Vectors
 Single Correct Answer Type

1. $\mathrm{P}(\mathrm{i}-\mathrm{j}+3 \mathrm{k}) \& \mathrm{Q}(3 \mathrm{i}+3 \mathrm{j}+3 \mathrm{k})$ are two points in space. Equation of a plane is $\bar{r} \cdot(5 i+2 j-7 k)+9=0$, then the points $\mathrm{P} \& \mathrm{Q}$
a) Lie on same side and equidistant from the plane.
b) Lie on either side and equidistant from the plane.
c) Lie on same side of a plane \& at unequal distances from the plane
d) Lie on opposite side \& at unequal distances from the plane

Key. B
Sol. $\bar{r} \cdot \bar{m}=d, A(\bar{a})$ distance from $A(\bar{a})$ to the plane $\bar{r} \cdot \bar{m}=d$ is $\frac{\bar{d}-\bar{a} \cdot \bar{m}}{|\bar{m}|}$
If $A(\bar{a})=i-j+3 k$ then $d=\frac{9}{\sqrt{78}}$
If $A(\bar{a})=3 i+3 j+3 k$ then $d=\frac{-9}{\sqrt{78}}$
2. The length of the perpendicular from the origin to the plane passing through the point \bar{a} \& containing the line $\bar{r}=\bar{b}+\lambda \bar{c}$ is
a) $\frac{[\bar{a} \bar{b} \bar{c}]}{|\bar{a} \times \bar{b}+\bar{b} \times \bar{c}+\bar{c} \times \bar{a}|}$
b) $\frac{[\bar{a} \bar{b} \bar{c}]}{|\bar{a} \times \bar{b}+\bar{b} \times \bar{c}|}$
c) $\frac{[\bar{a} \bar{b} \bar{c}]}{|\bar{b} \times \bar{c}+\bar{c} \times \bar{a}|}$
d) $\frac{[\bar{a} \bar{b} \bar{c}]}{|\bar{c} \times \bar{a}+\bar{a} \times \bar{b}|}$

Key. C
Sol. Given plane passes through $\bar{a} \& \vec{b}$ containing the line is $\left[\begin{array}{l}\overline{A P} \\ \overline{A B} \\ \vec{c}\end{array}\right]=0$

$$
\begin{aligned}
& \Rightarrow(\bar{r}-\bar{a}) \cdot((\bar{b}-\bar{a}) \times \bar{c})=0 \\
& \Rightarrow \bar{r} \cdot(\bar{b} \times \bar{c}+\bar{c} \times \bar{a})=[\bar{a} \bar{b} \bar{c}]
\end{aligned}
$$

length of \perp^{r} from the origin $=\frac{[\bar{a} \bar{b} \bar{c}]}{|\bar{b} \times \bar{c}+\bar{c} \times \bar{a}|}$
3. Equation of the plane through $(3,4,-1)$ which is parallel to the plane

$$
\bar{r} \cdot(2 \bar{i}-3 \bar{j}+5 \bar{k})+7=0 \text { is }
$$

1. $\bar{r} \cdot(2 \bar{i}-3 \bar{j}+5 \bar{k})+11=0$
2. $\bar{r} \cdot(3 \bar{i}+4 \bar{j}-\bar{k})+11=0$
3. $\bar{r} \cdot(3 \bar{i}+4 \bar{j}-\bar{k})+7=0$
4. $\bar{r} \cdot(2 \bar{i}-3 \bar{j}+5 \bar{k})-7=0$

Key. 1
Sol. Equation of any plane parallel to the given plane is $r .(2 i-3 j+5 k)+\lambda=0$.

If $r=x i+y i+z k$, we get $2 x-3 y+5 k+\lambda=0$

This plane passes through the point $(3,4,-1)$ if $2 \times 3-3 \times 4+5(-1)+\lambda=0$ or it $x=11$ and hence the equation of the required plane is $r \cdot(2 i-3 j+5 k)+11=0$
4. Let $\bar{a}=\bar{i}+\bar{j}+\bar{k}, \bar{b}=\bar{i}-\bar{j}+2 \bar{k}$ and $\bar{c}=x \bar{i}+(x-2) \bar{j}-\bar{k}$. If the vector \bar{c} lies in the plane of \bar{a} and \bar{b}, then x equals

