Equations

Quadratic Equations \& Theory of Equations

Integer Answer Type

1. If λ is the minimum value of the expression $|x-p|+|x-15|+|x-p-15|$ for x in the range $p \leq x \leq 15$ where $0<p<15$. Then $\frac{\lambda}{5}=$

Key. 3
Sol. $\quad|x-p|=x-p \quad($ Since $x \geq p)$
$|x-15|=15-x($ Since $x \leq 15)$
$|x-(p+15)|=(p+15)-x($ as $15+p>x)$
\therefore expression reduces to
$E=x-p+15-x+p+15-x$
$E=30-x$
$\therefore E_{\text {min }}$ occurs when $x=15$
$\therefore \lambda=15$
2. Let $P(x)=x^{2}+b x+c$, where b and c are integer. If $P(x)$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, find the value of $P(1)$.
Key. 4
Sol. Since $P(x)$ divides into both of them
Hence $P(x)$ also divides
$\left(3 x^{4}+4 x^{2}+28 x+5\right)-3\left(x^{4}+6 x^{2}+25\right)$
$=-14 x^{2}+28 x-70=-14\left(x^{2}-2 x+5\right)$
Which is a quadratic, Hence $P(x)=x^{2}-2 x+5$

$$
\therefore P(1)=4
$$

3. Largest integral value of m for which the quadratic expression
$y=x^{2}+(2 m+6) x+4 m+12$ is always positive, $\forall x \in R$, is
Key. 0
Sol. $\quad D<0 \Rightarrow-3<m<1 \Rightarrow m=0$

Equations

4. The number of solution of the equation $e^{2 x}+e^{x}+e^{-2 x}+e^{-x}=3\left(e^{-2 x}+e^{x}\right)$ is

Key. 1
Sol. $\quad x=\ln 2$
5. Let a, b, c be the three roots of the equation $x^{3}+x^{2}-333 x-1002=0$. If $\mathrm{P}=a^{3}+b^{3}+c^{3}$ then the value of $\frac{P}{2006}=$
Key. 1
Sol. Let α be the root of the given cubic where α can take values $\mathrm{a}, \mathrm{b}, \mathrm{c}$
Hence $\alpha^{3}+\alpha^{2}-333 \alpha-1002=0 \quad$ or $\alpha^{3}=1002+333 \alpha-\alpha^{2}$
$\therefore \Sigma \alpha^{3}=\Sigma 1002+333 \Sigma \alpha-\Sigma \alpha^{2}=3006+333 \Sigma \alpha-\left[(\Sigma \alpha)^{2}-2 \Sigma \alpha_{1} \alpha_{2}\right]$
But $\Sigma \alpha=-1 ; \Sigma \alpha_{1} \alpha_{2}=-333$
$\therefore a^{3}+b^{3}+c^{3}=3006-333-[1+666]=3006-333-667=3006-100=2006=\mathrm{P}$
6. The number of the distinct real roots of the equation $(x+1)^{5}=2\left(x^{5}+1\right)$ is

Key. 3
Sol. $\quad(x+1)^{5}=2\left(x^{5}+1\right)$

$$
\begin{array}{ll}
\text { Let } & f(x)=\frac{(x+1)^{5}}{\left(x^{5}+1\right)} \\
\Rightarrow & f^{\prime}(x)=\frac{5(x+1)^{4}\left(1-x^{4}\right)}{\left(x^{5}+1\right)^{2}} \\
\Rightarrow & x=1 \text { is maximum } \\
\text { As, } & f(0)=1 \text { and } f(1)=16
\end{array}
$$

And $\lim _{x \rightarrow+\infty} f(x)=1 \Rightarrow f(x)=2$ has two solutions but given equation has three solutions.
because $x=-1$ included.
7. The equation $2\left(\log _{3} x\right)^{2}-\left|\log _{3} x\right|+a=0$ has exactly four real solutions if $a \in\left(0, \frac{1}{K}\right)$, then the value of K is \qquad
Key. 8
Sol. on putting $\log _{3} x=t$, we get

$$
\begin{array}{ll}
& 2 t^{2}-|t|+a=0 \\
\text { If } t>0 \text {, then } & 2 t^{2}-t+a=0 \\
\text { If } t<0 \text {, then } & 2 t^{2}+t+a=0 \tag{iii}
\end{array}
$$

Equations

If Eq. (i) has four roots then Eq. (ii) must have both roots positive and Eq. (iii) has
both roots negative. Now, Eq. (ii) has both roots positive, if $D>0$

$$
\begin{array}{ll}
\Rightarrow & a / 2>0 \\
\Rightarrow & 1-8 a>0, a>0 \\
\Rightarrow & a \in\left(0, \frac{1}{8}\right) \text { on taking intersection. }
\end{array}
$$

Again, Eq. (iii) has both roots negative, if $D>0, a / 2>0$.
We again get $a \in\left(0, \frac{1}{8}\right) \Rightarrow K=80$
8. Let α, β be the roots of $x^{2}-x+p=0$ and λ, δ be the roots of $x^{2}-4 x+q=0$ such that $\alpha, \beta, \gamma, \delta$ are in G.P and $p \geq 2$. If $a, b, c \in\{1,2,3,4,5\}$, let the number of equation of the form $a x^{2}+b x+c=0$ which have real roots be r, then the minimum value of $\frac{p q r}{1536}=$

Key. 1
Sol. $\quad(\alpha+\beta)=1, \alpha \beta=p, \gamma+\delta=4, \gamma \delta=q$
Since $\alpha, \beta, \gamma, \delta$ are in G.P
$\therefore \frac{\beta}{\alpha}=\frac{\delta}{\gamma} \Rightarrow \frac{\beta+\alpha}{\beta-\alpha}=\frac{\delta+\gamma}{\delta-\gamma} \Rightarrow \frac{(\beta+\alpha)^{2}}{(\beta+\alpha)^{2}-4 \alpha \beta}=\frac{(\delta+\gamma)^{2}}{(\delta+\gamma)^{2}-4 \delta \gamma}$
$\Rightarrow \frac{1}{1-4 p}=\frac{16}{16-4 q}=\frac{4}{4-q}$
$\Rightarrow 4-q=4-16 p$
Now, $p \geq 2 \therefore q \geq 32$
For the given equation $a x^{2}+b x+c=0$ to have real roots $b^{2}-4 a c \geq 0$
$\therefore a c \leq \frac{b^{2}}{4}$

b	b^{2}	Possible values of ac	No. of possible pairs (a, c)	Value of ac	Possible pairs (a, c)
	4	such that $a c \leq \frac{}{4}$		1	$(1,1)$
2	1	1	1	2	$(1,2),(2,1)$
3	2.25	1,2	3	3	$(1,3) .(3,1)$
4	4	1,2,3,4	8	4	$(1,4),(4,1),(2,3)$
5	6.25	1,2,3,4,5,6	12	5	$(1,5),(5,1)$
		Total	24	6	$(2,3),(3,2)$

Hence number of quadratic equation with real roots, $r=24$
Now from (i) and (ii) the minimum value of $p q r=2.32 .24=1536$

Equations

9. Let α, β and γ be the roots of equation $f(x)=0$, where $f(x)=x^{3}+x^{2}-5 x-1$. Then the value of $|[\alpha]+[\beta]+[\gamma]|$, where $[$.$] denotes the greatest integer function, is equal to$

