Ellipse

Single Correct Answer Type

1. If a variable tangent of the circle $x^{2}+y^{2}=1$ intersect the ellipse $x^{2}+2 y^{2}=4$ at P and Q then the locus of the points of intersection of the tangents at P and Q is
A. a circle of radius 2 units
B. a parabola with fouc as $(2,3)$
C. an ellipse with eccentricity $\frac{\sqrt{3}}{4}$
D. an ellipse with length of latus rectrum is 2 units

Key. D
Sol. $\quad x^{2}+y^{2}=1 ; x^{2}+2 y^{2}=4$

Let $R\left(x_{1}, y_{1}\right)$ is pt of intersection of tangents drawn at P, Q to ellipse
$\Rightarrow P Q$ is chord of contact of $R\left(x_{1}, y_{1}\right)$
$\Rightarrow x x_{1}+2 y y_{1}-4=0$

This touches circle $\Rightarrow r^{2}\left(\ell^{2}+m^{2}\right)=n^{2}$
$\Rightarrow 1\left(x_{1}^{2}+4 y_{1}^{2}\right)=16$
$\Rightarrow x^{2}+4 y^{2}=16$ is ellipse $e=\frac{\sqrt{3}}{2} ; L L^{1}=2$
2. A circle $S=0$ touches a circle $x^{2}+y^{2}-4 x+6 y-23=0$ internally and the circle $x^{2}+y^{2}-4 x+8 y+19=0$ externally. The locus of centre of the circle $S=0$ is conic whose eccentricity is k then $\left[\frac{1}{k}\right]$ is where [.] denotes G.I.F
A. 7
B. 2
C. 0
D. 3

Key. A
Sol. $\quad c_{1}(2,-3) r_{1}=6$
$c_{2}(2,-4) r_{2}=1$

Let C is the center of $\mathrm{S}=0$
$\left.\therefore \begin{array}{l}c c_{1}=r_{1}-r \\ c c_{2}=r_{1}+r\end{array}\right\} \Rightarrow c c_{1}+c c_{2}=r_{1}+r_{2}$
\therefore Locus is an ellipse whose foci are $(2,-3) \&(2,-4)$

$$
e=\frac{2 a e}{2 a}=\frac{c_{1} c_{2}}{r_{1}+r_{2}}=\frac{1}{7} \Rightarrow k=\frac{1}{7}
$$

3. If circum centre of an equilateral triangle inscribed in $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with vertices having eccentric angles α, β, γ respectively is $\left(x_{1}, y_{1}\right)$ then $\sum \cos \alpha \cos \beta+\sum \sin \alpha \sin \beta=$
A. $\frac{9 x_{1}^{2}}{a^{2}}+\frac{9 y_{1}^{2}}{b^{2}}+\frac{3}{2}$
B. $9 x_{1}^{2}-9 y_{1}^{2}+a^{2} b^{2}$
C. $\frac{9 x_{1}^{2}}{2 a^{2}}+\frac{9 y_{1}^{2}}{2 b^{2}}-\frac{3}{2}$
D. $\frac{9 x_{1}^{2}}{a^{2}}+\frac{9 y_{1}^{2}}{b^{2}}+3$

Key. C
Sol. $\quad\left(x_{1}, y_{1}\right)=\left(\frac{a \sum \cos \alpha}{3}, \frac{b \sum \sin \alpha}{3}\right)$

$$
\begin{equation*}
\sum \cos \alpha=\frac{3 x_{1}}{a} \tag{1}
\end{equation*}
$$

$\sum \sin \alpha=\frac{3 y_{1}}{b}$.
Squarding \& adding
4. The ratio of the area enclosed by the locus of mid-point of PS and area of the ellipse where P is any point on the ellipse and S is the focus of the ellipse, is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{5}$
D. $\frac{1}{4}$

Key. D
Sol. Ellipse equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, Area $=\pi a b$
Let $P=(a \cos \theta, b \sin \theta)$

$$
S=(a e, 0)
$$

$\mathrm{M}(\mathrm{h}, \mathrm{k})$ mid point of PS
$\Rightarrow h=\frac{a e+a \cos \theta}{2} ; k=\frac{b \sin \theta}{2}$
$=\frac{h-\frac{a e}{2}}{a / 2}+\frac{k^{2}}{\left(b^{2} / 4\right)}=1$, locus of (h, k) is ellipse

Area $=\pi\left(\frac{a}{2}\right)\left(\frac{b}{2}\right)=\frac{1}{4} \pi a b$
5. How many tangents to the circle $x^{2}+y^{2}=3$ are there which are normal to the ellipse $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$
A) 3
B) 2
C) 1
D) 0

Key. D
Sol. Equation of normal at $\mathrm{p}(3 \cos \theta, 2 \sin \theta)$ is $3 \mathrm{x} \sec \theta-2 \mathrm{y} \operatorname{cosec} \theta=5$
$\frac{5}{\sqrt{9 \sec ^{2} \theta+4 \operatorname{cosec}^{2} \theta}}=\sqrt{3}$
But Min. of $9 \sec ^{2} \theta+4 \operatorname{cosec}^{2} \theta=25$
\therefore no such θ^{-1} exists.
6. If the ellipse $\frac{x^{2}}{a^{2}-3}+\frac{y^{2}}{a+4}=1$ is inscribed in a square of side length $a \sqrt{2}$ then a is
A) 4
B) 2
C) 1
D) None of these

Key. D
Sol. Sides of the square will be perpendicular tangents to the ellipse so, vertices of the square will lie on director circle. So diameter of director circle is
$2 \sqrt{\left(a^{2}-3\right)+(a+4)}=\sqrt{2 a^{2}+2 a^{2}}$
$2 \sqrt{\mathrm{a}^{2}+\mathrm{a}+1}=2 \mathrm{a} \Rightarrow \mathrm{a}=-1$
But for ellipse $a^{2}>3 \& a>-4$
So a cannot take the value ' -1 '
7. Let ' O ' be the centre of ellipse for which A, B are end points of major axis and C, D are end points of minor axis, F is focus of the ellipse. If in radius of $\triangle O C F$ is ' 1 ' then $|A B| \times|C D|=$
A) 65
B) 52
C) 78
D) 47