1. 0
2. 1
3. -4
4. -2

Key. 4
Sol. Since the three vectors are coplanar $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 2 \\ x & x-2 & -1\end{array}\right|=0$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
1 & 0 & 0 \\
1 & -2 & 1 \\
x & -2 & -1-x
\end{array}\right|=0 \\
& \Rightarrow-2(-1-x)+2=0 \quad \Rightarrow \quad x=-2
\end{aligned}
$$

5. Equation of the plane containing the lines $\bar{r}=\bar{i}+2 \bar{j}-\bar{k}+\lambda(\bar{i}+2 \bar{j}-\bar{k})$ and $\bar{r}=\bar{i}+2 \bar{j}-\bar{k}+\mu(\bar{i}+\bar{j}+3 \bar{k})$ is
6. $\bar{r} \cdot(7 \bar{i}-4 \bar{j}-\bar{k})=0$
7. $7(x-1)-4(y-1)-(z+3)=0$
8. $\bar{r} \cdot(\bar{i}+2 \bar{j}-\bar{k})=0$
9. $\bar{r} \cdot(\bar{i}+\bar{j}+3 \bar{k})=0$

Key. 1
Sol. Since both the given lines pass through the point with position vector $i+2 j-k$, the required plane also passes through $i+2 j-k$ and normal to the plane is perpendicular to
the vectors $i+2 j-k$ and $i+j+3 k$. If $d=a i+b j+c k$ is normal to the required plane, then $a+2 b-c=0$ and $a+b+3 c=0$

$$
\Rightarrow \frac{a}{7}=\frac{b}{-4}=\frac{c}{-1} \Rightarrow d=7 i-4 j-k
$$

So the required plane passes through $i+2 j-k$ and the normal to plane is $7 i-4 j-k$, hence required equation is $[r-(i+2 j-k)] .(7 i-4 j-k)=0$
$r .(7 i-4 j-k)=1 \times 7+2(-4)+(-1)(-1)=0$
Also since the required plane passes through $i+2 j-k$, i.e. the point $-(1,2,-1)$ and the direction ratios of the normal to the plane are $7,-4,-1$, the equation of the plane in Cartesian form can be written as $7(x-1)-4(y-2)-(z+1)=0$

Use the result number 11 given in vectorial equations.
6. The Cartesian equation of the plane passing through the line of intersection of the planes $r .(2 i-3 j+4 k)=1$ and $r .(i-j)+4=0$ and perpendicular to the plane $r .(2 i-j+k)+8=0$ is

1. $3 x-4 y+4 z=5$
2. $x-2 y+4 z=3$
3. $5 x-2 y-12 z+47=0$
4. $2 x+3 y+4=0$

Key. 3
Sol. Equation of any plane passing through the intersection of the planes $r \cdot(2 i-3 j+4 k)=1$ and $r .(i-j)+4=0$ is $2 x-3 y+4 z-1+\lambda(x-y+4)=0$ or $(2+\lambda) x-(3+\lambda) y+4 z+4 \lambda-1=0$

The plane is perpendicular to the plane $r \cdot(2 i-j+k)+8=0$ if
$\Rightarrow 2(2+\lambda)+(3+\lambda) 4=0$.
$\Rightarrow 11+3 \lambda=0 \Rightarrow \lambda=-11 / 3$. and the required equation of the plane is
$3(2 x-3 y+4 z-1)-11(x-y+4)=0 \Rightarrow 5 x-2 y-12 z+47=0$
7. If the vector $2 i-3 j+7 k$ is inclined at angles α, β, γ with the coordinate axes, then

1. $3 \cos \alpha=2 / \sqrt{62}$
2. $2 \cos \beta=-3 / \sqrt{62}$
3. $\cos \gamma=7 / \sqrt{62}$
4. $2 \cos \alpha=-3 \cos \beta=7 \cos \gamma$

Key. 3
Sol. $\quad \cos \alpha=2 / \sqrt{62}, \cos \beta=-3 \sqrt{62}, \cos \gamma=7 / \sqrt{62}$.
8. If $\bar{r} \cdot \bar{n}=q$ is the equation of a plane normal to the vector \bar{n} then the length of the perpendicular from the origin on the plane is

