Mathematics Quadratic Equations & Theory of

Equations

Quadratic Equations & Theory of Equations

Integer Answer Type
1. If A is the minimum value of the expression | X— p|+| X—=15|+| Xx— p—15]| for xin the

range P <X<15 where 0<p < 15. Then %=
Key. 3
Sol. |[X=pl=x—p (Sincex>p)
| x—15|=15-x (Since x <15)
| X=(p+15)|=(p+15)—x (as15+ p > x)
-.expression reduces to

E=X—p+15—x+p+15-x

E=30-x
.. E,;, occurswhen x =15
~A=15
2. Let P(X) = X* +bX+C, where b and c are integer. If P(X) is a factor of both X* +6X* +25

and 3x* +4x% +28x+5, find the value of P(1).
Key. 4
Sol.  Since P(X) divides into both of them
Hence P(x) also divides
(3X* +4x* +28x+5) —3(x* +6x* + 25)
=—14x" +28x 70 = —14(x* — 2x+5)
Which is a quadratic, Hence P(X) = X* —2X+5
~PM)=4

3. Largest integral value of m for which the quadratic expression
y =X +(2M+6)X+4m+12 is always positive, VX € R, is

Key. 0

Sol. D<0=-3<m<l=m=0
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4, The number of solution of the equation e ref+e ¥ +e* = 3((372X +e") is
Key. 1

Sol. x=1In2

5. Let a,b,C be the three roots of the equation X° +x>—333x—1002=0.1fP=a%+b* +¢?
then the value of =
2006
Key. 1
Sol. Let o be the root of the given cubic where & can take values a, b, ¢
Hence o +a® —3330x—1002=0 or &® =1002+3330 -’

- Za’ =¥1002+333% 0~ Ta* = 3006+ 333Tar | (Za)’ - 2Xaya, |

But Xa=-1Xaa, =-333

. +b° +¢° =3006—333—[L+666] = 3006 — 333— 667 = 3006100 = 2006 = P
6. The number of the distinct real roots of the equation (x+1)5 = Z(X5 +l) is

Key.
sol.  (x+1) =2(x"+1)

Let f(X)Zm (x#-1)

(x5 +1)
= X=1 is maximum
ns,  T(0)=1 ang f(1)=16
And Xlirﬂo f (X) =1=f (X) =2 has two solutions but given equation has three
solutions.

because x = -1 included.

1
7. The equation 2(|Og3 X)2 —|Iog3 X| +a =0 has exactly four real solutions if @ € (O, Ej ,

then the value of Kis __

Key. 8
Sol.  on putting log, x=t, we get
2t2—|t|+a=0 (i)
if t>0, then 20°-t+a=0 ..(ii)
ft<Oithen 2°+t+a=0 .. iii)
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If Eqg. (i) has four roots then Eqg. (ii) must have both roots positive and Eq. (iii) has

both roots negative. Now, Eq. (ii) has both roots positive, if D>0

al2>0
= 1-8a>0,a>0
1
= ae 0,5 on taking intersection.

Again, Eq. (i) has both roots negative, if D>0,a/2>0.

1
We again get 86(0,§j:> K =80

8. Let &, B be the roots of X’ =X+ P =0 and 1,5 be the roots of X* —4X+0 =0 such that

a,B,y,0 areinG.Pand p>2.If a,b,ce {1, 2,3,4, 5}, let the number of equation of the

form ax® +bx+c¢ =0 which have real roots be r, then the minimum value of 122; =
Key. 1
Sol. (a+p)=Laf=p,y+o=4,=(
Since , 3,7,0 arein G.P
B_S_Pra_s+y_  (Bra)’ _  (G+y)
a y  f-a S-y  (B+a)’—-daB (5+y)? -4y
1 16 4
- = =
1-4p 16-4q 4-—q
=4-q=4-16p
Now, p=2 ..( =32
For the given equation ax2 +bX +¢€ =0 to have real roots b2 —4ac>0
2
J.acs b—
4
Possible values of ac Value of Possible pairs
b? 2 No. of possible (a,c)
b .\ . ac ,
4 such that ac < Z pairs (a,C) 1 (11)
2 1 1 1 2 (1,2), (2,1)
3 2.25 1,2 3 3 (1,3). (3,1)
4 4 1,2,3,4 8 4 (1,4),(4,1),(2,3)
5 6.25 1,2,3,4,5,6 12 5 (1,5),(5,1)
Total 24 6 (2,3),(3,2)