Key. 3
Sol. Given $f(x)=x^{3}+x^{2}-5 x-1$
$\therefore f^{\prime}(x)=3 x^{2}+2 x-5$. The roots of $f^{\prime}(x)=0$ are $-\frac{5}{3}$ and 1
Writing the sign scheme for $f^{\prime}(x)$,

Also, $f(-\infty)=-\infty<0, f(\infty)=\infty>0$
$f(1)=-4, f\left(-\frac{5}{3}\right)=\frac{148}{27}$
Now, graph of $y=f(x)$ is as follows

$f(-3)=-27+9+15-1=-4<0$
$f(-2)=-8+4+10-1>0$
$f(-1)=4>0, f(0)=-1<0$
$f(2)=1>0$
$\therefore-3<\alpha<-2,-1<\beta<0,1<\gamma<2$
$|[\alpha]+[\beta]+[\gamma]|=|-3-1+1|=3$
10. The set of real parameter ' a ' for which the equation $x^{4}-2 a x^{2}+x+a^{2}-a=0$ has all real solutions, is given by $\left[\frac{m}{n}, \infty\right)$ where m and n are relatively prime positive integers, then the value of $(m+n)$ is

Key. 7
Sol. We have $a^{2}-\left(2 x^{2}+1\right) a+x^{4}+x=0$
$\therefore a=\frac{\left(2 x^{2}+1\right) \pm \sqrt{\left(2 x^{2}+1\right)^{2}-4\left(x^{4}+x\right)}}{2}$
$2 a=\left(2 x^{2}+1\right) \pm(2 x-1)$

Equations

On solving +ve \& -ve sign we got
$a \geq \frac{3}{4}$
$\therefore m+n=7$
11. Number of positive integer n for which $n^{2}+96$ is a perfect square is

Key. 4
Sol. Suppose m is positive integer such that $n^{2}+96=m^{2}$ then
$(m-n)(m+n)=96$
As $m-n<m+n$ and $m-n, m+n$ both must be even
So, the only possibilities are
$m-n=2, m+n=48: m-n=4, m+n=24$
$m-n=6, m+n=16: m-n=8, m+n=12$
So, the solutions of (m, n) are $(25,23),(14,10),(11,5),(10,2)$
12. If α, β be the roots of $x^{2}+p x-q=0$ and γ, δ are the roots of $x^{2}+p x+r=0$, $q+r \neq 0$, then $\frac{(\alpha-\gamma)(\alpha-\delta)}{(\beta-\gamma)(\beta-\delta)}$ is equal to

Key. 1
Sol. Here, $\alpha+\beta=-p=\gamma+\delta$
$(\alpha-\gamma)(\alpha-\delta)=\alpha^{2}-\alpha(\gamma+\delta)+\gamma \delta=\alpha^{2}-\alpha(\alpha+\beta)+r$
$=-\alpha \beta+r=q+r$
Similarly $(\beta-\gamma)(\beta-\delta)=q+r$
So, ratio is 1
13. Number of real roots of $2 x^{99}+3 x^{98}+2 x^{97}+3 x^{96}+\ldots \ldots .+2 x+3=0$ is

Key. 1
Sol. Given equation can be written as $(2 x+3)\left(x^{98}+x^{96}+\ldots \ldots+1\right)=(2 x+3) \frac{\left(x^{100}-1\right)}{x^{2}-1}$ So, the real roots are $x= \pm 1, \frac{-3}{2}$, out of which ± 1 are not roots of given equation.
14. If λ is the minimum value of the expression $|x-p|+|x-15|+|x-p-15|$ for x in the range $p \leq x \leq 15$ where $0<p<15$. Then $\frac{\lambda}{5}=$

Key. 3
Sol. $\quad|x-p|=x-p \quad($ Since $x \geq p)$
$|x-15|=15-x($ Since $x \leq 15)$

Equations

$$
|x-(p+15)|=(p+15)-x(\text { as } 15+p>x)
$$

\therefore expression reduces to
$E=x-p+15-x+p+15-x$
$E=30-x$
$\therefore E_{\text {min }}$ occurs when $x=15$
$\therefore \lambda=15$
15. Let $P(x)=x^{2}+b x+c$, where b and c are integer. If $P(x)$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, find the value of $P(1)$.

Key. 4
Sol. Since $P(x)$ divides into both of them
Hence $\mathrm{P}(\mathrm{x})$ also divides
$\left(3 x^{4}+4 x^{2}+28 x+5\right)-3\left(x^{4}+6 x^{2}+25\right)$
$=-14 x^{2}+28 x-70=-14\left(x^{2}-2 x+5\right)$
Which is a quadratic, Hence $P(x)=x^{2}-2 x+5$
$\therefore P(1)=4$
16. Largest integral value of m for which the quadratic expression
$y=x^{2}+(2 m+6) x+4 m+12$ is always positive, $\forall x \in R$, is
Key. 0
Sol. $\quad D<0 \Rightarrow-3<m<1 \Rightarrow m=0$
17. For a twice differentiable function $f(x), g(x)$ is defined as
$g(x)=f^{\prime}(x)^{2}+f^{\prime \prime}(x) f(x)$ on $[a, e]$. If for $a<b<c<d<e, f(a)=0$, $f(b)=2, f(c)=-1, f(d)=2, f(e)=0$ then find the minimum number of zeros of $g(x)$.
Key. 6

Sol.

Let $h x \square f x f^{\prime} x$

Equations

Then, $f x \square 0$ has four roots namely a, \square, \square, e
where
$b$$c$ and
$c \square$$\square d$

And $f^{\prime} x \square 0$ at three points k_{1}, k_{2}, k_{3} where $a \square k_{1} \square \square, \square \square k_{2} \square \square, \square \square k_{3} \square e$
$[\because$ Between any two roots of a polynomial function $f x \square 0$ there lies atleast one root of $f^{\prime} x \square 0$]

There are atleast 7 roots of $f x \cdot f^{\prime} x \square 0$
\square There are atleast 6 roots of $\frac{d}{d x} f x f^{\prime} x \quad \square 0$ i.e. of $g x \square 0$
18. $f(x)$ is a polynomial of $6^{\text {th }}$ degree and $f(x)=f(2-x) \forall x \in R$. If $f(x)=0$ has 4 distinct real roots and two real and equal roots then sum of roots of $f(x)=0$

Key. 6
Sol. $\quad f(\alpha)=f(2-\alpha)=0$ sum of roots $=4$
When $\alpha \neq 2-\alpha$
Where $\alpha=2-\alpha_{\text {i.e., }} \alpha=1_{\text {sum of roots }}=2$
\therefore Total sum $=6$
19. $(1+\mathrm{x})\left(1+\mathrm{x}+\mathrm{x}^{2}\right)\left(1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}\right) \ldots \ldots\left(1+\mathrm{x}+\mathrm{x}^{2}+\ldots . .+\mathrm{x}^{100}\right)$