1. $|q|$
2. $|\bar{n}|$
3. $|q \| \bar{n}|$
4. $\frac{|q|}{|\bar{n}|}$

Key. 4
Sol. Equation of the plane is $r \cdot \frac{n}{|x|}=\frac{q}{|n|}$ i.e., $r . n=\frac{q}{|n|}$. So the required length $=q /|n|$.
9. If $\alpha(\overline{\mathrm{a}} \times \overline{\mathrm{b}})+\beta(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\gamma(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\overline{0}$, Then
(A) $\bar{a}, \bar{b}, \bar{c}$ are coplanar only if none of a, b, g is zero
(B) $\bar{a}, \bar{b}, \bar{c}$ are coplanar if atleast one of a, b, g is non zero
(C) $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar for any α, β, γ
(D) none of these

Key. B
Sol. We have

$$
\alpha(\overline{\mathrm{a}} \times \overline{\mathrm{b}})+\beta(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\gamma(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\overline{0}
$$

Taking dot product with c , we have

$$
\alpha[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]+\beta[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{c}}]+\gamma[\overline{\mathrm{c}} \overline{\mathrm{a}} \overline{\mathrm{c}}]=0
$$

i.e. $\quad \alpha[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]+0+0=0$
i.e., $\quad \alpha[\bar{a} \bar{b} \bar{c}]=0$

Similarly, taking dot product with b and c, we have Now, even if one of $\alpha, \beta, \gamma \neq 0$, then we have $[\mathrm{abc}]=0$
$\Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c}$ are coplanar
10. If \bar{a} and \bar{b} are unit vectors and \bar{c} is a vector such that $\bar{c}=\bar{a} \times \bar{c}+\bar{b}$ then
(A) $[\bar{a} \bar{b} \bar{c}]=\bar{b} \cdot \bar{c}-(\bar{a} \cdot \bar{b})^{2}$
(B) $[\bar{a} \bar{b} \bar{c}]=0$
(C) Maximum value of $[\bar{a} \bar{b} \bar{c}]=\frac{1}{2}$
(D) Minimum value of $[\bar{a} \bar{b} \bar{c}]$ is $\frac{1}{2}$

Key. A,C
Sol. $\quad \bar{c} \cdot \bar{a}=((\bar{a} x \bar{c})+\bar{b}) \cdot \bar{a}=\bar{b} \cdot \bar{a}$
$\bar{b} \times \bar{c}=(\bar{b} \cdot \bar{c})+\bar{a}-(\bar{a}-\bar{b}) \cdot \bar{c}$
$\therefore[\bar{a} \bar{b} \bar{c}]=\bar{b} \cdot \bar{c}-(\bar{a}-\bar{b}) \cdot(\bar{a} \cdot \bar{c})$
Also $\bar{c} \cdot \bar{b}=1-[\bar{a} \bar{b} \bar{c}]$
$\therefore 2[\bar{a} \bar{b} \bar{c}]=1-(\bar{a} \cdot \bar{b})^{2} \leq 1$
$\therefore[\bar{a} \bar{b} \bar{c}] \leq \frac{1}{2}$
11. If the four faces of a tetrahedron are represented by the equations $\bar{r} \cdot(\alpha \bar{i}+\beta \bar{j})=0, \bar{r} \cdot(\beta \bar{j}+\gamma \bar{k})=0, \bar{r} \cdot(\gamma \bar{k}+\alpha \bar{i})=0$ and $\bar{r} \cdot(\alpha \bar{i}+\beta \bar{j}+\gamma \bar{k})=P$
then volume of the tetrahedron (in cubic units) is
a) $\left|\frac{P^{3}}{6 \alpha \beta \gamma}\right|$
b) $\left|\frac{4 P^{3}}{6 \alpha \beta \gamma}\right|$
c) $\left|\frac{3 P^{3}}{6 \alpha \beta \gamma}\right|$
d) none of these

Key. B
Sol. Conceptual
12. A non-zero vector \vec{a} is parallel to the line of intersection of the plane P_{1} determined by $\hat{i}+\hat{j}$ and $\hat{i}+2 \hat{j}$ and plane P_{2} determined by vector $2 \hat{i}-\hat{j}$ and $3 \hat{i}+2 \hat{k}$, then angle between \vec{a} and $\hat{i}-2 \hat{j}+2 \hat{k}$ vector is
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) none of these

