COORDINATION COMPOUNDS

CHEMISTRY

Single Correct Answer Type

1.	The IUPAC name of Na ₃ [$[Co(ONO)_6]$ is:		
	a) Sodium cobaltinitrite			
	b) Sodium hexanitritoco	baltate(III)		
	c) Sodium hexanitrocoba	alt(III)		
	d) Sodium hexanitritoco			4 7
2.	•	ddition of KCN, the produc	ct is:	
	a) Cu(CN) ₄ ²⁻	b) [Cu(CN) ₄] ³⁻	c) $Cu(CN)_2$	d) CuCN
3.	· · · · ·	, , , , , , , , , , , , , , , , , ,	ıle in complex molecule res	
	a) Ionization isomerism	8 - 1 - 7	r	01
	b) Ligand isomerism			
	c) Hydration isomerism			
	d) Geometrical isomerisi	m		5
4 .	The type of isomerism for			
	a) Chain	, warea and an out amore and an		
	b) Position			
	c) Tautomerism			
	d) None of these			
5.	a) None of these	0	(A,) '	
	The IUPAC name of the c	compound is		
	a) Butane-2-aldehyde	b) 2-methyl butanal	c) 2-ethyl propanal	d) None of the above
5 .	Anisol is a product obtain	ned from phenol by the re	action known as:	
	a) Coupling	b) Etherification	c) Oxidation	d) Esterification
7.	Which of the following is	diamagnetic in nature?		
	a) $[Fe(CN)_6]^{3-}$	b) [NiCl ₄] ²⁻	c) $[Ni(CO)_4]$	d) $[MnCl_4]^{2-}$
3.	Which is the strongest fi	eld ligand?		
	a) CN ⁻	b) NO ₂	c) NH ₃	d) en
9.	Nitrobenzene on reducti	on with Zn and aq . NH ₄ Cl	gives:	
	a) Aniline			
	b) Nitrosobenzene)		
	c) N-phenyl hydroxylam	ine		
	d) Hydrazobenzene			
10.	The IUPAC name of [Co($NH_3)_5 ONO]^{2+}$ ion is		
	a) Pentaammine nitrito	cobalt (IV) ion	b) Pentaammine nitro c	obalt (III) ion
	c) Pentaammine nitrito	cobalt (III) ion	d) Pentaammine nitro c	obalt (IV) ion
11.	The compound which do	es not show paramagnetis	sm is	
	a) NO ₂	b) NO	c) $[Ag(NH_3)_2]Cl$	d) $[Cu(NH_3)_4Cl_2]$
12.	Which of the following is	s expected to undergo nitra	ation more easily and readi	ly to furnish the
	corresponding nitro deri	ivatives employing the usu	ial nitrating mixture?	
	a) C ₆ H ₆	b) C ₆ H ₅ NO ₂	c) $C_6H_5CH_3$	d) $C_6H_5 \cdot CCl_3$
13.	The number of unpaired	electrons calculated in [C	$o(NH_3)_6]^{3+}$ and $[Co(F_6)]^{3-}$	are
	a) 4 and 4	b) 0 and 2	c) 2 and 4	d) 0 and 4
14.	The IUPAC name of			
	HO-N=\(\) COOH	ic		
	$HO-N \longrightarrow COOH$. 10		

	a) 4-hydroxy amino benzene carboxylic acidc) 4-hydroxy imino cyclohexanoic acid	b) 4-(N-hydroxy) imino b d) 4-(N-hydroxy) imino c -carboxylic acid	-
15.	The IUPAC name of the coordination compound $K_2[Z]$	-	
10.	a) Potassium tetrahydroxozine (II)	b) Dipotassium tetrahydr	oxo(II)
	c) Potassium tetrahydroxozincate (II)	d) Potassium tetrahydrox	
16	Arrange in order of decreasing trend towards S_E read		iozmeute (m)
	Chlorobenzene, Benzene, Anilium chloride, Toluene:		
	I. (II) (IV)		
	a) $II > I > III > IV$ b) $III > I > II > IV$	c) $IV > II < I > III$	d) $I > II > III > IV$
17.	Toluene is nitrated and the resulting product is reduced in the resulting product in the resulting product is reduced in the resulting product in the resulting product is reduced in the resulting product in the resulting product is reduced in the resulting product in the resulting product is reduced in the resulting product in the resulting product is reduced in the resulting product in		
	obtained is diazotised and then heated with cuprous	-	_
	a) Mixture of <i>o</i> - and <i>m</i> -bromotoluenes		A Y
	b) Mixture of <i>o</i> - and <i>p</i> -bromotoluenes		
	c) Mixture of <i>o</i> - and <i>p</i> -dibromobenzenes		
	d) Mixture of <i>o</i> - and <i>p</i> -bromoanilines		
18.	A positive carbylamine test is given by:	C _A	
	a) <i>N</i> , <i>N</i> -dimethylaniline	10	
	b) 2,4-dimethylaniline		
	c) N-methyl-o-methylaniline		
	d) p -methyl benzylamine		
19.	$\ensuremath{CN^-}$ is strong field ligand. This is due to the fact that		
	a) It carries negative charge		
	b) It is a pseudohalide		
	c) It can accept electrons from metal species		
	d) It forms high spin complexes with metal species.		
20.	Which of the following is not true for ligand metal co	mplex?	
	a) Highly charged ligand forms strong bond		
	b) Greater the ionization potential of central metal, the		
	c) Larger the permanent dipole moment of ligand, th		
24	d) Larger the ligand, the more stable is the metal-liga		
21.	The nitration of nitrobenzene with fuming HNO ₃ will		15 4 4 15 5 1
22	a) TNB b) 1,3-dinitrobenzene	c) Picric acid	d) 1,4-dinitrobenzene
ZZ.	A ligand can also be regarded as	a) I avvia haga	d) Duamatad a sid
າາ	a) Lewis acidb) Bronsted baseThe correct statement with respect to the complexes	c) Lewis base	d) Bronsted acid
۷۵.	a) Nickel is in the same oxidation state in both	$NI(CO)_4$ and $[NI(CIV)_4]$	15
	b) Both have terahedral geometry		
	c) Both have square planar geometry		
	d) Have tetrahedral and square planar geometry res	nectively	
24	Which one of the following has lowest value of param	_	
	a) $[Cr(CN_6)_4]^{3-}$ b) $[Mn(CN)_6]^{3-}$	c) $[Fe(CN)_6]^{3-}$	d) $[Co(CN)_6]^{3-}$
25.	In the reaction;		a) [60(611)6]
	$OCH_3 \xrightarrow{HBr}$		
	the products are:		
	a) Br—OCH ₃ and H ₂		
	3 533, 2 12		

- 26. An octahedral complex is formed when central metal atom undergoes hybridization amongst the....orbitals.
 - a) sp^3

b) dsp^2

- c) sp^3d
- d) sp^3d

27. $\bigcirc ONa + CO_2 \xrightarrow{390 \text{ K}} X \xrightarrow{HCl}$

; the product X in the reaction is:

- 28. Biological oxidation of C_6H_6 taking place in body of dog, gives:
 - a) Benzoic acid
- b) Toluic acid
- c) Maleic acid
- d) Muconic acid
- 29. Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in the alkaline solutions but not in acidic solutions. What is the reason for it?
 - a) In acidic solutions hydration protects copper ions
 - In acidic solutions protons coordinate with ammonia molecules forming NH_4^+ ions and NH_3 molecules are not available
 - c) In alkaline solutions insoluble Cu(OH)₂is precipitated which is soluble in excess of any alkali
 - d) Copper hydroxide is an amphoteric substance
- 30. Which of the following has the highest molar conductivity in solution?
 - a) $[Pt(NH_3)_6]Cl_4$
- b) $[Pt(NH_3)_5Cl]Cl_3$
- c) $[Pt(NH_3)_4Cl_2]Cl_2$
- d) $[Pt(NH_3)_3Cl_3]Cl$

- 31. Which of the following is not *meta* directing group?
 - a) $-SO_3H$
- b) $-N0_2$
- c) —CN
- d) $-NH_2$

- 32. Which of the following is an organometallic compound?
 - a) Lithium methoxide

b) Lithium acetate

c) Lithium dimethylamine

- d) Methyl lithium
- 33. Which among the following is very strong *o*-, *p*-directing group?
 - a) —Cl
- b) -0R
- c) $-NH_2$
- d) —NH*R*
- 34. The type of hybridisation in tetrahedral complexes of metal atom is
 - a) dsp^2

b) d^2sp

c) sp^3

- d) sp^2
- 35. Chlorobenzene on heating with NaOH at 300°C under pressure gives:
- a) Phenol
- b) Benzaldehyde
- c) Chlorophenol
- d) None of these

36.	The coordination number a) 2, 3, 3	of Fe in [Fe(CN) ₆] ⁴⁻ [Fe(b) 6, 6, 4	$(CN)_6]^{3-}$ and $[FeCl_4]^-$ are rec(espectively. d) 6, 4, 6
37	Consider the following sta		c _j 0, 3, 3	uj 0, 4, 0
57.	_		gether between two isomer:	c
	-	=	s catalysed by acid as well a	
	III. Tautomers are always	•	is eathly sea by acia as well a	is buse
	IV. Tautomers are always			
	Select the correct answer		helow	
	a) Only III is correct	by using the codes given	b) III and IV are correct	
	c) I, II and III are correct		d) I, II and IV are correct	
38	What is the EAN of nickel	in [Ni(CN),] ²⁻ ?	aj i, ii una iv ure correct	
50.	a) 32	b) 35	c) 34	d) 36
30	•	•	t readily with conc. H_2SO_4 ?	u) 30
37.	a) $p-0_2NC_6H_4CH(OH)CH_3$	=	t readily with cone. 112504:	*
	b) p -ClC ₆ H ₄ CH(OH)CH ₃	3		
		П	4	0 4
	c) p -CH ₃ OC ₆ H ₄ CH(OH)CH	113		
40.	d) C ₆ H ₅ CH(OH)CH ₃ The compound having tet	rahadral gaamatrii ja	4	
40.	a) $[Ni(CN)_4]^{2-}$	b) [Pd(CN ₄)] ²⁻	a) [D4C] 12-	d) [NiCl ₄] ²⁻
41.	Identify ' Z ' in the change;		c) [PdCl ₄] ²⁻	u) [NICI4]
41.				
	$C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} X$	$\xrightarrow{\text{CuBr/HBr}}$ Z:		
	200 K		Dr	
	Br	Br		Br
	Ĭ	↓ _/ Br •	Br	D. D.
	a) (b)		d) Br
	^a) ()			u) ()
	•		 Br	\checkmark
42.	Which of the following is:	most acidic?	DI.	
1	a) <i>p</i> -cresol	b) <i>p</i> -chlorophenol	c) <i>p</i> -nitrophenol	d) p-aminophenol
43.	Benzoylacetonato berylliu			w, p
10.	a) Structural	b) Geometrical	c) Optical	d) Conformational
44.	Which one of the followin		, .	.,
	(At. No. Fe=26, Co=27, N		y	
	a) [CoCl ₄] ²⁻	b) [FeCl ₄] ²⁻	c) [NiCl ₄] ²⁻	d) [PtCl ₄] ²⁻
45.		,	cule of $FeSO_4(NH_4)_2SO_4 \cdot 6$	
10.	a) 4	b) 5	c) 3	d) 6
46.	A solution of potassium fe	•	,	a) o
101	a) 2	b) 3	c) 4	d) 5
47.	Which of the following is:	•	,	u) 0
	a) Grignard reagent	b) <i>cis</i> -platin	c) Zeise's salt	d) Ferrocene
48.				aldehyde is obtained. Which
- 3.	·		nentioned reaction as intern	
	0	OH	0	d) Both (a) and (b)
	↓ , _H	CHCl ₂	↓ _/ H	, () - (-)
	/ \ /	/ \ / _ /	/ \ /	

49. Number of geometrical isomers for the molecule

- 64. Pick a poor electrolytic conductor complex in solution:
 - a) $K_2[PtCl_6]$
- b) $[Co(NH_3)_3](NO_2)_3$
- c) $K_4[Fe(CN)_6]$
- d) $[Co(NH_3)_4]SO_4$

- 65. Benzene reacts with sulphuric acid only when the acid is:
 - a) Dilute and cold
- b) Dilute and hot
- c) Hot and concentrated d) Mixed with HNO₃

66. In the following reaction the catalyst used is:

$$H_2C$$
 CH_2
 CH_2

- a) Cr_2O_3
- b) Al₂O₃
- c) Zn dust
- d) Cr_2O_3 and Al_2O_3

- 67. The alkane which has only primary hydrogen atom is
 - a) Pentane

b) isopentane

c) neopentane

- d) 2, 2-dimethyl butane
- 68. The correct IUPAC name of the complex;

$$H_3C$$
 $C = N^{\bullet}$ $CoCl_2$ is $CoCl_2$ is $CoCl_2$ is $CoCl_2$ is

- a) Dichlorodimethylglyoximato cobalt(II)
- b) Bis(dimethylglyoxime) dichloro cobalt(II)
- c) Dimethylglyoxime cobalt(II) chloride
- d) Dichlorodimethylglyoxime-N,N-cobalt(II)
- 69. Which of the following nitroalkane will not show tautomerism?

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 \operatorname{NO}_2 \\ \text{b)} & | \\ \operatorname{CH}_3 \end{array}$$

$$\begin{array}{ccc} \operatorname{CH_3CH} - \operatorname{CH_2CH_3} \\ \operatorname{c)} & | \\ \operatorname{NO_2} \end{array}$$

d)
$$CH_3$$
 C $-NO_2$ CH_3

- 70. Which is low spin complex?
 - a) $[Fe(CN)_6]^{3-}$
- b) $[Co(NO_2)_6]^{3-}$
- c) $[Mn(CN)_6]^{3-}$
- d) All of these

- 71. The probable formula for Prussian blue is:
 - a) $Fe_3[Fe(CN)_6]_2$
- b) $Fe_2[Fe(CN)_6]_3$
- c) $Fe_4[Fe(CN)_6]_3$
- d) $Fe_3[Fe(CN)_6]_4$

Which represents Reimer-Tiemann reaction?

- 73. The complex ion which has no 'd'-electron in the central metal atom is:
 - a) $[MnO_4]^-$
- b) $[Co(NH_3)_6]^{3+}$
- c) $[Fe(CN)_6]^{3-}$
- d) $[Cr(H_2O)_6]^{3+}$
- 74. The shape of cobalt hexaammine cation, which has its central cobalt atom surrounded by six ammonia molecules is:
 - a) Tetrahedral
- b) Octahedral
- c) Square planar
- d) Trigonal
- 75. Which ligand is capable of forming low spin as well as high spin complexes?
- a) CO

b) NO₂

c) CN-

d) NH₂

76.

- The IUPAC name of
- a) 7-ethyl-2, 4, 5, 6-tetramethyl-deca-1, 9-diene
- b) 7-ethyl-2, 4, 5, 6-tetramethyl-deca-1, 8-diene
- c) 4-ethyl-4, 5, 6, 7-tetramethyl-deca-1, 9-diene
- d) 7-(1-propenyl)-2, 3, 4, 5-tetramethyl-non-1-ene
- 77. IUPAC name of [Pt(NH₃)₃Br(NO₂)Cl]Cl is
 - a) Triamminechlorobromonitro platinum (IV) chloride
 - b) Triamminebromonitrochloro platinum (IV) chloride
 - c) Triamminebromochloronitro platinum (IV) chloride
 - d) Triamminenitrochlorobromo platinum (IV) chloride
- 78. An aromatic ether is not cleaved by HI even at 525 K. The compound is:

b)
$$C_6H_5OC_6H_5$$

c)
$$C_6H_5OC_3H_7$$

- 79. Phenol does not react with:
 - a) Na₂CO₃
- b) NaOH
- c) NaHCO₃
- d) KOH

- 80. $[EDTA]^{4-}$ is a
 - a) Monodentate ligand

b) Bidentate ligand

c) Quadridentate ligand

- d) Hexadentate ligand
- 81. $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)_4Br_2]Cl_2$ are related to
 - a) Optical isomer
- b) Linkage isomers
- c) Coordinate isomers
- d) Ionization isomers

- 82. Ferrocene is an example of
 - a) Sand-wiched complex
 - b) Pi-bonded complex
 - c) A complex in which all the five carbon atoms of cyclopentadiene anion are bonded to the metal
 - d) All of the above
- 83. Which compound is zero valent metal complex?
 - a) $[Cu(NH_3)_4]SO_4$
- b) $[Pt(NH_3)_2Cl_2]$
- c) $[Ni(CO)_4]$
- d) $K_3[Fe(CN)_6]$
- 84. Which of the following compounds is 2, 2, 3-trimethyl hexane?
 - a) $(CH_3)_3CCH(CH_3)CH_2CH_3$

b) $(CH_3)_3CCH_2(CH_3)_2$

c) $(CH_3)_2CHCH_2CH_2C(CH_3)_3$

- d) (CH₃)₃CCH(CH₃)CH₂CH₂CH₃
- 85. The formula of phenoxy benzene is:
 - a) $C_6H_5C_6H_5$
- b) $C_6H_5-0-C_6H_5$
- c) $C_6H_5-0-C_6H_6$
- d) None of these

86. Ziegler-Natta catalyst is an organometallic compound containing b) Titanium c) Rhodium d) Zirconium a) Iron 87. Ziegler-Natta catalyst is a) $(Ph_3P)_3RhCl$ b) $K[PtCl_3(C_2H_4)]$ c) $[Al_2(C_2H_6)_6 + TiCl_4]$ d) $[Fe(C_2H_5)_2]$ 88. The tendency to show complex formation is maximum inelements. a) s-block b) p-block c) d-block d) f-block 89. EDTA has coordination number a) 3 b) 4 c) 5 d) 6 90. Which of the following is used in Friedel-Craft's acylation reaction? b) CH₃CH₂Cl c) CH₃COOCH₃ d) CH₃Cl a) CH₃CO 91. The correct IUPAC name of $Mn_3(CO)_{12}$ is a) Dodacacarbonyl maganate (0) b) Dodacacarbonyl maganate (II) c) Didacacarbonyl trimaganese (0) d) Manganic dodecacarbanyl (0) 92. The π -bonded organometallic compound which has ethene as one of its component is a) Zeise's salt b) Ferrocene c) Dibenzene chromium d) Tetraethyl tin 93. IUPAC name of the compound b) Ethyl-2-methyl-2-(o-nitro) phenyl propanoate a) Ethyl-2-methyl-2-(*m*-nitro) phenyl propanoate c) Ethyl-2-methyl-2-(3-nitro) phenyl propanoate d) Ethyl-2-methyl-2-(3-nitro) phenyl propanoic acid 94. What is the product obtained in the following reaction: 95. $[Co(NH_3)_6]Cl_3$ is called: a) Hexaammine cobalt (III) chloride b) Amino cobalt chloride (III) c) Cobalt chloride hexaammine d) Hexaammine tricobalt chloride 96. The complexes [PtCl₂(NH₃)₄]Br₂ and [PtBr₂(NH₃)₄]Cl₂ are example for isomerism a) Geometrical c) Ionization b) Optical d) Linkage 97. Geometrical shapes of the complexes formed by the reaction of Ni²⁺ with Cl⁻, CN⁻ and H₂O, respectively, a) Octahedral, tetrahedral and square planar b) Tetrahedral square planar and octahedral c) Square planar, tetrahedral and octahedral d) Octahedral, square planar and octahedral 98. Identify the correct order of reactivity in electrophilic substitution reactions of the following compounds:

b) 4 > 3 > 2 > 1

c) 2 > 1 > 3 > 4

a) 1 > 2 > 3 > 4

d) 2 > 3 > 1 > 4

	a) Dewar b) Armstrong and Baeyer		
	c) Ladenberg		
	d) Kekule		
100.	Which is the correct statement?		
	a) Benzyl alcohol is more acidic than phenol		
	b) Ethanol is a powerful oxidizing agent		
	c) Phenol is more acidic than propanol		
	d) Ethane has high boiling point than ethanol		
101.	Phenol on sulphonation gives:		
	a) o-phenol sulphonic acid		
	b) p-phenol sulphonic acid		
	c) <i>m</i> -phenol sulphonic acid		
100	d) Mixture of <i>o</i> -and <i>p</i> -phenol sulphonic acids	1 1 1 12	4
102.	Which of the following organometallic compound is		D M(D, Cl. (2 , G, M,))
400	a) $Fe(CH_3)_3$ b) $[Co(CO)_5NH_3]^{2+}$		d) $K[PtCl_3(\eta^2 - C_2H_4)]$
103.	The number of double bonds in BHC (gammexane)		D. E.
101	a) 1 b) 2	c) 3	d) Zero
104.	Given the molecular formula of the hexa coordinate	- , , ,	
	(C) $CoCl_3 \cdot 4NH_3$. If the number of coordinated NH_3	$_3$ molecules in A, B and C res	pectively are 6, 5 and 4,
	primary valency in (A) , (B) and (C) are		1) 0, 0, 0
105	a) 0, 1, 2 b) 3, 2, 1	c) 6, 5, 4	d) 3, 3, 3
105.	Type of isomerism shown by $[Cr(NH_3)_5 NO_2]Cl_2$ is		Direction
100	a) Optical b) Ionisation	c) Geometrical	d) Linkage
106.	[Sc(H2O)6]3+ ion is	h) Calayyad and astabada	nal.
	a) Colourless and diamagnetic	b) Coloured and octahedr	
107	c) Colourless and paramagnetic Which one of the following octahedral complexes w	d) Coloured and paramag	
107.	monodentate ligands)	viii iiot siiow geometricai iso	illerisiii: (A allu D ale
	a) $[MA_4B_2]$ b) $[MA_5B]$	c) $[MA_2B_4]$	d) $[MA_3B_3]$
1ΛΩ	The IUPAC name of the following compound is	C_{j} [$MH_{2}D_{4}$]	$u_J [M H_3 D_3]$
100.			
	O=C-CH-CH ₂ OH NH ₂ OH		
	a) 3-amino-2-hydroxy propanoic acid	b) 2-aminopropan-3-ol-1	
	c) 2-amion-3-hydroxy propanoic acid	d) Aminohydroxy propan	oic acid
109.	Which of the following complex ion is not expected	to absorb visible light?	
	a) $[Ni(CN)_4]^{2-}$		
	b) [Cr(NH ₃) ₆] ³⁺		
	c) [Fe(H ₂ O) ₆] ²⁺		
110	d) $[Ni(H_2O)_6]^{2+}$. 1	
	The correct sequence of activating power of a group	p in benzene is:	
	a) $-NH_2 > -NHCOCH_3 > -CH_3$ b) $-NH_2 < -NHCOCH_3 < -CH_3$		
	c) $-NH_2 > -NHCOCH_3 < -CH_3$		
111	d) $-NH_2 < -NHCOCH_3 > -CH_3$		
111.	The pair of compounds having metals in their higher a) MnO. FoCl.		
	a) MnO_2 , $FeCl_3$	b) [MnO ₄] ⁻ , CrO ₂ Cl ₂ d) [NiCl ₄] ²⁻ , [CoCl ₄] ⁻	
117	c) [Fe(CN) ₆] ³⁻ , [Co(CN) ₃] Total number of geometrical isomers for the complete of the c		ic
114.	Total number of geometrical isomers for the compl		d) 4
	a) 1 b) 2	c) 3	uj Ŧ

- 113. The reaction of chloroform with alc. KOH and *p*-toluidine forms:
 - a) H₃C NHCHCl₂
 - b) H₃C
- 114. Which order is correct in spectrochemical series of ligands?
 - a) $Cl^- < F^- < [C_2O_4]^{2-} < NO_2^- < CN^-$
 - b) $CN^- < [C_2O_4]^{2-} < Cl^- > NO_2^- < F^-$
 - c) $[C_2O_4]^{2-} < F^- < Cl^- > NO_2^- < CN^-$
 - d) $F^- < Cl^- < NO_2^- < CN^- < [C_2O_4]^{2-}$
- 115. The IUPAC name of compound $K_3[Fe(CN)_5NO]$ is
 - a) Pentacyano nitrosyl potassium ferrate(II)
 - b) Potassium cyano pentanitrosyl ferrate(II)
 - c) Potassium pentacyanonitrosyl ferrate (III)
- d) Potassium pentacyanonitrosyl ferrate (II)
- 116. The colour of $[Ti(H_2O)_6]^{3+}$ is due to:
 - a) Transfer of an electron from one Ti to another
 - b) Presence of water molecule
 - c) Excitation of electrons from d d
 - d) Intramolecular vibration
- 117. The oxidation number of Fe in $K_4[Fe(CN)_6]$ is

a)
$$+3$$

$$b) + 4$$

$$(c) + 2$$

d)
$$-2$$

118. Correct structures of [E][S]-5-bromo-2,7-dimetyl, non-4-ene is

a)
$$_{H_{3}C}$$
 $_{CH-CH_{2}}$ $_{CH_{2}-C-C_{2}H}$ $_{CH_{2}-C-C_{2}H}$

b)
$$H_3C$$
 $CH-CH_2$ CH_2 CH_2 CH_2 CH_3 CH_3

c)
$$H_3C$$
 CH CH_2 CH_2 CH_3 CH_2 CH_5 CH_3 CH_5 CH_2 CH_5 CH_5

d)
$$_{H_{3}C}$$
 $CH-CH_{2}$ $C=C$ $CH_{2}-C$ $CH_{2}-C$ CH_{3}

- 119. Name the metal *M* which is extracted on the basis of following reactions,
 - $4M + 8CN^{-} + 2H_{2}O + O_{2} \rightarrow 4[M(CN)_{2}]^{-} + 4OH^{-}$
 - $2[M(CN)_2]^- + Zn \rightarrow [Zn(CN)_4]^{2-} + 2M$:
 - a) Nickel
- b) Silver
- c) Copper
- d) Mercury

- 120. EAN of Cr in $[Cr(NH_3)_6]Cl_3$ is:
 - a) 32

c) 34

d) 35

- 121. The complex $[Pt(NH_3)_6]Cl_4$ furnishes:
 - a) 5 ions
- b) 6 ions
- c) 4 ions
- d) 2 ions
- 122. Ammoniacal solution of Ni(CN)₂ reacts with C₆H₆ to produce a light violet coloured crystalline compound of the formula:
 - a) Ni(CN)₂ · C₆H₅
- b) $C_6H_5CH_3$
- c) $Ni(CN)_2C_6H_6$
- d) Ni(CN)₂NH₃ · C₆H₆
- 123. Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solution but not in acidic solution. What is the reason for it?
 - a) In acidic solutions, hydration protects copper ions
 - b) In alkaline solution, insoluble Ci(OH)₂ is precipited which in excess of any alkali

- c) Copper hydroxide is an amphoteric substance
- In acidic solutions, protons coordinate with ammonia molecules forming $\mathrm{NH_4^+}$ ions and $\mathrm{NH_3}$ molecules are not available
- 124. Which of the following shows geometrical isomerism?
 - a) 1, 2-dicholoroethane

b) 1, 2-dimethylcyclopropane

- d) All of the above
- 125. The shape of the complex $[Ag(NH_3)_2]^+$ is:
 - a) Octahedral
- b) Square planar
- c) Tetrahedral
- d) Linear
- 126. The π -bounded organometallic compound which has ethane as one of its component is
 - a) Dibenzene chromium b) Zeise salt
- c) Ferrocene
- d) Tetraethyl tin

127. The major product of the following reaction is:

a)
$$N-CH_2-Br$$

$$O$$
 O
 O
 CH_2C1

- 128. Which is true in the case of Ni(CO)₄ complex?
 - a) Hybridization of Ni is sp^3
 - b) Tetrahedral shape of the molecule
 - c) Diamagnetic
 - d) All are correct
- 129. The reaction, $C_6H_5N_2Cl \xrightarrow{Cu_2Cl_2/HCl} C_6H_5Cl + N_2$ is called:
 - a) Etard's reaction
- b) Sandmeyer's reaction c) Wurtz-Fittig reaction d) Perkin's reaction

130 Wł	nich of the following do	es not show optical isome	rism?	
	$[Co(en)_3]^{3+}$	b) [Co(en) ₂ Cl ₂] ⁺	c) $[Co(NH_3)_3Cl_3]^0$	d) $[Co(en)Cl_2(NH_3)_2]^+$
131.	CH ₃	b) [do(en)zdiz]	0) [00(1113)3013]	a) [00(011)012(11113)2]
	CH ₃			
Ha	ving the IUPAC name a	S		
a)	1, 2-dimethyl cyclobuta	ane	b) 2, 3-dimethyl cyclobute	ene
c) :	2, 3-dimethyl butane		d) 1, 2-dimethyl cyclobut	-1-ene
132. Wł	nich of the following ior	ns is produced when we pr	epare nitrating mixture by	mixing together
cor	ncentrated HNO_3 and c	oncentrated H ₂ SO ₄ ?		
a) [NO_2^-	b) NO ₂ ⁺	c) NO ₃	d) SO ₃ ⁺ H
133. Th	e correct IUPAC name o	of		
	F I			
	Br .			
	is			
_	✓ CI		. (4	Y
-	1-brmo-2-chloro-6-fluo		b) 1-bromo-6-chloro-2-flu	
-	2-bromo-1-chloro-3-flo		d) 2-bromo-3-chloro-1-flo	oro-5-odobenzene
_	$o(NH_3)_4(NO_2)_2$]Cl exhi			
_	_	geometrical isomerism and	-	
=		ometrical isomerism and o		
	=	nization isomerism and opt	A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		nization isomerism and geo		. (1)
	-	-	matched with hybridisation	of their central metal ion?
-		sp^3		
	[Ni(CO) ₄] ²⁻	sp^3		
	[CoF6]3-	d^2sp^3		
	[Fe(CN) ₆] ³⁻	sp ³ a ²		
		using the codes given belo b) 1 and 3		d) 2 2 and 4
-	1 and 2 nich of the following is:		c) 2 and 4	d) 2, 3 and 4
	PCl ₅	b) HNO ₃	c) C ₆ H ₅ OH	d) 2,4,6-trinitrophenol
-	3	of Cr in $[Cr(NH_3)_3(H_2O)_3]$		uj 2,4,0-u ililu opilelloi
a)		b) 4	c) 6	d) 2
_		-	ppane-diol is heated with H	
	C_6H_5 — CH_2 — CO — CH_3		pane alor is neated with in	2504 13.
	C_6H_5 — CH_2 — CH_2 — CH			
	C_6H_5 $-CH_2$ $-CH = CH$			
	C_6H_5 $-CH_2$ $-CH$ $-CH$			
		-		
N	'0'			
	te of substitution in pho			
_	Slower than as in benze			
	Faster than as in benze			
-	Equal to that as in benz	zene		
-	None of the above	CM) le la la		1
			unpaired electrons are the	
_	Zero	b) 4	c) 3	d) 1
	= =	tion compound having cent		1) 17
a)	Ca	b) Mg	c) Na	d) K

142. Which of the following statements is incorrect?				
a) In K_3 [Fe(CN) ₆], the ligand has satisfied only the s	econdary valency of ferric	ion.		
	b) In K_3 [Fe(CN) ₆], the ligand has satisfied both primary and secondary valencies of ferric ion.			
	c) In $K_4[Fe(CN)_6]$, the ligand has satisfied both primary and secondary valencies of ferrous ion.			
d) $In[Cu(NH_3)_4]SO_4$, the ligand has satisfied only the				
143. Maximum number of open chain isomers that an alk				
a) 5 b) 4	c) 3	d) 2		
144. Which one is the wrong statement?				
a) Open chain compounds are called aliphatic				
b) Unsaturated compounds contain multiple bonds i	n them	AY		
c) Saturated hydrocarbons are called alkene				
d) Aromatic compounds possess a characteristic aro	ma			
145. According to postulates of Werner's theory for coord	dination compounds, which	of the following is true?		
a) Primary valencies are ionizable	b) Secondary valencies ar	e ionizable		
c) Only primary valencies are non-ionizable	d) Primary and secondary	y valencies are non-		
	ionizable	V		
146. Atomic numbers of Cr and Fe are respectively 24 and	d 26. Which of the followin	g is paramagnetic with the		
spin of the electron?				
a) $[Cr(CO)_{6}]$ b) $[Fe(CO)_{5}]$	c) [Fe(CN) ₆] ⁴⁻	d) $[Cr(NH_3)_6]^{3+}$		
147. Which of the following structures correspond to the				
CH ₂ Cl ₂ in presence of anhy. AlCl ₃ ?				
onzoiz in prosonee or anny rinois.	Cl			
a) $\langle \bigcirc \rangle$ CHCl ₂	c) $\langle \bigcirc \rangle \stackrel{\cdot}{c} \langle \bigcirc \rangle$	d) $\langle \bigcirc \rangle$ CH ₂ $\langle \bigcirc \rangle$		
	Cl			
148. Which of the following will give a pair of enantiomor	phs?			
a) [Co(en) ₂ Cl ₂]Cl	b) $[Cr(NH_3)_6][Co(CN)_6]$			
c) [Pt(NH ₃) ₄][PtCl ₆]	d) $[Co(NH_3)_4Cl_2]NO_2$			
149. The crystal field splitting energy for octahedral(Δ_0)	and tetrahedral (Δ_t) comp	lexes is related to		
Δ 1		d) $\Delta_0 = \frac{4}{9} \Delta_t$		
	c) $\Delta_0 = 2\Delta_t$,		
150. The correct name of the compound $[Cu(NH_3)_4](NO_3)$	$_{2}$) ₂ , according to IUPAC syst	tem is:		
a) Cuprammonium nitrate				
b) Tetraamminecopper(II) dinitrate				
c) Tetraamminecopper(II) nitrate				
d) Tetraamminecopper(I) dinitrate				
151. Which among the following will not show chain ison	nerism?			
a) C ₃ H ₈ b) C ₄ H ₁₀	c) $C_5H_{12}O$	d) $C_5H_{10}O$		
152. Phenol (1 mole) reacts with bromine to give s-tribro				
a) 1.5 mole b) 3.0 mole	c) 4.5 mole	d) 6.0 mole		
153. Dimethyl glyoxime forms a coloured complex with	o, 110 111010	,		
a) Ag b) Ni	c) Cr	d) Zn		
154. Which has regular tetrahedral geometry?	c) di	u) zn		
a) $[Ni(CN)_4]^{2+}$ b) SF_4	c) [BF ₄] ⁻	d) XeF ₄		
	C) [Dr4]	u) her ₄		
155. In haemoglobin the iron shows oxidation state:	a) 11	٨٠ ١٨		
a) $+2$ b) $+3$	c) +1	d) +4		
156. For the given complex $[CoCl_2(en)(NH_3)_2]^+$, the num		s, the number of optical		
isomers and total number of isomers of all type poss		D 0 2 12		
a) 2, 2 and 4 b) 2, 2 and 3	c) 2, 0 and 2	d) 0, 2 and 2		
157. Which can show aromatic character?				

a) Furan	b) Pyrrol	c) Benzene	d) All of these		
	nplexes, the one with the larges				
a) $[Fe(H_2O)_6]^{3+}$	b) [Ru(CN) ₆] ³⁻				
-	159. The specific rotation of a pure enantiomer is $+$ 16°. Its observed rotation if it is isolated from a reaction				
	tion and 75% retention is		22 4 60		
a) -12°	b) +12°	c) +16°	d) -16°		
-	doaluminate is correctly represe		22		
a) Al[LiH ₄]	b) Al ₂ [LiH ₄] ₃	c) Li[AlH ₄]	d) $Li[AlH_4]_2$		
	ing compounds is generally use				
a) Ni(CO) ₄	b) [(C ₆ H ₅) ₃ P] ₃ RhCl	c) $(CH_3)_3Al$	d) (C ₅ H ₅) ₂ Fe		
162. The end product of					
$C_6H_6 + Cl_2 \xrightarrow{Sunlight} i$	S:		A		
a) C ₆ H ₅ Cl	b) o-C ₆ H ₄ Cl ₂	c) C ₆ H ₆ Cl ₆	d) p -C ₆ H ₄ Cl ₂		
163. $[Pt(NH_3)_6]Cl_4 com_1$	olex gives		4		
a) 4 ions	b) 3 ions	c) 2 ions	d) 5 ions		
164. Which does not obe	ey EAN rule?				
a) $[Cu(NH_3)_4]^{2+}$	b) $[Zn(OH)_4]^{2-}$	c) [HgI ₄] ²⁻	d) Fe(CO) ₅		
165. Oxidation number of	of Fe in $K_3[Fe(CN)_6]$ is:				
a) +3	b) +2	c) +10	d) 1		
166. Which of the follow	ing is not an organometallic con	-			
a) NaOC ₂ H ₅	b) (CH ₃) ₃ Al	c) $(C_2H_5)_4Pb$	d) RMgX		
167. Considering H ₂ O as	weak field ligand, the number	of unpaired electrons in			
[Mn(H2O)6]2+ will	be (Atomic no. of Mn=25)				
a) Three	b) Five	c) Two	d) Four		
	nly' magnetic moment for one o				
a) d^4 (in weak ligar		b) d^4 (in strong ligand field)			
- · · · · · · · · · · · · · · · · · · ·	rell as in strong field)	d) d^5 (in weak ligand fie	ld)		
	$\mathrm{H_5F}$) can be synthesized in the l	aboratory:			
a) By heating phen					
	diazotisation followed by heatir	ng the diazonium salt with I	HBF ₄		
	ation of benzene with F ₂ gas				
	nobenzene with NaF solution				
-	urns with a sooty flame?				
a) C ₆ H ₅ CH ₂ OH					
b) C ₆ H ₅ COOH					
c) CH ₃ OH	<i>Y</i>				
d) CH ₃ COC ₂ H ₅					
	thylenediaminetetraacetic acid) molecules are required to	make an octahedral		
complex with a Ca ²					
a) Six	b) Three	c) One	d) Two		
	rrangement of phenyl esters to	give o -and p -derivatives in	presence of AlCl ₃ is known		
as:					
a) Friedel-Craft's re					
b) Fries rearrangen	nent				
c) Esterification					
d) Coupling	l D				
	produce R—CO—Ar species?	Δ1C1			
	$\xrightarrow{\text{AlCl}_3} \text{b) COCl} + \text{RMgX} \rightarrow$	c) $RCOCl + H-Ar \xrightarrow{AlCl_3}$	d) $R + CrO_3 \rightarrow$		
174. Acidic character of	phenol is due to:				
a) Resonance of ph	enoxide ion				

b) Tautomerism occurring in phenol		
c) The fact that the electronegativity of or	xygen is more than that of hy	drogen
d) None of the above	,	3
175. In triethylenediamine cobalt(III) chloride	e the coordination number of	cobalt is:
a) 3 b) 4	c) 6	d) 7
176. Mark the unidentical compound		ω, ,
CH ₃	, ₄ Br	
	Di	П
a) \	c) 📗	d) H C
CH ₃	Br	H ₃ C V VBr
177 A		
177. A complex compound in which the oxidat		
a) $K_4[Fe(CN)_6]$ b) $K_3[Fe(CN)_6]$		d) $[Pt(NH_3)_4]Cl_2$
178. In the halogenation of aromatic nucleus, t	_	-
a) Cl b) Cl ⁺	c) Cl ⁻	d) Cl
179. Among $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ and $[Ni(CC)_4]^{2-}$	_	
a) $[Ni(CN)_4]^{2-}$ is square planar and , $[Ni(CN)_4]^{2-}$		al Company
b) $[{ m NiCl_4}]^{2-}$ is square planar and $[{ m NiCN_4}]$		
c) $Ni(CO)_4$ is square planar and $[Ni(CN)_4]$	$[2^{2}, [NiCl_4]^{2}]$ are tetrahedral	
d) None of the above		
180. Benzene is obtained by:		,
a) Condensation of three C ₂ H ₂ molecules		
b) Polymerization of three C ₂ H ₂ molecule	es	
c) Addition of three C ₂ H ₂ molecules		
d) Substitution of three acetylene molecu	lles	
181. IUPAC name of t -butyl chloride is		
a) 2-chloro butane	b) 1-chloro-2-me	ethylpropane
c) 2-chloro-2-methylpropane	d) None of the al	oove
182. The d -electronic configuration of Cr^{2+} , M	n^{2+} , Fe^{2+} , Ni^{2+} are $3d^4$, $3d^5$, $3d^5$	$ m 8d^6$ and $ m 3d^8$ respectively. Which of
the following complex will show minimum	m paramagnetic behaviour?	
a) $[Fe(H_2O)_6]^{2+}$ b) $[Ni(H_2O)_6]^{2+}$		d) $[Mn(H_2O)_6]^{2+}$
183. Phenol is more acidic than cyclohexanol b		7 (2 70)
a) Benzene ring exists in resonance		
b) Cyclohexane ring shows resonance		
c) Phenol is poor in hydrogen		
d) Cyclohexanol is rich in hydrogen		
184. Total possible structural isomers (not ste	ereo) of C ₄ H _c are	
a) 4 b) 6	c) 9	d) 12
185. In the reaction of <i>p</i> -chlorotoluene with K	•	
a) <i>o</i> -toluidine b) <i>m</i> -toluidine		d) <i>p</i> -chloroaniline
186. The type of isomerism in the molecule of		
referred as:	compounds ch ₃ ch ₂ coch ₂ ch	ing and chigche (On) chi2chi3 is
a) Metamerism		
b) Chain isomerism		
c) Functional isomerism		
d) Tautomerism		
187. Phenol is less soluble in water. It is due to):	
a) Non-polar nature of phenol		
b) Acidic nature of—OH group		
c) Non-polar hydrocarbons part in it		
d) None of the above		

188. When phenol is treated with excess bromine water, it gives: a) *m*-bromophenol b) *o*-and *p*-bromophenol c) 2,4-dibromophenol d) 2,4,6-tribromophenol 189. Which have octahedral shape (d^2sp^3) hybridization of central atom? b) $[Fe(CN)_6]^{3-}$ a) $[Cr(NH_3)_6]^{2+}$ c) $[Cu(NH_3)_6]^+$ d) All are correct 190. Which of the following molecules/species are aromatic in character? **(1)** (3) (4) a) 2 b) 3 c) 4 191. Among the following compounds; the order of basicity is: c) III > IV > IIa) IV > III > II > Ib) II > I > III > IVd) I > III > IV > II192. The correct name of CO₃ Fe Fe CO3 is: a) Tri-µ-carbonyl bis-(tricarbonyl)iron (0) b) Hexacarbonyl iron (III) μ-tricarbonyl ferrate(0) c) Tricarbonyl iron(0) μ-tricarbonyl iron(0) tricarbonyl d) Nonacarbonyl iron 193. Which is high spin complex? a) [CoCl₆]³⁻ c) $[Co(NH_3)_6]^{2+}$ d) All are correct b) [FeF₆] 194. The correct IUPAC name of tartaric acid is a) 1, 4-dicarboxy-2, 3-dihydroxy ethane b) α , α' -dihydroxy butane-1,4-dioic acid c) 1, 4-dihydroxybutane-2, 3-dioic acid d) 2, 3-dihydroxybutane-1, 4-dioic acid 195. What is the overall formation equilibrium constant for the ion $[ML_4]^{2-}$ ion, given that β_4 for this complex is 2.5×10^{13} ? b) 5×10^{-13} a) 2.5×10^{13} c) 2.5×10^{-14} d) 4.0×10^{-13} 196. The oxidation state of Cr in $[Cr(NH_3)_4 Cl_2]^+$ is b) +1c) + 2d) + 3197. Which of the following compounds has the most acidic nature? OΗ CH₂OH OH

198. The oxidation state of Mo in its oxo-complex species $[Mo_2O_4(C_2H_4)_2(H_2O)_2]^{2-}$ is:

a) +2

b) +3

c) + 4

d) + 5

199. CH₃MgI is an organometallic compound due to

- a) Mg —I bond
- b) C —I bond
- c) C-Mg bond
- d) C —H bond

200. The effective atomic number of Cr (At. No.=24)in $[Cr(NH_3)_6]Cl_3$ is

b) 27

c) 33

d) 36

201. When aniline is heated with benzaldehyde, the product is:

- a) Benzoin
- b) Schiff's base
- c) Unsaturated acid
- d) Azoxy benzene

- 202. Slow heating of salicylic acid gives:
 - a) Benzoic acid
- b) Phenol
- c) Benzaldehyde
- d) None of these
- 203. According to Hückel, monocyclic compounds will show aromaticity when:
 - a) It has 4π -electrons
 - b) It has no π-electron
 - c) It has $4\pi+2$ electrons
 - d) It has $(4n + 2)\pi$ -electrons
- 204. When phenol is distilled with zinc dust, it gives:
 - a) Benzene
- b) Toluene
- c) C_6H_5CHO
- d) None of these

205. The IUPAC name of the given structure

a) N-chloro-N-bromoethanamide

b) N-bromo-N-chloroethanamide

c) N-bromo-N-chloroacetamide

- d) N-chloro-N-bromoacetamide
- 206. Acetophenone when reacted with a base C₂H₅ONa, yields a stable compound which has the structure:

- 207. Which of the following has maximum resonance energy?
 - a) Diphenyl
- b) Benzene
- c) Naphthalene
- d) Phenanthrene

- 208. Benzene sulphonic acid on treating with P₂O₅ gives:
 - a) Salicylic acid
- b) Benzoic acid
- c) Acid anhydride
- d) Sodium benzoate

209. Compounds with following formula will show

 $\begin{array}{c} \text{Cl} \\ | \\ \text{(i) } \text{CH}_3\text{CH}_2\text{CHCH}_2\text{CH}_3 \text{ and (ii) } \text{CH}_3\text{CH}_2\text{C} - \text{CH}_3 \\ | \\ \text{Cl} \end{array}$

- a) Position and functional isomerism
- b) Chain and positional isomerism
- c) Chain and functional isomerism
- d) None of the above combinations
- 210. Which of the following statements is correct?
 - a) In K₃[Fe(CN)₆, the ligand has satisfied both primary and secondary valencies of ferric ion
 - b) In (Cu(NH₃)₄SO₄, the ligand has satisfied only the secondary valency of copper
 - c) In K₃[Fe(CN)₆, the ligand has satisfied only the secondary valency of ferric ion
 - d) Both (b) and (c)
- 211. Which statement is not correct?
 - a) Fe(CO)₅ reacts with Br₂Cl₄

- b) Carbonyl complexes are usually formed with transition metals
- c) All transition metals form monometallic carbonyls
- d) The decomposition of Ni(CO)₄ to give Ni is used in the extraction of Ni by Mond's process
- 212. The complex showing a spin-only magnetic moment of 2.82 BM is
 - a) $Ni(CO)_4$
- b) [NiCl₄]²⁻
- c) Ni(PPh₃)₄
- d) $[Ni(CN)_4]^{2-}$

- 213. The IUPAC name of [CoCl(NO₂)(en)₂]Cl is:
 - a) Chloronitro-bis(ethylenediamine) cobaltic(III) chloride
 - b) Chloronitro-bis(ethylenediamine)cobalt(II) chloride
 - c) Chloro-bis(ethylenediamine)nitrocobalt(III) chloride
 - d) Bis-(ethylenediamine)chloronitrocobalt(III) chloride
- 214. The product of acid catalysed hydration of 2-phenyl propene is:
 - a) 3-phenyl-2-propanol
 - b) 1-phenyl-2-propanol
 - c) 2-phenyl-2-propanol
 - d) 2-phenyl-1-propanol
- 215. Carbolic acid is the name used for:
 - a) Opium
- b) Phenol
- c) Chloroform
- d) H₂CO

216. The major product of the following reaction

- 217. The oxidation number of cobalt in $K[Co(CO)_4]$ is
 - a) -1

b) + 3

c) +1

d) -3

- 218. Formaldehyde-phenol resin is:
 - a) Orlon
- b) Nylon
- c) Teflon
- d) Bakelite
- 219. Among the ligands NH₃, en, CN⁻ and CO, the correct order of their increasing field strength, is
 - a) $CO < NH_3 < en < CN^-$

b) $NH_3 < en < CN^- < CO$

c) $CN^- < NH_3 < CO < en$

- d) en < CN $^-$ < NH $_3$ < CO
- 220. Cyclopentadienyl anion is aromatic due to the presence of:
 - a) 6π-electrons
- b) 10π -electrons
- c) 4π -electrons
- d) 12 π-electrons

- 221. The IUPAC name of $K_4[Fe(CN)_6]$ is
 - a) Potassium ferrocyanide
 - c) Tetra potassium hexa cyanoferrate (II)
- b) Potassium hexa cyanoferrate (I)
 - d) Potassium hexa cyanoferrate (II)
- 222. Which xylene is most easily sulphonated?
 - a) Ortho
- b) Para

c) Meta

d) All at the same rate

223. The IUPAC name of following polyfunctional compound is

a) 2,4-dioxo cyclohexanoic acid

- b) 2,4-dioxo cycloheptanoic acid
- c) 4-formyl-2-oxo cyclohexane-1-carboxylic acid
- d) 2,4-dioxo cyclohexane-1-carboxylic acid
- 224. Alkyl groups are *o* and *p*-directing because of:
 - a) Resonance effect
 - b) Inductive effect
 - c) Resonance effect through hyperconjugation
 - d) All of the above
- 225. Racemic modification can be resolved by
 - a) The use of enzymes c) Fractional distillation

- b) Fractional crystallisation
- d) None of the above
- 226. Which of the following structure contain 1 primary and 7 secondary hydrogen atoms?

$$CH_2 - CH_3$$
 CH_3
 $CH_3 - CH_2 - CH - CH_2 - CH_3$
 $CH_3 - CH_2 - CH_2 - CH_2$

 $CH_2 - CH_3$ 227. Which of the following compounds does not dissolve in conc. H₂SO₄ even on warning? a) Ethylene b) Benzene c) Hexane 228. In the complex $Fe(CO)_x$, the value of x is and it is: c) 5, trigonal pyramidal a) 3, octahedral b) 4, tetrahedral d) 6, square pyramidal 229. The empirical formula of naphthalene is: b) C_5H_4 c) C_2H d) $C_n H_{2n}$ a) CH₂ 230. The chemical formula of diammine silver (I) chloride is b) $[Ag(NH_3)_3]Cl$ c) $[Ag(NH_4)_2]Cl$ d) $[Ag(NH_3)_2]C$ a) $[Ag(NH_3)Cl]$ 231. For the square planar complex [M(a)(b)(c)(d)] (where , M=central metal and a, b, c, and d are monodentate ligands), the number of possible geometrical isomers are a) 1 b) 2 232. Which group is *meta* directing? a) -CCl₃ b) - OHc) $-NH_2$ 233. The IUPAC name of the compound $[Cu(NH_3)_4(NO_3)_2]$ is: a) Cuprammonium nitrate b) Dinitratotetraamminecopper(II) c) Tetraamminecopper(II) dinitrite d) Tetraamminecopper(III) dinitrite 234. Coordination number of Fe in the complexes $[Fe(CN)_6]^{4-}$, $[Fe(CN)_6]^{3-}$ and $[FeCl_4]^-$ would be respectively a) 6, 4, 6 b) 6, 6, 4 c) 6, 3, 3 235. Which statement is true for cyclohexane? a) It has two possible isomers b) It has three conformations c) Boat conformation is most stable d) Chair and boat conformations differ in energy by 44 kJ/mol 236. Ligands in a complex salt are: a) Anions linked by coordinate bonds to a central metal atom or ion b) Cations linked by coordinate bonds to a central metal atom or ion c) Molecules linked by coordinate bonds to a central metal atom or ion d) Ions or molecules linked by coordinate bonds to a central metal atom or ion 237. The IUPAC name of CH₃COCH₂COOC₂H₅ is a) Ethyl butanoate b) Ethyl-(3-oxo)butanoate c) Ethyl butan-1-oate-2-one d) Ethyl butan-4-oate-2-one 238. When benzene is treated with CO and HCl in presence of anhydrous aluminium chloride, benzaldehyde is formed. This reaction is known as: a) Friedel-Craft's reaction b) Rosenmund's reaction c) Stephen's reaction d) Gattermann-Koch's reaction 239. $[Cr(NH_3)_6]^{3+}$ ion is: a) Paramagnetic b) Diamagnetic c) Square planar d) None of these 240. The following compound can exhibits

b) Optical isomerism

d) Geometrical and optical isomerism

a) Tautomerism

c) Geometrical isomerism

241. Which complex is diamagnetic?

a) $[Fe(CN)_6]^{4-}$	b) $[Cu(NH_3)_4]^{3+}$	c) $[Ti(H_2O)_6]^{3+}$	d) None of these
242. Meso-tartaric acid i	s optically inactive due to th	e presence of	
a) Molecular symm	etry	b) Molecular asymm	etry
c) External compen	sation	d) Two asymmetric (C-atoms
243. Complex forming te	ndency increases with:		
a) Increase in size o	of cation		
b) Decrease in size	of cation		
c) Increase in size o	of anion		
d) None of the abov	e		
244. Ziegler-Natta cataly	est is		
a) $(Ph_3P)_3RhCl$		b) $Al_2(C_2H_6)_6 + TiC_1$	4
c) $Fe(C_2H_5)_2$		d) $K[PtCl_3(C_2H_4)]$	
245. Among the followin	g compounds the one that is	most reactive towards ele	ctrophilic nitration is:
a) Toluene	b) Benzene	c) Benzoic acid	d) Nitrobenzene
246. Phenol on oxidation	gives chloranil. The oxidan	t used is:	
a) $K_2S_2O_8$	b) KMnO ₄	c) $KClO_3 + HCl$	d) None of these
247. The IUPAC name of	the compound		
CH ₃ —CH-	CH_2CH_3		

$$\begin{array}{c|c} \mathsf{CH_3} & -\!\mathsf{CH} -\!\mathsf{CH_2} -\!\mathsf{CH_3} \\ \mathsf{CH_3} -\!\mathsf{CH_2} -\!\mathsf{CH} -\!\mathsf{CH} -\!\mathsf{CH} -\!\mathsf{CH_2} -\!\mathsf{CH_2} -\!\mathsf{CH_3} \\ \mid & \mid & \mid \\ \mathsf{CH_3} & \mathsf{CH_2} -\!\mathsf{CH_3} \end{array}$$

a) 3-sec-butyl-5-ethyl-3-methyloctane

b) 4-sec-butyl-5-ethyl-3-methyloctane

c) 5-sec-butyl-4-ethyl-3-methyloctane

d) 4-sec-butyl-3-ethyl-5-methyloctane

248. All the common m-directing groups.....the benzene ring towards electrophilic substitution reactions.

a) Deactivate

b) Activate

c) Both (a) and (b)

d) None of these

249. Among the following, the coloured compound is:

b) $K_3C_4(CN)_4$

c) CuF₂

d) $[Cu(CH_3CN)_4]BF_3$

250. The existence of two different coloured complexes with the composition of $[Co(NH_3)_4Cl_2]^+$ is due to:

- a) Linkage isomerism
- b) Geometrical isomerism
- c) Coordination isomerism
- d) Ionisation isomersim
- 251. [Co(NH₃)₄Cl₂] possesses:
 - a) Square planar geometry
 - b) Tetrahedral geometry
 - c) Tetrahedral nature
 - d) Octahedral geometry
- 252. Which one does not belong to ligand?

b) NO+

c) BF₃

d) Cl-

253. Product formed in the reaction;

Phenol
$$\xrightarrow{\text{(CH}_3)\text{SO}}$$
 Product; is

254. Which one of the following has square planar structure?

a) $[Ni(CN)_4]^{2-}$

b) [Ni(CO)₄]

c) [NiCl₄]²⁻

d) All of these

255. 4-methyl benzene sulphonic acid reacts with sodium acetate to give:

- 256. Phthalein test is characteristics ofand is given by it.
 - a) Alcohols
- b) Phenols
- c) Aldehydes
- d) Ketones
- 257. Which of the following compounds would exhibit coordination isomerism?
 - a) $[Cr(H_2O)_6]Cl_2$
- b) $[Cr(NH_3)_6][Co(CN)_6]$ c) $[Cr(en)_2]NO_2$
- d) $[Ni(NH_3)_6][BF_4$

 SO_2 —O—COCH₃

:NaOH

258. In a reaction of aniline a coloured product C was obtained.

The structure of *C* would be:

259. The carboxyl functional group (-COOH) is present in:

- a) Picric acid
- b) Barbituric acid
- c) Ascorbic acid
- d) Aspirin
- 260. Which of the following is an example of electrophilic substitution reaction?
 - a) Acylation
- b) Alkylation
- c) Benzoylation
- d) All of these
- 261. The number of ions given by $[Co(NH_3)_4]Cl_3$ in aqueous solution is:

b) 3

d) 4

- 262. Which of the following is an organometallic compound?
 - a) $Ti(OC_6H_5)_4$
- b) Ti(0C0CH₃)₄
- c) $Ti(OC_2H_5)_4$
- d) $Ti(C_2H_5)_4$
- 263. A solution of CuCl in NH₄OH is used to measure the amount of which gas is a sample by simply measuring change in volume?
 - a) CO₂

b) H₂

c) CO

- d) All of these
- 264. On passing benzene vapour through a tube at 700-800°C or through molten lead we get:
 - a) Diphenyl
- b) Phenol
- c) Toluene
- d) Benzaldehyde
- 265. Picric acid is a yellow coloured compound. Its chemical name is:
 - a) *m*-nitrobenzoic acid
- b) 2,4,6-trinitrophenol
- c) Trinitrotoluene
- d) Trinitroaniline
- 266. The ideal starting material for the synthesis of *m*-chloronitro benzene is:

- a) Benzene 267. In a reaction involving ring substitution of C_6H_5Y , the major product is *meta*-isomer. The group Y can be:
 - b) Chlorobenzene
- c) Toluene
- d) Nitrobenzene

- a) $-NH_2$
- b) —COOH
- c) $-CH_3$
- 268. When ammonia is added to green aqueous solution of nickel(II) sulphate, the colour of the solution changes to blue violet. This is caused by:
 - a) Nickel undergoing a change in oxidation state
 - b) Ammonia molecules replacing water molecules surrounding nickel
 - c) Change in coordination number of nickel
 - d) Change in pH value of the solution
- 269. The compound, whose stereo chemical formula is written below, exhibits x-geometrical isomers and optical isomers. The value of x and y are

- a) 4 and 4
- b) 2 and 2
- c) 2 and 4
- 270. Among the following-phenol, benzoic acid, nitrobenzene and toluene, the compound that undergoes nitration readily is:
 - a) Benzoic acid
- b) Toluene
- c) Phenol
- d) Nitrobenzene

- 271. Which one is organometalllic compound?
 - a) Lithium acetate

b) Lithium methoxide

c) Lithium dimethyl amide

- d) Methyl lithium
- 272. What are the products formed when an equimolar mixture of benzaldehyde and formaldehyde is heated with concentrated NaOH?
 - a) C₆H₅—CH₂—OH and H—COONa
 - b) C₆H₅—COONa and CH₃—OH
 - c) C_6H_5 — CH_2 —COONa
 - d) C₆H₅—COOH and CH₃—ONa
- 273. Gammexane (a γ -isomer of) is:
 - a) BHC
 - b) Benzene hexachloride
 - c) Lindane
 - d) All of these
- 274. Number of electrons gained by Pd in $[PdCl_4]^{2-}$:

b) 8

c) 10

- d) 0
- 275. Which of the following is considered to be an anticancer species?

