Vectors Single Correct Answer Type

- 1. P(i j + 3k) & Q(3i + 3j + 3k) are two points in space. Equation of a plane is $\overline{r} \cdot (5i + 2j - 7k) + 9 = 0$, then the points P & Q
 - a) Lie on same side and equidistant from the plane.
 - b) Lie on either side and equidistant from the plane.
 - c) Lie on same side of a plane & at unequal distances from the plane
 - d) Lie on opposite side & at unequal distances from the plane

Key. B

Sol. $\overline{r} \cdot \overline{m} = d, A(\overline{a})$

distance from $A(\bar{a})$ to the plane $\bar{r} \cdot \bar{m} = d$ is $\frac{\bar{d} - \bar{a} \cdot \bar{m}}{|\bar{m}|}$

- If $A(\bar{a}) = i j + 3k$ then $d = \frac{9}{\sqrt{78}}$ If $A(\bar{a}) = 3i + 3j + 3k$ then $d = \frac{-9}{\sqrt{78}}$
- 2. The length of the perpendicular from the origin to the plane passing through the point \overline{a} & containing the line $\overline{r} = \overline{b} + \lambda \overline{c}$ is

a)
$$\frac{\begin{bmatrix} \bar{a} \ \bar{b} \ \bar{c} \end{bmatrix}}{\left| \bar{a} \times \bar{b} + \bar{b} \times \bar{c} + \bar{c} \times \bar{a} \right|}$$
b)
$$\frac{\begin{bmatrix} \bar{a} \ \bar{b} \ \bar{c} \end{bmatrix}}{\left| \bar{a} \times \bar{b} + \bar{b} \times \bar{c} \right|}$$
c)
$$\frac{\begin{bmatrix} \bar{a} \ \bar{b} \ \bar{c} \end{bmatrix}}{\left| \bar{b} \times \bar{c} + \bar{c} \times \bar{a} \right|}$$
d)
$$\frac{\begin{bmatrix} \bar{a} \ \bar{b} \ \bar{c} \end{bmatrix}}{\left| \bar{c} \times \bar{a} + \bar{a} \times \bar{b} \right|}$$

Key. C

Sol. Given plane passes through $\overline{a} \& \overline{b}$ containing the line is $\left[\overline{AP} \ \overline{AB} \ \overline{c}\right] = 0$

$$\Rightarrow (\bar{r} - \bar{a}) \cdot ((\bar{b} - \bar{a}) \times \bar{c}) = 0$$

$$\Rightarrow \bar{r} \cdot (\bar{b} \times \bar{c} + \bar{c} \times \bar{a}) = [\bar{a} \ \bar{b} \ \bar{c}]$$

length of \perp^r from the origin $= \frac{[\bar{a} \ \bar{b} \ \bar{c}]}{|\bar{b} \times \bar{c} + \bar{c} \times \bar{a}|}$

Mathematics

3. Equation of the plane through (3, 4, -1) which is parallel to the plane

 $\vec{r}.(2\vec{i}-3\vec{j}+5\vec{k})+7=0$ is 1. $\vec{r}.(2\vec{i}-3\vec{j}+5\vec{k})+11=0$ 2. $\vec{r}.(3\vec{i}+4\vec{j}-\vec{k})+11=0$ 3. $\vec{r}.(3\vec{i}+4\vec{j}-\vec{k})+7=0$ 4. $\vec{r}.(2\vec{i}-3\vec{j}+5\vec{k})-7=0$

Key.

1

Sol. Equation of any plane parallel to the given plane is $r.(2i-3j+5k)+\lambda=0$.

