Equations

Quadratic Equations & Theory of Equations Integer Answer Type

1. If λ is the minimum value of the expression |x-p|+|x-15|+|x-p-15| for x in the

range
$$p \le x \le 15$$
 where $0 . Then $\frac{\lambda}{5} =$$

Key. 3

Sol.
$$|x-p| = x-p$$
 (Since $x \ge p$)

$$|x-15|=15-x \text{ (Since } x \le 15)$$

$$|x-(p+15)|=(p+15)-x \text{ (as } 15+p>x)$$

$$\therefore \text{ exp ression reduces to}$$

$$E = x-p+15-x+p+15-x$$

$$E = 30-x$$

$$\therefore E_{\min} \text{ occurs when } x = 15$$

$$\therefore \lambda = 15$$

2. Let
$$P(x) = x^2 + bx + c$$
, where b and c are integer. If $P(x)$ is a factor of both $x^4 + 6x^2 + 25$
and $3x^4 + 4x^2 + 28x + 5$, find the value of P(1).

Key. 4

Sol. Since P(x) divides into both of them

Hence P(x) also divides

$$(3x^4 + 4x^2 + 28x + 5) - 3(x^4 + 6x^2 + 25)$$

$$= -14x^{2} + 28x - 70 = -14(x^{2} - 2x + 5)$$

Which is a quadratic, Hence $P(x) = x^2 - 2x + 5$

$$\therefore P(1) = 4$$

3. Largest integral value of m for which the quadratic expression

$$y = x^2 + (2m+6)x + 4m + 12$$
 is always positive, $\forall x \in \mathbb{R}$, is

Key. 0

Sol. $D < 0 \Longrightarrow -3 < m < 1 \Longrightarrow m = 0$

Equations The number of solution of the equation $e^{2x} + e^x + e^{-2x} + e^{-x} = 3(e^{-2x} + e^x)$ is 4. Key. 1 Sol. $x = ln^2$ Let a, b, c be the three roots of the equation $x^3 + x^2 - 333x - 1002 = 0$. If $P = a^3 + b^3 + c^3$ 5. then the value of $\frac{P}{2006}$ =____ Key. 1 Sol. Let α be the root of the given cubic where α can take values a, b, c Hence $\alpha^3 + \alpha^2 - 333\alpha - 1002 = 0$ or $\alpha^3 = 1002 + 333\alpha - \alpha^2$ $\therefore \Sigma \alpha^3 = \Sigma 1002 + 333\Sigma \alpha - \Sigma \alpha^2 = 3006 + 333\Sigma \alpha - \left[\left(\Sigma \alpha \right)^2 - 2\Sigma \alpha_1 \alpha_2 \right]$ But $\Sigma \alpha = -1; \Sigma \alpha_1 \alpha_2 = -333$ $\therefore a^3 + b^3 + c^3 = 3006 - 333 - [1 + 666] = 3006 - 333 - 667 = 3006 - 100 = 2006 = P$ The number of the distinct real roots of the equation $(x+1)^5 = 2(x^5+1)$ is 6. Key. 3 $(x+1)^{5} = 2(x^{5}+1)$ Let $f(x) = \frac{(x+1)^{5}}{(x^{5}+1)}$ $\Rightarrow f'(x) = \frac{5(x+1)^{4}(1-x^{4})}{(x^{5}+1)^{2}}$ Sol. $(x \neq -1)$ \Rightarrow x=1 is maximum f(0)=1 and f(1)=16And $\lim_{x \to \infty} f(x) = 1 \Longrightarrow f(x) = 2$ has two solutions but given equation has three solutions. because x = -1 included. The equation $2(\log_3 x)^2 - |\log_3 x| + a = 0$ has exactly four real solutions if $a \in (0, \frac{1}{\kappa})$. then the value of K is Key. on putting $\log_3 x = t$, we get Sol. $2t^2 - |t| + a = 0$...(i)

Mathematics

If Eq. (i) has four roots then Eq. (ii) must have both roots positive and Eq. (iii) has both roots negative. Now, Eq. (ii) has both roots positive, if D > 0a/2 > 0 \Rightarrow 1 - 8a > 0, a > 0

$$a \in \left(0, \frac{1}{8}\right)$$
 on taking intersection.

Again, Eq. (iii) has both roots negative, if D > 0, a/2 > 0.

We again get
$$a \in \left(0, \frac{1}{8}\right) \Longrightarrow K = 80$$

 \Rightarrow

Let α, β be the roots of $x^2 - x + p = 0$ and λ, δ be the roots of $x^2 - 4x + q = 0$ such that 8. $\alpha, \beta, \gamma, \delta$ are in G.P and $p \ge 2$. If $a, b, c \in \{1, 2, 3, 4, 5\}$, let the number of equation of the

form $ax^2 + bx + c = 0$ which have real roots be *r*, then the minimum value of $\frac{pqr}{1536} =$

Key. Sol.

$$\frac{1}{(\alpha + \beta)} = 1, \alpha\beta = p, \gamma + \delta = 4, \gamma\delta = q$$

Since $\alpha, \beta, \gamma, \delta$ are in G.P
$$\therefore \frac{\beta}{\alpha} = \frac{\delta}{\gamma} \Rightarrow \frac{\beta + \alpha}{\beta - \alpha} = \frac{\delta + \gamma}{\delta - \gamma} \Rightarrow \frac{(\beta + \alpha)^2}{(\beta + \alpha)^2 - 4\alpha\beta} = \frac{(\delta + \gamma)^2}{(\delta + \gamma)^2 - 4\delta\gamma}$$
$$\Rightarrow \frac{1}{1 - 4p} = \frac{16}{16 - 4q} = \frac{4}{4 - q}$$
$$\Rightarrow 4 - q = 4 - 16p$$

Now, $p \ge 2$ $\therefore q \ge 32$
For the given equation $\alpha r^2 + br + c = 0$ to have real vector $b^2 - 4\alpha c \ge 0$

For the given equation $ax^2 + bx + c = 0$ to have real roots $b^2 - 4ac \ge 0$

$$\therefore ac \leq \frac{b^2}{4}$$

b	$\frac{b^2}{4}$	Possible values of ac such that $ac \le \frac{b^2}{4}$	No. of possible		Value of ac	Possible pairs (a,c)
			pairs (<i>u</i> , <i>c</i>)		1	(1,1)
2	1	1	1		2	(1,2), (2,1)
3	2.25	1,2	3		3	(1,3). (3,1)
4	4	1,2,3,4	8		4	(1,4),(4,1),(2,3)
5	6.25	1,2,3,4,5,6	12		5	(1,5),(5,1)
		Total	24		6	(2,3),(3,2)