When written in the ascending power of x then (the highest exponent of x) -5045 is
Key. 5
Sol. Highest exponent of $x=1+2+3+\ldots . .+100=\frac{100(101)}{2}: 5050$
20. If the roots of the equation $x^{3}-a x^{2}+14 x-8=0$ are all real and positive, then the minimum value of [a] (where [a] is the greatest integer of a) is
Key. 6
Sol. $\quad f(x)=x^{3}-a x^{2}+14 x-8=0$
$\frac{\alpha+\beta+\gamma}{3} \geq(\alpha . \beta \gamma)^{1 / 3}$
$\frac{\mathrm{a}}{3} \geq(8)^{1 / 3}$
$a \geq 6$

Quadratic Equations \& Theory of Equations
 Single Correct Answer Type

1. Let α and β be the roots of $x^{2}-6 x-2=0$ with $\alpha>\beta$ if $a_{n}=\alpha^{n}-\beta^{n}$ for $n \geq 1$ then the value of $\frac{a_{10}-2 a_{8}}{3 a_{9}}=$
1) 1
2) 2
3) 3
4) 4

Key. 2
Sol. $\quad \alpha^{2}-6 \alpha-2=0$

$$
\begin{equation*}
\beta^{2}-6 \beta-2=0 \tag{1}
\end{equation*}
$$

$\Rightarrow \alpha^{10}-6 \alpha^{9}-2 \alpha^{8}=0$
$\Rightarrow \beta^{10}-6 \beta^{9}-2 \beta^{8}=0$
subtract (2) from (1)
2. If a, b, c are positive real numbers such that $a+b+c=1$ then the least value of $\frac{(1+a)(1+b)(1+c)}{(1-a)(1-b)(1-c)}$ is

1) 16
2) 8
3) 4
4) 5

Key. 2
Sol. $\quad a=1-b-c$
$\Rightarrow 1+a=(1-b)+(1-c) \geq 2 \sqrt{(1-b)(1-c)}$
$\therefore(1+a)(1+b)(1+c) \geq 8(1-a)(1-b)(1-c)$
3. The range of values of ' a ' for which all the roots of the equation $(a-1)\left(1+x+x^{2}\right)^{2}=(a+1)\left(1+x^{2}+x^{4}\right)$ are imaginary is

1) $(-\propto,-2]$
2) $(2, \propto)$
3) $(-2,2)$
4) $[2, \infty)$

Key. 3
Sol. The given equation can be written as $\left(x^{2}+x+1\right)\left(x^{2}-a x+1\right)=0$
4. If α, β are the roots of the equation $a x^{2}+b x+c=0$ and $S_{n}=\alpha^{n}+\beta^{n}$ then $a S_{n+1}+b S_{n}+c S_{n-1}=(n \geq 2)$

1) 0
2) $a+b+c$
3) $(a+b+c) n$
4) $n^{2} a b c$

Key. 1
Sol. $\quad S_{n+1}=\alpha^{n+1}+\beta^{n+1}$
$=(\alpha+\beta)\left(\alpha^{n}+\beta^{n}\right)-\alpha \beta\left(\alpha^{n-1}+\beta^{n-1}\right)$

$$
=-\frac{b}{a} \cdot S_{n}-\frac{c}{a} \cdot S_{n-1}
$$

5. A group of students decided to buy a Alarm Clock priced between Rs. 170 to Rs 195. But at the last moment, two students backed out of the decision so that the remaining students had to pay 1 Rupee more than they had planned. If the students paid equal shares, the price of the Alarm Clock is
1) 190
2) 196
3) 180
4) 171

Key. 3
Sol. Let cost of clock $=x$
number of students $=n$
then $\frac{x}{n-2}=\frac{x}{n}+1 \Rightarrow x=\frac{n^{2}-2 n}{2}$
$\Rightarrow 170 \leq \frac{n^{2}-2 n}{2} \leq 195$
6. If $\tan A, \tan B$ are the roots of $x^{2}-P x+Q=0$ the value of $\sin ^{2}(A+B)=$
(where $P, Q \in R$)

1) $\frac{P^{2}}{P^{2}+(1-Q)^{2}}$
2) $\frac{P^{2}}{P^{2}+Q^{2}}$
3) $\frac{Q^{2}}{P^{2}+(1-Q)^{2}}$
4) $\frac{P^{2}}{(P+Q)^{2}}$

Key. 1
Sol. $\tan (A+B)=\frac{P}{1-Q}$ then $\sin ^{2}(A+B)=\frac{\tan ^{2}(A+B)}{1+\tan ^{2}(A+B)}$
7. The number of solutions of $|[x]-2 x|=4$ where $[x]$ is the greatest integer $\leq x$ is

1) 2
2) 4
3) 1
4) Infinite

Key. 2
Sol. If $x=n \in Z, \quad|n-2 n|=4 \Rightarrow n= \pm 4$
If $x=n+K$ where $0<K<1$ then $|n-2(n+k)|=4$, it is possible if $K=\frac{1}{2}$
$\Rightarrow|-n-1|=4$
$\therefore n=3,-5$
8. Let a, b and c be real numbers such that $a+2 b+c=4$ then the maximum value of $a b+b c+c a$ is

1) 1
2) 2
3) 3
4) 4

Key. 4
Sol. Let $a b+b c+c a=x$
$\Rightarrow 2 b^{2}+2(c-2) b-4 c+c^{2}+x=0$
Since $b \in R$,
$\therefore c^{2}-4 c+2 x-4 \leq 0$
Since $c \in R$
$\therefore x \leq 4$
9. For the equation $3 x^{2}+p x+3=0, p>0$, if one root is the square of the other then value of P is

1) $\frac{1}{3}$
2) 1
3) 3
4) $\frac{2}{3}$

Key. 3
Sol. $\quad \alpha+\alpha^{2}=-\frac{p}{3}$
$\alpha^{3}=1$
10. If the equations $2 x^{2}+k x-5=0$ and $x^{2}-3 x-4=0$ have a common root, then the value of k is

1) -2
2) -3
3) $\frac{27}{4}$
4) $-\frac{1}{4}$

Key. 2
Sol. If ' α ' is the common root then $2 \alpha^{2}+k \alpha-5=0, \alpha^{2}-3 \alpha-4=0$ solve the equations.
11. If α and β are the roots of the equation $x^{2}-x+1=0$ then $\alpha^{2009}+\beta^{2009}=$

1) 1
2) 2
3) -1
4) -2

Key. 1
Sol. $\quad x=\frac{1 \pm i \sqrt{3}}{2}$
$\therefore \alpha=-\omega, \beta=-\omega^{2}$
12. If $P(Q-r) x^{2}+Q(r-P) x+r(P-Q)=0$ has equal roots then $\frac{2}{Q}=$ (where $P, Q, r \in R$)

1) $\frac{1}{P}+\frac{1}{r}$
2) $\frac{1}{P}-\frac{1}{r}$
3) $P+r$
4) Pr

Key. 1
Sol. Product of the roots $=1$
13. If $(1+K) \tan ^{2} x-4 \tan x-1+K=0$ has real roots $\tan x_{1}$ and $\tan x_{2}$ then

1) $k^{2} \leq 5$
2) $k^{2} \geq 6$
3) $k=3$
4) $k>10$

Key. 1
Sol. Discriminate ≥ 0
14. α, β are the roots of $a x^{2}+b x+c=0$ and γ, δ are the roots of $p x^{2}+q x+r=0$ and D_{1}, D_{2} be the respective discriminants of these equations. If α, β, γ and δ are in A.P. then $D_{1}: D_{2}=($ where $\alpha, \beta, \gamma, \delta \in R \& a, b, c, p, q, r \in R)$

