂ O ₃ and CaCO ₃ b) BaS and PbSO ₄	c) ZnS and BaSO ₄	d) PbS and MgO
495.	The aqueous solution containing which one of the fo	llowing ions will be colourl	ess?
	a) Ti ³⁺ b) Mn ²⁺	c) Sc ³⁺	d) Fe ²⁺
496.	Among the lanthanoids which was obtained by synth	netic methods?	•
	a) Lu b) Pm	c) Pr	d) Gd
497.	The tendency to show complex formation is maximu	m in:	•
	a) s-block elements b) p-block elements	c) <i>d</i> -block elements	d) f-block elements
498.	5 <i>f</i> -level is successively filled up in:		
	a) Lanthanoids b) Actinoids	c) Rare gases	d) Transition elements
499.	Potassium manganate (K_2MnO_4) is formed when:		
	a) Cl ₂ is passed into an aqueous KMnO ₄ solution		
	b) MnO ₂ is fused with KOH in air		
	c) Formaldehyde reacts with KMnO ₄ in presence of	strong alkali	
	d) KMnO ₄ reacts with concentrated H ₂ SO ₄	_	
500.	The sandstone in some iron ores is removed by:		
	a) Carbon filters b) Compressed air	c) Limestone	d) Sulphuric acid
501.	Copper sulphate solution reacts with KCN and gives		
	a) K ₃ [Cu(CN) ₄] b) CuCN	c) Cu(CN) ₂	d) $K_2[Cu(CN)_4]$
502.	Which of the following ions has the highest magnetic	c moment?	
	a) Ti ³⁺ b) Sc ³⁺	c) Mn ²⁺	d) Zn ²⁺
503.	The colour of Mohr's salt, $(NH_4)_2SO_4Fe(SO_4)$. $6H_2O_3$	is:	
	a) White b) Green	c) Violet	d) Blue
504.	Of the ions Zn ²⁺ , Ni ²⁺ and Cr ³⁺ , (atomic number of Z	Zn=30, Ni=28, Cr=24)	
	a) All three are coloured		
	b) All three are colourless		
	c) Only ${\rm Zn^{2+}}$ is colourless and ${\rm Ni^{2+}}$ and ${\rm Cr^{3+}}$ are colo	oured	
	d) Only Ni ²⁺ is coloured and Zn ²⁺ and Cr ³⁺ are color	urless	
505.	A reagent that can separate Fe from Zn is:		
	a) NaOH b) HCl	c) H ₂ S	d) NaNO ₂
506.	KMnO ₄ in basic medium is reduced to		
	a) K ₂ MnO ₄ b) MnO ₂	c) Mn(OH) ₂	d) Mn ²⁺
507	Which of the following elements does not belong to t	the first transition series?	

	a) Ag	b) Fe	c) Cu	d) V
508.	, ,	omplexes in their zero oxida		•
	a) Mn ₂ (CO) ₁₀	b) [Cu(NH ₃) ₄]Cl ₂	c) Zn ₂ [Fe(CN) ₆]	d) [Ag(NH ₃) ₂]OH
509.	· · - - •	g properties would you not		-)[8(3)2]
	a) Malleability	9 F F	· · · · · · · · · · · · · · · · · · ·	
	b) High thermal conductiv	vitv		
	c) Low electrical conduct	=		
	d) Ductility			
510.	. Calomel is:			
010.	a) Hg ₂ Cl ₂ and Hg	b) HgCl ₂	c) Hg + HgCl ₂	d) Hg ₂ Cl ₂
511.	, 51 1	actions represents develop	, , , ,	w)822
011.	a) $AgNO_3 + NaBr \rightarrow AgB$		g p g. up) .	
	b) AgBr + $2NH_3 \rightarrow [Ag(N_3)]$			A Y
	c) AgBr + $2Na_2S_2O_3 \rightarrow 1$	*· - -		
	d) $C_6H_4(OH)_2 + 2AgBr^x -$	· · - ·		
512.	Extraction for zinc from z			
012	a) Electrolytic reduction	me bremde is demeved by		
	b) Roasting followed by re	eduction with carbon	4/13	
		eduction with another meta	al	
	d) Roasting followed by s			
513.	. Chromium compound use			
010	a) Cr_2O_3	b) CrO ₂ Cl ₂	c) CrCl ₃	d) K ₂ SO ₄ . Cr ₂ (SO ₄) ₃ . 24H
514.	1.5×12^{-3} FeSO ₄ . (NH ₄) ₂ SO ₄ . 6H ₂ O	·	0) 0.0.3	w) 112004. 012 (004)3. 2 111
011	a) Green salt	b) Glauber's salt	c) Mohr's salt	d) Alum
515.	_	KOH, a coloured compound		•
010	a) K_2MnO_4 , purple colour		c) Mn ₂ O ₃ , brown	d) Mn ₃ O ₄ , black
516.	. Anhydrous $CuCl_2$ and CuF		0) 1111/203, 0101111	u) 11113 0 4) black
	a) Monomer	b) Dimer	c) Trimer	d) polymer
517.	•	the metal used to recover	•	
	a) Na	b) Ag	c) Hg	d) Fe
518.		KOH, a coloured compound		=
010.	a) K ₂ MnO ₄ , purple colour	•	b) Mn ₂ O ₃ , brown	10.10.0010.01.10
	c) Mn ₂ O ₄ , black		d) KMnO ₄ , purple	
519.		oortant member of the lantl	,	wing statements about
01).	cerium is incorrect?			
		state of cerium are +3 and	1+4.	
		of cerium is more stable th		
	•	of cerium is not known in		
	d) Cerium (IV) acts as an			
520.	. Which metal is used for fi	= =		
	a) Pt	b) Fe	c) W	d) Cu
521.		ole valency like d -block elei		u)
	a) It is low melting	· · · · · · · · · · · · · · · · · ·		
	b) <i>d</i> -orbital is complete			
	c) It is a soft metal			
	•	ent in the outermost orbit		
522.	. In haemoglobin the iron s			
- .	a) +2	b) +3	c) +1	d) +4
523.	•	sed for a mineral which shi		<i>,</i> ·
	a) Iron pyrite	b) Copper glance	c) Cinnabar	d) Cadmium sulphide
524.		$_{1}SO_{4}$ and $NH_{4}OH$ gives a de		,
	-		•	

	a) Cuprammonium sulpha	te		
	b) Cuprammonium hydrox			
	c) Sodium hexametaphosp			
	d) None of the above			
525.	Blow holes of steel are ren	noved by adding:		
	a) C	b) Ni	c) Sand	d) Spiegeleisen
526.	A mixture of TiO ₂ and BaS	•		<i>y</i> 1 0
	a) Titanox	b) Lithopone	c) White pigment	d) None of these
527.	Which of the following has	•	, 10	
	a) Cr	b) Ti	c) Fe	d) Co
528.	Which group of metals is k	,		
	a) Fe, Co, Ni	b) Ag, Au, Cu	c) Zn, Cd, Hg	d) Ru, Rh, Pd
529.	The compound ZnFe ₂ O ₄ is		, , , ,	A . Y
	a) A normal spinel compo		b) Interstitial compound	
	c) Coordination compound		d) Double salt compound	
530.	Iron exhibits +2 and +3 or			out iron is incorrect?
			the corresponding ferric c	
		-	esponding ferric compound	-
	c) Ferrous compounds are			
		asic in nature than the ferr	-	1
531.	Iron is manufactured from			
	a) Haematite	b) Cryolite	c) Bauxite	d) Chalcopyrite
532.	After partial roasting the s	* *	duced by:	, ,,
	-	b) Electrolysis	c) Self reduction	d) Cyanide process
533.	The bonds presents in the	•		, , ,
	a) Four equivalent Cr— 0		>	
	b) Six equivalent Cr — 0 b			
	c) Six equivalent Cr — 0 b			
	•			
5 04	d) Six equivalent Cr — 0 b			
534.	Cu ²⁺ ions would be reduce			
- 2-		b) KCl solution	c) K ₂ CO ₃ solution	d) K ₂ SO ₄ solution
535.	Which one of the following			D.G. 14
- 26	a) Silicon	b) Oxygen	c) Sulphur	d) Graphite
536.	Percentage of silver in Ger		3.400/	1) 77
- 2-		b) 2.5%	c) 10%	d) Zero percent
53/.	Oxford process is used in 6) D:	15 57
- 20	a) Fe	b) Co	c) Pt	d) Ni
538.	One of the product formed			D C O C
500		b) $Cr_2(SO_4)_3$	c) Cr_2O_3	d) CrO ₄ Cl ₂
539.	Addition of $K_4[Fe(CN)_6]$ so			D.M. C.1
5.40		b) Ferri – ferrocyanide	c) Ferri-ferricyanide	d) None of these
540.	The reaction between copp			D C +:
	a) SO ₂	b) SO ₃	c) H ₂	d) Cu ⁺ ions
541.	Red hot steel rod on sudde	_		15 791
		b) Hard and brittle	c) Tough and ductile	d) Fibrous
542.	Which of the following is o			
- . ^	,	b) Na[AuCl ₂]	c) Na[AuCl ₃]	d) Na[AuCl ₄]
543.	Lanthanum is grouped wit	=	e	
	a) It has partially filled f -c			
	b) It has both partially fille	ed f and a -orbitals		

	c) The properties of lanthant	um are very similar to th	e elements of 4 <i>f</i> -block	
	d) It is just before Ce in the P	eriodic Table		
544.	The point of dissimilarity bet	ween lanthanides and a	ctinides is	
;	a) Three outermost shells are	e partially filled	b) They show oxidation sta	ate of +3 (common)
	c) They are called inner trans	sition elements	d) They are radioactive in	nature
545.	Which of the following is call	ed white vitriol?		
	a) ZnCl ₂ b)	$MgSO_4.7H_2O$	c) $Al_2(SO_4)_3$	d) ZnSO ₄ . 7H ₂ O
546.	Which metal is purified by Pa	attinson's process?		
		Au	c) Fe	d) Sb
547.	Which of the following have l	highest melting points?		
;	a) p-block elements b)	s- block elements	c) <i>d</i> -block elements	d) None of the above
548.	Ferric oxide in furnace is red	uced by:		
		H_2	c) CO	d) CO ₂
549.	Which statement is incorrect	-	,	
	a) Iron belongs to $3d$ -transit	ion series of the periodic	table	
	b) Iron belongs to f-block of	-		
	c) Iron belongs to first transi		C.	
	d) Iron belongs to group VIII			
	In India, iron is obtained from	•		
		Azurite	c) Haematite	d) Cryolite
	The Fe ²⁺ ion is:			,,
		Light green	c) Very dark green	d) Yellow
	Which ion in aqueous mediu	0 0	of very daringreen	aj renovi
	-	Cr ³⁺	c) MnO ₄	d) MnO ₄ ²⁻
	The compound widely used i			uj mio ₄
		CuSO ₄	A P	d) HgCl ₂
	Which statement is incorrect	•	·	uj iigoi ₂
	a) All elements form complex		11.5	
	b) All are paramagnetic	xes		
	c) All show variable valency	(1)		
	d) All are not coloured ions The magnetic moment of a tr	vangition motal ion is 2.0'	7 PM. The number of uppei	rad alactrone procent in it
	The magnetic moment of a tr	alisition metal lon is 5.0	7 DM. The number of unpar	red electrons present in n
	is a) 2 b)	2	a) 1	4) E
	,		c) 4	d) 5
	Which of the following is a la		a) Th	۹) ۲.۰
	,	Rh	c) Th	d) Lu
	The flux used in soldering is:		-) C40	J) N C+l
		ZnO	c) CdO	d) None of these
	Ferric sulphate on heating given) (()	D C 1
		-		d) S only
_	The raw materials fed into the	ie blast furnace for makii	ng iron are:	
	a) FeO, CaCO ₃ and coke			
	b) Fe ₂ O ₃ , CaO and coke			
	c) Fe_2O_3 , $CaCO_3$ and coke			
	d) Fe_3O_4 , $Ca(OH)_2$ and coke			
	Which statement about corro		ect!	
	a) It is prepared by heating n			
	b) It reduces stannic chloride			
	c) It oxidizes stannous chlori	ide		
	d) It sublimes readily			

561. Chalcopyrites is an ore of			
a) Gallium	b) Copper	c) Calcium	d) Magnesium
562. Siderite is an ore of			
a) Cu	b) Al	c) Ag	d) Fe
563. Which one of the followin	ig metals, is extracted on sn	nelting of its ore in blast fur	rnace?
a) Iron	b) Sodium	c) Potassium	d) Magnesium
564. Chromium is used in mak	ing:		
a) Bronze	b) Brass	c) Stainless steel	d) Electrodes
565. Which lanthanide compo	und is used as a pigment?		
a) CeO ₂	b) Ce(OH) ₃	c) $Lu(OH)_3$	d) $Tb(OH)_3$
566. In the extraction of Zn, th	e formation of blue flame is	- · · · · · · ·	
a) ZnO	b) C	c) Zn	d) CO
567. Among the following the	coloured compound is		, Y
a) CuCl	b) K ₃ [Cu(CN) ₄]	c) CuF ₂	d) [Cu(CH ₃ CN) ₄]BF ₄
568. What is the correct order		-	7
	b) $V^{2+} > Cr^{2+} > Mn^{2+}$	c) $Mn^{2+} > Cr^{2+} > V^{2+}$	d) $Cr^{2+} > V^{2+} > Mn^{2+}$
569. Stainless steel contains:	,	Ĉ.	
a) 50%Cr	b) 2.5%Cr	c) 14%Cr	d) 2%Cr
570. KMnO ₄ (acidic/alkaline)	=	0) 11/001	u) = 7001
a) Mohr salt	b) Oxalic acid	c) Benzene	d) Propene
571. A solution of $Cr(NO_3)_2$ slo			
of:	owly turns green when con	centrated from is added to fe	. It is due to the formation
a) CrCl ₃	b) Cr ₂ O ₃	c) CrO ₄ ²⁻	d) Chloro complexes
572. Which is not an ore of gol	, = 0	c) dro ₄	a) amoro complexes
a) Syvanite	b) Calaverite	c) Covellite	d) Bismuth aurite
573. Silver iodide is used to pr		- V	a) Distillatif darite
a) It is easily prepared	oduce artificial raili becaus		
b) Its structure is ice-like			
c) It can easily be sprayed	d at high altitude		
d) It is insoluble in rain w	-		
574. The chemical formula of a			
	b) CuSO ₄ . 3Cu(OH) ₂	c) Cu(OH) ₂ . CuCO ₃	d) CuFeS ₂
575. The magnetic moment (ir			uj cures ₂
a) Zero	b) 1.73		d) 2.07
576. Zinc reacts with very dilu	,	c) 2.84	d) 3.87
		a) NO	9) II
a) NO	b) NH ₄ NO ₃	c) NO ₂	d) H ₂
577. Which of the following ma		a) C2+	4) C+
a) Fe ³⁺	b) Cr ³⁺	c) Cu ²⁺	d) Cu ⁺
578. Fe ore is concentrated by) TI	D.D
a) Magnetic treatment	b) Froth floatation	c) Electrolysis	d) Roasting
579. In the extraction of coppe	er, the metal formed in the I	Bessemer's converter is due	e to the reaction:
a) $Cu_2S \rightarrow 2Cu + S$			
b) $2Cu_2O \rightarrow 4Cu + O_2$			
c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2C$	=		
d) $2Cu_2O + Cu_2S \rightarrow 6Cu$	_		
580. In the case of d -block elements $\frac{1}{2}$			
	mate shells are incomplete		
	prepenultimate shells are in	ncomplete	
c) Outermost shell is inco	-		
d) Innermost shell is inco	mplete		

581. In electrorefining of o	copper, some gold is depos	ited as	
a) Cathode	b) Electrode	c) Cathode mud	d) Anode mud
582. What effect is noticed	d on shaking dilute sulphur	ric acid with a small quantity of	anhydrous copper
sulphate?			
a) The white solid dis	ssolves to form a colourles	s solution	
b) The white solid dis	ssolves to form a green sol	ution	
c) The white solid tu	rns blue but does not disso	lve	
	ssolves to form a blue solut		
•		y one among the following con	npounds:
a) $[Cu(NH_3)_4]^{2+}$	b) [Ni(CN) ₄] ²⁻	c) TiCl ₄	d) [CoCl ₆] ⁴⁻
, , , , ,		highest oxidation states in the) L 01
like:		5	
a) C	b) S	c) S and P	d) F and O
•		me group of qualitative analysi	
a) Carbonates solubl		&	3,5
b) Nitrates	3		
c) Insoluble chloride	S		
d) Same type of color			>
586. $K_2Cr_2O_7$ on strong he	-		
a) K_2CrO_4	b) Cr ₂ O ₃	c) 0 ₂	d) All of these
587. KMnO ₄ on heating ab	, - 0	c) 0 ₂	a) All of these
		10 a) MnO 10	d) None of the above
	InO_2 b) $K_2MnO_4 + MnO_2$		d) None of the above
		nolecule of $FeSO_4(NH_4)_2SO_4$. 6	
a) 4	b) 5	c) 3	d) 6
	· -	mation of the following compo	
a) Na_2ZnO_2	b) Na ₂ CO ₃	c) NaZnO ₂	d) None of these
590. The reason for the st			
a) Half-filled 4f suns			
b) Completely filled 4			
,	eral electronic configuratio	on of noble gases	
d) Empty 4f subshell			
591. Rio Tinto process is u			
a) Cu	b) Ag	c) Al	d) Au
	l Fe used in permanent mag		
a) Invar	b) Nichrome	c) Alnico	d) None of these
593. Bordeaux mixture co			
a) FeSO ₄	b) CuSO ₄	c) $Cu(NO_3)_2$	d) AgNO ₃
594. Larger number of oxi	idation states are exhibited	l by the actinoides than those b	y the lanthanoides, the main
reason being			
a) $4f$ - orbitals more	diffused than the 5 f -orbita	als	
b) Lesser energy diffe	erence between $5f$ and $6d$	than between $4f$ and $5d$ -orbit	als
c) More energy differ	rence between $5f$ and $6d$ the	han between $4f$ and $5d$ -orbita	ls.
d) More reactive natu	ure of the actinoides than t	he lanthanoides	
595. F ₂ is formed by react	ing K ₂ MnF ₆ with		
a) MnF ₄	b) SbF ₅	c) KSbF ₆	d) MnF ₃
596. A reducing in atomic	size with increase in atom	ic number is a characteristic of	elements of
a) f-block	b) <i>d</i> -block	c) High atomic masses	d) Radioactive series
597. Which method is bas	ed on distribution law?		
a) Mond's process	b) Parkes process	c) Cupellation process	d) Poling process
598. Schweitzer's reagent	used for dissolving cellulo	se in the manufacture of artific	ial silk is:

	c) On boiling a solution ha	aving K^+ , Ca^{2+} , HCO_3^- ions,	we get a precipitate of K_2C	$a(CO_3)_2$
	d) From a mixed precipita	ate of AgCl and AgI, ammon	ia solution dissolves only A	.gCl
615	. The element showing oxid	dation states of $+2$, $+3$, $+4$, +6 and +7 is:	
	a) Cr	b) Mn	c) Co	d) V
616	. When H ₂ S is passed throu	ıgh HgCl ₂ we get:		
	a) HgS	b) $HgS + Hg_2S$	c) $Hg_2S + Hg$	d) Hg ₂ S
617	. Which gas is absorbed by	CuCl?		
	a) CO ₂	b) CO	c) SO ₂	d) SO ₃
618	. Standard reduction poten	tial of most of the transitio	n elements is generally:	
	a) Negative	b) Positive	c) Zero	d) None of these
619	. Auric chloride on reaction	n with ferrous sulphate cha	nges to:	
	a) Au	b) AuCl	c) Au ₂ SO ₄	d) $\operatorname{Au}_3(\operatorname{SO}_4)_2$
620	. Which of the following is	deliquescent?	, <u> </u>	
	a) ZnCl ₂	b) Hg ₂ Cl ₂	c) HgCl ₂	d) CdCl ₂
621	. Which of the following is	, 02 -	, , ,	
	a) Duralumin : Al + Cu + 1		b) German silver : Cu + Zr	1 + C
	c) Gun metal : CU + Zn +		d) Solder : Pb + Al	
622			rids. It will react with water	to form hydrogen only
			steam. The metal is probab	
	a) Iron	b) Potassium	c) Copper	d) Mercury
623	. Calomel reacts with amm			,
	a) Hg(NH ₂)Cl	b) H ₂ N—Hg—Hg—Cl	c) Hg ₂ O	d) HgO
624	. An example of double salt	=	, 62	, 0
	a) Bleaching powder	b) K ₄ [Fe(CN) ₆]	с) Нуро	d) Potash alum
625	. Bronze is a mixture of	-) 11 ()01	J. J.	.,
	a) Pb + Sn	b) Cu + Sn	c) Cu + Zn	d) Pb + Zn
626	. The element present in gu		yo, o ,	.,
	a) Co	b) Cu	c) Sc	d) Ti
627	=		s covered with protective la	
0_,	a) $Fe(NO_3)_3$	b) Fe ₃ O ₄	c) FeO	d) Fe ₂ O ₃
628	. Thermite process is used		0) 100	w) 1 0 2 0 3
0_0	a) Cr_2O_3	b) Al ₂ O ₃	c) PbO ₂	d) CuO
629			, <u>-</u>	copper pyrites is composed
0_,	mainly of:	are officially process in the	encruetion of copper from	copper pyrices is composed
	a) Cu ₂ S	b) FeSiO ₃	c) CuSiO ₃	d) SiO ₂
630	. The mineral from which c	, ,	of dubios	u) 510 <u>/</u>
	a) Galena	b) Pyrite	c) Malachite	d) Chalcopyrite
631	. Metal oxides which decon		of Flataonico	a) dialeopylite
001	a) ZnO	b) CuO	c) Al ₂ O ₃	d) HgO
632	. The correct formula for di			a) ligo
002	a) [Ag, (NH ₃)]Cl	b) [Ag, (NH ₃) ₂]Cl	c) [Ag, (NH ₂) ₂]Cl	d) [Ag, (NH ₄) ₂]Cl
633	. Which metal is used to ad		0) [116] (11112)2]01	a) [118) (11114)2] O1
000	a) Cu	b) Ag	c) Ni	d) Zn
634	. On igniting Fe_2O_3 at 1400		•	u) 211
001	a) Fe_2O_3 melt	b) FeO	c) Fe ₂ O ₃	d) Metallic iron
635	. Cosmetic powders and zir	=	0) 10203	a) Fretaine from
555	a) ZnCl ₂	b) ZnO	c) ZnCO ₃	d) ZnSO ₄
636		-	-	s of Na_2O_2 and filtered. The
200	materials obtained are:	4,2(004)3 and on one	10 House Willi Chees	
	a) A colourless filtrate and	d a green residue		
	, ai i i i i i i i i i i i i i			