- 276. For benzaldehyde which of the following is incorrect?
 - a) It is an aromatic aldehyde

	b) It is used in perfumery			
	c) On oxidation it yields b			
	d) On reduction it yields p			
77	. The main source of aroma			
<u>.</u>	a) Wood	b) Petroleum	c) Coal	d) Both (b) and (c)
70		•		u) botii (b) aliu (c)
4/0.		in presence of a nickel cata	=	15 1 1
	a) Benzene	b) Cyclohexane	c) Cyclohexanol	d) <i>n</i> -hexanol
279.	. The IUPAC name of comp	ound		
	C≡N ∧			
	$N = \bigvee \bigvee$ is			
	a) Hexane-1, 2, 5-tricarbo	onitrile	b) Hexane-1, 3, 6-tricarbo	nitrile
	c) Butane-1, 2, 4-tricarbo		d) Butane-1, 3, 4-tircarbox	
280.		ociated with which one of t		
	a) $[M(AA)_2]$	b) $[MA_3B_3]$	c) $[M(AA)_3]$	d) [<i>MABCD</i>]
281.		the correct order of stabilit	2 2	
	butane?		,	V
		Partially eclipsed > Fully e	clinsed	
		partially eclipsed > Fully e	-	
		clipsed > Gauche > Fully e	_	
		ered > Partially eclipsed >	-	
282		ydrogen bonds within the r		
202.	a) Very high m.p.	b) Very high viscosity	c) Low m.p.	d) none of these
202	, , , .	not form mononuclear carb		d) none of these
203.	a) Fe	b) Mn	c) Ni	d) W
201	. Which of the following is	· ·	C) INI	u) vv
204.		nexacentate nganu:	h) Ethylono diamino totro	agetic agid
	a) Ethylene diamine		b) Ethylene diamine tetra	acetic aciu
205	c) 1,10-phenanthroline		d) Acetyl acetonato	(- 1
285.		a saturated compound is C		
	a) Functional isomers	b) Position isomers	c) Optical isomers	d) <i>cis – trans</i> isomers
286.	. An octahedral complex is	formed when hybrid orbita b) dsp^2	als of the following type are	involved
				d) sp^2d^2
287.		ven compound $CH_3 - CH =$		
	a) Ethyl propenoate		b) Ethyl-2-butenoate	
	c) Ethyl-1-butenoate		d) Propene ethyl methano	oate
288.		nined by heating wood or co		
	a) Coal-tar	b) Naphthalene	c) Benzene	d) Wax
289.		benzoate with calcium for	=	
	a) Acetaldehyde	b) Benzoic acid	c) Benzaldehyde	d) Benzoic anhydride
290.	. Which will give Fe ³⁺ ions	in solution?		
	a) $[Fe(CN)_6]^{3-}$			
1	b) Fe ₂ (SO ₄) ₃ c) [Fe(CN) ₆] ⁴⁻ d) NH ₄ (SO ₄) ₂ · FeSO ₄ · 6H			
	c) $[Fe(CN)_6]^{4-}$			
	d) NH ₄ (SO ₄) ₂ · FeSO ₄ · 6H	H_2O		
291.	. Each metal possesses:			
	a) Primary valencies satis	sfied by anions only		
	b) Secondary valencies sa	tisfied by donor molecules		
	c) Coordination number			
	d) All of the above			
292.	. Aspirin is:			
	a) Antibiotic	b) Antipyretic	c) Sedative	d) Psychedelic
	-		-	

- 293. Hybridisation, shape and magnetic moment of $K_3[Co(CO_3)_3]$ is
 - a) $d^2 sp^3$, octahedral, 4.9 BM

b) sp^3d^2 , octahedral, 4.9 BM

c) dsp^2 , square planer, 4.9 BM

- d) sp^3 , tetrahedral, 4.9BM
- 294. Among the following complexes (K-P),

 $K_3[Fe(CN)_6](K)$, $[Co(NH_3)_6]Cl_3(L)$,

 $Na_3[Co(ox)_3](M)$

 $[Ni(H_2O)_6]Cl_2(N)$, and

 $[Zn(H_2O)_6](NO_3)_2(P)$ the diamagnetic complexes

- a) *K, L, M, N*
- b) K, M, O, P
- c) L, M, O, P
- d) L, M, N, O
- 295. Aniline when diazotised in cold and then treated with dimethyl aniline gives a coloured product. It structure would be:

b)
$$CH_3$$
— N — N — NH_2

c)
$$(CH_3)_2N$$
 $N=N$

d)
$$(CH_3)_2N$$
—NH—NH—

- 296. Pyridine possesses:
 - a) Aromatic nature
 - b) Unsaturated aliphatic nature
 - c) Alicyclic nature
 - d) Aliphatic nature
- 297. A reagent used for identifying nickel ion is:
 - a) Potassium ferrocyanide
 - b) Phenolphthalein
 - c) Dimethyl glyoxime
 - d) EDTA
- 298. Aniline was diazotised and subsequently reduced with stannous chloride and hydrochloric acid to yield:
 - a) Phenyl aniline
- b) Phenyl hydrazine
- c) *p*-amino azobenzene
- d) Diazoamino benzene
- 299. The reaction of toluene with Cl₂ in presence of FeCl₃ gives predominantly:
 - a) m-chlorobenzene
 - b) Benzoylchloride
 - c) Benzyl chloride
 - d) o- and p-chlorobenzene
- 300. Which statement is not correct in the case of $[Co(NH_3)_6]^{3+}$ complex?
 - a) It is octahedral in shape
 - b) It involves d^2sp^2 -hybridization
 - c) It has diamagnetic nature
 - d) None of the above
- 301. Pick out the complex compound in which the central metal atom obeys EAN rule strictly
 - a) $K_4[Fe(CN)_6]$
- b) $K_3[Fe(CN)_6]$
- c) $[Cr(H_2O)_6]Cl_3$
- d) $[Cu(NH_3)_4]SO_4$
- 302. Amongst the following, the compound that can be most readily sulphonated is:
 - a) Benzene
- b) Methoxy benzene
- c) Toluene
- d) Chlorobenzene
- 303. *p*-chloroaniline and anilium hydrochloride can be distinguished by:
 - a) $P_2 O_5$
- b) AgNO₃
- c) Carbylamine test
- d) Sandmeyer's reaction

304. Pyrogallol is.... trihydroxy benzene.

- a) 1, 2, 4
- b) 1, 2, 3
- c) 1, 3, 5
- d) None of these

305. Phenol is weakly acidic but does not react with NaHCO₃ like carboxylic acids hence:

- a) Phenol is weaker than carbonic acid
- b) Phenol is stronger than acid
- c) Phenol is stronger than carboxylic acid
- d) None of the above

306. p-cresol reacts with chloroform in alkaline medium to give compound (A) which adds hydrogen cyanide to form compound (B). The latter on acidic hydrolysis gives chiral carboxylic acid. The acid is:

307. The number of isomeric xylenes is:

a) 2

b) 3

c) 4

d) 1

308. The IUPAC name of $[Cr(H_2O)_4Cl_2]Cl$ is:

- a) Tetrahydrodichlorochromium(III) chloride
- b) Tetraaquodichlorochromium(III) chloride
- c) Tetraaquodichlorochromium(I) chloride
- d) None of the above

309. Among the following metal carbonyls, C— O bond order is lowest in

- a) $[Mn(CO)_6]^+$
- b) [Fe(CO)₅]
- c) $[Cr(CO)_6]$
- d) $[V(CO)_6]^-$

310.

a) 3-propyl-1,3-pentadiene

b) 3,3-dipropyl-1,3-pentadiene

c) 3,3-diethenyl penta-1,4-diene

d) 4,4-diethenyl penta,1,2-diene

311. Which of the following shell, form an outer octahedral complex?

a) d^4

b) d⁸

c) d^6

d) None of these

312. Friedel-Craft's reaction of bromobenzene with methyl iodide gives:

- a) o-bromotoluene
- b) p-bromotoluene
- c) o-and p-bromotoluene
- d) m-bromotoluene

313. An organic compound C₇H₈O is neither soluble in NaOH nor gives blue colour with FeCl₃, is:

- a) $C_6H_5 \cdot CH_2OH$
- b) C₆H₄ OH
- c) $C_6H_5 \cdot OCH_3$
- d) None of these

314. Which exist as a pair of mirror image isomers?

315. Benzene double bonds are not so reactive as those of hexatriene because:

- a) The three double bonds are caged in a ring
- b) Benzene is aromatic and has six π -resonating electrons
- c) Benzene has no double bond

- d) Benzene is non-polar
- 316. The most stable ion is
 - a) $[Fe(OH)_5]^{3-}$
- b) [FeCl₆]³⁻
- c) $[Fe(CN)_6]^{3-}$
- d) $[Fe(H_2O)_6]^{3+}$

317. Which of the following is/are threo isomers?

a) Only (i)

b) Only (ii)

c) Only (iii)

- d) All (i), (ii) and (iii)
- 318. In the coal-tar distillation of middle oil, the aromatic compounds present are:
 - a) Benzene, naphthalene, anthracene
 - b) Naphthalene, pyridine, phenol
 - c) Naphthalene, pyridine
 - d) None of the above
- 319. The correct order of increasing reactivity of C—*X* bond towards nucleophilic in the following compound is:

- a) I<II<IV<III
- b) II<III<IV
- c) IV<III<I<II
- d) III<II<IV

- 320. Which of the following system is most stable for a chelate?
 - a) Two fused cyclic system

b) Three fused cyclic system

c) Four fused cyclic system

- d) Five fused cyclic system
- 321. Which of the following reaction take place when a mixture of concentrated HNO₃ and H₂SO₄ reacts on benzene at 300 K?
- a) Sulphonation
- b) Nitration
- c) Hydrogenation
- d) Dehydration

322. Consider the following reaction:

Phenol
$$\xrightarrow{Zn \text{ dust}} X \xrightarrow{CH_3Cl} X \xrightarrow{Alkaline \text{ KMnO}_4} Z$$
, the product Z is:

- a) Benzene
- b) Toluene
- c) Benzaldehyde
- d) Benzoic acid

- 323. The shortest C—0 bond order exists in:
 - a) $[Mn(CO)_6]^+$
- b) [Fe(CO)₅]
- c) $[Cr(CO)_6]$
- d) $[V(CO)_6]^-$
- 324. Between *p*-nitrophenol and salicyladehyde, solubility in base is:
 - a) Almost nil in both cases
 - b) Higher in *p*-nitrophenol
 - c) Higher for salicyladehyde
 - d) Equal in nature
- 325. (+) and (-) forms of optically active compounds are different in
 - a) Boiling points
- b) Melting points
- c) Specific gravity
- d) Specific rotation
- 326. Benzene on treatment with dry HCN and HCl in presence of anhy. AlCl₃ followed by hydrolysis forms:
 - a) Chlorobenzene
- b) Benzoic acid
- c) Benzaldehyde
- d) Cyanobenzene
- 327. In which of the following compounds does the central atom obey EAN rule?
 - a) K_3 Fe(CN)₆
- b) K_4 Fe(CN)₆
- c) $Cu(NH_3)_4SO_4$
- d) All of these

- 328. Pick the correct name of $[Co(NH_3)_5Cl]Cl_2$
 - a) Chloropentammine cobalt (III) chloride
- b) Chloropentammine cobalt (III)
- c) Chloropentammine cobalt (II) chloride
- d) Pentammine chloro cobalt(III) chloride

329. The geometry of Ni(CO) ₄ and Ni(PPh ₃) ₂ Cl ₂ are a) Square planar and terrahedral respectively c) Tetrahedral and square planer respectively 330. Select pair of chain isomers from the following (I)	b) Both tetrahedral d) Both square planar	
a) I and II b) II and III	c) I and IV	d) II and III
331. Which ligand produces a high crystal field splitting (a strong ligand field)?	
a) CO b) NO ₂ 332. Benzene reacts with <i>n</i> -propyl chloride in the presen	c) CN ⁻	d) All are correct
a) Isopropyl benzene	ee of anniyurous Arcis to gr	ve predominanciy.
b) No reaction		
c) <i>n</i> -propylbenzene		
d) 3-propyl-1-chlorobenzene	4 (4	Y
333. Which of the following coordination compounds wo	uld exhibit optical isomeris	m?
a) Pentaamminenitrocobalt (III) iodide	b) Diamminedinitroplation	num (II)
c) trans-dicyanobis (ethylenediamine)	d) Tris-(ethylenediamine) cobalt(III) bromide
334. What is the magnetic moment of $K_3[FeF_6]$?		
a) 3.87 BM b) 4.89 BM	c) 5.91 BM	d) 6.92 BM
335. The EAN of Cr in $[Cr(SCN)_6]^{3-}$ is:		1) 0.5
a) 35 b) 33	c) 34	d) 37
336. Which has maximum paramagnetic character? a) $[Fe(CN)_6]^{4-}$ b) $[Cu(H_2O)_4]^{2+}$	c) [Cu(NH ₃) ₄] ²⁺	d) $[Mn(H_2O)_6]^{2+}$
337. Phenol, when it first reacts with concentrated sulph		, , , , , , , ,
a) Nitrobenzene	aric acid and then with con-	centrated mark acid, gives.
b) 2, 4, 6-trinitrobenzene		
c) <i>o</i> -nitrophenol		
d) <i>p</i> -nitrophenol		
338. Activation of benzene ring by —NH ₂ in aniline can b	e reduced by treating with:	
a) Dil. HCl b) Ethyl alcohol	c) Acetic acid	d) Acetyl chloride
339. Sulphonation of benzoic acid produces mainly:		
a) o-sulphobenzoic acid		
b) <i>m</i> -sulphobenzoic acid		
c) p-sulphobenzoic acid		
d) <i>o-p</i> -disulphobenzoic acid	l ia	
340. The IUPAC name for the complex $[Co(NO_2)(NH_3)_5]($ a) Nitrito -N- pentamminecobalt (III) chloride	b) Nitrito -N- pentammin	acabalt (II) chlarida
c) Pentammine nitrito-N- cobalt (II) chloride	d) Pentaammine nitrito-N	, ,
341. The ionisation isomer of $[Cr(H_2O)_4Cl(NO_2)C]$ is	a) i circuamimic merico i	Cobait (III) cinoriae
a) $[Cr(H_2O)_4(O_2N)]Cl_2$	b) $[Cr(H_2O)_4Cl_2](NO_2)$	
c) $[Cr(H_2O)_4Cl(ONO)]$ Cl	d) $[Cr(H_2O)_4Cl_2(NO_2)]$. H	20
342. Salicylic acid, aspirin, nylon, plastics and picric acid	have a common raw materi	al, namely:
a) Methane b) Formic acid	c) Phenol	d) Alcohol
343. Ulmann's reaction is used for the preparation of:		
a) Diphenyl b) Iodobenzene	c) Toluene	d) Naphthalene
344. Which of the following statements is/are incorrect for	, , = -	9!
a) The symbol <i>D</i> not indicates the dextrorotatory na	ture or the compound	

- b) The sign (+) indicates the dextrorotatory nature of the compound
- The symbol *D* indicates that hydrogen atom lies left to the chiral centre in the Fischer projection diagram
- The symbol D indicates that hydrogen atom lies right to the chiral centre in the Fischer projection diagram
- 345. Complexes with CN⁻ ligands are usually:
 - a) High spin complexes
- b) Low spin complexes
- c) Both (a) and (b)
- d) None of these

346. The IUPAC of

a) 2-cyclopentyl propane

- b) 1, 1-dimethyl-1-cyclopentyl methane
- c) 1-(1-methyl) ethyl cyclopentane
- d) None of the above

- 347. Which ion is paramagnetic?
 - a) $[Ni(H_2O)_6]^{2+}$
- b) $[Fe(CN)_6]^{4-}$
- c) $[Ni(CO)_4]$
- d) [Ni(CN)₄

348.

$$\begin{array}{c|c} & H \\ & HN & + COOH \text{ and } \\ \hline & CH_2 \\ \hline &$$

a) R, R

b) R, S

c) S, S

- 349. Dow process is used for the conversion of chlorobenzene to:
 - a) Benzene
- b) Nitrobenzene
- c) Phenol
- d) Gammexane
- 350. Phenolphthalein is produced on heating phthalic anhydride and conc. sulphuric acid with:
 - a) Salicylic acid
- b) Phenol
- c) Phenacetin
- d) Phenanthrene

- 351. Benzene is converted to toluene by:
 - a) Friedel-Crafts reaction
 - b) Grignard reaction
 - c) Wurtz reaction
 - d) Perkin's reaction
- 352. The number of ions formed when hexamine copper (II) sulphate is dissolved in water is?

b) 2

- 353. In a set of reactions *m*-bromobenzoic acid gave a product *D*, Identify the product *D*:

- COOH

- 354. In $[Cr(C_2O_4)_3]^{3-}$, the isomerism shown is:
 - a) Ligand
- b) Optical
- c) Geometrical
- d) Ionization

- 355. The hybridization of Fe in $K_4[Fe(CN)_6]$ complex is:
 - a) d^2sp^2

356.

- b) d^2sv^3
- c) dsp^2

d) sp^3

- The correct name of

- a) Hex-3-yn-5-ene
- b) Hex-5-en-3-yne
- c) Hex-3-yn-1-ene
- d) Hex-1-en-3-yne

357. Nickel metal is in highest oxidation state in:

a) Ni(CO) ₄ b) K ₂ NiF ₆ 358. Which of the following complexes show six coordin	c) $[Ni(NH_3)_6](BF_4)_2$	d) $K_4[Ni(CN)_6]$
a) $[\text{Zn}(\text{CN})_4]^{2-}$ b) $[\text{Ni}(\text{NH}_3)_4]^{2+}$	c) [Cu(CN) ₄] ²⁻	d) $[Cr(H_2O)_6]^{3+}$
359. Which of the following statements is wrong?	-) [()4]	7 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
a) The IUPAC name of alkenes ends with suffix-ene	<u>j</u>	
b) The IUPAC name of alkynes ends with suffix-yne		
c) The IUPAC name of acid amide is alkanamide		
d) The substituents get lower number in comparison	on to principal functional g	roup
360. The possible number of isomers for the complex [N		
a) 1 b) 2	c) 4	d) 5
361. $K_3[(Al)(C_2O_4)_3]$ is called		
a) Potassium aliminium (III) oxalate	b) Potassium alumino o	
c) Potassium trioxalato aluminate (VI)	d) Potassium trioxalato	aluminate (III)
362. In Fe(CO) ₅ , the Fe — C bond possesses	13 P. d	
a) π – Character only	b) Both σ and π –characteristics	cters
c) Ionic characters	d) σ –Character only	
363. The reaction, $[Fe(CNS)_6]^{3-} \rightarrow [FeF_6]^{3-}$ taken place.	b) Increase in magnetic	mamant
a) Decrease in magnetic momentc) Decrease in coordination number	d) Increase in coordinat	
364. Which chloro derivative of benzene among the following		
aqueous NaOH to furnish the corresponding hydro		orysis most readily with
NO ₂	Ayr derivative.	
a) O_2N —CI	$\mathcal{C}_{\lambda}X^{\gamma}$	
NO_2		
	V	
b) O ₂ N—()—Cl		
c) $(CH_3)_2N$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc		
d) C ₆ H ₅ Cl		
365. Some salts although containing two different metal	llic elements give test for o	nly one of them in solution.
Such salts are:		
a) Complex salts b) Double salts	c) Normal salts	d) None of these
366. Mixture $X = 0.02$ mole of $[Co(NH_3)_5SO_4]Br$ and 0.	$02 \text{ mole of } [Co(NH_3)_5Br]SO$	O_4 was prepared in 2 litre of
solution.		
1 litre of mixture X +excess AgNO ₃ $\rightarrow Y$.		
1 litre of mixture $X+$ excess $BaCl_2 \rightarrow Z$.		
No. of moles of Y and Z are.		
a) 0.01, 0.01 b) 0.02, 0.01	c) 0.01, 0.02	d) 0.02, 0.02
367. The hybridization of central metal ion and shape of		
a) sp^3d , trigonal bipyramidal	b) sp^3 , tetrahedral	
c) dsp^2 , squre planar 368. The d -electron configurations of Cr^{2+} , Mn^{2+} , Fe^{2+} and Fe^{2+}	d) d^2sp^2 , octahedral	l d ⁷ magnaghissalss Milhigh and
of the following will exhibit minimum paramagnetic		a respectively, which one
a) $[Cr(H_2O)_6]^{2+}$	ic bellavioui :	
b) $[Mn(H_2O)_6]^{2+}$		
c) $[Fe(H_2O)_6]^{2+}$		
$[C_{\alpha}(H, \Omega)]^{12+}$		
d) $(At. Nos. Cr = 24, Mn = 25, Fe = 26, Co = 27)$		

369. An enantiomerically pure acid is treated with rac	emic mixture of an alcohol ha	iving one chiral carbon. The	
ester formed will be			
a) Optically active mixture	b) Pure enantiomer		
c) <i>meso</i> compound	d) Racemic mixture		
370. Which of the following ring is most strained?			
a) Cyclohexane b) Cyclopentane	c) Cyclobutane	d) Cyclopropane	
371. Formylchloride has not been prepared so far. Wh	_	oride in formylation?	
a) $HCHO + HCl$ b) $HCOOCH_3 + HCl$	c) CO + HCl	d) HCONH ₂ + HCl	
372. In hexacyanomanganate (II) ion the Mn-atom ass electrons in the complex is:	sumes d^2sp^3 -hybrid state. Th	e number of unpaired	
a) 1 b) 2	c) 3	d) 0	
373. Which one of the following does not give a white	precipitate with silver nitrate	e solution?	
a) $[Co(NH_3)_6]Cl_3$ b) $[Co(NH_3)_5Cl]Cl_2$	c) [Co(NH ₃) ₄ Cl ₂]Cl	d) $[Co(NH_3)_3Cl_3]$	
374. In a set of reactions, ethyl benzene yielded a prod	duct D.		
$CH_2CH_3 \xrightarrow{KMnO_4} B \xrightarrow{Br_2} C \xrightarrow{C_2H_5OH} D$		01	
	4		
D111			
D would be:			
Br	СООН	COOC ₂ H ₅	
CH ₂ -CH-COOC ₂ H ₅	10		
		d)	
a) O Br b) O		d) ()	
Br	OCH CH	D _a	
CH ₂ COOC ₂ H ₅	OCH ₂ CH ₃	Br	
375. The oxidation number of Pt in $[Pt(C_2H_4)Cl_3]$ is	Y		
a) +1 b) +2	c) +3	d) +4	
376. Among $[Fe(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{3-}$, $[Fe(Cl)_6]^{3-}$ sp	pecies, the hybridization state	of the Fe atom are,	
respectively	, ,	,	
a) d^2sp^3 , d^2sp^3 , sp^3d^2 b) sp^3d^2 , d^2sp^3 , d^2sp^3	c) sp^3d^2 , d^2sp^3 , sp^3d^2	d) None of these	
377. Of the following complex ions, which is diamagne			
a) $[CoF_6]^{3-}$ b) $[NiCl_4]^{2-}$	c) $[Ni(CN)_4]^{2-}$	d) [CuCl ₄] ²⁻	
378. The IUPAC name of compound	7) [
0			
o is			
OH OH			
Ö			
a) 2-methoxycarbonylbenzoic acid	b) Methyl-2-carboxy ben	izoate	
c) 2-carboxy phenyl ethanoate	d) o-carboxyphenyl acet	d) o-carboxyphenyl acetate	
379. Which of the following are produced from coal-ta	ar?		
a) Synthetic dyes b) Drugs	c) Perfumes	d) All of these	
380. Chlorine is least reactive in:			
a) CH ₃ Cl b) CH ₂ =CHCl	c) C ₆ H ₅ Cl	d) C ₂ H ₅ Cl	
381. Correct IUPAC name of compound			
$(CH_3)_2C(CH_2CH_3)CH_2CH(Cl)CH_3$ is			
a) 5-chloro-3,3-dimethylhexane	b) 3-chloro-2-ethyl-2-methylpentane		
c) 2-chloro-4-ethyl-4-methylpentane	d) None of the above		

a) 2-oxocyclohexane-1-carboxylic acid

b) Cyclohexane-2-oxo-1-carboxylic acid

c) 6-oxocyclohexane-1-carboxylic acid

d) None of the above

- a) Spiro [3.2.1] octane
- b) Bicyclo [3.2.2] octane c) Bicyclo [3.2.1] octane d) None of these

- 396. Which of the following deactivates benzene substitution?
 - a) -NHR
- b) OH

c) -0R

d) -COOR

- 397. Aniline, chloroform and alc. KOH on heating give:
 - a) Phenyl isocyanide
- b) Phenyl cyanide
- c) Chlorobenzene
- d) Phenol

398. In the chemical reactions,

the compounds "A" and "B" respectively are :

- a) Nitrobenzene and chlorobenzene
- b) Nitrobenzene and fluorobenzene
- c) Phenol and benzene
- d) Benzenediazonium chloride and fluorobenzene
- 399. The incorrect statement for IUPAC system of nomenclature is
 - a) In an organic compound, the longest carbon chain is always selected for assigning the root word
 - b) There is no compound with the name 3-ethyl pentane
 - c) Out of NH₂ and OH groups present in an organic compound, –NH₂ is treated as substituent
 - d) Different alkyl groups are written alphabetically while, writing the IUPAC name
- 400. When sodium benzene sulphonate is fused with sodium hydroxide (solid), followed by hydrolysis the product formed is:
 - a) Benzene
- b) Sod. phenoxide
- c) Benzene thiophenol
- d) Phenol
- 401. The correct order of stability of conformations of cyclohexane is
 - a) Chair > twist boat > boat

b) Twist boat > chair > boat

c) Boat > chair > twist boat

d) Boat > twist boat > chair

- 402. Phenol with dilute HNO₃ gives:
 - a) meta and para nitrophenol
 - b) ortho and para nitrophenol
 - c) Trinitrophenol
 - d) ortho and meta nitrophenol
- 403. The increasing order of boiling points of compounds given below is:
 - (I) 1,2-dihydroxy benzene
 - (II) 1,3-dihydroxy benzene
 - (III) 1,4-dihydroxy benzene
 - (IV) Hydroxyl benzene
 - a) I < II < III < IV
- b) I < II < IV < III
- c) IV < I < II < III
- d) IV < II < I < III
- 404. The pair of the compounds in which both the metals are in the higher possible oxidation state is
 - a) CrO_2Cl_2 , MnO_4^-

b) $[Co(CN)_6]^{3-}$, MnO_3

c) TiO_3 , MnO_2

- d) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$
- 405. The number of ions given by K₂[PtCl₆] in aqueous solution is:
 - a) 2

b) 3

c) 4

d) Zero

- 406. Which of the following are functional isomers?
 - a) CH₃CH₂Cl and CH₃CH₂Br

- b) CH₃CHBr₂ and CH₂Br₂ · CH₂Br

c) C₂H₅OC₂H₅ and CH₃OC₃H₇

407. Phenol is:

- a) Strongly acidic
- b) Weakly acidic
- c) Strongly basic
- d) Weakly basic

408. The correct IUPAC name of KAl(SO_4)₂ · 12H₂O is:

- a) Aluminium potassium sulphate-12-water
- b) Potassium aluminium(III) sulphate-12-water
- c) Potassium aluminate(III) sulphatehydrate
- d) Aluminium(III) potassium sulphate hydrate-12
- 409. A complex shown below can exhibit:

- a) Optical isomerism only
- b) Geometrical isomerism only
- c) Both optical and geometrical isomerism
- d) None of the above

410. The IUPAC name of the complex $[Co(NH_3)_4Cl_2]Cl$ is

- a) Dichloro tetraammine cobalt (III) chloride
- b) Tetraammine dichloro cobalt(III) chloride
- c) Tetraammine dichloro cobalt (II) chloride
- d) Tetraammine dichloro cobalt (IV) chloride

411. The correct decreasing order of their reactivity towards hydrolysis is:

(i) C_6H_5COCl

(ii)
$$O_2N$$
—COCI

(iii)
$$H_3C\langle \bigcirc \rangle$$
COCI

- a) (i)>(ii)>(iii)>(iv)
- b) (iv)>(ii)>(ii)>(iii)
- c) (ii)>(iv)>(i)>(iii)
- d) (ii)>(iv)>(iii)>(i)

412. Nitrobenzene is generally used for:

- a) Preparing shoe polish b) Preparing floor polish c) Preparing aniline

- d) All of these

413. In the coordination compound, $K_4[Ni(CN)_4]$, the oxidation state of nickel is

a) -1

b) 0

c) +1

d) + 2

414. Salicylic acid as compared to benzoic acid:

- a) Is more acidic
- b) Has same acidity
- c) Has less acidity
- d) None of these

415. Which ligand is expected to be bidentate?

- a) $C_2 O_4^{2-}$
- b) $CH_3C \equiv N$
- c) Br⁻

d) CH₃NH₂

416. Which one of the following is most reactive towards aqueous NaOH?

- a) C_6H_5Cl
- b) C₆H₅CH₂Cl
- c) C_6H_5Br
- d) BrC₆H₄Br

417. Which is not an aromatic compound?

- a) Pyridine
- b) Naphthalene
- c) Xylene
- d) Cyclohexane

418. Which one of the following is wrongly matched?

Follows EAN rule

- a) $[Cu(NH_3)_4]^{2+}$ c) $[Fe(CN_6)]^{3-}$
- Square planar

 $sp^3 d^2$

b) [Ni(CO)₄]

d) $[Co(en)_3]^{3+}$

Neutral ligand

419. Stereoisomers have different

a) Molecular formula

b) Structural formula

c) Configuration

d) Molecular mass

- 420. Which of the following will show optical isomerism?
 - a) $[Cu(NH_3)_4]^{2+}$
 - b) [ZnCl₄]²⁻
 - c) $[Cr(C_2O_4)_3]^{3-}$
 - d) $[Co(CN)_6]^{3-}$
- 421. A complex of cobalt has five ammonia molecules, one nitro group and two chlorine atoms for each cobalt atom. One mole of this compound produces three mole ions in aqueous solution which on treating with excess of AgNO₃ give two mole of AgCl. The formula of the compound is:
 - a) $[Co(NH_3)_4NO_2Cl][(NH_3b)[Co(NH_3)_5Cl][ClNO_2]$ c) $[Co(NH_3)_5NO_2]Cl_2$
- d) $[Co(NH_3)_5][(NO_2)_2Cl_2]$

- 422. Which one group is trivalent in nature?
 - a) Benzo
- b) Benzal
- c) Benzyl
- d) All of these
- 423. Benzene contains double bonds but does not give addition reactions because:
 - a) Double bonds in benzene are strong
 - b) Double bonds change their position rapidly
 - c) Resonance lowers the energy of benzene molecule and leads to greater stabilization
 - d) None of the above
- 424. Low spin complex of d^6 -cation in an octahedral field will have the following energy:

a)
$$\frac{-12}{5}\Delta_0 + P$$

b)
$$\frac{-12}{5}\Delta_0 + 3P$$

c)
$$\frac{-2}{5}\Delta_0 + 2P$$

$$\frac{-2}{5}\Delta_0 + P$$

(Δ_0 = Crystal field splitting energy in an octahedral field, P = Electron pairing energy)

- 425. C₇H₈O show how many isomers?
 - a) 2

b) 3

c) 4

d) 5

426.

The above structural formula refers to:

a) BHC

b) DNA

c) DDT

d) RNA

427. The compound

Have its IUPAC name as

a) Octa dec-9-enoic acid

b) Oleic acid

c) Ethyl hexadic-9-enoic acid

- d) All of these
- 428. The type of isomerism present in nitropentaammine-chromium (III) chloride is:
 - a) Optical
- b) Linkage
- c) Ionization
- d) polymerization

- 429. Which complex compound possesses sp^3d^2 hybridisation?
 - a) $[Fe(NH_3)_6]^{3+}$
- b) $[Fe(CN)_6]^{4-}$
- c) $[Fe(CN)_6]^{3-}$
- d) $[Fe(Cl)_6]^{3-}$

- 430. Amongst the following carboxylic acids the strongest acid is:
 - a) Benzoic acid
 - b) o-methoxybenzoic acid
 - c) m-nitrobenzoic acid
 - d) p-nitrobenzoic acid

- d) NHCH₃ NHCH₃

 NHO + NO
- 444. Replacement of Cl of chlorobenzene to give phenol requires drastic conditions but chlorine of 2, 4-dinitrochlorobenzene is readily replaced because:
 - a) NO₂ makes the electron rich ring at *ortho* and *para* positions
 - b) NO₂ withdraws electrons at meta position
 - c) NO2 donate electrons at meta-position
 - d) NO₂ withdraws electrons at ortho and para positions
- 445. Salicylic acid on heating with soda lime forms:
 - a) Phenol
- b) Benzyl alcohol
- c) Benzene
- d) Benzoic acid

- 446. Which of the following is an organometallic compound?
 - a) $Ti(C_2H_5)_4$
- b) $Ti(OC_2H_5)_4$
- c) Ti(OCOCH₃)₄
- d) $Ti(OC_6H_5)_4$
- 447. Which kind of isomerism is exhibited by octahedral Co(NH₃)₄Br₂Cl?
 - a) Geometrical and ionisation

b) Geometrical and optical

c) Optical and ionisation

- d) Geometrical only
- 448. Which of the following is the strongest base?

449. Which of the following will be aromatic?

- 450. The correct symbol relating the two Kekule structure of benzene is:
 - a) ¹

b)

c) ↔

- 451. Benzaldehyde can be obtained by the hydrolysis of:
 - a) Benzyl chloride
- b) Benzal chloride
- c) Benzonitrile
- d) Benzoic acid

- 452. Which of the following has an optical isomer?
 - a) $[Co(en)(NH_3)_2]^{2+}$
- b) $[Co(H_2O)_4(en)]^{3+}$
- c) $[Co(en)_2(NH_3)_2]^{3+}$
- d) $[Co(NH_3)_3Cl]^+$

- 453. Chromium carbonyl is:
 - a) $Cr(CO)_4$
- b) Cr(CO)₅
- c) $Cr(CO)_6$
- d) None of these
- 454. Which of the following reagents may be used to distinguish between phenol and benzoic acid?
 - a) Aqueous NaOH
- b) Tollen's reagent
- c) Molisch reagent
- d) Neutral FeCl₃
- 455. Which of the following complex species do not involve d^2sp^3 -hybridization?
 - a) $[CoF_6]^{3-}$
- b) $[Co(NH_3)_6]^{3+}$
- c) $[Fe(CN)_6]^{3-}$
- d) $[Cr(NH_3)_6]^{3+}$
- 456. Which one of the following shows maximum value of paramagnetic behaviour?

457.	a) [Sc(CN) ₆] ³⁻ The IUPAC name of	b) [Co(CN) ₆] ³⁻	c) [Ni(CN) ₄] ²⁻	d) $[Cr(CN)_6]^{3-}$
	$HOOC - CH_2 - CH_2 - CH_2$	$-CH-CH_2-COOH$		
		CH ₂ COOH		
	is	diizdodii		
	a) 3-(carboxymethyl) hep	tane-1 7-dioic acid		
	b) 5-(carboxymethyl) hep	tane-1,7-dioic acid		
	c) 2-(carboxymethyl) pen	•		
	d) 4-(carboxymethyl) pen	tane dicarboxylic acid		
458.	Which of the following spo	ecies will be diamagnetic?		
	a) $[Fe(CN)_6]^{4-}$	b) [FeF ₆] ³⁻	c) $[Co(C_2O_4)_3]^{3-}$	d) [CoF ₆] ³⁻
459.	Which one of the following	g is an outer orbital comple	ex and exhibits paramagnet	ic behaviour?
	a) $[Cr(NH_3)_6]^{3+}$	b) $[Co(NH_3)_6]^{3+}$	c) $[Ni(NH_3)_6]^{2+}$	d) $[Zn(NH_3)_6]^{2+}$
460.	Moth balls contain:	7	<i>y</i> 2	
		b) Benzoic acid	c) Naphthalene	d) Cinnamic acid
461.	The number of unidentate	•	, ,	
101.	a) Oxidation number	nganas in the complex ion	b) Primary valency	
	c) Coordination number		d) EAN	
162	•	-ha number of π electrons	,	
402.	According to Hückel rule, t			4) 20
162	a) 12	b) 14	c) 10	d) 20
463.	-		g pairs of conformations ar	
	a) Eclipsed and chair confe		b) Staggered and chair con	
	c) Staggered and boat con		d) Eclipsed and boat confo	ormations
464.	Among the following which			
	a) $K[PtCl_3(\eta^2 - C_2H_4)]$	b) $Fe(\eta^5 - C_5H_5)_2$	c) $Cr(\eta^6 - C_6H_6)_2$	d) $(CH_3)_4Sn$
465.	o, p-directing groups are g	enerally:		
	a) Activating groups	b) Deactivating groups	c) Neutral groups	d) None of these
466.	Aryl halides are less reacti to:	ve towards nucleophilic su	ubstitution reaction as com	pared to alkyl due halides
	a) The formation of less st	able carbonium ion		
	b) Resonance stabilization			
	c) Longer carbon-halogen			
	d) The inductive effect	Jona		
167	Which would be least reac	tivo towarde bromino?		
407.	a) Nitrobenze		a) Dhanal	d) Chlorohongono
460	· · · · · · · · · · · · · · · · · · ·	b) Anisole	c) Phenol	d) Chlorobenzene
468.	Which has a smell of oil of	-	2 701 1 10 10	15 14 . 1 . 1 . 1
		b) Benzoic acid	c) Ethyl salicylate	d) Methyl salicylate
	The coordination number			
		b) 4	c) 6	d) 8
		aOH at 300°C gives phenol.	However the yield is poor	because of side reaction
	producing:			
	a) C ₆ H ₅ Na	b) C ₆ H ₅ OCH ₃	c) $C_6H_5OC_6H_5$	d) None of these
471.	In Cr(NH ₃) ₄ Cl ₂]Cl the ligar	nds are:		
		b) Cl ⁻ only	c) Both NH ₃ and Cl ⁻	d) Cr, NH ₃ , Cl ⁻
472.	Which statement is not con	•	-	-
	a) It is less basic than ethy			
	b) It can be steam distilled			
	c) It reacts with sodium to			
	d) It is soluble in water			
	aj it is soluble ill Watel			

473	. Among the following, ide	ntify the species with an at	om of +6 oxidation state:	
	a) $[MnO_4]^-$	b) $[Cr(CN)_6]^{3-}$	c) [NiF ₆] ²⁻	d) CrO ₂ Cl ₂
474	Which of the following al	kanes contain primary, sec	ondary, tertiary and quater	nary carbon atom together?
	a) $(CH_3)_3CH$	b) $(C_2H_5)_3CH$	c) $(CH_3)_3CCH_2CH(CH_3)_2$	d) $(CH_3)_4C$
475	The hardness of water is	estimated by:		
	a) Conductivity method	b) EDTA method	c) Titrimetric method	d) Distillation method
476	I_2 is stirred in between to	wo liquids, C_6H_6 and water.	. It:	
	a) Dissolves more in C ₆ H			
	b) Dissolves more in H ₂ C)		
	c) Dissolve equally			\wedge
	d) Dissolves in neither C	H ₆ nor water		
477	=	-atoms in 2,2,4,4-tetra metl	hyl pentane is	
	a) 1	b) 2	c) 3	d) 4
478	•	ol chloride in the presence o	•	
	a) Benzyl alcohol	b) Benzaldehyde	c) Benzoic acid	d) Phenol
479	•	on of benzaldehyde gives:	c) zemzere ueru	
1, ,	a) C ₆ H ₅ NH ₂	b) C ₆ H ₅ OH	c) C ₆ H ₅ CH ₃	d) C ₆ H ₅ COOH
4 80		gand has lowest Δ_o value?	cy deligaliz	
100	a) CN ⁻	b) CO	c) F-	d) NH ₃
<i>1</i> .Ω1	. Which one of the following		c) i	u) 11113
101	(en=ethylenediamine)	ing has an optical isomer:		
	a) $[\text{Zn(en)}(\text{NH}_3)_2]^{2+}$	h) [Co(on) 13+	c) $[CO(H_2O)_4(en)]^{3+}$	d) $[Zn(en)_2]^{2+}$
102	· · · · - · - ·			, , , , , , , , , , , , , , , , , , , ,
402	. Tricinoroacetaluellyue, C	T	penzene in presence of sulp	nuric acid and produces:
	CI-(())-CH-(()) / _Cl		
	a) \(\frac{1}{2} \)			
	CCl ₃	C '		
	C1	\sim		
	b) CI-(())-C-(())	-Cl		
	CH ₂ Cl			
	_			
	Cl			
	$\left(\bigcap \right)$	X		
	c) (2)			
	$CI \leftarrow (O) \leftarrow C \leftarrow (O)$	-Cl		
	AIN			
	Н			
	d) OH			
		_C1		
		- C1		
	Cl			
483	Which fraction of coal-ta	r is rich in arene?		
100	a) Light oil	b) Heavy oil	c) Green oil	d) Middle oil
484	, ,		•	d $[X(SO_4)(NH_3)_5]Cl$ will be
101	a) 10 and 3	b) 2 and 6	c) 6 and 3	d) 6 and 4
485	•	d by treating toluene with C	•	a, o una i
100	a) Presence of light	a by a cading toracine with t		
	b) Absence of light			
	c) Treating benzene with	anhy AlCl		
	e, ireading benizene with	. ay. 111013		

- d) Treating benzene with As₂S₃ 486. Which complex cannot ionize in solution? a) $[CoCl_3(NH_3)_3]$
 - b) $K_4(Fe(CN)_6]$
- c) $K_2[Pt(F_6)]$
- d) $[Pt(NH_3)_6]Cl_4$
- 487. [Ni $(CN)_4$]²⁻, $[MnBr_4]^{2-}$ and $[CoF_6]^{3-}$, geometry, hybridisation and magnetic moment of the ions respectively, are
 - Tetrahedral, square planar, octahedral: sp^3 , dsp^2 , sp^3d^2 : 5.9, 0, 4.9
 - Tetrahedral, square planar, octahedral: dsp^2 , sp^3 , sp^3d^2 : 0, 5.9, 4.9
 - Square planar, tetrahedral, octahedral: dsp^2 , sp^3 , d^2sp^3 : 5.9,4.9,0
 - $Square\ planar,\ tetrahedral,\ octahedral:$ dsp^2 , sp^3 , sp^3d^2 : 0, 5.9, 4.9
- 488. Ozonolysis of benzene gives:
 - a) 1 molecule of glyoxal
 - b) 2 molecules of glyoxal
 - c) 3 molecules of glyoxal
 - d) None of these
- 489. In benzene, C—C bond length is 1.39 Å; the C—H bond length is:

b) 1.08

c) 1.54

d) 1.46

490. The IUPAC name of following compound is

- a) N,N-dimethyl, 3-methyl pentan-3-amine
- b) 3-N,N-dimethyl, 3-methyl pentanamine
- c) 3-methyl-3-N, N-dimethyl pentane
- d) 3-methyl-3-N, N-dimethyl butane
- 491. Which of the following may be used as food preservative?
 - a) Benzene
 - b) Ethylene
 - c) Sodium benzoate
 - d) Sodium metaaluminate
- 492. Which compound is formed when sodium phenoxide is heated with ethyl iodide?
 - a) Phenetole
- b) Ethyl phenyl alcohol
- c) Phenol
- d) None of these
- 493. In metal carbonyl (organometallic) complexes, the M- C bond is
 - a) Ionic

b) Covalent with ionic character

c) Covalent

d) Coordinate covalent

494. Octahedral complex

- b) *trans*

- 495. The correct order of magnetic moments (spin only values in BM) among the following is (Atomic no. Mn=25, Fe=26, Co=27)
 - a) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
- b) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
- c) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
- d) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$
- 496. Aniline and methyl amine can be differentiated by:
 - a) Diazotisation followed by coupling with phenol
 - b) Reaction with chloroform and aqueous solution of KOH
 - c) Reaction with HNO₂

- d) None of the above
- 497. The functional group present in cresols is:
- a) Alcoholic (— OH)
- b) Aldehydic (— CHO)
- c) Phenolic (— OH)
- d) Carboxylic (— COOH)

498. In the reaction;

the structure of the product T is:

a)
$$H_3C$$
 O O O

499. Which one of the following compounds is most acidic?

- 500. The most unstable configuration of cyclohexane is
 - a) Boat

b) Chair

- c) Twist boat
- d) Half chair

- 501. In which compound synergic effect is present?
 - a) $[Ni(CO)_4]$
- b) [NiCl₄]²⁻
- c) [CuCl₄]²⁻
- d) $[Mn(H_2O)_6]^{2+}$

502. The IUPAC name of the compound

$$\begin{array}{c|cccc} \mathsf{CH}_2 & \mathsf{CH}_3 \\ \parallel & \parallel \\ \mathsf{C}_2\mathsf{H}_5\mathsf{--}\mathsf{C}\mathsf{---}\mathsf{CH}_2\mathsf{--}\mathsf{CHNH}_2 \end{array}_{\mathbf{iS}}$$

- a) 4-amino-2-ethyl pent-1-ene
- c) Amino-4-pentene
- 503. Aqua regia reacts with Pt to yield:
 - a) $Pt(NO_3)_4$
- b) $H_2[PtCl_6]$

c) PtCl₄

b) 2-ethyl pentan-4-amine

d) 4-ethyl pent-4-en-2-amine

d) PtCl₂

- 504. $K_3[Al(C_2O_4)_3]$ is called:
 - a) Potassium aluminooxalate
 - b) Potassium alumino(III) oxalate
 - c) Potassium trioxalatoaluminate
 - d) Potassium trioxalatoaluminate(III)

505. The IUPAC name of

- a) 6-oxo-1,2,2-tri methyl bicycle [2.2.1] heptane
- b) 1,7,7-trimethyl bicyclo [2.2.1] heptan-2-one
- c) 1,5,5-trimethyl bicyclo [2.1.1] hexane-2-one
- d) 1,7,7-trimethyl bicyclo [2.1.2] heptan-2-one

506. Nitration of toluene takes place at:

- a) ortho position
- b) meta position
- c) para position
- d) Both ortho and para position

507. Estimation of calcium and magnesium is done by

- a) EDTA
- b) Oxalate
- c) Phosphate
- d) None of these

508. How many enantiomer pairs are obtained by monochlorination of 2, 3-dimethyl butane?

a) Four

b) Two

- c) Three
- d) One

509. Common reactions of benzene and its derivatives are:

- a) Electrophilic addition reactions
- b) Electrophilic substitution reactions
- c) Nucleophilic substitution reactions
- d) Nucleophilic addition reactions

