Ellipse Single Correct Answer Type

1. If a variable tangent of the circle $x^2 + y^2 = 1$ intersect the ellipse $x^2 + 2y^2 = 4$ at P and Q then the locus of the points of intersection of the tangents at P and Q is

A. a circle of radius 2 units

C. an ellipse with eccentricity $\frac{\sqrt{3}}{4}$

B. a parabola with fouc as (2, 3)

D. an ellipse with length of latus rectrum is 2 units

D. 3

Key. D Sol. $x^2 + y^2 = 1; x^2 + 2y^2 = 4$

Let $R(x_1, y_1)$ is pt of intersection of tangents drawn at P,Q to ellipse

$$\Rightarrow PQ$$
 is chord of contact of $R(x_1, y_1)$

$$\Rightarrow xx_1 + 2yy_1 - 4 = 0$$

This touches circle $\Rightarrow r^2(\ell^2 + m^2) = n^2$

 $\Rightarrow 1(x_1^2 + 4y_1^2) = 16$

$$\Rightarrow x^2 + 4y^2 = 16 \text{ is ellipse } e = \frac{\sqrt{3}}{2}; LL^1 = 2$$

2. A circle S = 0 touches a circle $x^2 + y^2 - 4x + 6y - 23 = 0$ internally and the circle $x^2 + y^2 - 4x + 8y + 19 = 0$ externally. The locus of centre of the circle S = 0 is conic whose eccentricity is k then $\left[\frac{1}{k}\right]$ is where [.] denotes G.I.F

C. 0

Key. A Sol. $c_1(2,-3)r_1 = 6$

```
c_2(2,-4)r_2 = 1
```

Let C is the center of S = 0

$$\therefore \quad \frac{cc_1 = r_1 - r}{cc_2 = r_1 + r} \Longrightarrow cc_1 + cc_2 = r_1 + r_2$$

B. 2

 \therefore Locus is an ellipse whose foci are (2, -3) & (2, -4)

$$e = \frac{2ae}{2a} = \frac{c_1c_2}{r_1 + r_2} = \frac{1}{7} \Longrightarrow k = \frac{1}{7}$$

3. If circum centre of an equilateral triangle inscribed in $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with vertices having eccentric angles α, β, γ respectively is (x_1, y_1) then $\sum \cos \alpha \cos \beta + \sum \sin \alpha \sin \beta = 1$

A.
$$\frac{9x_1^2}{a^2} + \frac{9y_1^2}{b^2} + \frac{3}{2}$$
 B. $9x_1^2 - 9y_1^2 + a^2b^2$ C. $\frac{9x_1^2}{2a^2} + \frac{9y_1^2}{2b^2} - \frac{3}{2}$ D. $\frac{9x_1^2}{a^2} + \frac{9y_1^2}{b^2} + 3$

Key.

С

Sol.
$$(x_1, y_1) = \left(\frac{a\sum\cos\alpha}{3}, \frac{b\sum\sin\alpha}{3}\right)$$

$$\sum \cos \alpha = \frac{3x_1}{a}....(1)$$

Squarding & adding

4. The ratio of the area enclosed by the locus of mid-point of PS and area of the ellipse where P is any point on the ellipse and S is the focus of the ellipse, is

A.
$$\frac{1}{2}$$
 B. $\frac{1}{3}$ C. $\frac{1}{5}$ D. $\frac{1}{4}$
Key. D

Sol. Ellipse equation is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, Area = πab

Let
$$P = (a\cos\theta, b\sin\theta)$$

$$S = (ae, 0)$$

M(h,k) mid point of PS

$$\Rightarrow h = \frac{ae + a\cos\theta}{2}; k = \frac{b\sin\theta}{2}$$

$$=\frac{h-\frac{ae}{2}}{a/2}+\frac{k^2}{(b^2/4)}=1$$
, locus of (h,k) is ellipse

Area
$$=\pi\left(\frac{a}{2}\right)\left(\frac{b}{2}\right)=\frac{1}{4}\pi ab$$

5. How many tangents to the circle $x^2 + y^2 = 3$ are there which are normal to the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

A) 3 B) 2 C) 1 D) 0

Key. D

Sol. Equation of normal at $p(3\cos\theta, 2\sin\theta)$ is $3x \sec\theta - 2y \csc\theta = 5$

$$\frac{5}{\sqrt{9 \sec^2 \theta + 4 \cos ec^2 \theta}} = \sqrt{3}$$

But Min. of $9 \sec^2 \theta + 4 \csc^2 \theta = 25$
 \therefore no such $\frac{-1}{\theta}$ exists.
If the ellipse $\frac{x^2}{a^2 - 3} + \frac{y^2}{a + 4} = 1$ is inscribed in a square of side length $a\sqrt{2}$ then a is
A) 4 B) 2 C) 1 D) None of these

Key. D

6.