Key. D
Sol. Conceptual
13. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \vec{b} \vec{b}^{\prime}=\hat{i}+\hat{j}+2 \hat{k} \& \vec{c}^{\prime}=2 \hat{i}+\hat{j}-\hat{k}$. Then altitude of the parallelpiped formed by the vectors
$\vec{a}, \vec{b}, \vec{c}$ having base formed by $\vec{b} \& \vec{c}$ is ($\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors)
(A) 1
(B) $\frac{3 \sqrt{2}}{2}$
(C) $\frac{1}{\sqrt{6}}$
(D) $\frac{1}{\sqrt{2}}$

Key. D
Sol. Volume of the parallelepiped formed by $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ is 4
\therefore Volume of the parallelepiped formed by $\vec{a}, \vec{b}, \vec{c}$ is $\frac{1}{4}$
$\vec{b} \times \vec{c}=\frac{\left(\vec{c}^{\prime} \times \vec{a}^{\prime}\right) \times \vec{c}}{4}=\frac{1}{4} \vec{a}^{\prime}$
$\therefore|\vec{b} \times \vec{c}|=\frac{\sqrt{2}}{4}=\frac{1}{2 \sqrt{2}}$
\therefore length of altitude $=\frac{1}{4} \times 2 \sqrt{2}=\frac{1}{\sqrt{2}}$.
14. A unit vector \vec{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j} \& \vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that $\vec{a}^{\wedge} \vec{b}=\vec{a} \wedge \vec{d}$ where $\overrightarrow{\mathrm{d}}=\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ is
(A) $\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}$
(B) $\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}$
(C) $\frac{2 \hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{5}}$
(D) $\frac{2 \hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{5}}$

Key. B
Sol. Let $\vec{a}=\lambda \vec{b}+\mu \vec{c}, \quad$ then $\frac{\vec{a} \cdot \vec{b}}{a b}=\frac{\vec{a} \cdot \vec{d}}{a d}$
i.e. $\frac{(\lambda \vec{b}+\mu \vec{c}) \cdot \vec{b}}{b}=\frac{(\lambda \vec{b}+\mu \vec{c}) \cdot \vec{d}}{d}$
i.e. $\frac{[\lambda(2 \hat{i}+j)+\mu(\hat{i}-j+k)] \cdot(2 \hat{i}+j)}{\sqrt{5}}=\frac{[\lambda(2 \hat{i}+j)+\mu(\hat{i}-j+k)] \cdot(\hat{i}+2 k)}{\sqrt{5}}$
i.e. $\lambda(4+1)+\mu(2-1)=\lambda(1)+\mu(-1+2) \quad$ i.e. $\quad 41=0$ i.e. $\quad 1=0$
$\therefore \vec{a}=\frac{\hat{i}-j+k}{\sqrt{3}}$
15. Let $\vec{r}, \vec{a}, \vec{b} \& \vec{c}$ be four non-zero vector such that $\overrightarrow{\mathbf{r}} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}\|\vec{b}|,|\vec{r} \times \vec{c}|=|\vec{r} \| \overrightarrow{\mathrm{c}}|$, then [abc] =
(A) $|a||b||c|$
(B) - $|\mathrm{a}||\mathrm{b}||\mathrm{c}|$
(C) 0
(D) none of these

Key. C
Sol. $\quad \vec{r} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}| \&|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$
$\Rightarrow \vec{r} \perp \vec{a}, \vec{b}, \vec{c}$
$\therefore \vec{a}, \vec{b}, \vec{c}$ are coplaner
$\therefore[\vec{a} \vec{b} \vec{c}]=0$
16. If $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is equal to
(A) $6(\vec{b} \times \vec{c})$
(B) $6(\vec{c} \times \vec{a})$
(C) $6(\vec{a} \times \vec{b})$
(D) none of these

Key. A
Sol.
$\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0} \Rightarrow \vec{a} \times \vec{b}+3 \vec{c} \times \vec{b}=\overrightarrow{0}$ i.e. $\vec{a} \times \vec{b}=3 \vec{b} \times \vec{c}, \vec{a} \times \vec{c}+2 \vec{b} \times \vec{c}=\overrightarrow{0}$ i.e. $2 \vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
$\therefore \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=3 \vec{b} \times \vec{c}+\vec{b} \times \vec{c}+2 \vec{b} \times \vec{c}=6 \vec{b} \times \vec{c}$
17. If $((\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})) \cdot(\vec{a} \times \vec{d})=0$, then which of the following is always true
(A) $\vec{a}, b, \vec{c}, \vec{d}$ are necessarily coplaner
(B) either \vec{a} or \vec{d} must lie in the plane of \vec{b} or \vec{c}
(C) either \vec{b} or \vec{c} must lie in place of \vec{a} and \vec{d}
(D) either \vec{a} or \vec{b} must lie in plane of \vec{c} and \vec{d}