Key. A
Sol. $\mathrm{r}=\frac{\Delta}{\mathrm{S}} \Rightarrow \Delta=\mathrm{S}$
$\frac{1}{2}(a e) b=\frac{a e+b+\sqrt{a^{2} e^{2}+b^{2}}}{2}$
$\mathrm{ae}=6 \Rightarrow 6 \mathrm{~b}=6+\mathrm{b}+\sqrt{36+\mathrm{b}^{2}} \Rightarrow \mathrm{~b}=\frac{5}{2}$
$\Rightarrow \mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=\frac{25}{4} \Rightarrow \mathrm{a}^{2}-36=\frac{25}{4} \Rightarrow \mathrm{a}=\frac{13}{2}$
8. If the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ meet the ellipse $\frac{x^{2}}{1}+\frac{y^{2}}{a^{2}}=1$ in four distinct points and $a=b^{2}-10 b+25$, then the value b does not satisfy

1. $(-\infty, 4)$
2. $(4,6)$
3. $(6, \infty)$
4. $[4,6]$

Key. 4
Sol. a > 1
9. The perimeter of a triangle is 20 and the points $(-2,-3)$ and $(-2,3)$ are two of the vertices of it. Then the locus of third vertex is :

1. $\frac{(x-2)^{2}}{49}+\frac{y^{2}}{40}=1$
2. $\frac{(x+2)^{2}}{49}+\frac{y^{2}}{40}=1$
3. $\frac{(x+2)^{2}}{40}+\frac{y^{2}}{49}=1$
4.

$\frac{(x-2)^{2}}{40}+\frac{y^{2}}{49}=1$
Key. 3
Sol. $P A+P B+A B=20$ where $A \& B$ are foci
10. Tangents are drawn from any point on the circle $x^{2}+y^{2}=41$ to the Ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ then the angle between the two tangents is

1. $\frac{\pi}{4}$
2. $\frac{\pi}{3}$
3. $\frac{\pi}{6}$
4. $\frac{\pi}{2}$

Key. 4
Sol. Director circle
11. The area of the parallelogram formed by the tangents at the points whose eccentric angles are $\theta, \theta+\frac{\pi}{2}, \theta+\pi, \theta+\frac{3 \pi}{2}$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is

1. ab
2. 4ab
3. 3ab
4. 2 ab

Key. 2
Sol. Put $\theta=0^{0}$
12. A normal to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the axes in L and M. The perpendiculars to the axes through L and M intersect at P. Then the equation to the locus of P is

1. $a^{2} x^{2}-b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}$
2. $a^{2} x^{2}+b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}$
3. $b^{2} x^{2}-a^{2} y^{2}=\left(a^{2}-b^{2}\right)^{2}$
4. $a^{2} x^{2}+b^{2} y^{2}=\left(a^{2}-b^{2}\right)^{2}$

Key. 4
Sol. $\quad P=\left(x_{1}, y_{1}\right), \frac{x}{x_{1}}+\frac{y}{y_{1}}=1$ Apply normal condition
13. The points of intersection of the two ellipse $x^{2}+2 y^{2}-6 x-12 y+23=0,4 x^{2}+2 y^{2}-20 x-12 y+35=0$

1. Lie on a circle centered at $\left(\frac{8}{3}, 3\right)$ and of radius $\frac{1}{3} \sqrt{\frac{47}{2}}$
2. Lie on a circle centered at $\left(\frac{8}{3},-3\right)$ and of radius $\frac{1}{3} \sqrt{\frac{47}{3}}$
3. Lie on a circle centered at $(8,9)$ and of radius $\frac{1}{3} \sqrt{\frac{47}{2}}$
4. Are not concyclic

Key. 1
Sol. If $\mathrm{S}_{1}=0$ and $\mathrm{S}_{2}=0$ are the equations, Then $\lambda S_{1}+S_{2}=0$ is a second degree curve passing through the points of intersection of $S_{1}=0$ and $S_{2}=0$
$\Rightarrow(\lambda+4) x^{2}+2(\lambda+1) y^{2}-2(3 \lambda+10) x-12(\lambda+1) y+(23 \lambda+35)=0$

For it to be a circle, choose λ such that the coefficients of x^{2} and y^{2} are equal $\therefore \lambda=2$

This gives the equation of the circle as
$6\left(x^{2}+y^{2}\right)-32 x-36 y+81=0\{u \sin g(1)\}$
$\Rightarrow x^{2}+y^{2}-\frac{16}{3} x-6 y+\frac{27}{2}=0$

Its centre is $C\left(\frac{8}{3}, 3\right)$ and radius is
$r=\sqrt{\frac{64}{9}+9-\frac{27}{2}}=\frac{1}{3} \sqrt{\frac{47}{2}}$
14. In a model, it is shown that an arc of a bridge is semi elliptical with major axis horizontal. If the length of the base is 9 m and the highest part of the bridge is 3 m from the horizontal; then the height of the arch, 2 m from the centre of the base is (in meters)

1. $\frac{8}{3}$
2. $\frac{\sqrt{65}}{3}$
3. $\frac{\sqrt{56}}{3}$
4. $\frac{9}{3}$

Key. 2
Sol. Let the equation of the semi elliptical are be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(y>0)$

Length of the major axis $=2 a=9 \Rightarrow a=9 / 2$
So the equation of the arc becomes $\frac{4 x^{2}}{81}+\frac{y^{2}}{9}=1$

If $x=2$, then $y^{2}=\frac{65}{9} \Rightarrow y=\frac{1}{3} \sqrt{65}$
15. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is normal to the circle $x^{2}+y^{2}+4 x+1=0$ then the maximum value of $a b$ is

