Sets & Relations, Mathematical Induction, Mathematical Reasoning

Single Correct Answer Type

- 1. If p, q, r are three propositions then the negation of p $\, {
 m e} \,$ (q $\, U$ r) is logically equivalent to
 - (a) $(pv \sim q)\dot{U}(pv \sim r)$ (b) $(p\dot{U} \sim q)v(p\dot{U} \sim r)$

(c)
$$(\sim pvq)\dot{U}(\sim pvr)$$
(d) $(\sim p\dot{U}q)v(\sim p\dot{U}r)$

Key.

В

2. If the inverse of the conditional p \mathbb{R} (~ $q\dot{U}$ ~ r) is false, then the truth values of the proportions p,q,r are respectively

- (a) T,T,T (b) T,F,F (c) F,T,T (d) F,F,F
- Key.

D

Sol. The inverse of given conditional is $\sim p \otimes \sim (\sim q \dot{U} \sim r)^{\circ} \sim p \otimes (q \dot{U} r)$. This is false implies that $\sim p$ is true and $(q \dot{U} r)$ is false $\setminus p$ is false and each of q,r is false.

3.
$$S-1: \sim (\sim p \ll \sim r)^{\circ} p \ll q$$

$$S-1: \sim p \ll \sim q^{\circ} (pv \sim q)\dot{U}(qv \sim p)$$
Which of the following is true about above two statements S-1 and S-11.
(a) Both S-1, S-11 are true and S-11 is a correct explanation of S-1.
(b) Both S-1, S-11 are true, but S-11 is not a correct explanation of S-1.
(c) S-1 is true and S-11 is false
(d) S-1 is false and S-11 is true
Key. D
Sol.
$$S-1: \sim (\sim p \ll \sim q)^{\circ} \sim \{(\sim p \otimes q)\dot{U}(\sim q \otimes p)\}$$

$$\circ \sim \{(p\dot{U}\sim q)\dot{U}(q\dot{U}\sim p)\}$$

$$\circ (\sim p\dot{U}q)\dot{U}(\sim q\dot{U}p)$$
But $p \ll q^{\circ} (p \otimes q)\dot{U}(q \otimes p)^{\circ} (\sim p\dot{U}q)\dot{U}(\sim q\dot{U}p)$

$$\sqrt{S-I}$$
 is false

$$\begin{split} & \mathsf{S-H}: \sim p \ll \sim q^\circ \ (\sim p \ \mathbb{R} \sim q) \dot{U} (\sim q \ \mathbb{R} \sim p)^\circ \ (p \dot{U} \sim q) \dot{U} (q \dot{U} \sim p) \\ & \backslash \ \ \mathsf{S-H} \text{ is true} \end{split}$$

4. $((p \ \mathbb{R} \ q)) \dot{U}(\sim p \ \mathbb{R} \ q)) \mathbb{R} \ q$ is logically equivalent to