		green residue		
c) A yellov	v filtrate and a	brown residue		
		brown residue		
637. A transitio	n element X h	as the configuration [Ar]d	4 in its $+3$ oxidation state.	Its atomic number is
a) 25		b) 26	c) 22	d) 19
638. The carbo				
a) Cast iro	n is in betwee	n that of steel and wrough	nt iron	
b) Pig iron	is in between	that of steel and wrought	iron	
c) Steel is	in between tha	at of cast iron and wrough	t iron	
d) Wrough	t iron is in bet	tween that of steel and cas	st iron	
639. If a compo	und absorbs v	iolet colour from light, it v	will be :	
a) Yellow		b) Orange	c) Blue	d) Green
640. Which of t	he two have al	most similar size?		
a) ₂₂ Ti an	d ₄₀ Zr	b) $_{41}$ Nb and $_{73}$ Ta	c) ₃₉ Y and ₅₇ La	d) ₂₀ Ca and ₃₁ Ir
641. A white pr	ecipitate is for	med on adding KI to CuSO	$ ho_4$ solution. It is of	
a) Cu ₂ I ₂		b) CuI ₂	c) Cu ₂ S	d) Cu ₂ SO ₄
642. Which of t	he following is	s coloured compound?		Y
a) CuF ₂		b) CuI	c) NaCl	d) MgCl ₂
643. Addition o	f NaOH on Zn ²	$^{2+}$ ion gives a white ppt. w	hich on adding excess of N	aOH dissolves. In this solution
Zn exists i	ı:			
a) Cationio	part	b) Anionic part	c) Both (a) and (b)	d) None of these
644. MnO ₄ read	cts with bromi	de ion in alkaline medium	to give	
a) MnBr ₄		b) MnOBr ₂	c) MnO_2 , BrO_3^-	d) MnO, BrO
645. Cyanide pı	ocess is used	to extraction of	$G_{\lambda}X^{\lambda}$	
a) Ag		b) Ni	c) Pt	d) Zn
646. Which of t	he following w	veights less when weighte	d in magnetic field?	
a) ScCl ₃		b) FeCl ₃	c) TiCl ₃	d) VCl ₃
647. The proces	ss of nitriding	used in the treatment of s	teel is:	
a) Heating	steel in an atr	nosphere of ammonia		
b) Heating	steel to a brig	ht redness and then cooli	ng	
c) Heating	steel to bright	t redness and then cooling	g by plunging in air	
d) None of	the above			
648. Duralumir	ium is an alloy	y contains:		
a) Mg + Al		()		
b) Mg + Cı	1 + Al + Mn +	Si		
c) Mg + Cı	1			
d) Cu + Al				
649. Gun metal	is			
a) Cu + Zn		b) $Cu + Sn + Zn$	c) Cu + Sn	d) Zn + Sn
650. The tempe	ring of steel m	nakes it:		
a) Hard		b) Soft	c) Heavy	d) Brittle
651. Copper su	phate solution	n reacts with KCN to give		
a) CuCN		b) Cu(CN) ₂	c) $K_3[Cu(CN)_4]$	d) $K_2[Cu(CN)_4]$
652. The metall	ic oxide which	n impart purple colour to p	oottery is	
a) Copper	oxide	b) Chromium oxide	c) Lead oxide	d) Manganese oxide
653. Formation	ofinterstitial	compounds makes the tra	ansition metal:	
a) More so		b) More ductile	c) More metallic	d) More brittle
654. The pures		by		
=	ytic refining		b) Zone refining	
c) The van	- Arkel metho	d	d) The Mond process	

655. Which of the following ions	-	of 5.93 BM?	
(At. no. $V=23$, $Cr=24$, $Mn=$	•		
	b) Fe ²⁺	c) Cr ²⁺	d) V ³⁺
656. $K_2Cr_2O_7 \xrightarrow{\Delta} K_2CrO_4 + O_2 +$	X		
In the above reaction X is			
, ,	b) Cr ₂ O ₇	c) Cr_2O_3	d) CrO ₅
657. Soft and pliable steel is obta			
, 1 0	b) Nitriding	c) Annealing	d) None of these
658. The highest magnetic mom	= = = = = = = = = = = = = = = = = = =		
a) $3d^2$	b) 3 <i>d</i> ⁷	c) $3d^5$	d) 3d ⁹
659. Which substance can be us	ed in the preparation of m	naking ink?	
a) Ag	b) AgNO ₃	c) AgBr	d) PbCO ₃ Pb(OH) ₂
660. Which of the following com	ipounds volatilises on hea	ting?	4
a) MgCl ₂	b) HgCl ₂	c) CaCl ₂	d) FeCl ₃
661. Identify the statement which	ch is not correct regarding	g copper sulphate	
a) It reacts with NaOH and	glucose to give Cu ₂ O	b) It gives CuO on strong l	neating in air
c) It reacts with KCl to give	e Cu ₂ Cl ₂	d) It reacts with KI to give	iodine
662. In solid CuSO ₄ . 5H ₂ O, coppe	er is coordinated to:		
a) 4 water molecules	b) 5 water molecules	c) 1 sulphate molecule	d) 1 water molecule
663. The grey cast iron contains	:		
	b) Silicon carbide	c) Silicon dioxide	d) Graphite
664. When excess of sodium thic			_
However, when dil. Na ₂ S ₂ C	=	_	_
finally blac ppt. of Y is obta			
a) X is Ag_2S and Y is $Na_3[A]$	<i>A</i> =		
b) X is Na ₃ [Ag(S ₂ O ₃) ₂] and			
c) X is $Ag_2S_2O_3$ and Y is Ag			
d) X is $Ag_2S_2O_3$ and Y is Na	· -		
665. Which of the following is an			
_	b) MnO ₂	c) Mn ₂ O ₇	d) MnO
666. A developer used in photog	7	c) mi207	d) Milo
	b) A weak base	c) A mild reducing agent	d) An oxidizing agent
667. Potassium permanganate a		,	, , , , , , , , , , , , , , , , , , , ,
$KMnO_4$ in the two condition		ne and actuic media. The m	nai products formed from
a) MnO^{2-} and Mn^{3+}	•	c) Mn ²⁺ and Mn ³⁺	d) MnO and Mn2+
	•		d) MnO ₂ and Mn ²⁺
668. The general electronic conf	_		J) Name of the con-
	b) $(n-1)d^{1-10} ns^1$	c) $(n-1)d^{1-10}$ ns^{0-2}	d) None of these
669. Mohr's salt is a:			
The state of the s	b) Acid salt	c) Basic salt	d) Double salt
670. Gun metal is an alloy of:			
	=	c) Cu, Zn and Ni	d) Cu and Sn
671. A metal gives two chlorides	-	= =	nd ' <i>B</i> ' gives white. With KI
'B' gives a red precipitate s			
a) HgCl ₂ and Hg ₂ Cl ₂	b) Hg_2Cl_2 and $HgCl_2$	c) HgCl ₂ and ZnCl ₂	d) ZnCl ₂ and HgCl ₂
672. Which of the following tran		_	
,	b) Ti ³⁺	c) Cu ³⁺	d) Zn ²⁺
673. In comparison to ferrous sa	alts, ferric salts are:		
a) More stable	b) Less stable	c) Equally stable	d) None of these
674. Fool's gold is			
a) CuFeS ₂	b) FeS ₂	c) CuS ₂	d) Cu ₂ O

675	. The material used for the	lining of Bessemer's conve	erter in the extraction of co	pper is:
	a) Silica	b) Lime	c) Iron	d) Cu
676	. Articles made of copper a	and bronze slowly tarnish in	n air and turn green. The gr	een colour is due to the
	formation of:			
	a) Copper oxide			
	b) Copper sulphide			
	c) Copper oxalate			
	d) Basic copper carbonat	e		
677	-	atements concerning transi	ition elements is false?	
	a) They are all metals.			
		olex coordination compound		
	· · · · · · · · · · · · · ·	g their ions are mostly color		
		ridation states always differ	ring by units of two.	
678	. Among Sc(III), Ti(IV), Pd	(II) and Cu(II) ions		
	a) All are paramagnetic			
	b) All are diamagnetic			
		amagnetic and Pd(II), Cu(II	-	
		magnetic and Pd(II), Cu(II)	are paramagnetic	7
679	. Nessler's reagent is			N. W. W. W. WOW
	a) K ₂ HgI ₄	b) $K_2HgI_4 + KOH$	c) $K_2HgI_4 + Hg$	d) $K_2HgI_2 + KOH$
680		noment of Fe ²⁺ ion (in BM)		12.6
604	a) 4	b) 7	c) 5	d) 6
681	-	not correct about transition		
	a) Their compounds are g	= -	b) They can form ionic or	-
(02	c) Their melting and boil		d) They do not exhibit var	-
682		when limestone is added to		
602	a) Slag	b) Gangue	c) Metallic calcium	d) Calcium carbonate
003	. KI and $CuSO_4$ solutions o	b) $Cu_2I_2 + I_2 + K_2SO_4$	c) $CuI_2 + K_2SO_4$	d) $CuI_2 + I_2 + K_2SO_4$
684	a) $Cu_2I_2 + K_2SO_4$. Which one of the followin		$C_1 Cui_2 + K_2 SO_4$	$u_1 \cup u_1 \cup u_2 + u_2 \cup u_4$
004		ure is removed from the or	0	
	, ,	ilmost all nonmetallic impu		
	The second secon	rried out in the absence of		
		e blend is subjected to calci	-	n hy nyrometallurgy
685	•	try of lanthanoids (Ln) is do	· ·	
000	following statements is in		ommated by its 10 omates	on state, winer or the
	-	ze of the Ln (III) ions the bo	onding in its compounds is	predominantly ionic in
	character.			F
		II) decrease in general with	n increasing atomic number	r.
	c) Ln (III) compounds ar	•	O	
	d) Ln(III) hydroxide are i	= -		
686	. Bell metal is an alloy of:	,		
		b) Copper and nickel	c) Zinc and lead	d) Copper and tin
687	. Chemical name of vermil	= = =		
	a) Mercuric sulphide	b) Mercurous sulphide	c) Zinc sulphide	d) Cadmium sulphide
688		pped in India contains the fo	•	•
	a) Vanadium and cobalt		-	
	b) Nickel and magnesium	l		
	c) Manganese and chrom	ium		
	d) Aluminium and zinc			

689. Maximum num	ber of oxidation states of the transit	tion metals is derived fron	the following configuration:
a) <i>ns-</i> electrons	5		
b) $(n-1)d$ -ele	ectrons		
c) $(n+1)d$ -ele	ectrons		
d) $ns + (n-1)$	d-electrons		
	visable not to cover egg yolk or must	-	cause:
=	with water of egg yolk to form AgO		
•	with sulphur of egg yolk forming bl		
c) Silver reacts	with egg yolk forming ${ m Ag_2SO_4}$ which	th is a poisonous substanc	e
=	ts UV light of the atmosphere, therel	by spoiling the food	
691. Which of the fo	llowing is not oxidized by 0_3 ?		
a) FeSO ₄	b) KMnO ₄	c) KI	d) K ₂ MnO ₄
692. Mercury is tran	nsported in metal containers made o	f:	
a) Silver	b) Lead	c) Iron	d) Aluminium
693. Which may be	consumed in the elemental form by	human beings?	
a) Zn	b) Cu	c) Ag and Cu	d) Fe
694. Which one of the	he elements is a d -block element?		*
a) As	b) Pt	c) Pb	d) Ra
695. Which metal do	oes not react with CuSO ₄ solution?		
a) Fe	b) Zn	c) Mg	d) Ag
696. Transition met	al ions show colour because		
a) They absorb	light	b) They emit light	
c) They are par	ramagnetic	d) They exhibit $d-d$ to	ransition
697. Rinnmann's gr	een is:	$G_{\bullet}V'$	
a) ZnO.CoO	b) A green pigment	c) Both (a) and (b)	d) None of these
698. Which of the fo	ollowing ions is colourless in solution		
a) V ³⁺	b) Cr ³⁺	c) Co ²⁺	d) Sc ³⁺
699. Pig iron is man	ufactured using:		
a) An electric f	urnace		
b) A blast furna	ace		
c) An open hea	rth furnace		
d) None of the	above		
700. Blue vitriol is			
a) CuSO ₄	b) CuSO ₄ · 5H ₂ O	c) Cu ₂ SO ₄	d) CuSO ₄ · H ₂ O
701. Each coinage n	netal has:		
	in their penultimate shell		
	n the outermost shell		
	n the outermost shell		
	n penultimate shell		
702. Gold exhibits the	he variable oxidation states of:		
a) +2, +3	b) +1, +3	c) $+2$, $+4$	d) +1, +2
703. Transition met	als and their oxides are used in indu	strial processes as:	
a) Detergents	b) Insecticides	c) Catalysis	d) None of these
	tion process is used for the concentr		
a) Calamine	b) Haematite	c) Chalcopyrite	d) Bauxite
705. The composition			
a) CuFeS ₂	b) CuCO ₃	c) CuCO ₃ . Cu(OH) ₂	d) Cu(OH) ₂
	mbers of vanadium (V), chromium (· · ·
	Which one of these may be expected	-	= = =
a) V	b) Cr	c) Mn	d) Fe

707.	Zinc white is a better whit	e pigment than lead white	because it:	
	a) Has more covering pow	ver than lead white		
	b) Is not blackened by the	action of H ₂ S		
	c) Is soluble in water			
	d) Becomes yellow when l	neated		
708.	A yellow ppt. is formed wh	nen H ₂ S is passed through a	an acidified solution of:	
	a) Co ²⁺ ions	b) Cd ²⁺ ions	c) Cu ²⁺ ions	d) Ni ²⁺ ions
709.	Which metal does not read	ct with water or steam?		
	a) K	b) Na	c) Ca	d) Cu
710.	Verdigris is			
	a) Basic lead	b) Basic copper acetate	c) Basic lead acetate	d) None of the above
711.	The percentage of carbon			
	a) Cast iron and pig iron			A . Y
	b) Cast iron and steel			
	c) Pig iron and steel			
	d) Pig iron and wrought ir	on		
712.	$FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O_4$		Ĉ.	
	a) Green salt	b) Glauber's salt	c) Mohr's salt	d) Alum
713.	Which do not decolourise	•		,
	a) $C_2 O_4^{2-}$	b) HSO ₃	c) CO_3^{2-}	d) SO_3^{2-}
714.	, <u> </u>	of ions, the lower oxidation	, ,	, ,
	a) V^{2+} , VO^{2+}	b) Cr ²⁺ , Cr ³⁺	c) Ti ⁺ , Ti ³⁺	d) Cu ⁺ , Cu ²⁺
715.	Green vitriol is formed by	<i>z</i> , <i>z</i> . , <i>z</i> .	0) 11) 11	a, ca , ca
, 10.	a) $FeS_2 + H_2O + O_2$	b) $FeS_2 + H_2O + CO_2$	c) $FeS_2 + CO + CO_2$	d) $FeS_2 + CO$
716.	Densities of transition me		c) resz r do r doz	u) 1002 00
, 10.	a) Low	b) Very low	c) High	d) Very high
717	Mercury sulphide on heat	, , , , , , , , , , , , , , , , , , ,	c) mgm	a) very mgn
, 1, ,	a) $Hg(NO_3)_2$	b) HgCl ₂	c) $Hg(NO_2)_2$	d) Hg ₂ Cl ₂
718	, , , , ,	uble in water except those	,	4) 1182 012
, 10.	a) Ag, Pb, Hg	b) Na, K, Ca	c) Zn, Cu, Cd	d) Ba, Sr, Li
719	$K_3[Co(NO_2)_6]$ is:	b) Ita, II, ca	c) 211, da, da	a, ba, 61, bi
, 1).		b) Thenard's blue	c) Rinnmann's green	d) Blue vitriol
720	Group 11 or IB elements a		ej rammann s green	a) Blue viciloi
, 20.	a) Coinage metals	re commonly known as.		
	b) Transition metals	Y		
	c) Typical elements			
	d) Representative elemen	ts		
721	Most common oxidation s			
, 21.	a) +3, +4	b) +2, +3	c) +2, +4	d) +3, +5
722	The metal present in insul		c) 12, 11	u) 13, 13
, , ,	a) Cu	b) Fe	c) Zn	d) Mg
723		alloys easily because they l		u) mg
723.	a) Same atomic number	anoys easily because they i	nave.	
	b) Same electronic configu	iration		
	c) Nearly same atomic siz			
	d) None of the above	C		
724	Muntz metal is an alloy of			
, <u>4</u> T.	a) Cu and Sn	b) Cu and Zn	c) Ag and Zn	d) Zn and Mn
725	=	arbonyl compound and this	- -	=
, 20.	metal is:	a congressing and and	property is taken advanta	500 of the excludion. The

a) Iron	b) Nickel	c) Cobalt	d) Titanium
726. The temperature of blast	furnace to produce iron fr	om its ore Fe_2O_3 varies from	m 500°C at the top of the
furnace to about 1900°C	at the bottom of the furnac	e. The reaction between th	e ore Fe_2O_3 and CO at the
lowest temperature (~ 5	00°C) is:		
a) $3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3$	$0_4 + C0_2$		
b) $Fe_2O_3 + CO \rightarrow 2FeO$	+ CO ₂		
c) $Fe_2O_3 + 3CO \rightarrow 2Fe$	+ 3CO ₂		
d) $Fe_2O_3 + CO \rightarrow 2Fe +$			
$U_1 re_2 U_3 + CU \rightarrow 2re +$	$\frac{10_2 + \frac{1}{2}0_2}{2}$		
727. Adam's catalyst is:			
a) Pt and PtO	b) Pt	c) Pt and PtO ₂	d) Pt ₂ O and PtO
728. Which one of the following			
a) They readily form con	=	b) They show variable ox	
c) All their ions are colou		d) Their ions contain par	tially filled d -electrons.
729. The element which forms	s a coloured chloride is:		
a) Sb	b) Na	c) Zn	d) Cr
730. In which of the following	metallic bond is strongest?	?	
a) V	b) Fe	c) Cr	d) Sc
731. Which metal cation form			
a) Zn ²⁺	b) Cd ²⁺	c) Hg ²⁺	d) All of same strength
732. The equilibrium $Cr_2O_7^{2-}$	$+2e \rightleftharpoons 2CrO_4^{2-}$:		
 a) Exists in acidic mediur 	m		
b) Exists in basic mediun	1		
c) Exists in neutral medi	um	G, Y'	
d) Does not exist	4		
733. Atomic radii of Ti, Zr and	. Hf vary		
a) Ti $> Zr > Hf$	b) Ti $< Zr < Hf$	c) Ti $< Hf < Zr$	d) Ti $\langle Zr = HF \rangle$
734. The basic character of the	e transition metal monoxid	e follows the order	
(At. no of Ti = 22, $V = 23$,	Cr=24, Fe=26)		
a) Ti0 > V0 > Cr0 > Fe	0	b) $VO > CrO > TiO > Fe$	0
c) Cr0 > V0 > Fe0 > Ti	0	d) $TiO > FeO > VO > Cr$	0
735. MnO ₂ dissolves in water	to give an acid. The colour	of the acid is	
a) Green	b) Blue	c) Violet	d) Red
736. Which of the following is	used as indelible ink?		
a) Aqueous CuSO ₄ soluti	lon	b) Aqueous AgNO ₃ solut	ion
c) Aqueous NaCl solution	n	d) Aqueous NaOH solution	on
737. Which belongs to the act	inides series?		
a) Ce	b) Cf	c) Ca	d) Cs
738. Pudding process is used	in the manufacture of:		
a) Steel	b) Cast iron	c) Wrought iron	d) Pig iron
739. Which method is used to	remove lead impurities fro	om silver?	
a) Leaching with dilute N	IaCN solution		
b) Parkes process			
c) Leaching with dilute N	IaCN in presence of air		
d) Electrolytic purification	on using AgNO ₃		
740. Which of the following is	the green coloured powde	r produced when ammoniu	ım dichromate is used in fire
works?			
a) Cr	b) CrO ₃	c) Cr_2O_3	d) $CrO(O_2)$
741. Which of the following is	=		
a) V ₂ O ₃	b) CuO	c) V_2O_5	d) NiO
742. NH ₃ forms complex with	:		

	a) CuSO ₄	b) CdSO ₄	c) AgCl	d) All of these
743	. Transition metals are less	reactive because of their:		
	a) High ionization potent	ial and low melting point		
	b) High ionization potent	ial and high melting point		
	c) Low ionization potenti	al and low melting point		
	d) Low ionization potenti	al and high melting point		
744	. The metal that does not d	lisplace hydrogen from an a	acid is:	
	a) Hg	b) Zn	c) Al	d) Ca
745	. Percentage of gold in 18 o	carat gold is		
	a) 75.0%	b) 20.0%	c) 80.0%	d) 38.67%
746	. The correct order of ionic	c radii of Y ³⁺ , La ³⁺ , Eu ³⁺ an	d Lu ³⁺ is	
	a) $Y^{3+} < La^{3+} < Eu^{3+} <$	Lu ³⁺	b) $Lu^{3+} < Eu^{3+} < La^{3+} <$	Y ³⁺
	c) $La^{3+} < Eu^{3+} < Lu^{3+} <$	ζ Y ³⁺	d) $Y^{3+} < Lu^{3+} < Eu^{3+} < Eu^{3+} < Eu^{3+}$	La ³⁺
747	. Coinage metals show the	properties of		
	a) Inert elements	b) Normal elements	c) Typical elements	d) Transitional elements
748	-	hot and then slowly cooled		
	a) Annealing	b) Hardening	c) Tempering	d) Nitriding
749	. Which form contains the	maximum percentage of ca	, ,	
	a) Wrought iron	b) Cast iron	c) Malleable iron	d) Steel
750	, ,	copper, the impurity (FeS) i	•	,
		The molecular formula of sl		Q
	a) FeSiO ₃	b) Fe ₂ O ₃	c) FeSi (solid)	d) FeSi (vapour)
751		$e_{+/M}$ values with negative sign		
	is	/ M		
	a) Mn $> Cr > Fe > Co$		b) $Cr > Fe > Mn > Co$	
	c) Fe $> Mn > Cr > Co$		d) $Cr > Mn > Fe > Co$	
752	. Which of the following is	the chief are of conner?	uj ci / mii / le / co	
732	a) Cu ₂ S	b) Cu ₂ O	c) CuFeS ₂	d) CuCO ₃ . Cu(OH) ₂
752	, <u>-</u>	ransition metals and their c	, 2	, , , , _
733	a) Their magnetic behavi		ompounds is ascribed man	ily to.
	b) Their unfilled d -orbita			
	c) Their ability to adopt v			
	d) Their chemical reactiv			
754		•		
754	. Which is used for stoppina) Ferric chloride	-	a) Croon within	d) Cadium nitranguasida
766			c) Green vitriol	d) Sodium nitroprusside
/55	On heating ZnCl ₂ . H ₂ O the	-	a) 7(OII)	J) 7O
750	a) ZnCl ₂	b) Zn(OH)Cl	c) $Zn(OH)_2$	d) ZnO
/50	. Yellow mercury (II) oxide		LO HaClain to a table of a citale M	- OII l
	a) Hg is heated in excess	of air at 623 K	b) HgCl ₂ is treated with N	
750	c) HgS is roasted in air	C. [A. (CNI)] l.l l	d) $Hg(NO_3)_2$ is heated in	
/5/		a[Au(CN) ₂], gold can be pr		
750	a) Zn	b) Hg	c) Ag	d) None of these
/58	_	and Yb ³⁺ in increasing ord		. * 2±
	a) $Yb^{3+} < Pm^{3+} < Ce^{3+}$		b) $Ce^{3+} < Yb^{3+} < Pm^{3+} < P$	
	c) $Yb^{3+} < Pm^{3+} < La^{3+} < La^{3+}$	< Ce ^{s+}	d) $Pm^{3+} < La^{3+} < Ce^{3+} <$	< Yb ³⁺
759	. Black HgS:			
	a) Dissolves in conc. HCl	-		
	b) Dissolves in boiling HC	CI + a crystal of KClO ₃		
	c) Dissolves in NaOH			
	d) None of the above			