Hence number of quadratic equation with real roots, r = 24 Now from (i) and (ii) the minimum value of pqr = 2.32.24 = 1536

Quadratic Equations & Theory of

Mathematics

9. Let
$$\alpha, \beta$$
 and γ be the roots of equation $f(x) = 0$, where $f(x) = x^3 + x^2 - 5x - 1$. Then
the value of $[[\alpha] + [\beta] + [\gamma]]$, where $[.]$ denotes the greatest integer function, is equal to
Key. 3
Sol. Given $f(x) = x^3 + x^2 - 5x - 1$
 $\therefore f'(x) = 3x^2 + 2x - 5$. The roots of $f'(x) = 0$ are $-\frac{5}{3}$ and 1
Writing the sign scheme for $f'(x)$,
 $-\infty - \frac{\max}{+ve} - \frac{\sin \pi}{2/3} - \frac{\sin \pi}{1} + ve$
Also, $f(-\infty) = -\infty < 0, f(\infty) = \infty > 0$
 $f(1) = -4, f\left(-\frac{5}{3}\right) = \frac{148}{27}$
Now, graph of $y = f(x)$ is as follows
 $f(-3) = -27 + 9 + 15 - 1 = -4 < 0$
 $f(-1) = 4 > 0, f(0) = -1 < 0$
 $f(-1) = 4 > 0, f(0) = -1 < 0$
 $f(2) = 1 > 0$
 $\therefore -3 < \alpha < -2, -1 < \beta < 0, 1 < \gamma < 2$
 $||\alpha| + |\beta| + |\gamma| = -3 - 1 + 1| = 3$
10. The set of real parameter 'a' for which the equation $x^4 - 2\alpha x^2 + x + a^2 - a = 0$ has all real
solutions, is given by $\left[\frac{m}{n}, \infty\right]$ where m and n are relatively prime positive integers, then the
value of $(m+n)$ is

Key. 7

Sol. We have
$$a^2 - (2x^2 + 1)a + x^4 + x = 0$$

$$\therefore a = \frac{(2x^2 + 1) \pm \sqrt{(2x^2 + 1)^2 - 4(x^4 + x)}}{2}$$

$$2a = (2x^2 + 1) \pm (2x - 1)$$

On solving +ve & -ve sign we got $a \ge \frac{3}{4}$ $\therefore m+n=7$ 11. Number of positive integer n for which $n^2 + 96$ is a perfect square is 4 Key. Suppose m is positive integer such that $n^2 + 96 = m^2$ then Sol. (m-n)(m+n) = 96As m-n < m+n and m-n, m+n both must be even So, the only possibilities are m-n=2, m+n=48; m-n=4, m+n=24m-n=6, m+n=16; m-n=8, m+n=12So, the solutions of (m, n) are (25, 23), (14, 10), (11, 5), (10, 2)If α, β be the roots of $x^2 + px - q = 0$ and γ, δ are the roots of $x^2 + px + r = 0$, 12. $q+r \neq 0$, then $\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}$ is equal to Key. Here, $\alpha + \beta = -p = \gamma + \delta$ Sol. $(\alpha - \gamma)(\alpha - \delta) = \alpha^2 - \alpha(\gamma + \delta) + \gamma \delta = \alpha^2 - \alpha(\alpha + \beta) + r$ $= -\alpha\beta + r = q + r$ Similarly $(\beta - \gamma)(\beta - \delta) = q + r$ So, ratio is 1 Number of real roots of $2x^{99} + 3x^{98} + 2x^{97} + 3x^{96} + \dots + 2x + 3 = 0$ is 13. 1 Key. Given equation can be written as $(2x+3)(x^{98}+x^{96}+\dots+1) = (2x+3)\frac{(x^{100}-1)}{x^2-1}$ Sol. So, the real roots are $x = \pm 1, \frac{-3}{2}$, out of which ± 1 are not roots of given equation. If λ is the minimum value of the expression |x-p|+|x-15|+|x-p-15| for x in the 14. range $p \le x \le 15$ where $0 . Then <math>\frac{\lambda}{5} =$ Key. 3 |x-p| = x-p (Since $x \ge p$) Sol. |x-15|=15-x (Since $x \le 15$)

Equations |x - (p+15)| = (p+15) - x (as 15 + p > x) $\therefore exp ression reduces to$ E = x - p + 15 - x + p + 15 - x E = 30 - x $\therefore E_{min} occurs when x = 15$ $\therefore \lambda = 15$

15. Let $P(x) = x^2 + bx + c$, where b and c are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, find the value of P(1).

Key.

4

Sol. Since P(x) divides into both of them

Hence P(x) also divides

$$(3x^4 + 4x^2 + 28x + 5) - 3(x^4 + 6x^2 + 25)$$

 $=-14x^{2}+28x-70=-14(x^{2}-2x+5)$

Which is a quadratic, Hence $P(x) = x^2 - 2x + 5$

 $\therefore P(1) = 4$

16. Largest integral value of m for which the quadratic expression $y = x^2 + (2m+6)x + 4m + 12$ is always positive, $\forall x \in R$, is

 $g x \Box f' x^2 \Box f'' x f x \Box \frac{d}{dx} f x f' x$

Key.

0

Sol.
$$D < 0 \Longrightarrow -3 < m < 1 \Longrightarrow m = 0$$

17. For a twice differentiable function
$$f(x)$$
, $g(x)$ is defined as
 $g(x) = f'(x)^2 + f''(x)f(x)$ on $[a,e]$. If for $a < b < c < d < e$, $f(a) = 0$,
 $f(b) = 2$, $f(c) = -1$, $f(d) = 2$, $f(e) = 0$ then find the minimum number of
zeros of g(x).

Key. 6

Sol.