Hence number of quadratic equation with real roots, r = 24
Now from (i) and (ii) the minimum value of pqr =2.32.24 =1536
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9. Let ¢, 8 and ¥ be the roots of equation f (X) =0, where f(x)= X3+ X% =5x—1. Then

the value of ‘[a]+[ﬂ]+[7/]‘, where [] denotes the greatest integer function, is equal to

Key. 3
Sol.  Given f(X)=x>+x*-5x—-1

- F'(X) =3x% +2X—5. The roots of '(X) =0 are —:—53 and 1

Writing the sign scheme for f'(X),

max min
—00 = @ @ » 00
tVe /3 -ve 1 +ve

Also, f (—o0) =—00<0, f(0) =00 >0
(0--a1(-5)-18
3) 27
Now, graph of Y = f (X) is as follows
y
A

f(-3)=—27+9+15-1=-4<0
f(-2)=—8+4+10-1>0
f(-)=4>0,1(0)=-1<0
f(2)=1>0
So3<a<2,-1<f<01<y<?2
[[a]+1A]1+[y]H-3-1+1|=3

10. The set of real parameter '@’ for which the equation x* —2ax® +x+a? —a=_0has all real

m
solutions, is given by |:—,OO) where m and n are relatively prime positive integers, then the
n

value of (m+n) is

Key. 7
Sol.  Wehave @> —(2x* +1)a+x*+x=0
L (241 (22 +1)2 —4(x* +X)
- 2
2a=(2x* +1) £ (2x—-1)
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On solving +ve & -ve sign we got

a>>
4
sm+n=7
11. Number of positive integer n for which N? +96 is a perfect square is
Key. 4

Sol. Suppose m is positive integer such that n2 +96 = m2 then
(m—n)(M+n)=96
As M—N<M+N and M—N,M+N both must be even
So, the only possibilities are
m-n=2,m+n=48m-n=4m+n=24
m-n=6,m+n=16m-n=8,m+n=12
So, the solutions of (M, N) are (25, 23),(14,10),(11,5),(10,2)

12.  If o, B betheroots of X° + PX—0 =0 and ¥, are the roots of X* + pX+r =0,

g+r =0, then (@—y)(a—0) is equal to

(B-y)B-9)

Key. 1
Sol. Here, a+ f=—pP=y+0

(a—1)(a—-0)=a? —a(y+5)+y5:a2—a(a+,8)+r

=—aff+r=q+r
Similarly (B—y)(f—0)=q+Tr
So, ratiois 1

13. Number of real roots of 2X99 -I-3X98 + 2X97 +3X96 T, +2X+3=0s

Key. 1

100

X =1
Sol. Given equation can be written as (2X + 3)(X98 +x® +1) =(2x+ 3)(2—1)
X —

So, the real roots are X = il,—, out of which 1 are not roots of given equation.

14.  If A is the minimum value of the expression | X— p|+| X—15|+| X— p—15]| for x in the

A
range P <X <15 where 0<p < 15.Then g=

Key. 3
Sol. |[X—=pl=x—p (Sincex>p)

| x—15]=15-x (Since x <15)
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| X—=(p+15)|=(p+15)—x (as15+ p > X)
-.expression reduces to
E=X-—p+15—x+p+15—x

E=30-x

.. E,;, occurswhen x =15

s A=15

15.  Let P(X)=X*+bX+C, where b and c are integer. If P(X) is a factor of both X* +6X? +25
and 3x* +4x% +28x+5, find the value of P(1).
Key. 4
Sol.  Since P(x) divides into both of them
Hence P(x) also divides
(3x* +4x% + 28x+5) —3(x* +6X* +25)
=—14x* + 28X~ 70 = —14(x* — 2X +5)

Which is a quadratic, Hence P(X) = X* =2X+5
PO =4

16. Largest integral value of m for which the quadratic expression
y = X> +(2m+6)X+4m+12 is always positive, VX € R, is

Key. 0
Sol. D<0=-3<m<l=m=0

17.  For a twice differentiable function f (X), g (X) is defined as

g(x)=f ' (X)°+f"(x)F(x) on [ae] . If for a<b<c<d<e , f(a)=0 ,
f(b)=2 , f(C)=—l, f(d)=2, f(e)zothen find the minimum number of
zeros of g(x).