Key. C
Sol. $\quad((\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})) \cdot(\vec{a} \times \vec{d})=0$,
$\Rightarrow([\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a}) \cdot(\vec{a} \times \vec{d})=0$
$\Rightarrow[\vec{a} \vec{c} \vec{d}][\vec{b} \vec{a} \vec{d}]=0$
\Rightarrow either \vec{c} and \vec{b} must lie in the plane of \vec{a} and \vec{d}.
18. Let $\vec{r}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$ where $\vec{a} \vec{b} \vec{c}$ are three noncoplanar vectors. If \vec{r} is perpendicular to $\vec{a}+\vec{b}+\vec{c}$, then minimum value of $x^{2}+y^{2}$ is
(A) π^{2}
(B) $\frac{\pi^{2}}{4}$
(C) $\frac{5 \pi^{2}}{4}$
(D) none of these

Key. C
Sol. $\quad \vec{r}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$
$\vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})=0$
$\Rightarrow \quad[\vec{a} \vec{b} \vec{c}](\sin x+\cos y+2)=0$
$[\vec{a} \vec{b} \vec{c}] \neq 0 \quad \Rightarrow \quad \sin x+\cos y=-2$
this is possible only when $\sin x=-1$ and $\cos y=-1$
for $x^{2}+y^{2}$ to be minimum $x=-\frac{\pi}{2}$ and $y=\pi$
$\Rightarrow \quad$ minimum value of $\left(x^{2}+y^{2}\right)$ is $=\frac{\pi^{2}}{4}+\pi^{2}=\frac{5 \pi^{2}}{4}$
19. The position vector of the centre of the circle $|\overrightarrow{\mathrm{r}}|=5, \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=3 \sqrt{3}$
(A) $\hat{i}+\hat{j}+\hat{k}$
(B) $3(\hat{i}+\hat{j}+\hat{k})$
(C) $(\sqrt{3}+\hat{i}+\hat{k})$
(D) None of these

Key. C
Sol. Centre of the circle is the foot of perpendicular drawn from origin to the plane $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=3 \sqrt{3}$
equation of perpendicular is $\overrightarrow{\mathrm{r}}=\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
Let $\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ lie on the plane $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=3 \sqrt{3}$
$\therefore \quad 3 \lambda=3 \sqrt{3} \quad$ i.e. $\quad \lambda=\sqrt{3}$
$\therefore \quad$ the centre is $\sqrt{3}(\hat{i}+\hat{j}+\hat{k})$
20. The locus represented by $x y+y z=0$ is
(A) A pair of perpendicular lines
(B) a pair of parallel lines
(C) A pair of parallel planes
(D) a pair of perpendicular planes

Key. D
Sol. $\quad x y+y z=0$
$y(x+z)=0$
i.e. $\quad y=0$ or $x+z=0$ which is a pair of perpendicular planes.

Vectors
 Integer Answer Type

1. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and

$$
[(\vec{a}+\vec{b}) \times(\vec{b}-\vec{c})(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})(\vec{c}-\vec{a}) \times(\vec{a}+\vec{b})]=K[\vec{a} \vec{b} \vec{c}]^{2} \text { then value of } K \text { is ? }
$$

Key. 4
Sol. $\quad[(\vec{a}+\vec{b}) \times(\vec{b}-\vec{c})(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})(\vec{c}-\vec{a}) \times(\vec{a}+\vec{b})]$

$$
=\left[\begin{array}{lll}
\vec{a} \times \vec{b}-\vec{b} \times \vec{c}+\vec{c} \times \vec{a} & -\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} & -\vec{a} \times \vec{b}-\vec{b} \times \vec{c}+\vec{c} \times \vec{a}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
\vec{a} \times \vec{b} & \vec{b} \times \vec{c} \quad \vec{c} \times \vec{a}
\end{array}\right]\left|\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right|
$$

$$
=4[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}} \overrightarrow{\mathrm{c}}]^{2}
$$