If r = xi + yi + zk, we get $2x - 3y + 5k + \lambda = 0$

This plane passes through the point (3, 4, -1) if $2 \times 3 - 3 \times 4 + 5(-1) + \lambda = 0$ or it x = 11 and hence the equation of the required plane is r.(2i-3j+5k)+11=0

Let $\overline{a} = \overline{i} + \overline{j} + \overline{k}$, $\overline{b} = \overline{i} - \overline{j} + 2\overline{k}$ and $\overline{c} = x\overline{i} + (x-2)\overline{j} - \overline{k}$. If the vector \overline{c} lies in the plane of \overline{a} 4. and \overline{b} , then x equals 1.0 2.1 4. -2 3. 4 Key. 2 = 0Since the three vectors are coplanar Sol. 1 0 0

$$\Rightarrow \begin{vmatrix} 1 & -2 & 1 \\ x & -2 & -1 - x \end{vmatrix} = 0$$
$$\Rightarrow -2(-1-x) + 2 = 0 \Rightarrow x = -2$$

5. Equation of the plane containing the lines $\overline{r} = \overline{i} + 2\overline{j} - \overline{k} + \lambda(\overline{i} + 2\overline{j} - \overline{k})$ and

$$r = i + 2j - k + \mu(i + j + 3k)$$
 is

1.
$$\overline{r}.(7\overline{i}-4\overline{j}-\overline{k})=0$$

2. $7(x-1)-4(y-1)-(z+3)=0$
3. $\overline{r}.(\overline{i}+2\overline{j}-\overline{k})=0$
4. $\overline{r}.(\overline{i}+\overline{j}+3\overline{k})=0$

Key.

1

Sol. Since both the given lines pass through the point with position vector i+2j-k, the required plane also passes through i+2j-k and normal to the plane is perpendicular to

the vectors i+2j-k and i+j+3k. If d = ai+bj+ck is normal to the required plane, then a+2b-c=0 and a+b+3c=0

$$\Rightarrow \frac{a}{7} = \frac{b}{-4} = \frac{c}{-1} \Rightarrow d = 7i - 4j - k.$$

So the required plane passes through i+2j-k and the normal to plane is 7i-4j-k, hence required equation is [r-(i+2j-k)].(7i-4j-k)=0

$$r.(7i-4j-k) = 1 \times 7 + 2(-4) + (-1)(-1) = 0$$

Also since the required plane passes through i+2j-k, *i.e.* the point -(1, 2, -1) and the direction ratios of the normal to the plane are 7,-4,-1, the equation of the plane in Cartesian form can be written as 7(x-1)-4(y-2)-(z+1)=0

Use the result number 11 given in vectorial equations.

- 6. The Cartesian equation of the plane passing through the line of intersection of the planes r.(2i-3j+4k)=1 and r.(i-j)+4=0 and perpendicular to the plane r.(2i-j+k)+8=0 is
 - 1. 3x 4y + 4z = 52. x 2y + 4z = 33. 5x 2y 12z + 47 = 04. 2x + 3y + 4 = 0

Key. 3

Sol. Equation of any plane passing through the intersection of the planes r.(2i-3j+4k)=1 and r.(i-j)+4=0 is $2x-3y+4z-1+\lambda(x-y+4)=0$ or $(2+\lambda)x-(3+\lambda)y+4z+4\lambda-1=0$

The plane is perpendicular to the plane r.(2i-j+k)+8=0 if

$$\Rightarrow 2(2+\lambda) + (3+\lambda)4 = 0.$$

 $\Rightarrow 11+3\lambda = 0 \Rightarrow \lambda = -11/3$ and the required equation of the plane is $3(2x-3y+4z-1)-11(x-y+4) = 0 \Rightarrow 5x-2y-12z+47 = 0$

7. If the vector 2i-3j+7k is inclined at angles α, β, γ with the coordinate axes, then

1. $3\cos \alpha = 2/\sqrt{62}$ 2. $2\cos \beta = -3/\sqrt{62}$ 3. $\cos \gamma = 7/\sqrt{62}$ 4. $2\cos \alpha = -3\cos \beta = 7\cos \gamma$

Key. 3

Sol.
$$\cos \alpha = 2/\sqrt{62}, \cos \beta = -3\sqrt{62}, \cos \gamma = 7/\sqrt{62}.$$

