Hyperbola
 Single Correct Answer Type

1. A line drawn through the point $\mathrm{P}(-1,2)$ meets the hyperbola $x y=c^{2}$ at the points A and B . (points A and B lie on same side of P) and Q is a point on $A B$ such that $P A, P Q$ and $P B$ are in H.P then locus of Q is
A. $x-2 y=2 c^{2}$
B. $2 x-y=2 c^{2}$
C. $2 x+y+2 c^{2}=0$
D. $x+2 y=2 c^{2}$

Key. B
Sol. Locus of Q is $S_{1}=0$
$2 x-y=2 c^{2}$
2. If the asymptote of the hyperbola $(x+y+1)^{2}-(x-y-3)^{2}=5$ cut each other at A and the coordinate axis at B and C then radius of circle passing through the points A, B, C is
A. 3
B. $\frac{\sqrt{5}}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\sqrt{3}$

Key. B
Sol. Centre of rectangular hyperbola $=(1,-2)$
So equation of asymptotes are $\mathrm{x}=1, \mathrm{y}=-2$
So radius of circle $=\frac{\sqrt{5}}{2}$
3. PM and PN are the perpendiculars from any point P on the rectangular hyperbola $\mathrm{xy}=8$ to the asymptotes. If the locus of the mid point of $M N$ is a conic, then the least distance of $(1,1)$ to director circle of the conic is
A. $\sqrt{3}$
B. $\sqrt{2}$
C. $2 \sqrt{3}$
D. $2 \sqrt{5}$

Key. B
Sol. OMPN is rectangle.
$P=\left(C t, \frac{c}{t}\right)$

Mid point $=\left(\frac{c t}{2}, \frac{c}{2 t}\right)=(x, y) \quad \therefore c y=\frac{c^{2}}{4} \Rightarrow e=\sqrt{2}$
4. A hyperbola passing through origin has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as its asymptotes. Then the equations of its transverse and conjugate axes are
A) $x-y-5=0$ and $x+y+1=0$
B) $x-y=0$ and $x+y+5=0$
C) $x+y-5=0$ and $x-y-1=0$
D) $x+y-1=0$ and $x-y-5=0$

Key. C
Sol. Transverse and conjugate axes are the bisectors of the angle between asymptotes.

$$
\frac{3 x-4 y-1}{5}= \pm\left(\frac{4 x-3 y-6}{5}\right) \text { etc...... }
$$

5. If the asymptotes of the hyperbola $(x+y+1)^{2}-(x-y-3)^{2}=5$ cuts each other at A and the coordinate axes at B and C , then radius of the circle passing through the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is
A) 3
B) $\frac{\sqrt{5}}{2}$
C) $\frac{\sqrt{3}}{2}$
D) $\sqrt{3}$

Key. B
Sol. (B) Centre of rectangular hyperbola ($1,-2$)
So equation of asymptotes are $x=1, y=-2$
So radius of circle $=\frac{\sqrt{5}}{2}$
6. If a chord joining $\mathrm{P}(\mathrm{aSec} \theta, \operatorname{atan} \theta), \mathrm{Q}(\operatorname{aSec} \alpha, \operatorname{atan} \alpha)$ on the hyperbola $x^{2}-y^{2}=a^{2}$ is the normal at P,then $\operatorname{Tan} \alpha=$
A) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta+1\right)$
B) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta-1\right)$
C) $\operatorname{Tan} \theta\left(2 \operatorname{Sec}^{2} \theta-1\right)$
D) $\operatorname{Tan} \theta\left(1-2 \operatorname{Sec}^{2} \theta\right)$

Key. B
Sol. Slope of chord joining P and $\mathrm{Q}=$ slope of normal at P
$\frac{\operatorname{Tan} \alpha-\operatorname{Tan} \theta}{\sec \alpha-\sec \theta}=-\frac{\operatorname{Tan} \theta}{\sec \theta} \Rightarrow \operatorname{Tan} \alpha-\operatorname{Tan} \theta=-\mathrm{k} \operatorname{Tan} \theta$ and $\sec \alpha-\sec \theta=\mathrm{k} \sec \theta$
$\therefore(1-k) \operatorname{Tan} \theta=\operatorname{Tan} \alpha \rightarrow 1 .(1+k) \sec \theta=\sec \alpha \rightarrow 2$.
$[(1+\mathrm{k}) \sec \theta]^{2}-[(1-\mathrm{k}) \operatorname{Tan} \theta]^{2}=\sec ^{2} \alpha-\operatorname{Tan}^{2} \alpha$
$\Rightarrow \mathrm{k}=-2\left(\sec ^{2} \theta+\operatorname{Tan}^{2} \theta\right)=-4 \sec ^{2} \theta+2$
From (1) $\operatorname{Tan} \alpha=\operatorname{Tan} \theta \quad\left(1+4 \sec \theta^{2}-2\right)=\operatorname{Tan} \theta\left(4 \sec \theta^{2}-1\right)$.
7. $\quad \mathrm{PM}$ and PN are the perpendiculars from any point P on the rectangular hyperbola $x y=c^{2}$ to the asymptotes. If the locus of the mid point of MN is a conic, then its eccentricity is
A) $\sqrt{3}$
B) $\sqrt{2}$
C) $\frac{1}{\sqrt{3}}$
D) $\frac{1}{\sqrt{2}}$

Key. B
Sol. OMPN is rectangle.

$$
P=\left(C t, \frac{c}{t}\right)
$$

Mid point $=\left(\frac{c t}{2}, \frac{c}{2 t}\right)=(x, y)$
$\therefore x y=\frac{c^{2}}{4} \Rightarrow e=\sqrt{2}$
8. A variable straight line of slope 4 intersects the hyperbola $x y=1$ at two points. The locus of the point which divides the line segment between these two points in the ratio $1: 2$ is
A) $16 x^{2}+10 x y+y^{2}=2$
B) $16 x^{2}-10 x y+y^{2}=2$
C) $16 x^{2}+10 x y+y^{2}=4$
D) $16 x^{2}-10 x y+y^{2}=4$