510. The IUPAC name of the compound

- a) 1, 3, 5-triheptene
- c) 2, 4, 6-heptatriene

- b) 2, 4, 6-triheptene
- d) Hepta-1, 3, 5-triene

511. Name of compound

a) 1, 2, 3-triformylpentane

b) Propane-1, 2, 3-tricarbaldehyde

c) 3-formylpentane-1, 5-dial

- d) Propane-1, 2, 3-trial
- 512. The attacking species in aromatic sulphonation is:
 - a) SO₃

- b) H₃SO₄⁺
- c) HSO₄
- d) SO_2^+

513. Which one of the following compound does not react with bromine?

- a) Ethyl amine
- b) Propene
- c) Phenol
- d) Chloroform

- 514. The magnetic moment (spin only) of $[Ni Cl_4]^{2-}$ is
 - a) 1.82 BM
- b) 5.46 BM
- c) 2.82 BM
- d) 1.41 BM

515.

undergoes electrophilic substitution reaction preferentially:

- a) At position-2
- b) At position-3
- c) At position-4
- d) At positions-2 and 4

516. Ionization of K[Ag(CN)₂] will give:

- a) K^+ and $[Ag(CN)_2]^-$ ion
- b) KCN and AgCN
- c) K^+ , Ag^+ , CN^-
- d) None of the above

517. The coordination number and oxidation state of Cr in $K_3[Cr(C_2O_4)_3]$ are respectively

- a) +6 and +3
- b) 3 and 0
- c) 4 and +2
- d) 3 and +3

518. A complex of platinum, ammonia and chlorine prod	duces four ions per molecu	le in the solution. The
structure consistent with the observation is:		
a) $[Pt(NH_3)_4]Cl_4$ b) $[Pt(NH_3)_2Cl_4]$	c) $[Pt(NH_3)_5Cl]Cl_3$	d) $[Pt(NH_3)_4Cl_2]Cl_2$
519. The type of magnetism exhibited by $[Mn(H_2O]^{2+}]$ i		
a) Paramagnetism b) Diamagnetism	c) Both (a) and (b)	d) None of these
520. According to effective atomic number rule the cent	ral metal acquires:	
a) Inert gas configuration		
b) Duplet		
c) Octet		
d) Quartet		
521. K_3CoF_6 is high spin complex. What is the hybrid sta		
a) sp^3d b) sp^3d^2	c) $d^2 s p^3$	d) dsp^2
522. The correct structure of ethylenediaminetetraacet	ic acid (EDTA) is	
H ₂ CCOOH CH ₂ COOH	COOH	СООН
a) N—cH—cH—n	b)	2-CH2-N
H₂CCOOH CH₂COOH	соон	соон
_	COOH	соон
,CH₂COOH	H _o C	
H ₂ CCOOH	HOOCH ₂ C	, H
c) $N \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow N$	d) N—d	CH—CH—N CH ₂ —COOH
H₂CCOOH CH₂COOH	H	CH ₂
		ooc /
523. $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)_5SO_4]Br$ are example 100 and 100 are example 100 ar	oles of which type of isome	rism?
a) Linkage b) Optical	c) Geometrical	d) Ionisation
524. The coordination number of a central metal atom is	n a complex is determined	by
a) The number of ligands around a metal ion bond	ed by σ — bonds	
b) The number of ligands around a metal ion bonder	ed by π –bonds	
c) The number of ligands around a metal ion bonder	ed by σ –and π – bonds bo	oth
d) The number of only anionic ligands bonded to the	ne metal ion	
525. Action of benzoic acid with hydrazoic acid in prese	nce of N ₃ H gives:	
a) Aniline b) Benzamide	c) Phenyl cyanide	d) All of these
526. Which ion shows usually the coordination number	6?	
a) Cr ³⁺ b) Fe ³⁺	c) Fe ²⁺	d) All of these
527. Which of the following represents hexadentate liga	ind?	
a) 2, 2-bipyridyl b) DMG	c) Ethylenediamine	d) None of these
528. Nitrobenzene can be prepared from benzene by us	ing a mixture of conc. HNO	$_3$ and conc. $\rm H_2SO_4.In$ the
mixture, nitric acid acts as a/an:		
a) Catalyst b) Reducing agent	c) Acid	d) Base
529. The value of the 'spin only' magnetic moment for o	ne of the following configu	rations is 2.84 BM. The
correct one is		
a) d^5 (in strong ligand field)	b) d^3 (in weak as well a	s strong ligand fields)
c) d^4 (in weak ligand field)	d) d^4 (in strong ligand fi	ield)
530. The IUPAC name of the compound		
0 0		
CH ₂ CH ₂ C—CH ₃		
15		
a) 6-(3-oxobutyl) cyclohexan-1-one	b) 6-(2-oxobutyl) cyclo	hexan-1-one
c) 2-(3-oxobutyl) cyclohexan-1-one	d) 2-(2-oxobutyl) cyclo	hexan-1-one
531. Hybridisation, shape and magnetic moment of [Ni($(CN)_4]^{2-}$ ion	

a) dsp^2 , square plana	r, zero	b) dsp^2 , square plana	r, 1.73
c) sp^2d^2 , octahedral,	zero	d) d^2sp^3 , octahedral,	1.73
532. Choose the IUPAC na	me of \Box		
a) Dicyclobutane		b) Bicyclo [2.2.0] hexa	ane
c) Bicyclo [2.2.1] hex	ane	d) None of these	
	g is a heterocyclic compou	=	
a) Phenanthrene	b) Thiophene	c) Phenol	d) Aniline
534. $[Sc(H_2O)_6]^{3+}$ ion is		•	
a) Colourless and dia	magnetic	b) Coloured and octal	nedral
c) Colourless and par		d) Coloured and para	
535. Benzene reacts with 0	CH_3Cl in the presence of an	hydrous AlCl ₃ to form:	
a) Xylene	b) Toluene	c) Chlorobenzene	d) Benzylchloride
536. The magnetic momen	at of $[Co(NH_3)_6]Cl_3$ is	-	
a) 1.73	b) 2.83	c) 6.6	d) Zero
•	reactivity towards electrop	•	
	>Chlorobenzene>Benzoic		
	robenzene>Benzene>Phe		**
	nzene>Benzene>Benzoic		
d) Benzoic acid>Phe	nol>Benzene>Chlorobenzo	ene	
538. The product formed h	by the reaction of C_6H_5CN	and CH ₂ N ₂ is:	
^			d) None of these
a) $CH = CH_2$	$\begin{pmatrix} N_2 & N & N \\ b \end{pmatrix} \parallel \parallel$	CH_2CH_2	,
a) U		0	
539. Increasing order of ex	_		
	$CH_3COCH_3 > CH_3CHO > C$		
	> CH3COCH2CHO > CH3CO		
	$CH_3 > CH_3COCH_2CHO > C$		
	$COCH_2COCH_3 > CH_3CHO >$		
=	he metal which forms poly		
a) Na	b) Mg	c) Mn	d) All of these
	ic acid can be distinguished		
a) Aqueous NaHCO ₃		c) Aqueous FeCl ₃	d) Aqueous Na ₂ CO ₃
	g the lowest oxidation state		D = (00)
a) K ₄ Fe(CN) ₆	b) K ₂ FeO ₄	c) Fe_2O_3	d) Fe(CO) ₅
543. The name of [Pt(NH ₃			
	roplatinum(IV) tetrachlor	platinate(II)	
· · · · · · · · · · · · · · · · · · ·	(IV) tetrachloroplatinate		
	ım (II) tetrammineplatinat		
	ım (II) dichlorotetraammir	ie platinate	
544. <i>m</i> -dihydroxybenzene			12.75
a) Catechol	b) Resorcinol	c) Quinol	d) Pyrogallol
545. The ion which exhibit	_	2 - 21	75 2
a) Cu ²⁺	b) Mn ²⁺	c) Co ²⁺	d) Ni ²⁺
546. $X \stackrel{\text{Cl}_2}{\longrightarrow} \text{Benzotrichloride}$	$e \xrightarrow{\text{Hydrolysis}} Y$		
X and Y respectively	are:		
a) Benzene, benzalde	hyde		
b) Toluene, benzalde			
c) Toluene, benzoic a			
d) Benzene, benzoic a			

547. Geometrical isomerism is found in coordination compounds having coordination number:

a) 2

b) 3

- c) 4 (tetrahedral)
- d) 6

548. Which one of the following complexes is not expected to exhibit isomerism?

- a) $[Ni(NH_3)_4(H_2O)_2]^{2+}$
- b) $[Pt(NH_3)_2Cl_2]$
- c) $[Ni(NH_3)_2Cl_2]$
- d) $[Ni(en)_3]^{2+}$

549. The correct acidity order of the following is:

- a) (III) > (IV) > (II) > (I)
- b) (IV) > (III) > (I) > (II)
- c) (III) > (II) > (I) > (IV)
- d) (II) > (IV) > (I)

550. Identify ${}^{\prime}Z^{\prime}$ in the reaction;

$$\begin{array}{c}
\text{OH} \\
\hline
\end{array}$$

$$\xrightarrow{\text{CHCl}_3 + \text{NaOH}} X \xrightarrow{\text{NaOH}} Z :$$

551. Pure aniline is a:

- a) Brown coloured liquid
- b) Colourless liquid
- c) Brown coloured solid
- d) Colourless solid

552. Aromatic compounds undergo most easily:

- a) Nucleophilic substitution
- b) Electrophilic substitution
- c) Nucleophilic addition
- d) Electrophilic addition

- 553. The colour of $CoCl_3 \cdot 5NH_3 \cdot H_2O$ is: c) Green d) Pink a) Orange yellow b) Orange 554. The value of x on the $[Ni(CN)_4]^x$ is: a) +2 c) Zero d) + 4555. Complexes with halide ligands are generally: a) High spin complexes b) Low spin complexes d) None of these c) Both (a) and (b) 556. The hybridization involved in $[CoF_6]^{3-}$ is: b) d^3sp^2 d) sp^3d^2 a) d^2sp^3 c) dsp^3 557. / Will have the name a) N-ethyl-N-methylethanamine b) N,N-diethylmethanamine c) N,N-diethylethanamide d) None of the above 558. The oxidation state of Fe in the brown ring complex [Fe(H₂O)₅NO]SO₄is b) 0 c) + 2559. The metal ion in complex \underline{A} has EAN identical to the atomic number of krypton. \underline{A} is (At. no. of Cr=24, Fe=26, Pd=46) c) Na₄[Fe(CN)₆] a) $[Pd(NH_3)_6]Cl_4$ b) $[Cr(NH_3)_5Cl]SO_4$ d) $K_3[Fe(CN)_6]$ 560. Which one of the following is expected to exhibit optical isomerism [en =ethylenediamine]? a) $trans - [Co(en)_2Cl_2]$ b) $cis - [pt(NH_3)_2Cl_2]$ d) $Trans - [pt(NH_3)_2Cl_2]$ c) $cis - [Co9en)_2Cl_2$ 561. What is the magnetic moment of $K_3[FeF_6]$? b) 4.89 BM d) 6.92 BM a) 5.91 BM 562. Identify 'Y' in the change; a)
- 563. Among the following statements on the nitration of aromatic compounds, the false one is:
 - a) The rate of nitration of benzene is almost the same as that of hexadeuterobenzene
 - b) The rate of nitration of toluene is greater than that of benzene
 - c) The rate of nitration of benzene is greater than that of hexadeuterobenzene
 - d) Nitration is an electrophilic substitution reaction
- 564. The bond length of C—O bond in carbon monoxide is 1.128Å. The C—O bond in Fe(CO)₅ is:
 - a) 1.15 Å
- b) 1.128 Å
- c) 1.72 Å
- d) 1.118 Å

- 565. Which one is not correct for homologous series?
 - a) All members are represented by same general formula
 - b) All members have same chemical properties
 - c) All members have same physical properties
 - d) All members have same functional group

is named in IUPAC as

- a) 2, 3-dimethyl bicyclo [2.2.1] hept-5-ene
- b) 1, 2-dimethyl bicyclo [2.2.1] hept-4-ene
- c) 5, 6-dimethyl bicyclo [2.2.1] hept-2-ene
- d) 4, 5-dimethyl bicyclo [2.2.1] hept-1-ene
- 567. Ferric ion forms a prussian blue coloured solution due to the formation of:

5 60	a) $K_4[Fe(CN)_6]$, , , , ,	c) $Fe_4[Fe(CN)_6]_3$	d) $K_3[Fe(CN)_6]$
568.	What is the magnetic mo			
	a) 5.92	b) 5.49	c) 2.34	d) 4
569.	-	n exhibit geometrical isom		
	a) $[MnBr_4]^{2-}$	b) $[Pt(NH_3)_3Cl]^+$	c) $[PtCl_2.P(C_2H_5)_3]_2$	d) $[Fe(H_2O)_5NO]^{2+}$
570.	A compound contains 2 d	lissimilar asymmetric C-ato	ms. The number of optical i	somers are
	a) 2	b) 3	c) 4	d) 5
571.	Coordination number of	Ni in $[Ni(C_2O_4)_3]^{4-}$ is:		
	a) 3	b) 6	c) 4	d) 5
572.	Which compound exhibit	s optical isomerism?		
	a) Pentaamminenitrocob	alt (III) iodide		4 ' }
	b) Diamminedichloroplat	tinum (II)		
	•	hylenediamine) chromium	(III) chloride	A . Y
	d) Tris-(ethylenediamine	- •		
573.	Ruthenium carbonyl is:	, ()		
	a) Ru(CO) ₄	b) Ru(CO) ₅	c) Ru(CO) ₈	d) Ru(CO) ₆
574	Oxidation state of nitroge		0) 1111(00)8	1111(00)6
<i>0,</i> 1.	-	tion state	4//3	
	-	0	b) NH ₂ OH -:	1
		·2	d) Mg_3N_2 –3	2
575		n participate in linkage isoi		,
3/3.	a) NH ₃	m participate in inikage isoi b) H ₂ O	c) H ₂ NCH ₂ CH ₂ NH ₂	d) NO ₂
E76	, ,	s soluble in water than p -an		u) NO ₂
370.			u m-mu opnenois because:	
		ntramolecular H-bonding		
		ntermolecular H-bonding	C	
		ophenol is lower than those	-	
		volatile in steam than those	e of m-and p-isomers	
577.	Among the following mos		S.A	15 to 11
	a) Benzyl amine	b) Aniline	c) Acetanilide	d) <i>p</i> -nitro aniline
578.		otassium hexachloroplatina		
	a) 46	b) 86	c) 36	d) 84
579.		ed when copper ammoniun	n sulphate is dissolved in w	
	a) 1	b) 2	c) 4	d) Zero
580.	Which of the following ca	nnot show linkage isomeris	sm?	
	a) NO ₂	b) NH ₃	c) CN ⁻	d) SCN ⁻
581.	Xylenes on oxidation with	h acidic KMn O_4 gives:		
	a) Phthalic acid	b) Isophthalic acid	c) Terephthalic acid	d) All of these
582.	The ratio of σ -and π -bond	ds in benzene is:		
	a) 2	b) 4	c) 6	d) 8
583.	The order of decreasing r	eactivity towards S_E reaction	on for the given compound	is:
	$(i)C_6H_6$			
	(ii)C ₆ H ₅ CH ₃			
	(iii)C ₆ H ₅ Cl			
	(iv)C ₆ H ₅ OH			
	a) (ii)>(iv)>(i)>(iii)	b) (iv)>(iii)>(ii)>(i)	c) (iv)>(ii)>(ii)>(iii)	d) (i)>(ii)>(iii)>(iv)
584.		ompounds is not optically ac		
	h ċi	Çl Br	Br Ḥ	ų Ų
	H	Н	LI H BR LI	Dr. Br. Br. II
	a) Cl	b) H	c) [''	d)
	н	н	H Br	H Br

COT The number of geometri	ical icomora of [Co(NII) (NO) lare.	
585. The number of geometri			۵) ۱
a) Zero	b) 2	c) 3	d) 4
586. Phenol is less acidic than		2	D Pales and
a) Water	b) <i>p</i> -methoxyphenol	c) <i>p</i> -nitrophenol	d) Ethanol
587. In the reaction,	OH C 1 1'		
$C_6H_5CH_3 \xrightarrow{Oxidation} A \xrightarrow{Na}$	$\xrightarrow{OH} B \xrightarrow{Soda lime} C$		
a) C ₆ H ₅ OH	b) C ₆ H ₆	c) C ₆ H ₅ COONa	d) C ₆ H ₅ ONa
588. Incorrect statement is	5) 36116	c) 46115 do o 114	a) derisoria
	ifinite number of conforma	tions	
	lle has considerable angle s		Y
	ne is less stable then stagge		
	on possess maximum ener		A
589. The complex $[Co(NH_3)_5]$	_		4
a) PbCl ₂	b) AgNO ₃	c) KI	d) None of these
590. Which of the following c	, , ,		
a) [Fe(en)(bpy)(NH ₃) ₂]	-	est paramagnetic benaviour	
b) $[Co(OX)_2(OH)_2]^-$		4 4	
c) $[Ti(NH_3)_6]^{3+}$)"
$[V(g y)_2(OH)_2(NH_3)_2]$]+		
E (0) / E () / E () / E	en = ethylenediamine and	hny – hinyridylmoities	
(At. No. Ti= 22 , V= 23 ,		bpy – bipyridyimordes	
591. The coordination number		ay ingrasca to 0	
a) Cobalt	b) Osmium	c) Nickel	d) Iron
592. Compound used for cove			u) ii oii
a) Benzoic acid	b) Aniline	c) Phenol	d) Salicylic acid
593. Cinnamic acid on decarb		c) Thenor	u) Sancyne aciu
a) Benzene	b) Toluene	c) Styrene	d) Benzaldehyde
594. In which of the following			a) benzaidenyde
a) Cis- $[Cr(C_2O_4)_2Cl_2]^{3-}$		b) [PtCl(dien)]Cl, [NiCl ₂ B	r-12-
c) $[Co(NO_3)_3(NH_3)_3]$, ci		d) $[Co(en)_3]Cl_3$, cis - $[Co(en)_3]Cl_3$	
595. The name of the ring str			_
_	b) Chelate complex	c) Polynuclear complex	
596. IUPAC name of	b) enclute complex	ej i olynderedi complex	a) None of the above
$Cl_{2}CH - CH - CH - CCl_{2}$	is		
$Cl_2CH - CH - CH - CCl_3$ $\begin{vmatrix} & & & & & & & & & & & \\ & & & & & & & $			
CaHe CaHe			
a) 1,1,1,4,4-pentachloro			
, , , , , , , , , , , , , , , , , , ,	-(trichloromethyl)-hexane		
	l-(dichloromethyl)-hexane		
d) 1,1,4,4,4-pentachloro			
597. Which statement is wron		nyde and henzaldehyde?	
	oxylamine to form oximes	-,	
b) Both react with HCN t	•		
c) Both react with NaOH			
	azine to form hydrazones		
598. The coordination number	= = = = = = = = = = = = = = = = = = =	$(0)_{4}^{2+}$ is	
a) 4	b) 3	c) 2	d) 1
599. Which reaction sequence	•	,	•
a) Chlorination, nitration	= =		
b) Nitration, chlorination			

- c) Nitration, reduction, chlorination
- d) Nitration, reduction, acetylation, chlorination, hydrolysis

600. The complexes $(Co(NH_3)_6)[Cr(C_2O_4)_3]$ and $[Cr(NH_3)_6][Co(C_2O_4)_3]$

a) Geometrical isomerism

b) Ionization energy

c) Coordination isomerism

d) Linkage isomerism

601. The reaction,

 $C_6H_5NHCOCH_3 \xrightarrow{B_2/Fe} BrC_6H_4NHCOCH_3$

is an example of:

- a) Substitution reaction
- b) Addition reaction
- c) Condensation reaction
- d) Elimination reaction
- 602. Given the molecular formula of the hexa coordinated complexes is
 - (A) CoCl₃ .6NH₃
 - (B) CoCl₃ .5NH₃
 - (C) $CoCl_3$.4NH₃

If the number of coordinated NH₃molecules in A, B and C respectively are 6, 5 and 4 the primary valency in (A), (B) and (C) are

- a) 6, 5, 4
- b) 3, 2, 1
- c) 0, 1, 2
- d) 3, 3, 3

603. C₆H₁₄ has two tertiary carbons. The IUPAC name is

- a) *n*-hexane
- b) 2-methylpentane
- c) 3-methylpentane
- d) 2,3-dimethylbutane

604. The compound $[Co(NO_2)(NH_3)_5]Cl_2$ and $[Co(ONO)(NH_3)_5]Cl_2$ are examples of:

- a) Geometrical isomers
- b) Linkage isomers
- c) Ligand isomers
- d) Ionization isomers

605. Which is not a π -bonded complex?

- a) Zeise salt
- b) Ferrocene
- c) Dibenzene chromium d) Tetraethyl lead

606. When phenol is treated with PCl₅, the yield of chlorobenzene is generally poor because of the formation of:

- a) Benzoyl chloride
- b) p-chlorophenol
- c) o-chlorophenol
- d) Tertiary phosphate

607. Which will show tautomerism?

608. The IUPAC name of compound

a) N-phenylaminoethanone

b) N-phenylethanamide

c) N-phenylmethanamide

d) N-phenylaminomethane

609. Which one of the following is most reactive towards electrophilic reagent?

- 625. The compound required for the formation of thermosetting polymer with methanal is:
 - c) Benzaldehyde a) Phenol b) Benzene
- d) All of these 626. Which one of the following has highest number of isomers?

	a) $[Co(NH_3)_5Cl]^{2+}$	b) [Co(en) ₂ Cl ₂] ⁺	c) $[Ru(NH_3)_4Cl^-]$	d) $[In(PP_3)_2H(CO)]^{2+}$
627.	Which group is <i>o</i> - and <i>p</i> -d	lirecting?		
	a) $-NO_2$	b) —SO ₃ H	c) —COOH	d) —NHCOCH ₃
628.	When benzyl chloride is b	oiled with aqueous solutio	n of lead nitrate in current	of carbon dioxide, the main
	product is:			
	a) Benzoic acid	b) Benzyl alcohol	c) Benzaldehyde	d) Nitrobenzene
629.	Ligands in complex comp	ounds		
	a) Donates electron pair		b) Accept electron pair	
	c) Neither accept electron	n pair nor donate	d) All of the above	
630.	Aniline is separated by:	•	•	\sim
	a) Fractional crystallisation	on		
	b) Fractional distillation			
	c) Steam distillation			
	d) Vacuum distillation			
631.	In which of the following	octahedral complexes of Co	o (at. No. 27), will be magni	tude of Δ_0 be the highest?
	a) $[Co(CN)_6]^{3-}$	b) $[Co(C_2O_4)_3]^{3-}$	c) $[Co(H_2O)_6]^{3+}$	d) $[Co(NH_3)_6]^{3+}$
632.	The IUPAC name of K ₂ [Pt	Cl ₆] is	. (4	•
	a) Hexachloroplatinate po	otassium	b) Potassium hexachlorop	olatinate (IV)
	c) Potassium hexachlorop	olatinate	d) Potassium hexachlorop	olatinum(IV)
633.	Aqueous solution of nicke	el sulphate on treating with	pyridine and then adding a	a solution of sodium nitrite
	gives dark blue crystals of	f:		
	a) $[Ni(py)_4]SO_4$	b) $[Ni(py)_2(NO_2)_2]$	c) $[Ni(py)_4(NO_2)_2]$	d) $[Ni(py)_3(NO_2)]_2SO_4$
634.	Benzyl alcohol is obtained	l from benzaldehyde by:		
	a) Fittig's reaction	b) Cannizzaro's reaction	c) Kolbe's reaction	d) Wurtz's reaction
635.	The structure of the comp	ound that gives a tribromo	derivative on treatment w	
	ÇH ₃	CH ₂ OH	СП	$_{L}^{CH_3}$
			CH ₃	
	a) 🔷	b)	c) OH	d) \bigcirc
	~, ()		³ ()	2) ()
	\sim OH			
				ÓH
636.			the element 'E' in the comp	$[E(en)_2(C_2O_4)]NO_2$
	, , , , , , , , , , , , , , , , , , , ,	iamine) are, respectively:		1) 4 10
605	a) 6 and 3	b) 6 and 2	c) 4 and 2	d) 4 and 3
637.	Benzaldehyde reacts with) D	D CL 1
(20	a) Benzyl chloride	b) Benzo trichloride	c) Benzal chloride	d) Chlorobenzene
638.		g complex ions has geomet		D [C (MH) ()13+
(20	a) $[Co(en)_3]^{3+}$	b) [Ni(NH ₃) ₅ Br] ⁺	c) $[Co(NH_3)_2(en)_2]^{3+}$	d) $[Cr(NH_3)_4(en)]^{3+}$
639.		the following aromatic co		D t
(10	-	b) <i>para</i> -chlorophenol	c) <i>para</i> -nitrophenol	d) <i>meta</i> -nitrophenol
640.	The isomers observed in a	aikanes is	h) Chain ia an anian	
	a) Metamerism		b) Chain isomerism	
(11	c) Position isomerism	a a manain a gulmh a ta ga halt (I	d) Geometrical isomerism	
641.	= = =	aamminesuipnatocobait (1	II) bromide and pentaamm	inesuipnatocobait(iii)
	chloride represent:			
	a) Linkage isomerism			
	b) Ionization isomerism	m		
	c) Coordination isomerism	.11		
612	d) No isomerism Poth [Ni(CO)] and [Ni(C)]	M) 12- and diamagnatic Th	e hybridisation of nickel in	the compounds
044.	Dom [$M(CO)_4$] and [$M(C)$	n _{/4]} are diamagnede. In	ie nybriuisaubii bi ilickei ili	the compounds

respectively are:

- a) sp^3 , sp^3
- b) sp^3 , dsp^2
- c) dsp^2 , sp^3
- d) dsp^3 , dsp^2
- 643. The following compounds on hydrolysis in aqueous acetone will give:

$$(L): CH_3O - \bigcirc \begin{array}{c|cccc} CH_3 & H & CH_3 \\ \hline & & & \\ OH & H & CH_3 \\ \end{array} \\ \begin{array}{c|ccccc} -NO_2 \\ \hline \end{array}$$

$$(M): CH_3O - \bigcirc \begin{matrix} CH_3 & H & CH_3 \\ H & CH_3 & OH \end{matrix} - NO_2$$

- a) Mixture of (K) and (L) b) Mixture of (K) and (M) c) Only (M)
- d) Only (K)

- 644. The number of π -electrons in cyclo hepta trienyl anion is:
 - a) 2

b) 3

c) 8

- d) 5
- 645. In the Grignard reaction, which metal forms an organometallic bond?
 - a) Sodium
- b) Titanium
- c) Magnesium
- d) Palladium

- 646. Aromatic hydrocarbons are the derivatives of:
 - a) Benzene
 - b) Methane
 - c) Normal series of paraffins
 - d) None of the above
- 647. Benzene easily shows:
 - a) Ring fission reactions since it is unstable
 - b) Addition reactions since it is unsaturated
 - c) Electrophilic substitution reactions due to stable ring and high π -electron density
 - d) Nucleophilic substitution reactions due to stable ring and minimum electron density
- 648. The IUPAC name of the compound

a) Tetra phenyl methane

b) 1,1,1,1-tetraphenyl methane

c) 1,1,1,1-tetracyclohexyl methane

d) Methyno-1,1,1-1-tetracyclohexane

649.

having the IUPAC name as

a) 2,4,4-trimethyl pentanal

b) 4,4,2-trimethyl pentanal

c) 1,3,3-trimethyl butanal

- d) 3,3,1-trimethyl butanal
- 650. When benzoic acid is heated with soda lime, we get:
 - a) Phenol
- b) Benzyl alcohol
- c) Benzene
- d) Benzaldehyde
- 651. If a compound absorbs violet colour from the sunlight, then the observed colour is:
 - a) Yellow
- b) Orange
- c) Blue

d) Green

- 652. Sulphonic acid is used in the manufacture of:
 - a) Antipyretics
- b) Antitoxine
- c) Antibiotics
- d) Dyes
- 653. In the silver plating of Cu, $K[Ag(CN)_2]$ is used instead of $AgNO_3$. The reason is:
 - a) A thin layer of Ag is formed on Cu
 - b) More heat is required

c) Ag^+ ions are completely removed from solution		
d) Less availability of Ag ⁺ ion as Cu cannot displac		
654. The strongest o-, p-directing group among the following	owing is:	
a) —OH b) —Cl	c) $-C_6H_5$	d) —Br
655. Out of ${\rm TiF_6^{2-}}$, ${\rm CoF_6^{3-}}$, ${\rm Cu_2Cl_2}$ and ${\rm NiCl_4^{2-}}$ (Z of Ti = 2)	2, Co = 27, Cu = 29, Ni = 28	3) the colourless species are
a) CoF_6^{3-} and $NiCl_4^{2-}$ b) TiF_6^{2-} and CoF_6^{3-}	c) Cu ₂ Cl ₂ and NiCl ₄ ²⁻	d) TiF_6^{2-} and Cu_2Cl_2
656. Which is true in the case of $[Fe(CN)_6]^{3-}$ complex?		
a) d^2sp^3 -hybridization of Fe		
b) Paramagnetic		
c) One unpaired electron		
d) All of the above are correct		
657. The IUPAC name of $[Ni(PPh_3)_2Cl_2]^{2+}$ is		
a) Bis-dichloro (triphenylphosphine)nickel(II)	b) Dichloro bis (tripheny	
c) Dichloro triphenylphosphine nickel(II)	d) Triphenyl phosphine	nickel (II) dichloride
658. The complex $[Co(NH_3)_3Cl_3]$ is:	3 A	D.M. C.I
a) Neutral b) Cationic	c) Anionic	d) None of these
659. From the stability constant (hypothetical values) g a) $Cu^{2+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+}$; $(K = 4.5 \times 10^1)$		s the strongest figand?
b) $Cu^2 + 4CN \rightleftharpoons [Cu(CN)_4]^{2-}$; $(K = 2.0 \times 10^{27})$		
c) $Cu^{2+} + 2en \rightleftharpoons [Cu(en)_2]^{2+}$; $(K = 3.0 \times 10^{15})$		
d) $Cu^{2+} + 4H_2O \rightleftharpoons [Cu(H_2O)_4]^{2+}; (K = 9.5 \times 10^8)$		
660. Which has highest m.p.?		
a) <i>o</i> -bromophenol b) <i>m</i> -bromophenol	c) p-bromophenol	d) <i>m</i> -chlorophenol
661. Hexafluorocobaltate(III) ion is found to be high spi		_
a) d^2sp^3 b) sp^3	c) sp^3d	d) sp^3d^2
662. Which isomeric dibromotoluene is most difficult to	make from toluene?	
a) 2,3 b) 2,4	c) 3,5	d) 2,6
663. Which one of the following forms with an excess of		
, ,	c) Ni ²⁺	d) Fe ²⁺
664. Nitration of salicylic acid gives:		
a) 2,4,6-trinitrosalicylic acid		
b) 2,4,6-trinitrophenol		
c) 2,4,6-trinitrobenzoic acidd) None of the above		
665. The IUPAC name of the compound		
CH_3 — CH_2 — CH_2 — CH_3 \parallel N — OH		
a) N-hydroxy-3-amino pentane	b) N-hydroxyamino pent	tane
c) N-hydroxy-3-imino pentane	d) None of the above	
666. Which is not true of the coordination compound [C	· · · = ===	
a) Exhibits geometrical isomerismc) Exhibits ionisation isomerism	b) Exhibits optical isomed) Is an octahedral comp	
667. The IUPAC name of	u) is all octalieural collip	лех
CH ₃ O		
CH ₃ —CH—CH—C—CI		
ĊH₂Br is		

a) 3-(bromomethyl)-2-methyl butanoyl chloride

c) 2-(bromomethyl)-3-methyl butanoyl chloride

Page | **53**

b) 3-(bromomethyl)-2-methyl propanoyl chloride

d) None of the above

668. Aniline is reacted with bromine water and the resulting product is treated with an aqueous solution of

sodium nitrite in the presence of dilute HCl. The compound so formed is treated with fluoroboric acid which is subsequently heated dry. The final product is:

- a) *p*-bromofluorobenzene
- b) p-bromoaniline
- c) 2,4,6-tribromofluorobenzene
- d) 1,3,5-tribromobenzene
- 669. Which of the following is a common donor atom in ligands?
 - a) Nitrogen
- b) Oxygen
- c) Arsenic
- d) Both (b) and (c)
- 670. The reaction of aniline with acetyl chloride in presence of NaOH gives:
 - a) Acetanilide
- b) Aniline hydrochloride c) p-chloroaniline
- d) A red dye

671. In the reaction, the compound "X" is:

$$Me - CHO + X \xrightarrow{CH_3COON_a}$$

- a) CH₃COOH
- b) Br · CH₂COOH
- c) $(CH_3CO)_2O$
- d) CHO · COOH
- 672. Which of the following will exhibit maximum ionic conductivity?
 - a) $K_4[Fe(CN)_6]$
- b) $[Co(NH_3)_6]Cl_3$
- c) $[Cu(NH_3)_4]Cl_2$
- 673. Dipole moment of p-nitroaniline, when compared to nitrobenzene (X) and aniline (Y) will be:
 - a) Greater than (X) and (Y)
 - b) Smaller than (X) and (Y)
 - c) Greater than (X) but smaller than (Y)
 - d) Equal to zero
- 674. The structure of iron pentacarbonyl is:
 - a) Square planar
- b) Trigonal bipyramidal
- c) Triangular
- d) None of these

- 675. Turnbull's blue is:
 - a) Ferricyanide
- b) Ferrous ferricyanide
- c) Ferrous cyanide
- d) Ferri ferrocyanide

676. The correct IUPAC name of

$$\begin{array}{c|c} & \text{OH} \\ & \mid \\ \text{CH}_2 & \text{C} & \text{CH}_2 \\ \mid & \mid & \mid \\ \text{COOH} & \text{COOH COOH is} \end{array}$$

- a) 2-hydroxypropane-1, 2, 3-tricarboxylic acid
- b) 3-carboxy-3-hydroxy-pentane-1, 5-dioic acid
- c) 2 carboxy-4 hydroxy-pentane-1, 5-dioic acid
- d) 3-carboxy-3-hydroxy-hexane-1, 6-dioic acid
- 677. The trivial name among the following is
 - a) Acetone
- b) Acetylene
- c) Uric acid
- d) None of these

- 678. The IUPAC name of $[Pt(NH_3)_4(NO_2)Cl]SO_4$ is
 - a) Chloronitro tetrammine platinum (IV) sulphate
 - b) Tetrammine chloronitro platinum (II) sulphate
 - c) Tetrammine chloronitro platinum (IV) sulphate
 - d) Chlorotetrammine nitroplatinum (IV) sulphate
- 679. The overlapping in benzene is in carbon-carbon orbitals of the type:

a)
$$p-p$$

- b) sp sp
- c) $sp^2 sp^2$
- d) $sp^3 sp^3$
- 680. Change in composition of coordination sphere yields which type of isomer?
 - a) Geometrical
- b) Ionization
- c) Optical
- d) None of these

- 681. The IUPAC name of $K_2[Ni(CN)_4]$ is
 - a) Potassium tetracyanonickelate (II)
- b) Potassium tetracyanatonickelate (III)
- c) Potassium tetracyanatonickel (II)
- d) Potassium tetracyanonickel (III)

682. Aniline in a set of the following reactions yielded a coloured compound *Y*:

$$\begin{array}{c}
NH_2 \\
\hline
NaNO_2 + HCl \\
\hline
278K
\end{array}$$

$$X \xrightarrow{N,N-\text{dimethyl aniline}} Y$$

a)
$$N=N-N-N-N$$
 CH_3

b)
$$\stackrel{\text{CH}_3}{\mid}$$
 $\stackrel{\text{CH}_3}{\mid}$ $\stackrel{\text{CH}_3}{\mid}$

c)
$$H_3C$$
 $N=N$ $N=N$

d)
$$\stackrel{CH_3}{\mid}$$
 $\stackrel{CH_3}{\mid}$ $\stackrel{N=N}{\mid}$ $\stackrel{N}{\mid}$ $\stackrel{NH}{\mid}$

683. The effective atomic number rule is less likely to apply if the metal-ligand bond:

- a) Is extremely weak
- b) Has a covalent character
- c) Has a large amount of ionic character
- d) None is correct

684. Potassium ferrocyanide is an example of

- a) Tetrahedral
- b) Octahedral
- c) Square planar
- d) Linear

685. 1-phenyl, 2-chloropropane on treatment with aqueous KOH gives mainly:

- a) 1-phenylpropane
- b) 3-phenylpropane
- c) 1-phenylpropan-2-ol
- d) 1-phenylpropan-3-ol

686. Which class of compounds can exhibit geometrical isomerism?

- a) $C_6H_5CH = NOH$
- c) HOOCCH—CH₂—CHCOOH

- b) $CH_3CH = CHCH_3$
- d) All of the above

687. The product of oxidation of aniline with K₂Cr₂O₇ and conc. H₂SO₄ will be:

- a) p-amino phenol
- b) p-benzoquinone
- c) Aniline black dye
- d) Phenyl hydroxylamine

688. Among the following the Newmann projections of meso-2, 3-butanediol are

a) *P*, *Q*

b) P, R

c) R, S

d) Q, S

689. A new carbon-carbon bond is formed in:

- a) Cannizzaro's reaction
 - b) Friedel-Crafts reaction

d) None of the above					
690. Which of the following compounds can ex	690. Which of the following compounds can exhibit tautomerism?				
CHO COO	NO_2	$CH_3 - CH - CH_3$			
$a) \bigcirc $ $b) \bigcirc $	c) ()	d)			
		NH ₂			
691. The most basic compound among the follo	owing ic	Z			
a) Benzylamine b) Aniline	c) Acetanilide	d) <i>p</i> -nitroaniline			
692. Which of the following has least oxidation		u) p-introammie			
a) $K_3[Fe(OH)_6]$	b) $K_2[FeO_4]$	$\langle V \rangle$			
c) $FeSO_4(NH_4)_2SO_4$.6 H_2O	d) $[Fe(CN)_6]^{3-}$				
	, . , , . ,)) ig			
693. The spin only magnetic moment value (in a) 0 b) 2.84	c) 4.90				
	CJ 4.90	d) 5.92			
694. Which is an excellent antiseptic?	a) Dangaldahyyda	d) Agatia agid			
a) Phenol b) Benzyl alcoh		d) Acetic acid			
695. Scientist who explained the structures and	•	T . Y			
a) Sidgwick b) Pauling	c) Powell	d) Werner			
696. The cation that does not form an ammine	-				
a) Al ³⁺ b) Ag ⁺	c) Cu ²⁺	d) Cd ²⁺			
697. The complex ion which has the highest ma					
a) $[CoF_6]^{3-}$ b) $[Co(NH_3)_6]^3$		d) [Ni(CN) ₄] ²⁻			
698. For square planar complex of platinum (II), $[Pt(NH_3)(Br)(Cl)Py]^{2+}$, how	many isomeric forms are			
possible?					
a) Two b) Three	c) Four	d) Six			
699. Which of the following has highest boiling	-				
a) Benzene b) Phenol	c) Toluene	d) Ethyl benzene			
700. A nitrogen containing organic compound		l alcoholic KOH evolved very			
unpleasant smelling vapours. The compou					
a) Nitrobenzene b) Benzamide	_				
701. Which of the following 0.1 M complex com	=	-			
a) Hexammine platinum (IV) chloride		nine platinum (IV) chloride			
c) Dichloro tetrammine platinum (IV) chlo	oride d) Trichloro triamm	nine platinum (IV) chloride			
702. False statement is					
a) Aprotic solvents increase the enol cont					
b) Any deviation from the normal bond an	_	molecule			
c) Diastereomers have identical physical p					
d) Chain isomers can also be position ison					
703. The correct IUPAC name of the compound	lis				
$CH_3 - CH - CH - CH - CH_2 - CH_3$					
Cl Br I					
a) 4-bromo-5-chloro-3-iodo hexane	b) 3-bromo-2-chlor	o-4-iodo hexane			
c) 3-bromo-4-iodo -2-chloro hexane	d) 2-bromo-3-brom	io-4-iodo hexane			
704. Benzyl chloride (C ₆ H ₅ CH ₂ Cl) can be prepa	ared from toluene by chlorination	on with:			
a) SO_2Cl_2 b) $SOCl_2$	c) S ₂ Cl ₂	d) NaOCl			
705. The compound 2,2'-bipyridine has the str	ucture				
a) N	b) \(\bigcup_N \)				

c) Clemmensen reduction

706. The IUPAC name of

- a) 4-formyl-6-oxocyclohexane-1-carboxylic acid
- b) 2-oxo-4-formyl cyclohexane-1-carboxylic acid
- c) 6-oxo-4-formyl cyclohexane-1-carboxylic acid
- d) 4-formyl-2-oxo cyclohexane-1-carboxylic acid

- a) HCl/CuCl
- b) HNO₂/Cu
- c) C₂H₅OH/Cu
- d) SnCl₂/HCl

708. Diethylenetriammine is:

- a) Chelating agent
- b) Polydentate ligand
- c) Tridentate ligand
- d) All of these

709. The no. of ions given by [Pt(NH₃)₄Cl₂]Cl₂ in aqueous solution is:

a) 2

b) 3

c) 4

d) 5

710. Aniline reacts with excess of bromine to give:

- a) Benzyl bromide and hydrobromic acid
- b) 2,4,6-tribromoaniline
- c) 2-bromotoluene and hydrobromic acid
- d) 2-bromophenol and hydrobromic acid
- 711. The coordination compounds,

$$[Co(NH_3)_6]^{3+}[Cr(CN)_6]^{3-}$$

and $[Cr(NH_3)_6]^{3+}[Co(CN)_6]^{3-}$ are example of

a) Linkage isomerism

c) Ionisation isomerism

- b) Coordination isomerism
- d) Geometrical isomerism
- 712. Both Co³⁺ and Pt⁴⁺ have a coordination number of six. Which of the following pairs of complexes will show approximately the same electrical conductance for their 0.001 M. aqueous solutions?
 - a) CoCl₃ .4NH₃ and PtCl₄ .4NH₃

b) CoCl₃ .3NH₃ and PtCl₄. 5NH₃

c) CoCl₃ .6NH₃ and PtCl₄ .5NH₃

d) CoCl₃ .6NH₃ and PtCl₄. 3NH₃

713. In SCN ligand if N is attached to central atom, the name of ligand is:

- a) Thiocyanato-N
- b) Cyanato-N
- c) Thiocyanato-S
- d) Cyanato-S

714. The product formed on heating

a)
$$CH_2 \cdot CH = CH_2$$

$$CH_2CH = CH_2$$

$$OH$$

d)
$$OCH_2CH = CH_2$$

- 715. Oxidation of ethyl benzene by KMnO₄ gives:
 - a) Benzyl alcohol
- b) Benzophenone
- c) Acetophenone
- d) Benzoic acid
- 716. One of the following statements regarding Reimer-Tiemann reaction is false:
 - a) Reaction of phenol with CHCl₃ and KOH
 - b) CCl₂ acts as a nucleophile
 - c) Reaction of phenol with CCl₄ and NaOH
 - d) Reaction of phenol with formaldehyde to form bakelite
- 717. The structure representing a heterocyclic compound is

a)
$$CH_2$$
 CH_2

b)
$$CH_2-CO$$
 CH_2-CO

$$c)$$
 $CH = CH$ CH

$$c = c$$
 $c = c$
 $c = c$
 $c = c$

- 718. Phenol reacts with Br₂in CCl₄ at low temperature to give:
 - a) m-bromophenol
 - b) o-and p-bromophenol
 - c) p-bromophenol
 - d) 2,4,6-tribromophenol
- 719. The correct name of the compound $[Cu(NH_3)_4](NO_3)_2$, according to IUPAC system is
 - a) Cuprammonium nitrate

b) Tetrammine copper (II) dinitrate

c) Tetrammine copper (II) nitrate

- d) Tetrammine copper (II) dinitrite
- 720. Nitroethane can exhibit one of the following kind of isomerism
 - a) Metamerism
- b) Optical activity
- c) Tautomerism
- d) Position isomerism

721. What would be the correct IUPAC name of

- a) 3,3-dimethyl-3-cyclopentyl propanal
- b) 3-methyl-3-cyclopentyl butan-1-al
- c) 1-(1-methyl-1-formyl) methylethyl cyclopropane
- d) None of above
- 722. The number of unpaired electrons in the square planar $[Pt(CN)_4]^{2-}$ ion is
 - a) 2

b) 1

c) 0

d) 3

723. The oxidation number of cobalt in $K[Co(CO)_4]$ is

	a) +1	b) +3	c) -1	d) -3
724.	IUPAC name of Na ₃ [Co(NC	$(0_2)_6$] is		
	a) Sodium hexanitrito cob	altate (II)	b) Sodium hexanitro coba	altate (III)
	c) Sodium hexanitrito cob	altate (III)	d) Sodium cobaltinitrite(I	I)
725.	The total number of possil	ble isomers for the complex	x compound [Cu(NH3)4][Ptonsite of the compound of the co	tCl ₄]
	a) 6	b) 5	c) 4	d) 3
726.	Benzaldehyde reacts with	excess of anhydrous ethyl	alcohol in the presence of l	HCl, gives:
	a) C ₆ H ₅ COCl	b) C ₆ H ₅ COOC ₂ H ₅	c) $C_6H_5CH(OC_2H_5)_2$	d) C ₆ H ₅ CH ₂ Cl
727.	Which pair of isomerism is	s not possible together?		
	a) Chain and position		b) Functional and position	ı
	c) Tautomerism and funct	ional	d) All of the above	
728.	Which type of conformation			
	н, нА	·		A . Y
	H H H H	H		RILL
	(I) (I	II)	.10	
	a) I is eclipsed, II is stagge	red	b) II is eclipsed, I is stagge	ered
	c) Both are eclipsed		d) Both are staggered	
729.	Which will give chiral mol	ecule?) = 1 1 1 1 1 1 1	
	<u>-</u>		CH ₃ MgBr	
	a) $CH_3COCl \xrightarrow{LiAlH_4}$		b) $C_2H_5CHO \xrightarrow{CH_3MgBr}$	
	3			
	c) $(CH_3)_2CHC_2H_5 \stackrel{Cu}{\rightarrow}$		d) $_{\text{H}_3\text{C}}$ C=C $_{\text{CH}_3}$ $_{\text{CH}_3}$	<u>Cl₂</u> ►
730	The neutral ligand is:	\mathcal{C}	1130 0113	
750.	a) Chloro	b) Hydroxo	c) Ammine	d) Oxalato
731	The effective atomic numb			u) Oxalato
, 51.	a) 36	b) 24	c) 33	d) 30
722	$K_4[Fe(CN)_6]$ is used to det	-	c) 33	u) 30
732.		b) Ferrous ion	a) Forrigion	d) None of these
722	<i>p</i> -nitro benzldehyde react		c) Ferricion	
733.	a) <i>p</i> -nitrobenzamide	S with concentrated Naon	solution at room temperat	ure to give:
	, .	and and a nitrohanganta		
	b) <i>p</i>-nitro benzyl alcohol ac) Benzaldehyde	mu sou. <i>p</i> -mu obenzoate		
724	d) <i>p</i> -nitrotoluene	o ovskihit		
/34.	But-1-ene and cyclobutane	e exhibit		
	a) Ring chain isomerism			
	b) Position isomerism			
7	c) Tautomerism			
	d) Functional			
505	isomerism	1 1 · · · · · · · · · · · · · · · · · ·		1
/35.	The groups satisfying the	-	-	
- 0 -	a) Ligands	b) Radicals	c) Primary valencies	d) None of these
/36.	Benzene was dicovered by		3 D 1:	15 74701 3
	a) Cavendish	b) Faraday	c) Berzelius	d) Wöhler
737.	The number of structural a	=	rs ot a bromo compound C ₅	H ₉ Br obatined by the
	addition of HBr on 2-penty	= =		D 0 4
	a) 1, 2	b) 2, 4	c) 4, 2	d) 2, 1

- 738. The primary valency of Fe in $K_3[Fe(CN)_6]$ is:
 - a) 3

b) 2

c) 1

d) Zero

- 739. Which complex compound obeys 18-electron rule?
 - a) $[V(CO)_5]$
- b) $[Fe(NH_3)_6]^{2+}$
- c) $[Ni(CO)_6]$
- d) $[Mn(H_2O)_6]^{2+}$
- 740. Two isomers X and Y with the formula $Cr(H_2O)_5ClBr_2$ were taken for experiment on depression in freezing point. It was found that one mole of X gave depression corresponding to 2 moles of particles and one mole of Y gave depression due to 3 moles of particles. The structural formula of X and Y respectively, are
 - a) $[Cr(H_2O)_5Cl]Br_2$; $[Cr(H_2O)_4Br_2]Cl.H_2O$
- b) [Cr(H₂O)₅Cl]Br₂; [Cr(H₂O)₃ClBr₂].2H₂O]
- c) $[Cr(H_2O)_5Br]BrCl; [Cr(H_2O)_4ClBr]Br.H_2O$
- d) $[Cr(H_2O)_4Br_2]ClH_2O; [Cr(H_2O)_5Cl]Br_2$

741. The IUPAC name of

$$\begin{array}{c} \text{O} \\ \parallel \\ \text{OHC--CH}_2\text{--CH}_2\text{--COOH} \\ \text{is} \end{array}$$

- a) 1-formyl-3-oxo-pentanoic acid
- c) 3-oxo-5-formyl pentanoic acid

- b) 5-formyl-3-oxo pentanoic acid
- d) 3-oxo-1-formyl pentanoic acid
- 742. The two complexes given below are:

and

- a) Geometrical isomers
- b) Position isomers
- c) Optical isomers
- d) Identical

- 743. Which of the following statements is not correct?
 - a) In oxyhaemoglobin Fe²⁺ is paramagnetic
 - b) During respiration the size of Fe²⁺ increases when it changes from diamagnetic to paramagnetic state
 - c) Four haeme groups are present in haemoglobin
 - d) Haeme is the prosthetic group and it is non-protein part
- 744. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives:
 - a) o-creso
- b) *p*-cresol
- c) 2,4-dillydroxytoluciic
- c) 2,4-dihydroxytoluene d) Benzoic acid
- 745. Which of the following has maximum probability of showing tautomerism?

b) 0

- 746. The halide which undergoes nucleophilic substitution most readily is:
 - a) p-H₃CC₆H₄Cl
- b) o-H₃COC₆H₄Cl
- c) p-ClC₆H₄Cl
- d) $p-0_2NC_6H_4Cl$
- 747. The major product (70% to 80%) of the reaction between m-dinitrobenzene with $(NH_4)_2S_x$ is:

b) NO₂

c) H₂N NO

748. The 'E'-isomer is

$$a)$$
 CI $C = C$

$$_{b)}$$
 $\stackrel{\text{H}_{3}\text{C}}{\longrightarrow}$ $_{\text{C}}$ $=$ $_{\text{H}}$

c)
$$H_3C$$
 $C = C < C_2H_5$ $CH(CH_3)$

d) None of the above

- 749. The Baeyer angle strain is minimum in
 - a) Cyclopropane
- b) Cyclobutane
- c) Cyclopentane
- d) Cyclohexane
- 750. Among the following ions, which one has the highest unpaired electrons?
 - a) $[Cr(H_2O)_6]^{3+}$
- b) $[\text{Zn}(\text{H}_2\text{O})_6]^{2+}$
- c) $[Fe(H_2O)_6]^{2+}$
- d) $[Cr(H_2O)_6]^{3}$
- 751. Which will give a white precipitate with AgNO₃ in aqueous solution?
 - a) $[Co(NH_3)_5Cl](NO_2)_2$
- b) [Pt(NH₃)₆]Cl₄
- c) [Pt(en)Cl₂]
- d) [Cu(NH₃)₄]SO

752. The organic product formed in the reaction;

$$C_6H_5COOCH_3 \xrightarrow{(I)LiAlH_4} :$$

- a) C₆H₅CH₂OH and CH₃OH
- b) C₆H₅COOH and CH₄
- c) C₆H₅CH₃ and CH₃OH
- d) C₆H₅CH₃ and CH₄
- 753. Complexes with bidentate ligands are called:
 - a) Ligands
- b) Chelates
- c) Complexes
- d) None of these

- 754. Excited state configuration of Mn²⁺ is
 - a) t_{2g}^{4}

- b) $t_{2q}^3 e_q^2$
- c) $t_{2a}^4 e_a^2$
- d) $t_{2a}^5 e_a^0$

755. The IUPAC name of

a) Ethyl acetylate

b) Ethyl methyl butenoate

c) Ethyl acetoethanoate

- d) Ethyl (3-methyl) but-2-enoate
- 756. The compound which result from the coordination of carbon monoxide are known as
 - a) Carbon permono
- b) Electronic
- c) Carbonyls
- d) None of these