(a) a tautology

(c) (~ pvp)® q

(d)
$$(pU \sim p) \mathbb{R} q$$

Sets & Relations, Mathematical Induction, Mathematical Reasoning Mathematics Key. А $((p \mathbb{R} q)\dot{U}(\sim p \mathbb{R} q))\mathbb{R} q$ Sol. ° (~pÚq)Ù(pÚq)® q ° (~pÙq)Úq ®° cÚq ® q° q ® q° ~qÚq° t 5. Which of the following is a contradiction? (a) $p \mathbb{R} (q \mathbb{R} p)$ (b) $p \otimes (p v q)$ (d) $(pv \sim p) \mathbb{R} (q\dot{U} \sim q)$ (c) $(p v q) \mathbb{R} (\sim p \dot{U} \sim q)$ Key. a) $p \otimes (q \otimes p)^{\circ} p \otimes (\sim q \acute{U}p)^{\circ} \sim p \acute{U}(\sim q \acute{U}p)^{\circ} (\sim p \acute{U}p)\acute{U} \sim q^{\circ} t\acute{U} \sim q^{\circ} t$ Sol. b) $p \otimes (p U q)^{\circ} \sim p U (p U q)^{\circ} t U q^{\circ} t$ c) pÚq ℝ (~pÙ~q)° ~(pÚq)Ú(~(pÚq))° ~(pÚq) d) $(p\dot{U} \sim p)$ ($q\dot{U} \sim q$)° t ® c° (~ t \dot{U} c)° c \dot{U} c° c Let 'A' be a non-empty sub-set of R. Let 'P' be the statement "There is a rational number $\, x \, \widehat{I} \, \, A \,$ such that 6. $2x - 1^3 0^{\prime\prime}$. Which of the following statements is the negation of the statement P? (a) There is a rational number X $\hat{I} \; A$ such that X $< rac{1}{2}$ (b) There is no rational number $x \hat{I} A$ such that $x < \frac{1}{2}$ (c) $x \hat{I}$ A and $x \pounds \frac{1}{2} P$ x is not rational (d) Every rational number $x \hat{I}$ A satisfies $x < \frac{1}{2}$ Kev. D Negation of P : There does not exists a rational number $\,x\,\hat{l}\,\,A\,$ such that $\,2x$ - $\,1^3\,\,0$ Sol. ie ; for every rational number x $\hat{1}$ A,2x - $1^3/0$ ie ; for every rational number x \hat{I} A,2x - 1 < 0 The dual of converse of the conditional (pvq) $\mathbb{R} \sim q$ is logically equivalent to 7. (b) a contradiction (c) $(p\dot{U}q)$ (a) a tautology (d) (~ $pv \sim q$) Key. Converse of $\{(pÚq) \otimes \neg q\}$ is $\{\neg q \otimes (pÚq)\}$ Sol. Which is logically equivalent to $q U(pUq)^{\circ} (pUq)$ Dual of $(p\dot{U}q)$ is $(p\dot{U}q)$

Mathematics		Sets & Relations, Ma	thematical Induction, M	athematical Reasoning	
8.	Which of the following (i) All prime numbers	g are mathematically accer are odd numbers	otable statements ? (ii) Every set is a finite se	et	
	(iii) $\sqrt{2}$ is a rational number or an irrational number				
	(a) Only (i), (ii)	(b) Only (ii), (iii)	(c) Only (i), (iii)	(d) All (i), (ii), (iii)	
Key. Sol.	D (i), (ii), (iii) are mather	natically acceptable staten	nents with truth values F, F, ⁻	Γrespectively.	
9.	Which of the following is not a negation of the statement. "There exists a rational number x such that x^2 2".				
	(i) There does not exists a rational number x such that $x^2 = 2$				
	(ii) For all rational nun	nbers x, $x^{2 1} 2$	(iii) For no rational numl	perx, x^{21} 2	
	(a) Only (i)	(b) Only (ii)	(c) Only (iii)	(d) (ii), (iii)	
Key.	C		.(~		
Sol.	Negation of P is "For no rational number x, $x^2 = 2^{"}$. Hence (iii) is not a negation of P.				
10.	Let R, S are two symmetric relations and SoR, RoS are their composite relations. Then which of the				
following is true?					
(a) RoS and SoR are equal					
	(b) RoS and SoR are symmetric relations				
	(c) RoS and SoR are symmetric only when R = S				
	(d) RoS and SoR are sy	vmmetric if f RoS = SoR			
Key. Sol.					
11. $R = \{(1, 2), (2, 3), (3, 4)\}$ be a relation on the set of natural numbers. Then the least number			the least number of elements		
	that must be included	in R to get a new relation	S where S is an equivalence	relation, is	
	(a) 5	(b) 7	(c) 9	(d) 11	
Key. Sol.	D (1, 1), (2, 2), (3, 3), (4, 4) are to be included so that S is reflexive. (2, 1), (3, 2), (4, 3) are to be included so that S is symmetric. (1, 3), (2, 4) are to be included so that S is transitive. Then (3, 1), (4, 2) are to be included so that S is symmetric.				
12.	Let R = {(3, 3), (6, 6), (9, 9), (6, 12), (3, 9), (3, 12), (3, 6)} be a relation on the set A = {3, 6, 9, 12}Then the relation R^{-1} is				
	(a) not reflexive	(b) not symmetric	(c) transitive	(d) all the above	
Key. Sol.	D R ⁻¹ = {(3, 3), (6, 6), (9, 9)), (12, 6), (9, 3), (12, 3), (6, 3	3)}.		