Key. 6

g x [ f'xZDf"xfxDifxf'x
Sol. dx

Lethfoxf X
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Then, fx 0o has four roots namely a,biLe

b OOC 4y cl DDd.

where

And P x 0o at three points ki’kz’k3 where

allk 00,00k 0000k, De

.. f x OO
[' Between any two roots of a polynomial function there lies
atleast one root of ' x O 0]
There are atleast 7 roots of fx.t'x D0
d
— f x f'x OO < 10
N There are atleast 6 roots of dx i.e. of 9

18. f(X) is a polynomial of 6™ degree and f(X)= f (2—X)V xeR. If f(X)=O has
4 distinct real roots and two real and equal roots then sum of roots of f (X) =0

Key. 6

. J(@=7C-0)=0

When &# 2—

sum of roots = 4

Where %=2=%je  &=1lgym of roots = 2

" Total sum = &

19.  (@HX)A+X+X)A+x+x2+x%) ... A+X+X .+ X

When written in the ascending power of x then (the highest exponent of X) — 5045 is
Key. 5

Sol.  Highest exponentof x=1+2+3+ .....+ 100 =M :5050
20. If the roots of the equation x° —ax® +14x —8=0 are all real and positive, then the minimum
value of [a] (where [a] is the greatest integer of a) is
Key. 6
Sol.  f(X)=x’-ax’+14x-8=0
a+p+ 13
a
22@®)
a=6
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Single Correct Answer Type

1. Let o and S be the roots of X* —6Xx—2=0with @ > S if a, =a" — " for N>1 then
the value of M:
3a
1 2)2
3)3 4) 4
Key. 2
Sol. & —6a—-2=0 B-6B-2=0

=" -6a’-2a%=0.....(1)

subtract (2) from (1)

2. If a,b,c are positive real numbers such that a+b+c=1 then the least value of
(1+a)(1+b)(1+c) <
(1-a)(1-b)(1-c)
1)16 2)8
3)4 4)5
Key. 2

Sol. a=1-b-c
=1+a=(1-b)+(1-c)>2,/(1-b)(1-c)
~.(1+a)(1+b)(1+c)=8(1-a)(1-b)(1-c)

3. The range of values of '@’ for which all the roots of the equation

(a—l)(1+ X+ X )2 S (a+1)(1+ X* + X4) are imaginary is

1) (— oC, —2] 2) (2, oc)
3) (-2,2) 4) [2,)
Key. 3
Sol. The given equation can be written as (X2 +X+1)(X2 —ax+1) =0
4. If &, B are the roots of the equation ax* +bx+c=0and S, =a" + " then
aS,,, +bS,+cS, ;= (n=2)
1)0 2) a+b+c
3) (a+b+c)n 4) n* abc
Key. 1

Sol. S, =a"+p"

=(a+p)(a"+p")-ap(a" +ﬁ”‘1)
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b C
= —a.sn —g.sn&
5. A group of students decided to buy a Alarm Clock priced between Rs. 170 to Rs 195. But

at the last moment, two students backed out of the decision so that the remaining
students had to pay 1 Rupee more than they had planned. If the students paid equal
shares, the price of the Alarm Clock is

1) 190 2) 196
3)180 4)171
Key. 3

Sol. Let cost of clock = X
number of students =n

X n*-2n
then =—+1l=>Xx=
n-2
2 —_—

—170< =2 <195
6. If tan A, tan B are the roots of X* —PX+Q =0 the value of sin? (A+ B) =

(where P,Q eR)

p? p2
) —— 2) 5 2
P?+(1-Q) P?+Q
2 PZ
)@ n P
P?+(1-Q) (P+Q)
Key. 1
: tan’ (A+B
Sol.  tan(A+ B)=P— then sin*(A+B)= (2 )
1-Q 1+tan”(A+B)

7. The number of solutions of ‘[X]—ZX‘ =4 where [X] is the greatest integer < Xis

1)2 2) 4

3)1 4) Infinite

Key. 2
Sol. Ifx=neZ, |n-2n=4=n=+4

If X=n+K where 0<K <1 then ‘n—2(n+k)‘:4, it is possible if K :%

=|-n-1=4
~n=3-5
8. Let @,b and ¢ be real numbers such that a+2b+C =4 then the maximum value of
ab+bc+ca is
n1 2)2 3)3 4)4
Key. 4

Sol. Let ab+hc+ca=x
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= 2b? +2(c—2)b—4c+c2+x:0
Since be R,

CP—dc+2x—4<0

Since ce R

SX<4

9. For the equation 3%+ pX+3=0, p >0, if one root is the square of the other then value
of P is

1
1)5 2)1

3)3 4)
Key. 3

Sol. a+a’=—

10. If the equations 2X* +kx—5=0 and X* —3Xx—4=0 have a common root, then the
value of K is

1) -2 2) -3
27 1
3) — 4) ——
) 4 ) 4
Key. 2

Sol.  If‘a’ is the common root then 20 +ka—5=0, &> —3a—4 =0 solve the equations.