- 757. The correct IUPAC name of AlCl₃(EtOH)₄ is:
 - a) Aluminium(II) chloride-4-ethanol
 - b) Aluminium(III)chloride-4-ethanol
 - c) Aluminium(IV)chloride-4-hydroxy ethane
 - d) Aluminium chloride-4-ethanol
- 758. The IUPAC name of $[Co(NH_3)_6][Cr(C_2O_4)_3]$ is
 - a) Hexaamine cobalt (III) tris (oxalato) chromium
 - b) Hexaamine cobalt (III) tris (oxalato) chromate(III)
 - c) Hexaamine cobalt tris (oxalato) chromium(III)
 - d) Hexaamine cobalt (III) chromium (III) oxalate
- 759. The insecticide, germicide gammexane is a formulation for:
 - a) DDT
 - b) Benzene hexachloride
 - c) Hexachlorobenzene
 - d) Chloral
- 760. Among $[Ni(CO)_4]^{2-}$, $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ species, the hybridisation states of the Ni atom are, respectively (Atomic no. of Ni=28)
 - a) sp^3 , dsp^2 , dsp^2
- b) sp^{3} , dsp^{2} , sp^{3}
- c) sp^3 , sp^3 , dsp^2
- d) dsp^2 , sp^3 , sp
- 761. Which of the following complex ions is expected to absorb visible light?

a) $[Zn(NH_3)_6]^{2+}$ b) $[Sc(H_2O)_3(NH_3)_3]^{3+}$ c) $[Ti(en)_2(NH_3)_2]^{4+}$ d) $[Cr(NH_3)_6]^{3+}$ [At. no. Zn = 30, Sc = 21, Ti = 22, Cr = 24] 762. Chain isomers of CH₃CH₂CH₂CH₂OH is/are a) 2 b) 3 c) 4 d) 5 763. Although chlorobenzene does not give Ulmann's reaction. However, presence of ... group in chlorobenzene at o-, p-position enables it to give Ulmann's reaction. d) SO_3H a) NO_2 764. Which statement is true? a) A compound with R configuration is the (+) enantiomer b) If configuration changes from + to -, that essentially means inversion of configuration take place c) An achiral molecule reacts to give a chiral molecule, always racemic forms d) By breaking two bonds on the chiral centre configuration changes 765. Which can be used for carrying out electrophilic aromatic substitution? d) Hydride ion b) Liquid NH₃ a) Water 766. Which of the following can participate in linkage isomerism? b) H₂NCH₂CH₂NH₂ d):NH₃ 767. Aniline in a set of reactions yielded a product *D*. $\text{NH}_2 \xrightarrow{\text{NaNO}_2} A \xrightarrow{\text{CuCN}} B \xrightarrow{\text{H}_2} C \xrightarrow{\text{HNO}_2} D$ The structure of the product *D* would be: a) C₆H₅NHCH₂CH₃ b) C₆H₅CH₂OH c) $C_6H_5CH_2NH_2$ d) C₆H₅NHOH 768. The number of ions formed when cuprammonium sulphate is dissolved in water is a) Zero c) 2 b) 1 d) 4 769. Tautomerism is not exhibited by: a) $C_6H_5 - CH = CH - OH b)$ 770. Benzaldehyde reacts with NH₃ to give: b) Benzamide d) Hydrobenzamide c) Phenylcyanide 771. In coal-tar fraction of heavy oil, the aromatic compound present is: a) Cresol b) Pyridine c) Benzene d) Anthracene 772. Optical isomerism is shown by octahedral complexes a) Having all monodentate ligands b) Having all the three bidentate ligands c) Having two *trans* bidentate ligands d) Having two trans monodentate ligands 773. Which can be hydrolysed most easily? a) $(C_6H_5)_3CCl$ b) C₆H₅CH₂Cl c) $(C_6H_5)_2$ CHCl d) C_6H_5Cl 774. The most stable configuration of n butane will be c) Gauche a) Skew boat b) Eclipsed d) Staggered-anti 775. Anhydrous aluminium chloride is used in Friedel-Craft's reaction because it is:

a) Electron richb) Soluble in ether

c) Ionizable to chloride and aluminium ions

- d) Electron deficient molecule
- 776. The two isomers given below are
 - (i) COOH

(ii) HOOC

- a) Enantiomers
- b) Diastereomers
- c) Measomers
- d) Position isomers

- 777. Which of the following has lowest boiling point?
 - a) Phenol
- b) o-nitrophenol
- c) m-nitrophenol
- d) p-nitrophenol

- 778. The IUPAC name of $[Ni(NH_3)_4][NiCl_4]$ is
 - a) Tetrachloro nickel (II) tetraammine nickel (II)
 - b) Tetraammine nickel (II) -tetrachloro nickel(II)
 - c) Tetraammine nickel (II) -tetrachloro nickelate(II)
 - d) Tetrachloro nickel (II) -tetraammine nickelate(0)
- 779. All ligands are:
 - a) Lewis acid
- b) Lewis base
- c) Neutral
- d) None of these

- 780. Aspirin is known as:
 - a) Phenyl salicylate
- b) Acetyl salicylate
- c) Methyl salicylic acid
- d) Acetyl salicylic acid

- 781. Which of the following has on optical isomer?
 - a) $[Co(NH_3)_3Cl]^+$
- b) $[Co(en)(NH_3)_2]^{2+}$
- c) $[Co(H_2O)_4(en)]^{3+}$
- d) $[Co(en)_2(NH_3)_2]^{3+}$

782. The IUPAC name of the compound

- a) 1,1,1-trichloro-2,2-diphenyl ethane
- b) 2,4,5-trichloro hexanol
- c) 2,2,2-trichloro bicyclo [4.4.0] nenone
- d) 2,2,2-trichloro-1,1-diphenyl ethane
- 783. The property by virtue of which a compound can rotate the plane of polarised light is known as
 - a) Polarisability
- b) Phosphorescence
- c) Optical activity
- d) Polarization
- 784. The molecules represented by the following two structures are

- a) Epimers
- b) Diastereomers
- c) Enantiomers
- d) Identical
- 785. The IUPAC name of the coordination compound $K_3[Fe(CN)_6]$ is
 - a) Tripotassium hexacyanoiron (II)
- b) Potassium hexacyanoiron(II)
- c) Potassium hexacyanoferrate (III)
- d) Potassium hexacyanoferrate (II)
- 786. Which one of the following is an inner orbital complex as well as diamagnetic in nature?

a) [C	$[r(NH_3)_6]^{3+}$	b) $[Co(NH_3)_6]^{3+}$	c) $[Ni(NH_3)_6]^{2+}$	d) $[Zn(NH_3)_6]^{2+}$
			tral metal ion of $[CoCl_4]^{2-2}$)
a) 3		b) 4	c) 5	d) 2
788. Show	w the coordination nu	mber of the metal ion, its o	xidation number, the numb	per of electrons in <i>d</i> -
orbit	tals and the number o	of unpaired electrons <i>d</i> -orb	itals respectively in comple	$\exp\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_4\operatorname{SO}_3\right]\operatorname{Cl}.$
a) 6,	3, 6, 4	b) 6, 3, 6, 0	c) 5, 3, 6, 4	d) 5, 3, 6, 0
789. Benz	zene reacts withto	give acetophenone.		
a) Ad	cetyl chloride			
b) Ad	cetyl chloride in prese	ence of anhy. AlCl ₃		
c) Aı	nhy. AlCl ₃			
d) No	one of the above			
790. Whic	ch group would you ir	ntroduce into a drug or a dy	ye to make it water soluble	?
-	-NO ₂	b) —Cl	c) $-SO_3H$	d) —0H
791. In th	e coordination compo	$ound, K_4[Ni(CN)_4], oxidation$	n state of nickel is	
a) –	1	b) +1	c) 0	d) +2
	IUPAC name of [Cr(N			
=	etraaminodichlorochr	, ,	, (4	Y
-	etraaminodichlorochr	` '		
-	ichlorotetraamminecl	` ,		
-	etraaminodichlorochr	` '		
	llin, used as a flavour			
=	n aliphatic alcohol	b) An aromatic aldehyde		d) A carbohydrate
	_	ll exhibit optical isomerism		
	$[(en)(H_2O)_4]^{3+}$		c) $trans$ -[Cr(en) ₂ Cl ₂] ⁺	d) $[Cr(NH_3)_6]^{3+}$
	ch one is a mixed keto			
	enzophenone	b) Benzenone	c) Acetophenone	d) Dibenzyl ketone
	sition metals can forr	-		
-	ero oxidation state	b) Cation form	c) Anion form	d) All of these
		air in presence of V_2O_5 yields		
=	henol	b) Benzoic acid	c) Benzaldehyde	d) Benzyl alcohol
	$(NH_3)_4$ Cl ₂ is	43.44) m	1) (
, ,	yramidal	b) Pentagonal	c) Tetrahedral	d) Square planar
	e(CO) ₅ , the FE—C bor	id possess:		
-	-character only			
-	oth σ and π -character	'S		
-	nic character			
-	-character only	h - 1 - 1 2		
	ch molecule has tetral) F (CO)	D Dr. Cl. 12-
	$[Co(NH_3)_6]^{3+}$	b) [Ni(CN) ₄] ²⁺	c) Fe(CO) ₅	d) [NiCl ₄] ²⁻
		$(NH_3)_5SO_4]Br$ are the example $(NH_3)_5SO_4$	nples of:	
	nkage isomerism			
	eometrical isomerism			
	nization isomerism			
	ptical isomerism	and D. ONO		
	compounds $R - NO_2$	anu K – UNU are	h) Europtional income	
-	eometrical isomers		b) Functional isomers	
-	etamers	ughan projection formula ia	d) Optical isomers)
ous. which	ch of the following Fis	scher projection formula is	same as D-glyceraldehyde?	

- 804. $[Fe(NO_2)_3Cl_3 \text{ and } [Fe(0-NO)_3Cl_3] \text{ shows}$
 - a) Linkage isomerism

b) Geometrical isomerism

c) Optical isomerism

d) None of the above

805.

The IUPAC name of the compound

- b) 2, 5-dimethyl hepta-2, 6-dienoic acid
- a) 2-ethenyl-3-methyl cyclohexa-1, 3-diene
- d) 2, 3-dimethyl epoxyethane
- c) 2, 6-dimethyl hepta-2, 5dienoic acid
- 806. When benzene sulphonic acid and p-nitrophenol are treated with NaHCO₃, the gases released respectively are:
 - a) SO₂, NO₂
- b) SO₂, NO
- c) SO_2 , CO_2

807. Which of the following is non-ionizable?

- a) $[Co(NH_3)_3Cl_3]$
- b) $[Co(NH_3)_4Cl_2]Cl$
- c) $[Co(NH_3)_5Cl]Cl_2$

808. Increasing order of expected keto content

- a) $CH_3COC_2H_5 > CH_3CHO > CH_3COCH_3 > CH_3COCH_2COCH_3$
- b) $CH_3COCH_3 > CH_3CHO > CH_3COC_2H_5 > CH_3COCH_2COCH_3$
- c) $CH_3CHO > CH_3COC_2H_5 > CH_3COCH_3 > CH_3COCH_2COCH_3$
- d) $CH_3COCH_2COCH_3 > CH_3CHO > CH_3COCH_3 > CH_3COC_2H_5$

809. Which is colourless complex?

- a) $Cu_2(CH_3COO)_4 \cdot H_2O$
- b) Cu₂Cl₂
- c) $CuSO_4 \cdot 5H_2O$
- d) $[Cu(NH_3)_4]SO_4 \cdot SO_4 \cdot 4H_2O$
- 810. Which is not a reasonable structure for dimethyl benzene?

811.

The IUPAC name of the compound is

a) Propionic anhydride

b) Dipropanoic anhydride

c) Ethoxy propanoic acid

- d) Propanoic anhydride
- 812. A mixture of benzene and aniline can be separated by:
 - a) Alcohol
- b) Dil. HCl
- c) Dil. NaOH
- d) Hot water

- 813. The correct IUPAC name of the complex $Fe(C_5H_5)_2$ is
 - a) Cyclopentadienyl iron (II)

b) Bis (Cyclopentadienyl)iron (II)

c) Dicyclo pentadienyl ferrate (II)

d) Ferrocane

The electrophile involved in the above reaction is:

	a) dichloromethyl cation (CHCl₂)		
	b) Dichlorocarbene (: CCl ₂)		
	c) Trichloromethyl anion (CCl ₃)		
	d) Formyl cation (CHO)		
015			
815.	Benzoyl Chloride is prepared from benzoic acid by: a) Cl ₂ , hv b) SO ₂ Cl ₂	a) COCl	4) Cl II O
016	, <u>, , , , , , , , , , , , , , , , , , </u>	c) SOCl ₂	d) Cl ₂ , H ₂ O
010.	Which of the following ions forms most stable comple a) Fe ³⁺ b) Mn ²⁺	c) Ni ²⁺	d) Cu ²⁺
017		,	
817.	Which one of the following cyano complexes would e	exhibit the lowest value of p	aramagneuc benaviour?
	(Atomic no. Cr=24, Mn=25, Fe=26, Co=27) a) $[Co(CN)_6]^{3-}$ b) $[Fe(CN)_6]^{3-}$	a) [Mn(CN) 13-	d) [Cr(CN) ₆] ³⁻
010	Which of the following statements is not correct?	c) [MII(GN) ₆]	u) [GI(GN) ₆]
010.	a) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in	the state of hybridication	of nickel
			or meker.
	b) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in		X.
	c) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in		V
010	d) The complexes $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ differ in		
819.	In the complexes $[Fe(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{3-}$, $[Fe(C_2O)_6]^{3-}$		
020		c) $[Fe(C_2O_4)_3]^{3-}$	d) [FeCl ₆] ³⁻
820.	In the reaction,		
	$CH O A W NH_3$ CONH ₂		
	$C_8H_6O_4 \xrightarrow{\Delta} X \xrightarrow{NH_3} COOH$		
	· ·		
	the intermediate 'X' is:		ID December 21
004	a) Phthalic anhydride b) Phthalic acid	c) o-xylene	d) Benzoic acid
821.	Which of the following is π complex?	a) Divile I divi	AN MUST STORY
	a) Trimethyl aluminium b) Ferrocene	c) Diethyl zinc	d) Nickel carbonyl
ດາາ	When phonel is reacted with shloreform and an allysi	li lilro NaOII tha compound	l formad is saliguladahyıda
044.	When phenol is reacted with chloroform and an alkal	-	i iorineu is sancylauenyue
	If we use pyrene in place of chloroform the product o a) Salicyladehyde b) Phenolphthalein		d) Cyalahayanal
ດາາ		c) Salicylic acid	d) Cyclohexanol
043.	Among the properties (a) reducing (b) oxidizing (c) of	complexing, the set of prop	erties snown by CN Ton
	towards metal species is a) B, c b) A, b, c	c) C, a	d) A, b
024	a) B, c b) A, b, c Which of the following is most powerful <i>meta</i> directi		uj A, D
044.	a) —NO ₂ b) —SO ₃ H	c) —CHO	d) —COOH
025	Which among the following compounds will show me		u) —coon
023.	a) CH ₃ COC ₃ H ₇ b) CH ₃ OC ₂ H ₅	c) CH ₃ SC ₂ H ₅	d) CH ₃ OCH ₃
026	The hybridization of $[PtCl_6]^{2-}$ ion is:	c) G1133G2115	u) Gli ₃ OGli ₃
020.	a) d^2sp^3 b) sp^2d^3	c) sp^3d	d) sp^3d^2
027	The correct name of $[Pt(NH_3)_4Cl_2][PtCl_4]$ is	c) sp [*] a	u) sp [*] u
047.	a) Tetrachloro platinum (II) dichloro tetrammine pla	atinata	
V			
	b) Dichloro tetremmine platinum (IV) tetrachloro platinum (IV) tetrach	` '	
	c) Tetrammine dichloro platinum (IV) tetrachloro platinum (IV) tetrachloro platinum (IV) tetrammine platinate (IV)	, ,	
ດວດ	d) Tetrachloro platinum (II) tetrammine platinate (IV	v <i>)</i>	
υ∠Ծ.	The oxidation state of iron in $K_4[Fe(CN)_6]$ is	c) 2	d) 2
റാറ	a) 1 b) 4 Formation of complex compound can be detected by	c) 3	d) 2
029.	Formation of complex compound can be detected by:		d) All are correct
020		c) Change in pH	d) All are correct
იას.	The complex that violates the EAN:		

844. From the equation, 3C ₂ F benzene:	$H_2 \rightarrow C_6 H_6$, find the volun	ne of acetylene (NTP) for the	manufacture of 3 mole of	
a) 67.2 litre	b) 134.4 litre	c) 201.6 litre	d) 33.8 litre	
845. According to IUPAC nom	_		u) 55.6 nu e	
_	-		rocul forrato(III)	
a) Sodium pentacyanonitrosyl ferrate(II)		b) Sodium pentacyanonitrosyl ferrate(III)		
c) Sodium nitroferricyanide		d) Sodium nitroferrocyanide s the hybridisation states of Ni atom are respectively:		
		c) sp^3 , sp^3 , dsp^2	d) dsp^2 , sp^3 , sp^3	
a) sp^3 , dsp^2 , dsp^2		c) sp ² , sp ² , asp ²	u) asp-, sp-, sp-	
847. The chemical name of Di				
a) Dichloro dinitro tolue			Y	
b) Dichloro dimethyl toler) p, p' -dichloro dipheny				
d) None of the above	/I tricilior dethane		A	
848. The stability of complex	$as af Cu^{2} + Ni^{2} + Ca^{2} + and$	Eo2+ varios in the order		
a) $Cu^{2+} > Ni^{2+} > Co^{2+}$		b) $Cu^{2+} > Fe^{2+} > Ni^{2+}$	~ Co ²⁺	
c) $Ni^{2+} > Co^{2+} > Fe^{2+}$		d) $Cu^{2+} < Ni^{2+} < Co^{2+} <$	F ₂ 2+	
,		u) Cu- < NI- < CO- <	c re-	
849. The number of unpaired		c) 3	d) 4	
a) 0	b) 1		/ UJ 4 ha fillad with which of the	
850. In sodium tetrafluoroox		r ₄] the left out place should	be filled with which of the	
following roman numera a) VI	b) III	c) IV	d) None of these	
851. The IUPAC name of com	,	C) IV	u) None of these	
$CN - CH_2 - CH - CH_2 -$	•			
$\operatorname{CN} - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_2$	- 6006113 15			
осн ₃	4	X , y		
a) 3-methoxy-4-cyano m	nothyl hutanoato	h) Mothyl 1 gyano 2 mot	hovy hutanoato	
c) 4-cyano-3-methoxy m		y • • • • • • • • • • • • • • • • • • •	b) Methyl-4-cyano-3-methoxy butanoate d) Methyl-3-methoxy-4-cyano butanoate	
852. Cumene is:	lethyl butanoate	u) Methyl-3-methoxy-4-c	yano butanoate	
a) <i>o</i> -methyl phenol	b) <i>p</i> -cresol	c) Isopropyl benzene	d) Phenyl <i>n</i> -propane	
853. In Etard's reaction tolue	7.1		u) Flielly! <i>n</i> -propalle	
a) H_2O_2	ile is oxidised to benzaide	nyue using.		
b) Cl ₂				
c) Chromium trioxide or	· CrO. Cl.			
d) KMnO ₄	Cro ₂ Cr ₂			
854. Which of the following w	vill evhihit geometrical iso	merism?		
a) Propene	viii eximbit geometricai iso	b) Butene-2		
c) Butene-1		d) 1, 1-dichloro butane		
855. Ferrocene is:		aj 1, 1 diemoro batane		
	h) $Fe(n^2 - C_r H_r)_0$	c) $Cr(\eta^5 - C_5H_5)_5$	d) $O_S(n^5 - C_*H_*)_a$	
856. Which one is an outer or			a) 03(1 05115)2	
	-	c) $[Co(NH_3)_6]^{3+}$	d) $[Fe(CN)_6]^{4-}$	
857. The pair of $[Co(SO_4)(NH)]$			a) [1 c(GN)6]	
	b) Linkage isomers		d) Ionisation isomers	
858. The IUPAC name of K_2	_	c) coordination isomers	a) iomsacion isomers	
a) Potassiumammine dicyanodioxoperoxochromate (VI)				
b) Potassiumammine cyanoperoxodioxochrometic (IV)				
c) Potassiumammine dicyanodioxoperoxochromium (IV)				
d) Potassiumammine dicyanodioxoperoxochromium (IV)				
859. In spectrochemical series chlorine is above than water <i>i.e.</i> , $Cl > H_2O$, this is due to				
a) Good π -acceptor properties of Cl				
,	-			

b) Strong σ –donor and good π -acceptor properties of Cl c) Good π –donor properties of Cl d) Larger size of Cl than H₂O 860. The type of isomerism shown by $[Co(en)_2(NCS)_2]Cl$ and $[Co(en)_2(NCS)Cl]NCS$ is: a) Coordination b) Ionization c) Linkage d) All of these 861. Which ion shows only the coordination number 4 in complexes? a) Pt²⁺ b) Cr3+ d) Pt⁴⁺ 862. The spin magnetic moment of cobalt in $Hg[Co(SCN)_4]$ is: b) $\sqrt{8}$ d) $\sqrt{24}$ 863. Which of the following is not an isomer of but-1-yne? a) But-2-yne b) Buta-1-3-diene c) Methyl cyclopropene d) But-2-ene 864. How many unpaired electrons are present in the central metal ion of [CoCl₄] b) 3 c) 4 865. The brown ring complex compound is formulated as [Fe(H₂O)₅NO]SO₄. The oxidation state of Fe is: b) +2d) Zero 866. Correct IUPAC name of is CCl₃-CH b) Dichloro diphenyl trichloroethane a) Gammexane c) Diparachlorophenyl trichloroethane d) 1,1,1-tirchloro-2,2-bis (4-chlorophenyl) ethane 867. IUPAC name of is a) Cumene b) 2-phenyl propane c) Phenyl propane d) 1-(2-propyl) benzene 868. Which of the following gives violet colour with an alcoholic solution of FeCl₃? b) Toluene c) Salicylic acid a) Benzoic acid d) Nitrobenzene 869. Which of the following is wrong statements? a) Ni(CO)₄, has zero oxidation number for Ni b) Ni(CO)₄, has oxidation number +4 for Ni c) Ni is metal d) CO is gas 870. Which of the following represents a chelating ligand? b) Cl⁻ c) OHd) DMG 871. The correct order of reactivity of PhMgBr with; $-Ph CH_3-C$ -H CH₃a) I > II > IIIb) III > I > IIc) II > III > Id) II > I > III872. Which of the following will give maximum number of isomers? b) $[Ni(en)(NH_3)_4]^{2+}$

c) $[Ni(C_2O_4)(en)_2]$

873. CuCl reacts with KCN solution forming a complex. Coordination number of copper in the complex is:

a) $[Co(NH_3)_4Cl_2]$

d) $[Cr(SCN)_2(NH_3)_4]^+$

a) 2 b) 3	c) 4	d) 6			
	374. The terms stereoisomers, enantionmers and diastereomers will refer				
a) Only to configurational isomers including geomet	ric isomers				
b) Only to configurational isomers					
c) To both configurational as well as conformational	isomers				
d) To neither configuration nor conformational isom	iers				
875. Aniline was acetylated. The product on nitration foll	owed by alkaline hydrolysi	s gave:			
a) <i>o</i> -nitroacetanilide b) <i>o</i> -and <i>p</i> -nitroaniline	c) <i>m</i> -nitroaniline	d) Acetanilide			
876. The IUPAC name of the compound $[CuCl_2(CH_3NH_2)_2]$	is				
a) Dichloro bis (dimethyl amine) copper(II)	b) Dichloro bis (methyl ar	mine) copper(II)			
c) Dimethyl amine copper (II) chloride	d) Bis (dimethyl amine)	copper (II) chloride			
877. Which is the structure of compound 2-(1-cyclobuter	yl)-1-hexene?				
a)	b) \(\)				
	\wedge	Y			
		7			
c)	d)				
,					
878. On explosion TNT gives:					
a) $CO + N_2 + H_2 + CH_4 + CO_2$					
b) $CO + N_2 + H_2$	X				
c) $CO_2 + N_2 + H_2O$	Y				
d) $CO + N_2 + H_2O$					
879. Hexafluoroferrate(III) ion is an outer orbital comple	-	-			
a) 1 b) 5	c) 4	d) Unpredictable			
880. The EAN of Fe in $K_3[Fe(CN)_6]$ is:		D 0.5			
a) 36 b) 37	c) 38	d) 35			
881. The IUPAC name of the compound OH					
OIT					
CH _{3 is}					
	LAT with the drawn 2.	1 .1			
a) 4-methyl cyclopent-1-en-3-ol	b) 5-methyl cyclopent-2-en-1-ol				
c) 2-methyl cyclopent-4-en-1-ol 882. Which one amongst the following, exhibit geometric	d) 3-methyl cyclopent-1-6	en-2-01			
a) [Co ^{III} (NH ₃) ₅ Br]SO ₄ b) Co ^{III} [EDTA] ¹⁻	c) [Cr ^{III} (SCN) ₆] ³⁻	d) $[Pt^{II}(NH_3)_2Cl_2]$			
883. Chiral molecules are those which are	c) [ci (3civ) ₆]	u) [Ft (N113)2C12]			
a) Superimposable on their mirror images	b) Non-superimposable o	n thair mirror images			
c) Unstable molecules	d) Capable of showing geo	=			
884. At room temperature the eclipsed and the staggered					
a) Both the conformers are equally stable	b) They interconvent rapi				
There is a large energy harrier of rotation about	d) The energy difference	=			
c) the σ -bond	conformers is large				
885. A group of atoms can function as a ligand only when					
a) It is a small molecule	b) It has an unshared elec	ctron pair			
c) It is a negatively charged ion	d) It is a positively charge	-			
886. The IUPAC name of Ni(CO) ₄ is:					

a) Tetracarbonyl nickelate(0)

b) Tetracarbonyl nickelate(II)		
c) Tetracarbonyl nickel(0)		
d) Tetracarbonyl nickel(II)		
887. 2-methyl phenol is:		
a) <i>o-</i> cresol b) Catechol	c) p-cresol	d) <i>m</i> -cresol
888. $NH_2 \cdot NH_2$ serves as:		-
a) Monodentate ligand b) Chelating liga	and c) Bridging ligand	d) Both (a) and (c)
889. For blasting purpose TNT is mixed with:	, , ,	
a) NH ₄ Cl b) NH ₄ NO ₃	c) NH ₄ NO ₂	d) $(NH_4)_2SO_4$
890. During the debromination of <i>meso</i> -dibrom		
a) <i>cis</i> -2-butene b) 1-butene	c) <i>n</i> -butane	d) <i>trans-</i> 2-butene
891. The IUPAC name of $K_2[Cr(CN)_2O_2(O)_2(NH)]$		
a) Potassium ammine dicyano dioxoperoxo		cyano
(VI)	peroxodioxochromi	-
c) Potassium ammine cyano	_	cyano peroxodioxochromatic
peroxodioxochromium(V)	(IV)	
892. Benzene on reaction with a mixture of HNO		n of Cl ₂ /FeCl ₃ gives:
a) 3-chloro-1-nitrobenzene		3
b) 2-chloro-1-nitrobenzene		
c) 4-chloro-1-nitrobenzene		
d) A mixture of 2-chloro and 4-chloro-1-ni	trobenzene	
893. The number of isomeric forms in which [Co		
a) 2 b) 3	c) 4	d) 1
894. Nitration of benzene is:		•
a) Nucleophilic substitution	4	
b) Electrophilic substitution		
c) Electrophilic addition	5	
d) Nucleophilic addition		
895. Reimer-Tiemann reaction involves a:		
a) Carbonium ion intermediate	•	
b) Carbene intermediate		
c) Carbanion intermediate		
d) Free radical intermediate		
896. Which does not have a carboxyl group?		
a) Picric acid b) Ethanoic acid	l c) Aspirin	d) Benzoic acid
897. In Cannizaro's reaction given below:		
2PhCHO :ÖH→PhCH ₂ OH+PhCÖ ₂ °		
the slowest step is:		
a) The transfer of hydride to the carbonyl a		
b) The abstraction of proton from the carb	oxylic group	
c) The deprotonation of PhCH ₂ OH		
d) The attack of: OH at the carboxyl group		
898. The oxidation state of Ag in Tollens' reager	nt ic	
a) Zero b) +1	c) +2	d) +1.5
899. Hybridization of Fe in $[K_3Fe(CN)_6]$ is	C) 12	u) 11.5
a) sp^3 b) d^2sp^3	c) sp^3d^2	d) dsp^3
900. Which of the following is not isomeric with		ujusp
a) Methyl n -propyl ether	b) Butan-1-ol	
c) 2-methyl propan-2-ol	d) Butan-2-one	
-,, - propur - or	a, batair = one	

901. In the given conformation C_2 is rotated about $C_2 - C_3$ bond anticlockwise by an angle of 120° then the conformation obtained is

a) Fully eclipsed conformation

b) Partially eclipsed conformation

c) Gauche conformation

- d) Staggered conformation
- 902. Crystal field stabilization energy for high spin d^4 octahedral complex is:

a)
$$-1.8 \Delta_0$$

b)
$$-1.6 \Delta_0 + P$$

c)
$$-1.2 \Delta_0$$

d)
$$-0.6 \, \Delta_0$$

- 903. Which kind of isomerism is exhibited by octahedral [Co(NH₃)₄Br₂]Cl?
 - a) Geometrical and ionisation
 - b) Geometrical and optical
 - c) Optical and ionisation
 - d) Geometrical only
- 904. The IUPAC name of the following compound is

$$\begin{array}{c} \text{H}_2\text{C} \\ \downarrow \\ \text{H}_2\text{C} \end{array} \hspace{-2pt} \text{CH--CH}_2\text{--CH} \hspace{-2pt} \text{--CH---COOH}$$

- a) 5-cyclopropyl pent-2-en-1-oic acid
- b) 6-cyclopropyl pent-2-en-1-oic acid
- c) 5-cyclopropyl pent-1-en carboxylic acid
- d) 6-cyclopropyl pent-1-en carboxylic acid
- 905. Which of the following compounds will show a negative test with phenyl hydrazine?
 - a) Glucose
- b) Ethyl alcohol
- c) A cetaldehyde
- d) Benzophenone

- 906. Friedel-Craft's reaction is not possible in:
 - a) C_6H_5OH
- b) $C_6H_5C_2H_5$
- c) $C_6H_5NO_2$
- d) C₆H₅CH₃

- 907. The geometry of Ni(CO)₄ and Ni(PPh₃)₂Cl₂
 - a) Both square planar

- b) Tetrahedral and square planar respectively
- c) Both tetrahedral d) Square planar and tetrahedral respectively 908. The number of isomers possible for square planar complex K₂[PdClBr₂SCN] is:
 - a) 2

b) 3

c) 4

- d) 6
- 909. The correct order for the wavelength of absorption in the visible region is
 - a) $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$
- b) $[Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
- c) $[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
- d) $[Ni(NO_2)_6]^{4-} < [Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$
- 910. The IUPAC name of CCl₃CH₂CHO is
 - a) Chloral

b) 1,1,1-trichloropropanol

c) 2,2,2-trichloropropanol

- d) 3,3,3-trichloropropanol
- 911. The coordination number of Cu in $[Cu(H_2O)_4]^{2+}$ complex is

b) 1

c) 3

d) 4

- 912. Among the following, the correct statement is
 - a) Prefixes are written before the name of compound
 - b) Suffixes are written after the name of compound
 - c) The IUPAC name is always written as a single word
 - d) All of the above
- 913. In which of the following *p*-electrons of the halogens are not involved in delocalisation?
 - a) Chlorobenzene
- b) Bromobenzene
- c) Allyl chloride
- d) Vinyl chloride

- 914. Which of the following does not have optical isomer?
 - a) $[Co(en)(NH_3)_2Cl_2]Cl$ b) $[Co(en)_2Cl_2]Cl$
- c) $[Co(NH_3)_3Cl]$
- d) $[Co(en)_3]Cl_3$

915. Ethylene diamine is an example of

- a) Monodentate ligand
- b) Bidentate ligand
- c) Tridentate ligand
- d) Polydentate ligand

- 916. In chlorobenzene, the —Cl group:
 - a) Activates the benzene ring more via resonance effect than deactivating it via inductive effect
 - b) Deactivates the benzene ring more via inductive effect than activating it via resonance effect
 - c) Activates the benzene ring via resonance effect and deactivates it via inductive effect. Both these effects are more evenly matched
 - d) None of the above
- 917. The *R*-isomer among the following are

- a) (i) and (ii)
- b) (ii) and (iii)
- c) (iii) and (iv)
- d) (i) and (iii)
- 918. Which possesses tetrahedral shape (sp^3 -hybridization of central atom)?
 - a) $[Zn(NH_3)_4]^{2+}$
- b) $[Ni(CO)_4]$
- c) $[Cd(NH_3)_4]^{2+}$
- d) All are correct

919. The reaction,

 $C_6H_5CHO + CH_3CHO \xrightarrow{Dil.NaOH} C_6H_5CH=CHCHO$ is called:

- a) Benzoin condensation
- b) Claisen condensation
- c) Perkin's reaction
- d) Cannizaro's reaction
- 920. Complexation is shown by:
 - a) Ag

h) Au

c) Cu

d) All of these

- 921. AgO in Ag(II) complex which is:
 - a) Diamagnetic
- b) Paramagnetic
- c) Ferromagnetic
- d) Neutral
- 922. Acylation of benzene to produce aliphatic aromatic ketones is called:
 - a) Benzoin condensation
 - b) Hydroformylation
 - c) Friedel-Crafts reaction
 - d) None of these
- 923. The structure of the major product formed in the given reaction

- 924. Chlorobenzene is prepared commercially by:
 - a) Grignard reaction
- b) Raschig process
- c) Wurtz Fittig reaction d) Friedel-Crafts reaction
- 925. An aqueous solution of CoCl2 on addition of excess of concentrated HCl turns blue to formation of
 - a) [CoCl₄]^{2−}
- b) $[Co(H_2O)_2Cl_4]^{2-}$
- c) $[Co(H_2O)_22Cl_4]^{2-}$
- d) $[Co(H_2O)_4Cl_2]$
- 926. Which one of the following will not show geometrical isomerism?
 - a) $[Cr(NH_3)_4Cl_2]Cl$
- b) [Co(en)₂Cl₂]Cl
- c) $[Co(NH_3)_5NO_2]Cl_2$
- d) $[Pt(NH_3)_2Cl_2]$
- 927. When ethyl benzoate is hydrolysed with aqueous alkali, the products present in the medium are:
 - a) C₆H₅COOH, C₂H₅O⁻
- b) $C_6H_5COO^-, C_6H_5OH$
- c) C_2H_5OH , C_6H_5COOH
- d) $C_6H_5COO^-$, $C_2H_5O^-$

928. The IUPAC name of

a) 2-carbamovl hexanal

b) 2-carbamoyl hex-3-en-1-al

c) 6-keto-2-methylhexanamide

- d) 5-formyl-2-methylpent-3-en-1-amide
- 929. Which of the following is more basic than aniline?
 - a) p-Nitroaniline
- b) Benzylamine
- c) Diphenylamine
- d) Triphenylamine
- 930. Name of some compounds are given below. Which one is not in IUPAC system?

$$CH_3 - CH - CH - CH_3$$
a)

OH CH₃ 4-methyl-2-butanol

b)
$$CH_3 - C \equiv C - CH(CH_3)_2$$

4 methyl-2-pentyne

2 - ethyl-3- methyl - but -1- ene

3-methyl-4-ethyl heptane

- 931. For which transition metal ions are low spin complexes possible?
 - a) Rh³⁺

- b) Mn³⁺
- c) Ru²⁺

d) All are correct

- 932. Which one is monodentate ligand?
 - a) E-

b) NO_{2}^{-}

c) H_2O

- d) All are correct
- 933. Cyclic hydrocarbon molecule A has all the carbons and hydrogens in a single plane. All the carbon-carbon bonds are of same length and less than 1.54 Å and more than 1.34 Å. The C— C—C bond angle will be:
 - a) 120°

b) 180°

c) 100°

d) 109°28′

934. Chlorine reacts with benzaldehyde to give:

- a) Benzyl chloride
- b) Benzal chloride
- c) Benzoyl chloride
- d) Chlorobenzene

935. Phenol is:

- a) A base weaker than NH₃
- b) An acid stronger than carbonic acid
- c) An acid weaker than carbonic acid
- d) Neutral
- 936. Which one is example of octahedral complex?
 - a) $Cu(NH_3)_4^{2+}$
- b) FeF₆³⁻
- c) $Zn(NH_3)_4^{2+}$
- d) Ni(CN) $_4^{2-}$

937. Which one of the following statement is correct?

- a) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution.
- b) On boiling a solution having $\rm K^+$, $\rm Ca^{2+}$ and $\rm HCO_3^-$ ions, we get a precipitate of $\rm K_2Ca(\rm CO_3)_2$
- c) Manganese salt give a violet vortex test in reducing flame
- d) From a mixed precipitate of AgCl and AgI, ammonia solution dissolves only AgCl
- 938. Which of the following fractions obtained in fractional distillation of coal-tar contains benzene and toluene?
 - a) Light oil
 - b) Heavy oil
 - c) Middle oil
 - d) Green oil
- 939. The tetrahedral complexes have coordination number
 - a) 3

b) 6

c) 4

d) 8

940. The C—C bond length in benzene isthan C—C bond length in alkenes.

a) Less

b) More

- c) Equal
- d) None of these
- 941. Which are generally used for preparing derivative of aldehydes and ketones?
 - a) Hydroxylamine hydrochloride
 - b) 2,4-dinitrophenylhydrazine
 - c) Phenylhydrazinehydrochloride
 - d) All of the above
- 942. In the reaction,

Phenol
$$\xrightarrow{\text{Zn}}$$
 (A) $\xrightarrow{\text{Conc. H}_2\text{SO}_4}$ (B) (C) $\xrightarrow{\text{Zn}}$ (C) $\xrightarrow{\text{NaOH } (aq.)}$

The compounds (A), (B) and (C) are the following:

- a) Benzene, nitrobenzene and aniline
- b) Benzene, dinitrobenzene and *m*-nitroaniline
- c) Toluene, *m*-nitrobenzene and *m*-toluidine
- d) Benzene, nitrobenzene and hydrazobenzene
- 943. En is an example of a:

HN

- a) Monodentate ligand
- b) Bidentate ligand
- c) Tridentate ligand
- d) Hexadentate ligand

944. The major product obtained when Br₂/Fe is treated with

c)
$$H_3C$$
 CH_3

945. Phenol on treatment with dil. \mbox{HNO}_3 at room temperature gives:

a)
$$O_2N$$
 NO_2

b)
$$\bigcap_{NO_2}$$
 + \bigcap_{NO_2}

946. In an octahedral structure, the pair of *d*-orbitals involved in $d^2 sp^3$ hybridisation is

- a) $d_{x^2-y^2}$, d_{z^2}
- b) d_{xz} , $d_{x^2-y^2}$
- c) d_{z^2} , d_{xz}
- d) d_{xy} , d_{yz}

947. In which of the following ions has the metal atom EAN as 36?

- a) $[Fe(CN)_6]^{4-}$
- b) $[Fe(CN)_6]^{3-}$
- c) [PbCl₄]²⁻
- d) $[Pd(CN)_6]^{2-}$

948. The number of ions given by $K[Pt(NH_3)_5Cl_5]$ in aqueous solution is:

a) 2

b) 3

c) 4

d) 1

949. CuCl is sparingly soluble in H₂O but it dissolves in KCl solution due to the formation of:

- a) K₂(CuCl₄)
- b) K₃(CuCl₄)
- c) $K(CuCl_2)$
- d) None of these

950. A characteristics group test for phenolic gp. is:

- a) Libermann's nitroso reaction
- b) Coupling with diazonium salt
- c) aq. FeCl₃

- d) All of the above
- 951. Write the IUPAC name of the compound

- a) 5, 6-dimethyl bicyclo [2,2,1] heptane
- b) 2, 3-dimethyl bicyclo [2,2,1] heptane
- c) 2, 3-dimethyl bicyclo [1,2,2] heptane
- d) 3, 4-dimethyl bicyclo [2,1,2] heptane
- 952. Choose the correct statement from the ones given below for two anilium in:

- a) II is not an acceptable canonical structure because carbonium ions are less stable than ammonium ions
- b) II is not an acceptable canonical structure because it is non-aromatic
- c) II is not an acceptable canonical structure because the nitrogen has 10 valence electrons
- d) II is an acceptable canonical structure
- 953. Which of the following statements is/are incorrect?
 - a) Metamerism belongs to the category of structural isomerism
 - b) Tautomeric structures are the resonating structures of a molecule
 - c) The violet colouration produce by a molecule with neutral ferric chloride solution indicates the presence of enolic group in the molecule
 - d) Geometrical isomerism is not shown by alkenes
- 954. Gives are (i) cyclohexanol; (ii) acetic acid; (iii) 2, 4, 6-trinitrophenol; and (iv) phenol. In these the order of decreasing acidic character will be:
 - a) (iii) > (ii) > (iv) > (i)
- b) (ii)>(iii)>(i)>(iv)
- c) (ii)>(iii)>(iv)>(i)
- d) (iii) > (iv) > (ii) > (i)

- 955. Phenol and benzoic acid can be distinguished by:
 - a) Aqueous NaHCO₃
- b) Aqueous NaNO₃
- c) Aqueous NaOH
- d) Conc. H_2SO_4
- 956. The functional groups OH, –COOH, –CHO, –OCH₃ attached to a chiral carbon is in the preference order
 - a) $OH > COOH > CHO > OCH_3$

b) $OCH_3 > OH > CHO > COOH$

c) $OCH_3 > OH > COOH > CHO$

- d) $OCH_3 > COOH > CHO > OH$
- 957. The hypothetical complex chloro diaquatriammine cobalt(II) chloride can be represented as:
- a) $[CoCl(NH_3)_3(H_2O)_2]Cl_2b) [Co(NH_3)_3(H_2O)Cl_3]$
- c) $[Co(NH_3)_3(H_2O)_2Cl]$
- d) $[Co(NH_3)_3(H_2O)_3]Cl_3$

- 958. Which is expected to be paramagnetic?
 - a) $[Ni(H_2O)_6]^{2+}$
- b) $[Ni(CO_4)]$
- c) $[Zn(NH_3)_4]^{2+}$
- d) $[Co(NH_3)_6]^{3+}$

959. The molecular formula of diphenyl methane

How many structural isomers are possible when one of the hydrogen is replaced by a chlorine atom?

a) 8

b) 7

c) 6

- aj 4
- 960. Among the properties (*A*) reducing, (*B*) oxidising (*C*) complexing, the set of properties shown by CN⁻ion towards metal species is
 - a) *A, B*

b) *B, C*

c) C, A

d) A, B, C

961.

- the double bonds are
- a) cis, cis

b) cis, trans

c) trans, cis

d) trans, trans

962. The reaction of toluene with Cl ₂ in presence of FeCl ₃	$_3$ gives 'X' and the reaction i	n presence of light gives
'Y'.Thus, 'X' and 'Y' are:		
a) X =benzal chloride; $Y = o$ -chlorotoluene		
b) $X = m$ -chlorotoluene; $Y = p$ -chlorotoluene		
c) $X = o$ -and p -chlorotouene; Y =trichloro methyl b	enzene	
d) $X = \text{benzal chloride}$; $Y = m$ -chlorotoluene		
963. Among the following four compounds:		
a) Phenol b) Methyl phenol	c) meta-nitrophenol	d) <i>para</i> -nitrophenol
964. Which gives phthalic anhydride on reaction with hot	t, conc. H ₂ SO ₄ in presence o	of Hg?
a) Naphthalene b) Phenol	c) <i>p</i> -xylene	d) <i>m</i> -xylene
965. Cis-trans-isomerism is found in square planar comp	lexes of the molecular form	ula: (a and b are
monodentate ligands)		
a) Ma_4 b) Ma_3b	c) Ma_2b_2	d) Mab_3
966. Which ion produces a small crystal field splitting (a		
a) I ⁻ b) Cl ⁻	c) F ⁻	d) All of these
967. Benzene undergoes substitution reaction more easil		
a) It has a cyclic structure		
b) It has three double bonds	4 ()	
c) It has six hydrogen atoms		
d) Of resonance		
968. Isomers have essentially identical		
a) Structural formula	b) Chemical properties	
c) Physical properties	d) Molecular formula	
969. Which of the following pair is not correctly matched	A. 1/2	
a) Absorption peak for $[Cr^{III}(NH_3)_6]^{3+} = 21680 \text{ cm}$		
b) Effective atomic no. of Pt in $[PtCl_6]^{2-} = 84$	1011 ()004	
c) Crystal field stabilization energy of d^2 in weak lig		
d) Example of weak ligand field for d^5 configuration		
970. Aspirin (or acetyl salicylic acid) is obtained by action		
a) Salicylic acid b) Phenol	c) Benzaldehyde	d) Aniline
971. CuCl dissolves in ammonia forming a complex. The c		= =
a) 1 b) 2	c) 4	d) 6
972. IUPAC name of the following cycloalkane is		
CH ₃		
Ol 13		
a) 8-methyl bicyclo [4,3,0] nonane	b) 1-methyl bicyclo [4,3,0] nonane
c) 3-methyl bicyclo [4,3,0] nonane	d) 4-methyl bicyclo [4,3,0	
973. Schiff's bases are formed when aniline is condensed		
a) Phenols b) Aromatic aldehydes	c) Aryl chlorides	d) Aliphatic alcohols
974. Which of the following is not an organometallic com		.,
a) Zeise's salt b) TEL	c) Sodium ethoxide	d) Ferrocene
975. Molecular formula $C_5H_{12}O$ will show	oj seumin ememue	<i>a,</i> 1 011 0 00 10
a) Position		
b) Optical isomerism		
c) Functional isomerism		
d) All of these		
976. Both Co ³⁺ and Pt ⁴⁺ have a coordination number of s	iv Which of the following n	airs of comployee will show
approximately the same electrical conductance for t	-	
a) CoCl ₂ . 4NH ₃ and PtCl ₄ . 4NH ₃	b) CoCl ₃ . 3NH ₃ and PtCl ₄ .	_
c) CoCl ₃ .6NH ₃ and PtCl ₄ .5NH ₃	d) CoCl ₃ . 6NH ₃ and PtCl ₄ .	3NH₃

(CN) ₆ NO ₂]
1
1
i
$_{3})_{6}]^{3+}$
<i>y</i> • • • • • • • • • • • • • • • • • • •
nal
oluene
und is
enzene
nexagonal
O 1D
O ₄]Br
r_2]Cl ₂
h of the
) i

990.

$$H$$
 is

The IUPAC name of the given structure

- a) Diisohexane
- b) Isohexane
- c) 2, 2-dimethylbutane
- d) 2, 3-dimethylbutane

- 991. Aniline on treating with phosgene gives:
 - a) Phenyl isocyanate
- b) A secondary base
- c) A neutral substance
- d) A tertiary base
- 992. On boiling with conc. hydrobromic acid, phenylethylether will yield:
 - a) Phenol and ethyl bromide
 - b) Bromobenzene and ethanol
 - c) Phenol and ethane
 - d) Bromobenzene and ethane
- 993. Ammonia gas does not evolve from the complex $FeCl_3$. $4NH_3$ but is gives white precipitate with aqueous solution of $AgNO_3$. Coordination number of central metal ion in above complex is six. Give IUPAC name of the complex.
 - a) Ammonium trichloro triammine ferrum(III)
- b) Tetra ammine ferrum (III) chloride
- c) Dichloro tetraammine ferrate (II) chloride
- d) Dichloro tetraammine ferrum (III) chloride
- 994. Nickel (Z=28) combines with a uninegative monodentate ligand X^- to form a paramagnetic complex[Ni X_4] 2 -. The number of unpaired electron (s) in the nickel and geometry of this complex ion are respectively
 - a) One, tetrahedral
- b) Two, tetrahedral
- c) One, square planar
- d) Two, square planar
- 995. Amongst the compounds given, the one that would form a brilliant coloured dye on treatment with NaNO₂ in dil. HCl followed by addition to an alkaline solution of β -naphthol is:

996. Identify 'Z' in the reaction given below;

$$\begin{array}{c}
NH_2 \\
\hline
(1) \text{ HNO}_2(280 \text{ K}) \\
\hline
(2) \text{ H}_2\text{O} ; \text{ boil}
\end{array}
X \xrightarrow{\text{NaOH}} Y \xrightarrow{\text{CH}_3\text{I}} Z :$$

b) CH

d) HO OH

997. A solution containing 2.675 g of $CoCl_3$.6NH $_3$ (molar mass =267.5 g mol $^{-1}$) is passed through a cation exchanger. The chloride ions obtained in solution were treated with excess of $AgNO_3$ to give 4.78 g of AgCl (molar mass=143.5 g mol $^{-1}$). The formula of the complex is (Atomic mass of Ag=108 u)

- a) $[Co(NH_3)_6]Cl_3$
- b) $[CoCl_2(NH_3)_4]Cl$
- c) $[CoCl_3(NH_3)_3]$
- d) $[CoCl(NH_3)_5]Cl_2$

- 998. $[Cr(H_2O)_6]^{3+}$ ion has *d*-electrons equal to:

c) 4

d) 5

- 999. Enol form is more stable in
 - a) CH₃CHO

b) CH₃COCH₃

c) CH₃COCH₂COOC₂H₅

- d) Cyclohexanone
- 100 The coordination number of cobalt in $[Co(en)_2Br_2]Cl_2$ is:
- 0.
 - a) 2

b) 4

c) 6

d) 8

- 100 Which one readily accepts a proton?
- - a) Acetylene
- b) Nitrobenzene
- c) Aniline
- d) Phenol

- 100 Identify 'Z' in the reaction;
- 2.

$$\frac{\text{Vigorous}}{\text{oxidation}} X \frac{\text{Dry}}{\text{heating}} Z$$

COOH

- 100 The number of σ and π -bonds in a molecule of benzene is:
- 3.
- a) 6σ and 9π
- b) 9σ and 3π
- c) 12σ and 3π
- d) 6σ and 6π

- 100 The phenomenon of optical activity will be shown by:

b)

d)

The correct name of the compound

a) 1,3,4-trimethyldecaline

b) 1,3,9-trimethyldecaline

c) 1,8,10-trimethyldecaline

- d) 1,3,10-trimethyldecaline
- 100 If NH_4OH is added to the $(PtCl_4)^{2-}$ ion, the complex formed represents:

- a) Zero dipole
- b) Finite dipole
- c) Infinite dipole
- 100 Which one of the following will be able to show cis-trans-isomerism?

- a) M_{A_3B}
- b) $M_{(AA')_{2}}$
- c) M_{A_2BCD}
- (AA') is unsymmetrical bidentate ligand, ABCD are unidentate ligands
- 100 The coordination number of a metal in coordination compound is

a) Same as primary valency

b) Sum of primary and secondary valencies

c) Same as secondary valency

d) None of the above

100 The IUPAC name of $K_4[Ni(CN)_4]$ is

9.

- a) Tetrapotassium tetracyanonickelate (II)
- b) Potassium tetracyanonickel (II)
- c) Potassium tetracyanonickelate (0)
- d) Potassium tetracyanonickelate (II)
- 101 Which of the following compounds shows optical isomerism?

0.

- a) $[Co(CN)_6]^{3-}$
- b) $[Cr(C_2O_4)_3]$
- c) $[ZnCl_4]^{2-}$
- d) $[Cu(NH_3)_4]^{2+}$

101 $[C_6H_5]_2Pd(SCN)_2$ and $[(C_6H_5)_2Pd(NCS)_2]$ are:

1.

- a) Linkage isomers
- b) Coordination isomers c) Ionization isomers
- d) Geometrical isomers

101 Mark the correct statement

2.

- a) Ethane has two conformations of which staggered conformation is more stable than the eclipsed conformation
- b) Ethane has an infinite number of conformations of which eclipsed conformation is more stable than the staggered conformation
- c) Ethane has an infinite number of conformation of which staggered conformation has the maximum energy
- d) Ethane has an infinite number of conformation of which the staggered conformation is possessed by majority of the molecules at room temperature

3.

Lactone
$$CH_2$$
 Can be obtained by which

Of the following on heating with alkali followed with acid hydrolysis?

101 Which among the following will be named as dibromidobis (ethylene diamine) chromium (III) bromide?

4.

- a) $[Cr(en)_2Br_2]Br$
- b) [Cr(en)Br₄]
- c) [Cr(en)Br₂]Br
- d) $[Cr(en)_3]Br_3$
- 101 Which one of the following complex is an outer orbital complex?
- 5. (Atomic no. Mn=25, Fe=24, Co=27, Ni=28)
 - a) $[Fe(CN)_6]^{4-}$
- b) $[Mn(CN)_6]^{4-}$
- c) $[Co(NH_3)_6]^{3+}$
- d) $[Ni(NH_3)_6]^{2+}$

101 Benzene can be directly obtained from:

6.