1) $a^{2}: p^{2}$
2) $a^{2}: b^{2}$
3) $c^{2}: r^{2}$
4) $a^{2}: r^{2}$

Key. 1
Sol. $\quad \beta=\alpha+d, \gamma=\alpha+2 d, \delta=\alpha+3 d$
$d^{2}=\frac{D_{1}}{a^{2}}=\frac{D_{2}}{p^{2}}$
15. If $x^{2}+4 y^{2}-8 x+12=0$ is satisfied by real values of x and y then ' $y^{\prime} \in$

1) $[2,6]$
2) $[2,5]$
3) $[-1,1]$
4) $[-2,-1]$

Key. 3
Sol. $\quad x^{2}-8 x+\left(4 y^{2}+12\right)=0$ is a quadratic in ' x ', ' x ' is real then discriminate ≥ 0
16. For $\mathrm{x}>0,0 \leq \mathrm{t} \leq 2 \pi, \mathrm{~K}>\frac{3}{2}+\sqrt{2}$, K being a fixed real number the minimum value of $x^{2}+\frac{K^{2}}{x^{2}}-2\left\{(1+\cos t) x+\frac{K(1+\sin t)}{x}\right\}+3+2 \cos t+2 \sin t$ is
a) $\left\{\sqrt{\mathrm{K}}-\left(1+\frac{1}{\sqrt{2}}\right)\right\}^{2}$
b) $\frac{1}{2}\left\{\sqrt{\mathrm{~K}}-\left(1+\frac{1}{\sqrt{2}}\right)\right\}^{2}$
c) $3\left\{\sqrt{\mathrm{~K}}-\left(1+\frac{1}{\sqrt{2}}\right)\right\}^{2}$
d) $2\left\{\sqrt{\mathrm{~K}}-\left(1+\frac{1}{\sqrt{2}}\right)\right\}^{2}$

Key. D
Sol. Given expansion $=\{x-(1+\cos t)\}^{2}+\left\{\frac{K}{x}-(1+\sin t)\right\}^{2}$
17. Let $\phi(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)} f(a)+\frac{(x-c)(x-a)}{(b-c)(b-a)} f(b)+\frac{(x-a)(x-b)}{(c-a)(c-b)} f(c)-f(x)$

Where $\mathrm{a}<\mathrm{c}<\mathrm{b}$ and $\mathrm{f}^{11}(\mathrm{x})$ exists at all points in (a, b). Then, there exists a real number $\mu, \mathrm{a}<\mu<\mathrm{b}$ such that
$\frac{f(a)}{(a-b)(a-c)}+\frac{f(b)}{(b-c)(b-a)}+\frac{f(c)}{(c-a)(c-b)}=$
a) $\mathrm{f}^{11}(\mu)$
b) $2 \mathrm{f}^{11}(\mu)$
c) $\frac{1}{2} \mathrm{f}^{11}(\mu)$
d) $\frac{1}{3} \mathrm{f}^{111}(\mu)$

Key. C
Sol. Apply RT's, twice
18. If α, β, γ are the roots of the equation $x^{3}+p x+q=0$, then the value of the $\operatorname{determinant}\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|$ is
(A) 4
(B) 2
(C) 0
(D) -2

Key. C
Sol. Since α, β, γ are the roots of $x^{3}+p x+q=0$
$\therefore \quad \alpha+\beta+\gamma=0$
Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$, then
$\left|\begin{array}{lll}\alpha+\beta+\gamma & \beta & \gamma \\ \alpha+\beta+\gamma & \gamma & \alpha \\ \alpha+\beta+\gamma & \alpha & \beta\end{array}\right|=\left|\begin{array}{lll}0 & \beta & \gamma \\ 0 & \gamma & \alpha \\ 0 & \alpha & \beta\end{array}\right|=0$
19. The number of points (p, q) such that $p, q \in\{1,2,3,4\}$ and the equation $p x^{2}+q x+1=0$ has real roots is
A. 7
B. 8
C. 9
D. None of these

Key. A
Sol. $\quad p x^{2}+q x+1=0$ has real roots if $q^{2}-4 p \geq 0$ or $q^{2} \geq 4 p$
Since $p, q \in\{1,2,3,4\}$
The required points are(1,2), (1,3),(1, 4), (2,3),(2,4),(3,4),(4,4)
So the required number is 7
20. The value of b and c for which the identity $f(x+1)-f(x)=8 x+3$ is satisfied, where $f(x)=b x^{2}+c x+d$ are
(A) $\mathrm{b}=2, \mathrm{c}=1$
(B) $\mathrm{b}=4, \mathrm{c}=-1$
(C) $\mathrm{b}=-1, \mathrm{c}=4$
(D) $\mathrm{b}=-1, \mathrm{c}=1$

Key. B
Sol. $\quad \because f(x+1)-f(x)=8 x+3$

$$
\begin{aligned}
& \Rightarrow \quad\left\{\mathrm{b}(\mathrm{x}+1)^{2}+\mathrm{c}(\mathrm{x}+1)+\mathrm{d}\right\}-\left\{\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}\right\}=8 \mathrm{x}+3 \\
& \Rightarrow \quad \mathrm{~b}\left\{(\mathrm{x}+1)^{2}-\mathrm{x}^{2}\right\}+\mathrm{c}=8 \mathrm{x}+3 \\
& \Rightarrow \quad \mathrm{~b}(2 \mathrm{x}+1)+\mathrm{c}=8 \mathrm{x}+3 \text { on comparing } \\
& 2 b=8 \text { and } b+c=3 \\
& \text { Then, }
\end{aligned}
$$

21. Let $f(x)=a x^{2}+b x+c, g(x)=a x^{2}+p x+q$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{q}, \mathrm{p}, \in \mathrm{R}$ and $b \neq p$. If their discriminants are equal and $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ has a root α, then
1) α will be A.M. of the roots of $f(x)=0, g(x)=0$
2) α will be G.M of all the roots of $f(x)=0, g(x)=0$
3) α will be A.M of the roots of $\mathrm{f}(\mathrm{x})=0$ or $\mathrm{g}(\mathrm{x})=0$
4) α will be G.M of the roots of $f(x)=0 \operatorname{org}(x)=0$

Key. 1
Sol. $\quad a \alpha^{2}+b \alpha+c=a \alpha^{2}+p \alpha+q \Rightarrow \alpha=\frac{q-c}{b-p} \rightarrow(i)$
And $b^{2}-4 a c=p^{2}-4 a q$
$\Rightarrow b^{2}-p^{2}=4 a(c-q)$
$\Rightarrow b+p=\frac{4 a(c-q)}{b-p}=-4 a \alpha \quad(\operatorname{from}(i))$
$\alpha=\frac{-(b+p)}{4 a}=\frac{\frac{-b}{a}-\frac{p}{a}}{4}$ which is A.M of all the roots of $\mathrm{f}(\mathrm{x})=0$ and $\mathrm{g}(\mathrm{x})=0$
22. If the equations $x^{2}+2 \lambda x+\lambda^{2}+1=0, \lambda \in R$ and $a x^{2}+b x+c=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are lengths of sides of triangle have a common root, then the possible range of values of λ is