1. 2
2. 4
3. 6
4. Can n't be found

Key. 2
Sol. A tangent of slope 2 is $y=2 x \pm \sqrt{4 a^{2}+b^{2}}$ this is normal to $x^{2}+y^{2}+4 x+1=0$ then $0=-4 \pm \sqrt{4 a^{2}+b^{2}} \Rightarrow 4 a^{2}+b^{2}=16$ using $A m \geq G M$

$$
a b \leq 4
$$

16. The distance between the polars of the foci of the Ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ w.r.to itself is
17. $\frac{25}{2}$
18. $\frac{25}{9}$
19. $\frac{25}{8}$
20. $\frac{25}{3}$

Key. 1
Sol. $\frac{2 a}{e}$
17. An ellipse passing through origin has its foci at $(5,12)$ and $(24,7)$. Then its eccentricity is

1. $\frac{\sqrt{386}}{38}$
2. $\frac{\sqrt{386}}{39}$
3. $\frac{\sqrt{386}}{47}$
4. $\frac{\sqrt{386}}{51}$

Key. 1
Sol. Conceptual
18. If $e=\frac{\sqrt{3}}{2}$, its length of latusrectum is

1. $\frac{1}{2}$ (length of major axis)
2. $\frac{1}{3}$ (length of major axis)
3. $\frac{1}{4}$ (length of major axis)
4. Length of major axis

Key. 3
Sol. L.L. $R=\frac{2 b^{2}}{a}$
19. Number of normals that can be drawn from the point $(0,0)$ to $3 x^{2}+2 y^{2}=30$ are

1. 2
2. 4
3. 1
4. 3

Key. 2
Sol. It is centre
20. A tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cuts the axes in M and N. Then the least length of $M N$ is

1. $a+b$
2. $a-b$
3. $a^{2}+b^{2}$
4. $a^{2}-b^{2}$

Key. 1
Sol. Standard
21. $p(\theta), D\left(\theta+\frac{\pi}{2}\right)$ are two points on the Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ Then the locus of point of intersection of the two tangents at P and D to the ellipse is

1. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{4}$
2. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=4$
3. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$
4. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2}$

Key. 3
Sol. $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1 \rightarrow 1 \mathrm{eq}$
$\frac{x}{a} \cos \left(\frac{\pi}{2}+\theta\right)+\frac{y}{b} \sin \left(\frac{\pi}{2}+\theta\right)=1 \rightarrow 2 \mathrm{eq}$

Eliminate θ from 1 and 2
22. The abscissae of the points on the ellipse $9 x^{2}+25 y^{2}-18 x-100 y-116=0$ lie between

1. $3,-5$
2. $-4,6$
3. 5, 7
4. 2,5

Key. 2
Sol. $\quad-5 \geq x-1 \leq 5$
23. Tangents to the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ makes angles θ_{1} and θ_{2} with major axis such that $\cot \theta_{1}+\cot \theta_{2}=k$. Then the locus of the point of intersection is

1. $x y=2 k\left(y^{2}+b^{2}\right)$
2. $2 x y=k\left(y^{2}-b^{2}\right)$
3. $4 x y=k\left(y^{2}-b^{2}\right)$
4. $8 x y=k\left(y^{2}-b^{2}\right)$

Key. 2
Sol. Apply sum of the slopes $=\frac{2 x_{1} y_{1}}{x_{1}^{2}-a^{2}}$
24. The equation $\frac{x^{2}}{10-a}+\frac{y^{2}}{4-a}=1$ represents an ellipse if

1. $\mathrm{a}<4$
2. $a>4$
3. $4<a<10$
4. $a>10$

Key. 1
Sol. $10-a>0,4-a>0$
25. The locus of the feet of the perpendiculars drawn from the foci of the ellipse $S=0$ to any tangent to it is

1. a circle
2. an ellipse
3. a hyperbola
4. not a conic

Key. 1
Sol. Standard
26. If the major axis is " n " $(n>1)$ times the minor axis of the ellipse, then eccentricity is

1. $\frac{\sqrt{n-1}}{n}$
2. $\frac{\sqrt{n-1}}{n^{2}}$
3. $\frac{\sqrt{n^{2}-1}}{n^{2}}$
4. $\frac{\sqrt{n^{2}-1}}{n}$

Key. 4
Sol. $\quad 2 \mathrm{a}=\mathrm{n}(2 \mathrm{~b})$
$\Rightarrow n=\frac{a}{b}$
$\therefore e=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}=\sqrt{1-\frac{b^{2}}{a^{2}}}=$
$\sqrt{1-\frac{1}{n^{2}}}=\frac{\sqrt{n^{2}-1}}{n}$
27. If $(\sqrt{3}) b x+a y=2 a b$ is tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then eccentric angle θ is

1. $\frac{\pi}{4}$
2. $\frac{\pi}{6}$
3. $\frac{\pi}{2}$
4. $\frac{\pi}{3}$

Key. 2

Sol. Equation of tangent at a point $(a \cos \theta, b \sin \theta)$ is $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ But, it is the same as $\frac{x}{a} \frac{\sqrt{3}}{2}+\frac{y}{b} \cdot \frac{1}{2}=1$
$\therefore \cos \theta=\frac{\sqrt{3}}{2}, \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$
28. If PSQ is a focal chord of the ellipse $16 x^{2}+25 y^{2}=400$ such that $S P=8$ then the length of $S Q=$

1. 2
2. $\frac{11}{3}$
3. 16
4. 25

Key. 1
Sol. $\frac{1}{S P}+\frac{1}{S Q}=\frac{2 a}{b^{2}}$
29. A man running round a race course notes that the sum of the distances of two flag posts from him is 8 meters. The area of the path he encloses in square meters if the distance between flag posts is 4 is

1. $15 \sqrt{3} \pi$
2. $12 \sqrt{3} \pi$
3. $18 \sqrt{3} \pi$
4. $8 \sqrt{3} \pi$