Key. A
Sol. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$

$$
y-k=4(x-h)--(1)
$$

Let it meets $\mathrm{xy}=1$----(2) at $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
x_{1}+x_{2}=\frac{4 h-\mathrm{k}}{4}, x_{1} x_{2} & =-\frac{1}{4} \text { Also } \Rightarrow \therefore \frac{2 x_{1}+x_{2}}{3}=h \Rightarrow x_{1}=\frac{8 h+\mathrm{k}}{4}, x_{2}=\frac{2 h+\mathrm{k}}{2} \\
& \Rightarrow 16 x^{2}+10 x y+y^{2}=2
\end{aligned}
$$

9. The length of the transverse axis of the hyperbola $9 x^{2}-16 y^{2}-18 x-32 y-151=0$ is
1) 8
2) 4
3) 6
4) 2

Key. 1
Sol. Given hyperbola is $\frac{(x-1)^{2}}{16}-\frac{(y+1)^{2}}{9}=1$
Length of the transverse axis is $2 \mathrm{a}=8$.
10. The equation of a hyperbola, conjugate to the hyperbola $x^{2}+3 x y+2 y^{2}+2 x+3 y=0$ is

1) $x^{2}+3 x y+2 y^{2}+2 x+3 y+1=0$
2) $x^{2}+3 x y+2 y^{2}+2 x+3 y+2=0$
3) $x^{2}+3 x y+2 y^{2}+2 x+3 y+3=0$
4) $x^{2}+3 x y+2 y^{2}+2 x+3 y+4=0$

Key. 2
Sol. Let $H=x^{2}+3 x y+2 y^{2}+2 x+3 y=0$ and $\mathrm{C}=0$ is its conjugate. Then $\mathrm{C}+\mathrm{H}=2 \mathrm{~A}$, where $\mathrm{A}=0$ is the combined equation of asymptotes. Equation of asymptotes is $x^{2}+3 x y+2 y^{2}+2 x+3 y+\lambda=0$, where $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0 \Rightarrow \lambda=1$
$\therefore C=2\left(x^{2}+3 x y+2 y^{2}+2 x+3 y+1\right)-\left(x^{2}+2 y^{2}+3 x y+2 x+3 y\right)$
\Rightarrow equation of conjugate hyperbola is $x^{2}+3 x y+2 y^{2}+2 x+3 y+2=0$
11. If AB is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $\triangle O A B$ is an equilateral triangle O being the origin, then the eccentricity of the hyperbola satisfies

1) $e>\sqrt{3}$
2) $1<e<\frac{1}{\sqrt{3}}$
3) $e=\frac{2}{\sqrt{3}}$
4) $e>\frac{2}{\sqrt{3}}$

Key. 4
Sol. Let the length of the double ordinate be 2ℓ
$\therefore \mathrm{AB}=2 \ell$ and $\mathrm{AM}=\mathrm{BM}=\ell$
Clearly ordinate of point A is ℓ.

The abscissa of the point A is given by
$\frac{x^{2}}{a^{2}}-\frac{l^{2}}{b^{2}}=1 \Rightarrow x=\frac{a \sqrt{b^{2}+l^{2}}}{b}$
$\therefore \mathrm{A}$ is $\left(\frac{a \sqrt{b^{2}+l^{2}}}{b}, l\right)$
Since $\triangle O A B$ is equilateral triangle, therefore
$O A=A B=O B=2 l$
Also, $O M^{2}+A M^{2}=O A^{2} \therefore \frac{a\left(b^{2}+l^{2}\right)}{b}+l^{2}=4 l^{2}$
We get ${ }^{l^{2}=\frac{a^{2} b^{2}}{3 b^{2}-a^{2}}}$
Since $l^{2}>0 \quad \frac{a^{2} b^{2}}{3 b^{2}-a^{2}}>0 \Rightarrow 3 b^{2}-a^{2}>0$
$\Rightarrow 3 a^{2}\left(e^{2}-1\right)-a^{2}>0 \Rightarrow e>\frac{2}{\sqrt{3}}$
12. If the line $5 x+12 y-9=0$ is a tangent to the hyperbola $x^{2}-9 y^{2}=9$, then its point of contact is

1) $(-5,4 / 3)$
2) $(5,-4 / 3)$
3) $(3,-1 / 2)$
4) $(5,4 / 3)$

Key. 2
Sol. Common Point
13. Any chord passing through the focus $(a e, 0)$ of the hyperbola $x^{2}-y^{2}=a^{2}$ is conjugate to the line

1) $e x-a=0$
2) $a e+x=0$
3) $a x+e=0$
4) $a x-e=0$

Key. 1
Sol. $\quad S_{1}=0$
14. Number of points from where perpendicular tangents to the curve $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ can be drawn, is:

1) 1
2) 2
3) 0
4) 3

Key. 3
Sol. Director circle is set of points from where drawn tangents are perpendicular in this case $x^{2}+y^{2}=a^{2}-b^{2}$ (equation of director circle)i.e., $x^{2}+y^{2}=-9$ is not a real circle so there is no points from where tangents are perpendicular.
15. $x^{2}-y^{2}+5 x+8 y-4=0$ represents

1) Rectangular hyperbola
2)Ellipse
2) Hyperbola with centre at $(1,1)$ 4)Pair of lines

Key. 1
Sol. $\quad \Delta \neq 0, x^{2}-a b>0, a+b=0$
16.