8. If
$$\overline{rn} = q$$
 is the equation of a plane normal to the vector \overline{n} then the length of the perpendicular from the origin on the plane is
1. $|q|$ 2. $|\overline{n}|$ 3. $|q||\overline{n}|$ 4. $|\overline{q}|$
Key. 4
Sol. Equation of the plane is $r.\frac{n}{|x|} = \frac{q}{|n|}i.e., r.n = \frac{q}{|n|}$. So the required length $= q/|n|$.
9. If $\alpha(\overline{a} \times \overline{b}) + \beta(\overline{b} \times \overline{c}) + \gamma(\overline{c} \times \overline{a}) = \overline{0}$, Then
(A) $\overline{a}, \overline{b}, \overline{c}$ are coplanar only if none of a, b, g is zero
(B) $\overline{a}, \overline{b}, \overline{c}$ are coplanar for any α, β, γ (D) none of these
Key. B
Sol. We have
 $\alpha(\overline{a} \times \overline{b}) + \beta(\overline{b} \times \overline{c}) + \gamma(\overline{c} \times \overline{a}) = \overline{0}$
Taking dot product with c, we have
 $\alpha(\overline{a} \times \overline{b}) + \beta(\overline{b} \times \overline{c}) + \gamma(\overline{c} \times \overline{a}) = \overline{0}$
i.e. $\alpha(\overline{a} \ \overline{b} \ \overline{c}] + 0 + 0 = 0$
i.e., $\alpha(\overline{a} \ \overline{b} \ \overline{c}] = 0$
Similarly, taking dot product with b and c, we have
Now, even if one of $\alpha, \beta, \gamma \neq 0$, then we have $[a \ b \ c] = 0$
 $\Rightarrow a, b, c$ are coplanar

10. If \overline{a} and \overline{b} are unit vectors and \overline{c} is a vector such that $\overline{c} = \overline{a} \times \overline{c} + \overline{b}$ then

(A)
$$\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \overline{b} \cdot \overline{c} - (\overline{a} \cdot \overline{b})^2$$

(B) $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = 0$
(C) Maximum value of $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \frac{1}{2}$
(D) Minimum value of $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$ is $\frac{1}{2}$

Key. A,C

Sol.
$$\overline{c}.\overline{a} = ((\overline{a} x \overline{c}) + \overline{b}).\overline{a} = \overline{b}.\overline{a}$$

 $\overline{b} x \overline{c} = (\overline{b}.\overline{c}) + \overline{a} - (\overline{a} - \overline{b}).\overline{c}$
 $\therefore [\overline{a}\overline{b}\overline{c}] = \overline{b}.\overline{c} - (\overline{a} - \overline{b}).(\overline{a}.\overline{c})$
Also $\overline{c}.\overline{b} = 1 - [\overline{a}\overline{b}\overline{c}]$
 $\therefore 2 [\overline{a}\overline{b}\overline{c}] = 1 - (\overline{a}.\overline{b})^2 \le 1$

$$\therefore \left[\overline{a} \, \overline{b} \, \overline{c} \right] \leq \frac{1}{2}$$

11. If the four faces of a tetrahedron are represented by the equations $\overline{r}.(\alpha \overline{i} + \beta \overline{j}) = 0, \overline{r}.(\beta \overline{j} + \gamma \overline{k}) = 0, \overline{r}.(\gamma \overline{k} + \alpha \overline{i}) = 0 \text{ and } \overline{r}.(\alpha \overline{i} + \beta \overline{j} + \gamma \overline{k}) = P$

then volume of the tetrahedron (in cubic units) is

a)
$$\left|\frac{P^3}{6\alpha\beta\gamma}\right|$$
 b) $\left|\frac{4P^3}{6\alpha\beta\gamma}\right|$ c) $\left|\frac{3P^3}{6\alpha\beta\gamma}\right|$ d) none of these

Key. B

Sol. Conceptual

12. A non - zero vector \vec{a} is parallel to the line of intersection of the plane P_1 determined by $\hat{i} + \hat{j}$ and $\hat{i} + 2\hat{j}$ and plane P_2 determined by vector $2\hat{i} - \hat{j}$ and $3\hat{i} + 2\hat{k}$, then angle between \vec{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$ vector is

a)
$$\frac{\pi}{4}$$
 b) $\frac{\pi}{2}$ c) $\frac{\pi}{3}$ d) none of these

Key. D

- Sol. Conceptual
- 13. If $\vec{a}' = \hat{i} + \hat{j}$, $\vec{b}' = \hat{i} + \hat{j} + 2\hat{k}$ & $\vec{c}' = 2\hat{i} + \hat{j} \hat{k}$. Then altitude of the parallelpiped formed by the vectors

 $\vec{a}, \vec{b}, \vec{c}$ having base formed by $\vec{b} \& \vec{c}$ is $(\vec{a}, \vec{b}, \vec{c} \text{ and } \vec{a}', \vec{b}', \vec{c}'$ are reciprocal system of vectors)

Key.