1) $(0,2)$
2) $(\sqrt{3}, 3)$
3) $(2 \sqrt{2}, 3 \sqrt{2})$
4) $(0, \infty)$

Key. 1
Sol. $\quad(x+\lambda)^{2}+1=0$ has clearly imaginary roots
So, both roots of the equations are common
$\therefore \frac{a}{1}=\frac{b}{2 \lambda}=\frac{c}{\lambda^{2}+1}=k(s a y)$
Then $\mathrm{a}=\mathrm{k}, \mathrm{b}=2 \lambda k, \mathrm{c}=\left(\lambda^{2}+1\right) \mathrm{k}$
As a, b, c are sides of triangle
$a+b>c \Rightarrow 2 \lambda+1>\lambda^{2}+1 \Rightarrow \lambda^{2}-2 \lambda<0$
$\Rightarrow \lambda \in(0,2)$
The other conditions also imply same relation.
23. The number of real or complex solutions of $x^{2}-6|x|+8=0$ is

1) 6
2) 7
3) 8
4) 9

Key. 1
Sol. If x is real, $x^{2}-6|x|+8=0 \Rightarrow|x|^{2}-6|x|+8=0 \Rightarrow|x|=2,4 \Rightarrow x= \pm 2, \pm 4$
If x is non - real, say $x=\alpha+i \beta$, then
$(\alpha+i \beta)^{2}-6 \sqrt{\alpha^{2}+\beta^{2}}+8=0 \quad\left(|\alpha+i \beta|=\sqrt{\alpha^{2}+\beta^{2}}\right)$
$\left(\alpha^{2}-\beta^{2}+8-6 \sqrt{\alpha^{2}+\beta^{2}}\right)+2 i \alpha \beta=0$
Comparing real and imaginary parts,
$\alpha \beta=0 \Rightarrow \alpha=0$ (if $\beta=0$ then x is real.)
$\&-\beta^{2}+8-6 \sqrt{\beta^{2}}=0$
$\beta^{2} \pm 6 \beta-8=0 \Rightarrow \beta=\frac{\mp 6 \pm \sqrt{68}}{2}$
ie., $\beta= \pm(3-\sqrt{17})$
Hence $\pm(3-\sqrt{17}) i$ are non-real roots.
24. If $x_{1}, x_{2}\left(x_{1}>x_{2}\right)$ are abscissae of points P, Q lying on $y=2 x^{2}-4 x-5$ such that the tangents drawn at these points pass through the point $(0,-7)$, then $3 x_{1}-2 x_{2}$ equals to

1) 4
2) 5
3) 6
4) 7

Key. 2
Sol. Let (α, β) be point on the curve such that the tangent drawn at (α, β) passes through (0, 7)
$y^{1}=4 x-4 \Rightarrow y_{(\alpha, \beta)}^{1}=4 \alpha-4$
Tangent at (α, β) is $y-\beta=(4 \alpha-4)(x-\alpha)$ pass through (0,-
7) $\Rightarrow-7-\beta=(4 \alpha-4)(0-\alpha)$

But $\beta=2 \alpha^{2}-4 \alpha-5 \therefore$ It follows that $\alpha^{2}=1$
$\Rightarrow \alpha= \pm 1$
So, $x_{1}=1, x_{2}=-1$
So, $3 x_{1}-2 x_{2}=5$.
25. Let $f(x)=x^{2}+5 x+6$, then the number of real roots of $(f(x))^{2}+5 f(x)+6-x=0$ is

1) 1
2) 2
3) 3
4) 0

Key. 4
Sol. Use " $f(x)=x$ has non real roots $\Rightarrow f(f(x))=x$ also has non-real roots"
26. Sum of the roots of the equation is $4^{x}-3\left(2^{x+3}\right)+128=0$

1) 5
2) 6
3) 7
4) 8

Key. 3
Sol. Put $2^{x}=y$. Equation becomes
$y^{2}-3(8 y)+128=0 \Rightarrow y^{2}-24 y+128=0$
$\Rightarrow(y-8)(y-16)=0 \Rightarrow y=16,8$
$\Rightarrow 2^{x}=16,8 \Rightarrow x=4,3$
\therefore Sum of the roots is 7 .
27. The number of solutions of $\sqrt{3 x^{2}+x+5}=x-3$ is

1) 0
2) 1
3) 2
4) 4

Key. 1
Sol. Note that we must have $3 x^{2}+x+5 \geq 0$ and $x-3 \geq 0$ or $x \geq 3$.
$\sqrt{3 x^{2}+x+5}=x-3$.
Squaring both sides of (1), we get
$3 x^{2}+x+5=x^{2}-6 x+9$
$\Rightarrow 2 x^{2}+7 x-4=0 \Rightarrow(2 x-1)(x+4)=0$
$\Rightarrow x=1 / 2,-4$
None of these satisfy the inequality $x \geq 3$. Thus, (1) has no solution.
28. The value of a for which one root of the quadratic equation. $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as other, is

1) $-2 / 3$
2) $1 / 3$
3) $-1 / 3$
4) $2 / 3$

Key.
Sol. $\quad\left(a^{2}-5 a+3 a\right) x^{2}+(3 a-1) x+2=0$
Let α and 2α be the roots of (1), then
$\left(a^{2}-5 a+3\right) \alpha^{2}+(3 a-1) \alpha+2=0$
and $\left(a^{2}-5 a+3\right)\left(4 \alpha^{2}\right)+(3 a-1)(2 \alpha)+2=0$
Multiplying (2) by 4 and subtracting it form (3) we get $(3 a-1)(2 \alpha)+6=0$
Clearly $a \neq 1 / 3$. Therefore, $\alpha=-3 /(3 a-1)$
Putting this value in (2) we get
$\left(a^{2}-5 a+3\right)(9)-(3 a-1)^{2}(3)+2(3 a-1)^{2}=0$
$\Rightarrow 9 a^{2}-45 a+27-\left(9 a^{2}-6 a+1\right)=0 \Rightarrow-39 a+26=0$
$\Rightarrow a=2 / 3$.
For $x=2 / 3$, the equation becomes $x^{2}+9 x+18=0$, whose roots are $-3,-6$.
29. If $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ are such that
$\min f(x)>\max g(x)$, then relation between b and c, is

1) no relation
2) $0<c<b / 2$
3) $|c|<\frac{|b|}{\sqrt{2}}$
4) $|c|>\sqrt{2}|b|$

Key. 4
Sol. $\quad f(x)=(x+b)^{2}+2 c^{2}-b^{2}$
$\Rightarrow \min f(x)=2 c^{2}-b^{2}$
Also $g(x)=-x^{2}-2 c x+b^{2}=b^{2}+c^{2}-(x+c)^{2}$
$\Rightarrow \max g(x)=b^{2}+c^{2}$
As $\min f(x)>\max g(x)$, we get $2 c^{2}-b^{2}>b^{2}+c^{2}$
$\Rightarrow c^{2}>2 b^{2} \Rightarrow|c|>\sqrt{2}|b|$
30. The equation $(\cos p-1) x^{2}+(\cos p) x+\sin p=0$ in variable x has real roots, if p belongs to the interval