760.	a) The 5<i>f</i>-orbitals are monb) There is a similarity bet	re buried than the $4f$ -orbit	n their angular part of the v	
	_	further from the nucleus th		
761	Hair dyes contain	further from the nucleus ti	ian the 4j -orbitais.	
701.	a) Copper nitrate	b) Gold chloride	c) Silver nitrate	d) Copper sulphate
762	= = = =		curic chloride solution with	
702.	a) H ₂ S	b) KI	c) NaOH	d) NH ₄ OH
762	Which of the following sta	•	c) Naoii	uj Mil4Oli
703.	_	$K_2Cr_2O_7$ liberates iodine fi	rom iodidas	Y
		omate ions are converted to		
	=		o chromate ions othermic decomposition to	givo Cr O
	_	is used as a titrant for Fe ²⁺	-	give G_2U_3
761	In the electroplating of gol		10118	
704.	a) Gold chloride	id the electrolyte used is:	_	
	•			
	b) Gold nitrate		4 (4	
	c) Gold sulphate			
765	d) Potassium aurocyanide			
765.	Silver is extracted from ar	=	a) Habay'awaa	J) D
766	•	b) Parkes process	c) Haber's process	d) Bergius process
766.	Aqua regia reacts with Pt 1		a) Diccl	J) Di Cl
767	a) $Pt(NO_3)_4$	b) H ₂ PtCl ₆	c) PtCl ₄	d) PtCl ₂
/6/.	Agrentite is an ore of	10.41		15. A
7.00	a) Fe	b) Al	c) Cu	d) Ag
768.		()	use they release electrons f	-
7 .00	a) ns	b) ns and np	c) $(n-1)d$ and ns	d) $(n-1)d$
769.			ses are used. These are obta	lined by floating molten
	=	which does not solidify befo	=	1) 0
	a) Na	b) Mg	c) Hg	d) Sn
770.	How is limestone used in I	e extraction?		
	a) Oxidation of Fe ore		b) Reduction of Fe ore	,
	c) Formation of slag		d) Purification of Fe forme	
771.			cture of CuO + FeO is forme	-
	-		ction of CuO. The flux added	_
	a) SiO ₂ which is an acid flu		b) Lime stone, which is a b	
	c) SiO ₂ , which is a basic flu		d) CaO, which is a basic flu	
772.			magneton, (μ_{β})] of Ni ²⁺ in a	aqueous solution would be
	(Atomic number of Ni=28)		
	a) 2.84	b) 4.90	c) 0	d) 1.73
773.	Which of the following is u	ised as purgative?		
	a) HgS	b) Hg ₂ Cl ₂	c) HgCl ₂	d) ZnSO ₄
774.	The formula of sodium nit	roprusside is:		
	a) Na ₄ [Fe(CN) ₅ NOS]	b) Na ₂ [Fe(CN) ₅ NO]	c) NaFe[Fe(CN) ₆]	d) $Na_2[Fe(CN)_6NO_2]$
775.	Which set represents an e	xample of non typical trans	sition elements?	
	a) Zn, Cd, Hg	b) Sc, Ti, V	c) Cu, Ag, Au	d) Cr, Fe, Mn
776.	When calomel reacts with	NH ₄ OH solution, the comp	oound formed is	
	a) NH ₂ —Hg— Cl	b) Hg ₂ Cl ₂ NH ₃	c) $Hg(NH_3)_2Cl_2$	d) HgCl ₂ NH ₃
777.	The highest magnetic mon	nent is shown by the transi	tion metal ion with the con	figuration
	a) $3d^2$	b) 3 <i>d</i> ⁵	c) $3d^{7}$	d) $3d^9$

//8.	. Identify the alloy containing a non-metal as a cons	stituent in it:	
	a) Bell metal b) Bronze	c) Invar	d) Steel
779.	Chemical name of corrosive sublimate is:		
	a) Mercurous chloride b) Zinc chloride	c) Mercuric chloride	d) Aluminium chloride
780.	Excess of KI reacts with CuSO ₄ solution and then	$Na_2S_2O_3$ solution is added to	it. Which of the statements
	is incorrect for this reaction?		
	a) Cu ₂ I ₂ formed	b) Cul ₂ is formed	
	c) Na ₂ S ₂ O ₃ is oxidised	d) Evolved I ₂ is reduced	
781.	Cuprous ion is colourless, while cupric ion is color	ured because	
	a) Both have half-filled p and d -orbiatls		
	b) Cuprous ion has a completed d -orbital and cup	oric ion has incomplete d -orbi	tal
	c) Cuprous ion has incomplete d -orbital and cupr	ric ion has a complete \emph{d} -orbita	al
	d) Both have unpaired electrons in <i>d</i> -orbital		
782.	Which one of the following is a diamagnetic ion?		
	a) Co ²⁺ b) Cu ²⁺	c) Mn ²⁺	d) Sc ³⁺
783.	Which of the following oxides of chromium is amp	ohoteric in nature?	
	a) CrO b) Cr ₂ O ₃	c) CrO ₃	d) CrO ₅
784.	Cast iron is manufactured by remelting:		
	a) Pig iron and pouring into moulds		
	b) Steel and pouring into moulds		
	c) Wrought iron and pouring into moulds		
	d) Iron ore and pouring into moulds		
785.	The number of $3d$ -electrons in Cu^+ ion is:		
	a) 8 b) 10	c) 6	d) 12
786.	In the extraction of Fe from Fe_2O_3 , the reducing a	gent used is	
	a) C b) Al	c) Electrolytic reduction	d) Cu
787.	Transition elements are good conductors of curre	ent because:	
	a) They are metals		
	b) They are all solids		
	c) They have free electrons in outer energy orbits	3	
	d) All of the above		
788.	A compound is yellow when hot and white when	cold. The compound is :	
	a) Al ₂ O ₃ b) PbO	c) CaO	d) ZnO
789.	A solid (A) which has photographic effect reacts v	with the solution of a sodium s	salt (B) to give a pale yellow
	ppt. (C). Sodium salt on heating gives brown vapo	ours.	
	Identify A , B and C .		
	a) AgNO ₃ , NaBr, AgBr b) AgNO ₃ , NaCl, AgCl ₂	c) AgNO ₃ , NaBr, AgCl ₂	d) AgCl, NaBr, AgBr ₂
790.	Silver possesses metallic lustre because:		
	a) It is a noble metal		
	b) It is coated with the oxide of silver		
	c) Valency electrons absorb white light completel	ly	
	d) Valency electrons absorb and eject white light		
791.	Magnetic moment of manganese in $(NH_4)_2MnBr_2$	is	
	a) 3.87 BM b) 5.91 BM	c) 4.89 BM	d) 2.82 BM
792.	. Which transition metal is used for the reduction o		
	a) Mg b) Fe	c) Sc	d) Pt
793.	The transition elements are more metallic than the	-	=
	a) Electron pairs in d -orbitals	b) Availability of <i>d</i> -orbita	-
	c) The electron in d -orbitals	d) Unpaired electron in m	netallic orbitals
701	Carium can show the oxidation state of ± 4 because	20.	

- a) It resembles alkali metals
- b) It has very low value of IE
- c) Of its tendency to attain noble gas configuration of xenon
- d) Of its tendency to attain f° configuration

THE D-AND F-BLOCK ELEMENTS

CHEMISTRY

					:	ANS'	W	ER K	ΕY	:					
1)	С	2)	С	3)	С	4)	d	177)	С	178)	d	179)	a	180)	d
5)	b	6)	a	7)	С	8)	d	181)	С	182)	c	183)	a	184)	b
9)	d	10)	a	11)	b	12)	d	185)	a	186)	d	187)	a	188)	d
13)	b	14)	a	15)	b	16)	a	189)	b	190)	b	191)	a	192)	a
17)	d	18)	b	19)	c	20)	c	193)	b	194)	b	195)	b	196)	d
21)	c	22)	a	23)	a	24)	d	197)	d	198)	a	199)	a	200)	c
25)	c	26)	c	27)	c	28)	b	201)	c	202)	a	203)	b	204)	a
29)	b	30)	d	31)	c	32)	d	205)	c	206)	a	207)	d	208)	c
33)	d	34)	c	35)	d	36)	d	209)	b	210)	d	211)	b	212)	d
37)	C	38)	a	39)	b	40)	d	213)	a	214)	b	215)	C	216)	d
41)	c	42)	b	43)	C	44)	d	,	b	218)	C	219)	C	220)	b
45)	b	46)	a	47)	C	48)	C	221)	d	222)	a	223)	a	224)	a
49)	b	50)	C	51)	C	52)	a	,	C	226)	a	227)	d	228)	d
53)	d	54)	d	55)	d	56)	b	229)	a	230)	С	231)	a	232)	a
57)	d	58)	С	59)	a	60)	b	233)	C	234)	a	235)	a	236)	d
61)	b	62)	C	63)	a	64)	d	237)	a	238)	a	239)	С	240)	d
65)	d	66)	b	67)	С	68) 70)	b	241)	b	242)	a	243)	a	244)	d
69)	b	70)	b	71)	C	72)	a	,	a	246)	a	247)	d	248)	b
73)	d	74)	b	75)	C	76)	b	249)	b	250)	b	251) 255)	C	252)	d
77)	C L	78)	C	79)	b	80)	b	253)	C h	254)	c	255) 250)	b a	256)	d h
81)	b b	82)	d	83)	d	84)	d	,	b h	258) 263)	c	259) 262)	d b	260) 264)	b
85) 89)	b b	86) 90)	c a	87) 91)	d b	88) 92)	c d	261) 265)	b	262) 266)	c	263) 267)	b d	264) 268)	d d
93)	c	94)	a C	95)	b	96)	c	269)	a d	270)	c b	207) 271)	b	272)	c
97)	a	98)	С	99)	d	100)	С	273)	a	274)	d	271) 275)	d	276)	c
101)	C	102)	d	103)	b	104)	С	277)	b	274)	b	279)	b	280)	c
105)	c	106)	c 4	107)	c	108)	a	2043	b	282)	b	283)	c	284)	c
109)	a	110)	d	111)	d	112)	b	285)	b	286)	b	287)	a	288)	С
113)	d	114)	d	115)	a	116)		289)	a	290)	c	291)	b	292)	b
117)	d	118)	c	119)	d	120)		293)	a	294)	b	295)	b	296)	d
121)	d	122)	b	123)	a	124)		297)	d	298)	b	299)	d	300)	a
125)	b	126)	b	127)	d	128)	a	301)	a	302)	a	303)	b	304)	c
129)	a	130)	c	131)	c	132)	d	305)	c	306)	a	307)	a	308)	d
133)	d	134)	b	135)	d	136)	c	309)	a	310)	d	311)	d	312)	b
137)	C	138)	a	139)	b	140)	b	313)	c	314)	c	315)	d	316)	b
141)	b	142)	a	143)	a	144)	d	317)	c	318)	c	319)	d	320)	a
145)	d	146)	d	147)	b	148)	c	321)	a	322)	b	323)	b	324)	d
149)	a	150)	d	151)	d	152)	d	325)	C	326)	b	327)	C	328)	d
153)	a	154)	a	155)	c	156)	d	329)	d	330)	d	331)	c	332)	c
157)	b	158)	b	159)	a	160)		333)	b	334)	d	335)	a	336)	a
161)	b	162)	b	163)	b	164)		337)	a	338)	a	339)	d	340)	d
165)	c	166)	c	167)	b	168)		341)	C	342)	c	343)	d	344)	a
169)	c	170)	a	171)	d	172)		345)	d	346)	d	347)	b	348)	a
173)	c	174)	d	175)	b	176)	b	349)	С	350)	a	351)	d	352)	a

353)	a	354)	a	355)	d	356)	С	557)	c	558)	c	559)	c	560)	b
357)	c	358)	b	359)	a	360)	d	561)	b	562)	d	563)	a	564)	С
361)	d	362)	a	363)	d	364)	d	565)	a	566)	d	567)	c	568)	С
365)	a	366)	С	367)	a	368)	b	569)	С	570)	С	571)	d	572)	С
369)	a	370)	С	371)	a	372)	С	573)	b	574)	a	575)	a	576)	b
373)	a	374)	d	375)	b	376)	d	577)	d	578)	a	579)	d	580)	a
377)	c	378)	a	379)	a	380)	a	=045	d	582)	d	583)	a	584)	d
381)	c	382)	b	383)	c	384)	С	585)	c	586)	d	587)	a	588)	b
385)	c	386)	b	387)	a	388)	a	= 000	a	590)	a	591)	a	592)	C
389)	b	390)	c	391)	d	392)	b	593)	b	594)	b	595)	b	596)	a
393)	c	394)	a	395)	d	396)	c	597)	b	598)	c	599)	d	600)	b
397)	b	398)	b	399)	b	400)	a	6045	c	602)	c	603)	a	604)	d
401)	b	402)	a	403)	a	404)	c	605)	d	606)	c	607)	b	608)	c
405)	b	406)	d	407)	b	408)	d		b	610)	b	611)	c	612)	b
409)	c	410)	a	411)	b	412)	b	613)	c	614)	d	615)	b	616)	a
413)	С	414)	C C	415)	b	416)	C	617)	b	618)	a	619)	a	620)	a
417)	d	418)	a	419)		420)	d			622)	a	623)		624)	d
421)		422)	_	423)	a	424)		625)	C h	626)	b b	627)	a h	628)	
-	a a	426)	b b	-	C b	424)	c	_	b b			-	b d	-	a
425)	d	-	b b	427)	b b	•	a	,	b	630)	d d	631)	d b	632)	b
429)	d h	430)	b	431)	b	432)	d	633)	a	634)	d	635)	b b	636)	C b
433)	b	434)	C	435)	C	436)	C	637)	a	638)	C	639)	b b	640)	b
437)	C	438)	a	439)	C	440)	d		a	642)	a	643)	b	644)	C h
441)	C	442)	a	443)	a	444)	C	645)	a	646)	a	647)	a	648)	b
445)	b	446)	b د	447)	a	448)	a		b	650)	b	651)	C	652)	d
449)	C	450)	d	451)	C	452)	b		d	654)	b	655)	a	656)	C
453)	d	454)	b	455)	d	456)	b	,	С	658)	С	659)	b	660)	b
457)	b	458)	d	459)	b	460)	d	_	С	662)	a	663)	d	664)	b
461)	b	462)	С	463)	b	464)	a	,	C	666)	C	667)	d	668)	C ,
465)	C	466)	a	467)	C	468)	b	,	d	670)	b	671)	b	672)	b
469)	b	470)	a	471)	a	472)		673)	a	674)	b	675)	b	676)	d
473)	b	474)	С	475)	a	476)		677)	d	678)	d	679)	b	680)	b
477)	a	478)	a	479)	C	480)		681)	d	682)	a	683)	b	684)	b
481)	b	482)	С	483)	a	484)		685)	c	686)	d	687)	a	688)	С
485)	C	486)	C	487)	b	488)		689)	d	690)	b	691)	b	692)	C
489)	C	490)	b	491)	a	492)		693)	С	694)	b	695)	d	696)	d
493)	a	494)	C	495)	C	496)		697)	С	698)	d	699)	b	700)	b
497)	С	498)	b'	499)	b	500)		701)	a	702)	b	703)	C	704)	b
501)	a	502)	C	503)	b	504)		705)	C	706)	b	707)	b	708)	b
505)	a	506)	b	507)	a	508)	_	709)	d	710)	b	711)	a	712)	С
509)	C	510)	d	511)	d	512)	b	,	C	714)	С	715)	a	716)	d
513)	d	514)	С	515)	a	516)	d	717)	b	718)	a	719)	a	720)	a
517)	d	518)	a	519)	C	520)	C	,	a	722)	С	723)	C	724)	b
521)	b	522)	b	523)	a	524)		725)	b	726)	C	727)	a	728)	C
525)	d	526)	a	527)	b	528)		729)	d	730)	C	731)	C	732)	b
529)	a	530)	c	531)	a	532)		733)	d	734)	a	735)	c	736)	b
533)	d	534)	a	535)	d	536)		737)	b	738)	c	739)	b	740)	c
537)	d	538)	a	539)	b	540)		741)	b	742)	d	743)	b	744)	a
541)	b	542)	d	543)	c	544)	d	745)	a	746)	d	747)	d	748)	a
545)	d	546)	a	547)	C	548)	c	749)	b	750)	a	751)	a	752)	c
549)	b	550)	c	551)	b	552)	a	753)	c	754)	a	755)	b	756)	b
553)	c	554)	b	555)	b	556)	d	757)	a	758)	a	759)	b	760)	d

766) b 767) d 768) c 785) b 786) a 787)	766) b 767) d 768) c 785) b 786) a 787) d 770) c 771) a 772) a 789) a 790) d 791) b 774) b 775) a 776) a 793) b 794) d
b 767) d 768) c 785) b 786) a 787) c 771) a 772) a 789) a 790) d 791) b 775) a 776) a 793) b 794) d	b 767) d 768) c 785) b 786) a 787) d c 771) a 772) a 789) a 790) d 791) b b 775) a 776) a 793) b 794) d
767) d 768) c 785) b 786) a 787) 771) a 772) a 789) a 790) d 791) 775) a 776) a 793) b 794) d	771) a 772) a 789) a 790) d 791) b 775) a 776) a 793) b 794) d
d 768) c 785) b 786) a 787)	d 768) c 785) b 786) a 787) d
a 772) a 789) a 790) d 791)	a 772) a 789) a 790) d 791) b
a 776) a 793) b 794) d	a 776) a 793) b 794) d
768) c 785) b 786) a 787)	768) c 785) b 786) a 787) d
772) a 789) a 790) d 791)	772) a 789) a 790) d 791) b
776) a 793) b 794) d	776) a 793) b 794) d
c 785) b 786) a 787)	c 785) b 786) a 787) d
a 789) a 790) d 791)	a 789) a 790) d 791) b
a 793) b 794) d	a 793) b 794) d
b 786) a 787)	b 786) a 787) d
a 790) d 791)	a 790) d 791) b
786) a 787)	786) a 787) d
790) d 791)	790) d 791) b
a 787)	a 787) d
d 791)	d 791) b
787)	787) d
	d

THE D-AND F-BLOCK ELEMENTS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (c)

$$AgNO_3 \longrightarrow Ag + NO_2 + \frac{1}{2}O_2$$

2 (c

Transition elements show covalency as well as ionic valency, e.g., Mn²⁺ ionic, Mn⁷⁺ covalent.

3 **(c**

Potassium dichromate on heating gives oxygen and chromic oxide (Cr_2O_3).

$$4K_2Cr_2O_7 \xrightarrow{\Delta} 4K_2CrO_4 + 3O_2 + 2Cr_2O_3$$

4 (d)

Cyanide process is used for the extraction of silver and gold.

5 **(b)**

ZnS is white in colour.

6 **(a)**

Silver metal is extracted by cyanide process. $Ag_2S + 4NaCN \rightleftharpoons 2Na[Ag(CN)_2] + Na_2S$

Argentite sodium argentocyanide

 $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag \downarrow$ Sodium tetracyano ppt.

Zincate (II)

7 **(c)**

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$

∴ Zn liberates hydrogen with hot conc. alkali.

8 (d)

 ${\rm Zn^{2+}}$ ion possess $(n-1)d^{10}$ configuration. There are no unpaired electrons in (n-1) d- subshell due to which d-d transitions are not possible. Hence, ${\rm Zn^{2+}}$ ions are colourless.

9 **(d**)

Au and Ag salts are soluble in KCN due to complex formation others not.

10 (a)

Au + 4CN⁻ + H₂O +
$$\frac{1}{2}$$
O₂
 $\rightarrow 2[Au(CN_2)]^- + 2OH^-$

From gold ore (X)

$$2[Au(CN)_2]^- + Zn \rightarrow [Zn(CN)_2]^- + 2Au$$
(X)

Hence,
$$[X] = [Au(CN)_2]^-, Y = [Zn(CN)_4]^{2-}$$

11 **(b)**

Argentite is an ore of Ag having composition Ag₂S. It dissolves in NaCN due to formation of soluble

complex.

 $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + NaCl$ \therefore NaCN is used to dissolve argentite.

12 **(d)**

Magnetic moment of transition metal is $\mu = \sqrt{n(n+2)}$

13 **(b)**

It is a fact.