1) $(2 \sqrt{2}, 2 \sqrt{2}),(-2 \sqrt{2},-2 \sqrt{2})$
2) $(-3 \sqrt{2},-3 \sqrt{2}),(3 \sqrt{2}, 3 \sqrt{2})$
3) $(2 \sqrt{2},-2 \sqrt{2}),(-2 \sqrt{2}, 2 \sqrt{2})$
4) (-2.2)

Key. 1

Sol. foci of $x y=c^{2}$ is $(\pm c \sqrt{2}, \pm c \sqrt{2})$
17. Which of the following is INCORRECT for the hyperbola $x^{2}-2 y^{2}-2 x+8 y-1=0$

1) Its eccentricity is $\sqrt{2}$
2) Length of the transverse axis is $2 \sqrt{3}$
3) Length of the conjugate axis is $2 \sqrt{6}$
4) Latus rectum $4 \sqrt{3}$

Key. 1

Sol. The equation of the hyperbola is $x^{2}-2 y^{2}-2 x+8 y-1=0$
Or $(x-1)^{2}-2(y-2)^{2}+6=0$
Or $\frac{(x-1)^{2}}{-6}+\frac{(y-2)^{2}}{3}=1 ; \quad \frac{(y-2)^{2}}{3}-\frac{(x-1)^{2}}{6}=1 \rightarrow 1$
Or $\frac{Y^{2}}{3}-\frac{X^{2}}{6}=1$, where $X=x-1$ and $Y=y-2 \rightarrow 2$
\therefore the centre $=(0,0)$ in the $X-Y$ coordinates.
\therefore the centre=(1,2)in the $x-y$ coordinates .using $\rightarrow 2$
If the transverse axis be of length $2 a$, then $a=\sqrt{3}$, since in the equation (1) the transverse axis is parallel to the y-axis.
If the conjugate axis is of length $2 b$, then $b=\sqrt{6}$
But $b^{2}=a^{2}\left(e^{2}-1\right)$
$6=3\left(e^{2}-1\right), \therefore e^{2}=3$ or $e=\sqrt{3}$
The length of the transverse axis $=2 \sqrt{3}$
The length of the conjugate axis $=2 \sqrt{6}$
Latus rectum $4 \sqrt{3}$
18. If the curve $x y=R^{2}-16$ represents a rectangular hyperbola whose branches lies only in the quadrant in which abscissa and ordinate are opposite in sign but not equal in magnitude, then

1) $|R|<4$
2) $|R| \geq 4$
3) $|R|=4$
4) $|R|=5$

Key. 1
Sol. conceptual
19. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then

1) $a>0, b>0$
2) $a<0, b<0$
3) $a<0, b>0$
4) $a=b=1$

Key. 3

Sol. Slope of the line $\frac{-a}{b}$ is equal to slope of the normal to the curve.
\therefore either $\mathrm{a}>0 \& \mathrm{~b}<0$ (or) $\mathrm{a}<0 \& \mathrm{~b}>0$.
20.

The equation of normal at $\left(a t, \frac{a}{t}\right)$ to the hyperbola $x y=a^{2}$ is

1) $x t^{3}-y t+a t^{4}-a=0$
2) $x t^{3}-y t-a t^{4}+a=0$
3) $x t^{3}+y t+a t^{4}-a=0$
4) $x t^{3}+y t-a t^{4}-a=0$

Key. 2
Sol. Equation of tangent is $s_{1}=0$ normal is \perp^{γ} to tangent and passing through
$\left(a t, \frac{a}{t}\right)_{\text {is }} x t^{3}-y t-a t^{4}+a=0$
21. The product of perpendiculars from any point $\mathrm{P}(\theta)$ on the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ to its asymptotes is equal to:

1) $\frac{6}{5}$
2) $\frac{36}{13}$
3) Depending on θ
4) $\frac{5}{6}$

Key. 2
Sol. The product of perpendiculars from any point $\mathrm{P}(\theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to its asymptotes is equal to $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
22.

The foot of the perpendicular from the focus to an asymptote of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is

1) (ae , be)
2) $(a / e, b / e)$
3) $(e / a, e / b)$
4) (be,ae)

Key. 2
Sol. Focus $\mathrm{S}=(\mathrm{ae}, 0)$ Equation of one asymptote is $\mathrm{bx}-\mathrm{ay}=0$
Let (h, k) be the foot of the perpendicular from s to $\mathrm{bx}-\mathrm{ay}=0$
Then $\frac{h-a e}{b}=\frac{k-0}{-a}=\frac{-a b e}{a^{2}+b^{2}} \Rightarrow \frac{h-a e}{b}=\frac{-a b e}{a^{2} e^{2}} \& \frac{k}{-a}=\frac{-a b e}{a^{2} e^{2}}$
On simplification, we get $h=a / e, k=b / e$
Foot of the perpendicular is ($\mathrm{a} / \mathrm{e}, \mathrm{b} / \mathrm{e}$)
23. The area of the triangle formed by the asymptotes and any tangent to the hyperbola $x^{2}-y^{2}=a^{2}$

1) $4 a^{2}$
2) $3 a^{2}$
3) $2 a^{2}$
4) a^{2}

Key. 4

Sol. Equation of any tangent to $x^{2}-y^{2}=a^{2}$
i.e. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}}=1$ is $\frac{x}{a} \sec \theta-\frac{y}{a} \tan \theta=1 \rightarrow(1)$
or $x \sec \theta-y \tan \theta=a$
equation of other two sides of the triangle are
$x-y=0 . .(2) x+y=0(3)$
The two asymptotes of the hyperbola $x^{2}-y^{2}=a^{2}$
Are $x-y=0$ and $x+y=0$)
Solving (1) (2) and (3) in pairs the coordinates of the vertices of the triangle are $(0,0)$
$\left(\frac{a}{\sec \theta+\tan \theta}, \frac{a}{\sec \theta+\tan \theta}\right)$
And $\left(\frac{a}{\sec \theta-\tan \theta}, \frac{-a}{\sec \theta-\tan \theta}\right)-$

Area of triangle $=\frac{1}{2}\left|\frac{a^{2}}{\sec ^{2} \theta-\tan ^{2} \theta}+\frac{a^{2}}{\sec ^{2} \theta-\tan ^{2} \theta}\right|$
$\frac{1}{2}\left(a^{2}+a^{2}\right) \quad \because \sec ^{2} \theta-\tan ^{2} \theta=1$
$=a^{2}$
24. The foot of the normal $3 x+4 y=7$ to the hyperbola $4 x^{2}-3 y^{2}=1$ is

1) $(1,1)$
2) $(1,-1)$
3) $(-1,1)$
4) $(-1,-1)$

Key. 1
Sol. Since the point $(1,1)$ lies on the normal and hyperbola it is the foot of the normal
25. Tangent at the point $(2 \sqrt{2}, 3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ meet its asymptotes at A and B, then area of the triangle $O A B, O$ being the origin is

1) 6 sq. units
2) 3 sq. units
3) 12 sq. units
4) 2 sq. units

Key. 1
Sol. Since area of the Δ formed by tangent at any point lying on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and its asymptotes is always constant and is equal to $a b$. Therefore, required area is $2 \times 3=6$ square units.
26.