D

Sol. Volume of the parallelepiped formed by $\vec{a}', \vec{b}', \vec{c}'$ is 4

 \therefore Volume of the parallelepiped formed by $ec{a},ec{b},ec{c}$ is $\dfrac{1}{4}$

$$\vec{b} \times \vec{c} = \frac{(\vec{c} \times \vec{a}) \times \vec{c}}{4} = \frac{1}{4} \vec{a}'$$

$$\therefore |\vec{b} \times \vec{c}| = \frac{\sqrt{2}}{4} = \frac{1}{2\sqrt{2}}$$

$$\therefore \text{ length of altitude} = \frac{1}{4} \times 2\sqrt{2} = \frac{1}{\sqrt{2}}.$$

14. A unit vector
$$\overline{a}$$
 in the plane of $\overline{b} = 2\hat{i} + \hat{j} \& \vec{c} = \hat{i} - \hat{j} + \hat{k}$ is such that $\overline{a} \wedge \overline{b} = \overline{a} \wedge \overline{d}$ where $\overline{d} = \hat{j} + 2\hat{k}$ is
(A) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ (B) $\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$ (C) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ (D) $\frac{2\hat{i} - \hat{j}}{\sqrt{5}}$
Key. B
Sol. Let $\vec{a} = \lambda \vec{b} + \mu \vec{c}$, then $\frac{\vec{a} \cdot \vec{b}}{a \cdot b} = \frac{\vec{a} \cdot \vec{d}}{a \cdot d}$
i.e. $\frac{(\lambda \vec{b} + \mu \vec{a}) \cdot \vec{b}}{b} = \frac{(\lambda \vec{b} + \mu \vec{c}) \cdot \vec{d}}{\sqrt{5}} = \frac{[\hat{\lambda} (2\hat{i} + \hat{j}) + \mu (\hat{i} - \hat{j} + k)]] \cdot (\hat{i} + 2k)}{\sqrt{5}}$
i.e. $\frac{[\hat{\lambda} (2\hat{i} + \hat{j}) + \mu (\hat{i} - \hat{j} + k)]] \cdot (2\hat{i} + \hat{j})}{\sqrt{5}} = \frac{[\hat{\lambda} (2\hat{i} + \hat{j}) + \mu (\hat{i} - \hat{j} + k)]] \cdot (\hat{i} + 2k)}{\sqrt{5}}$
i.e. $\lambda (4 + 1) + \mu (2 - 1) = \lambda (1) + \mu (-1 + 2)$ *i.e.* $41 = 0$ *i.e.* $1 = 0$
 $\therefore \vec{a} = \frac{\hat{i} - \hat{j} + k}{\sqrt{3}}$
15. Let $\vec{\tau}, \vec{a}, \vec{b} \cdot \vec{c} \vec{c}$ be four non-zero vector such that $\vec{\tau}, \vec{a} = 0, |\vec{\tau} \times \vec{b}| + \vec{\tau} ||\vec{b}|, |\vec{\tau} \times \vec{c}| + \vec{\tau} ||\vec{c}|$, then $[abc] =$
(A) $|a| |b| |c|$ (B) $- |a| |b| |c|$ (C) 0 (D) none of these
Key. C
Sol. $\vec{r} \cdot \vec{a} = 0, |\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}| \& |\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$
 $\Rightarrow \vec{r} \perp \vec{a}, \vec{b}, \vec{c}$ are coplaner
 $\therefore [\vec{a} \cdot \vec{b} \cdot \vec{c}] = 0$
16. If $\vec{a} + 2\hat{b} + 3\vec{c} = \vec{0}$, then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is equal to
(A) $(6\vec{b} \times \vec{c})$ (B) $6(\vec{c} \times \vec{a})$ (C) $6(\vec{a} \times \vec{b})$ (D) none of these
Key. A
Sol.
 $\vec{a} + 2\hat{b} + 3\vec{c} = \vec{0} \Rightarrow \vec{a} \times \vec{b} + 3\vec{c} \times \vec{b} = \vec{0}$ *i.e.* $\vec{a} \times \vec{b} = 3\vec{b} \times \vec{c}, \vec{a} \times \vec{c} + 2\vec{b} \times \vec{c} = \vec{0}$ *i.e.* $2\vec{b} \times \vec{c} = \vec{c} \times \vec{a}$
 $\therefore \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 3\vec{b} \times \vec{c} + 5\vec{b} \times \vec{c} = 6\vec{b} \times \vec{c}$
17. If $((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})) \cdot (\vec{a} \times \vec{d}) = 0$, then which of the following is always true
(A) $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are necessarily coplaner
(B) either \vec{a} or \vec{d} must lie in the plane of \vec{b} or \vec{c}
(C) either \vec{b} or \vec{c} must lie in place of \vec{a} and \vec{d}