1) $(0,2 \pi)$
2) $(-\pi, 0)$
3) $(-\pi / 2, \pi / 2)$
4) $(0, \pi)$

Key. 4
Sol. $\quad(\cos p-1) x^{2}+(\cos p) x+\sin p=0$

Discriminant of (1) is given by
$D=\cos ^{2} p-4(\cos p-1) \sin p=\cos ^{2} p+4(1-\cos p) \sin p$
Note that $\cos ^{2} p \geq 0,1-\cos p \geq 0$. Thus, $D \geq 0$ if $\sin p \geq 0$ i.e. if $p \in(0, \pi)$.
31. If $x^{2}+2 a x+10-3 a>0$ for each $x \in R$, then

1) $a<-5$
2) $-5<a<2$
3) $a>5$
4) $2<a<5$

Key. 2
Sol. $\quad x^{2}+2 a x+10-3 a>0 \forall x \in R$
$\Rightarrow(x+a)^{2}-\left(a^{2}+10-3 a\right)>0 \forall x \in R$
$\Rightarrow a^{2}+3 a-10<0$
$\Rightarrow(a+5)(a-2)<0$
$\Rightarrow-5<a<2$
32. Sum of all the values of x satisfying the equation $\log _{17} \log _{11}(\sqrt{x+11}+\sqrt{x})=0$ is

1) 25
2) 36
3) 171
4) 0

Key. 1
Sol. $\quad \log _{17} \log _{11}(\sqrt{x+1}+\sqrt{x})=0$
Equation (1) is defined if $x \geq 0$.
We can rewrite (1) as $\log _{11}(\sqrt{x+11}+\sqrt{x})=17^{0}=1$
$\Rightarrow \sqrt{x+11}+\sqrt{x}=11^{1}=11$
$\Rightarrow \sqrt{x+11}=11-\sqrt{x}$
Squaring both sides we get $x+11=121-22 \sqrt{x}+x$
$\Rightarrow 22 \sqrt{x}=110 \Rightarrow \sqrt{x}=5$ or $x=25$
This clearly satisfies (1). Thus, sum of all the values satisfying (1) is 25.
33. The number of solutions of the equations of the equation $x^{2}+[x]-4 x+3=0$ is Where [] denotes G.I.F.

1) 0
2) 1
3) 2
4) 3

Key. 1
Sol. Given equation can be written as $\left(x^{2}-3 x+3\right)-f=O$ where $f=x-[x]$ and $O \leq f<1$
$\therefore O \leq x^{2}-3 x+3<1$
solving $x^{2}-3 x+3=O$; roots are Imaginary
$\therefore x^{2}-3 x+3 \geq O \forall x \in R$
solving $x^{2}-3 x+3<1 \Rightarrow 1<x<2$
if $1<x<2 ;[x]=1$.
putting $[x]=1$ in the given equation and solving we get $x=2$. But $1<x<2 \therefore$ the given equation has no solution.
34. The number of values of ' a ' for which the equation $(x-1)^{2}=|x-a|$ has exactly three solutions is

1) 1
2) 2
3) 3
4) 4

Key. 3

Sol. $\quad|x-a|=(x-1)^{2}$ Iff $a=x \pm(x-1)^{2}$
No of solutions $=$ no of intersection its between
$y=a ; f(x)=x^{2}-x+1$ and $g(x)=-x^{2}+3 x-1$. clearly the graphs of $f(x), g(x)$ are tangents to each other at $A(1,1)$. The line $y=a$ intersects the two graphs at three points Iff it passes through one of the three pts $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Here $B=\left(\frac{1}{2}, \frac{3}{4}\right)$ vertex of f and $C=\left(\frac{3}{2}, \frac{5}{4}\right)$ vertex of ' g ' i.e if $a \in\left\{\frac{3}{4}, \frac{5}{4}, 1\right\}$
35. If a, b, c are positive numbers such that $\mathrm{a}>\mathrm{b}>\mathrm{c}$ and the equation $(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)=0$ has a root in the interval $(-1,0)$, then
A) b cannot be the G.M. of a, c
B) b may be the G.M. of a, c
C) b is the G.M. of a, c D) none of these

Key. A
Sol. Let $f(x)=(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)$
According to the given condition, we have

$$
f(0) f(-1)<0
$$

i.e. $\quad(c+a-2 b)(2 a-b-c)<0$
i.e. $\quad(c+a-2 b)(a-b+a-c)<0$
i.e. $\quad c+a-2 b<0$
$[a>b>c$, given $\Rightarrow a-b>0, a-c>0]$
i.e. $\quad b>\frac{a+c}{2}$
$\Rightarrow \quad b$ cannot be the G.M. of a, c, since G.M < A.M. always.
36. Let $\alpha, \beta(\mathrm{a}<\mathrm{b})$ be the roots of the equation $a x^{2}+b x+c=0$. If $\lim _{x \rightarrow m} \frac{\left|a x^{2}+b x+c\right|}{a x^{2}+b x+c}=1$, then
A) $\frac{|a|}{a}=-1, m<\alpha$
B) $a>0, \alpha<m<\beta$
C) $\frac{|a|}{a}=1, m>\beta$
D) $a<0, m>\beta$

Key. C
Sol. According to the given condition, we have

$$
\begin{array}{ll}
& \left|a m^{2}+b m+c\right|=a m^{2}+b m+c \\
\text { i.e. } & a m^{2}+b m+c>0 \\
\Rightarrow & \text { if } a<0 \text {, the } m \text { lies in }(\alpha, \beta) \\
\text { and } & \text { if } a>0 \text {, then } m \text { does not lies in }(\alpha, \beta)
\end{array}
$$

Hence, option (c) is correct, since

$$
\frac{|a|}{a}=1 \Rightarrow a>0
$$

And in that case m does not lie in (α, β).
37. Let $f(x)$ be a function such that $f(x)=x-[x]$, where $[x]$ is the greatest integer less than or equal to x . Then the number of solutions of the equation $f(x)+f\left(\frac{1}{x}\right)=1$ is (are)
A) 0
B) 1
C) 2
D) infinite

Key. D
Sol. Given, $f(x)=x-[x], x \in R-\{0\}$
Now $\quad f(x)+f\left(\frac{1}{x}\right)=1$
$\therefore \quad x-[x]+\frac{1}{x}-\left[\frac{1}{x}\right]=1$
$\Rightarrow\left(x+\frac{1}{x}\right)-\left([x]+\left[\frac{1}{x}\right]\right)=1$
$\Rightarrow\left(x+\frac{1}{x}\right)=[x]+\left[\frac{1}{x}\right]+1$
Clearly , R.H.S is an integer
\therefore L. H. S. is also an integer
Let $x+\frac{1}{x}=k$ an integer
$\Rightarrow x^{2}-k x+1=0$
$\therefore x=\frac{k \pm \sqrt{k^{2}-4}}{2}$
For real values of $x, k^{2}-4 \geq 0 \Rightarrow k \geq 2$ or $k \leq-2$
We also observe that $k=2$ and -2 does not satisfy equation (i)
\therefore The equation (i) will have solutions if $k>2$ or $k<-2$, where $k \in z$.
Hence equation (i) has infinite number of solutions.
38. If both the roots of $(2 a-4) 9^{x}-(2 a-3) 3^{x}+1=0$ are non-negative, then
A) $0<a<2$
B) $2<a<\frac{5}{2}$
C) $a<\frac{5}{4}$
D) $a>3$