11. If  and f are the roots of the equation X*> —X+1=0 then a®® + 5 =

D1 2)2
3)-1 4) -2
Key. 1
b
Sol. X= 1_|2\/§

La=-0, f=—0

12. If F’(Q—I’)X2 +Q(I’—P)X+ r(P—Q)=O has equal roots then %2

(where P,Q,r eR)

1 1 1 1
1) =+= ) =——=

P r Pr
3) P+r 4) Pr

Key. 1
Sol. Product of the roots =1
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13.

Key.
Sol.

14.

Key.
Sol.

15.

Key.
Sol.

16.

Key.

Sol.

17.

If (1+ K)tan? x—4tan x—1+ K =0 has real roots tanx, and tanx, then

1) k<5 2) k*>6
3) k=3 4) k>10
1

Discriminate >0

@, are the roots of ax’+bx+C=0and y,0 are the roots of px*+Qx+r=0 and
D,, D, be the respective discriminants of these equations. If &, 5,7 and ¢ are in A.P.
then D, : D, = (where &, f,7,0€R & a,b,c, p,q,r eR)

1) a®: p° 2) a®:b°
3) c%:r? 4) a:r?
1
p=a+d, y=a+2d, 6=a+3d

D D
qg2-a_=

aZ p2

If X* +4y® —8x+12 =0is satisfied by real values of X and Y then 'y'e

1) [2,6] 2) [2,5]
3) [-11] 4) [-2,-1]
3

X2 —8X+(4y2 +12) =0 is a quadraticin 'X', 'X" is real then discriminate >0

For x>0,0<t<2n,K > g + \/5, K being a fixed real number the minimum

value of x* +5—2—2{(1+cost)x+K(l+TSint)}+3+QCost+25int is
(g oo
sl ) ool

D

2
Given expansion = {X —(1+cos t)}2 + {E —(1+ sint)}
X

Let ¢(x) = —EZ:E;E;‘:Zg f(a)+—g};:3g:3 f(b)+—((i:zggj:s))f(c)—f(x)

Where a<c<b and f'!(x) exists at all points in (a,b). Then, there exists a

real number p,a <u<b such that
f(a) f(b) f(c)

(a-b)(a—c) " (b-c)(b-a) (c-a)(c—b)
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a) fu(li) b) 2f11(“) 0) %f“(u) d) %flll(u)

Key. C
Sol. Apply RT’s, twice

18. If a,B,y are the roots of the equation x3 + px + q = 0, then the value of the

a By
determinant|f vy «af is
vy o B
(A) 4 (B)2 (C)0 (D) -2
Key. C
Sol.  Since o,B,y are the roots of x>+ px+q=0
a+B+y =0

Applying C; — C1 + C; + C3, then
at+Pp+y B oy 0 B v
oa+B+y v o/=|0 v a|=0
oa+B+y a Bl 10 a B

19 The number of points (p, q) such that p,q e{L, 2,3,4} and the equation PXx®> +0Xx+1=0 has
real roots is

A7 B.8 C.9 D. None of these
Key. A
Sol. PX® +0X+1=0 has real roots if ° —4p>0 or g° >4p

Since p,qe{l, 2,34}
The required points are(1,2), (1,3),(1, 4), (2,3),(2,4),(3,4),(4,4)
So the required number is 7

20. The value of b and c for which the identity f(x+1)—f(x) =8x+3is satisfied,
where f(x)=bx?+cx+dare

(A) b=2,c=1 B)b=4,c=-1
(C) b==-1,c=4 [D)b=-1,c=1
Key. B

Sol.  f(x+1)—f(x)=8x+3
= {b(x+1)2+c(x+1)+d}—{bx2+cx+d}:8x+3
— b{(x+1)2—x2}+c:8x+3

= b(2x+1)+c=8x+3 on comparing

2b=8andb+c=3
Then, b=4andc=-1
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21.

Key.

Sol.

22.

Key.

Sol.

23.

Key.

Sol.

Let f (x)=ax’ +bx+c, g(Xx)=ax*+ px+q wherea,b,c,q,p, € Rand b p. If their

discriminants are equal and f(x) = g(x) has a root «, then
1) o will be A.M. of the roots of f(x) =0, g(x) =0

2) o will be G.M of all the roots of f(x) = 0, g(x) =0

3) « will be A.M of the roots of f(x) =0 or g(x) =0

4) o will be G.M of the roots of f(x) =0 or g(x) =0

1
aa2+ba+C=aa2+pa+q:>a=3—_;—>(i)
And b? —4ac = p® —4aq
=b’—-p’=4a(c—q)
d4a(c—
:>b+p=M:—4aa (from(i))
b—p
-b p
a:—(b+p): 8 & \yhichis A.M of all the roots of f(x) =0 and g(x) =0
4a 4 '