(D) either
$$\vec{a}$$
 or \vec{b} must lie in plane of \vec{c} and \vec{d}
Key. C
Sol. $((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})) \cdot (\vec{a} \times \vec{d}) = 0$,
 $\Rightarrow ([\vec{a}\vec{c}\vec{d}]\vec{b} - [\vec{b}\vec{c}\vec{d}]\vec{a}) \cdot (\vec{a} \times \vec{d}) = 0$
 $\Rightarrow [\vec{a}\vec{c}\vec{d}][\vec{b}\vec{a}\vec{d}] = 0$
 $\Rightarrow \text{ either } \vec{c}$ and \vec{b} must lie in the plane of \vec{a} and \vec{d} .
18. Let $\vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2 (\vec{c} \times \vec{a})$ where \vec{a} \vec{b} \vec{c} are three noncoplanar
vectors. If \vec{r} is perpendicular to $\vec{a} + \vec{b} + \vec{c}$, then minimum value of $x^2 + y^2$ is.
(A) π^2 (B) $\frac{\pi^2}{4}$ (C) $\frac{5\pi^2}{4}$ (D) none of these
Key. C
Sol. $\vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2 (\vec{c} \times \vec{a})$
 $\vec{r} . (\vec{a} + \vec{b} + \vec{c}) = 0$
 $\Rightarrow [\vec{a} \cdot \vec{b}] (\sin x + \cos y + 2) = 0$
 $[\vec{a} \cdot \vec{b}] \neq 0 \Rightarrow \sin x + \cos y = -2$
this is possible only when $\sin x = -1$ and $\cos y = -1$
for $x^2 + y^2$ to be minimum $x = -\frac{\pi}{2}$ and $y = \pi$
 \Rightarrow minimum value of $(x^2 + y^2)$ is $= \frac{\pi^2}{4} + \pi^2 = \frac{5\pi^2}{4}$
19. The position vector of the centre of the circle $|\vec{r}| = 5, \vec{r} . (\hat{i} + \hat{j} + \hat{k}) = 3\sqrt{3}$
(A) $\hat{i} + \hat{j} + \hat{k}$ (B) $3 (\hat{i} + \hat{j} + \hat{k})$
(C) $(\sqrt{3} + \hat{i} + \hat{k})$ (D) None of these
Key. C
Sol. Centre of the circle is the foot of perpendicular drawn from origin to the plane $\vec{r} . (\hat{i} + \hat{j} + \hat{k}) = 3\sqrt{3}$
equation of perpendicular is $\vec{r} = \lambda(\hat{i} + \hat{j} + \hat{k})$
Let $\lambda(\hat{i} + \hat{j} + \hat{k})$ lie on the plane $\vec{r} . (\hat{i} + \hat{j} + \hat{k}) = 3\sqrt{3}$
 \therefore the centre is $\sqrt{3} (\hat{i} + \hat{j} + \hat{k})$

Mathematics

The locus represented by xy + yz = 0 is 20. (A) A pair of perpendicular lines (B) a pair of parallel lines (C) A pair of parallel planes (D) a pair of perpendicular planes Key. D Sol. xy + yz = 0y(x + z) = 0

y = 0 or x + z = 0 which is a pair of perpendicular planes. i.e.

