Continuity \& Differentiability

Single Correct Answer Type

1. \quad A function $f(x)$ is defined by ,

$$
f(x)=\left\{\begin{array}{l}
\frac{\left[x^{2}\right]-1}{x^{2}-1}, \text { for } x^{2} \neq 1 \\
0 \quad, \text { for } x^{2}=1
\end{array} \quad \text { Where }[.]\right. \text { denotes GIF }
$$

A) Continuous at $X=-1$
B) Discontinuous at $x=1$
C) Differentiable at $X=1$
D) None of these

Key. B

Sol.

$$
f(x)= \begin{cases}\frac{\left[x^{2}\right]-1}{x^{2}-1}, & \text { for } x^{2} \neq 1 \\ 0 & , \text { for } x^{2}=1\end{cases}
$$

$$
=\left\{\begin{array}{cl}
\frac{-1}{x^{2}-1} & \text {, for } 0<x^{2}<1 \\
0 & \text {, for } \\
x^{2}=1 \\
0 & \text {, for } \\
& 1<x^{2}<2
\end{array}\right.
$$

$\therefore \mathrm{RHL}_{\text {at }} \mathrm{x}=1$ is 0
Also LHL at $\mathrm{x}=1$ is ∞
2. If $f(x)=\operatorname{sgn}(x)$ and $g(x)=x\left(1-x^{2}\right)$ then $(f o g)(x)$ is discontinuous at
(A) exactly one point
(B)exactly two points
(C) exactly three points
(D) no point.

Key. C
Sol. Given $f(x)=\operatorname{Sgn} x=\left\{\begin{array}{c}-1 \text { if } x<0 \\ 0 \text { if } x=0 \\ 1 \text { if } x>0\end{array}\right.$
And $g(x)=x\left(1-x^{2}\right)$
Now $\operatorname{fog}(x)=-1$ if $x\left(1-x^{2}\right)<0 \quad$ solving

$$
\begin{aligned}
& =0 \text { if } x\left(1-x^{2}\right)=0, \quad x\left(1-x^{2}\right)<0 \\
& =1 \text { if } x\left(1-x^{2}\right)>0 \quad \text { we have } x \in(-1,0) \cup(1, \infty)
\end{aligned}
$$

$$
\begin{array}{ll}
\therefore f \circ g(x)=-1 \quad & \text { if } x \in(-1,0) \cup(1, \infty) \\
& =0 \text { if } x \in\{-1,0,1\} \\
& =1 \text { if } x \in(-\infty,-1) \cup(0,1)
\end{array}
$$

$\therefore f o g(x)$ is discontinuous at $x=-1,0,1$
3. If $f(x)$ is a polynomial satisfying the relation $f(x)+f(2 x)=5 x^{2}-18$ then $f^{1}(1)$ is equal to (A) 1
(B) 3
(C) cannot be found since degree of $f(x)$ is not given
(D) 2

Key. D
Sol. Let $f(x)=a x^{2}+b x+c$ (By hypothesis)
$f(x)+f(2 x)=5 x^{2}-8$
$\Rightarrow f(x)=x^{2}-9 \therefore f^{1}(1)=2$.
4. Let ' f ' be a real valued function defined on the interval $(-1,1)$ such that $e^{-x} . f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} d t \quad \forall x \in(-1,1)$ and let ' g ' be the inverse function of ' f '.
Then $g^{1}(2)=$ \qquad
(A) 3
(B) $1 / 2$
(C) $1 / 3$
(D) 2

Key. C
Sol. Differentiating given equation we get

$$
e^{-x} \cdot f^{1}(x)-e^{-x} \cdot f(x)=\sqrt{1+x^{4}}
$$

Since $(g$ of $)(x)=x . a s^{\prime} \underline{g}^{\prime}$ is inverse of f .

$$
\begin{aligned}
& \Rightarrow g[f(x)]=x \\
& \Rightarrow g^{1}[f(x)] \cdot f^{1}(x)=1 \\
& \Rightarrow g^{1}[f(0)]=\frac{1}{f^{1}(0)} \\
& \Rightarrow g^{1}(2)=\frac{1}{f^{1}(0)}
\end{aligned}
$$