14 **(a)**

Fool's gold is CuFeS₂ which does not contain Au at all

15 **(b)**

$$Cu + H_2SO_4 + \frac{1}{2}O_2 \longrightarrow CuSO_4 + H_2O$$

17 **(d)**

Hg does not form amalgam with iron.

18 **(b)**

It is a process to get Zn granules.

19 **(c)**

Filling of differentiating electrons takes place in 3*d* in first transition series.

20 **(c)**

 $\begin{array}{ll} \text{Limonite} & \text{Fe}_2\text{O}_3.3\text{H}_2\text{O} \\ \text{Siderite} & \text{Fe}\text{CO}_3 \end{array}$

Carnallite KCl. MgCl₂. 6H₂O

Chalcopyrites CuFeS₂

21 **(c)**

Wrought iron is the purest form of iron and contains carbon and other impurities from 0.2% to 0.5%.

22 **(a)**

Pd, Pt absorb H₂ in considerable amount.

23 **(a)**

It is a fact.

24 (d)

On fusing AgCl with Na₂CO₃, metallic silver is obtained.

5 **(c)**

Transition metals exhibit variable oxidation states

due to particitization of (n-1)d-electron in bond formation.

26 **(c)**

In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel.

27 **(c)**

 $_{26}$ Fe has the configuration $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^6, 4s^2$.

28 **(b**)

 Fe^{2+} gets oxidized to Fe^{3+} and Cr_2^{6+} gets reduced to Cr^{3+} .

29 **(b)**

Lanthanide contraction relates to decrease in atomic as well as ionic size of M^{3+} ions

31 **(c)**

It is a fact. The idea is used in chemical exhibitions.

32 **(d)**

$$\operatorname{SnCl}_2 + 2\operatorname{HgCl}_2 \longrightarrow \operatorname{SnCl}_4 + \operatorname{Hg}_2\operatorname{Cl}_2$$
White
$$\operatorname{Hg}_2\operatorname{Cl}_2 + \operatorname{SnCl}_2 \longrightarrow \operatorname{SnCl}_4 + \operatorname{Hg}_2$$
Gray

33 **(d)**

$$V^{4+} \rightarrow 3d^1, 4s^0$$

One unpaired electron, therefore, it is paramagnetic and coloured compound

34 **(c)**

All bivalent metal cations form oxide of type *MO*. Copper forms two types of oxides *i. e.*, Cu₂0, Cu0 Barium forms Ba0 Silver forms Ag₂0 Lead forms Pb0, Pb0₂ Hence, silver cannot form *MO* type of oxide because it forms monovalent cation (Ag⁺).

35 **(d)**

Cinnabar is HgS.

36 **(d)**

Following reaction takes place during bessemerisation

 $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$

37 **(c)**

Corrosive sublimate is HgCl₂ because it has corrosion nature and sublimation nature.

38 (a)

Actinides have variable valency due to very small difference in energies of 5f, 6d and 7s orbitals

39 **(b)**

3d-series contains $_{21}$ Sc to $_{30}$ Zn in all 10 elements.

40 **(d**

Natural radioactivity is not a characteristic of transition elements.

General properties of transition elements are

- (i) Formation of coloured salts
- (ii) Formation of complex salts
- (iii) Magnetic properties
- (iv) Formation of interstitial compounds
- (v) Formation of alloys etc.

41 **(c)**

HgCl₂ is dangerous poison; the antidote being white of an egg which is coagulated by the salt in the system and is eliminated by the system with salts absorbed in it, also Hg itself is very poisonous.

42 **(b)**

$$4Ag + 8NaCN + 2H2O + O2$$

$$\rightarrow 4Na[Ag(CN)2] + 4NaOH$$

43 **(c)**

Calamine is the carbonate ore of zinc (ZnCO₃).

44 **(d**)

Due to shielding effect.

45 **(b**

Both show +8 oxidation states.

46 (a

When I^- is oxidised by MnO_4^- in alkaline medium I^- converts into IO_3^- .

$$2KMnO_4 + 2KOH \longrightarrow 2K_2MnO_4 + H_2O + [O]$$

 $2KMnO_4 + 2H_2O \longrightarrow 2MnO_2 + 3KOH + 2[O]$

$$2KMnO_4 + H_2O \xrightarrow{alkaline} 2MnO_2 + 2KOH + 3[O]$$

$$KI + 3[O] \longrightarrow KIO_3$$
Hence,
$$2KMnO_4 + KI + H_2O \longrightarrow 2KOH + 2MnO_2 + KIO_3$$

47 **(c)**

$$\begin{split} &4\mathrm{Fe}(\mathrm{CrO_2})_2 + 8\mathrm{K_2CO_3} + 7\mathrm{O_2} \longrightarrow 8\mathrm{K_2CrO_4} + \\ &2\mathrm{Fe_2O_3} + 8\mathrm{CO_2}. \end{split}$$

$$2K_2CrO_4 + H_2SO_4 \longrightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O$$

48 **(c)**

Tungsten steel contains 14–20% W, 3–8% Cr; used for high speed tools as well as for cutting purposes and maintain the cutting edge of the blade.

49 **(b)**

Cast iron or pig iron contains 2 to 4.5% of carbon. It is least ductile and least pure form of iron. It is brittle and cannot be welded.

50 **(c)**

Hg-alloys with other metals are called amalgams.

51 **(c)**

 ${
m HgCl_2}$ is dangerous poison, the antidote being white of an egg which is coagulated by the salt in the system and is eliminated by the system with salts absorbed in it, also Hg itself is very poisonous.

52 **(a)**

It is characteristic of Mn steel.

53 **(d**)

CO³⁺ have higher charge density than CO²⁺, so CO³⁺ is more stable in octahedral complexes.

(ii) Zn exhibits only +2 oxidation state. So, $Zn^{2+}=[Ar]3d^{10}$, $4s^0$

Since, it does not contain any unpaired electron, its compounds are colourless.

- (iii) d-block elements are generally paramagnetic and sometimes diamagnetic, but not ferromagnetic.
- (iv) Osmium and ruthenium are VIII group elements, so can exhibit the highest oxidation state +8 in their oxides, *e.g.*, OsO₄. Hence, statement 1 and 4 are correct.
- 54 **(d)**

 $2 FeSO_4 \xrightarrow{\Delta} Fe_2O_3 + SO_2 + SO_3.$

55 **(d**)

Hydrometallurgy is based on reduction. In this process, more electropositive Zn metal is used to precipitate gold, silver etc. from their complex salt solutions.

 $2K Au(CN)_2 + Zn \rightarrow K_2Zn(CN)_4 + 2Au$ $2Na Ag(CN)_2 + Zn \rightarrow Na_2Zn(CN)_4 + 2Ag$ Alkali metals or aluminium can also reduce complex salts.

$$K_2 TiF_6 + 4K \rightarrow 6KF + Ti$$

 $K_2 ZrF_6 + 2Al \rightarrow 2AlF_3 + 2K + Zr$

56 **(b)**

As oxidation state increases, electronegativity increases thus acidic characteristic increases not basic.

57 **(d)**

Zr and Hf possess similar atomic size and hence are called twins of Periodic Table. It is due to lanthanide contraction.

58 **(c)**

Boron(B), aluminium(Al) and gallium, (Ga) are present in IIIA group. They show +3 oxidation state. While cerium(Ce) is a lanthanoid. It is present in lanthanide series. It shows +3 and +4 oxidation states.

60 **(b)**

Iron carbide or Fe₃C.

- 61 **(b)** $2Na[Ag(CN)_2] + Zn \rightarrow Na_2Zn(CN)_4 + 2Ag$ This is extraction of Ag by cyanide process.
- 62 **(c)**Constantan is an alloy of Cu and Ni.

63 **(a)**

Monel metal or constantan is an alloy of Cu, Ni, Fe, Mn.

64 **(d)**

It is a fact. Rest all are coinage metals.

65 **(d**

 $HgCl_2 + 2NH_3 \rightarrow Hg(NH_3)_2Cl_2$.

66 **(b)**

Hydrometallurgy is the process of dissolving the metal or its ore by the action of a suitable chemical reagent followed by recovery of the metal either by electrolysis or by the use of a suitable precipitating agent.

$$4Au + 8KCN + 2H_2O + O_2$$

$$\rightarrow 4K[Au(CN)_2] + 4KOH$$
air

 $2K[Au(CN)_2 + Zn \rightarrow 2Au + K_2[Zn(CN)_4]$

67 **(c**)

Pt is noble metal.

68 **(b)**

$$Zn(NO_3)_2 \rightarrow ZnO + 2NO_2 + \frac{1}{2}O_2$$

69 **(b**)

$$Cu(NO_3)_2 \rightarrow CuO + 2NO_2 + \frac{1}{2}O_2$$

70 **(b)**

It is a property of calomel.

72 **(a)**

$$\begin{aligned} \text{NaCl} + \text{H}_2\text{SO}_4 + \text{K}_2\text{Cr}_2\text{O}_7 \\ &\rightarrow \text{CrO}_2\text{Cl}_2 + \text{K}_2\text{SO}_4 + \text{Na}_2\text{SO}_4 \\ &\quad \text{chromyl chloride} \end{aligned}$$

73 **(d)**

Spin only magnetic moment.

$$\mu = \sqrt{n(n+2)} = \sqrt{24}$$

$$\Rightarrow n^2 + 2n - 24 = 0$$

$$(n+6)(n-4) = 0$$

$$\therefore n = 4$$

[: n = -6not possible.]

Here, n is the number of unpaired electrons. The electronic configuration of the metal ion M^{x+} is

$$Z(25) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^5$$

Since, four unpaired electrons are present, the oxidation state must be +3.

$$Z^{3+}(25) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^4$$

74 **(b)**

 $ZnSO_4 + 2NaHCO_3$

$$\rightarrow$$
 ZnCO₃ + CO₂ + H₂O + Na₂SO₄

75 **(c)**

$$\begin{array}{c}
\text{Oil} \\
\text{(Unsaturated)}
\end{array} + H_2 \xrightarrow{\text{Ni}} \begin{array}{c}
\text{Ghee} \\
\text{(Saturated)}
\end{array}$$

76 **(b)**

 ${\rm Ag_2SO_4}$ contains ${\rm Ag^+}$ ($4d^{10}$) and is colourless. ${\rm CuF_2}$ contains ${\rm Cu^{2+}}$ ($3d^9$) and is coloured due to the presence of one unpaired electron in d-orbital of ${\rm Cu^{2+}}$.

 ${\rm MgF_2}$ contains ${\rm Mg^{2+}}$ and is colourless n/2 CuCl contains ${\rm Cu^+}$ (3 d^{10}) and is colourless.

77 **(c)**

Malachite is an ore of Cu containing CuCO₃. Cu(OH)₂ (green colour)

78 **(c)**

Pure copper as a cathode and impure copper as anode is used in refining of impure copper.

79 **(b)**

It is a fact.

80 **(b)**

Paramagnetism is shown by the positive ions of lanthanides except $La^{3+}(4f^0)$ and $Lu^{3+}(4f^{14})$. These ions are diamagnetic

81 **(b)**

$$HgI_2 + 2KI \longrightarrow K_2HgI_4$$
 soluble

$$HgI_2 \xrightarrow{\Delta} Hg + I_2$$

82 **(d)**

Maximum oxidation state exhibited by d-block elements (0.S.) =no of ns electrons + no. of (n-1)d electrons.

- (a) 0.S.=2+2=4
- (b) 0.S.=5+1=6
- (c) 0.S.=3+2=5
- (d) 0.S=5+2=7

(n-1) d^5 ns^2 configuration will achieve the highest oxidation state.

83 **(d)**

$$2MnO_2 + 4 KOH + O_2$$

$$\xrightarrow{\text{Fusion}} 2K_2MnO_4 + 2H_2O$$

Oxidation number of Mn in K₂MnO₄ is

$$2 \times (1) + x + 4(-2) = 0$$

$$x = +6$$

84 **(d)**

The process is called galvanisation and it protects iron from corrosion against the action of water and O_2 .

85 **(b)**

Rest all are uses of Cu and its alloys.

86 **(c**

$$4Ag + 8CN^{-} + 2H_{2}O + O_{2}$$

 $\rightarrow 4[Ag(CN)_{2}]^{-} + 4OH^{-}$

This process is called cyanide process. It is used in the extraction of silver from argentite (Ag_2S).

87 (d)

The refining of nickel is carried out by using CO.

This process is called Mond's process.

88 **(c)**

Lanthanide contraction is due to the imperfect shielding of f-electrons due to the diffused shape of f-orbitals. Therefore, as the atomic number increases effective nuclear charge increases and this results in contraction of size of the 4f-subshell."

90 **(a)**

In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel.

92 (d)

These are reasons for the given fact.

93 (c

Philosopher's wool on heating with BaO at 1100° C produce BaZnO₂.

$$BaO + ZnO \xrightarrow{1100^{\circ}C} Ba ZnO_2$$

95 **(b)**

Ferrous ion (Fe^{2+}) changes to ferric ion Fe^{3+} on reacting with acidified H_2O_2 as.

$$2K_4[Fe(CN)_6] + H_2SO_4 H_2O_2 \rightarrow$$

 $2K_3[Fe(CN)_6] + K_2SO_4 + 2H_2O_3$

Electronic configuration of Fe^{3+}

$$1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5$$

Number of d-electrons = 5

Magnetic moment= $\sqrt{n(n+2)}$

$$=\sqrt{5(5+2)}=5.92BM$$

96 **(c**)

It reacts with alkalies and acids both.

98 **(c)**

Argentite Ag_2S Haematite Fe_2O_3

Malachite Cu(OH)₂. CuCO₃

Calamine ZnCO₃

99 **(d)**

ZnO is also called Chinese white.

101 (c)

-do-

102 **(d)**

The transition metals form a large number of interstitial compounds in which small atoms like hydrogen, carbon, boron and nitrogen occupy interstitial sites in their lattices

103 **(b)**

It is a fact.

104 (c)

The presence of unfilled d-orbitals favours covalent bonding.

105 (c)

Fe does not show allotropy.

106 (c)

Acidified potassium dichromate is oxidized to unstable blue chromium peroxide, which is soluble in ether and produces blue coloured solution.

$$\begin{aligned} \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4 + 4\text{H}_2\text{O}_2 \\ &\longrightarrow 2\text{CrO}_5 + \text{K}_2\text{SO}_4 + 5\text{H}_2\text{O} \\ &\text{blue colour} \end{aligned}$$

$$Ag_2S + 4KCN(aq.)$$

$$\rightarrow 2K[Ag(CN)_2](aq.) + K_2S(aq.)$$

108 (a)

It is a fact.

109 (a)

It is a fact.

110 (d)

Strength of metallic bond depends upon number of unpaired electrons. As number of unpaired electrons increase, the bond strength also increases. So, Cr, Mo, show stronger bonding due to maximum number of unpaired electrons.

111 (d)

German silver contains Cu, Zn and Ni.

112 **(b)**

It is a fact.

113 (d)

The extraction to Cu metal involves bessemerisation. In this process, copper matte obtained from smelting transfered to a Bessemer converter (lined with silica) and a hot air blast is brown to obtain blister copper.

114 (d)

 $CuCl + CO \rightarrow CuClCO$

115 (a)

CrO₃ dissolves in aqueous NaOH to give sodium

$$CrO_3 + 2NaOH \rightarrow Na_2CrO_4 + H_2O$$

Sodium chromate

116 (c)

Silver metal is obtained by Mac-Arthur Forrest 130 (c) process which is called cyanide process. The concentrated ore of argentite is treated with 131 (c) dilute NaCN solution and a current of O2 is continuously passed. Silver sulphide goes into solution in the form of soluble complex sodium argentocyanide.

$$2 Ag_2S + 8 NaCN + O_2 + 2H_2O \rightarrow$$

$$4Na[Ag(CN)_2] + 4NaOH + 2S$$

The soluble complex is treated with zinc dust, when silver gets precipitated.

$$2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4 + 2Ag \downarrow$$

117 (d)

German silver alloy contains zinc, copper and nickel.

118 (c)

Follow electrorefining of Cu to get 100% pure Cu.

119 (d)

$$AgBr + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr.$$

120 (a)

Invar is Ni-Fe alloy used in clock pendulum.

121 **(d)**

The basic character of hydroxides decreases from $La(OH)_3$ to $Lu(OH)_3$. Due to smaller size of Lu, the Lu— OH bond attains more covalent character.

122 **(b)**

It is called iodide of Millon's base.

123 (a)

It is a fact.

124 (a)

It is a fact.

125 **(b)**

Maximum oxidation state of transition metals = number of electrons in (n-1)d orbitals + number of electrons in ns orbital.

The electronic configuration of

$$0s=[xe]4f^{14}, 5d^6.6s^2$$

- ∴ Maximum oxidation state 6+2=8
- :The highest oxidation state exhibited by transition metal is +8 e.g., $0s0_4$.

126 **(b)**

$$2Cl_2 + HgO \rightarrow Cl_2O + HgCl_2$$

mercuric mercuric
oxide chloride

128 **(a)**

3*d* is partially filled.

129 (a)

$$\mu = \sqrt{n(n+2)}$$

$$\Rightarrow \sqrt{15} = \sqrt{n(n+2)}$$

$$\therefore n = 3$$

These show fcc, hep and bcc structures.

Formation of coloured solution is possible when metal ion in the compound contains unpaired electrons e. g.,

$$Cu^+:3d^{10}$$
 $4s^0$ colourless

$$Cu^{2+}:3d^9 4s^0$$
 blue

132 (d)

In wrought iron, carbon is present as Fe₃C (cementite) ie, iron carbide and graphite

 $[Ar]3s^1 + 3 = Ti$, it means M^{3+} from Ti^{3+} ion

134 **(b)**

From $(n-1)d^1$ to $(n-1)d^{10}$.

135 **(d)**

Lanthanoid contraction is due to ineffective shielding produced by larger f-subshell.

136 **(c)**

Zr and Hf have similar radii, therefore they show similar properties

137 **(c)**

 $\mathrm{Fe^{2+}}(3d^6)$ and $\mathrm{Fe^{3+}}(3d^5)$ will show different magnetic moment.

138 (a)

The process of hardening the surface of wrought iron by depositing a surface layer of steel on it is called case-hardening. It is done by heating wrought iron in contact with potassium ferricyanide

Alternatively, case hardening can also be done by heating wrought iron with charcoal and then plunging it in a suitable oil

139 **(b)**

 ${\rm KMnO_4}$ has no unpaired electron. Rest all have unpaired electrons.

140 **(b)**

Colour of transition metal ion salt is due to d-d transition of unpaired electrons of d-orbital. Metal ion salt having similar number of unpaired electrons in d-orbitals shows similar colour in aqueous medium.

In $VOCl_2$ vanadium is present as V^{4+} and in $CuCl_2$, copper is present as Cu^{2+} .

So,
$$_{23}V=1s^2$$
, $2s^2$ $2p^6$, $3s^2$ $3p^63d^3$, $4s^2$
 $V^{4+}=1s^2$, $2s^22p^6$, $3s^2$ $3p^6$ $3d^1$

$$\begin{array}{c|c} 3d^1 \\ \hline 1 & \end{array}$$

Number of unpaired electrons = 1 and $_{29}$ Cu = $1s^2$, $2s^2$ $2p^6$, $3s^2$ $3p^6$ $3d^{10}$, $4s^1$ Cu²⁺ = $1s^2$, $2s^2$ 2 p^6 , $3s^2$ 3 p^6 3 d^9

Number of unpaired electron =1 Hence, VOCI₂ and CuCI₂ show similar colour.

141 **(b)**

 ${\rm Ag^+}+e \longrightarrow {\rm Ag}$; finely divided Ag is black in colour and thus. AgNO $_3$ causes black stain on skin. It is therefore, called lunar caustic.

142 (a)

Rest all properties are different.

143 (a)

AgCl is called in ore form as horn silver.

144 **(d)**

 $Na_2CrO_4 + 2AgNO_3 \rightarrow Ag_2CrO_4 + 2NaNO_3$

145 **(d)**

4(as in Ni)

$$(n-1)d^5 ns^1$$
 1 1 1 1 1 1

 $(n-1)d^5$ ns^1

6(as in Cr)

$$(n-1)d^3 ns^2$$
 1 1 1 1

 $(n-1)d^3 ns^2$

5(as in V)

7(as in Mn)

146 (d)

4NaCN + Ag₂S \rightarrow 2NaAg(CN)₂ + Na₂S

147 **(b)**

 Cr^{3+} is a more stable state (3 d^3 -configuration).

148 (c)

Cu₂O is red oxide.

149 **(a)**

MnO and Mn_2O_3 are basic, MnO_2 is amphoteric, Mn_2O_7 basic.

150 (d)

Impurities of Cu and Ag from gold are removed by boiling impure gold with conc. $\rm H_2SO_4\,$ and also by electrolytic method.

$$Cu + 2H_2SO_4 \xrightarrow{Heat} CuSO_4 + SO_2 + 2H_2O$$
Heat

 $2Ag + 2H_2SO_4 \xrightarrow{Heat} Ag_2SO_4 + SO_2 + 2H_2O$

This method is called parting. Conc. HNO_3 can also be used for this purpose.

151 (d)

4f and 5f-belongs to different shell, experience different amount of shielding.

152 (d)

The magnitude of stability constants for some divalent metal ions of the first transition series with oxygen or nitrogen donor ligands increases in the order

$$Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} < Zn^{2+}$$

153 (a)

Silver halides are photosensitive and are easily

reduced to Ag by mild reducing agent (hydroquinone, ferrous oxalate, etc.)

154 **(a)**

Ammounium dichromate on heating gives N_2 gas which is also given by heating of NH_4NO_2 .

$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} Cr_2O_3 + 4H_2O + N_2 \uparrow$$

 $NH_4NO_2 \xrightarrow{\Delta} 2H_2O + N_2 \uparrow$

155 (c)

$$2Au + 3HNO_3 + 11HCl$$

$$\rightarrow$$
 2HAuCl₄ + 3NOCl + 6H₂O

156 (d)

Hg-alloys with other metals are called amalgams.