8

Vectors Integer Answer Type

1. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors and

$$\left[\left(\vec{a} + \vec{b} \right) \times \left(\vec{b} - \vec{c} \right) \quad \left(\vec{b} + \vec{c} \right) \times \left(\vec{c} + \vec{a} \right) \quad \left(\vec{c} - \vec{a} \right) \times \left(\vec{a} + \vec{b} \right) \right] = \mathbf{K} \left[\vec{a} \ \vec{b} \ \vec{c} \right]^2 \text{ then value of K is } ?$$

Key. 4

Sol. $[(\vec{a} + \vec{b}) \times (\vec{b} - \vec{c}) \ (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}) \ (\vec{c} - \vec{a}) \times (\vec{a} + \vec{b})]$ = $[\vec{a} \times \vec{b} - \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \ - \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \ - \vec{a} \times \vec{b} - \vec{b} \times \vec{c} + \vec{c} \times \vec{a}]$ = $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{vmatrix}$ = $4 [\vec{a} \ \vec{b} \ \vec{c}]^2$

2. OABC is regular tetrahedron of unit edge length with volume V then $12\sqrt{2}V =$ Key. 2

Key. 2
Sol.
$$\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}^2 = \begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} & \overline{a} \cdot \overline{c} \\ \overline{b} \cdot \overline{a} & \overline{b} \cdot \overline{b} & \overline{b} \cdot \overline{c} \\ \overline{c} \cdot \overline{a} & \overline{c} \cdot \overline{b} & \overline{c} \cdot \overline{c} \end{vmatrix} = \begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{vmatrix} = \frac{1}{2}$$

 $\Rightarrow \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \frac{1}{\sqrt{2}} \text{ volume} = \frac{1}{6} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = \frac{1}{6\sqrt{2}}$
 $12\sqrt{2}V = 2$

3. Two points P and Q are given in the rectangular cartesian co-ordinate system on the curve $y = 2^{x} + 2^{x}$, such that $OP.\hat{i} = -1$ and $OQ.\hat{i} = 2$. The magnitude of the vector OQ-4OP is 10l where l = (where O is origin)

Key. 1

- Sol. Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ then $y_1 = 2^{x_1+2}$ and $y_2 = 2^{x_2+2}$ and $\overrightarrow{OP}.\hat{i} = -1$ **b** $(x_1\hat{i} + y_1\hat{i}).\hat{i} = -1$ **b** $x_1 = -1$ and correspondingly $y_1 = 2^{-1+2}$, i.e. $y_1 = 2$.
- 4. ABC is any triangle and O is any point in the plane of the same. If AO, BO and CO meet the sides BC, CA and AB in D,E,F respectively, then $\frac{OD}{AD} + \frac{OE}{BE} + \frac{OF}{CF} =$ _____.

Key. 1 Sol. $OD = x OA \not= r = -x a$

5. The vectors $\overline{a}, \overline{b} \otimes \overline{c}$ each two of which are non-collinear. If $\overline{a} + \overline{b}$ is collinear with $\overline{c}, \overline{b} + \overline{c}$ is collinear with $\overline{a} \otimes |\overline{a}| = |\overline{b}| = |\overline{c}| = \sqrt{2}$. Then the value of $|\overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a}| =$

Key. 3

Sol.
$$\overline{a} + \overline{b} = \lambda \overline{c}, \overline{b} + \overline{c} = m\overline{a}$$

 $\Rightarrow \overline{a} + \overline{b} + \overline{c} = \overline{0}$
 $\Rightarrow |\overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a}| = \left| -\frac{\left(|\overline{a}|^2 + |\overline{b}|^2 + |\overline{c}|^2 \right)}{2} \right| = 3$

6. The equation of conic section can also be given by two dimensional vectors. The vector equation of conic must be a relation satisfied by position vectors of all the points on the conic. The position vector of a general point may be taken as \vec{r} . The eccentricity of the conic $|\vec{r} - \hat{i} - \hat{j}| + |\vec{r} + \hat{i} + \hat{j}| = 3$ is "e" then $[\sqrt{2}e^{-1}]$ where [.] denotes greatest integer function