If the equations X* +2AX+A*+1=0, L€ R and ax’ +bx+c =0 where a, b, c are
lengths of sides of triangle have a common root, then the possible range of values of A is
1) (0, 2) 2) (J§3) 3) (2\/5,3\/5) 4) (0,00)

1

(XJr/I)2 +1=0 has clearly imaginary roots

So, both roots of the equations are common
a b c

.-.Izﬂ:mzk(say)

Thena=k b= 24K, c= (/12+1)k

As a, b, c are sides of triangle

a+b>c = 24+1>1°+1= 1*-21<0

=1€(0,2)

The other conditions also imply same relation.

The number of real or complex solutions of X? —6|X| +8=0is

1)6 2)7 3)8 4)9
1

if xis real, X’ —6|x|+8=0 = |¥’ —6|x|+8=0= |[x|=2,4=>x=22,%4
If x is non — real, say Xza—i—iﬂ,then

(0!+iﬂ)2_6 o’ + 3 +8=0 (|a+iﬂ|=m)
(aZ_IBZ +8—6\/0!2T,32)+2iaﬂ:0

Comparing real and imaginary parts,
aff=0 = a=0 (if #=0 thenxisreal.)
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24,

Key.

Sol.

& > +8-6\5 =0
f*£65-8=0=f=
ie., ﬂ=i(3—«/ﬁ)

Hence i(3—\/17)i are non-real roots.

76+/68
2

If X, X, (X, > X, ) are abscissae of points P, Q lyingon Y = 2X* —4X -5 such that the

tangents drawn at these points pass through the point (0, -7), then 3X, —2X, equals to

1)4 2)5 3)6 4)7

2

Let (a,ﬂ) be point on the curve such that the tangent drawn at (a,ﬂ) passes through (O,
7)

y* :4x—4:>y(1aﬁ) =4a—4

Tangent at (0(,,8) is y—p :(4a—4)(x—a) pass through (0, -

7)=-7-p=(4a-4)(0-a)

25.

Key.

Sol.

26.

Key.

Sol.

27.

Key.

Sol.

But B=20a"—4a—5 .. Itfollows that a” =1
=>a=%11

So, X, =1 X, =-1

So, 3% —2X, =5.

Let f (X)z x?> +5X+6, then the number of real roots of (f (X))2 +5f (X)+6—X=O is

1)1 2)2 3)3 4)0
4
Use “f(x) = x has non real roots = f(f(x)) = x also has non-real roots”

Sum of the roots of the equation is 4* —3(2X+3)+128 =0

1)5 2)6 3)7 4)8
3

Put 2" =Y. Equation becomes

y?=3(8y)+128=0= y? —24y+128=0
=(y-8)(y—16)=0=y=16,8

=2"=16,8=>x=4,3

.. Sum of the roots is 7.

The number of solutions of /3X? + X+5 =x—3 is

1)0 2)1 3)2 4)4
1

Note that we must have 3X? +X+5>0and X—3>0or x>3.

V32 +X+5=x-3... (1)

Squaring both sides of (1), we get
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28.

Key.

Sol.

29.

Key.

Sol.

30.

Key.

Sol.

3 +X+5=%x*—-6x+9

=2 +7x—4=0=(2x-1)(x+4)=0

=x=1/2,-4

None of these satisfy the inequality X > 3. Thus, (1) has no solution.

The value of afor which one root of the quadratic equation.
(a2 —5a+3) NG +(3a—1)x+2 =0is twice as large as other, is

1) —2/3 2)1/3 3) -1/3 4)2/3
4

(a”—5a-+3a)x* +(3a-1)x+2=0.... (1)

Let o and 2c be the roots of (1), then

(a”-5a+3)a’ +(3a-1)a+2=0 ... 2)

and (a”—5a+3)(4a’)+(3a-1)(2z) +2=0 ... (3)

Multiplying (2) by 4 and subtracting it form (3) we get (3a—1)(2a)+6 =0
Clearly a#1/3. Therefore, =—3/(3a—1)

Putting this value in (2) we get
(a”—5a+3)(9)—(3a-1)"(3)+2(3a-1) =0

= 9a’ —45a+27—(9a’ —6a+1)=0=-39a+26=0

—=a=2/3.
For X=2/3, the equation becomes X* +9X +18 = 0, whose roots are —3,—6.