Sol. Sides of the square will be perpendicular tangents to the ellipse so, vertices of the square will lie on director circle. So diameter of director circle is

 $2\sqrt{a^{2}-3}+(a+4)} = \sqrt{2a^{2}+2a^{2}}$ $2\sqrt{a^{2}+a+1} = 2a \Longrightarrow a = -1$ But for ellipse $a^{2} > 3\&a > -4$ So a cannot take the value '-1'

7. Let 'O' be the centre of ellipse for which A,B are end points of major axis and C,D are end points of minor axis, F is focus of the ellipse. If in radius of $\triangle OCF$ is '1' then $|AB| \times |CD| =$

Sol.

$$\frac{1}{2}(ae)b = \frac{ae+b+\sqrt{a^2e^2+b^2}}{2}$$

 $r = \frac{\Delta}{S} \Longrightarrow \Delta = S$

$$ae = 6 \Rightarrow 6b = 6 + b + \sqrt{36 + b^{2}} \Rightarrow b = \frac{5}{2}$$

$$\Rightarrow a^{2} (1 - e^{2}) = \frac{25}{4} \Rightarrow a^{2} - 36 = \frac{25}{4} \Rightarrow a = \frac{13}{2}$$
8. If the ellipse $\frac{x^{2}}{4} + \frac{y^{2}}{1} = 1$ meet the ellipse $\frac{x^{2}}{1} + \frac{y^{2}}{a^{2}} = 1$ in four distinct points and
 $a=b^{2} - 10b + 25$, then the value b does not satisfy
1. $(-\infty, 4)$ 2. $(4, 6)$ 3. $(6, \infty)$ 4. $[4, 6]$
Key. 4
Sol. $a > 1$
9. The perimeter of a triangle is 20 and the points (-2, -3) and (-2, 3) are two of the vertices of
it. Then the locus of third vertex is :
1. $\frac{(x-2)^{2}}{49} + \frac{y^{2}}{40} = 1$ 2. $\frac{(x+2)^{2}}{49} + \frac{y^{2}}{40} = 1$ 3. $\frac{(x+2)^{2}}{40} + \frac{y^{2}}{49} = 1$ 4.
 $\frac{(x-2)^{2}}{40} + \frac{y^{2}}{49} = 1$
Key. 3
Sol. PA + PB + AB = 20 where A & B are foci
10. Tangents are drawn from any point on the circle $x^{2}+y^{2}=41$ to the Ellipse $\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1$ then
the angle between the two tangents is
1. $\frac{\pi}{4}$ 2. $\frac{\pi}{3}$ 3. $\frac{\pi}{6}$ 4. $\frac{\pi}{2}$
Key. 4
Sol. Director circle
11. The area of the parallelogram formed by the tangents at the points whose eccentric angles
are $\theta, \theta + \frac{\pi}{2}, \theta + \pi, \theta + \frac{3\pi}{2}$ on the ellipse $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ is
1. ab 2. $4ab$ 3. $3ab$ 4. $2ab$
Key. 2
Sol. Put $\theta = 0^{0}$

12. A normal to
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 meets the axes in L and M. The perpendiculars to the axes through
L and M intersect at P. Then the equation to the locus of P is
1. $a^2x^2 - b^2y^2 = (a^2 + b^2)^2$
2. $a^2x^2 + b^2y^2 = (a^2 + b^2)^2$
3. $b^2x^2 - a^2y^2 = (a^2 - b^2)^2$
4. $a^2x^2 + b^2y^2 = (a^2 - b^2)^2$
Key. 4
Sol. $P = (x_1, y_1), \frac{x}{x_1} + \frac{y}{y_1} = 1$ Apply normal condition
13. The points of intersection of the two ellipse $x^2 + 2y^2 - 6x - 12y + 23 = 0, 4x^2 + 2y^2 - 20x - 12y + 35 = 0$
1. Lie on a circle centered at $(\frac{8}{3}, -3)$ and of radius $\frac{1}{3}\sqrt{\frac{47}{2}}$
2. Lie on a circle centered at $(\frac{8}{3}, -3)$ and of radius $\frac{1}{3}\sqrt{\frac{47}{2}}$
4. Are not concyclic
Key. 1
Sol. If S₁ = 0 and S₂ = 0 are the equations, Then $\lambda S_1 + S_2 = 0$ is a second degree curve passing

through the points of intersection of S_1 = 0 and S_2 = 0

 \checkmark

$$\Rightarrow (\lambda+4)x^2 + 2(\lambda+1)y^2 - 2(3\lambda+10)x - 12(\lambda+1)y + (23\lambda+35) = 0$$

For it to be a circle, choose λ such that the coefficients of x² and y² are equal $\therefore \lambda = 2$

This gives the equation of the circle as

.

$$6(x^{2} + y^{2}) - 32x - 36y + 81 = 0\{u \sin g(1)\}$$

$$\Rightarrow x^{2} + y^{2} - \frac{16}{3}x - 6y + \frac{27}{2} = 0$$

Its centre is $C\left(\frac{8}{3}, 3\right)$ and radius is

$$r = \sqrt{\frac{64}{9} + 9 - \frac{27}{2}} = \frac{1}{3}\sqrt{\frac{47}{2}}$$

Mathematics In a model, it is shown that an arc of a bridge is semi elliptical with major axis horizontal. If

14.