Key. 1

Sol. $e = 2\sqrt{2}/3$

- 7. Find the distance of the point $\hat{i}+2\hat{j}+3k$ from the plane $\vec{r}\cdot(\hat{i}+\hat{j}+k)=5$ measured parallel to the vector $2\hat{i}+3\hat{j}-6k$.
- Key. 7
- Sol. The distance of the point 'a' from the plane $\vec{r} \cdot \vec{n} = q$ measured in the direction of the unit vector b is $= \frac{q \vec{a} \cdot \vec{n}}{b \cdot \vec{n}}$

Here
$$\vec{a} = \hat{i} + 2\hat{j} + 3k$$
, $\vec{n} = \hat{i} + \hat{j} + k$ and $q = 5$
Also $b = \frac{2\hat{i} + 3\hat{j} - 6k}{\sqrt{(2)^2 + (3)^2 + (-6)^2}} = \frac{2\hat{i} + 3\hat{j} - 6k}{7}$
 \therefore The required distance
 $= \frac{5 - (\hat{i} + 2\hat{j} + 3k) \cdot (\hat{i} + \hat{j} + k)}{\frac{1}{7}(2\hat{i} + 3\hat{j} - 6k) \cdot (\hat{i} + \hat{j} + k)} = \frac{5 - (1 + 2 + 3)}{\frac{1}{7}(2 + 3 - 6)} = 7$

8. If $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar unit vectors equally inclined to one another at an acute angle θ , and if $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p \vec{a} + q \vec{b} + r \vec{c}$ then p - r =_____ $(p,q,r \in R)$

ans: 0.

Sol. taking dot product with
$$\vec{a} = \left[\vec{abc}\right] = p + q\cos\theta + r\cos\theta - --(1)$$

taking dot product with $\vec{c} = \left[\vec{abc}\right] = p\cos\theta + q\cos\theta + r - --(2)$
From (1) and (2) $p = r$.

9. Let A be a point on the line $\bar{r} = (-3\hat{i} + 6j + 3k) + t(2\hat{i} + 3j - 2k)$ and B be a point on the line $\bar{r} = 6j + s(2\hat{i} + 2j - k)$. The least value of the distance AB is ANS : 5

HINT Let
$$A_o = (-3, 6, 3), B_o = (0, 6, 0); \vec{c} = (2, 3, -2) \& \vec{d} = (2, 2, -1)$$

Then $AB_{min} = |proj \ of \ \overline{A_o B_o} \ on \ \vec{c} \times \vec{d}| = \frac{|(3, 0, -3).(1, -2, -2)|}{3} = 3$

10. If $\overline{a}, \overline{b}, \overline{c}$ are unit vectors such that \overline{a} is perpendicular to plane of \overline{b} and \overline{c} and the angle between $\overline{b} \& \overline{c}$ is $\frac{\pi}{3}$ the $\left|\overline{a} + \overline{b} + \overline{c}\right|$ is

Mathematics

KEY: 2 SOL: $|\overline{a}| = |\overline{b}| = |\overline{c}| = 1 \& \overline{a}.\overline{b} = 0 \& \overline{a}.\overline{c} = 0$ $\overline{b}.\overline{c} = |\overline{b}| |\overline{c}| \cos \frac{\pi}{3} = \frac{1}{2}.$ $\therefore |\overline{a} + \overline{b} + \overline{c}|^2 = 3 + 2.0 + 2.0 + 1 = 4$ $\therefore |\overline{a} + \overline{b} + \overline{c}| = 2$

11. Find the distance of the point $\hat{i} + 2\hat{j} + 3k$ from the plane $\vec{r} \cdot (\hat{i} + \hat{j} + k) = 5$ measured parallel to the vector $2\hat{i} + 3\hat{j} - 6k$.

Key.