Let $h x \Box f x f' x$

Mathematics Equations

 $f x \square 0$ has four roots namely a, \square, \square, e Then. where $b \square \square \square c$ and $c \square \square d$. And $f' x \square 0$ at three points k_1, k_2, k_3 where $a \square k_1 \square \square, \square \square k_2 \square \square, \square \square k_3 \square e$ [:: Between any two roots of a polynomial function $f x \square 0$ there lies atleast one root of $f' x \square 0$] There are atleast 7 roots of $f x . f' x \square 0$ There are atleast 6 roots of $\frac{d}{dx} f x f' x \Box 0$ i.e. of $g x \Box 0$ 18. f(x) is a polynomial of 6th degree and $f(x) = f(2-x) \forall x \in R$. If f(x) = 0 has 4 distinct real roots and two real and equal roots then sum of roots of f(x) = 0Key. 6 $f(\alpha) = f(2-\alpha) = 0$ sum of roots = 4 Sol. When $\alpha \neq 2-\alpha$ Where $\alpha = 2 - \alpha_{i.e.}$, $\alpha = 1_{sum of roots} = 2$ \therefore Total sum = 6 $(1+x)(1+x+x^2)(1+x+x^2+x^3)\dots(1+x+x^2+\dots+x^{100})$ 19. When written in the ascending power of x then (the highest exponent of x) -5045 is 5 Key. Highest exponent of $x = 1 + 2 + 3 + \dots + 100 = \frac{100(101)}{2}:5050$ Sol. If the roots of the equation $x^3 - ax^2 + 14x - 8 = 0$ are all real and positive, then the minimum 20. value of [a] (where [a] is the greatest integer of a) is Key. 6 $f(x) = x^3 - ax^2 + 14x - 8 = 0$ Sol. $\frac{\alpha + \beta + \gamma}{3} \ge (\alpha \beta \gamma)^{1/3}$ $\frac{a}{3} \ge (8)^{1/3}$

$$a \ge 6$$

Quadratic Equations & Theory of Equations

Quadratic Equations & Theory of Equations Single Correct Answer Type

1.	Let α and β be the roots of	$x^2 - 6x - 2 = 0$ with $\alpha > \beta$ if $a_n = \alpha^n - \beta^n$ for $n \ge 1$ then	
	the value of $\frac{a_{10} - 2a_8}{3a_9} =$		
	1) 1	2) 2	
	3) 3	4) 4	
Key.	2		
Sol.	$\alpha^2 - 6\alpha - 2 = 0$	$\beta^2 - 6\beta - 2 = 0$	
	$\Rightarrow \alpha^{10} - 6\alpha^9 - 2\alpha^8 = 0 \dots$	(1) $a^{10} = c^{29} - 2^{-28} + 2^{-10} + 1^$	
	subtract (2) from (1)	$\Rightarrow \beta^{*\circ} - 6\beta^{\circ} - 2\beta^{\circ} = 0 \dots (2)$	
2.	If a,b,c are positive real r	numbers such that $a+b+c=1$ then the least value of	
	$\frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$ is		
	1) 16	2) 8	
	3) 4	4) 5	
Key.	2		
501.	a = 1 - b - c $\rightarrow 1 + a - (1 - b) + (1 - c) > 2$	$\sqrt{(1-b)(1-c)}$	
	$\Rightarrow 1+u = (1-v) + (1-v) \ge 2$	(1-b)(1-c)	
	$(1+a)(1+b)(1+c) \ge 8(1-a)(1+c) \ge 8(1-a)(1+c)(1+c) \ge 8(1-a)(1+c)(1+c)(1+c) \ge 8(1-a)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c)(1+c$	a)(1-b)(1-c)	
3.	The range of values of a' for	which all the roots of the equation	
	$(a-1)(1+x+x^2)^2 = (a+1)(2)$	$1 + x^2 + x^4$) are imaginary is	
	1) (-∞,-2]	2) (2,∞)	
	3) (-2,2)	4) [2,∞)	
Key.	3		
Sol.	The given equation can be written as $(x^2 + x + 1)(x^2 - ax + 1) = 0$		
4.	If α , β are the roots of the equation $ax^2 + bx + c = 0$ and $S_n = \alpha^n + \beta^n$ then $aS_{n+1} + bS_n + cS_{n-1} = (n \ge 2)$		
	1) 0	2) $a+b+c$	
	3) $(a+b+c)n$	4) $n^2 abc$	
Key.	1		
Sol.	$S_{n+1} = \alpha^{n+1} + \beta^{n+1}$		
	$=(\alpha+\beta)(\alpha^n+\beta^n)-\alpha\beta$	$\left(lpha^{n-1}+eta^{n-1} ight)$	

$$= -\frac{b}{a}.S_n - \frac{c}{a}.S_{n-1}$$

5. A group of students decided to buy a Alarm Clock priced between Rs. 170 to Rs 195. But at the last moment, two students backed out of the decision so that the remaining students had to pay 1 Rupee more than they had planned. If the students paid equal shares, the price of the Alarm Clock is

Key.

Sol. Let cost of clock = xnumber of students = n

3

then
$$\frac{x}{n-2} = \frac{x}{n} + 1 \Longrightarrow x = \frac{n^2 - 2n}{2}$$

 $\Rightarrow 170 \le \frac{n^2 - 2n}{2} \le 195$

(where $P \cap \in R$)

6.

If tan *A*, tan *B* are the roots of $x^2 - Px + Q = 0$ the value of $\sin^2(A + B) =$

(matrix)
$$\frac{P^2}{P^2 + (1-Q)^2}$$

3) $\frac{Q^2}{P^2 + (1-Q)^2}$
1

Key.

Sol.
$$\tan(A+B) = \frac{P}{1-Q}$$
 then $\sin^2(A+B) = \frac{\tan^2(A+B)}{1+\tan^2(A+B)}$

7. The number of solutions of |[x]-2x|=4 where [x] is the greatest integer $\le x$ is 1) 2 3) 1 Key. 2 Sol. If $x = n \in Z$, $|n-2n|=4 \Rightarrow n=\pm 4$

If
$$x = n + K$$
 where $0 < K < 1$ then $|n - 2(n + k)| = 4$, it is possible if $K = \frac{1}{2}$
 $\Rightarrow |-n-1| = 4$
 $\therefore n = 3, -5$

8. Let *a*,*b* and *c* be real numbers such that a+2b+c=4 then the maximum value of ab+bc+ca is 1) 1 2) 2 3) 3 4) 4 Key. 4 Sol. Let ab+bc+ca=x

 $\Rightarrow 2b^2 + 2(c-2)b - 4c + c^2 + x = 0$ Since $b \in R$, $\therefore c^2 - 4c + 2x - 4 \le 0$ Since $c \in R$ $\therefore x \leq 4$ For the equation $3x^2 + px + 3 = 0$, p > 0, if one root is the square of the other then value 9. of P is 1) $\frac{1}{3}$ 2) 1 3) 3 Key. 3 $\alpha + \alpha^2 = -\frac{p}{3}$ Sol. $\alpha^3 = 1$ If the equations $2x^2 + kx - 5 = 0$ and $x^2 - 3x - 4 = 0$ have a common root, then the 10. value of k is 2) -34) $-\frac{1}{4}$ 1) -2 3) $\frac{27}{4}$ Key. 2 If ' α ' is the common root then $2\alpha^2 + k\alpha - 5 = 0$, $\alpha^2 - 3\alpha - 4 = 0$ solve the equations. Sol. If α and β are the roots of the equation $x^2 - x + 1 = 0$ then $\alpha^{2009} + \beta^{2009} =$ 11. 1)1 2) 2 3) - 14) -2 1 Key. $x = \frac{1 \pm i \sqrt{3}}{2}$ Sol. $\therefore \alpha = -\omega, \beta = -\omega^2$ If $P(Q-r)x^2 + Q(r-P)x + r(P-Q) = 0$ has equal roots then $\frac{2}{Q} =$ 12. (where $P, Q, r \in R$) 1) $\frac{1}{P} + \frac{1}{r}$ 2) $\frac{1}{P} - \frac{1}{r}$ 3) *P*+*r* 4) Pr Key. 1 Product of the roots =1Sol.

