Logs & Surds Single Correct Answer Type

1. Number of ordered triplets of natural number (a, b, c) for which $abc \le 11$ is

(A) 52 (B) 53 (C) 55 (D) 56
Key. D
Sol. abc = 1 in 1 ways
abc = 2, 3, 5, 7, 11 in 15 ways
abc = 4, 9 in 12 ways
abc = 6, 10 in 18 ways
So, total number of solution is 56
2. The value of
$$\sqrt{5-\sqrt{10}-\sqrt{15}+\sqrt{6}}$$
 is
(A) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{\sqrt{2}}$ (B) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}$
(C) $\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{2}$ (D) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{2}$
Key. B
Sol. $5-\sqrt{10}-\sqrt{15}+\sqrt{6}$ can be written as
 $\frac{3+2+5-2\sqrt{2}\sqrt{5}-2\sqrt{5}\sqrt{3}+2\sqrt{3}\sqrt{2}}{2}$
 $=\left(\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}\right)^{2}$
3. $a > 0(a \neq 1), b > 0(b \neq 1)$ such that $a^{(\log^{4})^{2}} = b^{(\log^{4})^{2}}$ then $x =$
(A) 1 (B) -1 (C) $\frac{1}{2}$ (D) 2
Key: C
Hint: Taking log, both sides we get
 $(\log^{4}_{x})^{x} \log^{a}_{b} = (\log^{a}_{b})^{x}$
 $\therefore (\log^{4}_{x})^{x} = (\log^{a}_{b})^{x^{-1}}$
 $\therefore 1-x = x \Rightarrow x = \frac{1}{2}$

Mathematics

4.	Given that $\log_{10}^5 = 0.70$ and $\log_{10}^3 = 0.48$ then the value of \log_{30}^8 (correct upto 2 places decimal) is			rect upto 2 places of
	(A) 0.56	(B) 0.61	(C) 0.68	(D) 0.73
Key:	В			
5.	The value of $\sqrt{5 - \sqrt{10} - \sqrt{15} + \sqrt{6}}$ is			
	(A) $\frac{\sqrt{5} - \sqrt{3} - \sqrt{2}}{\sqrt{2}}$		(B) $\frac{\sqrt{3} + \sqrt{2} - \sqrt{5}}{\sqrt{2}}$	
	(C) $\frac{\sqrt{3} + \sqrt{2} - \sqrt{5}}{2}$		(D) $\frac{\sqrt{5}-\sqrt{3}-\sqrt{2}}{2}$	$\cdot \mathcal{O} \cdot$
Key.	В		-	
Sol.	$5 - \sqrt{10} - \sqrt{15} + \sqrt{6}$	can be written as		
	$\frac{3+2+5-2\sqrt{2}\sqrt{5}-2}{2}$	$2\sqrt{5}\sqrt{3}+2\sqrt{3}\sqrt{2}$	0	
	$= \left(\frac{\sqrt{3} + \sqrt{2} - \sqrt{5}}{\sqrt{2}}\right)^2$			
6.	The value of $\sqrt{5-\sqrt{10}}$	$\frac{1}{10} - \sqrt{15} + \sqrt{6}$ is	614.	
	(A) $\frac{\sqrt{5} - \sqrt{3} - \sqrt{2}}{\sqrt{2}}$	<u> </u>	(B) $\frac{\sqrt{3} + \sqrt{2} - \sqrt{5}}{\sqrt{2}}$	
	(C) $\frac{\sqrt{3} + \sqrt{2} - \sqrt{5}}{2}$		(D) $\frac{\sqrt{5} - \sqrt{3} - \sqrt{2}}{2}$	
Key.	В			
-	$5 - \sqrt{10} - \sqrt{15} + \sqrt{6}$	an be written as		
Sol				

Sol.

$$\frac{3+2+5-2\sqrt{2}\sqrt{5}-2\sqrt{5}\sqrt{3}+2\sqrt{3}\sqrt{2}}{2} = \left(\frac{\sqrt{3}+\sqrt{2}-\sqrt{5}}{\sqrt{2}}\right)^2$$

7. There exist positive integers A, B and C with no common factors greater than 1, such that $A \log_{200} 5 + B \log_{200} 2 = C$. The sum A + B + C equals

(A) 5 (B) 6 (C) 7 (D) 8
Key. B
Sol.
$$A \log_{200} 5 + B \log_{200} 2 = C$$

 $= C$
 $A \log 5 + B \log 2 = C \log 200 = C \log(5^2 2^3) = 2C \log 5 + 3 C \log 2$
hence, $A = 2C$ and $B = 3C$

Mathematics

for no common factor greater than 1, C = 1

÷ A = 2; B = 3 \Rightarrow A + B + C = 6 Ans.

Given real numbers a, b, c > 0 (≠ 1) such that $log_{log_c a} e$, $log_{(a^{c/2})} e$, $log_{(log_b c)} e$ are in H.P. 9.

then c equal to	
(a) loga(loga b)	(b) loga (logba)
(c) logb(logba)	(d) log₅ (log₃b)
В	

Key.

 $\begin{array}{l} \text{LOG}_{\text{E}}(\text{LOG}_{\text{C}}\text{A}), \text{LOG}_{\text{E}}\text{A}^{\text{C}/2}, \text{LOG}_{\text{E}} (\text{LOG}_{\text{B}}\text{C}) \text{ ARE IN A.P.} \\ \Rightarrow \quad \text{LOG}_{\text{C}}\text{A}, \text{A}^{\text{C}/2}, \text{LOG}_{\text{B}}\text{C} \text{ ARE IN G.P.} \end{array}$ SOL.

- $A^{C} = LOG_{C}A \ LOG_{B}C$ \Rightarrow
- $A^{C} = LOG_{B}A$ \Rightarrow

 $c = log_a(log_ba)$ \Rightarrow

MARINGHURBER