157 **(b)**

In the blast furnace, iron oxide is reduced by

$$3Fe_2O_3 + CO \xrightarrow{300-400^{\circ}C} 2Fe_3O_4 + CO_2$$

$$Fe_3O_4 + CO \xrightarrow{500-600^{\circ}C} 3FeO + CO_2$$

$$FeO + CO \xrightarrow{700^{\circ}C} Fe + CO_2$$

158 **(b)**

The higher the charge on the metal ion, smaller is the ionic size and more is the complex forming ability. Thus, the degree of complex formation decreases in the order

$$M^{4+} > MO_2^{2+} > M^{3+} > MO_2^+$$

The higher tendency of complex formation of MO_2^{2+} as compared to M^{3+} is due to high concentration of charge on metal atom M in MO_2^{2+}

159 (a)

Stainless steel is an alloy of iron with chromium and nickel. Its composition is 82% Fe and 18% Cr +Ni. It resists corrosion and used for making automobile parts and utensils.

160 **(a)**

It is a fact.

161 **(b)**

$$Cr^{2+} - 3d^4$$

(4 unpaired electrons)

$$Fe^{2+} - 3d^6$$

11	_	1	1	1

(4 unpaired electrons)

162 **(b**)

 $\mbox{\rm HgCl}_2$ is easily volatile. It is insoluble in water and soluble in acids

163 **(b**)

In Cu configuration is $3d^{10}$, $4s^1$ and not $3d^9$, $4s^2$. In Cr configuration is $3d^5$, $4s^1$ and not $3d^4$, $4s^2$.

164 **(c)**

Fe is in +2 oxidation state in Mohr's salt.

165 (c)

Mn exhibits the maximum number of oxidation states.

$$Mn(Z=25)[Ar]3d^5, 4s^2$$

It can show +2, +3, +4, +5, +6 and +7 oxidation states.

166 (c)

Magnetic moment $(\mu) = \sqrt{n(n+2)}$ BM where, 'n' is the number of unpaired electrons.

$$_{23}V^{2+}=[Ar]3d^3$$

$$(n=3)$$

$$_{24}\text{Cr}^{2+}=[\text{Ar}]3d^4$$

$$(n=4)$$

$$_{25}$$
Mn²⁺=[Ar]3 d^5

$$(n=5)$$

$$_{26}$$
Fe²⁺=[Ar]3 d^6

$$(n=4)$$

Hence magnetic moment will be maximum for Mn^{2+} (equal to 5.92 BM).

167 **(b)**

The reaction,

$$2\text{FeS} + 30_2 \rightarrow 2\text{FeO} + 2\text{SO}_2\uparrow$$

Occurs during roasting of pyrites ore. Roasting is the process of heating concentrated ore in the stream of air to convert it into oxide.

168 **(d)**

Mn²⁺, V⁴⁺, Ti⁴⁺ and Cr³⁺ are stable oxidation state of respective elements.

169 (c)

$$CuSO_4 \xrightarrow{1000 \text{ K}} CuO + SO_3 \uparrow$$

170 (a)

AgI is insoluble in NH₃.

171 (d)

CdS is yellow in colour (Follow II gp qualitative analysis).

173 **(c)**

 $Fe(CNS)_3$ is a red-coloured substance.

174 **(d**)

 ${\rm Zn^{2+}}$ ions have all paired electrons so, it is diamagnetic .

175 **(b)**

Elements belonging to gp.3 to gp.12 are *d*-block elements.

176 **(b)**

It is a fact.

177 (c)

The formation of thin layer of oxide makes it passive.

178 (d)

Cu; Removal of next electron takes place from 4ssubshell and the removal of next electron takes place from completely filled $3d^{10}$.

179 **(a)**

It is a fact.

180 (d)

All are transition elements.

181 (c)

Mond's process involves extraction of Ni.

$$Ni + 4CO \xrightarrow{335K} Ni(CO)_4$$
 (Volatile);
 $Ni(CO)_4 \xrightarrow{450K} Ni + 4CO$

182 **(c)**

Cu₂O is red oxide of Cu.CuO is black oxide of Cu.

183 (a)

$$Mn^{7+} + 3e \rightarrow Mn^{4+}$$

 $Mn^{7+} + 5e \rightarrow Mn^{2+}$
 $Mn^{7+} + 4e \rightarrow Mn^{3+}$
 $Mn^{7+} + e \rightarrow Mn^{6+}$

184 **(b)**

$$Cu + O_2 + CO_2 + H_2O \rightarrow Cu(OH)_2 \cdot CuCO_3$$

185 (a)

German silver is an alloy of Cu + Zn + Ni (2:1:1 respectively).

187 (a)

Ag is best conductor of electricity among all metals.

188 (d)

$$Cu^{2+} + Fe(CN)_6^{4-} \rightarrow Cu_2[Fe(CN)_6]$$
Reddish brown ppt.

189 **(b**)

Basicity of lanthanide hydroxides decreases along the lanthanides series from left to right

190 **(b)**

$$\begin{array}{c} \text{CuSO}_4 + 4\text{NH}_4\text{OH} & \rightarrow \text{Cu}(\text{NH}_3)_4\text{SO}_4 & + 4\text{H}_2\text{O} \\ 4\text{FeCl}_3 + 3\text{Na}_4\text{Fe}(\text{CN})_6 \\ & \rightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3 + 12\text{NaCl} \\ \text{Blue} \end{array}$$

CuSO₄ +
$$aq$$
. \rightarrow CuSO₄. $5H_2O$
White Hydrated(blue)

2CuSO₄ + $K_4Fe(CN)_6 \rightarrow Cu_2Fe(CN)_6 + 2K_2SO_4$
Brown

191 (a)

Cerium is used in gas mantles, glass polishing and in pyrophasic alloys for lighter flints.

192 (a)

Gadolinium (Z=64) [Xe] $4f^7$, $5d^1$, $6s^2$ Lutetium(Z=71)[Xe] $4f^{14}$, $5d^1$, $6s^2$ Lawrencium(Z=103)[Rn] $5f^{14}$, $6d^1$, $7s^2$ Tantalum(Z=73) [Xe] $4f^{14}$, $5d^3$, $6s^2$ Hence, gadolinium has got incompletely filled f-subshell.

193 **(b)**

$$AgNO_3 \xrightarrow{hv} Ag + NO_2 + \frac{1}{2}O_2$$
; brown coloured bottles cut the passage of light through it.

194 **(b)**

Hg has low b.p. like other members of gp. 12.

196 (d)

Elements having electronegativity in the range of 1.35-1.82 do not form stable hydride. Thus, leads to hydride gap. These are present in the middle of the Periodic Table *i.e.*, belongs to groups 7, 8 and 9.

197 (d)

Magnetic moment depends upon the number of unpaired electron.

 d^3 : 3 Unpaired electron

 d^2 : 2 Unpaired electron

*d*⁸: 2 Unpaired electron

d⁶: 4 Unpaired electron

198 **(a)**

The b.p. of Zn, Cd, Hg are 1193, 1040, 1129.7K, comparatively lower values, and are called volatile metals. These are therefore, purified by distillation.

199 (a)

The differentiating electrons enter the ns-orbital but they have configuration $(n-1)d^{10}ns^2$.

201 **(c)**

Many of the d-block (transition) elements and their compounds act as catalyst. Catalytic property is probably due to the utilisation of (n-1) d-orbitals or formation of interstitial compounds.

202 **(a)**

$$2HgCl_2 + SnCl_2 \rightarrow SnCl_4 + Hg_2Cl_2$$
 (white)
 $Hg_2Cl_2 + SnCl_2 \rightarrow SnCl_4 + Hg_2$ (Grey)

203 **(b)**

Mohr salt is $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$ \therefore It is double salt having $FeSO_4$ and $(NH_4)_2SO_4$.

204 (a)

Mn in MnO₄ has +7 and Cr in CrO₂Cl₂ has +6 oxidation state, the highest for Mn and Cr respectively.

205 (c)

Lanthanides are the 14 elements of IIIB group and sixth period (At. no.=58 to 71) that are filling 4f-subshell of antipenultimate shell from 1 to 14. Actually, they are placed below the Periodic Table in horizontal row as lanthanide series.

206 (a)

When the quenched steel is heated to temperature below red hot and then allowed to cool slowly. It becomes soft. This process is known as annealing

207 **(d)**

It is a use of chrome alum.

208 (c)

We know that by reducing auric chloride by stannous chloride, the colloidal solution of gold is obtained. It is known as purple of cassius

209 **(b)**

$$2CuCl_2 + SO_2 + 2H_2O \rightarrow Cu_2Cl_2 + 2HCl + H_2SO_4$$

210 (d)

C, Fe, Mg react with hot water to give H₂.

211 **(b)**

Tungsten is the highest m.p. metal (3410°C).

212 **(d)**

Mercurous chloride (calomel) is prepared by heating HgCl₂ and Hg in iron vessel.

 $\mathsf{HgCl}_2 + \mathsf{Hg} \xrightarrow{\Delta} \mathsf{Hg}_2\mathsf{Cl}_2$

It can also be prepared by the reduction of mercury (II) chloride by tin (II) chloride in a limited quantity.

$$2\text{HgCl}_2 + \text{SnCl}_2 \xrightarrow{\Delta} \text{Hg}_2\text{Cl}_2 + \text{SnCl}_4$$

213 **(a)**

It is a fact.

214 **(b)**

$$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e$$

 $MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$.

215 **(c)**

It is a fact.

216 (d)

The element having unpaired electron is paramagnetic. More the number of unpaired electrons, more will be paramagnetic character.

Mn
$$(25)=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^5$$

∴ 5 unpaired electrons

Fe
$$(26)$$
 = $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^6$

∴ 4 unpaired electrons

Ni (28)=
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^8$

∴ 2 unpaired electrons

Cu (29)=
$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$

∴ 1 unpaired electrons

∴ Mn has maximum and Cu has least paramagnetic property.

217 **(b)**

It is a reason for the given fact.

218 (c)

The cupellation step in Parke's process is used to purify Ag from lead.

219 (c)

It is a fact.

221 (d)

All are facts about Hg.

222 **(a)**

The most abundant transition metal is Fe.

223 (a)

All those inner-transition elements having +2 oxidation state, changes to +3, and act as reducing agents. While those having +4 tend to change to +3 and act as oxidizing agents.

Therefore, Np⁴⁺ acts as an oxidizing agent

224 (a)

Oxide of Mn in its intermediate oxidation state *i.e.*, +4 is MnO₂. This is amphoteric in character.

225 (c)

Silver nitrate decomposes to silve nitrite on heating above its melting point (212°C).

$$2AgNO_3 \xrightarrow{>212^{\circ}C} 2AgNO_2 + O_2$$

On heating above 450°C (red hot), silver nitrate decomposes to metallic silver, oxide of nitrogen and oxygen.

$$2AgNO_3 \xrightarrow{>450^{\circ}C} 2Ag + 2NO_2 + O_2$$

226 **(a**

Cu²⁺ has one unpaired electron.

227 **(d)**

ZnSO₄ forms soluble zincates.

228 (d)

Thermite is $Fe_2O_3 + Al$ used for welding.

229 (a)

Cu₂O is called ruby copper.

230 **(c)**

Np and Pu in Np 0_3^+ and Pu 0_3^+ oxocations show +7 oxidation state which are not so stable

231 (a)

Ammonia soda process is for manufacture of Na_2CO_3 .

232 **(a)**

Steel is the most important commercial variety of iron having percentage of carbon 0.25 - 2 (between cast iron wrought iron).

233 **(c)**

 $_{28}\mathrm{Ni^{2+}}$ has two unpaired electrons, $_{22}\mathrm{Ti^{3+}}$, has one unpaired electron.

235 **(a)**

Ionization energy increases along the period and therefore, they have lesser values than *p*-block and more value of *IE* than *s*-block elements.

237 (a)

Cu, Ag, Au group of element are called coinage metals as these are used in minting coins.

238 (a)

Cadmipone is CdS + BaSO₄.

239 (c)

Correct order of melting points is

 $Mn(1246^{\circ} C) < Ti(1668^{\circ} C) < V \approx Cr(1907^{\circ} C)$

240 **(d)**

Actual composition of chromite ore(FeCr₂O₄) is $FeO.Cr_2O_3$. In FeO, the oxidation state of Fe is +2while in Cr_2O_3 , the oxidation state of Cr is +3.

241 **(b)**

$$HgO \stackrel{\Delta}{\rightarrow} Hg + \frac{1}{2}O_2$$

242 (a)

Cast iron has the highest percentage of carbon. It contains 2 to 4.5 % of carbon along with impurities such as sulphur, silicon, phosphorus etc. It is the least pure form of iron.

243 **(a)**

Argentite is Ag₂S.

244 **(d)**

$$2 \text{HgS} + 30_2 \rightarrow 2 \text{HgO} + 2 \text{SO}_2$$
,
 $2 \text{HgO} + \text{HgS} \rightarrow 3 \text{Hg} + \text{SO}_2$

245 (a)

Transuranic elements start after uranium and begin with Np (Neptunium)

246 **(a)**

All these compounds are less soluble in water and only Zn(OH)₂ is soluble in NH₄Cl + NH₄OH due to formation of tetramine zinc (II) complex. $Zn^{2+} + 4NH_4OH \rightarrow [Zn(NH_3)_4]^{2+} + 2H_2O$

247 **(d)**

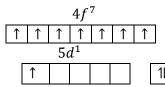
Transition metals can form ionic or covalent compounds and their melting and boiling points are high. Their compounds are generally coloured and they usually exhibit variable valency.

248 **(b)**

Both KMnO₄ and FeCl₃ are oxidant and thus, no reaction.

249 **(b)**

Alloy is a homogeneous mixture of two or more metals. Mercury forms amalgams (alloy) with gold, silver and tin. But it does not react with iron or platinum.


250 **(b)**

Purple of Cassius is the trade name for gold sol. in water.

252 (d)

Gd(64)

 $[Xe]_{54}$

All the electrons of 4f-orbital are unpaired, hence 264 (d) stable.

Thus, Gd(64) has EC as $[Xe]_{54} 4f^7 5d^1 6s^2$ Instead of $[Xe]_{54}$ $4f^8$ $6s^2$

253 (c)

The electronic configuration of mercury (80) is [Xe] $4f^{10}$, $5d^{10}$, $6s^2$. Its *d*-subshell is completely filled, thus it prevents the overlapping of dorbitals (d - d overlapping).

Hence, it is liquid metal at room temperature.

254 (c)

Azurite is the ore of copper, its molecular formula is $Cu(OH)_2$. $2CuCO_3$.

255 **(b)**

$$CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$$

256 **(d)**

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$$

 $4\text{Zn} + 10\text{HNO}_3 \rightarrow 4\text{Zn}(\text{NO}_3)_2 + \text{N}_2\text{O} + 5\text{H}_2\text{O}$

Thus, NO₃ ions are reduced to N₂O whereas in first two reactions H⁺ is reduced to H₂.

257 **(b)**

Siderite — $FeCO_3$, calcite (or limestone) — $CaCO_3$, silver glance(or argentite) —Ag₂S, fool's gold (or iron pyrites) —FeS₂.

258 (c)

$$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

259 (d)

In the electrolytic refining of zinc, anode is made up of impure zinc while a strip of pure zinc acts as cathode. An acidified solution of zinc sulphate acts as electrolyte. When electricity is passed, following reactions occur.

At cathode

$$Zn^{2+} + 2e^- \rightarrow Zn$$

At anode

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

impure

261 **(b)**

Ni combines with CO to form volatile Ni(CO)₄ which decomposes to give pure Ni metal and CO on heating.

$$Ni(CO)_4 \xrightarrow{Heat} Ni + 4CO \uparrow$$

Volatile metal

262 (c)

In Bessemer's converter impurities of C, Mn, Si, P in pig iron are oxidized to produce steel.

263 **(b)**

$$[Ag(CN)_2]^-$$

Due to lanthanide contraction there occurs net

decrease in size. Only one 0.85 Å is smaller one.

265 (a)

When oxyhaemoglobin changes to deoxyhaemoglobin, Fe²⁺ ion changes from diamagnetic to paramagnetic.

266 **(c)**

Zn blende is ZnS.

267 (d)

Transitional metal ion having unpaired electrons are coloured while those which have no unpaired electron are colourless.

 TiF_6^{2-}

 ${
m Ti}^{4+}$:[Ar]3 d^0 ;0 unpaired electrons; colourless ${
m Cu_2Cl_2}$

 Cu^+ :[Ar]3 d^{10} ;0 unpaired electrons; colourless CoF_2^{-} .

 ${
m CO^{3+}}:[{
m Ar}]3d^6;$ 4 unpaired electrons; coloured ${
m NiCl_{2^-}^{2^-}}$

Ni²⁺:[Ar]3d⁸;2 unpaired electrons; coloured

268 **(d)**

Ti:
$$3d^2 4s^2$$
; V: $3d^3 4s^2$; Cr: $3d^5 4s^1$;
Mn: $3d^5 4s^2$;
Ti²⁺: $3d^2$; V³⁺: $3d^2$; Cr⁴⁺: $3d^2$;
Mn⁵⁺: $3d^2$

269 **(d)**

$$Hg_2Cl_2 + 2NH_3 \rightarrow HgNH_2Cl + Hg + NH_4Cl$$
white black

270 **(b)**

Molybdenum steel is resistant to acid.

271 **(b)**

A characteristic of transition elements.

272 **(c)**

A characteristic hydride formation by d-block elements.

273 (a)

RBCs contain Fe in haemoglobin.

275 **(d)**

Pt is a noble metal.

276 (c)

ZnS (white), is precipitated in weak acidic medium $ZnCl_2$ (aq.) and $Zn(NO_3)_2$ (aq.) give strongly acidic solution.

277 **(b)**

Zn, Cd, Hg are d-block elements but not regarded as transition elements because these do not have partially filled d-orbitals in their most common oxidation states

278 **(b**)

The solubility order is AgF > AgCl > AgBr > AgI > Ag2S

279 **(b)**

Brass is an alloy of copper and zinc (60-80% Cu) and 40-20% Zn.

280 **(c)**

$$\mathrm{Fe^{2+}} \rightarrow \mathrm{Fe^{3+}} + e$$
; $\mathrm{Mn^{7+}} + 5e \rightarrow \mathrm{Mn^{2+}}$

281 **(b)**

Ag salts on strong heating form Ag.

282 **(b)**

Mond's process involves extraction of Ni.

Ni + 4CO
$$\xrightarrow{335K}$$
 Ni(CO)₄ (Volatile);
Ni(CO)₄ $\xrightarrow{450K}$ Ni + 4CO

283 **(c)**

$$2\text{Fe}_2(\text{SO}_4)_3 + 3\text{K}_4[\text{Fe}(\text{CN})_6] \rightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3 + 6\text{K}_2\text{SO}_4.$$

284 (c)

German silver is an alloy of copper, zinc and nickel. It is used in utensils and resistance wire.

285 **(b)**

Due to the formation of CuCO₃. Cu(OH)₂; green

286 **(b)**

It is a reason for the given fact.

287 (a)

 ${\rm FeSO_4}$ is mostly used in manufacture of blue-black ink, as a mordant in dyeing and tanning industries.

288 **(c)**

It is a trade name for CuSO₄. 5H₂O.

289 (a)

The elements having incomplete d-orbital can show variable oxidation state (because the electrons move the two levels of d itself)

- \therefore Zn has completely filled *d*-orbital.
- \therefore It does not show variable oxidation state. It always show +2 oxidation state.
- 291 **(b)**

It is a fact.

292 **(b)**

$$Ag_2O \xrightarrow{\Delta} 2Ag + \frac{1}{2}O_2$$

293 (a)

Calamine (ZnCO₃) is an ore of zinc.

294 **(b)**

Haematite (Fe_2O_3) having FeO is first oxidized to Fe_2O_3 and then reduced to Fe by Co.

295 **(b)**

MnO₂ forms amphoteric oxide due to intermediate oxidation state

296 (d)

Ir does not dissolve in aqua regia as it is much

more noble than Au and Pt

297 **(d)**

Hg has +1 oxidation state in Hg₂Cl₂.

298 **(b)**

 $[Co(NH_3)_5Cl]Cl_2$ ionizes to $[Co(NH_3)_5Cl]^{2+}$ and Cl^- . These $2Cl^-$ react with Ag^+ to form white ppt. of AgCl.

299 **(d)**

All are facts.

300 (a)

$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2$$

 $\rightarrow K_2SO_4 + 2CrO_5 + 5H_2O_3$

301 (a)

White vitriol is ZnSO₄. 7H₂O.

302 **(a)**

No in iron complex has +1 oxidation number.

303 **(b)**

 Mn^{2+} is most stable as it has half-filled *d*-orbitals.

304 (c)

$$ZnCl_2 \cdot 2H_2O \xrightarrow{\Delta} Zn(OH)Cl + HCl + H_2O$$

 $Zn(OH)Cl \rightarrow ZnO + HCl$

305 **(c)**

$$3\text{Fe}(\text{CN})_2 + 4\text{Fe}(\text{CN})_3 \rightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3 \text{ or } \text{Fe}_7\text{C}_{18}\text{N}_{18}$$

Prussian blue

306 (a)

 CrO_4^{2-} has no unpaired d —electron.

307 (a)

 $La(OH)_3$ is more basic than $Lu(OH)_3$. This is because ionic size of La^{3+} ion is more than Lu^{3+} ion

308 (d)

Cerium is commonly used in manufacture of alloys of lanthanide. It is also used in dying cotton or fabrics, for scavenging oxygen and sulphur from other metals and also used as catalyst.

309 (a)

-do-

310 **(d)**

It is a reason for the given fact.

311 (d)

It is a fact.

312 **(b)**

Zn does not show corrosion.

313 (c)

The process is called hardening of steel and it develops hard and brittle nature in steel.

314 **(c)**

Lowest m.p. among all metals is of Hg (-38.9°C) .

315 (d)

The temperature of the slag zone in the metallurgy of iron using blast furnace is $800-1000^{\circ}\text{C}$.

316 **(b)**

The phenomenon is called spitting of Ag.

317 (c)

 Cu_2O has completely filled d —orbitals in Cu^+ and thus, does not show (d-d) transition.

318 (c)

Hg(OH)₂ does not exist.

319 (d)

 K_2HgI_4 , a colourless complex, is formed, $4KI + HgCl_2 \rightarrow K_2HgI_4 + 2KCI$

320 (a)

The atomic weight of Co, Ni and Fe are 59.90, 58.60, 55.85 respectively. Therefore, Co > Ni > Fe is the correct sequence of atomic weights

321 (a)

Silver nitrate is commercially known as lunar caustic.

322 **(b)**

The complex formed is $Ag(NH_3)_2Cl$ which ionizes in $Ag(NH_3)_2^+$ and Cl^- .