If f(X)=x*+2bx+2c’and g(x)=-x*—2cx+b’are such that
min f (x) > max g(x), then relation between b and c, is

1) no relation 2) O0<c<b/2 3) |C| < % 4) |C| > \/§|b|
4

f (x)=(x+b)" +2c* —b?

= min f (x)=2c?—b?

Also g(X)=—x*—2cx+b? =b2+c2—(x+c)2

= maxg(x)=b*+c?

As min f (x) >max g(x), we get 2¢* —b* >b* +¢?

=% > 2b% =c|> V2|0

The equation (COS p—l) X2 +(COS p)x+sin p =0 invariable X has real roots, if p belongs
to the interval

1) (0, 271) 2) (—71,0) 3) (—7[/2,72'/2) 4) (O, 7z)

4

(cos p—1)x* +(cos p)x+sin p=0...... (1)
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31.

Key.

Sol.

32.

Key.

Sol.

33.

Key.

Sol.

34.

Key.

Discriminant of (1) is given by
D =cos® p—4(cos p—1)sin p =cos® p+4(1-cos p)sin p
Note that €Os” p>0,1—cos p >0. Thus, D>0if sinp>0 ie.if pe(0,7).

If x?+2ax+10—3a>0foreach X € R, then

1) a<-5 2) b<ax<? 3)a>5 4) 2<a<5b
2

x* +2ax+10—3a>0vxeR

= (x+a) —(a’+10-3a)>0vxeR
=a’+3a—-10<0
=(a+5)(a-2)<0

=-b<a<?

Sum of all the values of Xsatisfying the equation log,, log,, (\/X +11+ &) =0is

1) 25 2) 36 3)171 4)0
1

log,, Iogll(\/x+1+\/§) =0......(1)

Equation (1) is defined if X >0.

We can rewrite (1) as |Ogll<\/X+1l+x/;> =17°=1
—X+11+/x =11 =11

= x+11=11-+/x

Squaring both sides we get X+11=121—22\/;+ X
= 22/x =110 =+/x =50r x=25

This clearly satisfies (1). Thus, sum of all the values satisfying (1) is 25.

The number of solutions of the equations of the equation X +[X] —4X+3=0 is Where [ ]

denotes G.I.F.

1)0 2)1 3)2 4)3

1

Given equation can be written as (X° —3X+3)— f =0 where f =x—[x] and O< f <1
O<x*—3x+3<1

solving x?> —3x+3 =0 roots are Imaginary

X2 =3x+3>0vxeR

solving X* —3x+3<1=1<x<2

If 1<x<2[x]=1.

putting [X] =1 in the given equation and solving we get X=2.Butl<Xx<2 .. the given
equation has no solution.

The number of values of 'a' for which the equation (X—1)*> =/ X—a| has exactly three
solutions is

1)1 2)2 3)3 4)4

3
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Sol.

35.

Key.

Sol.

36.

Key.

Sol.

| x—al=(x—1)* Iff a=Xx*(x—-1)°

No of solutions = no of intersection its between

y=a; f(X)=x"—x+1 and g(X) =—x* +3x—1. clearly the graphs of f(x),g(x) are
tangents to each other at A(1,1). The line Y = a intersects the two graphs at three points

Iff it passes through one of the three pts A,B, C. Here B = (%,%j vertex of f
andC = §,§ vertex of ‘g’ i.eifae §,§,1
2 4 4 4

If a, b, c are positive numbers such that a>b>c and the equation
(a+b—2c)x*+(b+c—2a)x+(c+a—2b)=0 hasaroot in the interval (—1,0), then

A) b cannot be the G.M. of a, ¢ B) b may be the G.M. of a, ¢
C) bis the G.M. of a, ¢ D) none of these
A

Let f(x)=(a+b-2c)x’+(b+c—2a)x+(c+a—2b)
According to the given condition, we have
£(0) f (~1)<0
ie.  (c+a-2b)(2a—b-c)<0
ie. (c+a—2b)(a—b+a-c)<0

ie. c+a—-2b<0 [a>b>c, given =>a—b>0,a—c>0]
ie. b>ﬂ
2
= b cannot be the G.M. of g, ¢, since G.M < A.M. always.
‘ 2
~ax +bx+c‘
Let o, B (a < b) be the roots of the equation ax* +bx+c=0. If lim———=1,
x>m ax” +hbx+c
then
a a
A)|Ta|:_1’m<a B) a>0,a<m<f C)g=l,m>ﬂ D) a<0,m>p

C
According to the given condition, we have

lam’ +bm-+¢| =am® +bm-+c
ie.  am’+bm+c>0
= if a< 0, the m lies in (a, ﬁ)
and if >0, then m does not lies in (a, ,B)
Hence, option ( c) is correct, since

H:1:>a>0
a

And in that case m does not lie in (a, ,B) .