Eccentricity of hyperbola $\frac{x^{2}}{k}+\frac{y^{2}}{k}=1(k<0)$ is :

1) $\sqrt{1+k}$
2) $\sqrt{1-k}$
3) $\sqrt{1+\frac{1}{k^{2}}}$
4) $\sqrt{1-\frac{1}{k}}$

Key. 4
Sol. Given equation can be rewritten as $\frac{y^{2}}{k^{2}}-\frac{x^{2}}{(-k)}=1(-k>0)$
$e^{2}=1+\frac{(-k)}{k^{2}}=1-\frac{1}{k} \Rightarrow e=\sqrt{1-\frac{1}{k}}$
27. If the circle $x^{2}+y^{2}=a^{2}$ intersect the hyperbola $x y=c^{2}$ in four points $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), S\left(x_{4}, y_{4}\right)$ then which of the following does not hold

1) $x_{1}+x_{2}+x_{3}+x_{4}=0$
2) $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=c^{4}$
3) $y_{1}+y_{2}+y_{3}+y_{4}=0$
4) $x_{1}+y_{2}+x_{3}+y_{4}=0$

Key. 4
Sol. $\quad x^{2}+\frac{c^{4}}{x^{2}}=a^{2} \Rightarrow \mathbf{x}^{4}-\mathbf{a}^{2} \mathbf{x}^{2}+\mathbf{c}^{4}=0,4^{\text {th }}$ option does not hold
28. If a normal to the hyperbola $\mathrm{x} \mathrm{y}=\mathrm{c}^{2}$ at $\left(c t_{1}, \frac{c}{t_{1}}\right)$ meets the curve again at $\left(c t_{2}, \frac{c}{t_{2}}\right)$, then:

1) $t_{1} t_{2}=-1$
2) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
3) $t_{2}^{3} t_{1}=-1$
4) $t_{1}^{3} t_{2}=-1$

Key. 4
Sol. Equation of normal at $\left(c t_{1}, \frac{c}{t_{1}}\right)_{\text {is }}$
$t_{1}^{3} x-t_{1} y-c t_{1}^{4}+c=0$
It passes through $\left(c t_{2}, \frac{c}{t_{2}}\right)$
le., $t_{1}^{3} \cdot c t_{2}-t_{1} \cdot \frac{c}{t_{2}}-c t_{1}^{4}+c=0$
$\Rightarrow\left(t_{1}-t_{2}\right)\left(t_{1}^{3} t_{2}+1\right)=0$
$\Rightarrow t_{1}^{3} t_{2}=-1$
29. The equation of the chord joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ is

1) $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
2) $\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$
3) $\frac{y}{x_{1}+x_{2}}+\frac{x}{y_{1}+y_{2}}=1$
4) $\frac{x}{y_{1}-y_{2}}+\frac{y}{x_{1}-x_{2}}=1$

Key. 1
Sol. Mid point of the chord is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

The equation of the chord in terms of its mid-point is $s_{1}=s_{11}$
30. A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P, Q, R and S.Then $C P^{2}+C Q^{2}+C R^{2}+C S^{2}=$

1) r^{2}
2) $2 r^{2}$
3) $3 r^{2}$
4) $4 r^{2}$

Key. 4
Sol. $C P=C Q=C R=C S=r$
31. The product of focal distances of the point $(4,3)$ on the hyperbola $x^{2}-y^{2}=7$ is

1) 25
2) 12
3) 9
4) 16

Key. 1
Sol. $\quad e=\sqrt{2}, s p \cdot s^{\prime} p=\left(e x_{1}+a\right)\left(e x_{1}-a\right)=25$
32.

Let $y=4 x^{2} \& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$ intersect iff

1) $|a| \leq \frac{1}{\sqrt{2}}$
2) $a>\frac{1}{\sqrt{2}}$
3) $a>-\frac{1}{\sqrt{2}}$
4) $a>\sqrt{2}$

Key. 1

Sol.

$$
y=4 x^{2} \& \frac{1}{4} y=x^{2}
$$

Using $\frac{1}{4 a^{2}} y-\frac{y^{2}}{16}=1$
$\Rightarrow 4 y-a^{2} y^{2}=16 a^{2}$
$\Rightarrow a^{2} y^{2}-4 y+16 a^{2}=0$
$\Rightarrow D \geq 0$ for intersection of two curves
$\Rightarrow 16-4 a^{2}\left(16 a^{2}\right) \geq 0$
$\Rightarrow 1-4 a^{4} \geq 0$
$\Rightarrow\left(2 a^{2}\right) \leq 1$
$\Rightarrow|\sqrt{2} a| \leq 1 \Rightarrow-\frac{1}{\sqrt{2}} \leq a \leq \frac{1}{\sqrt{2}}$
33. If angle between the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is 45°, then value of eccentricity e is

1) $\sqrt{4 \pm 2 \sqrt{2}}$
2) $\sqrt{4+2 \sqrt{2}}$
3) $\sqrt{4-2 \sqrt{2}}$
4) $\sqrt{4-3 \sqrt{2}}$

Key. 3
Sol. $\quad 2 \tan ^{-1} \frac{b}{a}=45^{\circ} \Rightarrow \frac{b}{a}=\tan 22^{\circ}=\frac{a^{2}\left(e^{2}-1\right)}{a^{2}}=(\sqrt{2}-1)^{2}$
$\Rightarrow e^{2}-1=3-2 \sqrt{2} \Rightarrow e=\sqrt{4-2 \sqrt{2}}$.
34. A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is