2. OABC is regular tetrahedron of unit edge length with volume V then $12 \sqrt{2} V=$ Key. 2
Sol. $\quad\left[\begin{array}{llll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]^{2}=\left|\begin{array}{llll}\bar{a} \cdot \bar{a} & \bar{a} \cdot \bar{b} & \bar{a} \cdot \bar{c} \\ \bar{b} \cdot \bar{a} & \bar{b} \cdot \bar{b} & \bar{b} \cdot \bar{c} \\ \bar{c} \cdot \bar{a} & \bar{c} \cdot \bar{b} & \bar{c} \cdot \bar{c}\end{array}\right|=\left|\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1\end{array}\right|=\frac{1}{2}$

$12 \sqrt{2} V=2$
3. Two points P and Q are given in the rectangular cartesian co-ordinate system on the curve $\mathrm{y}=2^{\mathrm{X}}$ +2 , such that $\stackrel{\text { und }}{O P} \cdot \hat{i}=-1$ and $\stackrel{\text { unum }}{O Q} \cdot \hat{i}=2$. The magnitude of the vector $O Q-4 O P$ inum $10 l$ where $l=$ (where O is origin)
Key. 1
Sol. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ then $y_{1}=2^{x_{1}+2}$ and $y_{2}=2^{x_{2}+2}$ and $\overrightarrow{O P} . \hat{i}=-1$
b $\left(x_{1} \hat{i}+y_{1} \hat{i}\right) \cdot \hat{i}=-1 \mathrm{~B} \quad x_{1}=-1$
and correspondingly $y_{1}=2^{-1+2}$, ie. $\mathrm{y}_{1}=2$.
4. ABC is any triangle and O is any point in the plane of the same. If AO, BO and CO meet the sides BC, CA and AB in D,E,F respectively, then $\frac{O D}{A D}+\frac{O E}{B E}+\frac{O F}{C F}=$ \qquad -
Key. 1
Sol. $\stackrel{\text { um }}{O D}=x \stackrel{\text { unt }}{O A} \stackrel{\stackrel{1}{r}}{r}=-x \stackrel{\mathrm{r}}{a}$
$\mathrm{Q} \bar{a}, \bar{b}, \bar{c}$ are coplanor
$l \stackrel{\mathrm{r}}{x}+m \stackrel{\mathrm{l}}{b}+n \stackrel{\mathrm{r}}{c}=0$

$\stackrel{\text { üu }}{A D}=-\stackrel{\mathrm{r}}{a}_{a}-\stackrel{\mathrm{r}}{a}=-(x+1) \stackrel{\mathrm{r}}{a}$
\ $\frac{O D}{A D}=\frac{+x}{x+1}=\frac{l}{l+m+n}$. Similary $\frac{O E}{B E}=\frac{m}{l+m+n}, \frac{O F}{C F}=\frac{n}{l+m+n}$
\} \frac { O D } { A D } + \frac { O E } { B E } + \frac { O C } { C A } = 1
5. The vectors $\bar{a}, \bar{b} \& \bar{c}$ each two of which are non-collinear. If $\bar{a}+\bar{b}$ is collinear with $\bar{c}, \bar{b}+\bar{c} \quad$ is collinear with $\quad \bar{a} \&|\bar{a}|=|\bar{b}|=|\bar{c}|=\sqrt{2}$. Then the value of $|\bar{a} \cdot \bar{b}+\bar{b} \cdot \bar{c}+\bar{c} \cdot \bar{a}|=$
Key. 3
Sol. $\bar{a}+\bar{b}=\lambda \bar{c}, \bar{b}+\bar{c}=m \bar{a}$
$\Rightarrow \bar{a}+\bar{b}+\bar{c}=\overline{0}$
$\Rightarrow|\bar{a} \cdot \bar{b}+\bar{b} \cdot \bar{c}+\bar{c} \cdot \bar{a}|=\left|-\frac{\left(|\bar{a}|^{2}+|\bar{b}|^{2}+|\bar{c}|^{2}\right)}{2}\right|=3$
6. The equation of conic section can also be given by two dimensional vectors. The vector equation of conic must be a relation satisfied by position vectors of all the points on the conic. The position vector of a general point may be taken as \vec{r}.The eccentricity of the conic $|\vec{r}-\hat{i}-\hat{j}|+|\vec{r}+\hat{i}+\hat{j}|=3$ is "e" then $\left[\sqrt{2} e^{-1}\right]$ where [.] denotes greatest integer function

Key. 1
Sol. $e=2 \sqrt{2} / 3$
7. Find the distance of the point $\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \mathrm{k}$ from the plane $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\mathrm{k})=5$ measured parallel to the vector $2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \mathrm{k}$.