	(12, 12) $\hat{I} R^{-1} P$	${f R}^{-1}$ is not reflexive				
	(12, 6) $\hat{I}~R^{-1}$ but	(6, 12) $\hat{J} R^{-1} P R^{-1}$	is not symmetric			
	The condition (x, y), (y, z) $\hat{I} R^{-1} P (x,z) \hat{I} R^{-1}$ is satisfied by R ⁻¹					
	$\setminus R^{-1}$ is transitive	· · · ·				
13.	Let R be the real line. Consider the following subsets of the plane R x R.					
	$S = \{(x, y) : y = 2x - 1 \text{ and } -1 < x < 1 \}$					
	T = {(x, y) : xy is a rational number}					
	Then which of the	Then which of the above two relations is an equivalence relation?				
	(a) Only S	(b) Only T	(c) Both S,T	(d) Neither S nor T		
Key.	D					
, Sol.						
	· · · ·	e and hence it is not an e	quivalence relation.			
	— -	$x = \sqrt[3]{2} \hat{I} R$, but (x, x) $\hat{I} T$ when $x = \sqrt[3]{2}$				
		ive and hence it is not an				
14.				vs paper A, 20% families buy new		
			news paper C. Also 5% families buy A and B, 3% buy B and C, 4% buy A a			
	C, and 2% buy all	the three news papers. T	hen the number of families v	vhich buy exactly one of A, B, C is		
	(a) 4800	(b) 5200	(c) 5400	(d) 6400		
Key.	В					
Sol.	Number of families which buy exactly one of A, B, C = n(A) + n(B) + n(C) - 2 $\oint (A C B) + n(B C C) + n(C C A) + 3 \oint (A C B I C)$					
	= n(A) + n(B) + n(B)	$J = 2 \operatorname{gn}(A \zeta B) + \operatorname{n}($	$B \downarrow C + n(C \downarrow A)_{U}^{+}$			
15.	Let H be the set c	of all houses in a city wher	e each house is faced in one	of the directions East, West, North		
	South.					
	Let R = {(x, y) : (x, y) I HXH and x, y are faced in same direction} Then the relation R is					
	(a) Not reflexive, symmetric and transitive					
				ne relation R is		
	(a) Not reflexive,(b) Reflexive, sym	symmetric and transitive metric, not transitive		ne relation R is		
	(a) Not reflexive, (b) Reflexive, sym (c) Symmetric, no	symmetric and transitive metric, not transitive of reflexive, not transitive	,,,,	ne relation R is		
Key.	(a) Not reflexive,(b) Reflexive, sym	symmetric and transitive metric, not transitive of reflexive, not transitive		ne relation R is		
Key. Sol.	(a) Not reflexive, (b) Reflexive, sym (c) Symmetric, no (d) An equivalenc D	symmetric and transitive metric, not transitive of reflexive, not transitive		ne relation R is		
	 (a) Not reflexive, (b) Reflexive, sym (c) Symmetric, no. (d) An equivalence D Clearly R is reflex 	symmetric and transitive metric, not transitive of reflexive, not transitive re relation ive, symmetric & transitiv	e.	possible number of elements in the		
Sol.	 (a) Not reflexive, (b) Reflexive, sym (c) Symmetric, no. (d) An equivalence D Clearly R is reflex 	symmetric and transitive imetric, not transitive of reflexive, not transitive re relation ive, symmetric & transitiv sets such that n(A) = 4 a	e.			
Sol. 16.	(a) Not reflexive, (b) Reflexive, sym (c) Symmetric, no (d) An equivalenc D Clearly R is reflex Let A, B are two power set of (A (a) 16	symmetric and transitive imetric, not transitive of reflexive, not transitive re relation ive, symmetric & transitiv sets such that n(A) = 4 a	e.			
Sol.	 (a) Not reflexive, (b) Reflexive, sym (c) Symmetric, no. (d) An equivalence D Clearly R is reflex Let A, B are two power set of (A (a) 16 B 	symmetric and transitive imetric, not transitive of reflexive, not transitive re relation ive, symmetric & transitiv sets such that $n(A) = 4$ an $\dot{E} B$) is	e. nd n(B) = 6. Then the least p (c) 256	possible number of elements in th		