1) $x^{2} \operatorname{cosec} 2 \theta-y^{2} \sec ^{2} \theta=1$
2) $x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1$
3) $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
4) $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

Key. 1
Sol. Equation of the ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$. Its eccentricity is $e=\sqrt{1-\frac{3}{4}}=\frac{1}{2}$
Coordinates of foci are $(\pm 1,0)$.
Let the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $a=\sin \theta$
Also, $a e_{1}=1 \Rightarrow \quad e_{1}=\operatorname{cosec} \theta$

$$
b^{2}=a^{2}\left(e_{1}^{2}-1\right)=1-\sin ^{2} \theta=\cos ^{2} \theta
$$

Equation of the hyperbola is thus $\frac{x^{2}}{\sin ^{2} \theta}-\frac{y^{2}}{\cos ^{2} \theta}=1$
35. An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinates axes, then

1) Equation of ellipse is $x^{2}+2 y^{2}=1$
2) the foci of ellipse are $(\pm 1,0)$
3) equation of ellipse are $x^{2}+2 y^{2}=4$
4) the foci of ellipse are $(\pm \sqrt{2}, 0)$

Key. 2
Sol. If two concentric conics intersect orthogonally then they must be confocal, so ellipse and hyperbola will be confocal
$\Rightarrow(\pm a e, 0) \equiv(\pm 1,0)$
[foci of hyperbola are $(\pm 1,0)$]
36. Let $P(6,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal at the point P intersects the x axis at $(9,0)$, then the eccentricity of the hyperbola is:

1) $\sqrt{\frac{5}{2}}$
2) $\sqrt{\frac{3}{2}}$
3) $\sqrt{2}$
4) $\sqrt{3}$

Key. 2
Sol. Normal at $(6,3)$ is
$\frac{a^{2} x}{6}+\frac{b^{2} y}{3}=a^{2}+b^{2}$,
$\Rightarrow \frac{9 a^{2}}{6}=a^{2}+b^{2} \Rightarrow \frac{3}{2}=1+\frac{b^{2}}{a^{2}}$

$$
\frac{b^{2}}{a^{2}}=\frac{1}{2} \Rightarrow e^{2}-1=\frac{1}{2} \Rightarrow e=\sqrt{\frac{3}{2}}
$$

37. For hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, which of the following remains constant with change in ' α '
1) abscissae of vertices
2) abscissae of foci
3) Eccentricity
4) directrix

Key. 2
Sol. Hyperbola is $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
Coordinates of vertices are $(\pm \cos \alpha, 0)$, eccentricity of the hyperbola is $e=\sqrt{1+\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}}=|\sec \alpha|$
\therefore Coordinates of foci are thus $(\pm 1,0)$, which are independent of α.
Directrix is $x= \pm \cos ^{2} \alpha$
38. Equation of a common tangent to the curves $y^{2}=8 x$ and $x y=-1$ is
(a) $3 y=9 x+2$
(b) $y=2 x+1$
(c) $2 y=x+8$
(d) $y=x+2$

Key. D
Sol. $\quad y^{2}=8 k, x y=-1$
Let $P\left(t, \frac{-1}{t}\right)$ be any point on $\mathrm{xy}=-1$
Equation of the tangent to $x y=-1$ at $P\left(t, \frac{-1}{t}\right)$ is
$\frac{x y_{1}+y x_{1}}{2}=-1$
$\frac{-x}{t}+y t=-2$
$y=\frac{x}{t^{2}}+\left(\frac{-2}{t}\right)$.
If (1) is tangent to the parabola $y^{2}=8 x$ then
$\frac{-2}{t}=\frac{2}{1 / t^{2}} \Rightarrow t^{3}=-1$
$t=-1$
\therefore Common tangent is $\mathrm{y}=\mathrm{x}+2$
39. If PQ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that OPQ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola, satisfies
(a) $1<e<2 / \sqrt{3}$
(b) $e=2 / \sqrt{3}$
(c) $e=\sqrt{3} / 2$
(d) $e>2 / \sqrt{3}$

Key. D
Sol. If OPQ is equilateral triangle then OP makes 30° with x -axis.
$\left(\frac{\sqrt{3} r}{2}, \frac{r}{2}\right)$ ties on hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\Rightarrow r^{2}=\frac{16 a^{2} b^{2}}{12 b^{2}-4 a^{2}}>0$
$\Rightarrow 12 b^{2}-4 a^{2}>0 \Rightarrow \frac{b^{2}}{a^{2}}>\frac{4}{12}$
$e^{2}-1>\frac{1}{3}$
$e^{2}>\frac{4}{3} \Rightarrow e>\frac{2}{\sqrt{3}}$
40. The locus of a point, from where tangents to the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ contain an angle of 45°, is
(A) $\left(x^{2}+y^{2}\right)+a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
(B) $2\left(x^{2}+y^{2}\right)+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
(C) $\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{4}$
(D) $\left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=a^{4}$

Key. C
Sol. Equation of tangent to the hyperbola : $y=m x \pm \sqrt{m^{2} a^{2}-a^{2}}$
\Rightarrow Let $P\left(x_{1}, y_{1}\right)$ be locus
$\Rightarrow y-m x= \pm \sqrt{m^{2} a^{2}-a^{2}}$

S.B.S

$\Rightarrow m^{2}\left(x_{1}^{2}-a^{2}\right)-2 y_{1} x_{1} m+y_{1}^{2}+a^{2}=0$
$m_{1}+m_{2}=\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}} ; m_{1} m_{2}=\frac{y_{1}^{2}+a^{2}}{x_{1}^{2}-a^{2}}$
$\tan 45^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow\left(1+m_{1} m_{2}\right)^{2}=\left(m_{1}-m_{2}\right)^{2}=\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}$
$\Rightarrow\left(1+\frac{y_{1}+a^{2}}{x_{1}^{2}-a^{2}}\right)=\left(\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}}\right)-4\left(\frac{y_{1}^{2}+a^{2}}{x_{1}^{2}-a^{2}}\right)$
41. If a circle cuts the rectangular hyperbola $\mathrm{xy}=1$ in 4 points $\left(x_{r}, y_{r}\right)$ where $\mathrm{r}=1,2,3,4$. Then ortho centre of triangle with vertices at $\left(x_{r}, y_{r}\right)$ where $\mathrm{r}=1,2,3$ is