Key. 4
Sol. \quad Area $=\pi \mathrm{ab}$
30. The locus of point of intersection of the two tangents to the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ which makes an angle 60° with one another is

1. $4\left(x^{2}+y^{2}-a^{2}-b^{2}\right)^{2}=3\left(b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}\right)$
2. $3\left(x^{2}+y^{2}-a^{2}-b^{2}\right)^{2}=4\left(b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}\right)$
3. $3\left(x^{2}+y^{2}-a^{2}-b^{2}\right)^{2}=2\left(b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}\right)$
4. $3\left(x^{2}+y^{2}-a^{2}-b^{2}\right)^{2}=\left(b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}\right)$

Key. 2
Sol. $\operatorname{Tan} \theta=\frac{2 a b \sqrt{S_{11}}}{x_{1}^{2}+y_{1}^{2}-a^{2}-b^{2}}$
31. If the equation of the chord joining the points $P(\theta)$ and $D\left(\theta+\frac{\pi}{2}\right)$ on $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $x \cos \alpha+y \sin \alpha=p$ then $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=$

1. $4 p^{2}$
2. p^{2}
3. $\frac{p^{2}}{2}$
$4.2 p^{2}$

Key. 4
Sol. $\frac{x}{a} \cos \left(\frac{\theta+\theta+\frac{\pi}{2}}{2}\right)+\frac{y}{b} \sin \left(\frac{\theta+\theta+\frac{\pi}{2}}{2}\right)$
$=\cos \left(\frac{\theta-\theta-\frac{\pi}{2}}{2}\right) \rightarrow 1 \mathrm{eq}$
$x \cos \alpha+y \sin \alpha=P \rightarrow 2$ eq
(1) $=(2)$
32. The locus of mid point of chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which passes through the foot of the directrix from focus is

1. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{e x}{a^{2}}$
2. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{x}{a e}$
3. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{x}{a^{2} e}$
4. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{x}{a e^{2}}$

Key. 2
Sol. $\quad \mathrm{s}_{1}=\mathrm{s}_{11}$ passes through $\left(\frac{a}{e}, 0\right)$
33. Consider two points A and B on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, circles are drawn having segments of tangents at A and B in between tangents at the two ends of major axis of ellipse as diameter, then the length of common chord of the circles is
A) 8
B) 6
C) 10
D) $4 \sqrt{2}$

Key. A
Sol. All such circles pass through foci \therefore The common chord is of the length 2 ae $10 \times \frac{4}{5}=8$
34. If ' $C F^{\prime}$ ' is the perpendicular from the centre C of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ on the tangent at any point P and G is the point where the normal at P meets the major axis, then CF.PG is
A) b^{2}
B) $2 b^{2}$
C) $\frac{b^{2}}{2}$
D) $3 b^{2}$

Key. A
Sol. $\mathrm{CF}=\frac{\mathrm{ab}}{\sqrt{\mathrm{a}^{2} \sin ^{2} \theta+\mathrm{b}^{2} \cos ^{2} \theta}} \mathrm{PG}=\frac{\mathrm{b}}{\mathrm{a}} \sqrt{\mathrm{a}^{2} \sin ^{2} \theta+\mathrm{b}^{2} \cos ^{2} \theta}$
35. The line passing through the extremity A of the major axis and extremity B of the minor axis
of the ellipse $x^{2}+9 y^{2}=9$, meets its auxiliary circle at the point M . Then the area of the triangle with vertices at A, M and the origin ' O ' is
A) $\frac{31}{10}$
B) $\frac{29}{10}$
C) $\frac{21}{10}$
D) $\frac{27}{10}$

Key. D
Sol. Equation of given ellipse is $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$
Equation of auxiliary circle is $x^{2}+y^{2}=9$.
Equation of line AB is $\frac{x}{3}+\frac{y}{1}=1 \Rightarrow x=3(1-y)$

Putting this in (1), we get $9(1-y)^{2}+y^{2}=9 \Rightarrow 10 y^{2}-18 y=0 \Rightarrow y=0, \frac{9}{5}$
Thus, y coordinate of ' M ' is $\frac{9}{5}$
$\Delta O A M=\left(\frac{1}{2}\right)(O A)(M N)=\frac{1}{2}(3) \frac{9}{5}=\frac{27}{10}$
36. The normal at an end of a latus rectum of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ passes through an end of the minor axis if
(a) $e^{4}+e^{2}=1$
(b) $e^{3}+e^{2}=1$
(c) $e^{2}+e=1$
(d) $e^{3}+e=1$

Key. A
Sol. Given ellipse equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Let $P\left(a e, \frac{b^{2}}{a}\right)$ be one end of latus rectum.
Slope of normal at $P\left(a e, \frac{b^{2}}{a}\right)=\frac{1}{e}$
Equation of normal is
$y=\frac{b^{2}}{a}=\frac{1}{e}(x-a e)$
It passes through $B^{\prime}(0, b)$ then
$b-\frac{b^{2}}{a}=-a$
$a^{2}-b^{2}=-a b$
$a^{4} e^{4}=a^{2} b^{2}$
$e^{4}+e^{2}=1$
37. From any point P lying in first quadrant on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, $P N$ is drawn perpendicular to the major axis such that N lies on major axis. Now PN is produced to the point Q such that $N Q$ equals to $P S$, where S is a focus. The point Q lies on which of the following lines
(A) $2 y-3 x-25=0$
(B) $3 x+5 y+25=0$
(C) $2 x-5 y-25=0$
(D) $2 x-5 y+25=0$

Key. B

Sol.