	the length of the base is 9m and the highest part of the bridge is 3m from the horizontal;			
	then the height of the	arch, 2m from the centr	e of the base is (in mete	ers)
	1	2. $\frac{\sqrt{65}}{\sqrt{65}}$	$3. \frac{\sqrt{56}}{\sqrt{56}}$	4. 9
	3	- 3	3	3
Key.	2			
		3	$v^2 v^2$	
Sol.	Let the equation of the	e semi elliptical are be	$\frac{b}{a^2} + \frac{b}{b^2} = 1(y > 0)$	
		C.		
	Length of the major ax	is = 2a = 9 ⇒ a = 9/2		$\langle \rangle$
	So the equation of the	arc becomes $\frac{4x^2}{x^2} + \frac{y^2}{y^2}$	=1	\mathbf{X}
		81 9		
	(E	1	O)	
	If x=2, then $y^2 = \frac{65}{2} =$	$\Rightarrow y = \frac{1}{2}\sqrt{65}$		
	9	3		
			x^2 y^2	
15.	If a tangent of slo	ope 2 of the ellipse	$r = \frac{n}{2} + \frac{3}{12} = 1$ is n	ormal to the circle
	2 2		$a^ b^-$	
	$x^2 + y^2 + 4x + 1 = 0$) then the maximum va	lue of ab is	
	1. 2	2.4	3. 6	3. Can n't be found
Key.	2	S V		
			2	2
Sol.	A tangent of slope 2 is	$y = 2x \pm \sqrt{4a^2 + b^2}$	this is normal to x^2 +	$y^2 + 4x + 1 = 0$ then
		\sim		
	$0 = -4 \pm \sqrt{4a^2 + b^2}$	$a^2 \Rightarrow 4a^2 + b^2 = 16$ u	using $Am \ge GM$	
			0	
	$ab \leq 4$			
16	The distance between	the polars of the faci of	the Ellipse $\frac{x^2}{x} + \frac{y^2}{y^2} - 1$	w r to itself is
10.	The distance between		25 9 ⁻¹	W.I.to itself is
	1 25	25	25	25
C	1. 2	2. 9	$3. \frac{1}{8}$	4. 3
Key.	1			
	2a			
Sol.	$\frac{-\alpha}{\rho}$			
17	An allinca passing three	ugh origin has its fasi at	+(-12) and (-21) The	n ite oppontrigity is
17.			(5, 12) and (24, 7). The	
	1. $\frac{\sqrt{386}}{\sqrt{386}}$	2. √386	3. <u>√386</u>	4. $\frac{\sqrt{386}}{\sqrt{386}}$
	38	39	47	51
Key.	1			
Sol.	Conceptual			

18.	If $e = \frac{\sqrt{3}}{2}$, its length of	latusrectum is		
	1. $\frac{1}{2}$ (length of major a	xis)	2. $\frac{1}{3}$ (length of major as	xis)
	3. $\frac{1}{4}$ (length of major a	xis)	4. Length of major axis	
Key.	3			
Sol.	$L.L.R = \frac{2b^2}{a}$			<u> </u>
19.	Number of normals that can be drawn from the point (0, 0) to $3x^2+2y^2=30$ are			30 are
	1. 2	2.4	3.1	4.3
Key.	2			
Sol.	It is centre		c.X	
20.	A tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ cuts the axes in M and N. Then the least length of N			he least length of MN
	is		$O_{P_{I}}$	
	1. a + b	2. a – b	3. $a^2 + b^2$	4. $a^2 - b^2$
Key.	1			
Sol.	Standard	SV		
21.	$p(\theta), D\left(\theta + \frac{\pi}{2}\right)$ are	e two points on the Ell	pse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Then	the locus of point of
	intersection of the two tangents at P and D to the ellipse is			
	1. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{4}$	2. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 4$	3. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$	4. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$
Key.	3			
Sol.	$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1 - \frac{y}{b}\sin\theta$	→ 1eq		
S	$\frac{x}{a}\cos\left(\frac{\pi}{2}+\theta\right)+\frac{y}{b}\sin\left(\frac{\pi}{2}+\theta\right)$	$\left(\frac{\pi}{2}\!+\!\theta\right)\!=\!1$ \rightarrow 2eq		
	Eliminate $ heta$ from 1 and	12		
22.	The abscissae of the po	ints on the ellipse 9x ² +2	5y²-18x-100y-116=0 lie k	between
	1. 3, -5	24, 6	3. 5, 7	4. 2, 5
Key.	2			
Sol.	$-5 \ge x - 1 \le 5$			

23.	Tangents to the ellips	e b²x²+a²y²=a²b² makes	angles $\theta_1 and \theta_2$ with	major axis such that
	$\cot \theta_1 + \cot \theta_2 = k$. Then the locus of the point of intersection is			
	1. xy=2k(y ² +b ²)	2. 2xy=k(y ² -b ²)	3. 4xy=k(y ² -b ²)	4. 8xy=k(y ² -b ²)
Key.	2			
Sol.	Apply sum of the slope	$e^{x} = \frac{2x_1y_1}{x_1^2 - a^2}$		
24.	The equation $\frac{x^2}{10-a}$ +	$\frac{y^2}{4-a} = 1$ represents ar	ellipse if	.0.
	1. a < 4	2. a > 4	3. 4 <a 10<="" <="" td=""><td>4. a > 10</td>	4. a > 10
Key.	1			<u>\.</u>
Sol.	10 – a > 0, 4 – a > 0		0	
25.	The locus of the feet	of the perpendiculars c	Irawn from the foci of t	he ellipse S=0 to any
	tangent to it is			
	1. a circle	2. an ellipse	3. a hyperbola	4. not a conic
Key.	1		K ·	
Sol.	Standard			
26.	If the major axis is "n"	(n>1) times the minor a	xis of the ellipse, then ea	ccentricity is
	1. $\frac{\sqrt{n-1}}{n}$	2. $\frac{\sqrt{n-1}}{n^2}$	3. $\frac{\sqrt{n^2-1}}{n^2}$	$4. \ \frac{\sqrt{n^2 - 1}}{n}$
Key.	4	$\langle \mathcal{O}_{\mathcal{V}}$		
Sol.	2a = n(2b)			
	$\Rightarrow n = \frac{a}{b}$ $\therefore e = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{1 - \frac{a^2}{a^2}} = 1 -$	$\overline{-\frac{b^2}{a^2}} =$		
S	$\sqrt{1 - \frac{1}{n^2}} = \frac{\sqrt{n^2 - 1}}{n}$			
27.	If $(\sqrt{3})bx + ay = 2ab$	is tangent to the ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then ecce	ntric angle $ heta$ is
	1. $\frac{\pi}{4}$	2. $\frac{\pi}{6}$	3. $\frac{\pi}{2}$	4. $\frac{\pi}{3}$
Kev.	2	-	_	-