- a) CH≡CH
- b) CH₂=CH₂ and butadiene
- c) Chlorobenzene
- d) All of the above
- 101 Chlorobenzene on treatment with Raney nickel or Al in presence of alkali gives:

7.

- a) Benzene
- b) Chlorophenol
- c) Phenol
- d) None of these
- 101 The compound that undergoes decarboxylation most readily under mild condition is:

8.

b) COOH

101 Which ion is paramagnetic?

9.

- a) $[Ni(NH_3)_4]^{2+}$
- b) $[Ni(CO)_4]$
- c) $[Co(NH_3)_6]^{3+}$
- d) $[Ni(CN)_4]^{2-}$
- 102 Which kind of isomerism is exhibited by octahedral [Co(NH₃)₄Br₂Cl]?

n

a) Geometrical and ionization

b) Geometrical only

c) Geometrical and optical

- d) Optical and ionisation
- $102\,$ Resorcinol and conc. H_2SO_4 in presence of phthalic anhydride produce a compound which is:

1.

a) A drag

- b) An antiseptic
- c) An indicator
- d) A detergent

102 Which of the following compounds shows optical isomerism?

2.

- a) $[Cr(C_2O_4)_3]^{3-}$
- b) $[Cu(NH_3)_4]^{2+}$
- c) $[Co(CN)_6]^{3-}$
- d) $[ZnCl_4]^{2-}$

102 The IUPAC name of [Co(NH₃)₆]Cl₃ is

3.

a) Hexamine cobalt (II) chloride

b) Triammine cobalt (III) trichloride

c) Hexamine cobalt (III) chloride

- d) None of the above
- 102 In the following compounds, the order of acidity is:

- a) III > IV > I > II
- b) I > IV > III > II
- c) II > I > III > IV
- 102 Consider the following structure and choose the correct statements

5.

a) I and II have R-configuration

b) I and III have R-configuration

c) Only III has S-configuration

- d) Both (a) and (c) are correct
- 102 Benzaldehyde, when heated with concentrated KOH solution, gives:

6.

- a) C₆H₅CH₂OH
- b) C₆H₅COOH
- c) C₆H₅COOK
- d) Mixture of C₆H₅COOK and C₆H₅CH₂OH
- 102 Write the IUPAC name of the compound

- a) Bicyclo-[2.2.2] octane-2,6-dione
- b) Bicyclo-[2.2.2] octane-3,5-dione

c) Bicyclo -[2.2] octane 2,6-dione

- d) Bicyclo [2,2] octane-3,5-dione
- 102 3-chloro-4-methyl benzene sulphonic acid on steam distillation gives:

8.

- a) Toluene
- *m*-chloro benzene b) m-cine sulphonic acid
- c) $\frac{p\text{-methyl benzene}}{\text{sulphonic acid}}$
- d) o-chloro toluene

102 The oxidation number of platinum in [Pt(NH₃)₅Cl]Cl₃ is

9.

a) 2

b) 3

c) 4

d) 6

103 Which of the following is not an organometallic compound?

- a) C₂H₅ONa
- b) CH₃Mgl
- c) Tetraethyl tin
- d) KC₄H₉

103 Which of the following pairs of compounds are enantiomers?

103 Which complex has square planar shape dsp^2 -hybridization?

2.

- a) $[Ni(CN)_4]^{2-}$
- b) $[Cu(NH_3)_4]^{2-}$
- c) [PtCl₄]²⁻
- d) All of these

103 The complex used as an anticancer agent is

3

a) cis-[PtCl₂(NH₃)₂]

b) Na₂CO₃

c) trans-[Co(NH₃)₃Cl₃]

d) cis-K₂[PtCl₂Br₂]

103 Dyes are formed when diazonium salts react with:

4.

- a) Phenols
- b) Aldehydes
- c) Ketones
- d) Alcohols

103 Potassium ferrocyanide is a

5.

- a) Complex salt
- b) Double salt
- c) Normal salt
- d) Mixed salt

103 The primary and secondary valencies of chromium in the complex ion, dichlorodioxalatochromium (III),

6. are respectively.

a) 3.4

b) 4.3

c) 3,6

d) 6,3

103 The reaction, $C_6H_6 + CH_3Cl \xrightarrow{Anhydrous} C_6H_5CH_3 + HCl$

7. is an example of:

- a) Friedel-Craft's reaction
- b) Kolbe's synthesis
- c) Wurtz's reaction
- d) Grignard synthesis

103 The correct statement related to IUPAC nomenclature is

8.

- a) If 2 or more chains of equal length are seen in the compound then the chain with minimum number of side chains will be preferred
- b) If double and triple bonds are at symmetrical positions in a compound then triple bond gets lower preference
- c) Correct IUPAC name of CH₃COC₂H₅ is ethyl methyl ketone
- d) As far as possible, the IUPAC name of a compound is written as a single word
- 103 Which of the following isomerism is shown by ethyl acetoacetate?

9.

a) Geometrical isomerism

b) Keto-enol tautomerism

c) Enantiomerism

d) Diastereoisomerism

104 The number of moles of ions given on complete ionisation of one mole of [Co(NH₃)₆]Cl₃ is/are

0.

a) 4

b) 3

c) 2

d) 1

104 The major products (P, Q) in the given reaction are:

1.

+ Cl·CH₂CH₂CH₃
$$\xrightarrow{\text{AlCl}_3} P \xrightarrow{\text{(I) O}_2, \Delta} Q$$
 + Phenol

- 0.
- a) The complex is high spin complex
- b) Both Fe atoms are in the same oxidation state
- c) The coordination number of iron is 4
- d) Both Fe atoms are in different oxidation state
- 105 The number of chiral carbon atoms present in the molecule
- 1.

a) 3

b) 4

c) 2

- d) 1
- 105 The complex that doesn't give a precipitate with AgNO₃ solution
- a) $[Co(NH_3)_33Cl_3]$
- b) $[Co(NH_3)_6]Cl_3$
- c) $[Ag(NH_3)_2]Cl$
- d) [Cr(NH₃)

- 105 The IUPAC name of the given compound $[Co(NH_3)_5Cl]Cl_2$ is
- a) Penta amino cobalt chloride chlorate
- b) Cobalt penta ammine chloro chloride
- c) Pentamine chloro cobalt (III) chloride.
- d) Penta amino cobalt (III) chlorate
- 105 Amongst $Ni(CO)_4$, $[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$
- 4.
- a) $Ni(CO)_4$ is diamagnetic, $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are paramagnetic
- b) $Ni(CO)_4$ and $[NiCl_4]^{2-}$ are diamagnetic and $[Ni(CN)_4]^{2-}$ is paramagnetic
- c) $Ni(CO)_4$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $[NiCl_4]^{2-}$ is paramagnetic
- d) $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and $Ni(CO)_4$ is paramagnetic
- 105 Which aromatic acid among the following is weaker than simple benzoic acid?
- 5.

SO₃H COOH

- 105 Which statement is incorrect?
- 6.
- a) Ni(CO)₄-tetrahedral, paramagnetic
- b) [Ni(CN)₄]²⁻-square planar, diamagnetic
- c) Ni(CO)₄-tetrahedral, diamagnetic
- d) [NiCl₄]²⁻ -tetrahedral, paramagnetic
- 105 Which of the following has asymmetric C-atom?
- 7.

H Cl b) H - C - C - Cl

- 105 The IUPAC name of
- CH2-CH2-CH2-OH
 - a) 1-phenyl-3-propanol

b) 3-phenyl-1-propanol

c) 1-hydroxy-3-phenyl-propane

- d) None of the above
- 105 The complexes $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$ are the examples of which type of

9.	isomerism?								
	a) Geometrical isomerism								
	b) Linkage isomerism								
	c) Ionization isomerism								
	d) Coordination isomerism								
	Racemic tartaric acid is optically inactive due to								
0.									
	a) External compensation	b) Internal compensation							
406	c) Presence of plane of symmetry	d) All of the above							
	Nitration of aniline is done in:		Y						
1.	a) Acidic medium								
	b) Alkaline medium		A Y						
	c) Neutral medium								
	d) In acidic medium by first converting it into acetar	nilide hefore nitration							
106	A bridging ligand possesses:								
2.									
	a) Polydentate or monodentate nature	.10							
	b) Two or more donor centres	1/9							
	c) The tendency to get itself attached to two metal ic	ons							
	d) All of the above								
106	What is the neutralization equivalent of benzoic acid	1?							
3.									
	a) 122 b) 61	c) 244	d) 488						
	<i>m</i> -chlorobenzaldehyde on reaction with conc. KOH a	at room temperature gives:							
4.		.11.1. 1.							
	a) Potassium <i>m</i> -chlorobenzoate and <i>m</i> -hydroxy benzaldehyde								
	b) <i>m</i> -hydroxybenzaldehyde and <i>m</i> -chlorobenzylalcocc) <i>m</i> -chlorobenzylalcohol and <i>m</i> -hydroxy benzylalco								
	d) Potassium <i>m</i> -chlorobenzoate and <i>m</i> -chlorobenzy								
106	The oxidation number of Fe in brown ring [Fe(H_2O)								
5.	4 ()	5110] 13							
	a) 0 b) +1	c) +2	d) +3						
106	$[Cr(H_2O)_6]Cl_3$ (at. No. of Cr=24) has a magnetic mon	,							
6.	electrons in the chromium of the complex:								
	a) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{xz}^1$ b) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{zz}^1$	c) $(3d_{x^2-y^2}^1)$, $3d_{z^2}^1$, $3d_{xz}^1$	d) $3d_{xy}^1$, $(3d_{x^2-y^2}^1)$, $3d_{yz}^1$						
106	Excess of silver nitrate solution is added to 100 mL of	5	,						
7.	solution. The mass of silver chloride obtained in gran								
	a) 287×10^{-3} b) 143.5×10^{-3}		d) 287×10^{-2}						
106	The total number of possible structural isomers of the	ne compound [Cu ^{II} (NH ₃) ₄]	[Pt ^{II} Cl ₄] are:						
8.									
	a) 3 b) 5	c) 4	d) 6						
106	A similarity between optical and geometrical isomer	ism is that :							
9.									
	a) Each gives equal number of isomers for a given co	=							
	b) If in a compound one is present then so is the other	er							
	c) Both are included in stereoisomerism								
105	d) They have no similarity	alam af Nita (III Ia	-1						
	In [Ni(NH ₃) ₄]SO ₄ , the valency and coordination num	iber of Ni Will be respective	ery						
0.									

	a) 3 and 6 C ₆ H ₅ CHO is different from	b) 4 and 4 n aliphatic aldehyde in its r	c) 4 and 2 eaction towards:	d) 2 and 4						
	a) Tollen's reagent Oxidation of naphthalene	b) Schiff's reagent by acidic KMnO ₄ gives:	c) NaHSO ₃	d) Fehling's solution						
2.1073.	a) Toluene The number of possible th	b) Benzaldehyde neoretical conformations of	c) Phthalic acid fn-butane are	d) Benzoic acid						
		(II) o - NO ₂ C ₆ H ₄ COC (IV) m - NO ₂ C ₆ H ₄ COC	OH OH	d) Infinite						
107 5.	a) II > III > IV > I Salicylic acid when treated	b) II > IV > III > I d with zinc dust gives:	c) II > IV > I > III	d) I > II > III > IV						
107 6.	a) Phenol Action of PCl ₅ on salicylic	b) Salicyladehyde acid produces:	c) Benzene	d) Benzoic acid						
o.	a) <i>o</i> -chlorobenzoyl b) <i>o</i> -hydroxybenzoyl chloride c) <i>o</i> -chlorobenzoic acid d) None of the above									
107 7.	Which of the following spo	ecies is most stable?								
	a) $_{p\text{-O}_2\text{N}}$ — $_{\text{C}_6\text{H}_4}$ — $_{\text{CH}_2}^+$ b) $_{\text{C}_6\text{H}_5}$ — $_{\text{CH}_2}^+$	E.P.S								
	c) $_{p\text{-Cl}C_{6}H_{4}-\overset{+}{C}H_{2}}$ d) $_{p\text{-CH}_{3}O-C_{6}H_{4}-\overset{+}{C}H_{2}}$	END.								
107 8.	Give the IUPAC name of the CH ₃ CH ₂ —CH ₂ —CH ₂ $CH_3 - C - CH - CH_2 - CH_3$ $CH_2 - CH_2 - CH_3$	ne following								
	a) 5-ethyl-4, 4-dimethyloo c) 3-ethyl-2-methyl-2-pro Which of the following rea	ctane opyl hexane	b) 4-ethyl-5, 5-dimetylocod) 4-ethyl-5-methyl, 5-prooin?							
9.	a) C ₆ H ₅ CHO Which one is an organome	b) C ₆ H ₅ Cl etallic compound in the fol	c) C ₂ H ₅ Cl lowing?	d) C ₆ H ₅ CH ₃						
0.	a) C ₂ H ₅ ONa c) Al ₂ (CH ₃) ₆	•	b) C ₂ H ₅ — S— S— C ₂ H ₅ d) Al(C ₆ H ₅ S) ₃							
108 1.	The formula of picramide	is:								

d)
$$O_2N$$
 NO_2 NO_2

108 An alkane forms isomers if minimum number of C-atom is:

2

a) 1

b) 2

c) 3

d) 4

108 Which will form geometrical isomers?

3.

b) $CH_3CH = NOH$

d) All of these

108 Choose the option which show correct preferential order of groups among the following

4.

a) -COOH, -CHO, -OH, -NH₂

b) -NH₂, -OH, CHO, -COOH

c) -COOH, -OH, -NH₂, -CHO

d) -COOH, -NH₂, -CHO, -OH

108 The number of precipitable halide ions in [Pt(NH₃)Cl₂Br]Cl is:

5.

a) 2

b) 3

c) 4

d) 1

108 Which of the following is polycyclic compound?

6.

- a) Xylene
- b) Cumene
- c) Styrene
- d) Naphthalene

108 Among acetic acid, phenol and n-hexanol, which of the compound(s) will react with NaHCO $_3$ solution to

- 7. give sodium salt and CO₂?
 - a) Acetic acid and phenol
 - b) Acetic acid
 - c) Phenol
 - d) n-hexanol

108 Nitrosobenzene can be isolated from nitrobenzene under:

8.

- a) Metal and acid
- b) Zn dust and NH₄Cl
- c) Alkaline sodium arsenite
- d) None of the above

108 Which of the following complexes is an outer orbital complex?

9.

- a) $[Fe(CN)_6]^{4-}$
- b) $[Co(NH_3)_6]^{3+}$
- c) $[Ni(NH_3)_6]^{2+}$
- d) None of these

109 In which of the following complex ion, the central metal ion is in a state of $sp^3 d^2$ hybridisation?

0.

- a) $[Co(F_6)]^{3-}$
- b) $[Co(NH_3)_6]^{3+}$
- c) $[Fe(CN)_6]^{3-}$
- d) $[Cr(NH_3)_6]^{3+}$

109 Give name of the complex, name should specify the position of ligands

1. H₃P-----CO

- a) Bis transphosphinecarbonylchloroiridium [II]
- b) Carbonylchlorobis transphosphineiridium[III]
- c) Carbonylchlorobis *trans* phosphineiridium[I]
- d) Chlorocarbonylbis transphosphineiridium [I]
- 109 The function of anhydrous aluminium chloride in the Friedel-Crafts reaction is:

- 2.
- a) To absorb water
- b) To absorb hydrochloric acid
- c) To produce an electrophile
- d) To produce nucleophile
- 109 Coordination isomerism is caused by interchange of ligands between the
- 3.
- a) Complex cation and complex anion
- b) Inner sphere and outer sphere
- c) Low oxidation and higher oxidation states
- d) cis and trans structure
- 109 Which aldehyde is used in the manufacture of perfumes?
- 4.
- a) Cinnamaldehyde
- b) Salicyladehyde
- c) Benzaldehyde
- d) None of thes

- 109 Which of the following statements is not correct?
- 5.
- a) A meso compound has chiral centres but exhibits no optical activity
- b) A meso compound has no chiral centres and thus are optically inactive
- A meso compound has molecules in which one half of molecule is superimposable on the other even through chiral centre is present in them
- A meso compound is optically inactive because the rotation caused by one half of molecule is cancelled by the rotation produced by another half
- 109 The volume (in mL) of 0.1 M AgNO₃ required for complete precipitation of chloride ions present in 30 mL
- of 0.01 M solution of [Cr(H₂O)₅Cl]Cl₂, as silver chloride is close to
 - a) 3

b) 4

- d) 6
- 109 Benzene is a resonance hybrid mainly of two Kekule structures. Hence:
- 7.
- a) Half of the molecules correspond to one structure, and half to the second structure
- b) At low temperatures benzene can be separated into two structures
- c) Two structures make equal contribution to resonance hybrid
- d) An individual benzene molecule changes back and forth between two structures
- 109 Keto form is more stable in
- 8.
- a) CH₃COCH₂COOC₂H₅ b) CH₃COCH₂COCH₃
- c) CH₃COCH₃
- d) CH₃COCH₂COC₂H₅
- 109 The oxidation state and effective atomic number (EAN) of cobalt $(CoF_6)^{2-}$ are respectively
- 9.
- a) 3 and 36
- b) 4 and 35
- c) 4 and 37
- d) 2 and 35

- 110 Benzamide on reaction with POCl₃ gives:
- a) Aniline
- b) Chlorobenzene
- c) Benzylamine
- d) Benzonitrile

- 110 Which pair of carbon skeleton is an example of isomerism?

110 Electrolytic reduction of nitrobenzene in weak acidic medium gives:

2.

- a) Aniline
- b) p-hydroxy aniline
- c) Nitrobenzene
- d) N-phenyl hydroxyl amine
- 110 In complexes, metal atom acts as:

3.

- a) Lewis base
- b) Bronsted acid
- c) Bronsted base
- d) Lewis acid
- 110 When benzene is treated with concentrated HNO_3 at room temperature it will give:

4.

- a) CO_2 and H_2O
- b) Nitrochlorobenzene
- c) Dark red colour
- d) Dinitrobenzene
- 110 Which of the following compounds exhibit linkage isomerism?

5.

- a) $[Co(en)_3]Cl_3$
- b) $[Co(NH_3)_6][Cr(CN)_6]$
- c) [Co(en)₂NO₂Cl]Br
- d) $[Co(NH_3)_5Cl]Br_2$

110 The compound

6.

have IUPAC name as

a) Tricyclopropyl

b) Tricyclopropane

c) 1,1', 2', 1"-tercyclo propane

- d) None of the above
- 110 The most stable conformation of chlorohydrin at room temperature is

7.

- a) Fully eclipsed
- b) Partially eclipsed
- c) Gauche
- d) Staggered

110 Among Ni(CO)₄, $[Ni(CN)_4]^{2-}$ and $[Ni(Cl)_4]^{2-}$:

8.

- a) $[Ni(CO)_4]$, $[NiCl_4]^{2-}$ are diamagnetic and $[Ni(CN)_4]^{2-}$ is paramagnetic
- b) $[NiCl_4]^{2-}$, $[Ni(CN)_4]^{2-}$ are diamagnetic and $[Ni(CO)_4]$ is paramagnetic
- c) $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$ are diamagnetic and $[NiCl_4]^{2-}$ is paramagnetic
- d) $[Ni(CO)_4]$ is diamagnetic and $[NiCl_4]^{2-}$, $[Ni(CN)_4]^{2-}$ are paramagnetic
- 110 The complex $Hg[Co(CNS)_4]$ is correctly named as:

9.

- a) Mercury tetrathiocyanatocobaltate(II)
- b) Mercury cobalt tetrasulphocyano(II)
- c) Mercury tetrasulphocyanidecobaltate(II)
- d) Mercury sulphocyanatocobalt(II)
- 111 Which of the following compounds is not coloured?

0.

- a) Na₂[CuCl₄]
- b) Na₂[CdCl₄]
- c) $K_4[Fe(CN)_6]$
- d) $K_3[Fe(CN)_6]$

111 Which one has square planar geometry?

1.											
	a) [CoCl ₄] ²⁻	b) [FeCl ₄] ²⁻	c) [NiCl ₄] ²⁻	d) [PtCl ₄] ²⁻							
111	Which exhibits highest mo	olar conductivity?									
2.		•									
	a) $[Co(NH_3)_6]Cl_3$	b) $[Co(NH_3)_5Cl]Cl_2$	c) [Co(NH ₃) ₄ Cl ₂]Cl	d) $[Co(NH_3)_3Cl_3]$							
111	, , ,, ,,	, , ,,,, -	piological systems. In this c								
3.	following statement is inc		g ,								
	•	gment in plants and contai	n calcium.								
		pigment of blood and con									
	_										
	 c) Cyanocobalamin is vitamin B₁₂ and contains cobalt. d) Carboxypeptidase-A is an enzyme and contains zinc. 										
111	, , ,	by the combination of [Co									
4.	Complex sait can be made	by the combination of [co	(Mila)50ij with	A Y							
1.	a) Cl ⁻	b) 2Cl ⁻	c) PO ₄ ³⁻	d) 2K+							
111	•	,		u) ZN							
5.	which of the following pa	irs represents linkage ison	iers:								
Э.	a) [Cu(NII)][D+C]] and	[D+ (NII)][C,,C]]	b) [Pd(PPh ₃) ₂ (NCS) ₂] an	dind(nnh) (ccm) 1							
	a) $[Cu(NH_3)_4][PtCl_4]$ and										
444	c) $[Co(NH_3)_5]NO_3SO_4$ and		d) [PtCl ₂ (NH ₃) ₄]Br ₂ and	$[PtBr_2(NH_3)_4]Cl_2$							
111	The reaction products of 0	$C_6H_5OCH_3 + HI \stackrel{\triangle}{\rightarrow} is$:									
6.				N 0 0 0							
	a) $C_6H_5OH + CH_3I$		7 0 3 3	d) $C_6H_6 + CH_3OI$							
			otash and another compour								
7.			ed by reacting a compound	(Z) with Cl_2 in the							
	presence of slaked lime. C	- , ,									
	a) $C_6H_5NH_2$	b) CH ₃ OH	c) CH ₃ COCH ₃	d) CHCl ₃							
	Chlorine is most reactive i	in:									
8.											
	a) CH ₃ Cl	b) CH ₂ =CHCl	c) C ₆ H ₅ Cl	d) C ₆ H ₅ CH ₂ Cl							
	The C—C bond order in be	enzene is close to:									
9.											
	a) 1.5	b) 2.5	c) 3.0	d) 6.0							
112	Mixture $X = 0.02$ mole of	[Co(NH3)5SO4]Br and 0.02	$2 \text{ mole of } [Co(NH_3)_5Br]SO_4$	was prepared in 2 L of							
0.	solution	\									
	1 L of mixture X + excess	$AgNO_3 \longrightarrow Y$									
	1 L of mixture X + excess	$BaCl_2 \rightarrow Z$									
	Number of moles of Y and	l Z are									
	a) 0.01, 0.01	b) 0.01,0.02	c) 0.02, 0.01	d) 0.02, 0.02							
112	Phenol can be converted i	nto salicylic acid by:									
1.											
	a) Etard's reaction										
	b) Kolbe's reaction										
	c) Reimer-Tiemann reacti	ion									
	d) Both (b) and (c)										
112		Which of the following reas	sons is correct?								
2.	2 . , ,	0									
	a) Presence of one CO as b	oridge group									
	b) Presence of monodenta	= = -									
	c) Metal-metal (Fe-Fe) bo	=									
	d) Resonance hybridization										
112	The formula of dichlorobi										
		· / 11 · / / -									

3.

- a) $[CuO = C(NH_2)_2]Cl_2$
- b) $[CuCl_2{0 = C(NH_2)}]$
- c) $[Cu{0 = C(NH₂)₂}Cl]Cl$
- d) $[CuCl_2][O = C(NH_2)_2]H_2$
- 112 Which of the following facts about the complex $[Cr(NH_3)_6]Cl_3$ is wrong?

4.

- The complex involves d^2sp^3 hybridisation and isb) The complex is paramagnetic. octahedral in shape.
- c) The complex is an outer orbital complex.
- d) The complex gives white precipitate with silver nitrate solution.
- 112 The compounds P, Q and S were separately subjected to nitration using $\mathrm{HNO_3/H_2SO_4}$ mixture. The major
- 5. product formed in each case respectively, is:

112 Aromaticity of benzene is due to:

6.

- a) Ring
- b) Three double bonds
- c) Delocalisation of π -electrons

	d) None of the above			
112				
7.				
	The IUPAC name of	is		
	a) 2, 2, 4, 4-tetramethyl p	entane	b) 2, 2-dimethyl propane	
	c) 4-ethyl-3-methyl hex-3	-ene	d) Ethyl isopropyl ethene	
112	Phenol is heated with a so	olution of mixture of KBr ar	nd KBr $ m O_{3}$. The major produ	ct obtained in the above
8.	reaction is:			
	a) 2-bromophenol	b) 3-bromophenol	c) 4-bromophenol	d) 2,4,6-tribromophenol
	The coordination number	of a central metal atom in	a complex is determined by	У
9.) m) 1 1			4 7
	=	netal ion bonded by pi-bor		A
		ionic ligands bonded to the		-11
			ed by sigma and pi-bonds b	oth
112	The true statement about	around a metal ion bonded	i by sigilia bolius	
0.	The true statement about	Delizelle 13.		
0.	a) Because of		1	d) Monosubstitution of
	unsaturation benzene	There are two types of		benzene gives three
	easily undergoes	b) C—C bonds in benzene		isomeric products
	additions	molecule	electrons in benzene	1
113	Which reagent can convert C	O group to C(C,H,)OH?		
1.	,	o group to $/ C(C_6 \Pi_5) O \Pi$:		
	a) C ₆ H ₅ OH	b) C ₆ H ₅ CH ₂ OH	c) C ₆ H ₅ MgBr	d) C ₆ H ₅ Cl
113	Which has highest parama	agnetism?		
2.				
	a) $[Cr(H_2O)_6]^{3+}$		c) $[Cu(H_2O)_6]^{2+}$	d) $[Zn(H_2O)_6]^{2+}$
	Which is not true ligands	metal complex?		
3.				
		nore stable is the metal-liga	and complex	
	b) Highly charged ligand f	_		
		dipole moment of ligand, the		
112	$[Co(NH_3)_4Cl_2]NO_2$ and $[Co(NH_3)_4Cl_2]NO_2$	potential of central metal, t	ille stronger the bollu	
113 4.	[CO(NII3)4CI2]NO2 allu [C	o(NII3)4GI NO2JGIJ are		
1.	a) Optical isomers	b) Geometrical isomers	c) Ionization isomers	d) Linkage isomers
113		-	s phenyl acetate. The reacti	, ,
5.		a) F a g	, p,	
	a) Baeyer-Villiger oxidation	on		
	b) Perkin's reaction			
4	c) Claisen condensation			
	d) Reformatsky reaction			
113	Friedel-Craft's reaction do	oes not occur in case of:		
6.				
	a) Toluene	b) Benzene	c) Naphthalene	d) pyridine
			es three moles of ions on di	
7.		with two moles of AgNO ₃ se	olution to yield two moles	of AgCl(s). The structure of
	the complex is		1250 (2002) 013 -	
	a) $[Co(NH_3)_3Cl_3] \cdot 2NH_3$		b) $[Co(NH_3)_4Cl_2] \cdot Cl \cdot NH$	l ₃
	c) $[Co(NH_3)_4Cl]Cl_2 \cdot NH_3$		d) [Co(NH ₃) ₅ Cl]Cl ₂	

113 8.	C ₆ H ₆ is a very good indus	trial solvent for:								
0.	a) Oil	b) Fat	c) Rubber	d) All of these						
113	Salol is used as:	b) I at	c) Rubbei	d) In or these						
9.	baior is asea as.									
,.	a) Antiseptic	b) Antipyretic	c) Both (a) and (b)	d) None of these						
114	Presence of nitro gp. in be	= = = =	o) 20011 (a) ana (b)	w) 110110 01 111000						
0.	Treesmes or mere Sp. m se									
0.	a) Deactivates the ring for	S_{F} reaction								
	b) Activates the ring for S									
	c) Renders the ring basic	<u>u</u>								
	d) Deactivates the ring for	S _N reaction								
114			rical as well as optical isom	erism? (en =ethylene						
1.	diamine)		•							
	a) $[Pt(NH_3)_2Cl_2]$	b) $[Pt(NH_3)_2Cl_4]$	c) $[Pt(en)_3]^{4+}$	d) [Pt(en) ₂ Cl ₂]						
114	, , ,, ,,	nic compounds is due to the		72 23						
2.		•								
	a) Tetravalency of carbon		b) Carbon possesses prop	erty of catenation						
	c) Carbon compounds exh	nibits polymerisation	d) Both (b) and (c)							
114	When nitrobenzene is trea	ated with Br ₂ in presence o	of FeBr ₃ , the major product	formed is <i>m</i> -						
3.	bromonitrobenzene. Statements which are related to obtain the m -isomer are:									
	a) The relative electron density on meta carbon is more than that of ortho and para positions									
	b) Loss of aromaticity when Br^+ attacks at the <i>ortho</i> and <i>para</i> positions and not at <i>meta</i> position									
	c) Easier loss of H^+ to regain aromaticity from the meta position than from <i>ortho</i> and <i>para</i> positions									
	d) None of the above									
114	Which one of the following	g compounds when dissolv	ved in water, gives a solutio	n with pH more than 7?						
4.										
	a) $C_6H_5NH_2$	b) C ₆ H ₅ OH	c) C ₂ H ₅ OH	d) CH ₃ COCH ₃						
	Formula of ferrocene is:									
5.										
	a) $[Fe(CN)_6]^{4-}$	b) $[Fe(CN)_6]^{3+}$	c) $[Fe(CO)_5]$	d) $[(C_6H_5)_2Fe]$						
	What is the EAN of nickel	in $Ni(CO)_4$?								
6.		X Y .								
	a) 38	b) 30	c) 36	d) 32						
			ives 3 moles of ions on diss							
7.		ts with two moles of AgNO ₃	₃ solution to yield two mole	s of AgCl(s). The structure						
	of the complex is									
	a) [Co(NH ₃) ₅ Cl]Cl ₂		b) [Co(NH ₃) ₃ Cl ₂]. 2NH ₃							
	c) [Co(NH ₃) ₄ Cl ₂]Cl. NH ₃		d) $[Co(NH_3)_4Cl]Cl_2.NH_3$							
		g has largest number of iso	omers?							
8.	(R=alkyl group, en=ethyl	-) [r (pp) vr(go)]?]	1) [aa (
	a) $[Ru(NH_3)_4Cl_2]^+$		c) $[Ir(PR_3)_2H(CO)]^{2+}$	d) $[CO(en)_2Cl_2]^{+}$						
	Which complex is likely to	show optical activity?								
9.) m = [0 (0.000) (0.11)									
	a) Trans- $[Co(NH_3)_4Cl_2]^+$	•								
	b) $[Cr(H_2O)_6]^{3+}$	_								
	c) Cis- $[Co(NH_3)_2(en)_2]^{3+}$									
11-	d) $Trans$ -[Co(NH ₃) ₂ (en) ₂	-								
_	A square planar complex i	is formed by hybridization	of which atomic orbitals?							
0.										

1. 115 2.	a) s, p_x, p_y, d_{yz} The IUPAC name of the concept of the CH ₂ - CH - CH - CH ₂ CO COCI COCI a) 1, 2, 3, 4-butanetetraci c) 1, 2, 4-butanetricarbox is Nitrobenzene can be prepairrating mixture HNO ₃ at a) Base In the compound lithium	hlorocarbonyl kylic acid pared from benzene by usi acts as a: b) Acid	b) 1, 2, 3, 4-butanetetrac d) None of the above ng a mixture of conc. HNO ₃ c) Reducing agent	-
3.	а) Н	b) H ⁺	c) H ⁻	d) None of these

COORDINATION COMPOUNDS

CHEMISTRY

					:	ANS	W	ER K	ΕY	:					
1)	b	2)	b	3)	С	4)	С	177)	С	178)	b	179)	a	180)	b
5)	b	6)	b	7)	c	8)	a	181)	С	182)	b	183)	a	184)	b
9)	c	10)	b	11)	c	12)	С	185)	b	186)	d	187)	c	188)	d
13)	d	14)	d	15)	c	16)	С	189)	d	190)	b	191)	b	192)	a
17)	b	18)	d	19)	b	20)	b	193)	d	194)	d	195)	a	196)	d
21)	a	22)	С	23)	d	24)	d	197)	b	198)	b	199)	С	200)	С
25)	d	26)	d	27)	d	28)	d	_	b	202)	b	203)	d	204)	a
29)	b	30)	a	31)	d	32)	d	205)	b	206)	d	207)	ď	208)	С
33)	d	34)	c	35)	a	36)	b	209)	b	210)	c	211)	c	212)	b
37)	d	38)	c	39)	c	40)	d	213)	c	214)	C	215)	b	216)	a
41)	a	42)	c	43)	c	44)	d	217)	a	218)	d 🗸	219)	b	220)	a
45)	b	46)	d	47)	b	48)	d	221)	d	222)	c	223)	c	224)	d
49)	b	50)	d	51)	d	52)	d	225)	a	226)	b	227)	c	228)	c
53)	a	54)	b	55)	b	56)	c	229)	b.	230)	d	231)	c	232)	a
57)	a	58)	c	59)	a	60)	b	233)	b	234)	b	235)	d	236)	d
61)	c	62)	c	63)	a	64)	d	237)	b	238)	d	239)	a	240)	b
65)	c	66)	d	67)	c	68)	a	241)	a	242)	a	243)	b	244)	b
69)	d	70)	d	71)	c	72)	a	245)	a	246)	C	247)	b	248)	a
73)	a	74)	b	75)	d	76)	b	249)	С	250)	d	251)	d	252)	c
77)	c	78)	b	79)	c	80)	d	253)	c	254)	a	255)	a	256)	b
81)	d	82)	d	83)	c	84)	d	257)	b	258)	C	259)	d	260)	d
85)	b	86)	b	87)	c	88)	c	261)	d	262)	d	263)	c	264)	a
89)	d	90)	a	91)	C	92)	a	265)	b	266)	d	267)	b	268)	b
93)	c	94)	b	95)	a	96)	c	269)	b	270)	C	271)	d	272)	a
97)	b	98)	C	99)	b	100)	c	273)	d	274)	b	275)	c	276)	d
101)	d	102)	C .	103)	d	104)	b	277)	d	278)	c	279)	c	280)	b
105)	d	106)	a	107)	b	108)	c	281)	a	282)	C	283)	b	284)	b
109)	a	110)	a	111)	b	112)	c	285)	b	286)	C	287)	b	288)	d
113)	b	114)	a	115)	d	116)		289)	C	290)	b	291)	d	292)	b
117)	С	118)	a	119)	b	120)		293)	b	294)	C	295)	c	296)	a
121)		122)	d	123)	d	124)		297)	C	298)	b	299)	d	300)	b
125)	d	126)	b	127)	a	128)		301)	a	302)	b	303)	b	304)	b
129)	b	130)	С	131)	d	132)		305)	a	306)	b	307)	b	308)	b
133)	C	134)	d	135)	d	136)		309)	b	310)	С	311)	b	312)	С
137)	C	138)	d	139)	b	140)		313)	C	314)	a -	315)	a	316)	С
141)		142)	a	143)	a	144)		317)	b	318)	b	319)	d	320)	d
145)	a	146)	d	147)	d	148)		321)	b	322)	d	323)	d	324)	b
149)	a	150)	С	151)	a	152)		325)	d	326)	C	327)	b	328)	d
153)	b	154)	c	155)	a	156)		329)	b	330)	d	331)	d	332)	a
157)	d	158)	b	159)	b	160)		333)	d	334)	C	335)	b	336)	d
161)	b	162)	С	163)	d	164)		337)	d	338)	d	339)	b	340)	d
165)	a	166)	a	167)	b	168)		341)	b	342)	С	343)	a	344)	C
169)	b	170)	b	171)	C	172)		345)	b	346)	C	347)	a	348)	b
173)	С	174)	a	175)	С	176)	С	349)	С	350)	b	351)	a	352)	b

353)	d	354)	b	355)	b	356) d	557)	a	558)	d	559) (c	560)	c
357)	b	358)	d	359)	d	360) d	561)	a	562)	b	563)	c	564)	a
361)	d	362)	b	363)	b	364) a	565)	c	566)	c	567)	c	568)	a
365)	a	366)	a	367)	c	368) d	569)	c	570)	c	571) l	b	572)	d
369)	a	370)	d	371)	c	372) a	573)	b	574)	c	575)	d	576)	a
373)	d	374)	d	375)	c	376) c	577)	a	578)	b	579) I	b	580)	b
377)	С	378)	a	379)	d	380) c	581)	d	582)	b	583)	С	584)	d
381)	d	382)	a	383)	d	384) c	585)	b	586)	c	587) I	b	588)	d
385)	d	386)	c	387)	a	388) c	589)	a	590)	С	591) l	b	592)	C
389)	С	390)	С	391)	b	392) a	593)	С	594)	d	595) l	b	596)	b
393)	С	394)	a	395)	С	396) d	597)	С	598)	a	=	b_	600)	С
397)	a	398)	d	399)	b	400) d	601)	a	602)	b	_	d	604)	b
401)	a	402)	b	403)	С	404) a	605)	d	606)	d		d .	608)	b
405)	b	406)	d	407)	b	408) b		С	610)	d		b.	612)	b
409)	a	410)	b	411)	С	412) d	613)	a	614)	С		a	616)	a
413)	b	414)	a	415)	a	416) b		d	618)	С	6403	С	620)	С
417)	d	418)	С	419)	С	420) c	621)	С	622)	C	(0.0)	a	624)	С
421)	С	422)	a	423)	С	,	625)	a	626)	b		d	628)	С
425)	d	426)	С	427)	a	428) b		a	630)	c		a	632)	b
429)	d	430)	d	431)	a	432) a	633)	С	634)	b		a	636)	a
433)	С	434)	С	435)	a	436) b		C	638)	С		С	640)	b
437)	a	438)	b	439)	a	440) b		d	642)	b	(40)	a	644)	С
441)	b	442)	c	443)	b	444) d		С	646)	a	- 4 - 3	С	648)	d
445)	a	446)	a	447)	a	448) a	(A)	a	650)	С	·	a	652)	d
449)	b	450)	d	451)	b	452) 4 c	653)		654)	a	-	d	656)	d
453)	С	454)	d	455)	a		657)	b	658)	a		b	660)	С
457)	a	458)	a	459)	c	460) c	661)	d	662)	С		b	664)	b
461)	С	462)	b	463)	b	464) d	_	С	666)	С	>	С	668)	С
465)	a	466)	b	467)	a		669)	d	670)	a		С	672)	a
469)	С	470)	c	471)	c		673)	a	674)	b	-	b	676)	a
473)	d	474)	С	475)	b		677)	С	678)	С	4-03	С	680)	b
477)	b	478)	b		c	480) c		a	682)	a		С	684)	b
481)	b	482)	a	483)	a	484) c	685)	С	686)	d	-	b	688)	b
485)	a	486)	a	487)	d	488) c	689)	b	690)	b		a	692)	С
489)	b	490)	a	491)	С	492) a		a	694)	a	-	d	696)	a
493)	d	494)	d		a	496) a		a	698)	b	•	b	700)	d
497)	С	498)	C	499)	a	-	701)	d	702)	С	-	b	704)	a
501)	a	502)	d	503)	b	-	705)	d	706)	d		С	708)	d
505)	b	506)	d	507)	a	,	709)	b	710)	b	-	b	712)	c
509)	b	510)	d	511)	b	512) a		a	714)	b	-	d	716)	d
513)	d	514)	С	515)	b	516) a		С	718)	b	- 4 0 5	С	720)	c
517)	a	518)	c	519)	a	520) a		b	722)	С		С	724)	b
521)	b	522)	c	523)	d	524) a		a	726)	С		c	728)	b
525)	a	526)	d	527)	d	-	729)	b	730)	С		a	732)	c
529)	d	530)	c	531)	a	-	733)	b	734)	a		a	736)	b
533)	b	534)	a	535)	b	-	737)	b	738)	a	-	b	740)	d
537)	a	538)	a	539)	b	540) c		b	742)	d		a	744)	d
541)	c	542)	d	543)	a	-	745)	d	746)	d	-	b	748)	c
545)	d	546)	c	547)	d	548) c		С	750)	c	-	b	752)	a
549)	a	5 1 0)	b	551)	b	-	753)	b	754)	b	-	d	756)	c
553)	d	554)	b	555)	a	-	757)	b	75 1)	b	-	u b	760)	b
555		551)				555, u	, , ,		, 50)		, , , ,			

761)	d	762)	b	763)	a	764)	d	961)	c	962)	c	963)	a	964)	a
765)	c	766)	a	767)	b	768)	c	965)	c	966)	d	967)	d	968)	d
769)	b	770)	d	771)	a	772)	b	969)	b	970)	a	971)	b	972)	a
773)	a	774)	d	775)	d	776)	b	973)	b	974)	C	975)	d	976)	c
777)	b	778)	c	779)	b	780)	d	977)	a	978)	d	979)	b	980)	d
781)	d	782)	a	783)	c	784)	d	981)	a	982)	b	983)	b	984)	b
785)	c	786)	b	787)	a	788)	c	985)	d	986)	c	987)	d	988)	a
789)	b	790)	c	791)	c	792)	c	989)	c	990)	d	991)	a	992)	a
793)	b	794)	b	795)	c	796)	d	993)	d	994)	b	995)	c	996)	C
797)	b	798)	d	799)	b	800)	d	997)	a	998)	b	999)	c	1000)	c
801)	c	802)	b	803)	c	804)	a	1001)	c	1002)	c	1003)	C	1004)	b
805)	c	806)	d	807)	a	808)	c	1005)	b	1006)	b	1007)	c	1008)	C
809)	b	810)	d	811)	d	812)	b	1009)	c	1010)	b	1011)	a	1012)	d
813)	b	814)	b	815)	c	816)	b	1013)	b	1014)	a	1015)	d	1016)	d
817)	a	818)	d	819)	c	820)	a	1017)	a	1018)	b	1019)	a	1020)	a
821)	b	822)	c	823)	c	824)	a	1021)	a	1022)	a	1023)	c	1024)	d
825)	a	826)	d	827)	c	828)	d	1025)	a	1026)	d	1027)	a	1028)	d
829)	d	830)	b	831)	a	832)	b	1029)	c	1030)	a	1031)	b	1032)	d
833)	a	834)	c	835)	b	836)	d	1033)	a	1034)	a	1035)	a	1036)	c
837)	d	838)	a	839)	d	840)	c	1037)	a	1038)	d	1039)	b	1040)	a
841)	c	842)	b	843)	b	844)	c	1041)	c	1042)	a	1043)	d	1044)	a
845)	b	846)	b	847)	a	848)	d	1045)	d	1046)	b	1047)	d	1048)	c
849)	a	850)	b	851)	b	852)	c	1049)	d	1050)	b	1051)	c	1052)	a
853)	c	854)	b	855)	a	856)	a	1053)	C	1054)	c	1055)	b	1056)	a
857)	d	858)	a	859)	b	860) 🗸	b	1057)	d	1058)	b	1059)	d	1060)	a
861)	a	862)	c	863)	d	864)	b	1061)	d	1062)	d	1063)	a	1064)	d
865)	a	866)	d	867)	d	868)	C	1065)	b	1066)	a	1067)	a	1068)	C
869)	b	870)	d	871)	c	872)	d	1069)	C	1070)	d	1071)	d	1072)	c
873)	C	874)	a	875)	b	876)		1073)		1074)		1075)		1076)	
877)	b	878)	a	879)	b	880)		1077)		1078)		1079)		1080)	C
881)	a	882)	d	883)	b	884)		1081)		1082)		1083)		1084)	
885)	b	886)	c		a	888)		1085)		1086)		1087)		1088)	
889)	b	890)	d		a	892)		1089)		1090)		1091)		1092)	
893)	a	894)	b	895)	b	896)		1093)		1094)		1095)		1096)	
897)	a	898)	b	899)	b	900)		1097)		1098)		1099)		1100)	
901)	С	902)	d	903)	a	904)		1101)		1102)		1103)		1104)	
905)	b	906)	C	907)	C	908)		1105)		1106)		1107)		1108)	
909)	a	910)	d	911)	d	912)		1109)		1110)		1111)		1112)	
913)	C	914)	c	915)	b	916)		1113)		1114)		1115)		1116)	
917)	a	918)	d	919)	b	920)		1117)		1118)		1119)		1120)	
921)	a	922)	С	923)	d	924)		1121)		1122)		1123)		1124)	
925)	a	926)	c	927)	b	928)		1125)		1126)		1127)		1128)	
929)	b	930)	d	931)	d	932)		1129)		1130)		1131)		1132)	
933)	a	934)	С	935)	C	936)		1133)		1134)		1135)		1136)	
937)	d	938)	a	939)	C	940)		1137)		1138)		1139)		1140)	
941)	d	942)	d	943)	b	944)		1141)		1142)		1143)		1144)	
945)	b	946)	a	947)	a	948)		1145)		1146)		1147)		1148)	
949)	b	950)	d	951)	b	952)		1149)		1150)	D	1151)	a	1152)	a
953)	b	954)	a	955)	a	956)		1153)	С						
957)	a	958)	a	959)	d	960)	C								
								-							

COORDINATION COMPOUNDS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(b)**

Follow IUPAC rules.

2 **(b)**

 $2CuSO_4 + 10KCN$

$$\rightarrow 2K_3Cu(CN)_4 + (CN)_2 + 2K_2SO_4$$

3 **(c)**

Follow definition of hydration isomerism.

4 (c)

Urea, NH₂ – C – NH₂

shows tautomerism as

$$NH_2 - C = NH$$

$$| OH$$

6 **(b)**

 $C_6H_5ONa + RX \rightarrow C_6H_5OR$ (Anisole)

7 (c)

Diamagnetic substances have all paired electron.

1. $[Fe(CN)_6]^{3-}$ Oxidation state of Fe=+3 Fe^{3+} 3d 4s 4p

It has one unpaired electron and is paramagnetic.

2. $[NiCl_4]^{2-}$ Oxidation state of Ni=+2

It has two unpaired electrons and is paramagnetic

3. Ni(CO)₄ Oxidation state of Ni=0 Ni (G.S.) 3d 4s 4p

It has no unpaired electron and is diamagnetic

 \div It is paramagnetic as it has five unpaired electrons.

8 **(a)**

CN⁻ is strongest field ligand. The spectrochemical series order is:

$$I^- < Br^- < Cl^- < F^- < [C_2O_4]^{2-} < H_2O < py < NH_3 < en < NO_2^- < CN^- < CO.$$

10 **(b**)

 $[Co(NH_3)_5 ONO]^{2+}$

Penta ammine nitrito cobalt (III) ion.

11 (c

In $[Ag(NH_3)_2]Cl$, Ag^+ contains d^{10} configuration. As others contain unpaired electrons

12 **(c**

 CH_3 gp., an o-and p-directing group attached in nucleus activates the ring for S_E reactions.

The presence of m-directing groups in benzene nucleous simply decreases electron density at o-and p-, whereas no change in electron density at m-position is noticed.

On the contrary o-and p-directing groups in nucleus increases the electron density at o- and p-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for

S_E reactions

13 (d)

In both $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3+}$, Co is present as Co^{3+} .

Thus, the electronic configuration of Co is ${}_{27}\text{Co}=[\text{Ar}]\ 3d^7, 4s^2$

$$_{27}\text{Co}^{3+}=[\text{Ar}]3d^6, 4s^0$$

In case of $[Co(NH_3)_6]^{3+}$, NH_3 is a strong field ligand, so pairing of electrons in 3d-orbital takes place.

$$_{27}\text{Co}^{3+}=[\text{Ar}]3d^6, 4s^0$$

In $[CoF_6]^{3+}$, F is a weak field ligand, thus doesn't

cause pairing. Hence,

$$_{27}\text{Co}^{3+}=[\text{Ar}]3d^6, 4s^0$$

18 **(d)**

It is a test for primary amines. No doubt 2,4-dimethylaniline is also primary amine but it does not give test due to steric hindrance.

19 **(b)**

CN $^-$ is strong field ligand because it is an example of pseudohalide. Pseudohalide ions are stronger coordinating ligands and they have the ability to form σ bond and π -bond.

20 **(b**)

Higher the charge and smaller the size of ligand, more stable is the complex formed

21 (a)

Trinitrobenzene is an explosive compound formed during nitration of C_6H_6 with fuming HNO_3 .

22 **(c)**

A ligand is a species that is capable of donating an electron pair(s) to the central metal ion. The substances which are capable of donating an electron pair are called Lewis base, so a ligand is also a Lewis base.

23 **(d)**

In Ni(CO)₄, Ni is in zero oxidation state. It has tetrahedral geometry but is diamagnetic. In

 $[Ni (CN)_4]^{2-}$, Ni is in +2 oxidation state. It is dsp^2 hybridised and have square planar shape. The compound is diamagnetic.

24 **(d)**

 $[\text{Co}(\text{CN})_6]^{3-}$ has d^2sp^3 -hybridisation and six d-electrons are paired due to strong field ligand. Thus no unpaired electron.

25 **(d)**

$$HBr \rightarrow H^+ + Br^-$$

O—CH₃—H⁺
O—CH₃—Br
O—CH₃—
$$\frac{Br}{S_N^2}$$

(Protonated ether)

Weak base, good leaving gp.

Ether reacts with acid to give protonated ether. The next step involves nucleophilic attack by halide ion with the displacement of weakly basic alcohol molecule.

26 **(d)**

Octahedral complex should have six hybridized orbitals.

27 (d)

$$C_6H_5ONa + CO_2 \xrightarrow{P,T} COONa \xrightarrow{HOH} COOH$$

Kolbe-Schmidt's reaction.

29 (b

The pair of electron present with nitrogen will not be available to be donated as H⁺ will consume that one.

30 **(a)**

It provides maximum number of ions (five) on ionization.

31 (d)

Follow Vorlander's rule.

32 **(d**)

Organometallic compounds are those in which metal is linked directly with carbon. CH_3Li , methyl lithium due to the presence of metal-carbon bond, is an organometallic compound.

33 **(d)**

The directive influence order is:

$$0^- > NR_2 > NHR > NH_2 > OH > OCH_3$$

 $\approx NHCOCH_3 > CH_3 > X$

34 **(c)**

Hybridisation Shape	<u>` '</u>	
	Hybridisation	Shape

dsp^2	Square planar					
sp^3	Tetrahedral					
sp^2	Trigonal planar					

Hence, in tetrahedral complexes metal atom is sp^3 hybridised.

36 **(b)**

The number of ligands attached to the central metal ion is called the coordination number. So, coordination numbers of Fe in $[Fe\ (CN)_6]^{4-}$, $[Fe\ (CN)_6]^{3-}$ and $[Fe\ Cl_4]^{-}$ are 6, 6 and 4 respectively.

37 **(d)**

Tautomers may or may not be metamers

38 **(c)**

EAN=(Atomic number – 0. S + 2 × C. N.) Hence, EAN of Ni in $[Ni(CN)_4]^{2-}$ = $(28 - 2 + 2 \times 4)$ = 34

39 **(c)**

Electron repelling nature of methoxy gp. facilitate the protonation of alcohol.

40 **(d)**

[Ni(Cl)₄]²⁻ oxidation state of Ni is +2 So, configuration of Ni^{2+} = $1s^2, 2s^22p^6, 3s^23p^63d^8$

Thus, due to sp^3 -hybridisation of Ni²⁺ in [NiCl₄]²⁻, the shape of [NiCl₄]²⁻ is tetrahedral.

41 **(a)**

This is Sandmeyer's reaction.

42 **(c)**

p-nitrophenols are more acidic.

43 **(c)**

Benzoylacetonato beryllium exhibit optical isomerism as follows

bis (benzoylacetonato) beryllium (II) complex

44 (d)

 Cl^- is a weak ligand but Cl^- cause the pairing of electron with large Pt^{2+} and consequently give dsp^2 hybridisation and square planar geometry.

45 **(b)**

It is a double salt;

FeSO₄ ·
$$(NH_4)_2$$
SO₄ · $6H_2$ O
 \rightarrow Fe²⁺ + 2SO₄²⁻ + 2NH₄⁺

46 **(d)**

Potassium ferrocyanide $K_4[Fe(CN)_6]$ will ionize as

 $K_4[Fe(CN)_6] \rightleftharpoons 4K^+ + [Fe(CN)_6]^{4-}$ So, it will give five ions in solution

47 **(b**

cis-platin is not a organimetallic compound because it has no carbon- metal bonding

48 **(d)**

Follow mechanism of Reimer-Tiemann reaction.