$a^{2}=25$
$b^{2}=16$
$e=\sqrt{\frac{25-16}{25}}=\frac{3}{5}$
Let point Q be (h, k), where $\mathrm{K}<0$
Given that $|K|=a+\operatorname{eh}\left(\right.$ as $\left.x_{1}=h\right)$
$-y=a+e x$
$-y=5+\frac{3}{5} x$
$3 x+5 y+25=0$
38. A circle of radius ' r ' is concentric with the Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Then inclination of common tangent with major axis is \qquad ($b<r<a$)

1. $\tan ^{-1}\left(\frac{b}{a}\right)$
2. $\tan ^{-1}\left(\frac{r b}{a}\right)$
3. $\tan ^{-1} \sqrt{\frac{r^{2}-b^{2}}{a^{2}-r^{2}}}$
4. $\frac{\pi}{2}$

Key. 3
Sol. The tangent of Ellipse is $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$, this line touches $x^{2}+y^{2}=r^{2}$
Condition is $\left|\frac{\sqrt{a^{2} m^{2}+b^{2}}}{\sqrt{m^{2}+1}}\right|=r$
$a^{2} m^{2}+b^{2}=r^{2} m^{2}+r^{2}$
$m^{2}\left(a^{2}-r^{2}\right)=r^{2}-b^{2} \Rightarrow m^{2}=\frac{r^{2}-b^{2}}{a^{2}-r^{2}}$

$$
m=\sqrt{\frac{r^{2}-b^{2}}{a^{2}-r^{2}}}
$$

Inclimation is $\tan ^{-1} \sqrt{\frac{r^{2}-b^{2}}{a^{2}-r^{2}}}$
39. A circle cuts the X -axis and Y -axis such that intercept on X -axis is a constant a and intercept on Y-axis is a constant b. Then eccentricity of locus of centre of circle is

1. 1
2. $\frac{1}{2}$
3. $\sqrt{2}$
4. $\frac{1}{\sqrt{2}}$

Key. 3
Sol. Locus of centre of circle is a rectangular hyperbola hence its eccentricity is $\sqrt{2}$
40. Consider two points A and B on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, circles are drawn having segments of tangents at A and B in between tangents at the two ends of major axis of ellipse as diameter, then the length of common chord of the circles is
A) 8
B) 6
C) 10
D) $4 \sqrt{2}$

Key. A
Sol. All such circles pass through foci \therefore The common chord is of the length 2ae

$$
10 \times \frac{4}{5}=8
$$

41. If ' CF ' is the perpendicular from the centre C of the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ on the tangent at any point P and G is the point where the normal at P meets the major axis, then CF.PG is
A) b^{2}
B) $2 b^{2}$
C) $\frac{b^{2}}{2}$
D) $3 b^{2}$

Key. A
Sol. $\mathrm{CF}=\frac{\mathrm{ab}}{\sqrt{\mathrm{a}^{2} \sin ^{2} \theta+\mathrm{b}^{2} \cos ^{2} \theta}} \mathrm{PG}=\frac{\mathrm{b}}{\mathrm{a}} \sqrt{\mathrm{a}^{2} \sin ^{2} \theta+\mathrm{b}^{2} \cos ^{2} \theta}$
42. The line passing through the extremity A of the major axis and extremity B of the minor axis
of the ellipse $x^{2}+9 y^{2}=9$, meets its auxiliary circle at the point M . Then the area of the triangle with vertices at A, M and the origin ' O ' is
A) $\frac{31}{10}$
B) $\frac{29}{10}$
C) $\frac{21}{10}$
D) $\frac{27}{10}$

Key. D
Sol. Equation of given ellipse is $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$
Equation of auxiliary circle is $x^{2}+y^{2}=9$.
Equation of line AB is $\frac{x}{3}+\frac{y}{1}=1 \Rightarrow x=3(1-y)$

Putting this in (1), we get $9(1-y)^{2}+y^{2}=9 \Rightarrow 10 y^{2}-18 y=0 \Rightarrow y=0, \frac{9}{5}$
Thus, y coordinate of ' M ' is $\frac{9}{5}$
$\Delta O A M=\left(\frac{1}{2}\right)(O A)(M N)=\frac{1}{2}(3) \frac{9}{5}=\frac{27}{10}$
43. If $2 x^{2}+y^{2}-24 y+80=0$ then maximum value of $x^{2}+y^{2}$ is
A. 20
B. 40
C. 200
D. 400

Key. D
Sol. Given equation is $2 x^{2}+y^{2}-24 y+80=0$

$$
\begin{aligned}
& 2 x^{2}+(y-12)^{2}=64 \\
& \frac{x^{2}}{32}+\frac{(y-12)^{2}}{64}=1
\end{aligned}
$$

If is an ellipse with center $(0,12)$

If (x, y) is any point on this distance from origin is $\sqrt{x^{2}+y}$
$x^{2}+y^{2}$ is max If $\sqrt{x^{2}+y^{2}}$ is

max
$B^{1}(1, \infty)$ is at max distance from 0

$$
\therefore \max \left(x^{2}+y^{2}\right)=400
$$

44. An ellipse whose foci $(2,4)(14,9)$ touches x-axis then its eccentricity is
A. $\frac{13}{\sqrt{313}}$
B. $\frac{1}{\sqrt{313}}$
C. $\frac{2}{\sqrt{313}}$
D. $\frac{1}{\sqrt{13}}$

Key. A

Sol. Equation of aurally circle $(x-8)^{2}+\left(y-\frac{13}{2}\right)^{2}=a^{2}$
$(2,0)$ lies on it
$36+\frac{169}{4}=a^{2} \Rightarrow \frac{313}{4}=a^{2}$

$$
a=\frac{\sqrt{313}}{2}
$$

But $S S^{\prime}=2 a e$

$$
\sqrt{144+25}=2 a e
$$

$$
13=2 a e
$$

$$
e=\frac{13}{2 a}=\frac{13}{\sqrt{313}}
$$

45. A circle of radius 2 is concentric with the ellipse $\frac{x^{2}}{7}+\frac{y^{2}}{3}=1$ then inclination of common tangent with X -axis
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Key. D
Sol. tangent is $y=m x+\sqrt{7 m^{2}+3}$

$$
\begin{aligned}
& \frac{x^{2}}{7}+\frac{y^{2}}{3}=1 \\
& x^{2}+y^{2}=4
\end{aligned}
$$