Sol. Equation of tangent at a point $(a\cos\theta, b\sin\theta)$ is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$

But, it is the same as
$$\frac{x}{a}\frac{\sqrt{3}}{2} + \frac{y}{b}\cdot\frac{1}{2} = 1$$

$$\therefore \cos\theta = \frac{\sqrt{3}}{2}, \sin\theta = \frac{1}{2} \Longrightarrow \theta = \frac{\pi}{6}$$

2. $\frac{11}{3}$

28. If PSQ is a focal chord of the ellipse $16x^2 + 25y^2 = 400$ such that SP = 8 then the length of SQ =

3.16

4. 25

1. 2

Key.

1

- Sol. $\frac{1}{SP} + \frac{1}{SQ} = \frac{2a}{b^2}$
- 29. A man running round a race course notes that the sum of the distances of two flag posts from him is 8 meters. The area of the path he encloses in square meters if the distance between flag posts is 4 is
 - 1. $15\sqrt{3}\pi$ 2. $12\sqrt{3}\pi$ 3. $18\sqrt{3}\pi$ 4. $8\sqrt{3}\pi$

Key.

Sol. Area = π ab

30. The locus of point of intersection of the two tangents to the ellipse $b^2x^2+a^2y^2=a^2b^2$ which makes an angle 60^0 with one another is

1.
$$4(x^{2} + y^{2} - a^{2} - b^{2})^{2} = 3(b^{2}x^{2} + a^{2}y^{2} - a^{2}b^{2})$$

2. $3(x^{2} + y^{2} - a^{2} - b^{2})^{2} = 4(b^{2}x^{2} + a^{2}y^{2} - a^{2}b^{2})$
3. $3(x^{2} + y^{2} - a^{2} - b^{2})^{2} = 2(b^{2}x^{2} + a^{2}y^{2} - a^{2}b^{2})$
4. $3(x^{2} + y^{2} - a^{2} - b^{2})^{2} = (b^{2}x^{2} + a^{2}y^{2} - a^{2}b^{2})$

Key. 2

Sol. $Tan\theta = \frac{2ab\sqrt{S_{11}}}{x_1^2 + y_1^2 - a^2 - b^2}$

Ellipse

If the equation of the chord joining the points $P(\theta)$ and $D\left(\theta + \frac{\pi}{2}\right)$ on $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is 31. $x\cos\alpha + y\sin\alpha = p$ then $a^2\cos^2\alpha + b^2\sin^2\alpha =$ 3. $\frac{p^2}{2}$ 2. p² 1. $4p^2$ 4.2p² Key. 4 $\frac{x}{a}\cos\left(\frac{\theta+\theta+\frac{\pi}{2}}{2}\right) + \frac{y}{b}\sin\left(\frac{\theta+\theta+\frac{\pi}{2}}{2}\right)$ Sol. $= \cos\left(\frac{\theta - \theta - \frac{\pi}{2}}{2}\right) \Rightarrow 1 eq$ $x\cos\alpha + y\sin\alpha = P \rightarrow 2eq$ (1) = (2)The locus of mid point of chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which passes through the foot of 32.

the directrix from focus is

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{ex}{a^2}$$
 2. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x}{ae}$ 3. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x}{a^2e}$ 4. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x}{ae^2}$

Key.

2

Sol.
$$S_1 = S_{11}$$
 passes through $\left(\frac{a}{e}, 0\right)$

- Consider two points A and B on the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$, circles are drawn having 33. segments of tangents at A and B in between tangents at the two ends of major axis of ellipse as diameter, then the length of common chord of the circles is
 - D) $4\sqrt{2}$ A) 8 B) 6 C) 10

Key. A

Sol. All such circles pass through foci .: The common chord is of the length 2ae $10 \times \frac{4}{5} = 8$

34. If 'CF' is the perpendicular from the centre C of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ on the tangent

at any point P and G is the point where the normal at P meets the major axis, then

CF.PG is

A)
$$b^2$$
 B) $2b^2$ C) $\frac{b^2}{2}$ D) $3b^2$

Key. A

Sol. $CF = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} PG = \frac{b}{a} \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$

The line passing through the extremity A of the major axis and extremity B of the 35. minor axis of the ellipse $x^2 + 9y^2 = 9$, meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin 'O' is A) $\frac{31}{10}$ D) $\frac{27}{10}$ B) $\frac{29}{10}$ 10 Key. D Sol. Equation of given ellipse is $\frac{x^2}{9} + \frac{y^2}{1} = 1$ Equation of auxiliary circle is $x^2 + y^2 = 9$(1) Equation of line AB is $\frac{x}{3} + \frac{y}{1} = 1 \Longrightarrow x = 3(1-y)$ 21 \mathcal{M} B(0,1)A(3,0) **X** 0 В Putting this in (1), we get $9(1-y)^2 + y^2 = 9 \Longrightarrow 10y^2 - 18y = 0 \Longrightarrow y = 0, \frac{9}{5}$ Thus, y coordinate of 'M' is $\frac{9}{5}$ $\Delta OAM = \left(\frac{1}{2}\right) (OA) (MN) = \frac{1}{2} (3) \frac{9}{5} = \frac{27}{10}$