323 **(b)**

Fe is ferromagnetic, *i. e.*, retains magnetic properties if field is removed

324 (d)

Zinc sulphate $(ZnSO_4 \cdot 7H_2O)$ is called white vitriol. It when heated with barium sulphide, forms a white pigment lithopone

325 (c)

This is definition of tempering of steel. The product obtained is neither so hard nor so brittle. It is softer than steel.

326 **(b)**

"925 fine silver" means 925, parts of pure Ag in 1000 parts of an alloy. Therefore, in percentage it will be 92.5% Ag and 7.5% Cu

327 **(c)**

It is a property of ZnCl₂.

328 (d)

AgBr, silver bromide is used in photography.

329 (d)

Brass is an alloy of Cu and Zn.
Bronze is an alloy of Cu and Sn.
German silver is an alloy of Cu, Zn and Ni.
Hence, Cu is the common metal in brass, bronze and German silver.

331 **(c)**

Among the given, manganese has the most stable electronic configuration, thus it is very hard to

remove an electron from is outer shell. Hence, a large amount of energy is required. Therefore, manganese has the maximum first ionization potential

332 **(c)**

It is a fact.

333 **(b)**

Vitamin B_{12} is $C_{63}H_{88}CoN_{14}O_{14}P$.

334 (d)

By white tin plating, iron can be protected by water

335 (a)

$$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$$

or $MnO_4^2 + e \rightarrow MnO_4^{2-}$.

336 (a)

Zn acts as cathode and carbon as anode in dry cells.

337 **(a)**

Annealing is the process of cooling a hot molten metal slowly. Railway wagon axles are made by heating iron rods embeded in charcoal powder (annealing) so that those might not break due to sudden change in temperature.

338 (a)

The methods chiefly used for the extraction of lead and tin from their ores are respectively self reduction and carbon reduction. (Because the process of heating the ore strongly in the presence of excess of air is called roasting. It is mainly used in case of sulphide ores and the process of extracting a metal by fusion of the oxide ore with carbon is known as smelting.)

339 **(d)**

The general electronic configuration for lanthanides is

$$[Xe](n-2)f^{1-14}(n-1)d^{1}ns^{2}.$$

 \because After the loss of both of the 6*s*-electrons and also the solitary *d*-electrons, the lanthanoids gain stable configurations.

 \therefore (+3) oxidation state is most common among lanthanides.

340 (d)

A) There is gradual decrease in the radii of the lanthanoids with increasing atomic number-a case of lanthanide contraction, thus true.

B) Ionization potential for the formation of Lu^{3+} is comparatively low, hence +3 state is favourable, thus true.

C) Due to lanthanide contraction —Zr and Hf; Nb and Ta, Mo and W have the same size and thus

similar propertites and thus separation is not easy , thus true.

D) Formation of +4 state requires very high energy, thus incorrect.

341 (c)

After smelting in blast furnace, the slag is removed from slag hole of the furnace while a molten mass containing mostly Cu_2S + little FeS is called matte; it contains 80% metal.

342 (c)

There is very small difference in energies of 5f, 6d and 7s orbitals of actinoids, therefore their electronic configuration cannot assigned with a degree of certainty

343 (d)

In Mac-Arthur-Forrest method silver is extracted from the solution of sodium argentocyanide by using zinc.

 $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag \downarrow$

345 (d)

It is Mn and exhibits +7 oxidation state.

346 **(d)**

The size of lanthanides are smaller than expected. This is associated with the filling with the filling up of 4f orbitals which must be filled before the 5d orbitals. The electrons in f-orbitals are not effective in screening other electrons from the nuclear charge

347 **(b)**

 ${\rm Ag^+} + e \longrightarrow {\rm Ag}$; finely divided Ag is black in colour and thus. AgNO $_3$ causes black stain on skin. It is therefore, called lunar caustic.

348 **(a)**

Due to $3d^5$ configuration.

349 (c)

Gd =
$$[Xe]4f^75d^16s^2$$
,
Gd³⁺ = $[Xe]4f^7$ (half-filled)

350 (a)

$$3 \text{Hg} + 8 \text{HNO}_3(\text{dil.}) \rightarrow 3 \text{Hg}(\text{NO}_3)_2 + 2 \text{NO} + 8 \text{NO}_3(\text{dil.}) \rightarrow 3 \text{Hg}(\text{NO}_3)_2 + 2 \text{NO}_3(\text{dil.})$$

 $4H_2O$

351 (d)

 $E^{\circ}_{\text{OP of Hg}} > E^{\circ}_{\text{OP of H}}$. Thus, Hg is less reactive than H₂.

352 (a)

Brass is an alloy of Cu + Zn (60-80% + 40-20% respectively).

353 (a)

Maximum number of unpaired electrons are in Mn.

355 **(d)**

It is a use of Ti alloys.

356 **(c)**

Ore Chemical composition

Cuprite Cu_2O Chalcocite Cu_2S Chalcopyrite CuFeS₂

 $Cu(OH)_2$. $CuCO_3$ Malachite

In these ores, chalcopyrite (CuFeS₂) Contains both iron and copper.

357 **(c)**

Potassium dichromate, on heating give oxygen and chromic oxide (Cr₂O₃)

$$4 \mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7 \overset{\Delta}{\rightarrow} 4 \mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_4 + 3 \mathrm{O}_2 + 2 \mathrm{Cr}_2 \mathrm{O}_3$$

358 **(b)**

 $3KCNS + FeCl_3 \rightarrow 3KCl + Fe(CNS)_3$.

359 (a)

Fe, Co, Ni are called ferrous metals.

360 (d)

 $Ag^+ + e \rightarrow Ag$, i. e, Ag^+ is reduced.

361 **(d)**

Most of the transition metal cations are coloured.

362 (a)

Ag(CN)₂ does not contain unpaired electrons.

363 (d)

It is a fact.

364 **(d)**

In $MnSO_4$.4 H_2O , Mn is present as Mn^{2-}

$$Mn^{2+} = 3d^{5} 4s^{0}$$

(Unpaired electrons =5)

In CuSO₄. 5H₂O, Cu is present as Cu²⁺

$$Cu^{2+} = \begin{array}{c|c} 3d^{9} & 4s^{0} \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$$

(Unpaired electrons =1)

In FeSO₄. 6H₂O,Fe is present as Fe²⁺

$$Fe^{2+} = 3d^{6} 4s^{6}$$

(Unpaired electrons =4)

In NiSO₄. 6H₂O Ni is present as Ni²⁺ $Ni^{2+}=$

$$Ni^{2+} = 3d^{8} 4s'$$

$$11 1 1 1 1 1 1$$

(Unpaired electrons =2)

Since, paramagnetic character ∝ unpaired electrons.

Thus, CuSO₄. 5H₂O has the lowest degree of paramagnetism among the given at 298 K.

365 (a)

HgS is insoluble in hot dil.HNO₃.

366 (c)

A number of molybdic acids are known $H_2MoO_4, H_6Mo_7O_{24}.$

367 **(a)**

$$Hg_2Cl_2 \xrightarrow{\Delta} Hg + HgCl_2$$

368 **(b)**

It is a fact.

369 (a)

AgBr decomposes on exposure to light

370 (c)

Hg is volatile metal.

371 **(a)**

In amalgam, Hg has zero oxidation state.

372 **(c)**

Haematite contains SiO₂ (acidic) non-fusible impurity and this basic flux CaCO₃ is used.

$$CaCO_3 \rightarrow CaO + CO_2$$
,
 $CaO + SiO_2 \rightarrow CaSiO_3$
Slag

373 (a)

Cu forms $Cu(NH_3)_4^{2+}$ complex.

374 (d)

It is a reason for given fact.

Permanent magnets are generally made up of alloys of Al, Ni and Co

376 **(d)**

ZnS is white. (Follow II gp. qualitative analysis).

377 (c)

$$Hg_2cl_2 + 2NH_4OH$$

$$\longrightarrow \underbrace{Hg + Hg(NH_2)Cl}_{Black} + NH_4Cl$$

$$+2H2$$

378 (a)

The chemical formula for ammonium molybdate is $(NH_4)_2MoO_4$.

379 **(a)**

It is a reason for the given fact.

380 (a)

The electronic configuration of $_{62}$ Sm³⁺ is $4f^4$ and that of $_{66}$ Dy³⁺ is $4f^9$. The colour of f^n and f^{14-n} are often identical

381 (c)

Cassiterite is an ore of Sn.

$$CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+}SO_4^{2-}$$

383 **(c)**

Pig iron is formed during metallurgical

operations. All other forms are then prepared by using it.

384 **(c)**

-do-

385 **(c)**

An element is paramagnetic if it has unpaired electron.

386 **(b)**

Commercial zinc, about 97% pure containing lead and other impurities is called spelter.

387 (a)

ZnO is known as philosopher's wool because it is very light, white, soft wooly powder.

388 (a)

The density of transition elements gradually increases along the period or in a series, e. g., 3d-series: $_{21}Sc(3.0g/mL)$ to $_{29}Cu(8.9g/mL)$. $_{30}Zn$ has 7.1 g/mL.

389 **(b)**

Silver containing lead as impurity is purified by cupellation process.

390 (c)

Pig iron contains about 4% carbon. P, Mn and Si are in less percentage.

391 **(d)**

The electronic configurations of Cu^{2+} is Cu^{2+} :[Ar] $3d^9$

Hence, it has one unpaired electron.

Magnetic moment(μ)= $\sqrt{n(n+2)}$

$$\sqrt{1(1+2)}$$
=1.73

392 **(b)**

Ni-steel contains 3.5% Ni and is used in making cables, automobiles and aeroplane parts, armour plates, propeller shafts, etc.

393 (c)

Hg exists as Hg_2^{2+} and not Hg^+ .

394 (a)

CrO₃ and Mn₂O₇ are acidic oxide. Since, they react with water and form the acids.

$$e.g.$$
, $CrO_3 + H_2O \rightarrow H_2CrO_4$

chromic acid

$$Mn_2O_7 + H_2O \rightarrow 2HMnO_4$$

permanganic acid

395 (d)

Copper metallurgy involves bessmerization. In Bessemer convertor, the impurities of ferric oxide forms slag with silica and copper oxide is reduced to give blister copper.

$$FeO + SiO_2 \rightarrow FeSiO_3$$

slag

$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

396 (c)

It is a fact.

397 **(b)**

It is a fact

$$4Au + 8KCN + 2H_2O + O_2$$

$$\rightarrow$$
 4K[Au(CN)₂] + 4KOH

$$2K[Au(CN)_2] + Zn \rightarrow K_2[Zn(CN)_4] + 2Au$$

398 **(b)**

The chief ore of copper is copper pyrite, $CuFeS_2$.

400 (a)

Transitional metal ions having electronic configuration $(n-1)d^0$ or $(n-1)d^{10}$ are colourless while those have $(n-1)d^{1-9}$ are coloured.

 Cu^+ : [Ar] $3d^{10}$: colourless

 Cu^{2+} : [Ar] $3d^{9}$: coloured

Fe $^{2+}$: [Ar] $3d^{6}$: coloured

Mn $^{2+}$: [Ar] $3d^{5}$: coloured

401 **(b)**

It is a reason for the given fact.

402 (a)

Transition metal which have low oxidation number acts as reducing agent because of greater tendency to lose the electron. Moreover, they behave like a base

403 (a)

The composition of bell metal is Cu (80%) and Sn (20%).

404 (c)

The main characteristic feature of transition elements.

406 (d)

$$\mu = \sqrt{n(n+2)} = \sqrt{15}$$

$$\therefore$$
n = 3

Thus, 3 unparied electron in $_{24}M$, *i. e.*, $_{24}M^{3+}$, or $1s^2$, $2s^22p^6$, $3s^23p^63d^3$ for Cr^{3+} .

407 **(b)**

Density of transition elements increases along the period.

408 **(d)**

$$AuCl_3 \xrightarrow{hv \text{ or } \Delta} AuCl + Cl_2$$

409 **(c)**

White vitriol is ZnSO₄. 7H₂O.

410 (a)

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

411 **(b)**

$$KI + AgNO_3 \rightarrow AgI + KNO_3$$

412 **(b)**

Wrought iron is the purest form of iron.

413 (c)

Rest all form nitrides as AlN, Mg₃N₂, Ca₃N₂.

414 **(c)**

Yellow colour of the potassium chromate changes to orange on acidification. It is due to the formation of dichromate ions

$$2\operatorname{CrO}_{4}^{2^{-}} + 2\operatorname{H}^{+} \xrightarrow{\text{acid}} \operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}} + 2\operatorname{H}_{2}\operatorname{O}$$
 yellow orange

415 **(b)**

The Stability of Cu^{2+} (aq) rather than Cu^{+} (aq) is due to much more negative $\Delta_{hyd}H^0$ of Cu^{2+} (aq) than Cu^{+} , which more than compensates for 2nd ionization enthalpy of Cu.

416 (c)

At the bottom: 1775K.

417 (d)

$$2\text{Fe} + 3\text{Cl}_2 \xrightarrow{\Delta} 2\text{FeCl}_3$$

418 (a)

Green vitriol is FeSO₄. 7H₂O.

419 (a)

It is a fact.

420 **(d)**

$$4Au + 8CN^{-} + 2H_{2}O + O_{2}$$

$$\rightarrow 4[Au(CN)_{2}]^{-} + 4OH^{-}$$
soluble
$$2[Au(CN)_{2}]^{-} + Zn \rightarrow 2Au(s)$$

$$\downarrow +[Zn(CN)_{4}]^{2-}$$

421 (a)

3d-series conatins $_{21}\mathrm{Sc}$ to $_{30}\mathrm{Zn};\,4d\text{-series}$ contains $_{39}\mathrm{Y}$ to $_{48}\mathrm{Cd}$ and 5d-series contains $_{57}\mathrm{La}$ and $_{72}\mathrm{Hg}$ to $_{80}\mathrm{Hg};\,6d\text{-series}$ contains $_{89}\mathrm{Ac}$, $_{104}\mathrm{Ku}$ and $_{105}\mathrm{Ha}.$

423 **(c)**

₉₂U is a member of actinoid series (90 to 103).

424 **(c)**

"All their ions are colourless" this sentence is false because they are 90% coloured and only few are colourless

425 (d)

These are facts about sterling silver.

426 **(b)**

Steel or iron containing excessive quantities of S is brittle while hot (hot or red short), whereas excessive quantities of phosphorus make it brittle white cold (cold short).

427 **(b)**

 $_{29}$ Cu: $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^1$ i. e., 14

electrons have spin in one direction and 15 in other direction.

428 (a)

Fe²⁺ = [Ar] $3d^64s^0 \Rightarrow 4$ unpaired electrons Cu⁺ = [Ar] $3d^{10}4s^0 \Rightarrow 0$ unpaired electrons Zn = [Ar] $3d^{10}4s^2 \Rightarrow 0$ unpaired electrons Ni³⁺ = [Ar] $3d^74s^0 \Rightarrow 3$ unpaired electrons

429 **(d)**

 $E^{\circ}_{OP \text{ of Na}} > E^{\circ}_{OP \text{ of Zn}}$

430 **(b)**

Lanthanide contraction, cancels almost exactly the normal size increase on descending a group of transition elements, thus Nb and Ta, Zr and Hf have same covalent and ionic radii.

431 **(b)**

$$2\text{Fe}_2(\text{SO}_4)_3 + 3\text{K}_4[\text{Fe}(\text{CN})_6] \rightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3 + 6\text{K}_2\text{SO}_4$$

432 (d)

In the iron silica is present as impurity, so for the removal of impurity of silica limestone is used.

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

 $CaO + SiO_2 \longrightarrow CaSiO_3$
 $Slag$

433 **(b)**

Cu²⁺ is discharged at cathode.

434 (c)

HCOOH is a reducing agent. $HCOOH + 2HgCl_2 \longrightarrow Hg_2Cl_2 + 2HCl + CO_2$

435 (c)

VOSO₄ is paramagnetic as well as coloured compound.

The oxidation state of vanadium in $VOSO_4$ is +4.

$$V[Z=23]=[Ar]3d^3 4s^2$$

 $V^{4+}[Z=23]=[Ar] 3d^1 4s^0$

It has one unpaired electron hence, it is paramagnetic in nature.

436 **(c)**

Ferrous sulphate (FeSO₄. 7H₂O) is known as green vitriol.

437 (c)

The reaction takes place in blast furnace are $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$ $CaCO_3 \rightarrow CaO + CO_2$ $C + CO_2 \rightarrow 2CO$ $CaO + SiO_2 \rightarrow CaSiO_3$ $2C + O_2 \rightarrow 2CO$ Hence, the reaction $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ does not take place in blast furnace.

438 (a)

Inner transition elements or f-block elements have 3 incomplete shells,

i. e., $(n-2) s^2 p^6 d^{10} f^{1-14}$, $(n-1) s^2 p^6$, $n s^{1-2}$.

439 (c)

This involves auto reduction.

440 (d)

Follow extraction of iron.

441 (c)

The gangue of FeO comes out as slag with acidic flux SiO_2 .

442 (a)

Magnetic moment of

Zn²⁺
$$\mu_{\text{effctive}} = \sqrt{n(n+2)}$$
 BM
Where, $n=$ number of unpaired electrons
 $_{30}$ Zn=1 s^2 ,2 s^2 ,2 p^6 ,3 s^2 ,3 p^6 ,3 d^{10} ,4 s^2
Zn²⁺=1 s^2 ,2 s^2 ,2 p^6 ,3 s^2 ,3 p^6 ,3 d^{10}
3 d^{10}

So, magnetic moment of Zn^{2+} =zero.

443 (a)

Cu is present in all these alloys.

444 (c)

Au is a number of 5d-series. Fe, Co and Cu all are the members of 3d-series.

445 **(b)**

Azurite $[2CuCO_3.Cu(OH)_2]$ is an ore of copper.

446 **(b)**

It is a fact.

447 (a)

 $CuSO_4$ (anhydrous) + $aq. \rightarrow CuSO_4.5H_2O(aq.)$.

448 (a)

Fe and Pt do not form amalgam with Hg.

449 **(c)**

Rest all are wrong reporting.

450 **(d)**

$$Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$$

 $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$

451 **(c)**

Cu is placed below H in electrochemical series.

452 **(b)**

Zn forms only Zn²⁺ ion.

453 (d)

All these protect iron against corrosion.

454 **(b)**

$$K_4[Fe(CN)_6] + 6H_2SO_4 + 6H_2O \xrightarrow{\Delta} 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 + 6CO \uparrow$$

455 (d)

Blister copper is obtained by the process of

bessemerisation from the copper matte in the metallurgy of Cu. It is impure. Blister copper contains about 98 to 99% pure copper and 1 to 2% impurities like Ag, Au, Zn, Ni etc.

456 **(b)**

Magnetic moment depends upon number of unpaired electrons. In Sc³⁺, there is no unpaired electron. So, its effective magnetic moment is zero.

457 **(b)**

An impure sample of ZnS containing traces of MnS, CuS or Ag₂S, etc., is phosphorescent.

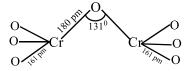
458 (d)

Pt dissolves in aqua regia (HNO $_3$ + HCl $_{1:3}$) 3HCl + HNO $_3$ \rightarrow 2H $_2$ O + NOCl + 2Cl Pt + 4Cl \rightarrow PtCl $_4$;

 $PtCl_4 + 2HCl \rightarrow H_2PtCl_6$.

459 **(b)**

Ru forms penta carbonyl.


460 **(d)**

The process of depositing a thin uniform layer of silver on clean glass surface is called silvering of mirror. The thin film is protected by coating of red lead and turpentine mixture.

 $2AgNO_3 + 2NH_4OH \rightarrow Ag_2O + 2NH_4NO_3 + H_2O$ $Ag_2O + HCHO \rightarrow 2Ag + HCOOH$.

461 **(b)**

 $Cr_2O_7^{2-}$ has the structures.

462 **(c)**

Anode mud left during electrolytic purification of Cu contains Au and Ag.

463 **(b)**

24 carat gold means 100% Au.

464 (a)

$$2KMnO_4 + 2H_2SO_4 \rightarrow Mn_2O_7 + 2KHSO_4 + H_2O_7$$

465 (c)

Polymetallic carbonyls are also known for transition metals, . g., $Co_2(CO)_3$.

466 (a)

Due to loss of ns^2 -electrons.

467 (c

Gun metal has a composition of Cu=88% Sn=10%, Zn=2%

468 **(b)**

It is a fact.

469 **(b)**

In water it gives HMnO₄ (an acid).

470 (a)

Corrosive sublimate gives black ppt. of calomel with formic acid but it does not react with acetic acid.

$$\begin{aligned} & 2 \text{HCOOH} + 2 \text{HgCl}_2 \ \longrightarrow \text{Hg}_2 \text{Cl}_2 + \text{CO}_2 + \text{H}_2 \text{O} \\ & \text{CH}_3 \text{COOH} + \text{HgCl}_2 \ \longrightarrow \text{No reaction} \end{aligned}$$

471 (a)

In basic medium, the following reaction takes place

 $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + [O]$ Due to the presence of nascent oxygen [O], $KMnO_4$ (in basic medium) behaves like an strong oxidizing agent.

472 **(d)**

3d, 4d and 5d-series are complete and 6d-series incomplete.

473 **(b)**

The less electropositive metals such as Fe, Zn, Sn etc are extracted from their oxides by reduction with carbon or coal.

$$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$$

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
iron

474 (c)

The electronic configuration of Mn is $_{25}$ Mn =[Ar] $3d^5$ $4s^2$

$$Mn^{4+} = [Ar]3d^3$$

Thus, three unpaired electrons are present . Spin only magnetic moment , $\mu = \sqrt{n(n+2)}$

$$n=3$$
 $\mu = \sqrt{3(3+2)}$
 $= \sqrt{15} = 3.87$
 $\approx 4 \text{ BM}$

475 (a)

It is a fact.

476 (a)

Due to poisonous nature of $HgCl_2$, its 0.1% solution is used as antiseptic for sterilizing hands and instruments in surgery.

$$Fe \rightarrow Fe^{2+} + 2e$$

478 (a)

 Cu^{2+} salts form chocolate brown ppt. of $Cu_2Fe(CN)_6$ with $K_4Fe(CN)_6$.

479 (c)

Mohr salt = $(NH_4)_2SO_4$. FeSO₄. $6H_2O$ Here, Fe is present as FeSO₄. Therefore, its oxidation state can be calculated with in only FeSO₄.

$$x+(-2)=0$$

 $x=+2$

481 **(b)**

Neodymium oxide (Nd_2O_3) dissolved in selenium oxychloride is one of the most powerful liquid lasers known so far

482 (c)

A transition metal ion exists in its highest oxidation state. It is expected to behave as an oxidizing agent.