7

Sol. The distance of the point 'a' from the plane $\vec{r}.\vec{n} = q$ measured in the direction of the unit

vector b is
$$= \frac{q-a.n}{b.n}$$

Here $\vec{a} = \hat{i} + 2\hat{j} + 3k$, $\vec{n} = \hat{i} + \hat{j} + k$ and $q = 5$
Also $b = \frac{2\hat{i} + 3\hat{j} - 6k}{\sqrt{(2)^2 + (3)^2 + (-6)^2}} = \frac{2\hat{i} + 3\hat{j} - 6k}{7}$
 \therefore The required distance
 $= \frac{5 - (\hat{i} + 2\hat{j} + 3k) \cdot (\hat{i} + \hat{j} + k)}{\frac{1}{7}(2\hat{i} + 3\hat{j} - 6k) \cdot (\hat{i} + \hat{j} + k)} = 7$
 $\frac{5 - (1 + 2 + 3)}{\frac{1}{7}(2 + 3 - 6)} = 7$

12. The projection length of a variable vector $\hat{x}\hat{i} + \hat{y}\hat{j} + \hat{z}\hat{k}$ on the vector $\vec{p} = \hat{i} + 2\hat{j} + 3\hat{k}$ is 6. Let ℓ be the minimum projection length of the vector $x^2\hat{i} + y^2\hat{j} + z^2\hat{k}$ on the vector \vec{p} , then the value of $\sqrt[3]{l^2 + 15^2}$ is

Key. 9
Sol. Projection length =
$$|\vec{a}.\vec{p}|$$

So, $\frac{|x+2y+3z|}{\sqrt{14}} = 6$
 $\Rightarrow |x+2y+3z| = 6\sqrt{14}$
 $\Rightarrow |(x\hat{i}+\sqrt{2}y\hat{j}+\sqrt{3}z\hat{k}).(\hat{i}+\sqrt{2}\hat{j}+\sqrt{3}\hat{k})| = 6\sqrt{14}$
 $\Rightarrow (x^2+2y^2+3z^2)(1+2+3)\cos^2\theta = (6\sqrt{14})^2$
 $\Rightarrow \frac{x^2+2y^2+3z^2}{\sqrt{14}} \ge 6\sqrt{14} \Rightarrow l = 6\sqrt{14}$
So, $(l^2+15^2)^{1/3} = (504+225)^{1/3} = (729)^{1/3} = 9.$

Non-zero vectors $\vec{a}, \vec{b}, \vec{c}_{\text{satisfy}} \vec{a}.\vec{b} = 0$, $(\vec{b}-\vec{a}).(\vec{b}+\vec{c}) = 0$ and $2|\vec{b}+\vec{c}|=|\vec{b}-\vec{a}|$. If 13. $\vec{a} = \mu \vec{b} + 4\vec{c}$ then the value of μ is Key. 0 $\vec{c} = \frac{\vec{a} - \mu \vec{b}}{4}$ and $\vec{a} \cdot \vec{b} = 0$ Sol. Now, $(\vec{b}-\vec{a})\cdot(\vec{b}+\vec{c})=0 \Rightarrow (\vec{b}-\vec{a})\cdot(\vec{b}+\frac{\vec{a}-\mu\vec{b}}{4})=0$ \Rightarrow (4 – μ) b² = a² ($\therefore \mu < 4$) ... (i) Again $4|\vec{b}+\vec{c}|^2 = |\vec{b}-\vec{a}|^2 \Rightarrow 4\left|\frac{(4-\mu)\vec{b}+\vec{a}}{4}\right|^2 = |\vec{b}-\vec{a}|^2$ $\Rightarrow 4\left(\frac{4-\mu}{4}\right)^2 b^2 + \frac{a^2}{4} = b^2 + a^2 \implies ((4-\mu)^2 - 4)b^2 = 3a^2 \dots (ii)$ (i) & (ii) we get $\frac{(4-\mu)^2-4}{4-\mu} = \frac{3}{1} \Rightarrow \mu^2 - 5\mu = 0$ $\Rightarrow \mu = 0 \text{ or } 5 \text{ but as } \mu < 4, \text{ so, } \mu = 0.$

Angle θ is made by line of intersection of planes $\vec{r} \cdot (\hat{i} + 2j + 3k) = 0$ and 14.

$$\vec{r} \cdot (3\hat{i} + 3j + k) = 0$$
 with j , where $\cos \theta = \sqrt{\frac{\lambda}{3}}$, then λ is

Ans.

2 Sol. Conceptual