36. The normal at an end of a latus rectum of the ellipse $x^2 / a^2 + y^2 / b^2 = 1$ passes end of the minor axis if			$b^2 = 1$ passes through an		
	(a) $e^4 + e^2 = 1$ (b) $e^3 + e^2 = 1$	(c) $e^2 + e = 1$	(d) $e^3 + e = 1$		
Key.	A				
Sol.	Given ellipse equation is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$				
	Let $P\left(ae, \frac{b^2}{a}\right)$ be one end of latus rectum.				
	Slope of normal at $P\left(ae, \frac{b^2}{a}\right) = \frac{1}{e}$		\sim		
	Equation of normal is				
	$y = \frac{b^2}{a} = \frac{1}{e} (x - ae)$		$\langle \langle \cdot \rangle$		
	It passes through $B'(0,b)$ then				
	$b - \frac{b^2}{a} = -a$	O _{la}			
	$a^2-b^2=-ab$				
	$a^4e^4 = a^2b^2$	0/2,			
	$e^4 + e^2 = 1$	V C			

37. From any point P lying in first quadrant on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, PN is drawn perpendicular to the major axis such that N lies on major axis. Now PN is produced to the point Q such that NQ equals to PS, where S is a focus. The point Q lies on which of the following lines

(A) $2y - 3x - 25 = 0$	(B) $3x + 5y + 25 = 0$
(c) $2x - 5y - 25 = 0$	(D) $2x-5y+25=0$

Key.

R

 $e = \sqrt{\frac{25-16}{25}} = \frac{3}{5}$ Let point Q be (h, k), where K < 0 Given that $|K| = a + eh(as x_1 = h)$ -y = a + ex $-y = 5 + \frac{3}{5}x$ 3x + 5y + 25 = 0

38. A circle of radius 'r' is concentric with the Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Then inclination of common tangent with major axis is _____(b<r<a)

1.
$$\tan^{-1}\left(\frac{b}{a}\right)$$
 2. $\tan^{-1}\left(\frac{rb}{a}\right)$ 3. $\tan^{-1}\sqrt{\frac{r^2-b^2}{a^2-r^2}}$ 4. $\frac{\pi}{2}$

Key.

3

Sol. The tangent of Ellipse is $y = mx + \sqrt{a^2m^2 + b^2}$, this line touches $x^2 + y^2 = r^2$

Condition is
$$\left| \frac{\sqrt{a^2 m^2 + b^2}}{\sqrt{m^2 + 1}} \right| = r$$

 $a^2 m^2 + b^2 = r^2 m^2 + r^2$
 $m^2 (a^2 - r^2) = r^2 - b^2 \Longrightarrow m^2 = \frac{r^2 - b^2}{a^2 - r^2}$
 $m = \sqrt{\frac{r^2 - b^2}{a^2 - r^2}}$
Inclimation is $\tan^{-1} \sqrt{\frac{r^2 - b^2}{a^2 - r^2}}$

39. A circle cuts the X-axis and Y-axis such that intercept on X-axis is a constant a and intercept on Y-axis is a constant b. Then eccentricity of locus of centre of circle is

2.
$$\frac{1}{2}$$
 3. $\sqrt{2}$ 4. $\frac{1}{\sqrt{2}}$

Key. 3

1.1

Sol. Locus of centre of circle is a rectangular hyperbola hence its eccentricity is $\sqrt{2}$

Consider two points A and B on the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$, circles are drawn having 40. segments of tangents at A and B in between tangents at the two ends of major axis of ellipse as diameter, then the length of common chord of the circles is D) $4\sqrt{2}$ A) 8 B) 6 C) 10 Key. A Sol. All such circles pass through foci . The common chord is of the length 2ae $10 \times \frac{4}{5} = 8$ If 'CF' is the perpendicular from the centre C of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ on the tangent 41. at any point P and G is the point where the normal at P meets the major axis, then CF.PG is B) $2b^2$ D) 3*b*² A) b^2 Key. A Sol. $CF = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} PG = \frac{b}{a} \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$ The line passing through the extremity A of the major axis and extremity B of the 42. minor axis of the ellipse $x^2 + 9y^2 = 9$, meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin 'O' is A) $\frac{31}{10}$ B) $\frac{29}{10}$ C) $\frac{21}{10}$ D) $\frac{27}{10}$ Key. D Sol. Equation of given ellipse is $\frac{x^2}{0} + \frac{y^2}{1} = 1$ Equation of auxiliary circle is $x^2 + y^2 = 9$(1) Equation of line AB is $\frac{x}{3} + \frac{y}{1} = 1 \Longrightarrow x = 3(1-y)$ М B(0,1)A(3,0) **x** 0 R

Putting this in (1), we get
$$9(1-y)^2 + y^2 = 9 \Rightarrow 10y^2 - 18y = 0 \Rightarrow y = 0, \frac{9}{5}$$

Thus, y coordinate of 'M' is $\frac{9}{5}$
 $\Delta OAM = \left(\frac{1}{2}\right)(OA)(MN) = \frac{1}{2}(3)\frac{9}{5} = \frac{27}{10}$
43. If $2x^2 + y^2 - 24y + 80 = 0$ then maximum value of $x^2 + y^2$ is
A. 20 B. 40
C. 200 D. 400
Key. D
Sol. Given equation is $2x^2 + y^2 - 24y + 80 = 0$
 $2x^2 + (y-12)^2 = 64$
 $\frac{x^2}{32} + \frac{(y-12)^2}{64} = 1$
If is an ellipse with center (0, 12)
If (x, y) is any point on this distance from origin is $\sqrt{x^2 + y}$
 $x^2 + y^2$ is max if $\sqrt{x^2 + y^2}$ is
 $\frac{max}{B^1(1,\infty)}$ is at max distance from 0
 $\therefore \max(x^2 + y^2) = 400$
44. An ellipse whose foci (2, 4) (14, 9) touches x – axis then its eccentricity is
 13

$$\therefore \max(x^2 + y^2) = 400$$

A.
$$\frac{13}{\sqrt{313}}$$

B. $\frac{1}{\sqrt{313}}$
C. $\frac{2}{\sqrt{313}}$
D. $\frac{1}{\sqrt{13}}$

Key. А

S'(14,9)