483 (a)

The ionisation energies increase with increasing atomic number. The trend is irregular among d-block elements.

Ele	S	T	V	С	M	Fe	С	N	С	Z
me	С	i		r	n		0	i	u	n
nt										
IE	6	6	6	6	7	76	7	7	7	9
(3	5	5	5	1	2	5	3	4	0
kJ/	1	6	0	2	7		8	6	5	5
mol										

 \therefore Zn > Fe > Cu > Cr is correct order.

484 **(a)**

It is a reason for the given fact.

—do—

486 **(c)**

These are uses of Ag.

487 **(b)**

In acidic medium, $KMnO_4$ gives 5 oxygen while, acidic $K_2Cr_2O_7$ gives 3 oxygen

488 (d)

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2;$$

 $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$

489 (c)

The ability of transition elements to adopt multiple oxidation states and complexing ascribed their catalytic activity

490 **(b)**

$$6e + Cr_2^{6+} \longrightarrow 2Cr^{3+}; S^{2-} \longrightarrow S^0 + 2e$$

491 (a)

$$Zn + 2H_2SO_4 \rightarrow ZnSO_4 + 2H_2O + SO_2$$

492 (c)

Carbon is generally used for the reduction of oxides of moderately reactive metals like Fe, Zn, etc. *e.g.*,

$$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$$

Note Highly reactive metals like Na are produced by electrolytic reduction while less reactive metals like Ag and Hg are obtained by autoreduction.

493 (a)

Except Au all other metals, i. e., Ag, Hg and Cu are dissolved in conc. H_2SO_4 or conc. HNO_3 . The compound *X* is AuCl₃ which forms a complex with HCl.

 $AuCl_3 + HCl \rightarrow H[AuCl_4]$

It is used for toning in photography.

494 (c)

Lithopone is used as white pigment and contains $ZnS + BaSO_4$.

495 (c)

 $_{21}$ Sc(3 $d^{1}4s^{2}$) has no unpaired electron in Sc³⁺

497 (c)

—do—

498 **(b)**

4*f*-level is successively filled in lanthanoids and 5f-level is successively filled in actinoids.

499 **(b)**

 $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O.$

500 (c)

Haematite conatins SiO₂ (acidic) non-fusible impurity and this basic flux CaCO₃ is used.

$$CaCO_3 \rightarrow CaO + CO_2$$
,
 $CaO + SiO_2 \rightarrow CaSiO_3$.

501 **(a)**

$$\begin{array}{c} \text{CuSO}_4 + 2\text{KCN} \longrightarrow \text{ } \text{K}_2\text{SO}_4 + \text{Cu(CN)}_2\\ \text{cupric cyanide}\\ \text{ (unstable)} \end{array}$$

$$2Cu(CN)2 \rightarrow 2CuCN + (CN)_2$$

white ppt

$$3KCN + CuCN \rightarrow K_3[Cu(CN)_4]$$

potassium cuprocyanide (soluble complex)

502 (c)

$$Ti^{3+} \rightarrow 3d^1, 4s^0$$

$$Sc^{3+} \rightarrow 3d^0$$

$$Mn^{2+} \rightarrow 3d^5, 4s^0$$

$$Zn^{2+} \rightarrow 3d^{10}, 4s^0$$

In Mn^{2+} number of unpaired electrons =5. So, it has maximum magnetic moment according to the formula

$$\mu = \sqrt{n(n+2)}$$
 BM

503 **(b)**

Mohr's salt is green in colour due to Fe²⁺ ions which are green.

504 (c)

 Ni^{2+} and Cr^{2+} are coloured due to presence of unpaired electrons. But Zn²⁺ is colourless

because of absence of unpaired electrons

505 (a)

Zn gets dissolved in NaOH, forming Na₂ZnO₂.

506 **(b)**

In basic medium potassium permanganate is reduced to first manganate and than to manganese dioxide (colourless).

$$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$$

$$2K_2MnO_4 + 2H_2O \rightarrow 2MnO_2 + 4KOH + 2O$$

 $2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH + 3[O]$

507 (a)

Ag belongs to second (4d) transition series. Remaining all are in first transition series

508 (a)

Mn in carbonyl has zero oxidation state.

509 (c)

Copper is good conductor of current.

510 **(d)**

Calomel is the name for Hg₂Cl₂.

511 (d)

Developing involves the decomposition of AgBr to Ag. AgBr^x a molecule of AgBr exposed to light is reduced to Ag by:

$$C_6H_4(OH)_2 + 2AgBr^x \rightarrow C_6H_4O_2 + 2HBr + 2Ag$$

512 **(b)**

Zinc blende is roasted and then treated with coke for the reduction.

$$2ZnS + 3O_2 \xrightarrow{\Delta} 2ZnO + 2SO_2 \uparrow$$

$$ZnO + C \xrightarrow{\Delta} Zn + CO \uparrow$$

513 (d)

This is chrome alum used in tanning leather, mordant in dyeing and in photography for hardening of negative.

514 (c)

$$FeSO_4$$
. $(NH_4)_2 SO_4$. $6H_2O$ is called Mohr's salt.

515 (a)

$$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$$

purple colour

516 (d)

CuCl₂ and CuBr₂ exist as (CuCl₂)_x and (CuBr₂)_x polymeric bridge structure.

517 (d)

Na will react with water; Ag, Hg are placed below Cu in electrochemical series.

518 (a)

$$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$$
purple green

519 (c)

+3 and +4 states are shown by Ce in aqueous solutions. Thus statement (c) is incorrect.

520 **(c)**

Tungsten filaments are used in bulbs.

522 **(b)**

It is a fact.

523 **(a)**

Fool's gold is CuFeS₂ or FeS₂.

524 **(a**)

 $Cu(NH_3)_4SO_4$

525 (d)

Follow Bessemer's process in Fe extraction.

526 (a)

A mixture of TiO₂ and BaSO₄ is called titanox

527 **(b)**

The b.p. of Ti, Cr, Fe and Co are 3260, 2665, 3000 and 2900 K respectively.

528 **(d)**

It is a fact.

530 **(c)**

Ferric compounds are more easily hydrolysed than ferrous salts.

531 (a)

The important ores of iron are haematite (Fe_2O_3), magnetite (Fe_3O_4) and iron pyrites (FeS_2). Iron is manufactured from haematite ore.

532 (c)

The process is called auto reduction.

534 (a)

$$2Cu^{2+} + 4KI \rightarrow Cu_2I_2 + I_2 + 4K^+$$

535 (d)

It is a fact.

536 (d)

German silver is an alloy of Cu + Zn + Ni (2:1:1 respectively).

537 **(d)**

It is a method for extraction of Ni.

538 (a)

 $K_2Cr_2O_7 + 2H_2SO_4 \xrightarrow{Cold} 2CrO_3 + 2KHSO_4 + H_2O$ CrO₃ is highly acidic and oxidising and is called chromic acid

539 **(b)**

$$4\text{FeCl}_3 + 3\text{K}_4[\text{Fe}(\text{CN})_6] \rightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3$$
Ferri-ferrocyanide (Prussian blue)

12KCl.

540 (a)

$$Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$$

541 **(b**

The process is called hardening of steel and it develops hard and brittle nature in steel.

542 (d)

$$AuCl_3 + NaCl \rightarrow Na[AuCl_4]$$

sodium chloroaurate

545 (d)

Zinc sulphate hepta hydrate (ZnSO₄.7H₂O) is called white vitriol. When it is heated with barium sulphide, it forms a white pigment lithopone.

546 (a)

Silver (Ag) metal is purified by Pattinson's process.

547 (c)

d-block elements have higher melting point due to greater forces of attraction between two atoms.

548 **(c)**

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$
.

549 **(b)**

Iron is d-block element $(3d^6, 4s^2)$.

550 **(c)**

It is a fact.

551 **(b)**

Fe²⁺ is light green in colour.

552 **(a)**

 $Cr_2O_7^{2-}$ has orange colour in aq. Medium.

553 (c)

Reference electrodes are calomel electrodes.

554 **(b)**

All cations formed by transition metals are not coloured and are not paramagnetic, .g., Zn²⁺.

555 **(b)**

3.87= $\sqrt{n(n+2)}$, where, n is the number of unpaired electron

$$(3.87)^2 = n(n+2)$$

$$15 = n^2 + 2n$$

$$n^2+2 n-15=0$$

$$n \cong 3$$

556 (d)

Lutetium-71 belongs to lanthanoids, the elements from 58 to 71.

557 **(c)**

It is a fact.

558 (c)

$$Fe_2(SO_4)_3 \rightarrow Fe_2O_3 + 3SO_3$$
.

559 **(c)**

It is a fact.

560 **(b)**

$$2\text{SnCl}_2 + 2\text{HgCl}_2 \rightarrow 2\text{SnCl}_4 + \text{Hg}_2$$
; SnCl_2 is oxidized.

561 **(b)**

Chalcopyriteor copper pyrite is CuFeS₂. ∴ It is ore of copper and iron.

562 **(d)**

Siderite (FeCO₃) is an ore of iron.

563 (a)

The process of extraction of metal by heating roasted ore with coke in the presence of a flux is called smelting. It is done in blast furnace. Iron is extracted by this process.

$$Fe_2O_3 + 3C \xrightarrow{>1123 \text{ K}} 2Fe + 3CO$$

$$Fe_2O_3 + 3CO \xrightarrow{1123 \text{ K}} 2Fe + 3CO_2$$

564 (c)

Stainless steel contains 11.5% Cr.

565 (a)

Ceria or cerium oxide, CeO_2 , a lanthanide compound is used as a pigment and as a polishing agent for glass.

$$ZnO + C \rightarrow Zn + CO$$

 $2CO + O_2 \rightarrow 2CO_2$ (Blue flame on burning of CO).

567 **(c)**

In ${\rm CuF_2}$, ${\rm Cu^{2+}}$ ion exist, having d^9 configuration. Unpaired electron causes colour (d-d transition). In the crystalline form, ${\rm CuF_2}$ is blue coloured.

568 (c)

Spin only magnetic moments depend upon the number of unpaired electrons, more the number of unpaired electron, greater will be the spin only magnetic moment.

$$_{25}$$
Mn=1 s^2 , 2 s^2 2 p^6 , 3 s^2 3 p^6 3 d^5 4 s^2
Mn²⁺ = 1 s^2 , 2 s^2 2 p^6 , 3 s^2 3 p^6 3 d^5 , 4 s^6

Number of unpaired electrons=5

$$_{24}$$
Cr=1 s^2 , 2 s^2 2 p^6 , 3 s^2 3 p^6 3 d^5 , 4 s^1

$$Cr^{2+} = 1s^2, 2s^22p^6, 3s^23p^6 3d^4, 4s^0$$

Number of unpaired electron=4

$$23V=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^3, 4s^2$$

$$V^{2+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^3, 4s^0$$

Number of unpaired electrons =3

So, the correct order of spin only magnetic moment is

$$Mn^{2+} > Cr^{2+} > V^{2+}$$

569 (c)

Stainless steel contains 11-15% Cr.

570 **(c)**

Aromatic compounds which have= or \equiv bond in the side chain decolourise acidic/ alkaline KMnO₄. Benzene does not delcolourise the acidic/alkaline KMnO₄due to the delocalization of π - electrons. While propene decolourized the alkaline KMnO₄

due to the presence of = bond. Ferrous ammonium sulphate and oxalic acid decolourized the $KMnO_4$ in acidic medium.

$$2 \text{ KMnO}_4 + 10 \text{FeSO}_4 + 8 \text{H}_2 \text{SO}_4 \rightarrow \\ \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}_2 (\text{SO}_4)_3 + 8 \text{H}_2 \text{O} \\ 2 \text{ KMnO}_4 + 5 \text{C}_2 \text{H}_2 \text{O}_4 + 3 \text{H}_2 \text{SO}_4 \rightarrow \\ \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 10 \text{CO}_2 + 8 \text{H}_2 \text{O}$$

571 (d)

The complex formation imparts colour.

572 (c)

Syvanite (AuAgTe₄); calaverite (AuTe₂), bismuth aurite (BiAu₂).

573 **(b)**

It is a reason for the given fact.

574 **(a)**

Azurite is Cu(OH)₂. 2CuCO₃.

575 (a)

 Zn^{2+} (Z=30):[Ar]3 $d^{10}4s^0$; zero unpaired electron.

Hence, its magnetic moment is zero.

$$\mu = \sqrt{n(n+2)} = \sqrt{0(0+2)}$$

$$\mu = 0$$

$$4Zn + 10HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$$

577 **(d)**

Cu

Cu+

Cu⁺ is colourless due to the absence of unpaired electron

578 **(a)**

Fe ores possess magnetic nature.

579 **(d)**

The process is called auto reduction.

580 **(a)**

Transition elements have (n-1)d and ns-shell incomplete.

581 (d)

In electrorefining of copper, some gold is deposited as anode mud.

582 (d)

 $Cu^{2+}(aq.)$ is blue in colour.

583 **(a)**

The magnetic moment = $\sqrt{n(n+2)}$ BM where n is no. of unpaired electron. Thus, n=1.

584 **(d)**

The highest oxidation state of transition elements is exhibited in their compounds with F and O, the most electronegative elements.

585 **(c)**

I gp. reagent is dil. HCl. The chlorides of Ag, Pb, Hg being insoluble are precipitated out.

586 (d)

$$4K_2Cr_2O_7 \xrightarrow{>671^{\circ}C} 4K_2CrO_4 + 2Cr_2O_3 + 3O_2.$$

587 (a)

$$\begin{aligned} & 2\mathsf{KMnO_4} \xrightarrow{200^{\circ}\mathsf{C}} \mathsf{K_2MnO_4} + \mathsf{MnO_2} + \mathsf{O_2} \\ & 2\mathsf{K_2MnO_4} \xrightarrow{\mathsf{Above}\ 200^{\circ}\mathsf{C}} 2\mathsf{K_2MnO_3} + \mathsf{O_2} \end{aligned}$$

588 **(b)**

$$Fe^{2+}$$
, $2SO_4^{2-}$, $2NH_4^+$.

589 **(a**)

591 (a)

It is a fact.

592 **(c)**

Alnico is a series of alloys based on iron containing Ni, Al, Co and Cu. They are used to make permanent magnets.

593 **(b)**

Bordeaux mixture is CaO + CuSO₄.

594 **(b)**

Lanthanoids [Xe] $4f^{1-14}5d^{0-1} 6s^2$ Actinoides [Rn] $5f^{1-14}6d^{0-1}7s^2$

Lanthanoides and actinoides use core d and forbitals also to show higher oxidation state. As
actinoides have comparatively low energy
difference between f and d-orbitals, show more
oxidation states.

595 **(b)**

$$K_2MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}F_2$$

In this reaction, the stronger Lewis acid ${\rm SbF_6}$ displaces the weaker one, ${\rm MnF_4}$ from its salt. ${\rm MnF_4}$ is unstable and readily decomposes to give ${\rm MnF_3}$ and fluorine

596 (a)

A reduction in atomic size with increase in atomic number is a characteristics of elements of f-block. This is due to lanthanide contraction

597 **(b)**

Parke's process is based on the fact that molten lead and zinc are nearly immiscible. Zinc being lighter forms the upper layer and molten lead forms the lower layer. Ag is more soluble in molten Zn than molten Pb.

598 **(c)**

It is a use of this reagent.

599 (d)

Transition metals due to the presence of partially, filled *d*-orbitals, are coloured.

The unpaired electron present in partially filled dorbital is excited to the higher energy d-orbital by
absorbing energy from visible light and thus
exhibits the complementary colour. Due to which
the transition metal ions appear coloured.

600 **(b)**

It contains 36% Ni.

601 (c)

 Cr^{2+} (Z=24): [Ar]3 d^4 4 s^0 ; four unpaired electrons Fe^{2+} (Z=26) : [Ar]3 d^6 4 s^0 ; four unpaired electrons. Cr^{2+} and Fe^{2+} have same number of unpaired electrons, hence they have the same value of magnetic moment.

602 **(c)**

Erbium is a lanthanide

603 (a)

$$BaO + ZnO \rightarrow BaZnO_2$$

604 **(d)**

Brass is an alloy of copper with zinc.

606 **(c)**

$$CuCl_2 + Cu \xrightarrow{HCl} Cu_2Cl_2$$

607 **(b)**

Cast iron or pig iron (2-5% C); wrought iron (0.1 to 0.5% C), steel (0.1 to 1.5% C).

608 (c)

d-block elements invariably show variable valence.

609 **(b)**

This is characteristic of inner transition elements.

610 **(b)**

Mercurous chloride is insoluble in water while rest are soluble in water

611 (c)

Carnallite KCl, MgCl₂, $6H_2O$ Limonite $2Fe_2O_3$, $3H_2O$ Siderite $FeCO_3$

Horn silver AgCl

∴ Siderite is carbonate ore.

612 **(b)**

It is a facts,
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$
.

613 (c)

Black Jack is an ore of zinc. Other ores of zinc are zincite (ZnO), calamine (ZnCO₃), zinc blende or black jack (ZnS).

614 **(d)**

AgI is insoluble in NH_4OH but AgCl is soluble in NH_4OH due to the formation of $[Ag(NH_3)_2]Cl$

615 **(b)**

e.g.,

 $MnCl_2, Mn(OH)_3, MnO_2, K_2MnO_4, KMnO_4, +2$

616 (a)

$$HgCl_2 + H_2S \rightarrow HgS + 2HCl$$

617 **(b)**

 $\label{lem:cuCl} \hbox{CuCl forms coordinated product with CO}.$

$$CuCl + CO \rightarrow CuCl. CO$$

618 (a)

Except Cu, Hg, Ag, Pt and Au, where E_{RP}° are + ve.

619 (a)

$$AuCl_3 + 3FeSO_4 \rightarrow Au + Fe_2(SO_4)_3 + FeCl_3$$

620 (a)

ZnCl₂ is deliquescent.

622 (a)

Fe +
$$H_2SO_4 \rightarrow FeSO_4 + H_2 \uparrow$$

$$3\text{Fe} + 4\text{H}_2\text{O} \rightarrow 4\text{H}_2\uparrow + \text{Fe}_3\text{O}_4$$

hot steam

623 (a)

$$Hg_2Cl_2 + 2NH_4OH$$

$$\rightarrow \underbrace{\text{Hg} + \text{Hg}(\text{NH}_2)\text{Cl}}_{\text{Black}} + \text{NH}_4\text{Cl}$$
+ 2H₂O

624 (d)

Bleaching powder is mixed salt, $K_4Fe(CN)_6$ is complex salt, hypo is normal salt.

625 **(b)**

Bronze is a mixture of Cu and Sn.

626 **(b)**

Gun metal is an alloy of Cu, Sn and Zn. It is used to make cartridge of rifles and pistols.

627 **(b)**

 μ_{eff} value of 1.73 BM corresponds to one unpaired electron.

$$Ti^{3+} = 3d^1$$
 ($Ti = [Ar]3d^2 4s^2$)

628 (a)

Thermite process is used for the reduction of oxides of less electropositive metals. Oxides of less electropositive metals such as $\rm Cr_2O_3$, $\rm Mn_3O_4$ etc are reduced by using Al. This process is called thermite process.

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr + Heat$$

629 **(b)**

Copper ores contain FeO as non-fusible mass.

Thus, FeO +
$$SiO_2$$
 \rightarrow FeSiO₃.

630 (d)

Chalcopyrite is CuFeS₂

632 **(b)**

It is $Ag(NH_3)_2Cl$.

633 **(a)**

Cu is added in Au to prepare ornaments.

634 **(d)**

On igniting at 1400° c. Fe₂O₃ get reduced to metallic Fe.

$$3Fe_2O_3$$
 CO_2

$$Fe_3O_4 + CO \rightarrow 3$$

$$FeO + CO \rightarrow Fe + O$$

635 **(b)**

These are uses of ZnO. It is also used for glazing purposes.

636 **(c)**

Fe(OH)₃ is formed as brown residue. Also colourless or light yellow solution will be left.

637 **(a)**

Given, $X=[Ar]d^4$

: The complete configuration of the ion,

$$X^{3+} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^4$$

$$X = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^2$$

 \therefore The atomic number of the element is 25 and the element is Mn.

638 (c)

Cast iron or pig iron (2-5% C); wrought iron (0.1 to 0.5% C), steel (0.1 to 1.5% C).

639 **(b)**

Follow complementary colour concept.

640 **(b)**

41 Nb and 73 Ta have similar atomic size.

641 **(a)**

A white precipitate of cuprous iodide is formed on adding KI to CuSO_4 solution.

$$2\text{CuSO}_4 + 4\text{KI} \rightarrow 2\text{CuI} + \text{I}_2$$

white ppt.

642 (a)

The d-block elements form coloured compounds. These compounds have ions with unpaired electron in d-subshell.

i) Na and Mg belong to s-block , so NaCl and MgCl $_2$ are colourless compounds.

ii) CuF₂

Oxidation state of Cu in CuF_2 is +2

$$Cu^{2+}=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^0, 3d^9$$

11 11 11 11 1

 \therefore CuF₂ in which Cu has one unpaired electron is coloured.

iii)CuI

Oxidation state of Cu in CuI = +1

$$Cu^+=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^0, 3d^{10}$$

It has no unpaired electron. So, CuI is colourless. ∴ Only CuF₂ is coloured among given choices.

643 **(b)**

$$2NaOH + Zn^{2+} \rightarrow Na_2ZnO_2 +$$

 $2H^+, Na_2ZnO_2$ gives $2Na^+$ and $[ZnO_2]^{2-}$ ions.

644 **(c)**

$$2MnO_4^- + Br^- + H_2O \rightarrow 2MnO_2 + BrO_3^- + 2OH^-$$

645 (a)

Cyanide process is used for extraction of silver (Ag).

$$4Ag + 8NaCN + 2H_2O + O_2$$

$$\rightleftharpoons 4Na[Ag(CN)_2] + 4NaOH$$

$$2Na[Ag(CN)_2] + 4NaOH + Zn \longrightarrow$$

$$Na_2ZnO_2 + 2H_2O + 4NaCN + 2Ag$$

646 (a)

$$ScCl_3 \rightarrow Sc^{3+} + 3Cl^{-}$$

$$Sc^{3+}$$

 $\begin{array}{c|c}
3s^2 & 3p^6 \\
\hline
11 & 11 & 11 \\
\end{array}$

 $3d^0$

No unpaired electron, so will show diamagnetic character so, will weightless in magnetic field

647 **(a)**

It is the definition of nitriding of steel.