10
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37.

Key.

38.

Key.
Sol.

Let f (X) be a function such that f (X) = X—[X], where [X] is the greatest integer less

1
than or equal to x. Then the number of solutions of the equation f (X)+ f (—) =1is (are)
X
A)O B) 1 C)2 D) infinite
D
Sol.  Given, f(x)=x—[x], xe R—{0}
1 1 |1
Now f(x)+f(—)=1 x—[x]+——[—}:1
X X X
1 1 1 1
:>(x+—]— [x]{—} =1 :>(x+—j:[x]+{—}+l
X X X X (i)
Clearly ,R.H.S is an integer .. L. H.S.is also an integer
LetX+£:k an integer = x*—kx+1=0
X
(K +k? -4
2
For real values of x, k> —4>0=k >2ork < -2
We also observe that k=2 and -2 does not satisfy equation (i)
.. The equation (i) will have solutions if K >2 or K<—2,where ke z.
Hence equation (i) has infinite number of solutions.
If both the roots of (261—4)9X —(2a—3)3x +1=0 are non-negative, then
5 5
A) O<a<?2 B)2<a<E C)a<Z D)a>3

B
Putting 3" = Y, we have

(2a—4)y?—(2a-3)y+1=0

This equation must have real solution

= (2a-3)° ~4(2a-4)>0
= 4a? —20a+25>0
= (28.—5)2 >0. This is true.

y =1 satisfies the equation
Since 3" is positive and 3* >3°, y >1
Product of the roots =1xy >1

= 1 >1
2a—-4
= 2a-4<1 = a<g
Sum of the roots = 2a—3 >1
2a—4
2a-3)—(2a-4
. (2a-3)-(2a-4)
2a—4

11
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= >0=a>2
2a—-4
= 2<a<E
2
39. If the equation X* +9Yy? —4x +3=0 is satisfied for real values of x and y then
A xe[L3],y [L3] 8 Xe[l,3],ye|:_?1,%:|
-11 -11 -11
C) X — = |y 1,3 D) X A VA A A
) 6{3 3}ye[ ] ) 6[3 Jye{gg}
Key. B
Sol.  Given equation is X* +9y* —4x+3=0 .(0)

or, X*—4x+9y*+3=0.
Since x is real (—4)2 —4(9y2 +3) >0
o,  16-4(9y°+3)20 or,  4-9y°-320

Or, 9y2 -1<0 or, 9y2 <1 or, y2 S%
1 1 1
N <o -S<y<s i
ow Yy 9 3 y 3 (ii)

Equation (i) can also be written as
9y? +0y+x*—4x+3=0 ...(iii)
Since y is real .". 0 —4.9(X2 —4X+3) >0

or, X2 —4x+3<0
=xe[13]

40. The equation a8x8+a7x7+a6x6+...+ao:0 has all its roots positive and real
(where a, =la =—4a, =1/28), then

A)al=i B)aiz—i C)az=l D)62=1
2° 2 2° 2°
Key. B
Sol.  Lettheroots be &, @,,...., 0
= o t+a,+..tog=4
oL,....0 ig
2

2 8

= AM=GM = all the roots are equal to %

12
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1Y 1

= w=of3) =5
1Y 7

w=c3) =

41. If every root of a polynomial equation (of degree ‘n’) f (X) =0 with leading coefficient “1”

is real and distinct, then the equation f"(X) f (X)—{ f '(X)}2 =0 has.

(A) at least one real root (B) no real root
(c) at most one real root (D) exactly two real roots

Key. B
sol. Let f(X)=(x—a)(X—a2).ccuwwrrme. (x—an) where a1,87......... aneR take log both
sides and differentiate. Then
f'(x) 1 1 1
= + F s +
f(x) x—a x-ap X—an
Again diff w.r.t. ‘X’
f ()2 1 1 1
—2 - 2 + 2 ...... —2
f (x—a1)" (x—ap) (x—ap)
<0vxeR

= ff "—(f ')2 =0 has no real root

42. If f(X) isa polynomial of least degree such that f (r) = l, r=1,2,3__9,then f(10)=___
r

Al B. C. — D.