1. $\left(x_{4}, y_{4}\right)$
2. $\left(-x_{4},-y_{4}\right)$
3. $\left(-x_{4},+y_{4}\right)$
4. $\left(+x_{4},-y_{4}\right)$

Key. 2
Sol. $\quad x y=1$ cuts the circle in 4-points then $x_{1} x_{2} x_{3} x_{4}=1, y_{1} y_{2} y_{3} y_{4}=1$
Ortho centre of triangle with vertices $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)$

$$
\begin{aligned}
& \text { le }\left(\frac{-1}{x_{1} x_{2} x_{3}},-\left(y_{1} y_{2} y_{3}\right)^{-1}\right) \\
& -\left(-x_{4},-y_{4}\right)
\end{aligned}
$$

42. A hyperbola passing through origin has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as its asymptotes. Then the equations of its transverse and conjugate axes are
A) $x-y-5=0$ and $x+y+1=0$
B) $x-y=0$ and $x+y+5=0$
C) $x+y-5=0$ and $x-y-1=0$
D) $x+y-1=0$ and $x-y-5=0$

Key. C
Sol. Transverse and conjugate axes are the bisectors of the angle between asymptotes.

$$
\frac{3 x-4 y-1}{5}= \pm\left(\frac{4 x-3 y-6}{5}\right) \text { etc...... }
$$

43. If the asymptotes of the hyperbola $(x+y+1)^{2}-(x-y-3)^{2}=5$ cuts each other at A and the coordinate axes at B and C, then radius of the circle passing through the points A, B, C is
A) 3
B) $\frac{\sqrt{5}}{2}$
C) $\frac{\sqrt{3}}{2}$
D) $\sqrt{3}$

Key. B
Sol. Centre of rectangular hyperbola $(1,-2)$
So equation of asymptotes are $x=1, y=-2$
So radius of circle $=\frac{\sqrt{5}}{2}$
44. If a chord joining $\mathrm{P}(\mathrm{aSec} \theta, \operatorname{atan} \theta), \mathrm{Q}(\mathrm{aSec} \alpha, \operatorname{atan} \alpha)$ on the hyperbola $x^{2}-y^{2}=a^{2}$ is the normal at P ,then $\operatorname{Tan} \alpha=$
A) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta+1\right)$
B) $\operatorname{Tan} \theta\left(4 \sec ^{2} \theta-1\right)$
C) $\operatorname{Tan} \theta\left(2 \operatorname{Sec}^{2} \theta-1\right)$
D) $\operatorname{Tan} \theta\left(1-2 \operatorname{Sec}^{2} \theta\right)$

Key. B
Sol. Slope of chord joining P and $\mathrm{Q}=$ slope of normal at P

$$
\begin{aligned}
& \frac{\operatorname{Tan} \alpha-\operatorname{Tan} \theta}{\sec \alpha-\sec \theta}=-\frac{\operatorname{Tan} \theta}{\sec \theta} \Rightarrow \operatorname{Tan} \alpha-\operatorname{Tan} \theta=-\mathrm{k} \operatorname{Tan} \theta \text { and } \sec \alpha-\sec \theta=\mathrm{k} \sec \theta \\
& \therefore(1-k) \operatorname{Tan} \theta=\operatorname{Tan} \alpha \rightarrow 1 .(1+k) \sec \theta=\sec \alpha \rightarrow 2 \\
& {[(1+\mathrm{k}) \sec \theta]^{2}-[(1-\mathrm{k}) \operatorname{Tan} \theta]^{2}=\sec ^{2} \alpha-\operatorname{Tan}^{2} \alpha} \\
& \Rightarrow \mathrm{k}=-2\left(\sec ^{2} \theta+\operatorname{Tan}^{2} \theta\right)=-4 \sec ^{2} \theta+2
\end{aligned}
$$

$$
\text { From (1) } \operatorname{Tan} \alpha=\operatorname{Tan} \theta\left(1+4 \sec \theta^{2}-2\right)=\operatorname{Tan} \theta\left(4 \sec \theta^{2}-1\right)
$$

45. PM and PN are the perpendiculars from any point P on the rectangular hyperbola $x y=c^{2}$ to the asymptotes. If the locus of the mid point of MN is a conic, then its eccentricity is
A) $\sqrt{3}$
B) $\sqrt{2}$
C) $\frac{1}{\sqrt{3}}$
D) $\frac{1}{\sqrt{2}}$

Key. B
Sol. OMPN is rectangle.

$$
P=\left(C t, \frac{c}{t}\right)
$$

Mid point $=\left(\frac{c t}{2}, \frac{c}{2 t}\right)=(x, y)$
$\therefore x y=\frac{c^{2}}{4} \Rightarrow e=\sqrt{2}$
46. A variable straight line of slope 4 intersects the hyperbola $x y=1$ at two points. The locus of the point which divides the line segment between these two points in the ratio $1: 2$ is
A) $16 x^{2}+10 x y+y^{2}=2$
B) $16 x^{2}-10 x y+y^{2}=2$
C) $16 x^{2}+10 x y+y^{2}=4$
D) $16 x^{2}-10 x y+y^{2}=4$

Key. A
Sol. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$

$$
\mathrm{y}-\mathrm{k}=4(\mathrm{x}-\mathrm{h})--(1)
$$

Let it meets $\mathrm{xy}=1$----(2) at $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$

$$
\begin{aligned}
\mathrm{x}_{1}+\mathrm{x}_{2} & =\frac{4 \mathrm{~h}-\mathrm{k}}{4}, \mathrm{x}_{1} \mathrm{x}_{2}=-\frac{1}{4} \text { Also } \Rightarrow \therefore \frac{2 \mathrm{x}_{1}+\mathrm{x}_{2}}{3}=\mathrm{h} \Rightarrow \mathrm{x}_{1}=\frac{8 \mathrm{~h}+\mathrm{k}}{4}, \mathrm{x}_{2}=\frac{2 \mathrm{~h}+\mathrm{k}}{2} \\
& \Rightarrow 16 \mathrm{x}^{2}+10 \mathrm{xy}+\mathrm{y}^{2}=2
\end{aligned}
$$