Key. B
Sol. Putting $3^{x}=y$, we have

$$
(2 a-4) y^{2}-(2 a-3) y+1=0
$$

This equation must have real solution

$$
\begin{array}{ll}
\Rightarrow & (2 a-3)^{2}-4(2 a-4) \geq 0 \\
\Rightarrow & 4 a^{2}-20 a+25 \geq 0
\end{array}
$$

$$
\Rightarrow \quad(2 a-5)^{2} \geq 0 . \text { This is true. }
$$

$$
y=1 \text { satisfies the equation }
$$

Since 3^{x} is positive and $3^{x} \geq 3^{0}, y \geq 1$
Product of the roots $=1 \times y>1$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{2 a-4}>1 \\
\Rightarrow & 2 a-4<1 \Rightarrow a<\frac{5}{2}
\end{array}
$$

Sum of the roots $=\frac{2 a-3}{2 a-4}>1$
$\Rightarrow \quad \frac{(2 a-3)-(2 a-4)}{2 a-4}>0$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{2 a-4}>0 \Rightarrow a>2 \\
\Rightarrow & 2<a<\frac{5}{2}
\end{array}
$$

39. If the equation $x^{2}+9 y^{2}-4 x+3=0$ is satisfied for real values of x and y then
A) $x \in[1,3], y \in[1,3]$ B) $x \in[1,3], y \in\left[\frac{-1}{3}, \frac{1}{3}\right]$
C) $x \in\left[\frac{-1}{3}, \frac{1}{3}\right], y \in[1,3]$
D) $x \in\left[\frac{-1}{3}, \frac{1}{3}\right], y \in\left[\frac{-1}{3}, \frac{1}{3}\right]$

Key. B
Sol. Given equation is $x^{2}+9 y^{2}-4 x+3=0$
Or, $\quad x^{2}-4 x+9 y^{2}+3=0$.
Since x is real $\quad \therefore(-4)^{2}-4\left(9 y^{2}+3\right) \geq 0$
Or, $\quad 16-4\left(9 y^{2}+3\right) \geq 0 \quad$ or, $\quad 4-9 y^{2}-3 \geq 0$
Or, $9 y^{2}-1 \leq 0 \quad$ or, $\quad 9 y^{2} \leq 1 \quad$ or, $\quad y^{2} \leq \frac{1}{9}$
Now $y^{2} \leq \frac{1}{9} \Leftrightarrow-\frac{1}{3} \leq y \leq \frac{1}{3}$
Equation (i) can also be written as

$$
\begin{equation*}
9 y^{2}+0 y+x^{2}-4 x+3=0 \tag{iii}
\end{equation*}
$$

Since y is real $\therefore 0^{2}-4.9\left(x^{2}-4 x+3\right) \geq 0$
Or, $\quad x^{2}-4 x+3 \leq 0$

$$
\Rightarrow x \in[1,3]
$$

40. The equation $a_{8} x^{8}+a_{7} x^{7}+a_{6} x^{6}+\ldots+a_{0}=0$ has all its roots positive and real (where $a_{8}=1, a_{7}=-4, a_{0}=1 / 2^{8}$), then
A) $a_{1}=\frac{1}{2^{8}}$
B) $a_{1}=-\frac{1}{2^{4}}$
C) $a_{2}=\frac{7}{2^{5}}$
D) $a_{2}=\frac{7}{2^{8}}$

Key. B
Sol. Let the roots be $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{8}$

$$
\Rightarrow \quad \alpha_{1}+\alpha_{2}+\ldots .+\alpha_{8}=4
$$

$$
\alpha_{1} \alpha_{2} \ldots . . \alpha_{8}=\frac{1}{2^{8}}
$$

$\Rightarrow \quad\left(\alpha_{1} \alpha_{2} \ldots . \alpha_{8}\right)^{1 / 8}=\frac{1}{2}=\frac{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{8}}{8}$
$\Rightarrow \quad \mathrm{AM}=\mathrm{GM} \Rightarrow$ all the roots are equal to $\frac{1}{2}$.

$$
\begin{aligned}
\Rightarrow \quad a_{1} & =-{ }^{8} C_{7}\left(\frac{1}{2}\right)^{7}=-\frac{1}{2^{4}} \\
a_{2} & ={ }^{8} C_{6}\left(\frac{1}{2}\right)^{6}=-\frac{7}{2^{4}} \\
a_{3} & =-{ }^{8} C_{5}\left(\frac{1}{2}\right)^{5}
\end{aligned}
$$

41. If every root of a polynomial equation (of degree ' n ') $f(x)=0$ with leading coefficient " 1 " is real and distinct, then the equation $f^{\prime \prime}(x) f(x)-\left\{f^{\prime}(x)\right\}^{2}=0$ has.
(A) at least one real root
(B) no real root
(C) at most one real root
(D) exactly two real roots

Key. B

Sol. Let $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots \ldots \ldots \ldots \ldots(x-a n)$ where $a_{1}, a_{2} \ldots \ldots . . a_{n \in R}$ take log both sides and differentiate. Then
$\frac{f^{\prime}(x)}{f(x)}=\frac{1}{x-a_{1}}+\frac{1}{x-a_{2}}+\ldots \ldots \ldots+\frac{1}{x-a_{n}}$
Again diff w.r.t. ' x '

$$
\begin{gathered}
\frac{f f^{\prime \prime}-\left(f^{\prime}\right)^{2}}{f^{2}}=-\left[\frac{1}{\left(x-a_{1}\right)^{2}}+\frac{1}{\left(x-a_{2}\right)^{2}}+\ldots \ldots \frac{1}{\left(x-a_{n}\right)^{2}}\right] \\
<0 \forall x \in R
\end{gathered}
$$

$\Rightarrow f f^{\prime \prime}-\left(f^{\prime}\right)^{2}=0$ has no real root
42. If $f(x)$ is a polynomial of least degree such that $f(r)=\frac{1}{r}, r=1,2,3, \ldots \quad$, then $f(10)=$ \qquad
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{10}$
D. $\frac{1}{5}$

Key. D
Sol. $\quad x f(x)-1=0$ has roots $1,2,3$ \qquad _9
$x f(x)-1=A(x-1)(x-2)$ \qquad x-9

Put $x=0 \Rightarrow A=\frac{1}{9!}$
Put $x=10 \Rightarrow 10 f(10)-1=1 \Rightarrow f(10)=\frac{1}{5}$
43. The number of ordered pairs of integers (x, y) satisfying the equation $x^{2}+6 x+y^{2}=4$ is
A. 2
B. 8
C. 6
D. 10

Key. B

Sol. $\quad(x+3)^{2}+y^{2}=13$

$$
x+3= \pm 2, y= \pm 3 \text { or } x+3= \pm 3, y= \pm 2
$$

44. The number of non-negative integer solutions of $x+y+2 z=20$ is
A. 76
B. 84
C. 112
D. 121

Key. D
Sol. $\quad x+y=20-2 Z, Z=0,1,2, \ldots 10$
The number of solutions (non -ve) is $\sum_{Z=0}^{10}(20-2 Z+1)_{C_{1}}=121$