49 **(b)**

When n = even number then for two identical ends, number of geometrical isomers

$$= 2^{n-1} + 2^{n/2-1}$$

$$= 2^{1} + 2^{0}$$

$$= 3$$

50 (d)

The characteristics of coordination number.

51 (d)

Aliphatic amines are more basic than aromatic amines as the later are more stablised due to resonance.

52 **(d)**

Aromatic hydrocarbons are called arenes with general formula C_nH_{2n-6y} , where $n \not < 6$ and y is no. of cyclic rings. Benzene has one ring and n = 6, *i. e.*, no. of carbon atoms. Thus, general formula is C_6H_6 . All other aromatic hydrocarbons are derivative of benzene.

53 **(a)**

 $Al(OC_2H_5)_3$ doesn't have metal-carbon bond.(*i.e.*, it is not an example of organometallic compound). 60

54 **(b)**

In $[Co(en)_2Cl_2]$, four isomers are possible, two geometrical isomers and two optical isomers.

Now, *cis*-isomer also show optical isomerism. *Cis* isomer exists in enantiomeric form as it is unsymmetrical.

55 **(b)**

A carbon atom which is attached by four different group is called an asymmetric carbon atom or chiral centre

 $HOOC(CHOH)_2COOH$ has two asymmetric carbon atom

56 (c)

Each π -electron is delocalised on each C-atom.

57 (a)

An orange-red dye is formed with C₆H₅NH₂.

59 (a)

Thiophene reacts more readily with $\rm H_2SO_4$ than $\rm C_6H_6$ giving thiophene sulphonic acid which is water soluble and thus, can be separated from $\rm C_6H_6$. This can not be made by fractional

distillation because thiophene and C_6H_6 both have nearly same b.p.

60 **(b)**

As cobalt is present as ${\rm CO^{3+}}$ and coordination number of cobalt is 6, the molecular formula of compound should be ${\rm CoCl_3.}$ $y{\rm NH_3.}$ Now, as it gives a total of three ions when dissolved in water, its structural formula must be ${\rm [CoCl(NH_3)_5]Cl_2}$

 $[CoCl(NH_3)_5]Cl_2 \rightleftharpoons [CoCl(NH_3)_5]^{2+} + 2Cl^-$ Thus, only one Cl⁻ ion is satisfying both primary and secondary valency of Co³⁺ in this compound.

61 **(c)**

The structure of alcohol is

2,4-dimethyl-3-(1-methyl) ethyl pentan-3-ol

62 **(c)**

The transition metal cations during complex formation show d-d transition to give coloured ions.

63 **(a)**

 $-CH_3$ gp. Shows +ve inductive effect and -OH gp. shows resonance effect which increases the electron density on C_6H_6 ring.

64 **(d)**

It produces least number of ions in solution.

66 **(d**

The process is known as aromatisation or cyclization.

67 **(c)**

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{CH_3} \\ | \\ \operatorname{CH_3} \end{array}$$

neo-pentane

The structure shows that all the hydrogen atoms are attached to primary C-atoms hence these are primary hydrogens

68 **(a)**

Follow IUPAC rules.

69 **(d)**

$$H_3C$$
 H_3C
 H_3C
 H_3C

 H_3C has no α -hydrogen. Hence, it will not show tautomerism

70 **(d)**

Both CN^- and NO_2^- are strong field ligands.

71 **(c)**

Prussian blue is $Fe_4^{III}[Fe^{II}(CN)_6]_3$ or $M^IFe^{III}[Fe^{II}(CN)_6]$, where M^I is Na, K, Rb, Li, Cs.

73 **(a)**

 Co^{3+} , Fe^{3+} and Cr^{3+} have 6d-electrons, 5d-electrons and 3d-electrons respectively. Mn^{7+} has no d-electron.

74 **(b)**

All complexes of Co(III) have six ligands or coordination number of six and thus, are octahedral in shape.

75 **(d)**

NH₃ is weak as well as strong field ligand.

77 **(c)**

[Pt(NH₃)₃Br(NO₂)Cl]Cl Triamminebromochloronitro platinum (IV) chloride.

78 **(b)**

Both the carbon attached to 0 are part of aromatic system.

79 **(c)**

Phenol is weak acid.

80 **(d)**

[EDTA]^{4–}is a hexadentate ligand because it donates six pairs of electrons to central metal atom in a complex.

82 **(d)**

Ferrocene of bi-(cyclopentadienyl) iron is an orange-crystalline solid. It is $Fe\big(\eta^5-C_5H_5\big)_2.$ The structure of ferrocene is regarded as sandwiche structure, in which the iron atom is sandwiched between two C_5H_5 organic rings. The planes of the rings are parallel so that all the carbon atoms are at the same distance from the iron atom. It is a π -bonded complex. Its structure is as

83 **(c)**

[Cu(NH₃)₄]SO₄ Oxidation number of Cu \Rightarrow x+4 × 0 - 2 = 0

$$x-2=0$$
 $x=+2$

O.N of Cu=+2

O.N of pt in $[Pt(NH_3)_2Cl_2]$

$$x+2\times 0 + 2\times -1 = 0$$

$$x - 2 = 0$$

$$x=+2$$

O.N of Ni in $[Ni(CO)_4]$

$$x+4 \times 0 = 0$$

$$x=0$$

O.N of Fe in $K_3[Fe(CN)_6]$

$$3 \times (+1) + x + 6 \times -1 = 0$$

$$3+x-6=0$$

$$x = +3$$

 \therefore [Ni(CO)₄] is zero valent compound.

84 **(d)**

The compounds given have following structures

$$\begin{array}{c|c} \mathsf{CH_3} & \mathsf{CH_3} \\ & & \\ & & \\ \mathsf{(d)} \mathsf{CH_3} \mathbf{--} \mathsf{C} \mathbf{--} \mathsf{CH} \mathbf{--} \mathsf{CH_2} \mathsf{CH_2} \mathsf{CH_3} \\ & & \\ \mathsf{CH_3} \end{array}$$

Out of these the (a) and (b) contain 5 C-atoms in their longest possible chains hence, these could not be the correct options for 2, 2, 3-trimethylhexane. Out of (c) and (d), the (c) is 2, 2, 5-trimethyl hexane and (d) is 2, 3, 3-trimethyl hexane

85 **(b)**

Phenoxy benzene is diphenyl ether.

86 **(b)**

Ziegler-Natta catalyst is an organometallic compound containing titanium. It is $TiCl_4$ and $(C_2H_5)_3$ Al. It is used in the preparation of polyethylene.

$$nCH_2 = CH_2 \xrightarrow{330-350 \text{ K},1-2 \text{ atm}} (-CH_2 - CH_2 -)_n$$

polyethylene

- 87 (c) $Al_2(C_2H_5)_6 + TiCl_4$ is Zeigler Natta catalyst.
- 88 **(c)**Transition metals have empty or half filled *d*orbitals to accept electron pairs.
- 89 **(d)**The number of atom of the ligand that are directly bound to the central metal atom or ion by coordinate bonds is known as the coordinate number of the metal or ion. It is actually the number of chemical bonds which the ligand form

- (a)
 Acyl chlorides or acid amhydrides are used in acylation.
- 92 (a) Zeise's salt, $K[PtCl_3(C_2H_4)]$ is a π -bonded organometallic compound. Its structure is as

95 **(a)**Follow IUPAC rules.

90

Since the complexes

[PtCl₂(NH₃)₄]Br₂ and [PtBr₂(NH₃)4Cl₂have the same molecular formula but on ionisation they give different ions, they exhibit ionisation isomerism.

 $[PtCl_2(NH_3)_4]Br_2 \rightleftharpoons [PtCl_2(NH_3)_4]^{2+} + 2Br^ [PtBr_2(NH_3)_4]Cl_2 \rightleftharpoons [PtBr_2(NH_3)_4]^{2+} + 2Cl^-$

97 **(b)** Ni²⁺ + 4CN⁻ \rightarrow [Ni(CN)₄]²⁻ Here Ni²⁺ has d^8 -configuration with CN⁻ as strong ligand.

 d^8 -configuration in strong ligand field gives dsp^2 hybridisation, hence square planar geometry.

$$Ni^{2+} + 4Cl^- \rightarrow [NiCl_4]^{2-}$$

Here Ni^{2+} has d^8 -configuration with CN^- as weak ligand.

 d^8 -configuration in weak ligand field gives sp^3 hybridisation, hence tetrahedral geometry. Ni $^{2+}$ with H $_2$ O forms [Ni(H $_2$ O) $_6$] $^{2+}$ complex and H $_2$ O is a weak ligand.

Therefore, $[Ni(H_2O)_6]^{2+}$ has octahedral geometry.

- Benzene ring is activates for S_E reaction by the +I effect as well as hyperconjugation of CH₃ group -Cl deactivates as -I effect predominates over +M effect. $-NO_2$ group deactivates ring by -I effect and -M effect.
- 100 **(c)**Alcohols are neutral.
- 101 **(d)**—OH is *o*-and *p*-directing gp.
- 102 **(c)** [Fe($\eta^5 C_2H_5$)₂] is the organometallic compound which has σ and π bonds present
- 103 (d) BHC is $C_6H_6Cl_6$ a saturated cyclic molecule. 104 (b)
 - The complexes can be written as follows $[Co(NH_3)_6]Cl_3$, $[Co(NH_3)_5Cl]Cl_2$, $[Co(NH_3)_4Cl_4]Cl$ Hence, no. of primary valencies are 3, 2 and 1 respectively
- 105 (d)
 [Cr(NH₃)₅ NO₂]Cl₂ compound shows linkage isomerism because it has NO₂ group which is ambidentate ligand.
 It can be linked *via* N atom (— NO₂) or *via* O atom

(—ONO) to form two different isomers.

106 (a)

In $[Sc(H_2O)_6]^{3+}$,

Oxidation state of Sc is +3.

Sc (ground state)

3*d*

11

Sc³⁺

- : Sc³⁺ has no unpaired electron.
- ∴ [Sc(H₂O)₆]³⁺ is diamagnetic and colourless.

107 **(b)**

 $[MA_5B]$ due to absence of symmetry of 'B' ligand cannot exist in the form of *cis-trans* isomer.

108 (c)

Out of the 3 functional groups attached

group

will be the principal functional group and rest as the substituents

2-amino-3-hydroxy propanoic acid

109 (a)

A transition metal complex absorbs visible light only when it has unpaired electron. Ni²⁺ in strong field ligand has configuration as

110 (a)

The directive influence order and tendency to release electron for o-and p-directing group is, $O_2^- > NR_2 > NHR > NH_2 > OH > OCH_3$

$$\approx \text{NHCOCH}_3 > \text{CH}_3 > X$$

111 **(b)**

- (a) In MnO₂, FeCl₃ oxidation states of Mn and Fe are +4 and +3 respectively.
- (b) In $(MnO_4)^-$, CrO_2Cl_2 oxidation states of Mn and Cr are +7 and +6 respectively.
- (c) In $[Fe(CN)_6]^{3-}$, $[Co(CN)_3]$ oxidation states of Fe and Co are +3 and +3 respectively.
- (d) $[NiCl_4]^{2-}$, $[CoCl_4]^-$ oxidation states of Ni and Co are +2 and +3 respectively.

112 (c)

[M(abcd)] complex is square planar so will have three geometrical isomers.

127 (a)

113 **(b)**

This is carbylamines reaction.

114 (a)

An experimental fact depending upon the ability of the ligand to cause crystal field splitting (*i. e.*, strength of ligand).

115 **(d)**

 $K_3[Fe(CN)_5NO]$

Potassium pentacyanonitrosyl ferrate (II).

116 **(c)**

The d-d excitation is responsible for colour of $Ti(H_2O)_6^{3+}$ which has one unpaired electron.

117 (c)

The oxidation number of Fe in K_4 [Fe(CN)₆]is +2.

119 **(b)**

Both Ag and Au are extracted by complex formation method.

120 **(b)**

$$EAN = 24 - 3 + 2 \times (6) = 33.$$

121 (a)

According to Werner's theory, only those ions are precipitated which are attached to the metal atoms with ionic bonds and are present outside the coordination sphere.

$$[Pt(NH_3)_6]Cl_4 \rightleftharpoons Pt(NH_3)_6^{4+} + 4Cl^{-}$$

122 **(d)**

It is a fact.

123 (d)

In acidic solution, proton coordinate with ammonia to form NH₄⁺. NH₄⁺ does not act as ligand because nitrogen atom has no lone pair of electrons which it can donate to metal atom

124 (d)

Disubstituted cyclic compounds and disubstituted alkenes show geometrical isomerism

125 (d)

 $Ag(NH_3)_2^+$ has sp-hybridization and linear complex.

The replacement of Cl is due to the formation of stable benzyl carbocation. Alternatively Cl is present in side chain and thus replaced whereas Br is attached in benzene nucleus.

$$\begin{array}{c}
 & O \\
 & NH \\
\hline
 & NK
\end{array}$$

$$\begin{array}{c}
 & O \\
 & NK
\end{array}$$

$$\begin{array}{c}
 & O \\
 & N \\
\hline
 & N \\
 & O \\
\end{array}$$

$$\begin{array}{c}
 & O \\
 & N \\
\end{array}$$

$$\begin{array}{c}
 & O \\
 & O \\
\end{array}$$

$$\begin{array}{c}
 & O \\
\end{array}$$

128 **(d)**

The electronic configuration of Ni in $[Ni(CN)_4]^{2-}$, $[Ni(Cl)_4]^{2-}$ and $Ni(CO)_4$ are: Ni^{2+} in $[Ni(CN)_4]^{2-}$:

 Ni^{2+} in $[Ni(Cl_4)]^{2-}$:

Ni in $[Ni(CO)_4]$:

3d						4s	_	4p			
↑↓	1↓	1↓	1↓	↑↓		××	N	××	××	××	
$ sn^3$											

129 **(b)**

Replacement of N_2Cl by halogen atom of CuX - HX from benzene diazonium chloride is called Sandmeyer's reaction.

134 **(d)**

(i) -NO₂ can show linkage

$$\left(-O-N=O \text{ or}-N\right)$$
 isomerism

130 **(c)**

Optical isomerism is shown by the type $[M(AA)X_2Y_2]$, $[M(AA)_3]$, $[M(AA)_2X_2]$

131 (d)

1,2-dimethyl cyclobut-1-ene

132 **(b)**

 $\mathrm{HNO_3} + 2\mathrm{H_2SO_4} \longrightarrow \mathrm{NO_2^+} + 2\mathrm{HSO_4^-} + \mathrm{H_3O^+}.$

(iii) Also $[Co(NH_3)_4(NO_2)_2]Cl$ has its ionisation isomer as $[Co(NH_3)_4NO_2Cl]NO_2$.

135 (d)

Complex	Hybridization
$[Ni(CO)_4]$	sp^3
$[Ni(CO)_4]^{2-}$	dsp^2
$[CoF_6]^{3-}$	sp^3d^2
[Fe(CN) ₆] ³⁻	d^2sp^3

136 **(d)**

2, 4, 6-trinitrophenol is known as picric acid, an explosive.

137 **(c)**

It is a fact.

139 **(b)**

OH gp., an o- and p-directing group activates ring for reactions. The presence of m-directing groups in benzene nucleous simply decreases electron density at o- and p-, whereas no change in electron density at m-position is noticed.

On the contrary o-and p-directing groups in nucleus increases the electron density at o- and p-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

140 (a)

If magnetic moment is zero the species should not have unpaired electrons.

141 **(b)**

Chlorophyll is a complex having Mg-atom.

142 (a)

Primary valency of metal is satisfied only by the anion. It is simply ionic valency. While secondary valency is satisfied by ligands (which can give a lone pair of electron). The ligands satisfying secondary valency, are always written in coordination sphere. This concept was given by Werner.

In $K_3[Fe(CN)_6]$, the CN^- ions satisfy both the primary as well as secondary valency of Fe^{3+} ion.

143 (a)

The following isomers the alkene have

(i)
$$CH_3 - CH_2 - CH = CH_2$$

(ii)
$$CH_3 - CH = CH - CH_3$$

(iii)
$$H_3C = C$$

(iv)
$$H_3C$$
 $C = C$ CH_3 CH_3 $CH_3 = C$ CH_2

145 (a)

According to postulates of Werner's theory for coordination compounds, metal atoms exhibit two types of valencies *i.e.*, primary valency and secondary valency. The primary valency is ionisable whereas the secondary valency is nonionisable.

146 (d)

 $[Fe(CN)_6]^{4-}$ is **diamagnetic** $(Fe^{2+}$ has $3d^6$ configuration and the 6 electron pairs up in three d-orbitals followed by d^2sp^3 -hybridisation). $[Cr(NH_3)_6]^{3+}$ is **paramagnetic** $(Cr^{3+}$ has $3d^3$ configuration. Hybridisation is d^2sp^3 . Due to 3 unpaired electrons it is **paramagnetic**)

$$[Cr(CO)_6: Cr(Z =$$

25): $[Ar]^{18}4s^1$, $3d^5$.

The one 4s-electron pairs up with five 3d-electrons in three d-orbitals. This is followed by d^2sp^3 -hybridisation to give octahedral complex. No unpaired electron and hence complex is diamagnetic.

$$Fe(CO)_5 : Fe(Z =$$

26): $[Ar]^{18}4s^2$, $3d^6$.

The six electrons in d-subshell pairs up in three d-orbitals. This is followed by d^2sp^3 -hybridisation to give octahedral geometry with one vacant hybridised orbital. The resulting shape of the complex is square based pyramid. As there is no unpaired electron, the complex is **diamagnetic.**

147 (d)

A modified or extended Friedel-Crafts reaction.

148 (a)

cis[Co(en)₂Cl₂]Cl is optically active hence, it will give a pair

149 (a)

 Δ_t is roughly 4/9 times to Δ_0 .

150 (c)

Follow IUPAC rules

151 (a)

Alkanes having less than four carbon atoms in basic chain will not show chain isomerism

152 **(b)**

$$OH \xrightarrow{+3Br_2 \longrightarrow} Br \xrightarrow{Br} OH \xrightarrow{+3HBr}$$

3 mole of Br₂ are needed.

153 **(b)**

Diamethyl glyoxime forms a colour complex with nickel

154 **(c)**

 BF_4^- has sp^3 -hybridisation and tetrahedral.

155 (a)

Oxidation state of iron in haemoglobin is +2.

156 **(b)**

- 5. Geometrical isomers have same structural formula but differ in spatial arrangement of groups.
- 6. Different arrangement of atoms or groups in three dimensional space results in two optical isomers which are image of each other.

Therefore, number of geometrical isomers, optical isomers and total number of isomers are 2, 2 and 3 respectively.

157 (d)

Hetero aromatics show aromatic nature due to $4n + 2\pi$ electrons.

158 **(b)**

 CN^- ligand has strong ligand field because of higher value of Δ .

159 **(b)**

% Enantiomeric excess

$$= \frac{\text{observed specific rotation}}{\text{specific rotation of pure enantiomer}} \times 100$$
Observed specific rotation = $\frac{3/4}{100} \times (+16^{\circ}) \times 100$
= $+12^{\circ}$

160 **(c)**

Follow IUPAC rules.

161 **(b)**

 $[(C_6H_5)_3P)_3RhCl]$ or $[(Ph_3P)_3RhCl]$ is a Wilkinson's catalyst, the most widely used of all catalysts for homogeneous hydrogenation.

162 **(c)**

Halogens attack double bond of C₆H₆ in presence

of light. In absence of light as well as in presence of only AlCl₃, S_E reactions are noticed.

163 **(d)**

 $[Pt(NH_3)_6]Cl_4$ complex gives five ions in the solution.

$$[Pt(NH_3)_6]Cl_4 \rightleftharpoons [Pt(NH_3)_6]^{4+} + 4Cl^{-}$$

164 (a)

The EAN for Cu in $[Cu(NH_3)_4]^{2+}$ is 35 and not 36, the next inert gas at. No.

165 (a)

$$1 \times 3 + a + 6 \times (-1) = 0$$
, $\therefore a = +3$

166 (a)

In NaOC₂H₅, Na is attached to O-atom.

167 **(b)**

In $[Mn(H_2O)_6]^{2+}$, Mn is present as Mn^{2+} or Mn (II), so its electronic configuration

In $[Mn(H_2O)_6]^{2+}$, the coordination number of Mn is six, but in presence of weak field ligand, there will be no pairing of electrons in 3d. So, it will form high spin complex due to presence of five unpaired electron.

 $In [Mn(H_2O)_6]^{2+}$

170 **(b)**

Due to aromatic nature; $C_6H_5CH_2OH$ is exception and does not burn with sooty flame.

171 (c)

EDTA (Ethylenediaminetetraacetic acid)

hexadentate (6 electron pairs)

that's why for octahedral complex only one EDTA is required.

173 (c)

It is Friedel-Crafts reaction.

174 (a)

Resonance in phenoxide ion makes it more stable. More stable is ion less stable is phenol or more is acidic nature.

175 (c)

Triethylenediamine cobalt(III) chloride is

[Co(NH₂CH₂CH₂NH₂)₃]Cl₃; NH₂CH₂CH₂NH₂ is bidentate ligand and thus, coordination no. = $3 \times 2 = 6$.

177 (c)

CO is a neutral ligand, so the oxidation state of metal in metal carbonyls is always zero.

$$[Ni(CO)_4]$$

$$x+(0\times4)=0$$

$$x=0$$

$$FeCl_3 + Cl_2 \rightarrow FeCl_4^- + Cl^+$$

179 **(a)**

 $[Ni(CN)_4]^{2-}$ has dsp^2 -hybridization while $[Ni(Cl_4)^{2-}]$ and $[Ni(CO_4)]$ have sp^3 -hybridization.

180 **(b)**

$$3C_2H_2 \xrightarrow{\Delta} C_6H_6$$

182 **(b)**

183 **(a)**

It is a reason for the fact.

186 (d)

$$0$$

$$||$$

$$CH_3CH_2 - C - CH_2CH_3 \leftrightarrow$$

$$(keto form)$$

$$OH$$

$$|$$

$$CH_3 - CH = C - CH_2CH_3$$

$$(enol form)$$

187 (c)

Non-polr part C_6H_5 —shows more hydrophobic nature.

189 (d)

All involve d^2sp^3 -hybridization.

191 **(b)**

Aromatic amines are less basic than aliphatic amines. Also presence of electron attracting group decreases the basic character of aromatic amines.

192 **(a)**

Follow IUPAC rules.

193 (d)

All are weak field ligands and thus, give high spin complex.

194 **(d)**

Tartaric acid is

2,3-dihydroxybutane-1,4-dioic acid

195 (a)

$$eta_4$$
 for $[ML_4]^{2-}$ can be written as
$$eta_4 = \!\! \frac{[ML_4]^{2-}}{[M^{2+}][L^-]^4} = 2.5 \times 10^{13}$$

The overall formation equilibrium constant can be written as

$$k = \frac{[ML_4]^{2-}}{[M^{2+}][L^{-1}]^4}$$

$$k = \beta_4 = 2.5 \times 10^{13}$$

196 (d)

[Cr(NH₃)₄Cl₂]⁺

Let oxidation state of Cr = x

$$NH_3=0$$
 $Cl=-1$

Net charge =+1

$$\therefore [Cr(NH_3)_4Cl_2]^+$$

$$x+4\times0+2(-1)=+1$$

$$\therefore$$
 $x=+3$

197 **(b)**

Phenols are acidic; alcohols are neutral.

198 **(b)**

$$2 \times a + 4 \times (-2) + 2 \times 0 + 2 \times 0 = -2,$$
 \therefore $= +3$

199 (c)

CH₃MgI (Grignard reagent) is an organometallic compound due to C— Mg bond.

200 **(c)**

Effective atomic number = electrons in Cr3+ +electrons form 6NH₃ ligands.

$$=21+6\times2=33$$

203 (d)

Hückel rule for aromaticity suggests that an aromatic compound must possess $(4n + 2)\pi$ electrons, where n = 0, 1, 2..., etc., as well as π electrons cloud should embrace all the carbon atoms of the cyclic systems.

204 (a)

$$C_6H_5OH + Zn dust \rightarrow C_6H_6.$$

205 **(b)**

$$CH_3$$
— CO — N
 CI

N-bromo-N-chloro ethanamide

206 (d)

It is condensation reaction.

207 (d)

Due to more canonical forms.

208 (c)

$$2C_6H_5SO_2$$
. OH $\xrightarrow{P_2O_5}$ $(C_6H_5SO_2)_2O$

209 **(b)**

Isomeric substances that differ only in the arrangement of carbon atoms forming the base chain are known as chain isomers

CH₃CH₂CHCH₂CH₃

and

$$\begin{array}{c} \text{Cl} \\ | \\ \text{CH}_3 - \text{CH}_2 - \text{C} - \text{CH}_3 \\ | \\ \text{CH}_3 \end{array}$$

If the compound with the same molecular formula differ in the position of the same functional group on the identical base chain the compounds are called position isomers

210 **(c)**

In $K_3[Fe(CN)_6]$, the ligands are negative which is present in coordination spheres shows a dual behavior. It may satisfied both primary and secondary valencies while, neutral ligand satisfied only secondary valencies

211 (c)

A number of transition metals form polymetallic carbonyls.

212 **(b)**

$$Ni: 3d^84s^2 \quad Ni^{2+}: 3d^8$$

Since, Cl is a weak field ligand, it doesn't cause paring of electron.

 $3d^{8}$

4s 4

Number of unpaired electrons, n=2 $\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)BM} = \sqrt{8} \; BM = 2.82 \; BM$

213 **(c)**

Follow IUPAC rules.

214 **(c)**

The reaction occurs via., electrophilic addition following Markownikoff's rule,.

$$CH_{3} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{2} \xrightarrow{H_{2}O} CH_{3} \xrightarrow{C} CH_{3}$$

$$\downarrow C_{6}H_{5} \qquad \downarrow C_{6}H_{5}$$

$$\downarrow C_{6}H_{5} \qquad \downarrow C_{6}H_{5}$$

2-phenyl-2-propanol

215 **(b)**

C₆H₅OH is also called carbolic acid.

216 (a)

It is easier to do nucleophilic substitution on alkyl halides than on aryl halides.

217 **(a)**

Oxidation state of Co in K [Co(CO)₄]is $+1 + x + 4 \times 0 = 0$ x = -1(For co)

218 **(d)**

Bakelite is formed as a result of condensation of HCHO and phenol.

219 **(b)**

Based on spectrochemical series, ligands arranged in increasing order of crystal field strength are as

 $NH_3 < en < CN^- < CO$

222 **(c)**

Follow mechanism of sulphonation on xylene.

224 **(d)**

All these are used to explain o-, p- directing nature of —CH₃ gp.

225 (a)

The separation of racemic mixture back into d and l isomers is known as resolution. It can be

done by

- (I) mechanical method
- (II) bio-chemical method using enzymes
- (III) chemical method (salt formation)

227 (c)

Alkanes are not dissolved in H₂SO₄.

228 **(c)**

Monomeric form of iron carbonyl is Fe(CO)₅.

229 **(b)**

Molecular formula of naphthalene is $C_{10}H_8$.

230 (d)

It is clear from the chemical formulae that Ag is central metal atom and ligands are 2 ammonia molecule

Hence, compound is [Ag(NH₃)₂]Cl

231 **(c)**

For [*M abcd*] square planar complex, the number of possible geometrical isomers is three which is obtained by fixing the position of one of the ligands say *a* while the other ligands *b*, *c* and *d* are placed *trans* to it.

232 **(a)**

Follow exceptions of Vorlander's rule.

233 **(b)**

Follow IUPAC rules.

234 **(b)**

Coordination number is equal to total number of ligands in a complex

235 (d)

Chair and boat conformations of cyclohexane differ in energy by 44 kJ/mol

236 (d)

Ligands form coordinate bond with central atom or ion and donate electron pair.

238 (d)

This is Gattermann-Koch reaction -CHO gp. in C_6H_6 nucleus.

239 **(a)**

 $[Cr(NH_3)_6]^{3+}$ has three unpaired electrons. Electronic configuration of Cr^{3+} in $Cr(NH_3)_6$ is:

×× Electron pair donated by NH₃.

240 **(b)**

$$CH_3$$
 $C=C$ $*$ $COOH$

The above compound has chiral centre Hence, it can exhibit optical isomerism while geometrical isomerism is not possible due to presence of identical groups on double bonded carbon atom

241 (a)

It has no unpaired electron.

242 (a)

Meso tartaric acid is optically inactive due to the presence of molecular symmetry. It I optically inactive due to internal compensation, *ie*, the effect of one half of the molecule is neutralized by other

243 **(b)**

Smaller is cation, more is effective nuclear charge, more is the tendency to attract electron pair from ligands.

245 (a)

Presence of o-, p-directing gp. facilitates the SE reactions.

246 (c)

 $K_2S_2O_8$ gives quinol; $KMnO_4$ gives mesotartaric acid.

247 **(b)**

The compound is substituted octane, it has branches at carbon-3, carbon-4, carbon-5. The name is

4-sec-butyl-5-ethyl-3-metyl octane

248 (a)

The presence of *m*-directing groups in benzene

nucleous simply decreases electron density at oand p-, whereas no change in electron density at m-position is noticed.

$$0 \leftarrow N = \ddot{0}: 0 \leftarrow N = \ddot{0}:$$

On the contrary o-and p-directing groups in nucleus increases the electron density at o- and p-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

249 (c)

CuF₂ is blue coloured crystalline solid.

250 (d)

Different ionization gives different colour.

251 (d)

The complex has coordination number of six which is found in octahedral complex.

252 **(c)**

BF₃ has incomplete octet and is Lewis acid; it cannot donate electron pair.

253 (c)

Methyl thiomethyl group is inserted at *ortho* position by heating phenol with dimethyl sulphoxide and pyridine $-SO_3/(CH_3CO)_2O$.

254 (a)

$Ni(CN)_4^{2-}$

Ni is in +2 oxidation state.

 $Ni(CO)_4$

Oxidation state of Ni is zero

255 (a)

259 (d)

Aspirin is acetyl salicylic acid.

Thus, only aspirin has carboxylic group.

260 (d)

Replacement of H-atom of ring usually takes place following S_F reaction mechanism.

261 (d)
$$[Co(NH_3)_4]Cl_3 \Rightarrow [Co(NH_3)_4]^{3+} + 3Cl^{-}$$

Because there is direct bonding of metal ion with carbon

263 **(c)** CuCl in NH₄OH absorbs CO.

26**5 (b)** It is a fact.

267 **(b)**-COOH gp. is *meta* directing gp.

268 **(b)** $[Ni(H₂O)₄]SO₄ + NH₄OH \rightarrow [Ni(NH₃)₄]SO₄$ 269 **(b)**

4-methyl benzene sulphonic acid is stronger than acetic acid thus it will release acid from sodium acetate.

256 **(b)**

Phthalein test is characteristics of phenols.

257 **(b)**

 $[Cr(NH_3)_6][Co(CN)_6]$ is isomer to $[Cr(CN)_6][Co(NH_3)_6]$, i.e., ligands are partially changes in complex anion and complex cation.

Compound CH₃ has one chiral carbon atom thus, it has two geometrical (*cis* and *trans*) and two optical isomers

270 (c)

The directive influence order and tendency to release electron for o-and p-directing group is, $O_2^- > NR_2 > NHR > NH_2 > OH > OCH_3$ $\approx NHCOCH_3 > CH_3 > X$

271 (d)

In organometallic compound, carbon atom is directly bonded to metal atom. Methyl lithium ($\mathrm{CH_3Li}$) is an organometallic compound.

272 **(a)**

This is crossed Cannizzaro's reaction in which HCHO is oxidized.

$${\rm C_6H_5CHO + HCHO} \xrightarrow{\rm NaOH} {\rm C_6H_5CH_2OH + HCOONa} \, .$$

273 **(d)**

Gammexane is C₆H₆Cl₆.

274 **(b)**

Each ligand donates one electron pair.

275 **(c)**

7. is isomer of [Pt(NH₃)₂Cl₂] which is used as an anticancer drug for treating several types of malignant tumours.

(cis-platin)

276 (d)

$$C_6H_5CHO \xrightarrow{\text{Reduction}} C_6H_5CH_2OH.$$

Benzyl alcohol.

277 (d)

Petroleum and coal are main sources of aromatic compounds.

279 **(c)**

Butane-1,2,4-tricarbonitrile

280 **(b)**

Fac-mer isomerism is associated with $[MA_3B_3]$ type complexes.

cis isoment (-Fac isomer) trans isoment (Mer- isomer)

282 **(c)**

Intramolecular H-bonding gives rises to lower m.p.

283 **(b)**

Mn does not form mononuclear carbonyl.

284 **(b)**

Ethylenediamine tetraacetic acid is a hexadentate ligand because it has six donor centres.

285 **(b)**

Both are position isomers

286 (c)

<u> </u>		
Hybridisatio	Geometry of	
n	complex	
sp^3	Tetrahedral	
dsp^2	Square planar	
d^2sp^3	Octahedral	
sp^2d^2	Not possible	

287 **(b)**

$$CH_3 - CH = CH - COOC_2H_5$$
 is Ethyl-2-butenoate

288 (d)

Waxes are not obtained obtained by destructive distillation of wood or coal.

289 (c)

Formaldehyde and benzophenone are also obtained.

290 **(b)**

It ionizes to Fe^{3+} and SO_4^{2-} .

291 **(d)**

These are the concepts of Werner's theory.

293 **(b)**

In $K_3[Co(CO_3)_3]$, cobalt shows the +3 oxidation state *i.e.*, (d^6) ion. Hence, Co (+3) has four unpaired electrons so, it is paramagnetic.

The magnetic moment of Co(+3)

In K₃[Co(CO₃)₃] =
$$\sqrt{n(n+2)}$$
 BM
= $\sqrt{4(4+2)}$ BM=4.9 BM

Where, n=number of unpaired electrons CO_3^{2-} is a weak field bidentate ligand, so $3\mathrm{CO}_3^{2-}$ ligands occupy six orbitals, thus it shows sp^3 d^2 hybridisation and octahedral in shape.

296 (a)

Some heterocyclic compounds (hetero aromatics) possess aromatic nature. Follow Hückel rule.

297 (c)

Nickel reacts with dimethylglyoxime to give red ppt. of nickel-dimethyl glyoxime complex.

298 (b)

$$C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} C_6H_5N_2Cl \xrightarrow{SnCl_2+HCl} C_6H_5NHNH_2$$

299 (d)

 $-CH_3$ gp. is o-and p-directing $FeCl_3$ is halogen carrier.

300 **(b)**

It has coordination number of six and thus, should have six hybridized orbitals, *i. e.*, d^2sp^3 -hybridization.

301 **(a)**

For $K_4[Fe(CN)_6]$, the EAN of Fe^{2+} ion =(26-2+12) =36.

Hence it follows EAN rule, as its EAN is equal to number of electrons of Kr (inert gas), *i.e.*, 36.

302 **(b)**

 OCH_3 gp. an o – and p –directing group activates ring for S_E reactions.

303 **(b**)

Anilium hydrochloride gives white ppt. with $AgNO_3$.

305 (a)

This is a fact for given statement.

307 **(b)**

Ortho, meta and para.

308 **(b)**

Follow IUPAC rules.

309 **(b)**

8. $Mn^+ = 3d^5, 4s^1$. In presence of CO effective configurable $3d^6, 4s^0$.

Three lone pair of back bonding with vacant orbital of C in CO.

9. Fe⁰ = $3d^6$, $4s^2$. In presence of CO effective configurable $3d^8$.

Four lone pair for back bonding with CO.

10. $Cr^0 = 3d^4$, $4s^2$. Effective configuration =

 $3d^{6}$.

Three lone pair for back bonding with CO.

11. $V^- = 3d^4$, $4s^2$. Effective configuration = $3d^6$.

Three lone pair for back bonding with CO.

Maximum back bonding in $Fe(CO)_5$, therefore CO bond order is lowest here.

311 **(b)**

 d^4 : Forms outer complex in high spin and forms inner complex in low spin. It cannot form octahedral complex.

 d^6 : In low spin it forms inner octahedral complex and in high spin forms outer octahedral complex. d^8 : Forms only outer spin octahedral complex.

312 (c)

Bromo group, o- and p-directing.

313 **(c)**

The given statement represents only ether.

314 (a)

Due to asymmetric carbon atom.

315 (a)

This is a fact for the given statement.

316 (c)

CN⁻and OH⁻ are strong nucleophiles. $[Fe(OH)_5]^{3-}$ is not formed.

317 **(b)**

The prefixes erythro and threo are used in systems containing two asymmetric carbons when two of the groups are the same and the third is different. The erythro-isomer has identical groups as the same side when a drawn in Fischer projection and threo-isomer has them on opposite side

318 **(b)**

Main fractions of coal-tar and the compounds present there in are:

Main fraction	Temp.	Chief
	range	constituents

			_	
1.	Light oil or	80-	Benzene,	
	crude	170°C	toluene, xylenes,	
2.	naphtha		etc.	
	Middle oil or	170-	Phenol,	
3.	carbolic acid	230°C	naphthalene,	
	Heavy oil or		pyridine, etc.	
4.	creosote oil	230-	Cresols,	
	Green oil or	270°C	naphthalene	
5.	anthracene		quinolone, etc.	
	oil	270-	Anthracene,	
	Pitch	360°C	phenanthrene,	
			etc.	
		Resid	90-94% of	
		ue	carbon	

319 (d)

The order of reactivity depends on the stability of intermediate carbocation formed due to heterolytic cleavage of C—*X* bond.

320 **(d)**

Greater is the number of chelate rings, greater is stability of the chelate. Hence, five fused cyclic system is most stable for a chelate.

321 **(b)**

 $HNO_3 + H_2SO_4$ acts as nitration mixture.

323 **(d)**

The negative charge density on V-atom favours easy electron pair donation.

324 **(b)**

Due to acidic nature.

325 (d)

If a substance rotates the plane polarised light in clockwise direction it is dextrorotatory (+). If it rotates the plane polarised light in anticlockwise direction then it is laevorotatory (-)

326 (c)

$$C_6H_6 \xrightarrow{HCN+HCl} C_6H_5CH=NH \xrightarrow{HOH} C_6H_5CHO$$

327 **(b**)

EAN of Fe in K_4 Fe(CN)₆ = $26 - 2 + 2 \times 6 = 36$; the at. no. of next inert gas.

329 (h)

Both Ni (CO)₄ and Ni(PPh₃)₂Cl₂ have sp^3 -hybridisation

331 (d)

All are examples of strong ligand field, because all have greater value of Δ ; Δ represents the strength of ligand field.

332 (a)

Due to rearrangement because 2° carbon is more stable than 1° carbon.

333 (d)

Tris –(ethylenediamine) cobalt(III) bromide $([Co(en)_3]Br_3)$ exhibits optical isomerism.

334 (c)

Number of unpaired electrons=5

Magnetic moment =
$$\sqrt{n(n+2)} = \sqrt{s(s+2)}$$

= $\sqrt{35} = 5.91$ BM

335 **(b)**

EAN of $Cr = 24 - 3 + 6 \times 2 = 33$

336 (d)

Paramagnetic character \propto number of unpaired electrons.

₂₅Mn²⁺ ion has maximum unpaired (five unpaired electrons)

electrons. So, $[Mn(H_2O)_6]^{2+}$ is most paramagnetic.

337 (d)

Note: The reaction gives 2, 4, 6-trinitrophenol. Choice is not given. Only option left is *o*-nitrophenol, which is not formed in this course of reaction.

338 (d)

NH₂ in aniline is highly susceptible to oxidant and therefore nitration of aniline is carried out by protecting it against oxidation by acetyl chloride.

339 **(b)**

—COOH is *meta*-directing group.

340 (d)

[Co(NO₂)(NH₃)₅]Cl₂

Pentaammine nitrito -N- cobalt (III) chloride.

341 **(b)**

The ionisation isomer of

 $[Cr(H_2O)_4Cl(NO_2)]Cl$ is $[Cr(H_2O)_4Cl_2](NO_2)$ because of exchanging of ligand and counter ions.

342 **(c)**

All can be prepared from phenol.

343 (a)

Only iodobenzene gives Ulmann's reaction,

$$2C_6H_5I \xrightarrow{Cu} C_6H_5 - C_6H_5$$

344 (c)

Fischer projection can be manipulated by rotating a group of any three ligands in clockwise (D) or anticlockwise (L) direction, the fourth ligand does not change its position

345 **(b)**

A strong filed ligand produces low spin complexes.

347 **(a)**

Ni in $[Ni(H_2O)_6]^{2+}$ has two unpaired electrons in it.

348 **(b)**

Compounds in which a chiral centre is part of a ring are handed in a analogous fashion

351 (a)

$$C_6H_6 + CH_3Cl \xrightarrow{AlCl_3 \text{ anhy.}} C_6H_5CH_3$$

352 **(b)**

The formula of hexamine copper (II) sulphate is $[Cu(NH_3)_6]SO_4$. It dissolve in water as

$$[Cu(NH_3)_6]SO_4$$
 $=$ $[Cu(NH_3)_6]^{2+} + SO_4^{2-}$

354 **(b)**

Complex of type $[M(AA)_3]$ show optical isomerism.

355 **(b)**

Electronic configuration of Fe^{2+} in $K_4Fe(CN)_6$ is:

 $\times\times$ Electron pair donated by CN⁻.

356 (d)

$$CH_3 - CH_2 - C \equiv C - CH = CH_2$$

6 5 4 3 2 1
hex-1-en-3-yne

357 **(b)**

Oxidation state of Ni in K_2NiF_6 is +4; the highest among all.

359 **(d)**

Substituents always get higher number than the principal functional group while, numbering the longest possible chain

360 **(d)**

Draw different isomers.

362 **(b)**

Metal carbonyl organometallic compounds possess both σ -and π -characters.

363 **(b)**

 ${\rm F^-}$ is a weak field ligand and ${\rm [FeF_6]^{3-}}$ is an outer-orbital complex

 $[{\rm FeF_6}]^{3-}$ shows $sp^3\ d^2$ hybridisation and ${\rm Fe^{3+}}$ has five unpaired electrons.

In $[Fe(CNS)_6]^{3-}$, CNS^- is a strong field ligand and is inner orbital complex.

 $[Fe(CNS)_6]^{3-}$

 $[Fe(CNS)_6]^{3-}$ shows $d^2 sp^3$ hybridisation and has one unpaired electron.

Hence, the reaction.

$$[Fe(CNS)_6]^{3-} \rightarrow [FeF_6]^{3-}$$

takes place with increase in magnetic moment.

364 (a)

Presence of three $-NO_2$ gp. in chlorobenzene activates Cl atom to show S_N reactions.

365 (a)

Complex compounds or complex salts containing two different metallic elements give tests for only one element. For example, potassium hexacyanoferrate (II), $K_4[Fe(CN)_6]$ gives tests

only for K^+ ions and not for Fe^{2+} ions. $K_4[Fe(CN)_6] \rightleftharpoons 4K^+ + [Fe(CN)_6]^{4-}$

366 (a)

Only primary valencies are ionized.

$$\begin{split} &[\text{Co(NH}_3)_5\text{Br}]\text{SO}_4 \xrightarrow{\text{BaCl}_2} [\text{Co(NH}_3)_5\text{Br}]^{2+} + \text{BaSO}_4 \\ &[\text{Co(NH}_3)_5\text{SO}_4]\text{Br} \xrightarrow{\text{AgNO}_3} [\text{Co(NH}_3)_5\text{SO}_4] + \text{AgBr} \\ &0.01 \text{ mole of each by } 0.01 \text{ mole of reactants.} \end{split}$$

367 **(c)**

Wilkinson's catalyst, $(Ph_3P)_3RhCl$ $RH^+ = [Kr] 4d^8s^0$

ie, dsp2 hybridisation

Rh atom in Wilkinson's catalyst is dsp^2 hybridised giving a square planar shape to the molecule

368 **(d**)

H₂O is weak field ligand, thus Co²⁺ has only 3 unpaired electrons.

369 (a)

If an enantiomerically pure acid is treated with racemic mixture of an alcohol having a chiral carbon, the product formed will be optically active mixture

370 **(d)**

Cyclopropane is most strained since it has a maximum angle strain of $24^{\circ} - 44'$

371 **(c)**

this is Gattermann-Koch reaction to introduce -CHO gp. in C_6H_6 nucleus.

372 (a)

Mn in $Mn(CN)_6^{4-}$ has configuration:

373 (d)

It does not ionize to give Cl⁻ ions and thus, white ppt. of AgCl will not be obtained.

375 (c)

$$Pt(C_2H_4)Cl_3]$$

$$x + 0 + (-1) \times 3 = 0$$

$$x + (-3) = 0$$

$$x = +3$$

377 **(c)**

 Ni^{2+} has two unpaired (3 d^8) electrons. CN⁻ is strong field ligand and thus all the eight electrons are paired giving dsp^2 -hybridisation.

379 (d)

Coal-tar is source of all these.

380 **(c)**

Halogen attached to benzene nucleus is stabilized due to resonance.

382 **(a)**

 $-NO_2$ group is reduced to $-NH_2$ by Sn/HCl.

383 **(d)**

Each central atom attains the EAN equal to at. No. of next inert gas Kr, *i. e.*, 36.

384 (c)

A bidentate ligand has two donor sites available for coordination, *e*. g.,

COO ; $\ddot{\text{N}}\text{H}_2\text{CH}_2\text{CH}_2\ddot{\text{N}}\text{H}_2$

385 (d)

 $-N_2Cl$ is reduced to H by either of these reducing agents.

386 **(c)**

Fe is present in the form of complex ion, *i. e.*, $[Fe(CN)_6]^{3-}$ which is not ionized to Fe^{3+} and CN^- .

387 **(a)**

 $[\text{Co}(\text{NH}_3)_5\text{SO}_4]\text{Br} \rightleftharpoons [\text{Co}(\text{NH}_3)_5\text{SO}_4]^+ + \text{Br}^ [\text{Co}(\text{NH}_3)_5\text{Br}]\text{SO}_4 \rightleftharpoons [\text{Co}(\text{NH}_3)_5\text{Br}]^{2+} + \text{SO}_4^{2-}$ The molecular formula of both of the above compounds is same but on ionisation they give different ions in solution, so they are called ionization isomers.

390 **(c)**

Phenols are weak acids and do not react with $NaHCO_3$ (a weak base).

391 **(b**)

 $C_6H_5CH = CHCOOH$ is cinnamic acid; it has unsaturation.

392 (a)

Magnetic moment of $K_3[Fe(CN)_6]=1.7$ BM

Magnetic moment= $\sqrt{n(n+2)}$

n =number of unpaired electrons present in molecule

$$1.7 = \sqrt{n(n+2)}$$
$$-n^2 + 2n - 2.89 = 0 \text{ then } n = 0.97 \text{ or } 1$$

393 **(c)**CH₂—CH—CH₂—CH₂

CH₂

CH₂—CH—CH₂

CH₂

This compound contains 9 carbon atoms and corresponding alkane is nonane. Three bridges

contain 5, 2 and 0 carbon atoms. Therefore, the name of the compound is bicyclo [5.2.0] nonane

395 (c)

The compound have structure as written below

bicyclo [3.2.1] octane

396 (d)

It is m-directing gp.

397 (a)

Carbylamines reaction.

400 **(d)**

401 (a)

The stability order of conformations of cyclohexane is

Chair > twist boat > boat > half chair

402 **(b)**

Phenolic group is susceptible for oxidation and thus, to obtain *o*- and *p*-nitrophenol dil. HNO₃ is used in place of conc. $HNO_3 + H_2SO_4$.

403 (c)

Lower is mol. Wt. lower is b.p., also 1, 2-dihydroxy benzene show chelation and thus have lower b.p. than 1,3 and 1,4-derivatives.

Phenol 1,2-dihydroxyb 1,3-dihyroxyb 1,4-dihydroxyb

> enzene enzene

enzene

m.p. 43°C $< 105^{\circ}$ <110°C <170°C

b. p. <

< 405 **(b)**

$$K_2[PtCl_6] \rightleftharpoons 2K^+ + [PtCl_6]^-$$

407 **(b)**

Phenols are weakly acidic due to resonance.

408 **(b)**

Follow IUPAC rules.

409 (a)

Compounds having coordination number six and following the general formula show geometrical and optical isomerism.

 $M_{A_4B_2}$, M_{A_4BC} , $M_{A_3B_3}$ and $M_{(AA)_2B_2}$ show geometrical isomerism and

 $M_{A_2X_2Y_2}$, $M_{A_2X_2YZ}$, M_{A_2XYZL}

 M_{ABXYZL} , $M_{(AA)_3}$, $M_{(AA)_2}X_2$ show optical isomerism. (AA) is bidentate ligand.

410 **(b)**

[Co(NH₃)₄Cl₂]Cl, Its IUPAC name is tetraammine dichloro cobalt III chloride.

411 (c)

The ease of hydrolysis depends upon the magnitude of the +ve charge on the carbonyl

412 **(d)**

All are the common uses of nitrobenzene.

413 **(b)**

$$K_4[Ni(CN)_4] \rightarrow 4K^+ + [Ni(CN)_4]^{4-}$$

 $x+(4\times -1)=-4$
 $x-4=-4$
 $x=0$

414 (a)

Presence of —OH gp. in C₆H₆ nucleus increases acidic nature.

416 **(b)**

Halogen attached on side chain behaves as in aliphatic molecule.

417 (d)

Cyclohexane is an aliphatic cyclic compound.

418 (c)

In $[Cu(NH_3)_4]^{2+}$, Cu is present as Cu^{2+} 12.

$$Cu^{2+} = [Ar]3d^94s^0$$

$$[Cu(NH_3)_4]^{2+} = [Ar]$$

(NH₃ being a strong field ligand shifts one electron from 3*d*-orbital to 4*p*-orbital.)

In $[Ni(CO)_4]$, CO is a neutral ligand 13.

In $[Fe(CN)_6]^{3-}$, Fe is present as Fe^{3+} . 14.

$$Fe^{3+} = [Ar]3d^54s^0$$

$$[Fe(CN)_6]^{3-} = [Ar]$$

Thus, its hybridization is d^2sp^3 not sp^3d^2 , i.e., it is

an inner orbital complex.

- 15. $[Co(en)_3]^{3+}$ contains total 36 electrons, *i. e.* follows EAN rule.
- 420 (c)

Optical isomerism is very common in octahedral complexes having general formula

$$[M_{A_2B_2C_2}]^{n-}$$
, $[M_{ABCDE}]^{n-}$, $[M_{(AA)_3}]^{n-}$, $[M_{(AA)_3B_2}]^{n-}$ $[M_{(AA)_3B_C}]^{n-}$ and $[M_{(AB)_3}]^{n-}$

COO

where AA is symmetrical bidentate ligand like | and AB

is unsymmetrical bidentate ligand.

421 **(c)**

$$[Co(NH_3)_5NO_2]Cl_2 \rightleftharpoons [Co(NH_3)_5NO_2]^{2+} + 2Cl^-$$

 $2Cl^- + Ag^+(excess) \rightarrow 2AgCl \downarrow$

422 **(a)**

C₆H₅C is benzo gp.

423 **(c)**

It is the reason for given fact.

424 **(b)**

 d^6 -cation with low spin has electronic configuration $t_{2g}^6 e_g^0$.

Total energy= $(-0.4 \Delta_0 \text{ per } e^- \times 6) + (e^- \text{ pairing energy of 3 pairs})$

$$= -2.4 \Delta_0 + 3P$$

= $-\frac{12}{5}\Delta_0 + 3P$

426 **(c)**

It is DDT, i.e., p, p' -dichloro diphenyl trichloroethane.

428 **(b)**

 $[Cr(NO_2)(NH_3)_5]$ Cl show linkage isomerism.

$$NO_2^-$$
 can link $^-O-N=O$ or ^-N

429 (d)

Cl, being a weak field ligand, does not cause pairing of *d*-electrons of the metal atom and thus, forms outer orbital complex as.

In $[Fe(Cl)_6]^{3-}$, Fe is present as Fe^{3+} $Fe^{3+} = [Ar]3d^5 4s^0 4p^0$

- 430 **(d)** $_{\rm p}K_{\rm a}$ for (a), (b), (c) and (d) are 4.17, 4.09, 3.49 and 3.43 respectively.
- 431 **(a)**

 $[H_2EDTA]^{2-} + Mg^{2+} \rightarrow [MgEDTA]^{2+} + 2H^+$

- 16. In this complex, four donor sites are occupied by oxygen and two donor sites are occupied by nitrogen.
- 17. This complex is six coordinated.
- 18. Complex [MgEDTA]²⁻ is colourless.
- 19. Increase in [H⁺]decreases pH of the solution.
- 433 (c)

Different compounds having the same molecular formula but different properties are called isomers

434 **(c)**

In the compound

Numbering will be done from this end because both are side chains and – OCH_3 is smaller than – OC_2H_5

3-ethoxy-1-methoxy-propane

435 **(a)**

Each carbon in benzene is sp^2 -hybridized.