(14,0)

8, <u>13</u>

S(2,4)

(2,0)

Sol. Equation of aurally circle
$$(x-8)^2 + \left(y - \frac{13}{2}\right)^2 = a^2$$

(2, 0) lies on it

$$36 + \frac{169}{4} = a^2 \Longrightarrow \frac{313}{4} = a^2$$

$$a = \frac{\sqrt{313}}{2}$$

But SS' = 2ae

$$\sqrt{144 + 25} = 2ae$$

13 = 2ae

$$e = \frac{13}{2a} = \frac{13}{\sqrt{313}}$$

45. A circle of radius 2 is concentric with the ellipse $\frac{x^2}{7} + \frac{y^2}{3} = 1$ then inclination of common

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Key.

D

Sol. tangent is $y = mx + \sqrt{7m^2 + 3}$

$$\frac{x^2}{7} + \frac{y^2}{3} = 1$$

$$x^2 + y^2 = 4$$

It is also touching $x^2 + y^2 = 4$

$$\frac{\sqrt{7m^2+3}}{\sqrt{m^2+1}} = 2$$

$$7m^{2}+3=4m^{2}+4$$

$$m^{2} = \frac{1}{3} \Rightarrow m = \frac{1}{\sqrt{3}}$$

$$\therefore \tan \theta = \frac{1}{\sqrt{3}}$$

$$\theta = \frac{\pi}{6}$$
The points of intersection of two ellipses $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ and $\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\beta^{2}} = 1$ be at the extremeties

of conjugate diameters of
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 then $\frac{a^2}{\alpha^2} + \frac{b^2}{\beta^2} =$
A. 1 B. 2 C. 3 D. 4

Key. B

46.

Sol. Clearly $P(a\cos\theta, b\sin\theta) \quad Q(-a\sin\theta, b\cos\theta)$ are extremities of conjugate diameters of

an ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

P and Q lies m $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$
 $\frac{a^2 \cos^2 \theta}{\alpha^2} + \frac{b^2 \sin^2 \theta}{\beta^2} = 1$
 $\frac{a^2 \sin^2 \theta}{\alpha^2} + \frac{b^2 \cos^2 \theta}{\beta^2} = 1$
(+) $\frac{a^2}{\alpha^2} + \frac{b^2}{\beta^2} = 2$

47.	From the focus $(-5,0)$ of t	he ellipse $\frac{x^2}{45} + \frac{y^2}{20} = 1$	a ray of light is sent whic	h makes angle
	$\cos^{-1}\left(\frac{-1}{\sqrt{5}}\right)$ with the positive direction of X-axis upon reacting the ellipse the ray is reflected			
	from it. Slope of the reflect	ed rav is		
	A) $-3/2$ B)	-7/3	(-5/4)	D) -2/11
Kev.	D	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-, -, -,
, Sol.	Let $\theta = \cos^{-1}\left(\frac{-1}{\sqrt{5}}\right) \Rightarrow \cos^{-1}\left(\frac{-1}{\sqrt{5}}\right)$	$s \theta = \frac{-1}{\sqrt{5}} \Longrightarrow \tan \theta = -2$	2	<
	Foci are (±5,0)			
	Equation of line through (-5	5. 0) with slope -2 is v	=-29x+5)=-2x-10	
	This line meets the ellipse a	bove X-axis at (-6.2)		
	$\frac{2}{2} = 0$	(0,2)		
	:. Slope = $\frac{2-6}{-6-5} = -\frac{2}{11}$.			
48.	If $f(x)$ is a decreasing function for all $x \in R$ and $f(x) > 0$ $\forall x \in R$ then the range of K so that the equation $\frac{x^2}{f(K^2+2K+5)} + \frac{y^2}{f(K+11)} = 1$ represents an ellipse whose major axis is			the range of <i>K</i> so
	the X-axis is			
	A) (-2,3)		B) (-3,2)	
	C) $(-\infty, -3) \cup (2, \infty)$		D) $(-\infty, -2) \cup (3, \infty)$	
Key.	В			
Sol.	Conceptual			
	\sim			
49.	P, Q are points on the ellip	pse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ such t	that PQ is a chord through	gh the point
	R(3,0). If $ PR = 2$ then le	ength of chord PQ is		
	A) 8 B)	6	C) 10	D) 4
Key.	C C		0, 20	-,
Sol.	Conceptual			
)			
50.	Let $Q = (3, \sqrt{5}), R = (7, 3\sqrt{5})$	$\overline{(5)}$. A point <i>P</i> in the XY	γ-plane varies in such a wa	av that perimeter
	of $\triangle POR$ is 16. Then the maximum area of $\triangle POR$ is			
	A) 6 B)	12	C) 18	D) 9
Kev.	B	,	-,	-,-
, Sol.	P lies on the ellipse for which	ch Q, R are foci and le	ngth of major axis is 10 a	nd eccentricity is
	3/5.			

Ellipse Integer Answer Type

1. Any ordinate MP of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the auxiliary circle of Q; then locus of the point of intersection of normals of P and Q to the respective curves is a circle of radius _____

Key. 8

Sol. The locus is $x^2 + y^2 = 64$

2. The distance between the directrices of the ellipse $(4x-8)^2 + 16y^2 = (x+\sqrt{3}y+10)^2$ is K

then
$$\frac{\mathbf{R}}{2}$$
 i

8

Key.