Mathematics Quadratic Equations & Theory of Equa		adratic Equations & Theory of Equations
13.	If $(1+K)\tan^2 x - 4\tan x - 1 + K = 0$ has real r	roots $\tan x_1$ and $\tan x_2$ then
	1) $k^2 \le 5$	2) $k^2 \ge 6$
	3) $k = 3$	4) <i>k</i> > 10
Key.	1	
Sol.	Discriminate ≥ 0	
14.	α, β are the roots of $ax^2 + bx + c = 0$ and γ	x, δ are the roots of $px^2 + qx + r = 0$ and
	D_1, D_2 be the respective discriminants of the	ese equations. If $lpha,eta,\gamma$ and δ are in A.P.
	then $D_1: D_2 = ($ where $\alpha, \beta, \gamma, \delta \in R \& a, b, c$	$(r, p, q, r \in R)$
	1) $a^2: p^2$	2) $a^2:b^2$
	3) $c^2: r^2$	4) $a^2:r^2$
Key.	1	
Sol.	$\beta = \alpha + d, \ \gamma = \alpha + 2d, \ \delta = \alpha + 3d$	
	$d^2 = \frac{D_1}{2} = \frac{D_2}{2}$	C.X
	$a^2 p^2$	
15.	If $x^2 + 4y^2 - 8x + 12 = 0$ is satisfied by real val	ues of x and y then $'y' \in$
	1) [2,6]	2) [2,5]
	3) [-1,1]	4) [-2,-1]
Key.	3	
Sol.	$x^2 - 8x + (4y^2 + 12) = 0$ is a quadratic in 'x', '	x' is real then discriminate ≥ 0
16.	For $x > 0, 0 \le t \le 2\pi, K > \frac{3}{2} + \sqrt{2}$, K being	g a fixed real number the minimum
	value of $x^{2} + \frac{K^{2}}{x^{2}} - 2\left\{ (1 + \cos t)x + \frac{K(1 + \sin t)x}{x} + K(1 + \sin t)$	$\left.\frac{nt}{2}\right\} + 3 + 2\cos t + 2\sin t \text{ is}$
	a) $\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$	b) $\frac{1}{2} \left\{ \sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right) \right\}^2$
	c) $3\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$	d) $2\left\{\sqrt{K} - \left(1 + \frac{1}{\sqrt{2}}\right)\right\}^2$
Key.	D	
Sol	Given expansion = $\left\{ \mathbf{x} - (1 + \cos t) \right\}^2 + \int \mathbf{K}$	$\left[\left(1+\sin t\right)\right]^2$
501.	$\left\{ \mathbf{x} \left(1 + \cos t \right) \right\}^{-1} \right\} \mathbf{x}$	
1.7	$(x-b)(x-c)_{c(-)}(x-c)(x-c)$	a) $(x-a)(x-b) (x-b) (x$
17.	Let $\psi(x) = \frac{1}{(a-b)(a-c)} (a-b) + \frac{1}{(b-c)(b-a)} (a-b) + \frac{1}{(b-c)(b-a)} + \frac{1}{(b$	$\frac{1}{(a)}^{1} \frac{(b)}{(c-a)(c-b)}^{1} \frac{(c)}{(c-a)(c-b)}$
	Where $a < c < b$ and $f^{11}(x)$ exists at all $f^{11}(x)$	points in (a,b). Then, there exists a
	real number μ , a < μ < b such that	
	f(a) $f(b)$ $f(c)$	
	$\frac{(1-a)}{(a-b)(a-c)} + \frac{(1-a)}{(b-c)(b-a)} + \frac{(1-a)}{(c-a)(c-1)}$	\overline{b} =
		<i>,</i>

.

Quadratic Equations & Theory of Equations Mathematics c) $\frac{1}{2}f^{11}(\mu)$ d) $\frac{1}{2}f^{111}(\mu)$ a) $f^{11}(\mu)$ b) $2f^{11}(\mu)$ Key. С Sol. Apply RT's, twice 18. If α,β,γ are the roots of the equation $x^3 + px + q = 0$, then the value of the α ß γ determinant β γ α is β α lγ (A) 4 (C)0(B)2 Kev. С Since α, β, γ are the roots of $x^3 + px + q = 0$ Sol. $\alpha + \beta + \gamma = 0$... Applying $C_1 \rightarrow C_1 + C_2 + C_3$, then $|\alpha + \beta + \gamma \beta \gamma| |0 \beta \gamma|$ $\alpha = 0 \gamma \alpha = 0$ $\alpha + \beta + \gamma \gamma$ $\alpha + \beta + \gamma \alpha$ β 0α ß The number of points (p, q) such that $p, q \in \{1, 2, 3, 4\}$ and the equation $px^2 + qx + 1 = 0$ has 19. real roots is A. 7 B. 8 C. 9 D. None of these Key. А $px^2 + qx + 1 = 0$ has real roots if $q^2 - 4p \ge 0$ or $q^2 \ge 4p$ Sol. Since $p, q \in \{1, 2, 3, 4\}$ The required points are(1,2), (1,3),(1,4), (2,3),(2,4),(3,4),(4,4) So the required number is 7 The value of b and c for which the identity f(x+1)-f(x)=8x+3 is satisfied, 20. where $f(x) = bx^2 + cx + d$ are (A) b = 2, c = 1 (B) b = 4, c = -1(D) b = -1, c = 1 (C) b = -1, c = 4Kev. B Sol. :: f(x+1) - f(x) = 8x + 3 ${b(x+1)^{2}+c(x+1)+d}-{bx^{2}+cx+d}=8x+3$ $b\left\{(x+1)^2-x^2\right\}+c=8x+3$ \Rightarrow b(2x+1)+c=8x+3 on comparing \Rightarrow 2b = 8 and b + c = 3b = 4 and c = -1