10

N |~
gl

Key. D
Sol. xf (X)—1=0 has roots 1,2,3 9

xf(X)—1=A(Xx-D(x-2) __ x9

Put x=0 :A:l

9l
1
Put x=10=10f (10)-1=1= f (10) 25
43. The number of ordered pairs of integers (x, y) satisfying the equation X% +6X + y2 =4 s
A2 B.8 C.6 D. 10
Key. B

13
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Sol.  (X+3)*+y*=13
X+3=42,y=1430r Xx+3=13, y =42

44. The number of non-negative integer solutions of X+Yy+2z=20 is
A.76 B. 84 C. 112 D. 121
Key. D

Sol. x+y=20-2Z, Z=0,12,..10
10
The number of solutions (non —ve) is Z(ZO—ZZ +1), =121

Z=0

45 f a+b+c=0 for a,b,c R, then the equation 3ax?+2bx+c =0 has

A.  Atleast one root in[0,1] B.  Onerootin [2,3] and another root in
[_2! _1]
C. Imaginary roots D. Atleast one rootin [1,2]
Key. A

Sol. Let f(Xx)=ax’+bx*+cx. Then f is continuous and differentiable in [0,1],
f(0)= f (1) =0. Hence by Rolle’s theorem there exists k € (0,1) such that 3ak® +2bk +c=0

46. If a,b,c be the sides of a triangle ABC and if roots of the equation a(b — ¢)x2 +

b(c - a)

X + c(a—b) = 0 are equal, then sinz(%j,sin2 (?],sinz(%j are in

(A) AP (B)GP (C) HP (D) AGP
Key. C
Sol. - a(lb—c)+b(c—a)+c(a—b)=0

x =1 is a root of the equation
alb-c)x*+b(c—a)x+c(a—b)=0
Then, other root =1 (*. roots are equal)

0D(B:c:(a—b)
a(b—c)
= ab—ac=ca—-bc
b 2ac
a+C
a, b, carein HP
111 .
Then, —,—,— arein AP.
abec
= E,E,E arein AP
abec
= E—1,5—1,§—1 are in AP.
a b ¢
s—a) (s—b -
= ( ),( ),(S C) are in AP.
a b c
abc

Multiplying in each by

(s—a)(s—b)(s—c)

14
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Then (s—b)(s—c)'(s—c)(s—a)’(s—a)(s— ) are in AP.
L (sb)s0) (-o)(s-a) (sma)sb)
bc ' ca ’ a

b
Or sin? A ,sin? B ,sin? ¢ are in HP
2 2 2

47. If o,B,y are the roots of the equation x3 + px + q = 0, then the value of the

a By
determinant|f vy qf is
v oa B
(A) 4 (B)2 (C)0 (D) -2
Key. C
Sol.  Since o,B,y are the rootsof x>+ px+q=0
a+B+y =0

Applying C; — C1+ C; + G5, then
a+P+y B oy 0 B v
oa+pB+y v of=|0 vy of=0
a+B+y a Bl 0 o P

48. The value of b and c for which the identity f(x+1)—f(x) =8x+3is satisfied,

where f(x)=bx?+cx+dare

(A) b=2,c=1 B)b=4,c=-1
(C) b=-1,c=4 [D)b==1,c=1
Key. B

Sol. - f(x+1)—f(x)=8x+3
= {b(x+1)2+c(x+l)+d}—{bx2+cx+d}=8x+3
= b{(x+l)2—x2}+c=8x+3

= b(2x+1)+c=8x+3 on comparing

2b=8andb+c=3
Then, b=4andc=-1

49, If a, b, c are positive numbers such that a>b>c and the equation
(a+b—20) x? +(b+c—2a)x+(c+a—2b) =0 has aroot in the interval (—1, 0), then
A) b cannot be the G.M. of 3, ¢ B) b may be the G.M. of a, ¢
C) b is the G.M. of a, ¢ D) none of these

Key. A

Sol. Let f(x)=(a+b—2c)x’+(b+c—2a)x+(c+a—2b)
According to the given condition, we have
£(0)f(~1)<0
ie.  (c+a-2b)(2a—b-c)<0
ie. (c+a—2b)(a-b+a-c)<0

15
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ie. c+a—-2b<0 [a>b>c, given =>a—b>0,a—c>0]
a+cC
ie. b>——
2
= b cannot be the G.M. of g, ¢, since G.M < A.M. always.
50. The values of ‘a’ for which the quadratic expression ax? +(a—2)x—2 is negative for exactly
two integral values of x, belongs to
(A) [-1.1] (8) [1,2)
(C) [3.4] (D) [-2,-1)
Key. B

Sol.  Let f(x)=ax’+(a-2)x-2
f (X) is negative for two integral values of x, so graph should be vertically upward parabola
e, a>0

Let two roots of f(x)=0area.andp then o, = ~(a-2)*(a+2) _1\ /7.,

2a

2 0
:>oc=—LB=§:>1<BS2:>1<E£2:>ae[12] \/
a
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