Sol.
$$(x-2)^2 + y^2 = \left(\frac{1}{2}\right)^2 \frac{\left(x + \sqrt{3}y + 10\right)}{4}$$

 $(h, k) = (z, 0), e = \frac{1}{2}$

Perpendicular distance from (2, 0) to $x + \sqrt{3}y + 10 = 0$ is $\frac{a}{e} - ae$

 $2a - \frac{a}{2} = 6 \Longrightarrow a = 4$

Distance between directrics = $\frac{2a}{e} = 16 = K$

3. A circle concentric to an ellipse $\frac{4x^2}{289} + \frac{4y^2}{\lambda^2} = 1\left(\lambda < \frac{17}{2}\right)$ passes through foci F_1 and F_2 cuts the ellipse at 'P' such that area of triangle P F_1 F_2 is 30 sq.units. If $F_1F_2 = 13K$ where $K \in \mathbb{Z}$ then K =

Key.

1

Sol. Since $F_1 \& F_2$ are the ends of the diameter

Area of
$$\Delta PF_1F_2 = \frac{1}{2}(F_1P)(F_2P) = \frac{1}{2}x(17-x) = 30 \implies x = 5 \text{ or } 12 \implies F_1F_2 = 13$$

4. If F_1, F_2 are the feeet of the perpndiculars from foci S_1, S_2 of the ellipse $16x^2 + 25y^2 = 400$ on the tangent at any point P on the ellipse then minimum value of $S_1F_1 + S_2F_2$ is

Sol. The minimum perpendiculars from two foci upon any tangent is b^2

$$S_1F_1.S_2F_2 = 16$$

$$AM \ge GM \Longrightarrow \frac{S_1F_1 + S_2F_2}{2} \ge \sqrt{S_1F_1 \times S_2F_2} \Longrightarrow S_1F_1 + S_2F_2 \ge 8$$

5. The equation of an ellipse is given by $5x^2 + 5y^2 - 6xy - 8 = 0$. If r_1, r_2 are distances of points on the ellipse which are at maximum & minimum distance from origin then $r_1 + r_2 =$

Sol. Any point on ellipse at a distance r from origin is $(r \cos \theta, r \sin \theta)$

$$\Rightarrow r^2 = \frac{8}{5 - 3\sin 2\theta}$$
 is maximum if $5 - 3\sin 2\theta$ is minimum $\Rightarrow r^2 = 4$

 r^2m in if $(5-3\sin 2\theta)$ is maximum = $8 \implies r^2 = 1$

$$r_1 + r_2 = 2 + 1 = 3$$

6. The equation of the curve on reflection of the ellipse $\frac{(x-4)^2}{16} + \frac{(y-3)^2}{9} = 1$ about the line x-y-2 = 0 is $16x^2 + 9y^2 + ax - 36y + b = 0$ then the value of a + b - 125 =

Key.

Sol. Let P(4, 0) & Q(0, 3) are two points on given ellipse E_1

 P_1 and Q_1 are images of P,Q w.r.to x - y - 2 = 0

 $\therefore P_1(2,2) \quad Q_1(5,-2) \text{ lies on } E_2$

 $\therefore a = -160, b = 292$

7. Number of points on the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ from which pair of perpendicular tangents are drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is Key. 4

Sol. Director circle of
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 is $x^2 + y^2 = 25$

The director circle will cut the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ at 4 points.

If L be the length of common tangent to the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$ and the circle $x^2 + y^2 = 16$ 8. intercepted by the coordinate axis then $\frac{\sqrt{3}L}{2}$ is

Key. 7

Sol. The equation of the tangent at
$$(5\cos\theta, 2\sin\theta)$$
 is $\frac{x}{5}\cos\theta + \frac{y}{2}\sin\theta = 1$

If it is a tangent to the circle then $\frac{1}{\sqrt{\frac{\cos^2 \theta}{25} + \frac{\sin^2 \theta}{4}}} = 4$

$$\Rightarrow \cos \theta = \frac{10}{4\sqrt{7}}, \sin \theta = \frac{\sqrt{3}}{2\sqrt{7}}$$

Let A and B be the points where the tangent meets the coordinate axis then $A\left(\frac{5}{\cos\theta}, 0\right), B\left(0, \frac{2}{\sin\theta}\right)$ $L = \sqrt{\frac{25}{\cos^2 \theta} + \frac{4}{\sin^2 \theta}} = \frac{14}{\sqrt{3}}$

9. An ellipse is sliding along the coordinate axes. If the foci of the ellipse are (1, 1) and (3, 3) then the area of the director circle of the ellipse is $K\pi$. Then K = ____ 7

Key.

Since axes are tangents, $b^2 = 3$ and $ae = \sqrt{2} \implies a^2 - b^2 = 2$ $\therefore a^2 = 5$ Sol.

Tangents are drawn from points on the line x-y+2=0 to the ellipse $x^2+2y^2=2$, then all 10. the chords of contact pass through the point whose distance from $\left(2,\frac{1}{2}\right)$ is 3

Key.

Consider any point $(t_1, t+2)$, $t \in \mathbb{R}$ on the line x-y+2=0Sol.

The chord of contact of ellipse with respect to this point is x(t)+2y(t+2)-2=0

$$\Rightarrow (4y-2) + t(x+2y) = 0, \ y = \frac{1}{2}, x = -1$$

Hence, the point is $\left(-1, \frac{1}{2}\right)$, Where distance from $\left(2, \frac{1}{2}\right)$ is 3.