648 **(b)**

A light hard aluminium alloy containing 4% Cu and small amounts of Mg, Mn and Si.

649 **(b)**

Gun metal is an alloy of Cu + Sn + Zn.

650 **(b)**

This is definition of tempering of steel. The product obtained is neither so hard nor so brittle. It is softer than steel.

651 (c)

$$CuSO_4 + 2KCN \rightarrow Cu(CN)_2 + K_2SO_4$$

$$2Cu(CN)_2 \rightarrow Cu_2(CN)_2 + (CN)_2$$

$$Cu_2(CN)_2 + 6KCN \rightarrow 2K_3[Cu(CN)_4]$$

652 (d)

MnO₂ imparts purple colour to pottery

653 **(d)**

It is a fact.

654 **(b)**

Purest zinc is made by zone refining method.

655 (a)

Magnetic moment = $\sqrt{n(n+2)}$ BM Where, n = number of unpaired electrons 5.93= $\sqrt{n(n+2)}$

n = 5

 Mn^{2+} ion $(3d^5)$ has 5 unpaired electrons and magnetic moment is 5.93 BM.

656 **(c)**

Potassium dichromate, on heating gives oxygen and chromic oxide (Cr_2O_3) .

$$4K_2Cr_2O_7 \xrightarrow{\Delta} 4K_2CrO_4 + 3O_2 + 2Cr_2O_3$$

657 **(c)**

Annealing is the process of heating steel to bright red and then cooling it slowly. Steel thus, becomes soft and pliable.

659 **(b)**

It is a fact.

660 **(b)**

HgCl₂ compound is easily volatile. They are insoluble in water and soluble in acids.

661 **(c)**

Among all the given reactions, CuSO₄ does not react with KCl to give Cu₂Cl₂

662 (a)

It is $[Cu(H_2O)_4]SO_4$. H_2O ; one H_2O is held by sulphate ion by H-bonding.

663 **(d)**

It is a fact.

664 **(b)**

$$\begin{array}{c} \text{AgNO}_3 + 2\text{Na}_2\text{S}_2\text{O}_3 \longrightarrow \text{Na}_3[\text{Ag}(\text{S}_2\text{O}_3)_2] \\ \text{Dil.} & \text{Excess} \\ + \text{NaNO}_3 \\ \\ \text{2AgNO}_3 + \text{Na}_2\text{S}_2\text{O}_3 \longrightarrow \text{Ag}_2\text{S}_2\text{O}_3 + 2\text{NaNO}_3 \\ \text{Conc.} & \text{Dil.} \\ \text{Myhite} \\ \\ \text{Ag}_2\text{S}_2\text{O}_3 \longrightarrow \text{Ag}_2\text{S} + \text{SO}_3 \\ \\ \text{Black} \end{array}$$

665 **(c)**

 ${\rm Mn_2O_7}$ is an acidic oxide of manganese. It dissolve in water to give violet coloured solution of permanganic acid.

$$Mn_2O_7 + H_2O \rightarrow 2HMnO_4$$

666 (c)

A developer is a weak reducing agent, *e*. g. Ferrous oxalate; the parts affected by light on photographic plate are reduced to the maximum extent whereas part not affected by light remains unaffected.

667 **(d)**

In acidic medium,

$$+7 + 2$$

 $KMnO_4 \rightarrow MnSO_4$

In weak basic medium

 $KMnO_4 \rightarrow MnO_2$

668 (c)

Transition metals are d-block elements.

669 (d)

It is $FeSo_4$. $(NH_4)_2SO_4$. $6H_2O$. Gives test of each ion in solution.

670 **(b)**

Gun metal is an alloy of Cu + Sn + Zn (87:10:3

respectively).

672 **(b)**

Value of magnetic moment depends upon number of unpaired electrons. All except $\mathrm{Ti}^{3+}|3d^1|$ have either fully filled d-subshell ($i.e.,\mathrm{Zn}^{2+},\mathrm{Cu}^+$) or empty d-subshell (ie,Sc^{3+}). As such only Ti^{3+} has a net value of magnetic moment.

Magnetic moment of $\mathrm{Ti^{3+}} = \sqrt{n(n+2)}$ BM $= \sqrt{1(1+2)}$ BM $= \sqrt{3} = 1.73$ BM

673 (a)

 Fe^{3+} is more stable than Fe^{2+} because of half-filled nature.

674 **(b)**

Fool's gold is FeS₂.

675 **(b)**

Bessemer's converter is provided with basic lining of lime or MgO to withstand high temperature.

676 **(d)**

Verdigris is CuCO₃. Cu(OH)₂ or CuSO₄. Cu(OH)₂; these are green deposits formed on copper on exposure to air. Used as paints and pigments.

677 **(d)**

Transition element exhibit variable oxidation states because their d-electrons also take part in bonding along with s-electrons. However, the difference between two oxidation states is not always two.

678 **(d)**

 Sc^{3+} $(3d^0)$, $\mathrm{Ti}^{4+}(3d^0)$ are diamagnetic due to absence of unpaired electrons. While $\mathrm{Pd}^{2+}(4d^8)$, $\mathrm{Cu}^{2+}(3d^9)$ contain two, and one unpaired electron respectively. Hence, these are paramagnetic

679 **(b)**

$$2KI + HgI_2 \rightarrow \underbrace{K_2HgI_4 + KOH}_{Nessler's reagent}$$

680 **(b)**

 $_{26}$ Fe =[Ar]3 d^5 4 s^2 ; Fe²⁺=[Ar]3 d^6 Number of unpaired electrons, n=4 μ = $\sqrt{n(n+2)} = \sqrt{4(4+2)} = 4.89$

681 **(d)**

$$_{30}$$
Zn \rightarrow [Ar]3 $d^{10}4s^2$

: It *d*-orbital is complete

∴ It does not show variable valency

682 (a)

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2.$$

683 **(b)**

$$CuSO_4 + 2KI \rightarrow Cul_2 + K_2SO_4$$

 $2 Cul_2 \rightarrow Cu_2I_2 + I_2$
cuprous iodide
white ppt.

684 **(b)**

The nonmetallic impurities such as mica, earth particles etc associated with ore. These impurities are known as gangue.

685 (c)

The most common oxidation state of lanthanoid is +3. Lanthanoids in +3 oxidation state usually have unpaired electrons in f-subshell and impart characteristic colour in solid as well as in solution state due to f-f transition.

(Except lanthanum and lutetium)

686 **(d)**

Bell metal is an alloy of Cu + Sn (80:20).

687 **(a)**

Vermilion is HgS, a red variety used as pigment.

688 **(c)**

It is a fact.

689 **(d)**

In transition metals, electrons from penultimate d-subshell also take part in bonding.

690 **(b)**

Both mustard and egg yolk contain sulphur in form of compounds in large amount which reacts with Ag.

$$2Ag + S \rightarrow Ag_2S(black)$$

691 **(b)**

KMnO₄ will not oxidised further by ozone as manganese is already present in its highest possible oxidation state, *ie*, +7

692 (c)

Hg does not form amalgam with iron.

693 **(c**)

Sweets, pans (betel leaves), etc., covered by Ag foils are used as eatable items. Cu in form of dissolved Cu if water placed in Cu vessel.

694 **(b)**

Only Pt belongs to *d*-block.

695 **(d)**

$$E_{\mathrm{OP}}^{\circ}$$
 of $\mathrm{Cu} > E_{\mathrm{OP}}^{\circ}$ of Ag .

696 (d)

Only those transition metal ions which contain unpaired electrons, are coloured. Since colour appears when the unpaired d-electron absorb energy and gets excited to the higher energy d-orbital. Hence, the reason of appearance of colour is d-d transition.

697 (c)

These are facts.

698 (d)

$$V(23) = [Ar] 3d^3, 4s^2$$

$$V^{3+}=[Ar] 3d^2$$
, $4s^0$ (two unpaired electrons)

$$Cr(24)=[Ar] 3d^5, 4s^1$$

$$Cr^{3+}=[Ar] 3d^3$$
, $4s^0$ (three unpaired electrons)

$$Co(27) = [Ar] 3d^7, 4s^2$$

$$CO^{3+}$$
=[Ar] $3d^7$, $4s^0$ (three unpaired electrons)

$$Sc(21) = [Ar] 3d^{1}, 4s^{2}$$

$$Sc^{3+}=[Ar] 3d^0$$
, $4s^2$ (no unpaired electrons)

Thus, in Sc^{3+} no unpaired d-electron is present. Hence, no d-d transition is possible and it is colourless ion.

699 **(b)**

Follow metallurgy of iron.

701 (a)

Follow electronic configuration $(n-1)s^2p^6d^{10}ns^1$ of coinage family.

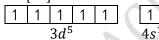
702 **(b)**

It is a fact.

703 **(c)**

Transition metals and their compounds are very good catalysts, *e*. g., CuCl₂ in Deacon's process, Ni in hydrogenation of oils.

704 **(b)**


Gravity separation process is used for the concentration of haematite.

705 (c)

Malachite is an ore of copper. Its composition is CuCO_3 . Cu(OH)_2 .

706 **(b)**

This is stable EC, hence formation of Cr^{2+} by second IP requires maximum enthalpy.

707 **(b)**

It is a reason for the given fact.

708 **(b)**

CdS is yellow solid.

709 (d)

710 **(b)**

Basic copper acetate (verdigris – $(CH_3COO)_2Cu \cdot Cu(OH)_2$) is blue green powder used in green pigment and in dyes. Also in manufacture of

insecticides and fungicides

711 **(a)**

Pig iron on heating in a vertical furnace and then pouring into moulds gives cast iron. Both contain 2–5% carbon.

713 **(c)**

Potassium permanganate is a powerful oxidizing agent in neutral, alkaline or acidic solution because it liberates nascent oxygen. The aqueous solutions of KMnO₄ can be decolourized by $C_2O_4^{2-}$, HSO_3^- and SO_3^{2-} while CO_3^{2-} cannot decolourise KMnO₄ aqueous solution.

714 **(c)**

 ${\rm Ti}^+$ ions are more stable than ${\rm Ti}^{3+}$ and thus ${\rm Ti}^{3+}$ ions charge to ${\rm Ti}^+$ ions thereby acting as oxidizing agents

 Ti^{3+} compounds $+2e^- \rightarrow Ti^+$ compounds (less stable oxidizing agent) (More stable oxidising agent)

715 **(a)**

Green vitriol is formed by oxidation of iron pyrite in presence of air and water.

$$2\text{FeS}_2 + 2\text{H}_2\text{O} + 7\text{O}_2 \longrightarrow 2\text{FeSO}_4 + 2\text{H}_2\text{SO}_4$$
pyrites green vitriol

716 **(d)**

Transition elements have high densities.

717 **(b)**

$$3HgS + 2HNO_3 + 6HCl$$

 $\rightarrow 3HgCl_2 + 3S + 2NO + 4H_2O$

718 (a)

Chlorides of Ag, Pb and Hg are insoluble in water.

719 **(a)**

Fischer's salt is $K_3[Co(NO_2)_6]$.

720 (a)

Cu, Ag and Au have been used in coins since ancient times.

721 (a)

Cerium
$$Ce_{58} = [Xe]4f^1, 5d^1, 6s^2$$

It most stable oxidation state is +3but +4 is also existing.

722 **(c)**

The hormone insulin excreted from pancreas contains Zn.

723 **(c)**

It is a reason for the given fact.

724 **(b)**

Muntz metal is Cu + Zn alloy (3:2) respectively more stronger than brass.

725 **(b)**

Ni(CO)₄ is a gas which decomposes to Ni and CO

on strong heating.

726 **(c)**

At 500° C Fe₂O₃ is reduced by CO to Fe and CO₂.

727 **(a)**

It is a fact.

728 (c)

Most of the transition metal ions due to presence of unpaired *d*-electrons are coloured.

729 **(d)**

Cr ions are coloured.

730 (c)

Strength of metallic bond depends upon number of upon number of unpaired electron. As number of unpaired electron increases, the bond strength increases. So, Cr, Mo, W show stronger bonding due to maximum number of unpaired electrons

731 (c)

Hg²⁺ complex salts are more stable.

732 **(b)**

 $2e + Cr_2O_7^{2-} \rightleftharpoons 2CrO_4^{2-}$ exists in basic medium.

733 (d)

Ti, Zr and Hf belong to IV B group of Periodic Table and in a group atomic radii increases on moving down. However, the transition metals of 4*d*-series have nearly the same radii as metals of 5*d* -series. Hence the order of atomic radii is $Ti < Zr \approx HF$

Due to nearly equal atomic radii, Zr and Hf are called chemical twins.

734 (a)

Basic character of oxides decreases from left to right in a period of Periodic Table

735 **(c)**

 $Mn_2O_7 + H_2O \rightarrow 2HMnO_4$ HMnO₄ is permanganic acid, which is violet in colour

736 **(b)**

Aqueous silver nitrate solution is used as indelible |748> (a) ink.

737 **(b)**

The fourteen elements which follow actinium from thorium(Z=90) to lawrencium (z=103) are called actinoids. They involve the filling of 5fsubshell. Californium (Cf) has the atomic number 98 and its configuration is as $Cf(Z = 98): [Rn]5f^{10}, 6d^0, 7s^2$

Hence, it is a member of actinide series.

738 (c)

Wrought iron is obtained from pig iron by removing its impurities by pudding process in which cast iron is heated on the hearth of reverberatory furnace.

739 **(b)**

Follow text.

740 (c)

Ammonium dichromate on heating gives green coloured powder of Cr₂O₃.

$$2(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} 2(NH_4)_2CrO_4 + Cr_2O_3 + 3O_2$$
chromic
oxide

741 **(b)**

CuO is amphoteric.

742 **(d)**

All these form soluble complexes with NH₃.

743 **(b)**

It is a reason for the low reactivity of transition elements.

744 (a)

 $E^{\circ}_{OP \text{ of H}} > E^{\circ}_{OP \text{ of Hg}}$

745 (a)

: 24 carat gold = 100%

∴ 18 carat gold=
$$\frac{100 \times 18}{24}$$
 = 75%

746 (d)

Ionic radii of lanthanide(La3+) decreases with increase in atomic numbe.

$$Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$$

Because Eu and Lu are the members of lanthanide series (so they show lanthanide contraction) and La is the representative element. Y³⁺ ion has lower ionic radii as comparison to La³⁺ because it lies immediately above in Periodic Table.

747 (d)

Coinage metals (Cu, Ag, Au) shows the properties of transitional elements as in their common oxidation states they possess partially filled *d*subshells

Annealing is the process of heating steel to bright red and then cooling it slowly. Steel thus, becomes soft and pliable.

749 **(b)**

Cast iron or pig iron (2-5% C); wrought iron (0.1 to 0.5% C), stell (0.1 to 1.5% C).

750 **(a)**

During the extraction of copper, the impurity (FeS) is removed as slag by mixing the contaminated copper ore with silica and coke.

$$2\text{FeS} + 30_2 \rightarrow 2\text{FeO} + 2\text{SO}_2$$

 $FeO + SiO_2 \rightarrow FeSiO_3$

silica ferrous silicate

(slag)

751 (a)

Usually across the first transition series, the negative values for standard electrode potential decrease except for Mn due to stable d^5 – configuration.

So, correct order: Mn > Cr > Fe > Co

752 **(c)**

Copper pyrite (CuFeS₂) is the chief ore of copper.

753 **(c)**

It is a fact.

754 (a)

FeCl₃ acts as coagulating agent for blood.

 $ZnCl_2$. $H_2O \rightarrow Zn(OH)Cl + HCl$

756 **(b)**

$$HgCl_2 + 2NaOH \rightarrow HgO + H_2O + 2NaCl$$
 yellow

757 (a)

$$2Na[Au(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Au$$
.

758 (a)

Due to lanthanoid contraction order will be $Yb^{3+} < Pm^{3+} < Ce^{3+} < La^{3+}$

759 **(b)**

$$HgS + 2HCl + 3[O] \longrightarrow HgCl_2 + H_2O + SO_2$$

760 (d)

The actinoids (5f-elements) exhibits more number of oxidation states in general than the lanthanoid because 5f-orbitals extend farther from the nucleus than the 4f-orbitals.

761 **(c)**

Silver nitrate is used in making hair dyes because it reduced to metallic silver and finely divided silver is black in colour.

762 **(b)**

$$2Kl + HgCl_2 \rightarrow Hgl_2 + 2KC$$

763 **(b)**

 $Cr_2O_7^{2-}$ changes to CrO_4^{2-} in basic medium.

764 (d)

For electroplating of gold, electrolyte used is a mixture of 3.4%AuCN, 19% KCN and Na₃PO₄ a buffer or K[Au(CN)₂].

765 **(b)**

Parke's process for desilverisation of lead involves extraction of Ag from Ag-Pb mixture.

766 **(b)**

Pt dissolves in aqua regia (HNO
$$_3$$
 + HCl $_{1:3}$) 3HCl + HNO $_3$ \rightarrow 2H $_2$ O + NOCl + 2Cl Pt + 4Cl \rightarrow PtCl $_4$;

$$PtCl_4 + 2HCl \rightarrow H_2PtCl_6$$
.

767 **(d)**

Argentite is Ag₂S, an ore of silver.

768 **(c)**

Variable valency is due to the participation of electron from (n-1)d and ns levels in bond formation

769 (c)

Hg is liquid at room temperature.

770 **(c)**

In Fe extraction limestone is used for the formation of slag. The central zone where the temperature varies from 800-1000°C; the limestone present in the charge decomposes into calcium oxide and carbon dioxide.

$$CaO_3 \xrightarrow{1000^{\circ}C} CaO + CO_2$$

The calcium oxide acts as flux and combines with silica present as an impurity to form a fusible slag of $CaSiO_3$.

$$CaO + SiO_2 \rightarrow CaSiO_3$$

771 (a)

The compounds which combine with impurities present in ore (at high temperature) and remove them as a fusible substance (slag), are known as flux. When basic impurities are present, an acidic flux is used and *vice-versa*.

FeO + $SiO_2 \rightarrow FeSiO_3$

basic impurity acidic flux

772 (a)

$$Ni^{2+} = [Ar] 3d^{8}$$

$$\boxed{1 \mid 1 \mid 1 \mid 1 \mid 1}$$

Number of unpaired electrons=2

Hence, magnetic moment= $\sqrt{n(n+2)}$ = $\sqrt{8}$ =2.84

773 **(b)**

HgS is used in ayurvedic medicine as makardhwaja.

 $HgCl_2$ is poisonous and its antidote is egg white. $ZnSO_4$ is used in eye lotion.

Hg₂Cl₂ is used as purgative in medicine and in making standard calomel electrode.

774 **(b)**

It is the desired chemical formula.

775 (a)

The differentiating electrons enter the ns-orbital but they have configuration $(n-1)d^{10} ns^2$.

776 **(a)**

$$\mbox{HgCl}_2 + 2\mbox{NH}_3 \stackrel{\mbox{H}_2\mbox{O}}{\longrightarrow} \mbox{Hg} + \mbox{NH}_2\mbox{HgCl} + \mbox{NH}_4\mbox{Cl}$$
 mercuric amino chloride

 \therefore HgCl₂ on reaction with NH₄OH (or NH₃ + H₂O) forms mercuric amino chloride.

777 **(b)**

Magnetic moment $=\sqrt{n(n+2)}$ BM Where, n is the number of unpaired electrons. Maximum the value of unpaired electron, greater the value of magnetic moment. So, $3d^5$ has highest value of magnetic moment.

778 **(d)**

Carbon (non-metal) is present in steel.

779 **(c)**

Corrosive sublimate is HgCl₂ because it has corrosion nature and sublimation nature.

780 **(b)**

$$CuSO_4 + 2KI \rightarrow Cul_2 + K_2SO_4$$

unstable

$$2 \text{Cu} \text{I}_2 \longrightarrow \text{Cu}_2 \text{I}_2 + \text{I}_2$$

Thus, CuI₂ is not formed.

781 **(b)**

Cuprous ion $(Cu^+)3d^{10}$ (completely filled *d*-subshell)

Cupric ion $(Cu^{2+})3d^9$ (one unpaired electron) $3d^9$

783 **(b)**

 Cr_2O_3 is amphoteric as it reacts with acid and alkalies both.

784 (a)

Pig iron on heating in a vertical furnace and then pouring into moulds gives cast iron. Both contain 2-5% carbon.

785 **(b)**

 $_{29}$ Cu⁺ has configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$.

786 (a)

In the blast furnace, iron ore is reduced by coke and carbon monoxide at different temperatures.

$$C + O_2 \longrightarrow CO_2$$

$$CO_2 + C \xrightarrow{1500^{\circ}C} 2CO$$

$$3Fe_2O_3 + CO \xrightarrow{400^{\circ}C} 2Fe_3O_4 + CO_2$$

$$Fe_3O_4 + CO \xrightarrow{600^{\circ}C} 3FeO + CO_2$$

$$FeO + CO \xrightarrow{700^{\circ}C} Fe + CO_2$$

787 **(d)**

These are reasons for the given fact.

788 **(d)**

ZnO possess this characteristics.

789 **(a)**

A solid $[AgNO_3(A)]$ silver nitrate which has photographic effects reacts with the solution of NaBr(B) to give a pale yellow ppt. of AgBr which is difficulty soluble in $NH_4OH.NaBr(B)$ on heating gives brown vapours of bromine.

$$AgNO_3 + NaBr \rightarrow AgBr + NaNO_3$$

'A' 'B' 'C'

light yellow ppt.

790 **(d)**

It is a reason for the given fact.

791 **(b)**

$$_{25}$$
Mn=1 s^2 ,2 s^2 ,2 p^6 ,3 s^2 ,3 p^6 ,4 s^2 ,3 d^5

∵ Number of unpaired electrons in Mn =5

∴ Magnetic moment of Mn = $\sqrt{n(n+2)}$ = $\sqrt{5(5+2)}$ = $\sqrt{35}$ = 5.91 BM

792 **(b)**

$$3Fe_{\text{Red hot}} + 4H_2O \longrightarrow Fe_3O_4 + 4H_2$$
Steam

793 **(b)**

Transition elements are more metallic than representative elements due to the availability of d-orbitals for bonding

794 (d)

Cerium can attain +4 oxidation state by losing ns and (n-2)f-electrons to have f° configuration.