Then,

Quadratic Equations & Theory of Equations

21.	Let $f(x) = ax^2 + bx + c$, $g(x) = ax^2 + px + q$ where a, b, c, q, p, \in R and $b \neq p$. If their				
	discriminants are equal and $f(x) = g(x)$ has a root α , then				
	1) α will be A.M. of the roots of f(x) = 0, g(x) = 0				
	2) α will be G.M of all the roots of f(x) = 0, g(x) = 0				
	3) α will be A.M of the roots of f(x) = 0 or g(x) = 0				
	4) α will be G.M of the roots of f(x) = 0 or g(x) = 0				
кеу.	1				
Sol.	$a\alpha^{2} + b\alpha + c = a\alpha^{2} + p\alpha + q \Longrightarrow \alpha = \frac{q-c}{b-p} \rightarrow (i)$				
	And $b^2 - 4ac = p^2 - 4aq$				
	$\Rightarrow b^2 - p^2 = 4a(c - q)$				
	$\Rightarrow b + p = \frac{4a(c-q)}{b-p} = -4a\alpha \qquad (\text{from}(i))$				
	$(b+a) = \frac{-b}{-p} - \frac{p}{-p}$				
	$\alpha = \frac{-(b+p)}{a} = \frac{a}{a}$ which is A.M of all the roots of f(x) = 0 and g(x) = 0				
	4a 4				
22	If the equations $x^2 + 2\lambda x + \lambda^2 + 1 = 0$, $\lambda \in R$ and $\alpha x^2 + bx + c = 0$ where a, b, c are				
	lengths of sides of triangle have a common root, then the possible range of values of λ is				
	1) (0, 2) 2) $(\sqrt{3}, 3)$ 3) $(2\sqrt{2}, 3\sqrt{2})$ 4) (0, ∞)				
14 -	(0, 2) $(0, 3)$ $(0, 3)$				
кеу.	$(-1)^2$				
Sol.	$(x+\lambda)$ +1=0 has clearly imaginary roots				
	So, both roots of the equations are common				
	$\therefore \frac{a}{1} = \frac{b}{2\lambda} = \frac{c}{\lambda^2 + 1} = k(say)$				
	Then a = k, b = $2\lambda k$, c = $(\lambda^2 + 1)$ k				
	As a, b, c are sides of triangle				
	$a + b > c \implies 2\lambda + 1 > \lambda^2 + 1 \implies \lambda^2 - 2\lambda < 0$				
	$\Rightarrow \lambda \in (0,2)$				
	The other conditions also imply same relation.				
23.	The number of real or complex solutions of $x^2 - 6 x + 8 = 0$ is				
~	1) 6 2) 7 3) 8 4) 9				
Кеу.	1				
Sol.	If x is real, $x^2 - 6 x + 8 = 0 \implies x ^2 - 6 x + 8 = 0 \implies x = 2, 4 \implies x = \pm 2, \pm 4$				
	If x is non – real, say $x\!=\!lpha\!+\!ieta$, then				
	$(\alpha + i\beta)^2 - 6\sqrt{\alpha^2 + \beta^2} + 8 = 0$ $(\alpha + i\beta = \sqrt{\alpha^2 + \beta^2})$				
	$\left(\alpha^2 - \beta^2 + 8 - 6\sqrt{\alpha^2 + \beta^2}\right) + 2i\alpha\beta = 0$				
	Comparing real and imaginary parts,				
	$lphaeta\!=\!0 \implies\! lpha\!=\!0$ (if $eta\!=\!0$ then x is real.)				

$$\begin{split} & -\beta^2 + 8 - 6\sqrt{\beta^2} = 0 \\ & \beta^2 \pm 6\beta - 8 = 0 \Rightarrow \beta = \frac{\mp 6 \pm \sqrt{68}}{2} \\ & \text{ie., } \beta = \pm (3 - \sqrt{17}) \\ & \text{Hence } \pm (3 - \sqrt{17}) \text{ i are non-real roots.} \end{split}$$
24. If $x_1, x_2(x_1 > x_2)$ are abscisse of points P, Q lying on $y = 2x^2 - 4x - 5$ such that the tangents drawn at these points pass through the point $(0, -7)$, then $3x_1 - 2x_2$ equals to $1/4$ 2) 5 3) 6 4) 7 \\ & \text{Key. 2} \\ & \text{Sol. Let } (\alpha, \beta) \text{ be point on the curve such that the tangent drawn at (α, β) passes through $(0, -7)$
 $y^1 = 4x - 4 \Rightarrow y_{(\alpha,\beta)}^1 = 4\alpha - 4 \\ & \text{Tangent at } (\alpha, \beta) \text{ is } y - \beta = (4\alpha - 4)(x - \alpha) \text{ pass through } (0, -7) \Rightarrow -7 - \beta = (4\alpha - 4)(0 - \alpha) \\ & \text{But } \beta = 2\alpha^2 - 4\alpha - 5 \therefore$ It follows that $\alpha^2 = 1 \\ \Rightarrow \alpha = \pm 1 \\ & \text{So, } x_1 - 1, x_2 = -1 \\ & \text{So, } 3x_1 - 2x_2 = 5. \\ & 25. \text{ Let } f(x) = x^2 + 5x + 6$, then the number of real roots of $(f(x))^2 + 5f(x) + 6 - x = 0$ is $1/1$ 2) 2 3) 3 4) 0 \\ & \text{Key. 4} \\ & \text{Sol. Use "}f(x) = x \text{ has non real roots } \Rightarrow (f(x)) = x \text{ also has non-real roots"} \\ & 26. \text{ Sum of the roots of the equation is $4^x - 3(2^{x+3}) + 128 = 0 \\ & 1/5 & 2/6 & 3/7 & 4/8 \\ & \Rightarrow 2^x - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow y^2 - 24y + 128 = 0 \\ & \Rightarrow (^2 - 3(8y) + 128 = 0 \Rightarrow$