Key. 7
Sol. The distance of the point ' a ' from the plane $\vec{r} \cdot \vec{n}=q$ measured in the direction of the unit vector b is $=\frac{\mathrm{q}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}}{\mathrm{b} \cdot \overrightarrow{\mathrm{n}}}$
Here $\quad \vec{a}=\hat{i}+2 \hat{j}+3 k, \vec{n}=\hat{i}+\hat{j}+k$ and $q=5$
Also $\quad \mathrm{b}=\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \mathrm{k}}{\sqrt{(2)^{2}+(3)^{2}+(-6)^{2}}}=\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \mathrm{k}}{7}$
$\therefore \quad$ The required distance
$=\frac{5-(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \mathrm{k}) \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\mathrm{k})}{\frac{1}{7}(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \mathrm{k}) \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\mathrm{k})}$
$\frac{5-(1+2+3)}{\frac{1}{7}(2+3-6)}=7$
8. If $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar unit vectors equally inclined to one another at an acute angle θ, and if $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$ then $p-r=\quad(p, q, r \in R)$
ans: 0 .
Sol. taking dot product with $\overrightarrow{\mathrm{a}}=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=\mathrm{p}+\mathrm{q} \cos \theta+\mathrm{r} \cos \theta---(1)$
taking dot product with $\overrightarrow{\mathrm{c}}=[\overline{\mathrm{a} \overline{\mathrm{c}}}]=\mathrm{p} \cos \theta+\mathrm{q} \cos \theta+\mathrm{r}---(2)$
From (1) and (2) $\mathrm{p}=\mathrm{r}$.
9. Let A be a point on the line $\bar{r}=(-3 \hat{i}+6 j+3 k)+t(2 \hat{i}+3 j-2 k)$ and B be a point on the line $\bar{r}=6 j+s(2 \hat{i}+2 j-k)$. The least value of the distance $A B$ is

ANS : 5
HINT Let $A_{o}=(-3,6,3), B_{o}=(0,6,0) ; \bar{c}=(2,3,-2) \& \bar{d}=(2,2,-1)$
Then $\mathrm{AB}_{\text {min }}=\mid$ proj of $\overrightarrow{A_{o} B_{o}}$ on $\vec{c} \times \vec{d} \left\lvert\,=\frac{|(3,0,-3) \cdot(1,-2,-2)|}{3}=3\right.$
10. If $\bar{a}, \bar{b}, \bar{c}$ are unit vectors such that \bar{a} is perpendicular to plane of \bar{b} and \bar{c} and the angle between $\bar{b} \& \bar{c}$ is $\frac{\pi}{3}$ the $|\bar{a}+\bar{b}+\bar{c}|$ is

KEY: 2
$\mathrm{SOL}:|\bar{a}|=|\bar{b}|=|\bar{c}|=1 \& \bar{a} \cdot \bar{b}=0 \& \bar{a} \cdot \bar{c}=0$
$\bar{b} \cdot \bar{c}=|\bar{b}||\bar{c}| \cos \frac{\pi}{3}=\frac{1}{2}$.
$\therefore|\bar{a}+\bar{b}+\bar{c}|^{2}=3+2.0+2.0+1=4$
$\therefore|\bar{a}+\bar{b}+\bar{c}|=2$
11. Find the distance of the point $\hat{i}+2 \hat{j}+3 k$ from the plane $\vec{r} \cdot(\hat{i}+\hat{j}+k)=5$ measured parallel to the vector $2 \hat{i}+3 \hat{j}-6 k$.