If P and Q are the ends of a pair of conjugate diameters and C is the centre of the ellipse 11. $4x^2 + 9y^2 = 36$ then the area of $\triangle CPQ$ in square units. 3

Sol.
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
, so $P = (3\cos\theta, 2\sin\theta)$ and $Q = \left(3\cos\left(\frac{\pi}{2} + \theta\right), 2\sin\left(\frac{\pi}{2} + \theta\right)\right)$
Area of $\Delta CPQ = = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 3\cos\theta & 2\sin\theta & 1 \\ -3\sin\theta & 2\cos\theta & 1 \end{vmatrix} = 3.$

12. The maximum distance from the origin to any normal chord drawn to the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$ is

Key. 3

Sol. The other end of the normal drawn at P(t) in $Q_{\xi}^{\frac{\infty}{2}} t - \frac{2\ddot{\Theta}}{t\dot{\phi}}$

If A is the vertex, slope of AP slope AQ = -1

$$\mathbf{P} \quad \frac{2}{t} \frac{(-2)}{\overset{\text{e}}{\overset{\text{e}}{\overset{\text{e}}} + \frac{2\ddot{\mathbf{e}}}{\dot{t}\dot{\overline{\mathbf{a}}}}}} = -1 \mathbf{P} \quad t^2 + 2 = 4 \mathbf{P} \quad t^2 = 2$$

13. The area of the quadrilateral formed by the tangents at the end point of latus rectum to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is 3K. Then K is equal to

Key. 9

Sol. e = 2/3

Equation of tangent at L is
$$\frac{2x}{9} + \frac{y}{3} = 1$$
 it meets x-axis at $A\left(\frac{9}{2}, 0\right)$ & y axis at B(0, 3).
 \therefore area = $4\left[\frac{1}{2}, \frac{9}{2}, 3\right] = 27$

14. If a tangent of slope 2 of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is normal to the circle $x^2 + y^2 + 4x + 1 = 0$, then the maximum value of ab is _____

Key. 4

Sol. A tangent of slope 2 is $y = 2x \pm \sqrt{4a^2 + b^2} \rightarrow (1)$ This is normal to the circle $x^2 + y^2 + 4x + 1 = 0$ i.e., (1) passes through $(-2, 0)4a^2 + b^2 = 16$ Using AM \ge GM $\Rightarrow \frac{4a^2 + b^2}{2} \ge \sqrt{4a^2 \cdot b^2}$ ab ≤ 4 $x^2 = x^2$

15. If a line through P(a, 2) meets the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ at A and D and meets the axes at B and C, so that PA, PB, PC, PD are in G.P., then the minimum value of |a|, is....

Sol. $\frac{x-a}{\cos\theta} = \frac{y-2}{\sin\theta} = r \left(a + r\cos\theta, 2 + r\sin\theta\right)$ lies on ellipse for A and D. $\frac{\left(a + r\cos\theta\right)^2}{9} + \frac{\left(2 + r\sin\theta\right)^2}{4} = 1 \Rightarrow r_1r_2 = PA.PD$ PA, PB, PC, PD are in G.P PA. PD = PB. PC. etc.....

16. The number of values of c such that the straight line y = 4x + c touches the curve

$$x^2 / 4 + y^2 = 1$$
 is K then K =

Key.

Sol. If y = mx + c is tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then $C^2 = a^2m^2 + b^2$ $y = 4x + c, \quad \frac{x^2}{4} + \frac{y^2}{1} = 1$ $C = \pm \sqrt{65}$

17. Tangent is drawn to ellipse $x^2/27 + y^2 = 1$ at $(3\sqrt{3}\cos\theta, \sin\theta)$ (where $\theta \in (0, \pi/2)$). Then

the value of $\, heta\,$ such that sum of intercepts on coordinate axes made by this tangent is least is

$$\frac{\pi}{K}$$
 then K =

Key.

Sol.

$$6$$

$$\frac{x^{2}}{27} + \frac{y^{2}}{1} = 1, P\left(3\sqrt{3}\cos\theta, \sin\theta\right)$$

$$\frac{3\sqrt{3}\cos\theta}{27} + \frac{\sin\theta y}{1} = 1$$

$$A\left(\frac{3\sqrt{3}\cos\theta}{27}, 0\right), B = \left(0, \frac{1}{\sin\theta}\right)$$

$$f(\theta) = 3\sqrt{3}\sec\theta + \csc\theta$$

$$f^{1}(\theta) = \frac{3\sqrt{3}\sin\theta}{\cos^{2}\theta} - \frac{\cos\theta}{\sin^{2}\theta} = 0$$

$$\Rightarrow \tan^{3}\theta = \frac{1}{3\sqrt{3}} = \left(\frac{1}{\sqrt{3}}\right)^{3}$$

$$\theta = \frac{\pi}{6}$$

18. The maximum distance from the origin to any normal chord drawn to the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$ is

- Sol. The other end of the normal drawn at P(t) in Q_{ξ}^{a} $t \frac{2\ddot{o}}{t\dot{\sigma}}$
 - If A is the vertex, slope of AP slope AQ = -1

$$\mathbf{P} \quad \frac{2}{t} \frac{(-2)}{\overset{\text{e}}{\overset{\text{e}}{\overset{\text{e}}}} + \frac{2\ddot{\mathbf{e}}}{t\,\dot{\vec{\sigma}}}} = -1 \mathbf{P} \quad t^2 + 2 = 4 \mathbf{P} \quad t^2 = 2$$