17.	ematicsSets & Relations, Mathematical Induction, Mathematical ReasoningLet R be a relation defined by R = {(4, 5), (1, 4), (4, 6), (7, 6), (3, 7)} on N. Then					
	RoR ⁻¹ is					
	(a) symmetric, reflexive, but not transitive					
	(b) symmetric, transitive, but not reflexive					
	(c) reflexive, anti symmetric, and not transitive					
	(d) a partial order relation					
Key.	B (() () () () () ()					
Sol.	$\mathbf{R} = \left\{ (4,5), (1,4), (4,6), (7,6), (3,7) \right\}$					
	$\mathbf{R}^{-1} = \left\{ (5,4), (4,1), (6,4), (6,7), (7,3) \right\}$					
	$ROR^{-1} = \{(5,5), (5,6), (4,4), (6,5), (6,6), (7,7)\}$					
	Clearly ROR^{-1} is not relative, but it is symmetric and transitive					
18.	Let R be a relation defined on the set of real numbers by aRb U 1 + ab > 0. Then R is					
	(a) reflexive, symmetric, but not transitive					
	(b) symmetric, transitive, but not reflexive					
	(c) symmetric, not reflexive, not transitive					
	(d) reflexive, anti symmetric, not transitive					
Кеу.	A a R a \forall real number 'a' $\left[\therefore 1 + a^2 > 0 \right] \Longrightarrow$ R is reflexive					
Sol.	a R b \Rightarrow 1+ab > 0 \Rightarrow 1+ba > 0 \Rightarrow b R a \Rightarrow R is symmetric					
	If $a = \frac{1}{2}$, $b = \frac{-2}{3}$, $c = -3$ then a R b and b R c. But $(a, c) \notin R$ \therefore R is not transitive.					
19.	Let R1, R2 are relations defined on Z such that aR1b $U_{}$ (a – b) is divisible by 3 and					
	a R ₂ b U (a – b) is divisible by 4. Then which of the two relations (R ₁ \dot{E} R ₂), (R ₁ \dot{C} R ₂) is an equivalence					
	relation?					
	(a) $(\mathbf{R}_1 \stackrel{\circ}{\mathbf{E}} \mathbf{R}_2)$ only					
	(c) Both $(\mathbf{R}_1 \stackrel{.}{\mathbf{E}} \mathbf{R}_2), (\mathbf{R}_1 \stackrel{.}{\mathbf{C}} \mathbf{R}_2)$ (d) Neither $(\mathbf{R}_1 \stackrel{.}{\mathbf{E}} \mathbf{R}_2)$ nor $(\mathbf{R}_1 \stackrel{.}{\mathbf{C}} \mathbf{R}_2)$					
Key.	B					
Sol.	Clearly R ₁ ,R ₂ are equivalence relations P both $R_1 \dot{E} R_2$ and $R_1 \dot{C} R_2$ are also equivalence relations					
20.	Consider the following relations : R = {(x, y) / x, y are real numbers and x = wy for some rational number w}					
	$s = \frac{1}{4}\frac{m}{n}, \frac{p}{q}/m, n, p \text{ and } q$ are integers such that n, q^{\perp} 0 and $qm = pn \psi$. Then					
	(a) Both R, S are equivalence relations (b) R is an equivalence relation, but not S					