45 If $a+b+c=0$ for $a, b, c \in R$, then the equation $3 a x^{2}+2 b x+c=0$ has
A. Atleast one root in $[0,1]$
B. One root in $[2,3]$ and another root in $[-2,-1]$
C. Imaginary roots
D. Atleast one root in [1,2]

Key. A
Sol. Let $f(x)=a x^{3}+b x^{2}+c x$. Then f is continuous and differentiable in [0,1], $f(0)=f(1)=0$. Hence by Rolle's theorem there exists $k \in(0,1)$ such that $3 a k^{2}+2 b k+c=0$
46. If a, b, c be the sides of a triangle $A B C$ and if roots of the equation $a(b-c) x^{2}+$ $b(c-a)$
$x+c(a-b)=0$ are equal, then $\sin ^{2}\left(\frac{A}{2}\right), \sin ^{2}\left(\frac{B}{2}\right), \sin ^{2}\left(\frac{C}{2}\right)$ are in
(A) AP
(B)GP
(C) HP
(D) AGP

Key. C
Sol. $\quad \because \quad a(b-c)+b(c-a)+c(a-b)=0$
$\therefore \quad \mathrm{x}=1$ is a root of the equation

$$
a(b-c) x^{2}+b(c-a) x+c(a-b)=0
$$

Then, other root $=1 \quad(\because$ roots are equal $)$
$\therefore \quad \alpha \times \beta=\frac{c(a-b)}{a(b-c)}$
$\Rightarrow \quad a b-a c=c a-b c$
$\therefore \quad b=\frac{2 a c}{a+c}$
$\therefore \quad a, b, c$ are in HP
Then, $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are in AP.
$\Rightarrow \frac{\mathrm{s}}{\mathrm{a}}, \frac{\mathrm{s}}{\mathrm{b}}, \frac{\mathrm{s}}{\mathrm{c}}$ are in AP
$\Rightarrow \frac{\mathrm{s}}{\mathrm{a}}-1, \frac{\mathrm{~s}}{\mathrm{~b}}-1, \frac{\mathrm{~s}}{\mathrm{c}}-1$ are in AP.
$\Rightarrow \frac{(\mathrm{s}-\mathrm{a})}{\mathrm{a}}, \frac{(\mathrm{s}-\mathrm{b})}{\mathrm{b}}, \frac{(\mathrm{s}-\mathrm{c})}{\mathrm{c}}$ are in AP.
Multiplying in each by $\frac{a b c}{(s-a)(s-b)(s-c)}$

Then $\frac{b c}{(s-b)(s-c)}, \frac{c a}{(s-c)(s-a)}, \frac{a b}{(s-a)(s-b)}$ are in AP.
$\Rightarrow \quad \frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}, \frac{(\mathrm{s}-\mathrm{c})(\mathrm{s}-\mathrm{a})}{\mathrm{ca}}, \frac{(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})}{\mathrm{ab}}$ are in HP.
Or $\sin ^{2}\left(\frac{\mathrm{~A}}{2}\right), \sin ^{2}\left(\frac{\mathrm{~B}}{2}\right), \sin ^{2}\left(\frac{\mathrm{C}}{2}\right)$ are in HP
47. If α, β, γ are the roots of the equation $\mathrm{x}^{3}+\mathrm{px}+\mathrm{q}=0$, then the value of the determinant $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right|$ is
(A) 4
(B) 2
(C) 0
(D) -2

Key. C
Sol. Since α, β, γ are the roots of $\mathrm{x}^{3}+\mathrm{px}+\mathrm{q}=0$
$\therefore \quad \alpha+\beta+\gamma=0$
Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$, then
$\left|\begin{array}{lll}\alpha+\beta+\gamma & \beta & \gamma \\ \alpha+\beta+\gamma & \gamma & \alpha \\ \alpha+\beta+\gamma & \alpha & \beta\end{array}\right|=\left|\begin{array}{ccc}0 & \beta & \gamma \\ 0 & \gamma & \alpha \\ 0 & \alpha & \beta\end{array}\right|=0$
48. The value of b and c for which the identity $f(x+1)-f(x)=8 x+3$ is satisfied, where $\mathrm{f}(\mathrm{x})=\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$ are
(A) $\mathrm{b}=2, \mathrm{c}=1$
(B) $\mathrm{b}=4, \mathrm{c}=-1$
(C) $\mathrm{b}=-1, \mathrm{c}=4$
(D) $\mathrm{b}=-1, \mathrm{c}=1$

Key. B
Sol. $\quad \because f(x+1)-f(x)=8 x+3$
$\Rightarrow \quad\left\{\mathrm{b}(\mathrm{x}+1)^{2}+\mathrm{c}(\mathrm{x}+1)+\mathrm{d}\right\}-\left\{\mathrm{bx}{ }^{2}+\mathrm{cx}+\mathrm{d}\right\}=8 \mathrm{x}+3$
$\Rightarrow \quad \mathrm{b}\left\{(\mathrm{x}+1)^{2}-\mathrm{x}^{2}\right\}+\mathrm{c}=8 \mathrm{x}+3$
$\Rightarrow \quad \mathrm{b}(2 \mathrm{x}+1)+\mathrm{c}=8 \mathrm{x}+3$ on comparing $2 \mathrm{~b}=8 \mathrm{and} \mathrm{b}+\mathrm{c}=3$
Then, $b=4$ and $c=-1$
49. If a, b, c are positive numbers such that $\mathrm{a}>\mathrm{b}>\mathrm{c}$ and the equation
$(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)=0$ has a root in the interval $(-1,0)$, then
A) b cannot be the G.M. of a, c
B) b may be the G.M. of a, c
C) b is the G.M. of $a, c \quad D$) none of these

Key. A
Sol. Let $f(x)=(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)$
According to the given condition, we have

$$
f(0) f(-1)<0
$$

i.e. $\quad(c+a-2 b)(2 a-b-c)<0$
i.e. $\quad(c+a-2 b)(a-b+a-c)<0$
i.e. $c+a-2 b<0$

$$
[a>b>c, \text { given } \Rightarrow a-b>0, a-c>0]
$$

i.e. $\quad b>\frac{a+c}{2}$
$\Rightarrow \quad b$ cannot be the G.M. of a, c, since G.M < A.M. always.
50. The values of ' a ' for which the quadratic expression $a^{2}+(a-2) x-2$ is negative for exactly two integral values of x, belongs to
(A) $[-1,1]$
(B) $[1,2)$
(C) $[3,4]$
(D) $[-2,-1)$

Key. B
Sol. Let $f(x)=a x^{2}+(a-2) x-2$
$f(x)$ is negative for two integral values of x, so graph should be vertically upward parabola i.e., $a>0$

Let two roots of $\mathrm{f}(\mathrm{x})=0$ are α and β then $\alpha, \beta=\frac{-(\mathrm{a}-2) \pm(\mathrm{a}+2)}{2 \mathrm{a}}$
$\Rightarrow \alpha=-1, \beta=\frac{2}{\mathrm{a}} \Rightarrow 1<\beta \leq 2 \Rightarrow 1<\frac{2}{\mathrm{a}} \leq 2 \Rightarrow \mathrm{a} \in[1,2]$