47. From a point P on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ straight lines are drawn parallel to the asymptotes of the hyperbola. Then the area of parallelogram formed by the asymptotes and the two lines through P is
A) dependent on coordinates of P
B) 4
C) 6
D) $8 \sqrt{2}$

Key. B
Sol. Area of parallelogram is $\frac{a b}{2}=\frac{4 \times 2}{2}=4$
48. The eccentricity of the conic defined by $\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3$
A) $5 / 2$
B) $5 / 3$
C) $\sqrt{2}$
D) $\sqrt{11} / 3$

Key. B
Sol. Hyperbola for which $(1,2)$ and $(5,5)$ are foci and length of transverse axis 3.

$$
2 a e=5 \text { and } 2 a=3 \quad \therefore e=5 / 3
$$

49. The asymptotes of a hyperbola are $3 x-4 y+2=0$ and $5 x+12 y-4=0$. If the hyperbola passes through the point $(1,2)$ then slope of transverse axis of the hyperbola is
A) 6
B) $-7 / 2$
C) -8
D) $1 / 8$

Key. C
Sol. Axes of hyperbola are bisectors of angles between asymptotes.
50. If P is a point on the rectangular hyperbola $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{a}^{2}, \mathrm{C}$ being the center and S, S^{\prime} are two foci, then $S P . S^{\prime} P$
a) 2
b) $(C P)^{2}$
c) $(C S)^{2}$
d) $\left(S S^{\prime}\right)^{2}$

Key. B
Sol. Let $\mathrm{P}=(\mathrm{a} \sec \theta, \mathrm{a} \tan \theta), \mathrm{S}_{1} \mathrm{~S}^{1}=(\pm \mathrm{a} \sqrt{2}, 0)$
$\mathrm{SP}=\mathrm{a}(\sqrt{2} \sec \theta-1), \mathrm{S}^{1} \mathrm{P}=\mathrm{a}(\sqrt{2} \sec \theta+1)$
$\mathrm{SP}-\mathrm{S}^{1} \mathrm{P}=\mathrm{a}^{2}\left(\sec ^{2} \theta+\tan ^{2} \theta\right)=C P^{2}$

Hyperbola

Integer Answer Type

1. If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ satisfy $x^{2}+y^{2}=1$. Let maximum value of $(x+y)^{2}$ is λ then number of tangents from ($\left.\lambda, 0\right)$ to hyperbola $(x-2)^{2}-y^{2}=1$ are

Key. 2
Sol. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})=(\cos \theta, \sin \theta)$
$\therefore \lambda=2$

No. of tangents from $(2,0)$ are 0
2. Acute angle between the asymptotes of the hyperbola $x^{2}+2 x y-3 y^{2}+x+7 y+9=0$ is θ. Then $\tan \theta=$

Key. 2
Sol. Equation of hyperbola is
$x^{2}+2 x y-3 y^{2}+x+7 y+9=0$

The combined equation of asymptotes is $x^{2}+2 x y-3 y^{2}+x+7 y+K=0$
$\tan \theta=\frac{2 \sqrt{h^{2}-a b}}{|a+b|}=\frac{2 \sqrt{1+3}}{1-3}=2$
3. The equation of Asymptotes of $x y+2 x+4 y+6=0$ is $x y+2 x+4 y+c=0$, then $C=$ \qquad
Key. 8
Sol. $x y+2 x+4 y+C=0$ represents pair of lines $\mathrm{P} C=8$
4. The equation of Asymptotes of $x y+2 x+4 y+6=0$ is $x y+2 x+4 y+c=0$, then $\mathrm{C}=$ \qquad
Key. 8
Sol. $x y+2 x+4 y+C=0$ represents pair of lines $\mathrm{P} C=8$
5. Let PN be the ordinate of a point P on the hyperbola $\frac{x^{2}}{(97)^{2}}-\frac{y^{2}}{(79)^{2}}=1$ and the tangent at P meets the transverse axis in T, O is the origin. Then $\left[\frac{O N . O T}{2011}\right]$ is equal to (where [.] denotes G.I.F)
Key. 4
Sol. ON.OT $=97 \cos \theta .97 \sec \theta=97^{2}$

$$
\therefore\left[\frac{\mathrm{ON.OT}}{2011}\right]=\left[\frac{97^{2}}{2011}\right]=4
$$

6. If e is the eccentricity of the hyperbola $(5 x-10)^{2}+(5 y+15)^{2}=(12 x-5 y+1)^{2}$ then $\frac{25 e}{13}$ is equal to \qquad
Key. 5
Sol. Equation can be rewritten as $\sqrt{(x-2)^{2}+(y+3)^{2}}=\frac{13}{5}\left|\frac{12 x-5 y+1}{13}\right|$

So, $\mathrm{e}=\frac{13}{5}$.
7. If a variable tangent of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, cuts the circle $x^{2}+y^{2}=4$ at point A, B and locus of mid point of $A B$ is $9 x^{2}-4 y^{2}-\lambda\left(x^{2}+y^{2}\right)^{2}=0$ then λ is \ldots.