Mathematics Sets & Relations, Mathematical Induction, Mathematical Reasoning (c) S is an equivalence relation, but not R (d) Neither R nor S is an equivalence relation Kev. $x R x \forall$ real number $x [\because x = 1x] \Rightarrow R$ is reflexive Sol. If x = 0, y = 2 then xRy but (y, x) $\hat{V}RPR$ is not symmetric \ R is not an equivalence relation. Clearly $\left(\frac{a}{b}, \frac{a}{b}\right) \in S \ \forall a, b \in Z, b \neq 0$ Clearly $\overset{a}{\underline{c}}_{\underline{b}}^{\underline{a}}, \overset{c}{\underline{c}}_{\underline{b}}^{\underline{c}}$ $\overset{B}{\underline{c}}$ $\overset{B}{\underline{c}}_{\underline{c}}^{\underline{c}}, \overset{a}{\underline{c}}_{\underline{b}}^{\underline{c}}$ $\overset{B}{\underline{c}}$ $\overset{C}{\underline{c}}_{\underline{c}}^{\underline{c}}, \overset{a}{\underline{c}}_{\underline{b}}^{\underline{c}}$ $\overset{B}{\underline{c}}$ $\overset{B}{\underline{c}}_{\underline{c}}^{\underline{c}}, \overset{a}{\underline{c}}_{\underline{c}}^{\underline{c}}$ $\overset{B}{\underline{c}}_{\underline{c}}^{\underline{c}}, \overset{a}{\underline{c}}_{\underline{c}}^{\underline{c}}$ $\overset{B}{\underline{c}}_{\underline{c}}^{\underline{c}}$ $\overset{B}{\underline{c}}_{\underline{c}}^{\underline{c}}}$ $\overset{B}{\underline{c}}_{\underline{c}}^{\underline{c}}$ $\overset{B}{\underline{c}}^{\underline{c}}$ $\overset{B}{\underline{c}}^{\underline{c}$ Now $\overset{a}{\overset{c}{c}}_{\overset{b}{b}}, \overset{c}{\overset{o}{\overset{c}{\pm}}}_{\overset{c}{d}} \overset{a}{\overset{c}{\overset{c}{d}}} \overset{a}{\overset{c}{\overset{c}{\overset{c}{\dagger}}}}, \overset{e}{\overset{c}{\overset{c}{\overset{c}{\pm}}}}_{\overset{c}{f}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\pm}}}} \overset{e}{\overset{b}{\overset{c}{\overset{c}{\pm}}}}_{\overset{c}{f}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\pm}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{\overset{c}{}}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}}}} \overset{e}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{\overset{c}}}} \overset{e}{\overset{c}{\overset{c}{}}}} \overset{e}{\overset{c}{\overset{c}{}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}{\overset{c}}}} \overset{e}{\overset{c}{\overset{c}}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}}} \overset{e}{\overset{c}}} \overset{e}{\overset{e}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{c}}} \overset{e}{\overset{e}}} \overset{e}{\overset{c}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}{\overset{e}}} \overset{e}}} \overset{e}}} \overset{e}}{}} \overset{e}}{\overset{e}}}} \overset{}}{}} \overset{e}}} \overset{}}{} \overset{e}}} \overset{e}}}{$ because ad = bc, cf = de \implies af = be \ S is an equivalence relation. Let * and o defined by $a^*b = 2^{ab}$ and $aob = a^b$ for a, bI R⁺ where R⁺ is the set of all positive real numbers. 21. Then which of the above two binary operations are associative? (c) Both '*' and 'o' (a) Only '*' (b) Only 'o' (d) Neither '*' nor 'o' D Key. $(a * b) * c = (2^{ab}) * c = (2)^{(2^{ab}c)}$ and Sol. $a * (b * c) = a * (2^{bc}) = 2^{(a2^{bc})}$ which are not equal $(aob)oc = (a^b)oc = (a^b)^c$ and $ao(boc) = ao(b^c) = (a)^{bc}$ which are not equal For all $n\hat{I} = N \left\{ 3(5^{2n+1}) + 2^{3n+1} \right\}$ is divisible by k, where k is prime. Then the least prime greater than 22. k is (b) 17 (a) 13 (d) 29 (c) 19 Kev. C Sol. It can be verified that given expression is divisible by 17 for n = 1, 2 K = 17 and least prime greater than k is 19 Assertion A : For all $\hat{n} \hat{l} N$, of 2.1² + 3.2² + 4.3² + ------ to n terms = $\frac{1}{12}$ (n) 23. (n +1) (n+2) (3n+1) Reason R : If $n\hat{I}$ N then $\mathring{a}_{1}^{n} r^{2} = \frac{n(n+1)(2n+1)}{6}$ and $\mathring{a}_{1}^{n} r^{3} = \mathring{e}_{\hat{e}} \frac{n(n+1)\psi}{2}$ (a) Both A, R are true and R is the correct explanation of A. (b) Both A, R are true, but R is not the correct explanation of A (c) A is true, R is false (d) A is false, R is true