 $3x^2 + x + 5 = x^2 - 6x + 9$ $\Rightarrow 2x^2 + 7x - 4 = 0 \Rightarrow (2x - 1)(x + 4) = 0$ $\Rightarrow x = 1/2, -4$ None of these satisfy the inequality $x \ge 3$. Thus, (1) has no solution. The value of a for which one root of the quadratic equation. 28. $(a^2-5a+3)x^2+(3a-1)x+2=0$ is twice as large as other, is 1) -2/32)1/33) -1/34) 2/3Key. 4 $(a^2-5a+3a)x^2+(3a-1)x+2=0.....(1)$ Sol. Let α and 2α be the roots of (1), then $(a^2-5a+3)\alpha^2+(3a-1)\alpha+2=0$ (2) and $(a^2-5a+3)(4\alpha^2)+(3a-1)(2\alpha)+2=0$ (3) Multiplying (2) by 4 and subtracting it form (3) we get $(3a-1)(2\alpha)+6=0$ Clearly $a \neq 1/3$. Therefore, $\alpha = -3/(3a-1)$ Putting this value in (2) we get $(a^{2}-5a+3)(9)-(3a-1)^{2}(3)+2(3a-1)^{2}=0$ $\Rightarrow 9a^2 - 45a + 27 - (9a^2 - 6a + 1) = 0 \Rightarrow -39a + 26 = 0$ $\Rightarrow a = 2/3.$ For x = 2/3, the equation becomes $x^2 + 9x + 18 = 0$, whose roots are -3, -6. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 - 2cx + b^2$ are such that 29. $\min f(x) > \max g(x)$, then relation between b and c, is 2) 0 < c < b/2 3) $|c| < \frac{|b|}{\sqrt{2}}$ 4) $|c| > \sqrt{2} |b|$ 1) no relation Key. 4 $f(x) = (x+b)^2 + 2c^2 - b^2$ Sol. $\Rightarrow \min f(x) = 2c^2 - b^2$ Also $g(x) = -x^2 - 2cx + b^2 = b^2 + c^2 - (x+c)^2$ $\Rightarrow \max g(x) = b^2 + c^2$ As min $f(x) > \max g(x)$, we get $2c^2 - b^2 > b^2 + c^2$ $\Rightarrow c^2 > 2b^2 \Rightarrow |c| > \sqrt{2}|b|$ The equation $(\cos p - 1)x^2 + (\cos p)x + \sin p = 0$ in variable x has real roots, if p belongs 30. to the interval

1)
$$(0,2\pi)$$
 2) $(-\pi,0)$ 3) $(-\pi/2,\pi/2)$ 4) $(0,\pi)$

Key.

4

Sol.
$$(\cos p - 1)x^2 + (\cos p)x + \sin p = 0$$
..... (1)

	Discriminant of (1) is given by $D = \cos^2 p - 4(\cos p - 1)\sin p = \cos^2 p + 4(1 - \cos p)\sin p$					
	Note that $\cos^2 p \ge 0, 1 - \cos p \ge 0$. Thus, $D \ge 0$ if $\sin p \ge 0$ <i>i.e.</i> if $p \in (0, \pi)$.					
	2			× ,		
31.	If $x^2 + 2ax + 10 - 3a > 5$	> 0 for each $x \in R$, then				
Kev	1) $a < -3$	2) $-3 < a < 2$	3) $a > 5$	4) $2 < a < 5$		
Sol.	$x^{2} + 2ax + 10 - 3a > 0$	$\forall x \in R$				
	$\Rightarrow (x+a)^2 - (a^2+10)^2$	$(-3a) > 0 \forall x \in R$				
	$\Rightarrow a^2 + 3a - 10 < 0$)		X).		
	$\Rightarrow (a+5)(a-2) < 0$					
	$\Rightarrow -5 < a < 2$			$\langle \rangle$		
32.	Sum of all the values o	f x satisfying the equation	on $\log_{17} \log_{11} \left(\sqrt{x + 11} - \right)$	$+\sqrt{x} = 0$ is		
	1) 25	2) 36	3) 171	4) 0		
Key.	1					
Sol.	$\log_{17}\log_{11}(\sqrt{x+1}+\sqrt{x+1})$	(x) = 0 (1)				
	Equation (1) is defined	if $x \ge 0$.	0/2			
	We can rewrite (1) as	$\log_{11}\left(\sqrt{x+11}+\sqrt{x}\right) = 17^{\circ} = 1$				
	$\Rightarrow \sqrt{x+11} + \sqrt{x} = 11$	¹ =11				
	$\Rightarrow \sqrt{x+11} = 11 - \sqrt{x}$	S V				
Squaring both sides we get $x+11=121-22\sqrt{x}+x$						
$\Rightarrow 22\sqrt{x} = 110 \Rightarrow \sqrt{x} = 5 \text{ or } x = 25$						
	This clearly satisfies (1). Thus, sum of all the va	lues satisfying (1) is 25.			
22	The number of solution	ns of the equations of th	equation $r^2 + [r] - 4$	x+3=0 is Where []		
55.	denotes G.I.F.					
	1) 0	2) 1	3) 2	4) 3		
Key.		(2,2,2)				
Sol.	Given equation can be written as $(x - 5x + 5) - f = 0$ where $f = x - [x]$ and $0 \le f < 1$: $0 \le x^2 - 2x + 2 \le 1$					
	$C \le x - 3x + 3 < 1$	Q: roots are Imaginary				
	$\therefore x^2 - 3x + 3 \ge 0 \forall x \in \mathbb{C}$	$\equiv R$				
	solving $x^2 - 3x + 3 < 1$	$\Rightarrow 1 < x < 2$				
	if 1 < x < 2; [x] = 1.					
	putting $[x] = 1$ in the equation has no solution	given equation and solvi on.	ng we get $x = 2$. But $1 <$	x < 2 : the given		
34.	The number of values	of $'a'$ for which the equ	uation $(x-1)^2 = x-a $	has exactly three		
	1) 1	2) 2	3) 3	4) 4		
Key.	3					

Sol.	$ x-a = (x-1)^2$ Iff $a = x \pm (x-1)^2$			
	No of solutions = no of intersection its between			
	$y = a$; $f(x) = x^2 - x + 1$ and $g(x) = -x^2 + 3x - 1$. clearly the graphs of $f(x)$, $g(x)$ are			
	tangents to each other at $A(1,1)$. The line $y = a$ intersects the two graphs at three points			
	Iff it passes through one of the three pts A,B, C. Here $B = \left(\frac{1}{2}, \frac{3}{4}\right)$ vertex of f			
	and $C = \left(\frac{3}{2}, \frac{5}{4}\right)$ vertex of 'g' i.e if $a \in \left\{\frac{3}{4}, \frac{5}{4}, 1\right\}$			
35.	If <i>a</i> , <i>b</i> , <i>c</i> are positive numbers such that $a > b > c$ and the equation			
	$(a+b-2c)x^{2}+(b+c-2a)x+(c+a-2b)=0$ has a root in the interval (-1,0), then			
	A) b cannot be the G.M. of a, c B) b may be the G.M. of a, c			
17	C) b is the G.M. of a, c D) none of these			
Key.	A lat $f(x) = (a + b - 2a)x^2 + (b + a - 2a)x + (a + a - 2b)$			
501.	Let $\int (x) - (u+v-2c)x + (v+c-2a)x + (c+u-2b)$			
	f(0) f(-1) < 0			
	$\int (c) f(-1) < 0$ i.e. $(c+a-2h)(2a-b-c) < 0$			
	i.e. $(c+a-2b)(2a+b-c) < 0$			
	$\frac{1}{100} = \frac{1}{100} \left[\frac{1}{100} + 1$			
	i.e. $c+a-2b<0$ $[a>b>c, given \Rightarrow a-b>0, a-c>0]$			
	i.e. $b > \frac{a+c}{2}$			
	\Rightarrow <i>b</i> cannot be the G.M. of <i>a</i> , <i>c</i> , since G.M < A.M. always.			
	$ar^2 + br + a$			
36.	Let α , β (a < b) be the roots of the equation $ax^2 + bx + c = 0$. If $\lim \frac{ ax + bx + c }{2} = 1$,			
	$x \to m ax^- + bx + c$			
	A) $\frac{1}{a} = -1, m < \alpha$ B) $a > 0, \alpha < m < \beta$ C) $\frac{1}{a} = 1, m > \beta$ D) $a < 0, m > \beta$			
Key.	C			
Sol.	According to the given condition, we have			
	$ am^2 + bm + c = am^2 + bm + c$			
	i.e. $am^2 + bm + c > 0$			
	\Rightarrow if $a < 0$, the <i>m</i> lies in (α, β)			
	and if $a > 0$, then m does not lies in $(lpha, eta)$			
	Hence, option (c) is correct, since			
	$\frac{ a }{a} = 1 \Rightarrow a > 0$			
	And in that case <i>m</i> does not lie in (α, β) .			