436 **(b)**

So, gauche form stabilized by intermolecular hydrogen bonding hence, gauche is more stable than anti

437 (a)

 $AgCN + KCN \rightarrow K[Ag(CN)_2].$

438 **(b)**

Carbocyclic compounds which resemble aliphatic compounds in their properties are called alicylic compounds

439 **(a)**

—NO₂ gp. is deactivating gp.

440 **(b)**

The molecule contains three chlorine atoms out of which only two are ionized.

441 **(b)**

[Co(en)₂Cl₂]⁺ have three optical isomers which are given below.

Co Co

d-cis form

l-cis form

trans-meso form

442 **(c)**

The reaction carried out in alkaline pH, ie, 9 - 11

444 (d)

 ${
m NO_2}$ gp. withdraws electrons from o –and p-position and thus, deactivates the ring. This deactivation stabilises the negatively charged intermediates formed during reaction and thus, replacement of—Cl becomes easier.

446 (a)

 $Ti(C_2H_5)_4$ is an organometallic compound because there is direct bonding of metal ion with carbon.

447 **(a**)

Octahedral $Co(NH_3)_4Br_2Cl$ shows ionisation and geometrical isomerism.

In ionisation isomerism ligands show different coordination sphere and the anions present outside the coordination sphere.

These are exchanged with each other as follows $Co(NH_3)_4Br_2Cl \rightleftharpoons [Co(NH_3)_4Br_2]^+ + Cl^-$ I

$$[Co(NH3)4BrCl]Br \rightleftharpoons [Co(NH3)4BrCl]+ + Br-$$
II

In geometrical isomerism, coordination number of central atom (cobalt) is six and shape is octahedral, so it shows following geometrical isomers.

448 (a)

Aliphatic amines are stronger base than aromatic amines.

449 **(b)**

Follow Hückel rule.

450 (d)

 \rightleftarrows sign represents oscillating structures (Kekule) for C_6H_6 ;

451 **(b)**

 $C_6H_5CHCl_2 \xrightarrow{HOH} C_6H_5CHO.$

453 **(c)**

Cr has coordination no. 6 in its carbonyl and other complexes.

454 (d)

Neutral $FeCl_3$ (aq.) gives violet coloured complex with phenol.

455 (a)

 $[CoF_6]^{3-}$ is an outer complex having sp^3d^2 -hybridization.

456 **(d)**

$$[Sc(CN)_6]^{3-}$$

 $Sc=21=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^1$

It has no unpaired electron hence, diamagnetic. $[Co(CN)_6]^{3-}$

(Pairing due to CN⁻)

$$[Cr(CN)_{6}]^{3-}$$

$$Cr^{3+}$$
 $3d$ $4s$ $4p$

(due to CN⁻)

It has one unpaired electron so, paramagnetic.

458 (a)

$$[Fe(CN)_6]^{4-} \rightarrow Fe^{2+} \rightarrow$$

(Strong field)

$$1s^2, 2s^22p^6, 3s^23p^63d^6$$

CN is strong field ligand, it cause pairing while $C_2O_4^{2-}$ and F^- are weak field ligands and don't causes pairing.

Hence, $[Fe(CN)_6]^{4-}$ due to the absence of unpaired electrons is diamagnetic.

459 (c)

$$_{28}{\rm Ni}^{2+}$$
 in $[{\rm Ni}({\rm NH_3})_6]^{2+}$ has $1s^2,2s^22p^6,3s^23p^63d^8$ configuration. It uses 4th orbital to show sp^3d^2 hybridisation to form outer complex with 2 unpaired electrons in $3d$ -orbital.

460 **(c)**

Moth repellent due to insecticide nature.

461 **(c)**

The number of unidentate ligand in the complex ion is called coordination number.

462 **(b)**

7double bonds and thus, 14 π - electrons.

463 **(b)**

In ethane and cyclohexane, staggered and chair forms are more stable respectively

Staggered from of ethane Chair from of cyclohexane

464 (d)

 $(CH_3)_4$ Sn has no π -bond.

465 (a)

Halogens however o- and p-directing group but deactivate ring for S_E reactions due to electron withdrawing nature.

466 **(b)**

It is the reason for the fact.

467 (a)

 $-NO_2$ gp. is deactivating gp.

470 **(c)**

The side reaction produces diphenyl ether. The yield may be increased by adding little diphenyl ether with $C_6H_5Cl+NaOH$.

471 (c)

Atoms or groups donating electron pair to metal are ligands.

472 (d)

Aniline is insoluble in water.

473 (d)

 CrO_2Cl_2 has + 6 oxidation state of Cr.

475 **(b)**

It is a method to estimate hardness of water.

476 (a)

Both are non-polar; like gets dissolved in like.

477 **(b)**

$$\begin{array}{c|cccc} \mathsf{CH}_3 & \mathsf{CH}_3 \\ & & & \\ \mathsf{CH}_3 - \mathsf{C} - \mathsf{CH}_2 - \mathsf{C} - \mathsf{CH}_3 \\ 1 & 2 & 3 & 4 & 5 \\ \mathsf{CH}_3 & \mathsf{CH}_3 & \mathsf{CH}_3 \end{array}$$

There are two carbon atoms, *ie*, C-2 and C-4 are tertiary C-atoms

478 **(b)**

Rosenmund's reaction.

479 (c)

$$\mathsf{C_6H_5CHO} \xrightarrow{\mathsf{Zn-Hg/HCl}} \mathsf{C_6H_5CH_3}$$

480 **(c)**

 F^- has lowest Δ_o value depending upon the splitting power of d-orbitals

481 **(b)**

Complex $[Co(en)_3]^{3+}$ has no plane of symmetry and centre of symmetry that's why it is optically active.

482 (a)

It is preparation of DDT.

483 (a)

Light oil mainly contains C_6H_6 , C_7H_8 , C_8H_{10} , etc.

484 (c)

Coordination number is the number of ligand σ -bonded to metal-atom. Hence, coordination number of X in $[X(SO_4)(NH_3)_5]Cl$ is 6. Let oxidation state of X in the complex be 'y' then

$$y+(-2)+5(0)+(-1)=0$$

$$y-2-1=0$$

$$y=+3$$

485 **(a)**

$$C_6H_5CH_3 \xrightarrow{Cl_2} C_6H_5CH_2Cl$$

In presence of light substitution occurs is side chain.

486 (a)

 $[\text{CoCl}_3(\text{NH}_3)_3]$ cannot ionize in solution because three chloride ions satisfy primary and secondary valencies. It will not be precipitated by the addition of AgNO3.

487 (d)

For $[Ni(CN)_4]^{2-}$, oxidation state of Ni is +2. CN = strong field ligand

$$Ni^{2+}(\text{ground state}) = 3d^{8} \qquad 4s^{4}$$

$$1 \mid 1 \mid 1 \mid 1 \mid 1 \mid 1$$

$$In [Ni(CN)_4]^{2-}$$

$$Ni^{2+} =$$

 dsp^2 hybridisation, *i.e.*, square planar geometry, zero unpaired electron, *i.e.*, zero magnetic moment

For $[MnBr_4]^{2-}$, oxidation state of Mn is +2. Br⁻= weak field ligand

Mn²⁺ (in ground state)

In $[MnBr_4]^{2-}$, $Mn^{2+} =$

sp³ hybrisation, i.e., tetrahedral geometry, five unpaired electrons, i.e., magnetic moment=5.9
 Co³+ in ground state=

For $[CoF_6]^{3-}$, oxidation state of Co is +3. F⁻=weak field ligand In $[CoF_6]^{3-}$

 $sp^3 \ d^2$ hybridisation *i.e.*, octahedral geometry four unpaired electrons *i.e.*, magnetic moment is 4.91 BM.

489 **(b)**

An experimental value.

491 (c)

A commonly used food preservative.

492 (a) $C_6H_5ONa + C_2H_5I \rightarrow C_6H_5OC_2H_5 + NaI$ Phenetole

493 (d)

Metal carbonyl are regarded as the coordination compounds formed by the donation of lone pair of electron of CO into the suitable empty orbital of zero valent transition metals such as Ni, Fe etc.

Therefore, the M— C bond is coordinate covalent.

494 (d)

When the three ligands (with same donor atoms) are on the same triangular face of the octahedron, the isomer is called *facial* or *fac* isomer.

The octahedral complex is *facial* or *fac* isomer.

In this complex, the three ligands are on the same triangular face of the octahedron.

495 (a)

Number of unpaired electrons in $[Fe(CN)_6]^{4-}$ is zero.

Thus, magnetic moment

$$=\sqrt{n(n+2)}=0$$
 BM ($n=$ unpaired electrons)

 $n \text{ in } [\text{MnCl}_4]^{2-} = 5, \sqrt{35} \text{ BM}$ $n \text{ in } [\text{CoCl}_4]^{2-} = 3, \sqrt{15} \text{ BM}$

496 (a)

Orange-red dye is formed with aniline.

499 (a)

It is a fact. Follow ortho effect.

500 (d)

Half chair is transition state conformation between the chair and boat conformation. The energy difference between the chair and half chair conformation being 44 kJ mol⁻¹. Hence it is most unstable

501 (a)

The M—C π -bond in metal carbonyl which is formed by the donation of an electron pair from a filled d-orbital of metal into the vacant antibonding π -orbital of CO, strengthens the M—C σ — bond. This is called synergic effect and is usually observed in metal carbonyls. Thus $[Ni(CO)_4]$ exhibits synergic effect.

503 **(b)**

$$Pt \xrightarrow{Aqua \text{ regia}} H_2[PtCl_6] \xrightarrow{\Delta} PtCl_4 + 2HCl$$

504 (d)

Follow IUPAC rules.

505 **(b)**

The structure of the compound is

1,7,7-trimethyl bicyclo [2.2.1] heptan-2-one

506 **(d)**

-CH₃ gp. is *ortho* and *para* directing.

507 (a)

Estimation of calcium and magnesium is done by EDTA

508 (d)

Due to the presence of chiral centre it shows the optical activity and its mirror image are non superimposable hence it shows one enantiomer pair

509 **(b)**

 C_6H_6 and other aromatic compounds show characteristics S_E reactions.

510 (d)

$$CH_2 = CH - CH = CH - CH = CH - CH_3$$

1 2 3 4 5 6 7
Hepta-1,3,5-triene

511 **(b)**

$$\begin{array}{cccc} \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{CH_2} - \mathbf{CH} - \mathbf{CH_2} \\ & & | & | \\ \mathbf{CHO} & \mathbf{CHO} & \mathbf{CHO} \end{array}$$

Propane-1, 2, 3-tricarbaldehyde

512 (a)

The attacking species in sulphonation is SO_3 . $H_2SO_4 \longrightarrow H_3O^+ + SO_3 + HSO_4^-$

513 **(d)**

CHCl₃ has no reaction with Br₂.

514 **(c)**

[NiCl₄]^{2−}; oxidation number of Ni,

$$x$$
-4=-2
 $\therefore x$ =+2

$$Ni_{(28)} = [Ar]3d^8, 4s^2$$

 $Ni^{2+}[Ar]$

sp^3 -hydrid orbitals, tetrahedral

Cl⁻ is a weak ligand and thus unpaired electrons are not paired. Lone pairs from 4Cl⁻ are accommodated in four sp^3 hybrid orbitals. N=unpaired electron=2, paramagnetic Magnetic moment (spin only)

$$= \sqrt{N(N+2)} BM = \sqrt{8} =$$

2.828 BM

515 **(b)**

Pyridine shows S_E reactions at position-3 preferentially and at 2,4-positions under specific conditions.

516 (a)

$$K[Ag(CN)_2] \rightleftharpoons K^+ + [Ag(CN)_2]^{1-}$$

517 (a)

Its coordination number will be 6 because it is bonded with three bidentate ligands

$$x + 3(-2) + 3(+1) = 0 \Rightarrow x = +3$$

518 (c)

The four ions on ionisation are possible only when three Cl⁻ are outside the coordination sphere.

$$[Pt(NH3)5Cl]Cl3 \rightleftharpoons [Pt(NH3)5Cl]3+ + 3Cl-$$

519 **(a)**

In presence of $\rm H_2O$ which is a weak ligand no pairing occurs which results in unpaired electrons left in the compound, due to which it shows paramagnetism

$$\begin{array}{c|c}
3d & 4s \\
Mn^{2+} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \end{array}$$

520 (a)

This is a fact.

521 **(b)**

It is outer complex having $sp^3d^2[\mathsf{CoF}_6]^{3-}$ ion.

Electronic configuration of Co^{3+} in $[CoF_6]^{3-}$ is:

×× Electron pair donated by F⁻

523 **(d)**

The two given compound have same composition but in solution both will give different ions. The isomerism is known as ionisation isomerism

524 (a)

Coordination number is the maximum covalency shown by a metal or metal ion. It is the maximum number of ligands attached to metal by sigma bonds or coordinate bonds.

525 (a)

 $C_6H_5COOH + N_3H \rightarrow C_6H_5NH_2 + CO_2 + N_2$; this is Schmidt's reaction.

526 (d)

Each possess the tendency to have coordination number equal to six.

527 **(d)**

Hexadentate ligand donates six pair of electrons to central atom.

(a) 2, 2-dipyridyl-bidentate ligand

(b) DMG-bidentate ligand

OH

$$CH_3 - C = N - O \rightarrow$$

$$CH_3 - C = N \rightarrow$$

(c) Ethylenediamine-pentadentate ligand

: None of the given ligand is hexadentate ligand.

528 (d)

$$HNO_3$$
 + H_2SO_4 $\rightarrow NO_2^+ + H_3O^+ + HSO_4^-$

529 (d)

20. d^5 in strong field

n = unpaired electron = 1

Magnetic moment= $\sqrt{n(n+2)BM}$

$$=\sqrt{3} \text{ BM} = 1.73 \text{ BM}$$

21. d^3 in strong/weak field

n = 3

Magnetic moment= $\sqrt{15}$ = 3.87 BM

22. d^4 in weak field

Magnetic moment= $\sqrt{24}$ =4.90 BM

23. d^4 in strong field

n = 2

Magnetic moment= $\sqrt{8}$ =2.83 BM

531 (a)

 $[{\rm Ni(CN)_4}]^{2-}$ ion has dsp^2 hybridisation, zero magnetic moment and square planar structure.

It has no unpaired electrons hence, its magnetic moment is zero.

534 **(a)**

 $_{21}$ Sc=[Ar] $3d^{1}4s^{2}$

 $Sc^{3+} = [Ar]3d^04s^0$ no unpaired electrons in *d*-subshell, so it is diamagnetic and colourless.

536 **(d)**

In $[Co(NH_3)_6]^{3+}$ the oxidation state of Co is +3.

 $[Co(NH_3)_6]^{3+}$ does not contain unpaired electron hence, its magnetic moment is zero.

537 (a)

Presence of o-, p-directing groups in benzene nucleus activates ring for S_E reaction. Presence of m-directing deactivates ring for S_E reaction. Also halogens deactivating gp. Due to -IE inspite of o- and p-directing nature. The presence of m-directing groups in benzene nucleous simply decreases electron density at o- and p-, whereas no change in electron density at m-position is noticed.

On the contrary o-and p-directing groups in nucleus increases the electron density at o- and p-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions

539 **(b)**

> CH₃CH0 >

The percentage of enolic contents of some common compounds in decreasing order will be

 $C_6H_5COCH_2COCH_3 > CH_3COCH_2COCH_3$ > $CH_3COCH_2COOC_2H_5 > CH_3COCH_2CHO$ > CH_3COCH_3

540 **(c)**

Mn forms $Mn_2(CO)_{10}$ carbonyl.

541 **(c)**

Picric acid has phenolic gp.

542 (d)

- (i) The sum of oxidation states of all atoms in a compound is zero.
- (ii) Oxidation state of metal in carbonyl is zero.
- (a) K_4 Fe(CN)₆

Let, oxidation state of Fe in K_4 Fe(CN)₆= x

$$\div +4+x+(-1\times 6)=0$$

$$\therefore$$
 $x=+2$

(b) $K_2 FeO_4$

Let, oxidation state of Fe in K_2 FeO₄= x

$$\therefore +1\times 2+x+(-2\times 4)=0$$

$$\therefore$$
 $x=+6$

(c) $Fe_2 20_3$

Let, oxidation state of Fe in $Fe_2O_3 = x$

$$\therefore \qquad 2x + (-2 \times 3) = 0$$

or

$$2x = 6$$

::

 $x = \frac{6}{2} = +3$

(d) $Fe(CO)_5$

Oxidation state of Fe in $Fe(CO)_5 = 0$

∴ Oxidation state of Fe is least in Fe(CO)₅.

543 (a)

The name of $[Pt(NH_3)_4Cl_2]^{2+}$, $[PtCl_4]^{2-}$ is tetraamminedichloroplatinum (IV) tetrachloroplatinate (II). Since, positive ion is written first and negative ion later.

544 (b)

Resorcinol is *meta* hydroxyphenol.

545 (d)

The compounds of nickel are green coloured due to d-d transition in presence of ligand in Ni²⁺ cations.

546 (c)

$$C_6H_5CH_3 \xrightarrow{Cl_2} C_6H_5CCl_3 \xrightarrow{HOH} C_6H_5COOH$$

547 (d)

Geometrical isomerism is found in compounds having coordination no. 4 (square planar and not tetrahedral shape) as well as coordination no. 6.

Coordination no. 4 (square planar)

 M_{A_2BC} , $M_{A_2B_2}$

Showing geometrical isomerism

 M_{ABCD}

Coordination no. 6 (octahedral)

 $M_{A_4B_2}$, M_{A_4BC}

Showing geometrical isomerism.

 $M_{A_3B_3}$, $M_{(AA)_2B_2}$

548 (c)

Follow text.

549 **(a)**

Presence of electron repelling gp. decreases the acidic strength.

 C_6H_5COOH p-methyl benzoic p-chlorophenol phenol

acid

$$Ka~6.76 \times 10^{-5}$$
 1.26×10^{-5} 4.16×10^{10} 1.05×10^{-10}

551 **(b)**

It becomes brown (due to oxidation) on standing in air.

552 **(b)**

It is characteristics of aromatic compounds.

553 (d)

The colour of the complex $COCl_3 \cdot 5NH_3 \cdot H_2O$ is pink.

554 **(b)**

$$2 + 4 \times (-1) = x$$
, $\therefore x = -2$

555 (a)

Halide ligands have low values of Δ .

556 **(d)**

Electronic configuration of Co^{3+} in $[CoF_6]^{3-}$ is:

×× Electron pair donated by F⁻

558 (d)

Let the oxidation state of Fe in $[Fe(H_2O)_5NO]SO_4$ is x.

 $[Fe(H_2O)_5NO]^{2+}$

$$\Rightarrow x+0+1=2$$

$$x=+1$$

Here, NO exists as nitrosyl ion (NO⁺).

559 (c)

$$EAN=Z-(ON)+2$$
 (C.N.)

where, O.N.=oxidation number

C.N.=coordination number

Z= atomic number

$$[Fe(CN)_6]^{4-}$$
:
 $EAN=26-(2)+2(6)$
 $=26-2+12=36$

561 (a)

In the complex $K_3[FeF_6]$, Fe is present in +3 oxidation state.

$$_{26}$$
Fe=[Ar] $3d^{6}4s^{2}$
Fe³⁺ = [Ar] $3d^{5}$

Hence, number of unpaired electrons is five as F is weak ligand.

Magnetic moment=
$$\sqrt{n(n+2)}$$

= $\sqrt{5(5+2)}$
=5.91 BM

563 **(c)**

No doubt C—D bond cleavage is slower than C—H bond due to isotopic effect but rate of overall substitution is determined by the slow attachment of electrophile to carbocation (Morrison-Boyd 15.14P-532).

564 (a)

Due to synergic bond formation, bond order decreases and bond length increases a little.

566 (c)

It is a bicyclic compound having two common carbon atoms and three bridges. So, the IUPAC name is

5, 6-dimethyl bicyclo [2.2.1] hept-2-ene

567 (c)
Fe³⁺ + [Fe(CN)₆]⁴⁻
$$\rightarrow$$
 Fe₄[Fe(CN)₆]₃

568 (a)

The effective magnetic moment of a paramagnetic substance is given by the relation

$$\mu = \sqrt{n(n+2)}$$
 BM.

where, n=number of unpaired electrons. In [FeF₆]³⁻, Fe³⁺ has five unpaired electrons.

$$\mu \text{ of } [\text{FeF}_6]^{3-} = \sqrt{n(n+2)}$$

$$= \sqrt{5(5+2)}$$

$$= \sqrt{35} = 5.92 \text{ BM}.$$

569 (c)

 $[PtCl_2.P(C_2H_5)_3]_2$ can exhibit geometrical isomerism, the geometrical isomers are

trans isomer

570 (c)

The minimum possible isomers of compound will be

571 **(b)**

 $C_2O_4^{2-}$ is a bidentate group. As the complex contains three bidentate groups, the central metal ion has a coordination number of 6.

572 **(d)**

 $[Co(en)_3]^{3+}$ has d and l forms as

573 **(b)**

Ru forms two carbonyls with zero oxidation number. Mononuclear $Ru(CO)_5$ and trinuclear $Ru_3(CO)_{12}$.

574 (c)

Oxidation state of nitrogen in $(N_2H_5)_2SO_4$ is 4x + 10 - 2 = 0 x = -2

575 (d)

Linkage isomerism is exhibited by ambidentate ligands (ligands having two coordination sites). e.g., NO_2^- .

If the bonding is through N, the ligand is named as nitro and if it is through O, it is named as nitrito.

$$NO_2^- \rightarrow nitro - N$$

 $ONO^- \rightarrow nitrito - O$

Due to resonance of electron pair in aniline, nitroaniline and acetanilide, these are weaker than $C_6H_5CH_2$ which does not involve lone pair of N in resonance. The basic order is: Benzyl amine >Aniline > Acetanilide > Nitroaniline.

578 **(b)**

Effective atomic no. (EAN) = at. No. of central atom –oxidation state $+2 \times$ (no. of ligands)= $28 - 0 + 2 \times 4 = 36$ EAN = $78 - 4 + 2 \times 6 = 86$.

579 **(b)**

$$[Cu(NH_3)_4]SO_3 \rightleftharpoons [Cu(NH_3)_4]^{2+} + SO_4^{2-}$$

580 **(b)**

Ammonia is not an ambident legand so it can donate electron only by N-atom

582 **(b)**

 12σ and 3π .

583 **(c)**

−OH gp. is activating whereas Cl— is deactivating.−CH₃ gp. is less activating than OH.

584 (d)

The compound $\overset{.}{H}$ $\overset{.}{B}$ r is symmetrical with respect to centre of the molecule

585 **(b)**

Two cis and trans forms.

586 (c)

p-nitrophenol is more stronger acid than phenol.

587 **(b)**

$$C_6H_5CH_3 \xrightarrow{[O]} C_6H_5COOH \xrightarrow{NaOH} C_6H_5COONa$$

$$\xrightarrow{CaO+NaOH} C_6H_6$$

588 (d)

Staggered conformation is most stable due to its minimum energy

589 (a)

$$[Co(NH_3)_5Br]SO_4 \rightleftharpoons [Co(NH_3)_5Br]^{2+} + SO_4^{2-}$$

 $Pb^{2+} + SO_4^{2-} \longrightarrow PbSO_4 \downarrow$
White insoluble

590 (c)

Fe²⁺, Co⁵⁺, Ti³⁺, and V³⁺ have 4, 4, 1, 2 unpaired electron respectively. The pairing leads Fe²⁺ with no unpaired electron.

591 **(b)**

Os (Z=76) : [Xe] $4f^{14}$, $5d^6$, $6s^2$ Hence, the coordination number in an osmium complex may increase to 8.

592 (c)

Phenol has antiseptic property.

593 **(c)**

$$C_6H_5CH = CHCOOH \xrightarrow{NaOH+CaO} C_6H_5CH = CH_2$$
(Styrene)

594 (d)

$$[Co(en)_3Cl_3 ie, [Co(en)_3]^{3+}$$

cis[Co(en)₂Cl₂]Cl ie, cis [Co(en)₂Cl₂]

IVIU

595 **(b)**

The compound in which ligands form ring with the metal are called chelate complex.

597 **(c)**

Benzaldehyde undergoes Cannizzaro's reaction.

600 **(c)**

Coordination isomerism is possible when both positive and negative ions of a salt are complex ions and the two isomers differ in distribution of ligands in the cation and the anion

601 (a)

This is bromination of acetanilide, a S_E reaction.

602 **(b)**

The primary valency is ionizable valency. It corresponds to oxidation state of metal. The primary valency is always satisfied by anion.

$$[\operatorname{Co}(\operatorname{NH}_3)_6]\operatorname{Cl}_3 \longrightarrow [\operatorname{Co}(\operatorname{NH}_3)_6] + 3\operatorname{Cl}^{-}$$
(A)

 \therefore Number of primary valency is 3

$$[Co(NH_3)_5Cl]Cl2 \rightarrow [Co(NH_3)_5Cl] +$$

2Cl-

(B)

∴ Number of primary valency is 2 $[Co(NH_3)_4Cl_2]Cl \rightarrow [Co(NH_3)_4] + Cl^-$

: Number of primary valency is 1.

603 **(d)**

The carbon atom which is attached to three carbon atoms is called tertiary carbon atom. C_6H_{14} has two tertiary carbons hence, its structure is as

2,3-dimethyl butane

604 **(b)**

The ligand NO_2 has two types of linkage with central atom. In NO₂, it is the N-atom which is donor and in 0-NO it is the O atom which donates electron pair.

605 **(d)**

Tetraethyl lead is organometallic compound.

606 **(d)**

 $C_6H_5OH + PCl_5 \rightarrow (C_6H_5)_3PO_4$ is main product.

609 (c)

Directive influence order $-OH > -OCH_3 > -CH_3 > -NHCOCH_3 > CH_2OH$ of o-, p- gps. This is due to effect of +Rdirecting influence of gp.

610 **(d)**

 $[PtCl_4]^{2-}$ shows dsp^2 hybridization because internal d-orbitals participate in its hybridization.

611 **(b)**

Dynamite, TNT, TNB, trinitroglycerine are explosive.

612 **(b)**

In Hg[Co(SCN)₄], Co is present as Co²⁺. The configuration of Co²⁺ is given as following $[Ar]3d^7 4s^0$

unpaired electrons (n)

 \therefore Magnetic moment $(\mu) = \sqrt{n(n+2)}$ $\sqrt{3(3+2)} = \sqrt{15} \text{ BM}$

614 **(c)**

In metal carbonyls CO has ox. no. equal to zero.

615 **(a)**

 $[NiCl_4]^{2-}$ has tetrahedral shape. In this complex, Ni is in the +2 oxidation state and Ni²⁺ ion always forms tetrahedral complexes

It is a differentiating point in between complex and double salt.

617 (d)

All possess lesser number of unpaired electrons.

618 (c)

Structures $K_4[Fe(CN)_6]$, $K_3[Co(CN)_6]$, $K_2[Ni(CN)_4]$ are diamagnetic.

619 **(c)**

Wilkinson's catalyst is used for hydrogenation of alkenes

620 (c)

Due to ortho effect; ortho benzoic acid is most acidic because its anion is highly stabilized due to strong intramolecular H-bonding.

 $6.9 \times$ 10^{-8}

623 (a)

C₆H₅COOH is acid; phenol also as acid.

624 **(c)**

Cis-isomer of [Pt(NH₃)₂Cl₂] is used as anticancer

626 **(b)**

 $[Co(en)_2Cl_2]^+$ shows geometrical as well as optical isomerism

628 (c)

Lab method for preparation of benzaldehyde.

629 (a)

The ligand at least consist one donor atom having a lone pair of electrons which it can donate to metal atom or ion

630 **(c)**

Aniline is steam volatile.

631 (a)

CFSE (crystal field splitting energy) for octahedral complex, Δ_0 depends on the strength of negative ligand. Spectrochemically it has been found that the strength of splitting is as follows

$$\begin{array}{l} {\rm CO} > \underline{{\rm CN}^{-}} > N{\rm O}_{2}^{-} > en > \underline{{\rm NH}_{3}} > py > \\ {\rm NCS}^{-} > {\rm H}_{2}{\rm O} > {\rm O}^{2-} > O{\rm X}^{2-} > O{\rm H}^{-} > {\rm F}^{-} > \\ {\rm Cl}^{-} > SC{\rm N}^{-} > {\rm S}^{2-} > B{\rm r}^{-} > {\rm I}^{-} \end{array}$$

Therefore, magnitude of Δ_0 will be highest in case of $[Co(CN)_6]^{3-}$.

632 **(b)**

 $K_2[PtCl_6]$

Potassium hexachloroplatinate (IV).

633 **(c)**

The complex formed by the reaction of NiSO₄, pyridine and NaNO₂ gives [Ni(py)₄](NO₂)₂ a

blue-coloured salt.

634 **(b)**

$$\mathsf{C_6H_5CHO} \xrightarrow{\mathsf{KOH}(aq.)} \mathsf{C_6H_5COOH} + \mathsf{C_6H_5CH_2OH}$$

635 **(a)**

Only m-cresols give tribromo derivatives on treatment with Br₂ water.

636 **(a)**

 $[E(en)_2C_2O_4]NO_2$

- \therefore Coordination number of E = 6
- ∴ Oxidation number of $E = 3[E^{3+} + 0 + (-2) + (-1) = 0]$

637 **(c)**

$$C_6H_5CHO \xrightarrow{PCl_5} C_6H_5CHCl_2$$

638

	Complex	Isomerism shown
(a)	$[Co(en)]^{3+}$	Optical only
(b)	$[Ni(NH_3)_5Br]^+$	No geometrical
		isomer
(c)	$[Co(NH_3)_2(en)_2]^3$	
(d)	$[Cr(NH_3)_4(en)]^{3+}$	No geometrical
		isomer

(c)

639 **(c)**

Presence of $-NO_2$ at p-position increases acidic character.

640 **(b)**

Alkanes are saturated hydrocarbons without any functional group, hence can show chain isomerism only

641 **(d)**

Both have different molecular formulae.

642 **(b)**

Ni in $[Ni(CO)_4]$: $3s^2$, $3p^6$, $3d^8$, $4s^2$

Ni in $[Ni(CN)_4]^{2-}$

$$3s^2$$
, $3p^6$, $3d^8$, $4s^2$

643 (a)

The product (K) is formed through simple nucleophilic substitution while major product (L) is formed through $\sim H^-$ shift $via\ S_N\ 1$ reaction and methoxy group stabilizes the carbocation intermediate of product(L).

645 (c)

In the Grignard reaction magnesium metal forms an organometallic bond

$$RX + Mg \xrightarrow{Dry \text{ ether}} R - Mg - X$$

Grignard reagent

646 **(a)**

Aromatic hydrocarbons are called arenes with general formula C_nH_{2n-6y} , where n < 6 and y is no. of cyclic rings. Benzene has one ring and n = 6, *i. e.*, no. of carbon atoms. Thus, general formula is C_6H_6 . All other aromatic hydrocarbons are derivative of benzene.

647 **(c)**

It is a fact.

648 (d)

Tri and tetravalent bridges derived from methane are given the prefix methyno and methyno respectively

methyno-1,1,1,1,-tetracyclohexane

649 **(a)**

The structure of the compound is

2,4,4-trimethyl pentanal.

650 (c)

 $C_6H_5COONa \xrightarrow{NaOH+CaO} C_6H_6$.

651 **(a)**

Complementary colours of absorbed light are seen.

652 **(d)**

Presence of $-SO_3H$ gp. increases solubility of drug or dyes.

653 **(d)**

It is a fact.

654 **(a)**

The directive influence order is: $O^- > NR_2 > NHR > NH_2 > OH > OCH_3$ $\approx NHCOCH_3 > CH_3 > X$

655 **(d)**

 Ti^{4+} : $3d^0$ and Cu^+ : $3d^{10}$ can not show d-d-transition and thus colourless.

656 (d)

$$Fe^{3+}$$
 in $[Fe(CN)_6]^{3-}$ is:

657 **(b)**

The IUPAC name of $[Ni(PPh_3)_2Cl_2]^{2+}$ is dichloro bis (triphenylphosphine) nickel (II).

658 **(a)**

It is neutral complex as it does not ionize in solution state.

659 **(b)**

Higher is the stability constant of ligand, lesser is its dissociation, more is its stability.

660 **(c)**

It is a fact.

661 **(d)**

Electronic configuration of Co^{3+} in $[CoF_6]^{3-}$ is:

×× Electron pair donated by F⁻

662 **(c)**

 CH_3 is o-and p-directing gp.

663 **(b)**

Ag⁺ has two coordination number forms complex with excess of CN⁻, *ie* Ag(CN)₂

665 **(c)**

while -C = N group is called imino

N-hydroxy-3-imino-pentane

666 (c)

The coordination compound $[Co(en)_2Cl_2]Cl$ doesn't show ionization isomerism.

669 **(d)**

Nitrogen and oxygen are common donor atoms in ligands

670 **(a)**

$$C_6H_5NH_2 + CH_3COCI \xrightarrow{NaOH} C_6H_5NHCOCH_3$$

671 (c

Me —CH=CHCOOCOCH₃
$$\xrightarrow{\text{H}_2\text{O}}$$
 $\xrightarrow{\text{C}_6\text{H}_5\text{CH}}$ CHCOOH + CH₃COOH

This is Perkin's reaction.

672 (a)

 $K_4[Fe(CN)_6](aq) \rightleftharpoons 4K^+(aq) + [Fe(CN)]^{4-}(aq)$ It gives **five** ions in solution.

 $[Co(NH_3)_6]Cl_3(aq)$

$$\rightleftharpoons [Co(NH_3)_6](aq) + 3Cl^-(aq)$$

It gives **four** ions in solution.

[Cu(NH₃)₄]Cl₂(aq)

$$\Rightarrow [Cu(NH_3)_4]^{2+}(aq) + 2Cl^{-}(aq)$$

It gives **three** ions in solution.

673 **(a)**

 μ_1 and μ_2 both for NO $_2$ (electron withdrawing) and NH $_2$ (electron releasing) gp. act in some direction.

674 **(b)**

Electronic configuration of Fe in $Fe(CO)_5$ is:

×× Electron pair donated by CO.

675 **(b)**

Turnbull's blue is KFe^{II}[Fe^{III}(CN)₆].

679 **(c)**

Each carbon in C_6H_6 is sp^2 -hybridized and thus, C—C bond is sp^2 - sp^2 .

680 **(b)**

Change in composition of coordination sphere yield ionisation isomers

681 (a)

The IUPAC name of $K_2[Ni(CN)_4]$ is Potassium tetracyanonickelate (II).

683 **(c)**

It is a characteristic fact.

684 **(b)**

 $K_4[Fe(CN)_6]4K^+ + [Fe(CN)_6]^{4-}$ The oxidation number of Fe in $[Fe(CN)_6]^{4-}$ is +2. $Fe^{2+}: 1s^2, 2s^22p^6, 3s^23p^63d^6, 4s^04p$

Since, CN⁻is a strong field ligand, pairing occurs and the hybridisation of $[Fe(CN)_6]^{4-}$ is d^2sp^3 and structure is octahedral.

685 **(c)**

$$CH_3CHClCH_2C_6H_5 \xrightarrow{KOH(aq.)} CH_3CHOHCH_2C_6H_5$$

1-phenyl propan-2-ol

686 (d)

All the compounds in which there should be restricted rotation about a bond in the molecule, show geometrical isomerism. Oximes of the type $CH_3 - CH = N - OH$, $C_6H_5 - CH = N - OH$, $C_6H_5 - C = N - OH$ and cyclic

Compound like geometrical isomerism

687 **(b)**

The oxidation of aniline by $K_2Cr_2O_7 + H_2SO_4$ (conc.) gives *p*-benzoquinone.

688 **(b)**

Here, P and R represent meso-compound

689 **(b)**

Friedel-Crafts reaction involves new C—C bond.

Eclipsed

691 (a)

Rest all show less tendency to donate electron pair due to resonance.

692 (c)

(a) $K_3[Fe(OH)_6]$

Let oxidation state of Fe in

$$K_3[Fe(OH)_6] = x$$

(+1×3)+ x+(−1×6)=0
∴ $x=+3$

(b) $K_2[FeO_4]$

Let oxidation state of Fe in $K_2[FeO_4] = x$

$$(+1\times2)+x+(4\times-2)=0$$

$$x=+6$$

FeSO₄. (NH₄)₂SO₄ .6H₂O

Let oxidation state of Fe in

FeSO₄.
$$(NH_4)_2SO_4$$
 .6 $H_2O=x$
 $x+(-2)+2+(-2)=0$
 $x=+2$

(d) $[Fe(CN)_6]^{3-}$

Let oxidation state of Fe in

$$[Fe(CN)_6]^{3-} = x$$

 $x + (6 \times -1) = -3$

 $FeSO_4$. $(NH_4)_2SO_4$ has Fe in lowest oxidation state.

693 **(a)**

:.

CO is a strong ligand, all the six electrons of the valence shell of Cr is paired and spin only magnetic moment=0

694 **(a)**

Phenol is used in carbolic soaps.

695 **(d)**

Werner proposed theory for complex compounds to explain the structure and isomerism in them.

696 (a)

It is p-block element and thus, has no tendency to form complex.

697 **(a)**

In

 $[{\rm CoF_6}]^{3-}$ complex ion ${\rm Co^{3+}}$ is sp^3 d^2 hybridized. Fis weak ligand and cannot pair up the d-electrons so, complex is high spin. Due to four unpaired electrons it is highly paramagnetic.

698 **(b)**

[*Mabcd*] type complexes exist in three isomeric forms.

699 **(b)**

Due to H-bonding.

700 (d)

A characteristics reaction of primary amine. This is carbylamines reaction.

The formula of given complex are as follows:

- (a) Hexammineplatinum (IV) chloride $[{\rm Pt}({\rm NH_3})_6]{\rm Cl_4}$
- (b) Chloropentammine platinum (IV) chloride $[Pt(NH_3)_5Cl]Cl_3$
- (c) Dichhlorotetrammine platinum (IV) chloride $[Pt(NH_3)_4Cl_2]Cl_2$
- (d) Trichlorotriammine platinum (IV) chloride $[Pt(NH_3)_3Cl_3]Cl$

In aqueous solution the complex ionise is $[Pt(NH_3)_3 Cl_3]Cl \rightleftharpoons [Pt(NH_3Cl_3]^+ + Cl$ Trichlorotriammine platinum (IV) 2 ions chloride gives the minimum number of ions in the solution. Hence, it has the minimum electrical conductivity.

702 **(c)**

Diasteromers have different physical properties such as m. pt, b. pt solubilities

703 **(b)**

The decreasing order of priority of prefix in numbering the carbon chain of an organic compound is

3-bromo-2-chloro-4-iodo hexane

705 (d)

The structure of the compound 2, 2'-bipyridine is

$$\bigcirc$$
N \bigcirc N

706 (d)

4-formyl-2-oxo-cyclohexane-1-carboxylic acid

Note: If a compound contains two or more substituents then numbering is done in such a way that the sum of the locants is the lowest

707 (c)

 $-N_2Cl$ gp. Is reduced to -H by reducing agent C_2H_5OH/Cu .

708 (d)

All are the required facts for diethyl triamine.

709 **(b)**

$$[Pt(NH_3)_4Cl_2]Cl_2 \rightleftharpoons [Pt(NH_3)_4Cl_2]^{2+} + 2Cl^-.$$

711 **(b**)

When ligands are exchanged between metal atoms, coordination isomerism results. Hence, [Co(NH₃)₆][Cr(CN)₆] and [Cr(NH₃)₆][Co(CN)₆] re

presents coordination isomerism.

712 **(c)**

 Co^{3+} and $Pt^{4+} = 6$ coordination number $CoCl_3$.6NH₃ and $PtCl_4$.5NH₃ $[Co(NH_3)_6]Cl_3 \xrightarrow{In \ solution} [Co(NH_3)_6]^{3+} + 3Cl^ [PtCl(NH_3)_5]Cl_3 \xrightarrow{In \ solution} [PtCl(NH_3)_5]^{3+} + 3Cl^-$

Number of ionic species are same in the solution of both complexes, therefore their equimolar solutions will show same conductance.

713 **(a)**

Thiocyanato-N is the name when ligand SCN has electron pair donated by N-atom to metal.

715 **(d)**

Any side chain is oxidised to -COOH.

716 **(d)**

This is another reaction.

717 **(c)**

is heterocyclic compound

719 (c)

 $[Cu(NH_3)_4](NO_3)_2$

tetrammine copper (II) nitrate.

720 **(c)**

Nitorethane exhibits tautomerism

$$CH_3CH_2-N$$
O

 $CH_3CH=N$
O

722 (c)

The electronic configuration Pt=[Xe]

$$4f^{14}, 5d^9, 6s^1$$

:
$$Pt^{2+} = [Xe]4f^{14}, 5d^8, 6s^0$$

$$[Pt(CN)_4]^{2-} = [Xe]4f^{14}$$

 dsp^2 - hybridisation

 \therefore No unpaired electron is present in $[Pt(CN)_4]^{2-}$ ion.

723 **(c)**

Let the oxidation number of cobalt is x in K $[Co(CO)_4]$.

$$1+x+0=0$$
$$x=-1$$

724 **(b)**

The IUPAC name of $Na_3[Co(NO_2)_6]$ is sodium hexanitrocobaltate (III).

 $1.[Cu(NH_3)_4][PtCl_4]$

 $2.[Cu(NH_3)_3Cl] \cdot [PtCl_3(NH_3)]$

 $3.[Cu(NH_3)_2] \cdot [PtCl_2(NH_3)_2] cis$

 $4.[Cu(NH_3)_2Cl_2][PtCl_2(NH_3)_2]$ trans

 $5.[Cu(NH_3)Cl_3] \cdot [Pt(Cl)(NH_3)_3]$

 $6.[Pt(NH_3)_4] \cdot [CuCl_4]$

727 **(c)**

Tautomerism and functional isomerism is not possible together

732 (c)

$$Fe^{3+} + K_4Fe(CN)_6 \rightarrow KFe[Fe(CN)_6] + 3K^+$$
Prussian blue

733 **(b)**

This is Cannizzaro's reaction.

734 (a)

$$CH_3 - CH_2 - CH = CH_3$$
 and

$$\mathrm{CH_2}-\mathrm{CH_2}$$

 $\mathrm{CH_2}-\mathrm{CH_2}$

exhibit ring chain isomerism

735 **(a)**

Follow Werner's theory.

736 **(b)**

Faraday for the first time isolated C_6H_6 from coaltar

737 **(b)**

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{-}\text{C} \Longrightarrow \text{C} \longrightarrow \text{CH}_3 \\ \text{2-pentyne} \\ & \downarrow \text{HBr} \\ \text{CH}_3\text{CH}_2\text{-}\text{C} \Longrightarrow \text{C} \longrightarrow \text{CH}_3 \\ & \downarrow \text{Br} \text{ H} \\ \text{3-bromo pent-2-ene} \\ \textit{E, Z} \end{array}$$

Structural isomers (position) = 2 Stereo isomers = 4

738 (a)

According to Werner's theory, the primary valency of a metal is equal to the no. of charge on complex ion, *i. e.*, 3 on $[Fe(CN)_6]^{3-}$

739 **(b)**

The complex which contains 18 valence electrons, follows 18-electron rule.

(a) In $[V(CO)_5]$

The number of valence electrons

$$=5+(2\times5)$$

$$= 15 e^{-}$$

(b) $In[Fe(NH_3)_6]^{2+}$,

The number of valence electrons

$$=6+(6\times2)=6+12=18e^{-}$$

(c) In $[Ni(CO)_6]$,

The number of valence electrons= $10+(2 \times 6)=22$ e^-

(d) $\ln [Mn(H_2O)_6]^{2+}$,

The number of valence electrons= $5+(6\times2)=17$ e^-

Thus, only $[Fe(NH_3)_6]^{2+}$ follows 18-electron rule.

740 **(d)**

One mole of X gave depression corresponding to 2 moles of particles, *i.e.*, on ionisation X gives 2 moles of ions , thus it contains only 1 ion outside the coordination sphere and its structural formula is $[Cr(H_2O)_4Br_2]Cl.H_2O$ while Y gives 3 moles of ions, thus it contains two ions outside the coordination sphere and its structural formula is $[Cr(H_2O)_5Cl]Br_22$

742 **(d)**

Both represent only one molecule and no isomerism.

743 (a)

Haemoglobin is porphyrin complex of ferrous iron being coordinated to four nitrogen atoms and additionally coordinated to a water reversible by a molecule. The water molecule appears to be replaceable reversible by a molecule of oxygen to give oxyhaemoglobin. Fe²⁺ is diamagnetic due to strong field ligands.

746 (d)

—CN and —COOH gp. at p-position facilitate replacement of Cl gp. by S_N reactions to show normal S_N reactions.

747 **(b)**

 $(NH_4)_2S_x$ brings in selective reduction of one of the two $-NO_2$ group at m-position.

748 **(c)**

If the highest priority groups on two carbon atoms of the double bond are on the opposite side, the configuration is *E*. (Entgegen)

749 (c)

Cyclopentane possess 0°44′ angle strain which is minimum

750 **(c)**

 $[Fe(H_2O)_6]^{2+}$ has four unpaired electrons

751 **(b)**

[Pt(NH₃)₆]Cl₄
$$\rightleftharpoons$$
 Pt(NH₃)₆ + 4Cl⁻
Ag⁺ + Cl⁻ → AgCl ↓
White ppt.

752 (a)

$$CH_3(CH_2)_3 \cdot NH_2 \xrightarrow{KOH \text{ alc.}} CH_3(CH_2)_3NC + 3KC1 + 3H_2O$$
 $CH_3 \longrightarrow C \equiv CH + Amm \cdot AgNO_3 \longrightarrow CH_3C \equiv C \cdot Ag + HNO_3$

$$CH_3 \cdot CH_2COOCH_3 + NaOH \xrightarrow{\Delta} CH_3CH_2COONa + CH_3OH$$

$$\begin{array}{c} \text{OH} \\ \mid \\ \text{CH}_{3}\text{--CH}+anhy. \ ZnCl}_{2}\text{+HCl} \\ \mid \\ \text{CH}_{3} \end{array}$$

2°alcohol

→Cloudiness appears within 5 minute.

754 **(b)**

Configuration of Mn^{2+} is $[Ar]3d^5$

According to CFSE (crystal field stabilisation energy), in excited state of $\mathrm{Mn^{2+}}$ ion, three electrons go in t_{2g} level $(d_{xy}, d_{yz} \text{ and } d_{zx})$ and two electrons go in e_g level $(d_{z^2} \text{ and } D_{x^2-y^2})$.

755 (d)

$$CH_3$$

 $CH_2 = C - CH_2 - COOC_2H_5$
 $CH_2 = C - CH_2 - COOC_2H_5$
 $CH_2 = C - CH_2 - COOC_2H_5$
 $CH_3 = C - CH_2 - COOC_2H_5$
 $CH_2 = C - CH_2 - COOC_2H_5$

756 (c)

eg, Fe(CO)₅, Ni(CO)₄, etc.,

757 **(b)**

Follow IUPAC rules.

758 **(b)**

 $[Co(NH_3)_6][Cr(C_2O_4)]_3$ its IUPAC name is hexa amine cobalt (III) tris (oxalato) chromate (III).

759 **(b)**

Gammexane is C₆H₆Cl₆.

760 **(b)**

1.In $\mathrm{Ni}(\mathrm{CO})_4$, nickel is sp^3 -hybridised because in

it oxidation state of NI is zero. So, configuration of ${}_{28}\text{Ni}{=}1s^22s^22p^6, 3s^23p^63d^8, 4s^2$

2.In $[Ni(CN)_4]^{2-}$, nickel is present as Ni^{2+} , so its configuration= $1s^2$, $2s^22p^6$, $3s^23p^63d^8$

is strong field ligand, hence it makes Ni²⁺ electrons to be paired up.

Cl-

is weak field ligand, hence Ni²⁺ electrons are not paired.

761 (d)

 $Ti^{4+}:3d^{0}$

 $Cr^{3+}: 3d^3$ Completely filled or empty *d*-orbitals are colourless.

 $Zn^{2+}: 3d^{10}$ $Sc^{3+}: 3d^{0}$

762 **(b)**

Possible isomers are as follows:

$$\begin{array}{c} \text{CH}_3 \\ | \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH} \ \text{CH}_3\text{CHCH}_2\text{OH,} \\ \text{(I)} \end{array}$$

$$CH_3 - C - OH$$

$$CH_3$$
(III)

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ | \\ \operatorname{OH} \\ (\operatorname{IV}) \end{array}$$

Here, only (I), (II) and (III) are chain isomers

763 (a)

2,2-dinitrodiphenyl or 4,4-dinitrodiphenyl is formed.

764 (d)

We have that by breaking two bond on the chiral centre configuration changes

765 **(c)**

Use of oleum $(H_2SO_4 + SO_3)$ produces inclusion of $-SO_3H$ gp. in C_6H_6 ring.

766 **(a)**

 NO_2^- can participate in linkage isomerism because it may be bonded to metal through nitrogen or through oxygen.

[(NH₃)₅CoNO₂]Cl₂ and [(NH₃)₅CoONO]Cl₂ Pentaamminenitro pentaamminenitro cobalt (III) chloride cobalt (III) chloride

768 **(c)**

Cuprammonium salt, $[Cu(NH_3)_4]SO_4$ $[Cu(NH_3)_4]SO_4 \rightleftharpoons [Cu(NH_3)_4]^{2+} + SO_4^{2-}$ So, it will give two ions in water

769 **(b)**

(a) Shows tautomerism since aldehydes are more stable than vinyl alcohols

$$C_6H_5 - CH = CHOH \leftrightarrow C_6H_5CH_2 - CH_2 - CH_2$$

= 0

- (b) Does not show tautomerism because it does not have hydrogens at α -positions
- (c) Shows tautomerism because enol form is stabilized by H-bonding

(d) Shows tautomerism because enol form is stabilized by aromatic character

771 (a)

Main fractions of coal-tar and the compounds present there in are:

	Main fraction	Temp.	Chief	
		range	constituents	
1.	Light oil or	80-	Benzene,	
	crude	170°C	toluene, xylenes,	
2.	naphtha		etc.	
	Middle oil or	170-	Phenol,	
3.	carbolic acid	230°C	naphthalene,	
	Heavy oil or		pyridine, etc.	
4.	creosote oil	230-	Cresols,	
	Green oil or	270°C	naphthalene	
5.	anthracene		quinolone, etc.	
	oil	270-	Anthracene,	
	Pitch	360°C	phenanthrene,	
			etc.	
		Resid	90-94% of	
		ue	carbon	

772 **(b)**

Octahedral complexes containing three bidentate ligands shows optical isomerism If A is a bidentate ligand then complex of type MA_3 show optical isomerism

773 (a)

Cl atom attached in side chain behaves as aliphatic in nature.

775 (d)

Due to electron deficient molecule it accepts lone pair of electron to produce electrophile.

$$AlCl_3 + Cl_2 \longrightarrow AlCl_4^- + Cl^+$$

777 **(b)**

o –nitrophenol has intramolecular H-bonding.

778 (c)

IUPAC name is tetraammine nickel (II) – tetrachloronickelate (II).

779 **(b)**

Ligands are electron pair donor.

781 (d)

Cis- form of $[Co(en)_2(NH_3)_2]^{3+}$ is optically active.

784 (d)

After two interchanges at each of the two chiral carbon atoms in second structure in such a way that CH_3 group is held vertically upward and C_2H_5 group vertically downward, we get first structure

Thus, the two structures are identical

785 (c)

 $K_3[Fe(CN)_6]$

cation anion

Oxidation state of Fe in anion =+3

Thus, it is potassium hexacyanoferrate (III).

786 **(b)**

In $[Zn(NH_3)_6]^{3+}$, Zn exists as Zn^{2+}

30Zn: 3d¹⁰, 4s²

 Zn^{2+} : $3d^{10}$; Thus, no unpaired electron but it is outer orbital complex.

In $[Co(NH_3)_6]^{3+}$, Co exists as Co^{3+}

 $_{27}$ Co: 3d⁷, 4s²

 Co^{3+} : $3d^6$; It is d^2sp^3 inner orbital complex with 3 electron paired in 3d.

787 **(a)**

In $[CoCl_4]^{2-}$ ion, central metal atom i.e., cobalt is in +2 oxidation state. Hence,

$$_{27}$$
Co=[Ar] $3d^7 4s^2$

$$\therefore 27$$
Co²⁺=[Ar]3 d^7

Hence, number of unpaired electrons is three as Cl is weak ligand.

788 (c)

Coordination number is the number of ligands in the coordination sphere. Hence, the coordination number of cobalt ion in $[Co(H_2O)_4SO_3]Cl$ is 5.

Let the oxidation number of Co is *x*.

$$x+4(0)+(-2)+(-1)=0$$

$$x+0-2-1=0$$

x=3

Number of unpaired electrons in d-orbital are 4 because H_2O is a weak ligand and therefore, pairing of d-electrons is not possible.