Key. 7
Sol. The distance of the point ' a ' from the plane $\vec{r} \cdot \vec{n}=q$ measured in the direction of the unit vector b is $=\frac{q-\vec{a} \cdot \vec{n}}{b \cdot \vec{n}}$

Here $\quad \vec{a}=\hat{i}+2 \hat{j}+3 k, \vec{n}=\hat{i}+\hat{j}+k$ and $q=5$
Also $\quad \mathrm{b}=\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \mathrm{k}}{\sqrt{(2)^{2}+(3)^{2}+(-6)^{2}}}=\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \mathrm{k}}{7}$
$\therefore \quad$ The required distance
$=\frac{5-(\hat{i}+2 \hat{j}+3 k) \cdot(\hat{i}+\hat{j}+k)}{\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 k) \cdot(\hat{i}+\hat{j}+k)}$
$\frac{5-(1+2+3)}{\frac{1}{7}(2+3-6)}=7$
12. The projection length of a variable vector $x \hat{i}+y \hat{j}+z \hat{k}$ on the vector $\vec{p}=\hat{i}+2 \hat{j}+3 \hat{k}$ is 6 . Let ℓ be the minimum projection length of the vector $x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ on the vector \vec{p}, then the value of $\sqrt[3]{l^{2}+15^{2}}$ is
Key. 9
Sol. Projection length $=|\vec{a} \cdot \vec{p}|$
So, $\frac{|x+2 y+3 z|}{\sqrt{14}}=6$
$\Rightarrow|x+2 y+3 z|=6 \sqrt{14}$
$\Rightarrow|(x \hat{i}+\sqrt{2} \hat{y j}+\sqrt{3} z \hat{k}) \cdot(\hat{i}+\sqrt{2} \hat{j}+\sqrt{3} \hat{k})|=6 \sqrt{14}$
$\Rightarrow\left(\mathrm{x}^{2}+2 \mathrm{y}^{2}+3 \mathrm{z}^{2}\right)(1+2+3) \cos ^{2} \theta=(6 \sqrt{14})^{2}$
$\Rightarrow \frac{\mathrm{x}^{2}+2 \mathrm{y}^{2}+3 \mathrm{z}^{2}}{\sqrt{14}} \geq 6 \sqrt{14} \Rightarrow l=6 \sqrt{14}$
So, $\left(l^{2}+15^{2}\right)^{1 / 3}=(504+225)^{1 / 3}=(729)^{1 / 3}=9$.
13. Non-zero vectors $\vec{a}, \vec{b}, \vec{c}_{\text {satisfy }} \vec{a} \cdot \vec{b}=0,(\vec{b}-\vec{a}) \cdot(\vec{b}+\vec{c})=0$ and $2|\vec{b}+\vec{c}|=|\vec{b}-\vec{a}|$. If $\vec{a}=\mu \vec{b}+4 \vec{c}$ then the value of μ is
Key. 0
Sol. $\quad \overrightarrow{\mathrm{c}}=\frac{\overrightarrow{\mathrm{a}}-\mu \overrightarrow{\mathrm{b}}}{4}$ and $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=0$
Now, $(\vec{b}-\vec{a}) \cdot(\vec{b}+\vec{c})=0 \Rightarrow(\vec{b}-\vec{a}) \cdot\left(\vec{b}+\frac{\vec{a}-\mu \vec{b}}{4}\right)=0$
$\Rightarrow(4-\mu) \mathrm{b}^{2}=\mathrm{a}^{2}(\therefore \mu<4) \ldots$ (i)
Again $4|\vec{b}+\vec{c}|^{2}=|\vec{b}-\vec{a}|^{2} \Rightarrow 4\left|\frac{(4-\mu) \vec{b}+\vec{a}}{4}\right|^{2}=|\vec{b}-\vec{a}|^{2}$
$\Rightarrow 4\left(\frac{4-\mu}{4}\right)^{2} b^{2}+\frac{a^{2}}{4}=b^{2}+a^{2} \Rightarrow\left((4-\mu)^{2}-4\right) b^{2}=3 a^{2}$.
(i) \& (ii) we get $\frac{(4-\mu)^{2}-4}{4-\mu}=\frac{3}{1} \Rightarrow \mu^{2}-5 \mu=0$
$\Rightarrow \mu=0$ or 5 but as $\mu<4$, so, $\mu=0$.
14. Angle θ is made by line of intersection of planes $\vec{r} \cdot(\hat{i}+2 j+3 k)=0$ and $\vec{r} \cdot(3 \hat{i}+3 j+k)=0$ with j, where $\cos \theta=\sqrt{\frac{\lambda}{3}}$, then λ is
Ans. 2
Sol. Conceptual