ເຮ

MathematicsQuadratic Equations & Theory of Equation37.Let
$$f(x)$$
 be a function such that $f(x) = x - [x]$, where $[x]$ is the greatest integer lessthan or equal to x. Then the number of solutions of the equation $f(x) + f\left(\frac{1}{x}\right) = 1$ is (are)A) 0B) 1C) 2D) infiniteKey.DSol.Given, $f(x) = x - [x], x \in R - \{0\}$ Now $f(x) + f\left(\frac{1}{x}\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) - \left([x] + \left[\frac{1}{x}\right]\right) = 1$ $\Rightarrow \left(x + \frac{1}{x}\right) = [x] + \left[\frac{1}{x}\right] + 1$ \therefore If $x + \frac{1}{x} = k$ an integer \therefore L H. S. is also an integer \therefore $x = \frac{k \pm \sqrt{k^2 - 4}}{2}$ For real values of $x, k^2 - 4 \ge 0 \Rightarrow k \ge 2$ or $k \le -2$ We also observe that $k \ge 2$ and 2 does not satisfy equation (i) \therefore The equation (i) will have solutions if $k > 2$ or $k < -2$, where $k \in z$.Hence equation (i) will have solutions if $k > 2$ or $k < 2$, where $k \in z$.Hence equation (j) will have solutions if $k > 2$ or $k < 4$.A) $0 < a < 2$ B) $2 < a < \frac{5}{2}$ Sol.If both the roots of $(2a - 4)9^{2} - (2a - 3)3^{2} + 1 = 0$ are non-negative, thenA) $0 < a < 2$ B) $2 < a < \frac{5}{2}$ C) $a < \frac{5}{4}$ <

Sum of the roots $=\frac{2a-3}{2a-4} > 1$

$$\Rightarrow \qquad \frac{(2a-3)-(2a-4)}{2a-4} > 0$$

$$\Rightarrow \qquad \frac{1}{2a-4} > 0 \Rightarrow a > 2$$

$$\Rightarrow \qquad 2 < a < \frac{5}{2}$$
39. If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied for real values of x and y then
A) $x \in [1,3], y \in [1,3]$ B) $x \in [1,3], y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$
C) $x \in \left[\frac{-1}{3}, \frac{1}{3}\right], y \in [1,3]$ D) $x \in \left[\frac{-1}{3}, \frac{1}{3}\right], y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$
Key. B
Sol. Given equation is $x^2 + 9y^2 - 4x + 3 = 0$...(i)
Or, $x^2 - 4x + 9y^2 + 3 = 0$.
Since x is real $\therefore (-4)^2 - 4(9y^2 + 3) \ge 0$
Or, $16 - 4(9y^2 + 3) \ge 0$ or, $4 - 9y^2 - 3 \ge 0$
Or, $9y^2 - 1 \le 0$ or, $9y^2 \le 1$ or, $y^2 \le \frac{1}{9}$
Now $y^2 \le \frac{1}{9} \Rightarrow -\frac{1}{3} \le y \le \frac{1}{3}$...(ii)
Equation (i) can also be written as
 $9y^2 + 0y + x^2 - 4x + 3 = 0$...(iii)
Since y is real $\therefore (0^2 - 4.9(x^2 - 4x + 3) \ge 0$
Or, $x^2 - 4x + 3 \le 0$...(iii)
Since y is real $\therefore (0^2 - 4.9(x^2 - 4x + 3) \ge 0$
Or, $x^2 - 4x + 3 \le 0$
 $\Rightarrow x \in [1,3]$
40. The equation $a_k x^8 + a_7 x^7 + a_6 x^6 + ... + a_9 = 0$ has all its roots positive and real
(where $a_8 = 1, a_7 = -4, a_9 = 1/2^8$), then
A) $a_1 = \frac{1}{2^8}$ B) $a_1 = -\frac{1}{2^4}$ C) $a_2 = \frac{7}{2^5}$ D) $a_2 = \frac{7}{2^9}$
Key. B
Sol. Let the roots be $a_1, a_2, ..., a_8 = \frac{1}{2^8}$
 $\Rightarrow (a_1a_2..., a_8)^{1/8} = \frac{1}{2} = \frac{a_1 + a_2 + ... + a_8}{8}$

 $\Rightarrow \qquad AM=GM \Rightarrow all the roots are equal to \quad \frac{1}{2}.$

$$\Rightarrow \qquad a_1 = -{}^8 C_7 \left(\frac{1}{2}\right)^7 = -\frac{1}{2^4}$$
$$a_2 = {}^8 C_6 \left(\frac{1}{2}\right)^6 = -\frac{7}{2^4}$$
$$a_3 = -{}^8 C_5 \left(\frac{1}{2}\right)^5$$

- 41. If every root of a polynomial equation (of degree 'n') f(x) = 0 with leading coefficient "1"
 - is real and distinct, then the equation $f''(x)f(x) \{f'(x)\}^2 = 0$ has.
 - (A) at least one real root (B) no real root
 - (C) at most one real root (D) exactly two real roots
- Key. B

Sol. Let $f(x) = (x-a_1)(x-a_2)\dots(x-a_n)$ where $a_1, a_2, \dots, a_{n \in \mathbb{R}}$ take log both sides and differentiate. Then

$$\frac{f'(x)}{f(x)} = \frac{1}{x - a_1} + \frac{1}{x - a_2} + \dots + \frac{1}{x - a_n}$$

