Logs \& Surds

Single Correct Answer Type

1. Number of ordered triplets of natural number (a, b, c) for which $a b c \leq 11$ is
(A) 52
(B) 53
(C) 55
(D) 56

Key. D
Sol. $\quad \mathrm{abc}=1$ in 1 ways
$\mathrm{abc}=2,3,5,7,11$ in 15 ways
$a b c=4,9$ in 12 ways
$a b c=8$ in 10 ways
$a b c=6,10$ in 18 ways
So, total number of solution is 56
2. The value of $\sqrt{5-\sqrt{10}-\sqrt{15}+\sqrt{6}}$ is
(A) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\sqrt{2}}$
(B) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}$
(C) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{2}$
(D) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{2}$

Key. B
Sol. $5-\sqrt{10}-\sqrt{15}+\sqrt{6}$ can be written as
$\frac{3+2+5-2 \sqrt{2} \sqrt{5}-2 \sqrt{5} \sqrt{3}+2 \sqrt{3} \sqrt{2}}{2}$
$=\left(\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}\right)^{2}$
3. $\quad a>0(a \neq 1), b>0(b \neq 1)$ such that $a^{\left(\log _{a}^{b}\right)^{x}}=b^{\left(\log _{b}^{a}\right)^{x}}$ then $x=$
(A) 1
(B) -1
(C) $\frac{1}{2}$
(D) 2

Key: C
Hint: Taking $\log _{b}$ both sides we get
$\left(\log _{a}^{b}\right)^{x} \log _{b}^{a}=\left(\log _{b}^{a}\right)^{x}$
$\therefore\left(\log _{a}^{b}\right)^{x}=\left(\log _{b}^{a}\right)^{x-1}$
$\therefore 1-x=x \Rightarrow x=\frac{1}{2}$
4. Given that $\log _{10}^{5}=0.70$ and $\log _{10}^{3}=0.48$ then the value of $\log _{30}^{8}$ (correct upto 2 places of decimal) is
(A) 0.56
(B) 0.61
(C) 0.68
(D) 0.73

Key: B
5. The value of $\sqrt{5-\sqrt{10}-\sqrt{15}+\sqrt{6}}$ is
(A) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\sqrt{2}}$
(B) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}$
(C) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{2}$
(D) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{2}$

Key. B
Sol. $\quad 5-\sqrt{10}-\sqrt{15}+\sqrt{6}$ can be written as
$\frac{3+2+5-2 \sqrt{2} \sqrt{5}-2 \sqrt{5} \sqrt{3}+2 \sqrt{3} \sqrt{2}}{2}$
$=\left(\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}\right)^{2}$
6. The value of $\sqrt{5-\sqrt{10}-\sqrt{15}+\sqrt{6}}$ is
(A) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\sqrt{2}}$
(B) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}$
(C) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{2}$
(D) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{2}$

Key. B
$5-\sqrt{10}-\sqrt{15}+\sqrt{6}$ can be written as
Sol.

$$
\begin{aligned}
& \frac{3+2+5-2 \sqrt{2} \sqrt{5}-2 \sqrt{5} \sqrt{3}+2 \sqrt{3} \sqrt{2}}{2} \\
& =\left(\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}\right)^{2}
\end{aligned}
$$

7. There exist positive integers A, B and C with no common factors greater than 1 , such that A $\log _{200} 5+B \log _{200} 2=C$. The sum $A+B+C$ equals
(A) 5
(B) 6
(C) 7
(D) 8

Key. B
Sol. \quad A $\log _{200} 5+B \log _{200} 2=C$
= C
$A \log 5+B \log 2=C \log 200=C \log \left(5^{2} 2^{3}\right)=2 C \log 5+3 C \log 2$
hence, $A=2 C$ and $B=3 C$
for no common factor greater than $1, C=1$
$\therefore \quad A=2 ; B=3 \quad A+B+C=6$ Ans.
9. Given real numbers $a, b, c>0(\neq 1)$ such that $\log _{\log _{c} a} e, \log _{\left(a^{c / 2}\right)} \mathrm{e}, \log _{\left(\log _{\mathrm{b}} \mathrm{c}\right)} \mathrm{e}$ are in H.P. then cequal to
(a) $\log _{a}\left(\log _{a} b\right)$
(b) $\log _{a}\left(\log _{b} a\right)$
(c) $\log _{b}\left(\log _{b} a\right)$
(d) $\log _{b}\left(\log _{a} b\right)$

Key. B
SOL. $\operatorname{LOG}_{E}\left(\mathrm{LOG}_{C} A\right)$, LOG $_{E} A^{\mathrm{C} / 2}, \mathrm{LOG}_{E}\left(\mathrm{LOG}_{B} \mathrm{C}\right)$ ARE IN A.P.
$\Rightarrow \quad \mathrm{LOG}_{\mathrm{C}} \mathrm{A}, \mathrm{A}^{\mathrm{Cl} 2}, \mathrm{LOG}_{\mathrm{B}} \mathrm{C}$ ARE IN G.P.
$\Rightarrow \quad \mathrm{A}^{\mathrm{C}}=\mathrm{LOG}_{\mathrm{C}} \mathrm{A} \mathrm{LOG}_{\mathrm{B}} \mathrm{C}$
$\Rightarrow \quad \mathrm{A}^{\mathrm{C}}=\mathrm{LOG}_{\mathrm{B}} \mathrm{A}$
$\Rightarrow \quad c=\log _{a}\left(\log _{b} a\right)$