It is also touching $x^{2}+y^{2}=4$

$$
\left|\frac{\sqrt{7 m^{2}+3}}{\sqrt{m^{2}+1}}\right|=2
$$

$$
\begin{aligned}
& 7 m^{2}+3=4 m^{2}+4 \\
& m^{2}=\frac{1}{3} \Rightarrow m=\frac{1}{\sqrt{3}} \\
& \therefore \tan \theta=\frac{1}{\sqrt{3}} \\
& \theta=\frac{\pi}{6}
\end{aligned}
$$

46. The points of intersection of two ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$ be at the extremeties of conjugate diameters of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then $\frac{a^{2}}{\alpha^{2}}+\frac{b^{2}}{\beta^{2}}=$
A. 1
B. 2
C. 3
D. 4

Key. B
Sol. Clearly $P(a \cos \theta, b \sin \theta) \quad Q(-a \sin \theta, b \cos \theta)$ are extremities of conjugate diameters of

$$
\text { an ellipse } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

P and Q lies $\mathrm{m} \frac{x^{2}}{\alpha^{2}}+\frac{y^{2}}{\beta^{2}}=1$

$$
\frac{a^{2} \cos ^{2} \theta}{\alpha^{2}}+\frac{b^{2} \sin ^{2} \theta}{\beta^{2}}=1
$$

$$
\frac{a^{2} \sin ^{2} \theta}{\alpha^{2}}+\frac{b^{2} \cos ^{2} \theta}{\beta^{2}}=1
$$

(+) $\frac{a^{2}}{\alpha^{2}}+\frac{b^{2}}{\beta^{2}}=2$
47. From the focus $(-5,0)$ of the ellipse $\frac{x^{2}}{45}+\frac{y^{2}}{20}=1$ a ray of light is sent which makes angle $\cos ^{-1}\left(\frac{-1}{\sqrt{5}}\right)$ with the positive direction of X -axis upon reacting the ellipse the ray is reflected from it. Slope of the reflected ray is
A) $-3 / 2$
B) $-7 / 3$
C) $-5 / 4$
D) $-2 / 11$

Key. D
Sol. Let $\theta=\cos ^{-1}\left(\frac{-1}{\sqrt{5}}\right) \Rightarrow \cos \theta=\frac{-1}{\sqrt{5}} \Rightarrow \tan \theta=-2$
Foci are $(\pm 5,0)$
Equation of line through $(-5,0)$ with slope -2 is $y=-29 x+5)=-2 x-10$
This line meets the ellipse above X-axis at $(-6,2)$
\therefore Slope $=\frac{2-0}{-6-5}=-\frac{2}{11}$.
48. If $f(x)$ is a decreasing function for all $x \in R$ and $f(x)>0 \forall x \in R$ then the range of K so that the equation $\frac{x^{2}}{f\left(K^{2}+2 K+5\right)}+\frac{y^{2}}{f(K+11)}=1$ represents an ellipse whose major axis is the X-axis is
A) $(-2,3)$
B) $(-3,2)$
C) $(-\infty,-3) \cup(2, \infty)$
D) $(-\infty,-2) \cup(3, \infty)$

Key. B
Sol. Conceptual
49. P, Q are points on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ such that $P Q$ is a chord through the point $R(3,0)$. If $|P R|=2$ then length of chord $P Q$ is
A) 8
B) 6
C) 10
D) 4

Key.
Sol. Conceptual
50. Let $Q=(3, \sqrt{5}), R=(7,3 \sqrt{5})$. A point P in the XY-plane varies in such a way that perimeter of $\triangle P Q R$ is 16 . Then the maximum area of $\triangle P Q R$ is
A) 6
B) 12
C) 18
D) 9

Key. B
Sol. P lies on the ellipse for which Q, R are foci and length of major axis is 10 and eccentricity is $3 / 5$.

Ellipse

Integer Answer Type

1. Any ordinate MP of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the auxiliary circle of Q ; then locus of the point of intersection of normals of P and Q to the respective curves is a circle of radius \qquad
Key. 8
Sol. The locus is $x^{2}+y^{2}=64$
2. The distance between the directrices of the ellipse $(4 x-8)^{2}+16 y^{2}=(x+\sqrt{3} y+10)^{2}$ is K then $\frac{K}{2}$ is
Key. 8
Sol. $\quad(x-2)^{2}+y^{2}=\left(\frac{1}{2}\right)^{2} \frac{(x+\sqrt{3} y+10)^{2}}{4}$
$(\mathrm{h}, \mathrm{k})=(\mathrm{z}, 0), \mathrm{e}=1 / 2$
Perpendicular distance from $(2,0)$ to $x+\sqrt{3} y+10=0$ is $\frac{a}{e}-$ ae
$2 \mathrm{a}-\frac{\mathrm{a}}{2}=6 \Rightarrow \mathrm{a}=4$
Distance between directrics $=\frac{2 \mathrm{a}}{\mathrm{e}}=16=\mathrm{K}$
3. A circle concentric to an ellipse $\frac{4 x^{2}}{289}+\frac{4 y^{2}}{\lambda^{2}}=1\left(\lambda<\frac{17}{2}\right)$ passes through foci F_{1} and F_{2} cuts the ellipse at ' P ' such that area of triangle $P F_{1} F_{2}$ is 30 sq.units. If $F_{1} F_{2}=13 K$ where $K \in Z$ then $\mathrm{K}=$
Key.
1
Sol. Since $\mathrm{F}_{1} \& \mathrm{~F}_{2}$ are the ends of the diameter
Area of $\Delta \mathrm{PF}_{1} \mathrm{~F}_{2}=\frac{1}{2}\left(\mathrm{~F}_{1} \mathrm{P}\right)\left(\mathrm{F}_{2} \mathrm{P}\right)=\frac{1}{2} \mathrm{x}(17-\mathrm{x})=30 \Rightarrow \mathrm{x}=5$ or $12 \Rightarrow \mathrm{FF}_{1}=13$
4. If F_{1}, F_{2} are the feeet of the perpndiculars from foci S_{1}, S_{2} of the ellipse $16 x^{2}+25 y^{2}=400$ on the tangent at any point P on the ellipse then minimum value of $S_{1} F_{1}+S_{2} F_{2}$ is