Again diff w.r.t. 'x'

$$\frac{f f'' - (f')^2}{f^2} = -\left[\frac{1}{(x-a_1)^2} + \frac{1}{(x-a_2)^2} + \dots + \frac{1}{(x-a_n)^2}\right] \\ < 0 \,\forall x \in \mathbb{R}$$

$$\Rightarrow f f'' - (f')^2 = 0$$
 has no real root

42. If f(x) is a polynomial of least degree such that $f(r) = \frac{1}{r}$, $r = 1, 2, 3, __9$, then $f(10) = __$

B.
$$\frac{1}{2}$$
 C. $\frac{1}{10}$ D. $\frac{1}{5}$

Key. D

A. 1

Sol. xf(x) - 1 = 0 has roots 1,2,3 ____9

$$xf(x) - 1 = A(x-1)(x-2)$$
____x-9

Put $x=0 \Longrightarrow A = \frac{1}{9!}$

Put $x = 10 \Longrightarrow 10 f(10) - 1 = 1 \Longrightarrow f(10) = \frac{1}{5}$

43. The number of ordered pairs of integers (x, y) satisfying the equation $x^2 + 6x + y^2 = 4$ is A. 2 B. 8 C. 6 D. 10 Key. B

 $(x+3)^2 + y^2 = 13$ Sol. $x+3=\pm 2, y=\pm 3 \text{ or } x+3=\pm 3, y=\pm 2$ 44. The number of non-negative integer solutions of x + y + 2z = 20 is A. 76 B. 84 C. 112 D. 121 D Key. x + y = 20 - 2Z, Z = 0, 1, 2, ... 10Sol. The number of solutions (non –ve) is $\sum_{n=0}^{10} (20 - 2Z + 1)_{C_1} = 121$ If a+b+c=0 for $a,b,c \in R$, then the equation $3ax^2+2bx+c=0$ has 45 At least one root in [0,1]One root in [2,3] and another root in Α. Β. [-2, -1]Atleast one root in [1, 2]C. Imaginary roots D. Key. А Let $f(x) = ax^3 + bx^2 + cx$. Then *f* is continuous and differentiable in [0,1], Sol. f(0) = f(1) = 0. Hence by Rolle's theorem there exists $k \in (0,1)$ such that $3ak^2 + 2bk + c = 0$ If a,b,c be the sides of a triangle ABC and if roots of the equation $a(b - c)x^2 + c^2 +$ 46. b(c - a)x + c(a – b) = 0 are equal, then $\sin^2\left(\frac{A}{2}\right)$, $\sin^2\left(\frac{B}{2}\right)$, $\sin^2\left(\frac{C}{2}\right)$ are in (A) AP (C) HP (B)GP (D) AGP Key. С a(b-c) + b(c-a) + c(a-b) = 0Sol. ... x = 1 is a root of the equation ÷. $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$ Then, other root = 1 (:: roots are equal) $\alpha \times \beta = \frac{c(a-b)}{a(b-c)}$... ab – ac = ca – bc $b = \frac{2ac}{a+c}$ a, b, c are in HP Then, $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in AP. $\Rightarrow \frac{s}{a}, \frac{s}{b}, \frac{s}{c}$ are in AP $\Rightarrow \frac{s}{a} - 1, \frac{s}{b} - 1, \frac{s}{c} - 1$ are in AP. $\Rightarrow \frac{(s-a)}{a}, \frac{(s-b)}{b}, \frac{(s-c)}{c} \text{ are in AP.}$ Multiplying in each by $\frac{abc}{(s-a)(s-b)(s-c)}$

Mathematics

Then
$$\frac{bc}{(s-b)(s-c)} \cdot \frac{ca}{(s-c)(s-a)} \cdot \frac{ab}{(s-a)(s-b)} \text{ are in AP.}$$

$$\Rightarrow \frac{(s-b)(s-c)}{bc} \cdot \frac{(s-c)(s-a)}{ca} \cdot \frac{(s-a)(s-b)}{ab} \text{ are in HP.}$$
Or
$$\sin^{2}\left(\frac{A}{2}\right) \sin^{2}\left(\frac{B}{2}\right) \sin^{2}\left(\frac{C}{2}\right) \text{ are in HP}$$
47. If α,β,γ are the roots of the equation $x^{3} + px + q = 0$, then the value of the determinant $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \end{vmatrix}$ is $\begin{vmatrix} \gamma & \alpha & \beta \end{vmatrix}$
(A) 4 (B)2 (C)0 (D) -2
Key. C
Sol. Since α,β,γ are the roots of $x^{3} + px + q = 0$
 $\therefore \quad \alpha + \beta + \gamma = 0$
Applying $c_{1} \rightarrow c_{1} + c_{2} + c_{3}$, then $\begin{vmatrix} \alpha + \beta + \gamma & \beta & \gamma \\ \alpha + \beta \end{vmatrix} = 0 \quad \gamma \quad \alpha = 0$
Applying $c_{1} \rightarrow c_{1} + c_{2} + c_{3}$, then $\begin{vmatrix} \alpha + \beta + \gamma & \alpha & \beta \end{vmatrix} = 0 \quad \alpha \quad \beta \end{vmatrix}$
48. The value of b and c for which the identity $f(x+1) - f(x) = 8x + 3$ is satisfied, where $f(x) = bx^{2} + cx + d$ are
(A) $b = 2, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(B) $b = 4, c = -1$
(C) $b = -1, c = 4$ (D) $b = -1, c = 1$
(D) $b = -1, c = 1$
(D) $b = -1, c = 4$
(D) $b = -1, c = 1$
(D) $b = -1, c = 3$

i.e. c+a-2b < 0 $[a > b > c, given \Rightarrow a-b > 0, a-c > 0]$ i.e. $b > \frac{a+c}{2}$ \Rightarrow b cannot be the G.M. of a, c, since G.M < A.M. always.

50. The values of 'a' for which the quadratic expression $ax^2 + (a-2)x - 2$ is negative for exactly two integral values of x, belongs to

(A)
$$[-1,1]$$
(B) $[1,2)$ (C) $[3,4]$ (D) $[-2,-1)$

Key.

В

Sol. Let $f(x) = ax^2 + (a-2)x - 2$

 $f\left(x\right)$ is negative for two integral values of x, so graph should be vertically upward parabola i.e., $a\!>\!0$

Let two roots of f(x) = 0 are α and β then $\alpha, \beta = \frac{-(a-2)\pm(a+2)}{2a}$ $\Rightarrow \alpha = -1, \beta = \frac{2}{a} \Rightarrow 1 < \beta \le 2 \Rightarrow 1 < \frac{2}{a} \le 2 \Rightarrow a \in [1,2]$ -1 β β