789 **(b)**

 $C_6H_6 + CH_3COCl \xrightarrow{AlCl_3} C_6H_5COOCH_3$

790 **(c)**

 $-SO_3H$ is water soluble.

791 (c)

$$+1 \times 4 + x - 1 \times 4 = 0$$

$$4 + x - 4 = 0 \Rightarrow x = 0$$
 for Ni

792 **(c)**

Follow IUPAC nomenclature.

793 **(b)**

Due to bitter almond smell. It is $CH_3O(OH)C_6H_3CHO$.

795 (c)

 $C_6H_5COCH_3$ acetophenone is a mixed ketone having one alkyl and other phenyl gp. attached on -C=O gp.

796 (d)

These are the facts about transition metal atoms to act as central atom.

798 **(d)**

Since, hybridization is dsp^2 so, it is square planar

799 **(b)**

Metal-carbon bond in metal carbonyls has σ as well as π characters.

800 (d)

The electronic configuration of Ni in $[Ni(CN)_4]^{2-}$, $[Ni(Cl)_4]^{2-}$ and $Ni(CO)_4$ are: Ni^{2+} in $[Ni(CN)_4]^{2-}$:

 Ni^{2+} in $[Ni(Cl_4)]^{2-}$:

Ni in $[Ni(CO)_4]$:

801 (c)

Both produce different ions in solution state: $[Co(NH_3)_5Br]SO_4 \rightleftharpoons [Co(NH_3)_5Br]^{2+} + SO_4^{2-}$ $[Co(NH_3)_5SO_4]Br \rightleftharpoons [Co(NH_3)_5SO_4]^{1+} + Br^{-1}$

803 (c)

The configuration in which – OH group is on right side, H-atom is on left side, —CHO group is on upper side and $\mathrm{CH_2OH}$ is on lower side found in Fischer projection known as D-configuration

$$\begin{array}{c|c} & \text{CHO} \\ \text{H----OH} \\ & \text{CH}_2\text{OH} \\ \text{D-glyceraldehyde} \end{array}$$

$$\begin{array}{c|c}
2\\
CHO
\end{array}$$

$$\begin{array}{c|c}
4\\
H
\end{array}$$

$$\begin{array}{c|c}
CHO
\end{array}$$

804 (a)

Linkage isomerism is shown by those complexes which have an ambidentate ligand such as NO_2^- , CN^- and $SC\overline{N}$ etc. In [Fe $(NO_2)_3Cl_3$], N is dono donor atom.

805 (c)

2,6-dimethyl hepta-2, 5-dienoic acid

806 **(d)**

NaHCO₃ reacts with acids to give CO₂ from HCO₃ ion.

$$H^+ + HCO_3^- \rightarrow H_2O + CO_2 \uparrow$$

807 (a)

The species within the coordination sphere does not ionize.

808 (c)

The reverse of enolic contents of compound is ketonic contents. Thus, the correct order of ketonic contents are

$$CH_3CHO > CH_3COC_2H_5 > CH_3COCH_3$$

> $CH_3COCH_2COCH_3$

809 **(b)**

The anhydrous complexes of Cu_2^{2+} do not involve d-d transition and are thus, colourless.

810 (d)

The valence of C-atom of ring is 5 at two methyl gp. attachment.

812 **(b)**

Aniline is basic and thus, reacts with acid.

814 **(b)**

The Riemer-Tiemann reaction is followed by dichloro carbene mechanism.

815 (c)

 $C_6H_5COOH \xrightarrow{SOCl_2} C_6H_5COCl + SO_2 + HCl; -OH$ group is replaced by PCl_5 , PCl_3 or $SOCl_2$.

816 **(b)**

 ${\rm Mn^{2+}}$ will have half filled more stable d^{5} configuration and without distributing it an outer orbital complex can be formed

817 (a)

	Hybridi	Unpair	Magneti
	zation	ed	С
		electro	momen
		ns	t
$1.[Co(CN)_6]^{3-}$	d^2sp^3	0	0
$2.[Fe(CN)_6]^{3-}$	d^2sp^3	1	$\sqrt{3}$ BM
3.	d^2sp^3	2	$\sqrt{8}$ BM
$[Mn(CN)_{6}]^{3-}$		 	
$4.[Cr(CN)_6]^{3-}$	d^2sp^3	3	$\sqrt{15}$ BM

Thus, least paramagnetism is in (a).

818 (d)

The primary valencies of Ni, in the complexes $[Ni(Cl_4)]^{2-}$ and $[Ni(CN)_4]^{2-}$ is same *i.e.*, (+II). Primary valencies are those valencies which a metal exhibits in the formation of its simple salt, these are non-directional. It is also referred as oxidation state of central metal atom.

819 (c)

The central metal ion is Fe^{3+} and $C_2O_4^{2-}$ is negative bi-dentate ligand which forms more stable complex than neutral or mono-dentate ligand.

821 **(b)**

In π -complex, organic ligands use their π system to bond with metal, *e.g.*, ferrocene.

823 (c)

CN⁻ ions act both as reducing agent as well as good complexing agent

824 (a)

The order of *meta* directing, gp. is:

$$Me_3N^+ > NO_2 > CN > SO_3H > CHO > COCH_3$$

> COOH

825 **(a)**

CH₃COC₃H₇ can exhibit metamerism

$$\begin{array}{ccccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & CH_3-C-CH_2CH_2CH_3, & CH_3-C-CH-CH_3 \\ \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

826 (d)

It has coordination no. six and thus, octahedral or sp^3d^2 -hybridization.

828 (d)

Let the oxidation state of iron in $K_4[Fe(CN)_6]$ is x.

$$4(+1)+x+6(-1)=04+x-6=0x=+2$$

829 **(d)**

These are the methods to test complex formation.

830 **(b)**

EAN of Fe in K_3 Fe(CN)₆ is: $26 - 3 + 2 \times 6 = 35$, *i. e.*, not 36 the next inert gas.

833 **(a)**

Grignard reagent is a σ -bonded organometallic compound because all the bonds present in the reagent are single bonds.

835 **(b)**

six electron pairs) available for attachment at central metal atom.

836 **(d)**

Thymol is 3-hydroxy-l-isopropyl-4-methyl benzene ($C_{10}H_{14}O$), a white crystalline phenol derivative, has smell of thyme, occurs in many essential oils used as fragrant material as well as mild antiseptic.

837 **(d)**

Ferrocyanide ion $[Fe(CN)_6]^{4-}$ is diamagnetic in nature hence $K_4[Fe(CN)_6]$ complex has zero magnetic moment.

 $d^2 sp^3$ hybridisation

838 (a)

CO ligand has zero oxidation state, that is why $[Ni(CO)_4]$ is a zero valent metal complex

840 (c)

A characteristic; follow ligand field theory.

842 **(b)**

Central ion is Cd²⁺ and ligand is CN⁻.

843 **(b)**

844 (c)

9 mole or 9×22.4 litre of C_2H_2 are needed.

845 **(b)**

IUPAC name of sodium nitroprusside $Na_2[Fe(CN)_5NO]$ is sodium pentacyanonitrosyl ferrate (III) because in it NO is neutral ligand and the oxidation number of Fe is III, which is calculated as

$$2\times ON$$
 of Na+ ON of Fe +5×ON of CN
+1×ON of NO=0
 $2\times (+1)+ON$ of Fe +5× (-1) +1×0=0
ON of Fe =5-2=+3

846 **(b)**

The electronic configuration of Ni in $[Ni(CN)_4]^{2-}$, $[Ni(Cl)_4]^{2-}$ and $Ni(CO)_4$ are: Ni^{2+} in $[Ni(CN)_4]^{2-}$:

 Ni^{2+} in $[Ni(Cl)_4]^{2-}$:

 Ni^{2+} in $[Ni(CO)_4]$:

848 (d)

When cations have same charge but number of d-electrons are different then the stability (or CFSE) decreases with increase in the number of d-electrons. Therefore, the correct order is $Fe^{2+} > Co^{2+} > Ni^{2+} > Cu^{2+}$

849 (a)

Oxidation state of Ni in Ni(CO)₄ is zero.

CO is a strong ligand. It causes pairing of electrons. Hence, there is no unpaired electrons in $Ni(CO)_4$.

850 **(b)**

Ox. no. of Cr is calculated as:

$$3 \times 1 + a + 1 \times (-2) + 4 \times (-1) = 0;$$
 : $a = +3$

853 (c)

 CrO_3 or CrO_2Cl_2 and a mixture of $K_2Cr_2O_7 + H_2SO_4 + NaCl$ can also be used.

854 **(b)**

Butane-2 exhibit geometrical (cis, trans) isomerism

855 (a)

Ferrocene is a π complex Fe($\eta^5 - C_5H_5$)₂.

856 (a)

Ni in $[Ni(NH_3)_6]^{2+}$ has sp^3d^2 (outer complex) having octahedral geometry.

857 (d)

These examples are ionisation isomers because of chloride and sulphate ions.

859 **(b)**

When ligands are arranged in ascending order of crystal field splitting energy, Δ , they produce a spectrochemical series.

In comparison to H_2O , Cl is strong σ -donor and good π -acceptor, therefore it is a strong ligand than H_2O . Hence, in the spectrochemical series Cl is above than water.

860 **(b)**

On ionization different species are formed to show ionization isomerism:

 $[Co(en)_2(NCS)_2]Cl \rightleftharpoons [Co(en)_2(NCS)_2] + Cl^ [Co(en)_2(NCS)Cl]NCS$

$$\rightleftharpoons$$
 [Co(en)₂(NCS)Cl] + NCS⁻

861 (a)

Pt²⁺ has square planar complexes with coordination number four.

862 (c)

In Hg[Co(SCN)₄], Co exists as Co^{2+}

$$_{27}\text{Co}$$
 : $3d^7$, $4s^2$
 $_{27}\text{Co}^{2+}$: $3d^7$

SCN⁻ a strong field ligand provides four electron to pair to show sp^3 -hybridisation in $[Co(SCN)_4]^{2-}$ and thus three unpaired electrons exists on CO^{2+} .

$$\therefore \text{ Magnetic moment} = \sqrt{n(n+2)} = \sqrt{3(3+2)} = \sqrt{15}$$

863 (d)

But-2-ene and but-1-yne do not have same molecular formula, thus are not isomers

$$CH_3 - CH = CH - CH_3$$
 $CH_3 - CH_2 - C \equiv CH$
But-2-ene but-1-yne (C_4H_8) (C_4H_6)

864 **(b)**

$$\begin{array}{c} \text{27Co} \longrightarrow [\text{Ar}] 3d^7 4s^2 \\ \text{Co}^{2+} \longrightarrow 3d^7 4s^0 \\ \hline \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \end{array}$$

Number of unpaired electrons = 3

865 (a)

NO in iron complexes has ox. no. equal to one.

$$a + 5 \times 0 + 1 - 2 = 0$$
, $\therefore a = +1$

868 **(c)**

Due to the presence of phenolic gp.

869 **(b)**

Ni(CO)₄ has a O.N. zero for Ni

870 (d)

Because it is a polydentate ligand which binds the central atom nickel forming a ring structure

871 (c)

Carbonyl compounds react with Grignard reagent following nucleophilic addition. More +ve is charge on C⁺ centre of carbonyl gp., easier is nucleophile attack.

(Positive charge on C^+ is dispersed due to + I.E. of CH_3 gp.)

(Positive charge on C^+ is dispersed more due to +I.E. of two CH_3 gp.)

$$C_6H_5$$
 C_6H_5
 C

(Positive charge on C^+ is intensified due to -I.E. of C_6H_5 gps.)

But in (III) conjugation of \sum CO gp. with π system

of benzene nucleus following resonance deactivates C^+ centre to attack by nucleophile. Resonance effect overpowers over -I.E. of C_6H_5 gp.

872 **(d)**

[Cr(SCN)₂(NH₃)₄]⁺ shows geometrical (or cistrans) and linkage isomerism.

873 (c)

 $CuCl + 4KCN \rightarrow K_3[Cu(CN)_4] + KCl.$

Thus, coordination no. of Cu is four.

876 **(b)**

The IUPAC name of the compound [CuCl₂(CH₃NH₂)₂] is dichloro bis-(methyl amine) copper (II).

877 **(b)**

2-(1-cyclobutenyl)-1-hexane

879 (b)

Electronic configuration of $[FeF_6]^{3-}$ is:

×× Electron pair donated by F⁻

880 (d)

Effective atomic no. (EAN) = at. No. of central atom -oxidation state $+2 \times (no. of ligands) =$ $28 - 0 + 2 \times 4 = 36$

$$EAN = 26 - 3 + 2 \times (6) = 35$$

882 (d)

[Pt^{II}(NH₃)₂Cl₂] shows geometrical isomerism.

884 **(b)**

Staggered and eclipsed conformers cannot be physically separated because the energy difference between them is so small that they most readily interconvent at room temperature

885 **(b)**

A species or group of atoms can act as ligand only when it carries an unshared pair, *i.e.*, lone pair of electrons.

886 (c)

Follow IUPAC rules.

888 (d)

NH₂ · NH₂ serves as monodentate as well as bridging ligand because a 3-membered ring will be too strained to be stable.

889 (b)

TNT mixed with NH₄NO₃ gives explosive material.

890 (d)

During debromination, meso-dibromobutane form *tran-2*-butene

891 (a)

The IUPAC name of compound is $K_2[Cr(CN)_2O_2(O)_2(NH_3)is$

Potassium ammine dicyano dioxoperoxo

chromate (VI)

893 (a)

It can show ionization isomerism: [Co(NH₃)₄Cl₂]⁺ and $[Co(NH_3)_4Cl]^{2+}Cl$.

894 **(b)**

Replacement of H-atom of ring usually takes place following S_E reaction mechanism.

895 **(b)**

Follow mechanism of Reimer-Tiemann reaction.

896 (a)

It is 2,4,6-trinitrophenol.

897 (a)

Follow mechanism of cannizzaro's reaction.

898 **(b)**

Ag in Tollens' reagent exists as Ag₂O

$$2 \times a + 1 \times (-2) = 0$$
$$\therefore a = +1$$

899 (b)

 $K_3[Fe(CN)_6]$

Electronic configuration of Fe = $[Ar]3d^64s^2$ Electronic configuration of $Fe^{3+} = [Ar]3d^5$ Number of ligand (Coordination number)=6 Nature of ligand in strong field

Hybridisation of Fe is d^2sp^3

900 (d)

Butan-2-one O

$$-$$
 C $-$ CH $_2$ $-$ CH $_3$ is not

 $CH_3 - C - CH_2 - CH_3$ is not isomeric with diethyl ether $CH_3CH_2 - O - CH_2 - CH_3$. Because both are differing in molecular formula

902 (d)

CFSE =
$$3\lambda(-0.4)\Delta_0 + 0.6(\Delta_0) = 0.6 \Delta_0$$

905 **(b)**

Only carbonyl compounds show this test.

906 (c)

Presence of *meta* directing gp. Deactivates ring for Friedel-Crafts reaction.

907 (c)

Ni(CO)₄ and Ni(PPh₃)₂Cl₂ are tetrahedral in geometrical shape, because coordination number of Ni is four in both cases.

908 (c)

Geometrical isomers (cis and trans) and linkage isomers (-SCN and -CNS).

909 (a)

The absorption of energy of the observation of colour in a complex transition compounds depends on the charge of the metal ion and the nature of the ligands attached. The same metal ion 921 (a) with different ligands shows different absorption depending upon the type of ligand. The presence of weak field ligands make the central metal ion to absorb low energies ie, of higher wavelength. The field strength of ligands can be obtained from spectrochemical series, ie,

(weak field)
$$I^- < Br^- < S^{2-} < Cl^- < NO_3^- < F^- < OH^-$$

$$< \rm{H}_{2}\rm{O} < \rm{NH}_{3} < \rm{NO}_{2} < \rm{CN}^{-} < \rm{CO}$$
 (strong field)

911 (d)

The total number of monodentate ligands attached to the central metal is known as coordination number. Hence, in $[Cu(H_2O)_4]^{2+}$ coordination number of Cu atoms is 4.

912 (c)

Prefixes and suffixes are written before and after the root word respectively and not before and after the compound

The IUPAC name of a compound is written as single word

913 (c)

$$\mathsf{CH}_2 {=} \mathsf{CH} {-\!\!\!\!-} \mathsf{CH}_2 \mathsf{Cl} \leftrightarrow \mathsf{ClCH}_2 {-\!\!\!\!-} \mathsf{CH} {=} \mathsf{CH}_2.$$

 $[Co(NH_3)_3Cl_3]$ does not have optical isomers

because it is of formula MA_3B_3 which does not show optical isomerism

915 **(b)**

Ethylenediamine is a bidentate ligand.

$$\begin{array}{c} \text{CH}_2 & \overset{\bullet}{\longrightarrow} \text{NH}_2 \\ | \\ \text{CH}_2 & \overset{\bullet}{\longrightarrow} \text{NH}_2 \end{array}$$

916 **(b)**

Electron withdrawing nature or *-IE* increases the activation of ring more effectively, however resonance opposes inductive effect for attachment at o-and p-position and hence, makes less deactivation for *o*-and *p*-positions.

918 (d)

All involves sp^3 -hybridization.

919 **(b)**

Chaisen condensation involves condensation of benzaldehyde with aliphatic aldehydes or ketones having two α -H-atoms, e. g.,

$$C_6H_5CHO + CH_3CH_2CHO \longrightarrow C_6H_5CH = C - CHO$$

$$CH_3CH_2CHO \longrightarrow C_6H_5CH = C - CHO$$

920 (d)

All are transition elements with d-orbitals not filled to capacity.

Ag(II) has a d^9 -configuration and must contain unpaired electron but AgOis diamagnetic because AgO does not contain Ag(II) but is a mixed oxide of $Ag^{I}Ag^{III}O_{2}$.

922 **(c)**

Friedel-Crafts reaction involves alkylation or acylation in benzene nucleus using alkylating or acylation reagents in presence of anhy. AlCl₃.

924 **(b)**

$$2C_6H_6 + 2HCl + O_2 \rightarrow 2C_6H_5Cl + H_2O$$

925 (a)

CoCl₂ is a weak Lewis acid, reacting with chloride ions to produce salt containing the terrahedral [CoCl₄]²⁻ion. CoCl₂ is blue when anhydrous, and a deep magenta colour when hydrated, for this reason it is widely used as an indicator for water

926 (c)

Octahedral complexes of the type MA_5B do not show geometrical isomerism.

$$C_6H_5COOC_2H_5 \xrightarrow{NaOH} C_6H_5COONa + C_2H_5OH$$

928 **(d)**

While - CHO is substituent group, hence

5-formyl-2-methyl pent-3-en-1-amide

929 **(b)**

C₆H₅CH₂NH₂ has least negative inductive effect and thus shows more basic nature.

930 (d)

$$\begin{array}{c|ccccc} & & & & CH_3 \\ CH_3 - CH_2 - CH_2 - CH - CH - CH_2 - CH_3 \\ 7 & 6 & 5 & |4 & 3 & 2 & 1 \\ & & & CH_2CH_3 \end{array}$$

4-ethyl-3-methyl heptane

Note : The prefix in a compound should be arranged in alphabetical order

931 **(d)**

All possess lesser number of unpaired electrons.

932 **(d)**

A monodentate ligand has one donor site available for coordination.

933 **(a)**

It is benzene.

934 (c)

$$C_6H_5CHO \xrightarrow{Cl_2} C_6H_5COCl$$

935 **(c)**

Phenol is weak acid.

936 **(b)**

The coordination number in $[FeF_6]^{3-}$ is 6, hence it is a octahedral complex

$$AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl$$
Soluble

938 **(a)**

Main fractions of coal-tar and the compounds present there in are:

_ \			
	Main fraction	Temp.	Chief
777		range	constituents
1.	Light oil or	80-	Benzene,
	crude	170°C	toluene, xylenes,
2.	naphtha		etc.
	Middle oil or	170-	Phenol,
3.	carbolic acid	230°C	naphthalene,
	Heavy oil or		pyridine, etc.
4.	creosote oil	230-	Cresols,
	Green oil or	270°C	naphthalene
5.	anthracene		quinolone, etc.

oil		Anthracene,
Pitch	270-	phenanthrene,
	360°C	etc.
		90-94% of
	Resid	carbon
	ue	

939 (c)

The coordination number (C.N.) of a metal atom in a complex is the total number of bonds formed by metal with ligands.

In case of tetrahedral complexes the number of bonds formed between metal and ligand is four. So, coordination number is also four.

940 **(b)**

Due to resonance bond length become identical and is 1.40 Å. Whereas in alkane C—C bond is 1.54 Å and in alkene it is 1.34 Å.

941 (d)

 $C=O + H_2NNHC_6H_5 \rightarrow C=NNHC_6H_5$ All reagents do so.

944 (c)

Electrophilic substitution occurs at electron rich centres usually at o- and p-positions. The ring attached with -NH will develop more electron density at o- and p-positions. Since o-position is blocked, thus electrophile will attach at p-position.

945 **(b)**

Follow text.

946 (a)

In the formation of d^2sp^3 hybrid orbitals, two (n-1)d orbitals of e_g set *i.e.*, (n-1) d_{z^2} and $(n-1)d_{x^2-y^2}$ orbitals, one ns and three $np(np_x,np_y)$ and np_z orbitals

combine together and form six d^2sp^3 hybrid orbitals.

947 **(a)**

EAN of Fe = $26 - 2 + 6 \times 2 = 36$.

948 (a)

 $K[Pt(NH_3)_5Cl_5] \rightleftharpoons K^+ + [Pt(NH_3)_5Cl_5]^-$

949 **(b)**

 $3KCl + CuCl \rightarrow K_3[CuCl_4]$; this is soluble in water.

950 (d)

All are characteristics tastes for phenol.

952 (c)

N cannot have more than 8 elements in its valence shell.

953 **(b)**

Tautomeric structures of a molecule are not the resonating structures of the molecule

954 (a)

2, 4, 6-trinitrophenol is strong acid than acetic acid but phenol is less acidic than acetic acid.

955 (a)

Phenol being weak acid does not react with aq. $NaHCO_3$.

956 (c)

If two atoms directly attached to the double bond have the same atomic number, then the elative priority of the groups is determined by a similar comparison of the atomic numbers of the next elements in the groups. Thus, the preference order of given group is

 $OCH_3 > OH > COOH > CHO$

957 **(a)**

Follow IUPAC name.

958 (a)

It possesses d^8 configuration of Ni²⁺.

959 **(d)**

There are four structural isomers possible for diphenyl methane when one H-atom is replaced by a Cl-atom

(I)
$$CI$$
 CH_2

(II)
$$CH_2$$

(III)
$$CI$$
— CH_2 — CH_2

960 (c)

CN⁻ is a better complexing agent (*C*) as well as a reducing agent(*A*)

Thus, properties (A) and (C) are shown. Property (C):Ni²⁺ + 4CN⁻ \rightarrow [Ni(CN)₄]²⁻ Property(A):

II I $CuCl2 + 5KCN \rightarrow K_3[Cu(CN)_4] + \frac{1}{2}(CN)_2 + 2KCl$ (CN⁻ reduces Cu²⁺ to Cu⁺)

961 **(c)**

In the double bonds are *trans* and *cis*. The first and third bonds are identical

963 (a)

p –nitrophenol is most acidic (among these) as it has electron withdrawing $-NO_2$ gp.

965 **(c)**

Geometrical isomerism is found in compounds having coordination no. 4 (square planar and not tetrahedral shape) as well as coordination no. 6. Coordination no. 4 (square planar)

 M_{A_2BC} , $M_{A_2B_2}$

Showing geometrical isomerism

Coordination no. 6 (octahedral)

 $M_{A_4B_2}$, M_{A_4BC}

Showing geometrical isomerism.

 $M_{A_3B_3}$, $M_{(AA)_2B_2}$

966 **(d)**

Follow crystal field theory.

967 **(d)**

Due to resonance C_6H_6 is stabilized and normal addition reactions (except addition of H_2 , Cl_2 and ozonolysis) are not observed in C_6H_6 .

969 **(b)**

EAN of Pt in $[PtCl_6]^{2-} = 86$

971 **(b)**

 $CuCl + NH_3 \rightarrow [Cu(NH_3)_2]Cl$. The coordination no. = No. of ligands attached.

972 (a)

$$\frac{3}{4}$$
 $\frac{2}{5}$ $\frac{1}{6}$ $\frac{9}{7}$ 8 CH₃

Longest system: 1,2,3,4,5,6 Next longest system: 6,7,8,1

Shortest system: 1,6

The IUPAC name of compound is 8-methyl bicyclo [4,3,0] nonane

973 **(b)**

Aniline on condensation with aromatic aldehyde gives Schiff's base.

974 (c)

Organometallic compounds are those compounds in which metal is directly attached to the carbon atom. In sodium ethoxide, sodium attached to oxygen atom, hence it is not an organometallic compound.

975 (d)

(i)
$$\mathrm{CH_3CH_2CH_2CH_2CH_2OH}$$
 and $\mathrm{CH_3CH_2CH_2-CH-CH_3}$ | OH

are Position isomers

(ii)
$$CH_3$$
 C C_3H_7 OH

Due the presence of asymmetry, optical isomerism is possible

(iii) CH₃CH₂CH₂CH₂CH₂OH and CH₃CH₂OCH₂CH₂CH₃ are functional isomerism

976 (c)

Co³⁺ and Pt⁴⁺ have 6 coordination number. CoCl₃. 6NH₃ and PtCl₄. 5NH₃

CoCl₃. 6NH₃ and PtCl₄. 5NH₃

$$[Co(NH_3)_6Cl_3 \xrightarrow{In \ solution} [Co(NH_3)_6]^{3+} + 3Cl^-$$

$$[PtCl(NH_3)_5Cl_3 \xrightarrow{In \ solution} [PtCl(NH_3)_5]^{3+} + 3Cl^-$$
Number of ionic species are same in the solution of both complexes, therefore their equimolar solutions will show same conductance.

977 (a)

Organometallic compounds are those compounds in which carbon atom is directly linked to metal. But in sodium ethoxide as oxygen is attached to attached to sodium metal so, it is not a organometallic compound

978 **(d)**

 $[Cu(H_2O_4)]SO_4$. H_2O coordination number of Cu is

979 **(b)**

Sodium nitroprusside is Na₂[Fe(CN)₅NO]

980 (d)

$$\begin{array}{c} 2 & 3 \\ \mathrm{NH_2} - \mathrm{CH} - \mathrm{CH_2OH} \\ | \\ \mathrm{COOH} \end{array}$$

2-amino-3-hydroxy propanoic acid

981 (a)

 $[{\rm CoF_6}]^{3-}$ is an outer orbital complex ion. It involves outer orbital hybridisation. It has sp^3d^2 -hybridisation because ${\rm F^-}$ is a weak ligand.

982 **(b)**

Effective atomic no. (EAN) = at. No. of central atom -oxidation state $+2 \times$ (no. of ligands)= $28 - 0 + 2 \times 4 = 36$

$$EAN = 28 - 2 + 2 \times 4 = 34.$$

983 **(b)**

Due to restricted rotation about the carboncarbon single bond joining the two phenyl groups, the molecule as a whole is chiral and thus shows optical isomerism

984 **(b)**

Any side chain is oxidised to COOH gp.

985 (d)

These are facts about glycinato ligand.

986 (c)

According to Werner's theory, only those ions are precipitated which are attached to the metal atoms with ionic bonds and are present outside the coordination sphere.

987 (d)

 sp^2 -hybridization leads to planar hexagonal shape.

988 **(a)**

Coordination isomerism is caused by interchange of ligands with the metal atoms.

989 **(c)**

Chlorophyll are green pigment in plant and contain magnesium instead of caleium

991 (a)

$$C_6H_5NH_2 + Cl_2OC \rightarrow C_6H_5N=C=O + 2HCl$$

992 (a)

$$C_6H_5OC_2H_5 \xrightarrow{HBr} C_6H_5OH + C_2H_5Br$$

993 **(d)**

 $[Fe(NH_3)_4.Cl_2]Cl$

Tetraammine dichloro ferrum III chloride.

994 **(b)**

$$_{28}$$
Ni=[Ar] $3s^2 3p^6 4s^2 3d^8$
Ni²⁺ = [Ar] $3s^2 3p^6 3d^8$

Nickel has two unpaired electrons and geometry is tetrahedral due to sp^3 hybridisation.

995 (c)

It is a test for $-NH_2$ gp attached on benzene nucleus following diazotisation and coupling reaction.

$$H_{3}C \xrightarrow{NaNO_{2}+HCl} \longrightarrow N=N-Cl+H \xrightarrow{NaNO_{2}+HCl} \longrightarrow N=N-Cl$$

$$H_{3}C \xrightarrow{N=N-Cl+H} \longrightarrow OH \xrightarrow{OH \xrightarrow{O^{\circ}C -5^{\circ}C}} \longrightarrow N=n-Cl$$

$$\beta-napthol$$

$$H_3C$$
 $N=N$
 $N=N$
 $N=N$
 $N=N$
 $N=N$
 $N=N$
 $N=N$
 $N=N$

997 (a)

Mole of $CoCl_3$. $6NH_3 = \frac{2.675}{267.5} = 0.01$ $AgNO_3(aq) + Cl^-(aq) \longrightarrow AgCl \downarrow \text{ (white)}$ $Moles of AgCl = \frac{4.78}{143.5} = 0.03$.

1. mole $CoCl_3$. $6NH_3$ gives =0.03 mol AgCl

∴ 1 mole CoCl₃. 6NH₃ ionizes to gives =3 mol Cl⁻

Hence, the formula of compound is $[Co(NH_3)_6]Cl_3$.

998 (b)

Electronic configuration of Cr in $[Cr(H_2O)_6]^{3+}$ is : $1s^2, 2s^22p^6, 3s^23p^63d^3$.

×× Electron pair donated by H₂O

999 (c)

The stabilishing effect of enolic form is the intramolecular hydrogen bond present in enols. This provides another source of increasing bonding and hence, increased stabilization. Thus,

$$\begin{array}{c} \text{O} \\ \parallel \\ \text{CH}_3\text{COCH}_2\text{C} - \text{OC}_2\text{H}_5 \text{ is more stable} \end{array}$$

100 (c)

0 Each en has two coordinate bonds; each Br has one coordinate bond.

100 (c)

1 Aniline is base.

100 (c)

2 Two COOH on vicinal carbon atom lose H_2O on heating.

100 (c)

3 Benzene has 6 C—C, 6 C—H σ-bonds and 3C=Cπ bonds.

100 **(b)**

4 Rest all have plane of symmetry.

100 **(b**)

The number of unpaired electrons in complex [Pt(NH₃)₂]Cl₂ are two.

100 (c)

7 Geometrical isomerism is found in compounds having coordination no. 4 (square planar and not tetrahedral shape) as well as coordination no. 6. Coordination no. 4 (square planar)

$$M_{A_2BC}$$
, $M_{A_2B_2}$

Showing geometrical isomerism M_{ABCD} Coordination no. 6 (octahedral)

 $M_{A_4B_2}$, M_{A_4BC}

Showing geometrical isomerism.

$$M_{A_3B_3}$$
, $M_{(AA)_2B_2}$

100 (c)

8 According to the modern view primary valency of complex compound it its oxidation number while secondary valency is the coordination number

100 (c)

9 The IUPAC name of $K_4[Ni(CN)_4]$ is potassium tetracyanonickelate (0).

101 **(b)**

0

Mirror image

is not superimposable hence, optical isomerism is possible.

101 (a)

S-atom is donor in SCN and N-atom is donor in NCS. The linkage isomerism arises when ligand has two possibilities to attach on central atom., 101 (d)

2 Ethane has an infinite number of conformation but staggered and eclipsed are preferred. Ethane molecule would exist in the staggered conformation due to its minimum energy and maximum stability

101 (a)

4 Follow IUPAC rules

101 (d)

27.

28.

29.

5 The complex in which nd orbitals are used in hybridisation, are called outer orbital complex.

26.
$$[Fe(CN)_6]^{4-} =$$

 $[Mn(CN)_6]^{4-} =$

 $[Co(NH_3)_6]^{3+} =$

 $[Ni(NH_3)_6]^{2+} =$

101 (d)

In each case aromatisation leads to formation of C_6H_6 .

101 (a)

7
$$C_6H_5Cl \xrightarrow{H_2-Ni \text{ or Al/NaOH}} C_6H_6$$

101 **(b)**

8 β -keto acids undergo decarboxylation most easily on heating.

101 (a)

9 Ni in $[Ni(H_2O)_6]^{2+}$ has two unpaired electrons in it.

102 (d)

An electron attracting group ($-NO_2$) disperses the negative charge on phenoxide ion and thus, makes it more stable or increases the acidic character of phenol. The substitution is more effective at p-position than in the m-position as the former involves a resonating structure bearing negative charge on the carbon attached to the electron withdrawing group. Also presence of electron repelling gp. ($-CH_3$) intensifies the negative charge on phenoxide ion and thus, makes phenol less acidic.

102 (d)

$$\begin{array}{ccc} 6 & & 2C_6H_5CHO \xrightarrow{NaOH} & C_6H_5COOH + C_6H_5CH_2OH \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

102 (c)

9 Let the ON of Pt in $[Pt(NH_3)_5Cl]Cl_3$ is x.

$$x+5 \times (0)-1 -3 = 0$$

 $x-4=0$
 $x=+4$

103 (a)

Organometallic compounds have carbon-metal bond, hence $\mathrm{CH_3Mgl}$, tetraethyl tin and $\mathrm{KC_4H_9}$ are organometallic compounds while $\mathrm{C_2H_5ONa}$ is not an organometallic compound due to absence of carbon-metal bond.

103 **(b)**

Optical isomers of a compound which are nonsuperimposable but related to each other as an object and its mirror are called enantiomers

$$\begin{array}{c|c}
CH_3 & CH_3 \\
HO \longrightarrow H & HO \longrightarrow H \\
CH_3 & CH_3
\end{array}$$

103 **(d)**

2 All involve dsp^2 -hybridization.

103 (a)

3 Cis- isomer of [Pt(NH₃)₂Cl₂] is used as an anticancer drugs for treating several type of malignant tumours when it is inject into the blood stream the more reaction Cl groups are lost so, the Pt atom bonds to a N-atom in guanosine (a part of DNA). This molecule can bond to two different guanosine units and by bridging between them it upsets the normal reproduction of DNA

103 (a)

4
$$C_6H_5N_2Cl + \bigcirc OH \rightarrow \bigcirc OH - N=N-\bigcirc OH$$
Phenol p-hydroxy azobenzene

These are coupling reactions.

103 **(a)**

5 In K₄Fe(CN)₆, the species retains its identity in solid as well as solution state

103 (c)

6 The formula of dichlorodioxalatochromium (III) is $[Cr(Cl_2)(ox)_2]^{3-}$

Primary valency of a metal (Cr)in the complex ≡ oxidation number of that

metal

$$= +3$$

Secondary valency of chromium in complex =coordination number =+6

(: Coordination number is the number of ligands attached to the central metal ion and oxalate ion is a bidentate ligand *i.e.*, can coordinate at two positions)

103 (a)

7 Friedel-Crafts reaction involves alkylation or acylation in benzene nucleus using alkylating or acylating reagents in presence of anhy. AlCl₃.

103 (d)

8 According to IUPAC system, the IUPAC name of a compound is written as single word as far as possible

103 **(b)**

104 (a)

0 $[Co(NH_3)_6]Cl_3$ gives four mole of ions on complete ionisation. $[Co(NH_3)_6]Cl_3 \rightleftharpoons [Co(NH_3)_6]^{3+} + 3Cl^{-}$

104 (a)

2 It is a reason for the fact.

104 (d)

3 Halogens no doubt *o*-and *p*-directing gp. but they deactivate the ring.

104 **(a)**

In metal carbonyls CO has ox. no. equal to zero.

104 **(d)**

5 The dihedral angle is 60°

104 **(b)**

6 ${}_{n}K_{a}$ are 10.21, 10.14 and 7.15 respectively.

104 (d)

7 (i) $CH_3CH_2CH_2CH_2OH$ (ii) $CH_3CH_2 - CH - CH_3$

104 (c)

8 Na₂[Fe(CN)₅NO] Sodium pentacyanonitroso ferrate (II).

104 (d)

9 Na⁺ does not possess the tendency to form complex ion because of non-availability of dorbitals.

105 (b)

In the complex K_2 Fe[Fe(CN)₆] both the iron atoms are present in same oxidation state

105 (c)

1 Carbon bonded with four different groups is known as chiral carbon atom. In case of given compound

The number of chiral carbon atoms are two

105 (a)

[Co(NH₃)₃Cl₃] does not give a precipitate with AgNO₃solution because all the chloride ions are non-ionizable.

 $[Co(NH_3)_3Cl_3] \rightleftharpoons does not ionise$

105 (c)

3 The IUPAC name of the compound $[Co(NH_3)_5Cl]Cl_2$ is pentaammine chloro cobalt (III) chloride.

105 (c)

4 The electronic configuration of Ni in $[Ni(CN)_4]^{2-}$, $[NiCl_4]^{2-}$ and $Ni(CO)_4$ are as following Ni in $[Ni(CN)_4]^{2-}$

 Ni^{2+} in $[NiCl_4]^{2-}$

Ni in [Ni(CO)₄]

$$\begin{array}{c|c}
3d & 4s & 4p \\
\hline
\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow
 & \times \times \times \times \times \times
\end{array}$$

$$sp^{3}$$

CO and CN⁻ are strong ligands so, they induces pairing of electrons so, their complexes are diamagnetic which, Cl⁻ is a weak ligand so, it does not induce the pairing of electrons so, its complex is paramagnetic

105 **(b)**

Presence of CH₃ gp. (an electron repelling group) decreases acidic character in benzoic acid.
 Presence of electron withdrawing gps.
 (NO₂, Cl, SO₃H) increases the acidic nature.

105 (a)

6 Ni(CO)₄ is a tetrahedral complex and is diamagnetic due to the absence of unpaired electron.

105 (d)

7 Such a carbon atom to which four different atoms or groups are attached is called asymmetric carbon

105 (d)

9 Coordination sphere is interchanged.

106 (a)

Racemic tartaric acid is optically inactive due to external compensation. Racemic tartaric acid is an equimolar mixture of optically active d- and l-forms. This form of tartaric acid is optically inactive due to external compensation

106 (d)

1 $-NH_2$ gp. is highly susceptible to oxidant (HNO₃) and thus, first protected by acetylation.

106 (d)

2 All are the required facts for bridging ligands.

106 (a)

3 C₆H₅COOH is monobasic acid;

$$\therefore$$
 Mol. wt. = Eq. wt.

106 (d)

4 Cannizzaro's reaction.

106 **(b)**

5 NO is in NO⁺form.

Let the oxidation state of Fe is *x*

$$x+0 \times 5+(+1)=+2$$

 $x=2-1$
 $x=+1$

Hence, the oxidation number of Fe in brown ring $[Fe(H_2O)_5NO]^{2+}$ is +1.

106 **(a)**

6 Cr³⁺: $1s^2$, $2s^22p^6$, $3s^23p^63d^3$. The $3d_{xy}^1$, $3d_{xz}^1$, $3d_y^1$ has lower energy.

106 **(a)**

Number of moles of pentaaqua chloro chromium III chloride in the solution.

$$n = \frac{0.01 \times 100}{1000} = 0.001$$

1 mole of $[Cr(H_2O)_5Cl]Cl_2$ gives 2 moles of chloride ions.

Moles of chloride ions =0.001 \times 2=0.002 Mass of AgCl produced =0.002 \times 143.5 =287.0 \times 10⁻³ g

106 (c)

8 The four isomers are:

$$\begin{split} & [\text{Cu}(\text{NH}_3)_4][\text{PtCl}_4], [\text{Cu}(\text{NH}_3)_4\text{Cl}] \\ & [\text{PtCl}_3(\text{NH}_3)]; \qquad [\text{Pt}(\text{NH}_3)_3\text{Cl}][\text{CuCl}_3(\text{NH}_3)], [\end{split}$$

106 (c)

9 Both optical isomerism and geometrical isomerism are examples of stereoisomerism.

107 (d)

0
$$[Ni(NH_3)_4]SO_4$$

 $x = 0 = -2$
 $x + 0 + (-2) = 0 \Rightarrow x = +2$ is valency and 4 is C.N. of Ni

107 (d)

1 C_6H_5 CHO does not reduce Fehling's solution.

107 **(d)**

3 *n*-butane can exist in an infinite number of conformations

107 (a)

4 This is correct order of acidic nature of nitrobenzoic acids. Also follow ortho effect.

107 (d)

Positive charge on - $\overset{+}{\mathrm{CH}}_2$ is dispersed due to electron releasing nature of methoxy group.

108 **(c)**

O An organometallic compound is considered as a substance contains a carbon-metal bond e.g., $Al_2(CH_3)_6$.

108 **(c)**

1 Picramide is 2, 4, 6-trinitroaniline.

108 (d)

2 Except alkynes, chain isomerism is observed when the number of carbon atoms is four or more than four

108 (d)

3 The isomerism which arises due to restricted rotation about a bond in a molecule is known as geometrical isomerism

All of these form geometrical isomers

108 (a)

4 The choice of principal functional group is made on the basis of the following order
Carboxylic acid > sulphonic acid > anhydride > esters > acid halide > acid amide > nitrile > aldehyde > ketone > alcohol > amine

108 (d)

5 $[Pt(NH_3)Cl_2Br]Cl \rightleftharpoons [Pt(NH_3)Cl_2Br]^+ + Cl^ Cl^- + Ag^+ \longrightarrow AgCl$

108 **(b)**

7 —COOH gp. reacts with NaHCO₃ to give effervescence.

108 (d)

8
$$C_6H_5NO_2 \xrightarrow{Fe/H_2O_2(v)} C_6H_5NO_2$$

108 (c)

Complex ion Hybridisation of central atom $[Fe(CN)_6]^{4-}$ d^2sp^3 (inner)

 $[Mn(CN)_6]^{4-}$ $d^2sp^3(inner)$ $[Co(NH_3)_6]^{3+}$ $d^2sp^3(inner)$ $[Ni(NH_3)_6]^{2+}$ $sp^3d^2(outer)$

109 (a)

0 Electronic configuration of Co^{2+} ion

(a)

$$[\operatorname{CoF}_{6}]^{3-} \text{ ion } 3d$$

$$\boxed{1 \mid 1 \mid 1 \mid 1 \mid 1}$$

 F^- is a weak ligand. It cannot pair up electrons with d-subshell and forms outer orbital octahedral complex.

(b) $[Co(NH_3)_6]^{3+}$ ion

(c) $[Fe(CN)_6]^{3+}$ ion

(d) $[Cr(NH_3)_6]^{3+}$ ion

4*d*

NH₃ and CN⁻ are strong ligands. So, they form their inner orbital complex.

109 (c)

The name of complex is Carbonylchlorobis *trans*phosphineiridium (I).

109 (a)

3 Coordination isomerism is caused by the interchange of ligands between complex cation and complex anion

109 (c)

4 Due to bitter almond smell.

109 **(b)**

5 Compounds which do not show optical activity inspite of the presence of chiral carbon atoms are called *meso-*compounds

109 **(d)**

6 mmol of complex =30×0.01 =0.3 Also, 1 mole of complex $[Cr(H_2O)_5Cl]Cl_2$ gives only two moles of chloride ion when dissolved in solution. $[Cr(H_2O)_5Cl]Cl_2 \rightarrow [Cr(H_2O)_5Cl]^{2+} + 2 Cl^- \Rightarrow mmol of Cl^- ion produced from its 0.3 mmol$

Hence, 0.6 mmol of Ag⁺ would be required for precipitation.

 \Rightarrow 0.60 mmol of Ag⁺=0.1 M × V (in mL)

 $\Rightarrow V=6 \text{ mL}$

=0.6

109 (c)

7 This is Kekule's view for C_6H_6 structure.

109 (c)

8 C = 0 double bond of a carbonyl group is a stronger bond (> C = 0, 364 kJ/mol) than the C = C bond strength 250 kJ/mol) of the enol. Thus, CH_3COCH_3 is more stable

109 **(b)**

9 Effective atomic number (EAN) = Atomic no. of metal

-Oxidation no.+ Coordination no. \times 2 For[CoF₆]²⁻, the oxidation state of cobalt is 4. EAN=(27-4)+6 \times 2 =23+12=35

110 **(d)**

3 Metal atom or cation acts as Lewis acid or electron pair acceptor.

110 **(c)**

4 The nitration of C_6H_6 does not occur at room temperature. The solution becomes dark red due to absorption of NO_2 given out by HNO_3 .

110 (c)

5 $[Co(en)_2NO_2Cl]$ Br exhibits linkage isomerism because the NO_2 group can exist as nitrito (— ONO) and nitro (— NO_2) group. The linkage isomers of $[Co(en)_2NO_2Cl]$ Br are as $[Co(en)_2NO_2Cl]$ Br and $[Co(en)_2ONOCl]$ Br.

110 **(c)**

6 The compound will be numbered as and can be named as unbranched assembles containing 3 or more identical cycles

1,1',2',1"-terycyclo propane

110 (c)

7

The gauch conformation is most stable due to presence of H-bonding between H atom of OH and Cl

110 (c)

8 The electronic configuration of Ni in $[Ni(CN)_4]^{2-}, [Ni(Cl)_4]^{2-} \text{ and } Ni(CO)_4 \text{ are :} \\ Ni^{2+} \text{ in } [Ni(CN)_4]^{2-} :$

 Ni^{2+} in $[Ni(Cl)_4]^{2-}$:

 Ni^{2+} in $[Ni(CO)_4]$:

110 (a)

9 Follow IUPAC rules.

111 **(b)**

Cd has no unpaired electron in $[CdCl_4]^{2-}$ ion.

111 (d)

1 It is a fact.

111 (a)

2 On ionization it gives maximum number of (four) ions.

111 (a)

3 Chlorophyll contains Mg, hence (a) is incorrect statement.

111 **(b)**

4 $[Co(NH_3)_5Cl]^{2+} + 2Cl^- \rightarrow [Co(NH_3)_5Cl]Cl_2$

111 **(b)**

Linkage isomerism is caused due to presence of ambidentate ligands.
 [Pd(PPh₃)₂(NCS)₂]and [Pd(PPh₃)₂ (SCN)₂] are

linkage isomers due to SCN, ambidentate ligand.

111 (a)

6
$$C_6H_5OCH_3 \xrightarrow{HI} C_6H_5OH + CH_3I$$

111 (c)

 $C_6H_5NH_2 + KOH + (Y) \rightarrow C_6H_5NC$; (Y) is $CHCl_3$; (Y) is formed from $(Z) + Cl_2 + Ca(OH)_2$ and thus, (Z) is CH_3COCH_3 .

111 (d)

Halogen attached on side chain behaves as in aliphatic molecule.

111 (a)

MO theory reveals bond order in C₆H₆ lies in between 1 and 2.

112 (a)

0
$$[Co(NH_3)_5SO_4]Br + AgNO_3 \rightarrow [Co(NH_3)_5 \cdot SO_4] + AgBr$$

$$\begin{split} &[\text{Co(NH}_3)_5\text{Br}]\text{SO}_4 + \text{BaCl}_2 \\ &\longrightarrow [\text{Co(NH}_3)_5\text{ Br}]\text{Cl}_2 + \text{BaSO}_4 \end{split}$$

On using one liter solution we will get 0.01 mole *Y* and 0.01 mole Z

112 (c)

Metal-metal (Fe-Fe) bond pairs up the unpaired electrons.

112 **(b)**

Follow IUPAC rules.

112 **(c)**

 $[Cr(NH_3)_6]$ $Cl_3 \rightleftharpoons$ Coordinate sphere Ionisable $[Cr(NH_3)_6]^{3+} + 3Cl^{-} \xrightarrow{AgNO_3} AgCl \downarrow$

white precipitate

 $Cr(24)[Ar]3d^5 4s^1$

 $Cr^{3+}[Ar]3d^3$

Cr³⁺ [Ar]

45

 $[Cr(NH_3)_6]^{3+}[Ar]$

Indicates lone-pair of NH₃ donated to Cr

- d^2sp^3 hybridisation, octahedral, thus, 30. correct.
- 31. There are three unpaired electrons, hence paramagnetic, thus correct.
- 32. d^2sp^3 -inner orbital complex, thus incorrect
- 33. Due to ionisable Cl⁻ions, white precipitate with AgNO₃, thus correct.

Therefore, (c) is wrong.

112 (c)

5 NO₂⁺ attacks at ortho-para for (P) w. r. t. OH NO₂⁺ attacks at ortho-para for (Q) w. r. t. CH₃ and OCH₃ both NO₂⁺ attacks at *ortho-para* for (S) with respect to $-0COC_6H_5$

112 **(c)**

6 Follow molecular orbital theory for C₆H₆,

112 (d)

 $5KBr(aq.) + KBrO_3(aq.) \rightarrow 3Br_2(aq.)$ 8

2,4,6-tribromophenol

112 (d)

9 The number of atoms of the ligand that are directly bounded to the central metal atom or ion by coordinated bond is known as the coordination number of the metal atom or ion. Coordination number of metal = number of σ bonds formed by metal with ligand

113 (c)

0 Follow MO diagram for C₆H₆.

113 **(b)**

 $[Fe(H_2O)_6]^{2+}$ has four unpaired electrons; $[Cr(H_2O)_6]^{3+}$, $[Cu(H_2O)_6]^{2+}$ and $[Zn(H_2O)_6]^{2+}$ have 3, 1, 0 unpaired electrons, respectively.

113 (a)

Larger is the ligand, less stable is metal-ligand bond.

113 (c)

Both produces different ions in solution state $[Co(NH_3)_4Cl_2]NO_2 \rightleftharpoons [Co(NH_3)_4Cl_2]^+NO_2^ [Co(NH_3)_4Cl \cdot NO_2]Cl$

 $\rightleftharpoons [Co(NH_3)_4Cl \cdot NO_2]^+ + Cl^-$

113 (a)

5 The name of reaction is Baeyer-Villiger oxidation. C₆H₅COCH₃ Perbenzoic → C₆H₅COOCH₃

113 (d)

Pyridine undergoes S_E reactions at 3-position but under vigorous conditions, nitration, sulphonation and halogenation occurs only at 300°C. Friedel-Crafts reaction is not observed in pyridine because electron pair on N-atom (Lewis base) form complex with AlCl₃ (Lewis acid) and

a+ve charge on N-atom so produced decreases the activity of pyridine for S_E reaction.

113 **(d)**

7 2Cl⁻ ions are inisable

$$\therefore [Co(NH_3)_5Cl]Cl_2 \rightleftharpoons \underbrace{[Co(NH_3)_5Cl]^{2+} + 2Cl^{-}}_{3 \text{ ions}}$$

$$2Cl^{-} + 2AgNO_3 \rightarrow 2AgCl + 2NO_3^{-}$$

8 Benzene is very good solvent.

113 **(a)**

9 Salol is phenyl salicylate and is used as antiseptic.

114 (a)

0 $-NO_2$ gp. is deactivating gp. for S_E reaction.

114 (d)

Geometrical isomerism is found in compounds having coordination no. 4 (square planar and not tetrahedral shape) as well as coordination no.6. Coordination no. 4 (square planar)

$$M_{A_2BC}, M_{A_2B_2},$$

 $Showing\ geometrical\ isomerism$

 M_{ABCD} .

Coordination no. 6 (octahedral)

$$M_{A_4B_2}$$
, M_{A_4BC} ,

Showing geometrical isomerism.

$$M_{A_3B_3}$$
, $M_{(AA)_2B_2}$

114 (a)

3 The presence of *m*-directing groups in benzene nucleus simply decreases electron density at *o*-and *p*- whereas no change in electron density at *m*-position is noticed.

On the contrary o- and p-directing groups in nucleus increase the electron density at o- and p-position.

Thus, presence of o- and p-directing groups provide seats for S_E reactions or activates the ring, whereas presence of m-directing groups does not activate the ring and thus, deactivate the ring for S_E reactions.

114 (a)

4 Aniline is basic.

114 (d)

5 Ferrocene is diphenyl iron complex.

114 (c)

6 Effective atomic number (EAN)

= Atomic no.
$$-0.S. +2 \times C.N.$$

= $28-0+2\times4$
= $28+8$
= 36

114 (d)

8 [CO(en)₂Cl₂] forms optical and geometrical isomers.

114 (c)

Only cis-octahedral compounds show optical activity.

115 **(b)**

0 A square planar complex results from dsp^2 -hybridisation involving $(n-1) d_{x^2-y^2}$, ns, np_x and np_y atomic orbitals.

115 (a)

2 HNO_3 accepts a proton from H_2SO_4 . $H_2SO_4 \rightleftharpoons H^+ + HSO_4^ HNO_3 + H^+ \longrightarrow H_2O + NO_2^+$

115 **(c)**

3 Lithium tetrahydroaluminate is Li[Al(H)₄]