	nematics	Sets & Relations, M	lathematical Inductio	on, Mathematical Reasoning
•	Key. A Sol. $T_n = (n+1)n^2 = n^3 + n^2$ $S_n = ST_n = Sn^2 = \frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6}$			
	$=\frac{1}{12}(n)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n$	(n+2)(3n+1)	(or) Give value	for n and find k.
24.	Which of the following two statements is / are true?			
	S_1 = The sum of the cubes of three successive natural numbers is always divisible by 9			
	S_2 = The sum of the squares of three successive even natural numbers is always divisible by 8.			
	(a) Only S ₁	(b) Only S ₂	(c) Both S ₁ , S ₂	(d) Neither S_1 nor S_2
Key. Sol.	A By verification S_1 is t	rue & S ₂ is false.		5
25.	The value of $a^{n} e^{2}$	$r^2 + 2^2 + 3^2 + $	$\frac{r^2 \dot{V}}{\dot{V}} = k(n) (n+1) (n+2) \dot{V}$) where k =
	(a) $\frac{1}{9}$	(b) $\frac{2}{9}$	(c) $\frac{1}{18}$	(d) $\frac{1}{6}$
Key.	C		$f_{n}(n+1)(2n+1)$	a(a+1)
Sol.	$a_{r=1}^{*} \frac{\Gamma(1+1)(21+1)}{6(2r+1)}$	$\frac{1}{6} = \frac{1}{6} \oint_{0}^{1} (r^{2} + r) \frac{\dot{y}}{4} = \frac{1}{6}$	$\frac{\sin(n+1)(2n+1)}{6} + \frac{1}{6}$	$\frac{n(n+1)\xi}{2\xi}$
	$=\frac{1}{18}(n)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n+1)(n$	1+2)		
	\ K = 18 (or) Give value f	or n and find K		
26. Let s(k) : 1 + 3 + 5 + + (2k − 1) = 2 + k ² . Then which o			n which of the following i	s true?
	(a) s(3) is true		(b)s(k) Þ s(k + 1)	
C	(c) $s(k) \not\!$	s(k + 1)		
	(d) Principle of math	ematical induction can be	e used to prove the formu	la
Key. Sol.		: 1 + 3 + 5 = 3 + 3 ² which is + + (2k – 1) + (2k + 1)	s false. If S(k) is true then	by adding

```
(2k + 1) we get 1+3+5+ ----- + (2k - 1) + (2k + 1)
= 3 + (k + 1)^2
```

Mati	hematics	Sets & Relations,	Mathematical Induction, Mathemat	ical Reasoning
	$\ \ s(k) P \ s(k)$	+ 1)		
27.	Two relations R a	nd S are defined on set A =	{1, 2, 3, 4, 5} as following.	
	R = {(x, y) : $ x^2 - y $	² < 16}		
	$S = \{(x, y) ; x \pounds y\}$			
	Then which of the	e above two relations is an	equivalence relation?	
	(a) Only R	(b) Only S	(c) Both R, S (d) Ne	either R nor S
Key.	D			$\langle \mathcal{N} \rangle$
Sol.		Taking x = 2, y = 4, z = 5,		
		R . But (x, z) $\hat{I} R$		
	-	, reflexive and transitive. S is an equivalence relatio		
		C		
		CHIEN		
	~			
	MARI			
C				
).			

_