Key. 1
Sol. Equation of chord of circle with mid point (h, k) is $x h+x k=h^{2}+k^{2}$ or $y=\left(\frac{-h}{k}\right) x+\frac{h^{2}+k^{2}}{k}$, it touches the hyperbola
8. If the angle between the asymptotes of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{\pi}{3}$. Then the eccentricity of conjugate hyperbola is
Key. 2
Sol. $\quad 2 \tan ^{-1}\left(\frac{b}{a}\right)=\frac{\pi}{3}$
$\frac{b}{a}=\frac{1}{\sqrt{3}}$
$e^{2}=1+\frac{1}{3}=\frac{4}{3}$
$\frac{1}{e^{\prime 2}}+\frac{1}{e^{2}}=1$
$\Rightarrow \quad \frac{1}{e^{12}}+\frac{3}{4}=1$
$\Rightarrow \quad \frac{1}{e^{\prime 2}}=\frac{1}{4} \Rightarrow e^{\prime}=2$
9. If PN be the ordinate of a point P on the hyperbola $\frac{x^{2}}{(97)^{2}}-\frac{y^{2}}{(79)^{2}}=1$ and the tangent at P meets the transverse axis in T, O is the origin; then $\left[\frac{O N . O T}{7999}\right]$ is...... (where [.] denotes greatest integer function).

Key. 1
10. If the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then $\mathrm{b}=$ Key. 4
11. The equation $\frac{x^{2}}{9-\lambda}+\frac{y^{2}}{4-\lambda}=1$ represents a hyperbola when $a<\lambda<b$ then $\left[\frac{b+a}{b-a}\right]=$ Where [.] denotes greatest integer function.
Key. 2
Sol. $(9-\lambda)(4-\lambda)<0 \Rightarrow 4<\lambda<9 \Rightarrow\left[\frac{b+a}{b-a}\right]=\left[\frac{13}{5}\right]=2$
12. If CP, CD are semiconjugate diameters of $5(\mathrm{x}-2)^{2}+4(\mathrm{y}-3)^{2}=20$, then $\mathrm{CP}^{2}+\mathrm{CD}^{2}=$ Key. 9
Sol. $\quad \mathrm{CP}^{2}+\mathrm{CD}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
13. If a hyperbola passes through the focus of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and its transverse and conjugate axes coincides with the major and minor axes of the ellipse, and the product of eccentricities is 1 , represented by the equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then the value of $b^{2}-a^{2}$ is
Key. 7
Sol. Using the hypothesis, we get equation to hyperbola as $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \Rightarrow b^{2}-a^{2}=7$
14. The product of perpendiculars from any point on the hyperbola $\frac{\mathrm{x}^{2}}{4}-\frac{3 y^{2}}{4}=1$ to its asymptotes is $\frac{1}{\mathrm{~K}}$, then $\mathrm{K}=$
Key. 1
Sol. Product of perpendiculars from any point on the hyperbola to its asymptotes $=\frac{a^{2} b^{2}}{a^{2}+b^{2}}=\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}}=1$
15. Chords of the hyperbola $x^{2}-y^{2}=a^{2}$ touch the parabola $y^{2}=4 a x$. Prove that the locus of their middle points is the curve $y^{2}(x-a)=x^{3}$.
Ans. Hence locus is $x^{3}=y^{2}(x-a)$.
Sol. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be midpoint of chords so their equation is $\mathrm{T}=\mathrm{S}_{\mathrm{l}}$
i.e. $\quad \mathrm{xh}-\mathrm{yk}=\mathrm{h}^{2}-\mathrm{k}^{2}$

Also equation of tangent to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ is

$$
\begin{equation*}
\mathrm{y}=\mathrm{mx}+\frac{\mathrm{a}}{\mathrm{~m}} \tag{ii}
\end{equation*}
$$

$\therefore \quad$ comparing (i) and (ii), we get

$$
\mathrm{m}=\frac{\mathrm{h}}{\mathrm{k}} \text { and } \frac{\mathrm{a}}{\mathrm{~m}}=\frac{\mathrm{k}^{2}-\mathrm{h}^{2}}{\mathrm{k}} \Rightarrow \frac{\mathrm{ak}}{\mathrm{~h}}=\frac{\mathrm{k}^{2}-\mathrm{h}^{2}}{\mathrm{k}} \Rightarrow \quad \mathrm{~h}^{3}=\mathrm{k}^{2}(\mathrm{~h}-\mathrm{a})
$$

Hence locus is $\mathrm{x}^{3}=\mathrm{y}^{2}(\mathrm{x}-\mathrm{a})$.
16. Prove that chord of a hyperbola, which touches the conjugate hyperbola, is bisects at the point of contact.

Sol. Let $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
...(i) be the hyperbola, then its conjugate hyperbola is
$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
Let any point on (ii) be ($(a \tan \theta, b \sec \theta)$, then equation of the tangent to (ii) at this point is $\frac{\mathrm{y} \sec \theta}{\mathrm{b}}-\frac{\mathrm{x} \tan \theta}{\mathrm{a}}=1=\sec ^{2} \theta-\tan ^{2} \theta$
i.e.

$$
\frac{x \tan \theta}{a}-\frac{y \sec \theta}{b}-1=\frac{a^{2} \tan ^{2} \theta}{a^{2}}-\frac{b^{2} \sec ^{2} \theta}{a^{2}}-1
$$

which is the equation of the chord of (i) whose mid point is $(a \tan \theta, b \sec \theta)$. Hence the result
17. The asymptotes of a hyperbola are parallel to $2 x+3 y=0 \& 3 x+2 y=0$. Its centre is $(1,2) \&$ it passes through $(5,3)$. Find the equation of the hyperbola.
Ans. $(2 x+3 y-8)(3 x+2 y-7)-154=0$
Sol. Let the asymptotes be $2 x+3 y+\lambda=0$ and $3 x+2 y+\mu=0$. Since asymtotes passes through $(1,2)$, then $\lambda=-8$ and $\mu=-7$
Thus the equation of asymptotes are

$$
2 x+3 y-8=0 \text { and } 3 x+2 y-7=0
$$

Let the equation of hyperbola be

$$
(2 x+3 y-8)(3 x+2 y-7)+v=0
$$

It passes through $(5,3)$, then

$$
\begin{array}{r}
(10+9-8)(15+6-7)+v=0 \\
11 \times 14+v=0 \\
v=-154
\end{array}
$$

\Rightarrow
\therefore
putting the value of v in (1) we obtain

$$
(2 x+3 y-8)(3 x+2 y-7)-154=0
$$

which is the equation of required hyperbola.