Key. 8

Sol. The minimum perpendiculars from two foci upon any tangent is b^{2}
$S_{1} F_{1} \cdot S_{2} F_{2}=16$
$A M \geq G M \Rightarrow \frac{S_{1} F_{1}+S_{2} F_{2}}{2} \geq \sqrt{S_{1} F_{1} \times S_{2} F_{2}} \Rightarrow S_{1} F_{1}+S_{2} F_{2} \geq 8$
5. The equation of an ellipse is given by $5 x^{2}+5 y^{2}-6 x y-8=0$. If r_{1}, r_{2} are distances of points on the ellipse which are at maximum \& minimum distance from origin then $r_{1}+r_{2}=$

Key. 3
Sol. Any point on ellipse at a distance r from origin is $(r \cos \theta, r \sin \theta)$
$\Rightarrow r^{2}=\frac{8}{5-3 \sin 2 \theta}$ is maximum if $5-3 \sin 2 \theta$ is minimum $\Rightarrow r^{2}=4$
$r^{2} m$ in if $(5-3 \sin 2 \theta)$ is maximum $=8 \Rightarrow r^{2}=1$
$r_{1}+r_{2}=2+1=3$
6. The equation of the curve on reflection of the ellipse $\frac{(x-4)^{2}}{16}+\frac{(y-3)^{2}}{9}=1$ about the line $\mathrm{x}-\mathrm{y}-2=0$ is $16 x^{2}+9 y^{2}+a x-36 y+b=0$ then the value of $a+b-125=$

Key. 7
Sol. Let $\mathrm{P}(4,0) \& \mathrm{Q}(0,3)$ are two points on given ellipse E_{1}
P_{1} and Q_{1} are images of P, Q w.r.to $\mathrm{x}-\mathrm{y}-2=0$
$\therefore P_{1}(2,2) \quad Q_{1}(5,-2)$ lies on E_{2}
$\therefore a=-160, b=292$
7. Number of points on the ellipse $\frac{x^{2}}{50}+\frac{y^{2}}{20}=1$ from which pair of perpendicular tangents are drawn to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is
Key. 4
Sol. Director circle of $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is $x^{2}+y^{2}=25$
The director circle will cut the ellipse $\frac{x^{2}}{50}+\frac{y^{2}}{20}=1$ at 4 points.
8. If L be the length of common tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ and the circle $x^{2}+y^{2}=16$ intercepted by the coordinate axis then $\frac{\sqrt{3} \mathrm{~L}}{2}$ is
Key. 7
Sol. The equation of the tangent at $(5 \cos \theta, 2 \sin \theta)$ is $\frac{x}{5} \cos \theta+\frac{y}{2} \sin \theta=1$
If it is a tangent to the circle then $\frac{1}{\sqrt{\frac{\cos ^{2} \theta}{25}+\frac{\sin ^{2} \theta}{4}}}=4$
$\Rightarrow \cos \theta=\frac{10}{4 \sqrt{7}}, \sin \theta=\frac{\sqrt{3}}{2 \sqrt{7}}$
Let A and B be the points where the tangent meets the coordinate axis then $\mathrm{A}\left(\frac{5}{\cos \theta}, 0\right), \mathrm{B}\left(0, \frac{2}{\sin \theta}\right)$ $L=\sqrt{\frac{25}{\cos ^{2} \theta}+\frac{4}{\sin ^{2} \theta}}=\frac{14}{\sqrt{3}}$
9. An ellipse is sliding along the coordinate axes. If the foci of the ellipse are $(1,1)$ and $(3,3)$ then the area of the director circle of the ellipse is $K \pi$. Then $\mathrm{K}=$ \qquad
Key. 7
Sol. Since axes are tangents, $b^{2}=3$ and $a e=\sqrt{2} \Rightarrow a^{2}-b^{2}=2 \therefore a^{2}=5$
10. Tangents are drawn from points on the line $x-y+2=0$ to the ellipse $x^{2}+2 y^{2}=2$, then all the chords of contact pass through the point whose distance from $\left(2, \frac{1}{2}\right)$ is
Key. 3
Sol. Consider any point $\left(t_{1}, t+2\right), t \in R$ on the line $x-y+2=0$
The chord of contact of ellipse with respect to this point is $x(t)+2 y(t+2)-2=0$

$$
\Rightarrow(4 y-2)+\mathrm{t}(\mathrm{x}+2 \mathrm{y})=0, \mathrm{y}=\frac{1}{2}, \mathrm{x}=-1
$$

Hence, the point is $\left(-1, \frac{1}{2}\right), \quad$ Where distance from $\left(2, \frac{1}{2}\right)$ is 3 .
11. If P and Q are the ends of a pair of conjugate diameters and C is the centre of the ellipse $4 x^{2}+9 y^{2}=36$ then the area of $\triangle C P Q$ in square units.
Key. 3

Sol. $\quad \frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$, so $\mathrm{P}=(3 \cos \theta, 2 \sin \theta)$ and $\mathrm{Q}=\left(3 \cos \left(\frac{\pi}{2}+\theta\right), 2 \sin \left(\frac{\pi}{2}+\theta\right)\right)$
Area of $\Delta \mathrm{CPQ}==\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 3 \cos \theta & 2 \sin \theta & 1 \\ -3 \sin \theta & 2 \cos \theta & 1\end{array}\right|=3$.
12. The maximum distance from the origin to any normal chord drawn to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ is
Key. 3
Sol. The other end of the normal drawn at $\mathrm{P}(\mathrm{t})$ in $Q \underset{\text { ¢ }}{\mathfrak{C}} t-\frac{2 \ddot{\mathrm{O}}}{t} \frac{\ddot{\dot{\Phi}}}{\bar{\varnothing}}$
If A is the vertex, slope of AP slope $A Q=-1$
13. The area of the quadrilateral formed by the tangents at the end point of latus rectum to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is $3 K$. Then K is equal to
Key. 9
Sol. $e=2 / 3$
Equation of tangent at L is $\frac{2 \mathrm{x}}{9}+\frac{\mathrm{y}}{3}=1$ it meets x -axis at $\mathrm{A}\left(\frac{9}{2}, 0\right)$ \& y axis at $\mathrm{B}(0,3)$.
\therefore area $=4\left[\frac{1}{2} \cdot \frac{9}{2} \cdot 3\right]=27$
14. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is normal to the circle $x^{2}+y^{2}+4 x+1=0$, then the maximum value of $a b$ is \qquad
Key. 4
Sol. A tangent of slope 2 is $\mathrm{y}=2 \mathrm{x} \pm \sqrt{4 \mathrm{a}^{2}+\mathrm{b}^{2}} \rightarrow(1)$
This is normal to the circle $x^{2}+y^{2}+4 x+1=0$
i.e., (1) passes through $(-2,0) 4 a^{2}+b^{2}=16$

Using $A M \geq G M \Rightarrow \frac{4 a^{2}+b^{2}}{2} \geq \sqrt{4 a^{2} \cdot b^{2}} \quad a b \leq 4$
15. If a line through $\mathrm{P}(\mathrm{a}, 2)$ meets the ellipse $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$ at A and D and meets the axes at B and C, so that $P A, P B, P C, P D$ are in G.P., then the minimum value of $|a|$,is....
Key. 6

Sol. $\frac{\mathrm{x}-\mathrm{a}}{\cos \theta}=\frac{\mathrm{y}-2}{\sin \theta}=\mathrm{r}(\mathrm{a}+\mathrm{r} \cos \theta, 2+\mathrm{r} \sin \theta)$ lies on ellipse for A and D .

$$
\frac{(\mathrm{a}+\mathrm{r} \cos \theta)^{2}}{9}+\frac{(2+\mathrm{r} \sin \theta)^{2}}{4}=1 \Rightarrow \mathrm{r}_{1} \mathrm{r}_{2}=\mathrm{PA} . \mathrm{PD}
$$

$\mathrm{PA}, \mathrm{PB}, \mathrm{PC}, \mathrm{PD}$ are in G.P PA. $\mathrm{PD}=\mathrm{PB}$. PC . etc.....
16. The number of values of c such that the straight line $y=4 x+c$ touches the curve $x^{2} / 4+y^{2}=1$ is K then $K=$ \qquad
Key. 2
Sol. If $y=m x+c$ is tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ then

$$
\begin{aligned}
& C^{2}=a^{2} m^{2}+b^{2} \\
& y=4 x+c, \quad \frac{x^{2}}{4}+\frac{y^{2}}{1}=1 \\
& C= \pm \sqrt{65}
\end{aligned}
$$

17. Tangent is drawn to ellipse $x^{2} / 27+y^{2}=1$ at $(3 \sqrt{3} \cos \theta, \sin \theta)$ (where $\theta \in(0, \pi / 2)$). Then the value of θ such that sum of intercepts on coordinate axes made by this tangent is least is $\frac{\pi}{K}$ then $\mathrm{K}=$

Key. 6
Sol. $\frac{x^{2}}{27}+\frac{y^{2}}{1}=1, P(3 \sqrt{3} \cos \theta, \sin \theta)$

$$
\frac{3 \sqrt{3} \cos \theta}{27}+\frac{\sin \theta y}{1}=1
$$

$$
A\left(\frac{3 \sqrt{3} \cos \theta}{27}, 0\right), B=\left(0, \frac{1}{\sin \theta}\right)
$$

$$
f(\theta)=3 \sqrt{3} \sec \theta+\operatorname{cosec} \theta
$$

$$
f^{1}(\theta)=\frac{3 \sqrt{3} \sin \theta}{\cos ^{2} \theta}-\frac{\cos \theta}{\sin ^{2} \theta}=0
$$

$$
\Rightarrow \tan ^{3} \theta=\frac{1}{3 \sqrt{3}}=\left(\frac{1}{\sqrt{3}}\right)^{3}
$$

$$
\theta=\frac{\pi}{6}
$$

18. The maximum distance from the origin to any normal chord drawn to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ is
Key. 3

If A is the vertex, slope of $A P$ slope $A Q=-1$
19. The area of the quadrilateral formed by the tangents at the end point of latus rectum to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is $3 K$. Then K is equal to

Key. 9
Sol. $e=2 / 3$
Equation of tangent at L is $\frac{2 \mathrm{x}}{9}+\frac{\mathrm{y}}{3}=1$ it meets x -axis at $\mathrm{A}\left(\frac{9}{2}, 0\right) \& \mathrm{y}$ axis at $\mathrm{B}(0,3)$.
\therefore area $=4\left[\frac{1}{2} \cdot \frac{9}{2} \cdot 3\right]=27$
20. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is normal to the circle $x^{2}+y^{2}+4 x+1=0$, then the maximum value of ab is \qquad
Key. 4
Sol. A tangent of slope 2 is $\mathrm{y}=2 \mathrm{x} \pm \sqrt{4 \mathrm{a}^{2}+\mathrm{b}^{2}} \rightarrow(1)$
This is normal to the circle $x^{2}+y^{2}+4 x+1=0$
i.e., (1) passes through $(-2,0) 4 a^{2}+b^{2}=16$

Using $\mathrm{AM} \geq \mathrm{GM} \Rightarrow \frac{4 \mathrm{a}^{2}+\mathrm{b}^{2}}{2} \geq \sqrt{4 \mathrm{a}^{2} \cdot \mathrm{~b}^{2}} \mathrm{ab} \leq 4$