(Here $f(0)=2$ observe from hypothesis)
Put $x=0$ in (1) we get

$$
f^{1}(0)=3 .
$$

5. If $y=f(x)$ represents a straight line passing through origin and not passing through any of the points with integral Co-ordinates in the co-ordinate plane. Then the number of such continuous functions on ' R ' is \qquad (it is known that straight line represents a function)
(A) 0
(B) finite
(C) infinite
(D) at most one

Key. C
Sol. $\quad \exists$ infinitely many continuous functions of the form $f(x)=m x$. When m is Irrational, and when slope is irrational the line obviously will not pass through any of the pts in the Co-ordinate plane with integral Co-ordinates. We know a straight line is always continuous.
6. If a function $y=\phi(x)$ is defined on $[a, b]$ and $\phi(a) \phi(b)<0$ then
(A) \exists no $c \in(a, b)$ such that $\phi(c)=0$ if and only if ' ϕ ' is continuous
(B) \exists a function $\phi(x)$ differentiable on $R-\{0\}$ satisfying the given hypothesis
(C) If $\phi(c)=0$ satisfying the given hypothesis then $\phi(x)$ must be discontinuous
(D) None of these

Key. B
Sol. Consider the function $\phi(x)=\left\{\begin{array}{lll}\frac{1}{x}, & \text { if } & x \neq 0 \\ 1, & \text { if } & x=0\end{array}\right.$ defined on $[-1,1]$, clearly $\phi(-1) \times \phi(1)<0$, and $\phi(x)$ is differentiable on $R 1\{0\}$

But there is no point $c \in[-1,1] \ni \phi(c)=0$.
7. Let $f: R \rightarrow R$ be a differentiable function satisfying $f(y) f(x-y)=f(x) \forall x, y \in R$ and $f^{1}(0)=p, f^{1}(5)=q$ then $f(5)$ is
A. p^{2} / q
B. p / q
C. q / p
D. q

Key. C
Sol. $\quad y=0 \Rightarrow f(0)=1$ and $x=0 \Rightarrow f(-y)=\frac{1}{f(y)}$.
Hence $\quad f(x+y)=f(x) f(y) f^{1}(x)==_{h \rightarrow 0}^{\operatorname{Lim}} \frac{f(x+h)-f(x)}{h}=f(x)_{h \rightarrow 0}^{L t} \frac{f(x)-1}{h}=f(x) . f^{1}(0)=p f(x)$ put $x=5 \quad f(5)=\frac{q}{p}$
8. If both $f(x)$ and $g(x)$ are differentiable functions at $x=x_{0}$, then the function defined as $h(x)=$ maximum $\{\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})\}$:
(A) is always differentiable at $\mathrm{x}=\mathrm{x}_{0}$
(B) is never differentiable at $\mathrm{x}=\mathrm{x}_{0}$
(C) is differentiable at $\mathrm{x}=\mathrm{x}_{0}$ provided $\mathrm{f}\left(\mathrm{x}_{0}\right) \neq \mathrm{g}\left(\mathrm{x}_{0}\right)$
(D) cannot be differentiable at $x=x_{0}$ if $f\left(x_{0}\right) \neq g\left(x_{0}\right)$

Key. C

Sol. Consider the graph of $f(x)=\max (\sin x, \cos x)$, which is non-differentiable at $x=\pi / 4$, hence statement (A) is false. From the graph $y=f(x)$ is differentiable at $x=\pi / 2$, hence statement (B) is false.

Statement (C) is false
Statement (D) is false as consider $g(x)=\max \left(x, x^{2}\right)$ at $x=0$, for which $x=x^{2}$ at $x=0$, but $f(x)$ is differentiable at $x=0$.

9. $f(x)=\left(\tan \left(\frac{\pi}{4}+x\right)\right)^{\frac{1}{x}}$ if $\left.\quad x \neq 0\right\}$ is continuous at $\mathrm{x}=0$ then value of λ is

$$
=\lambda \quad \text { if } \quad x=0
$$

1) 1
2) e
3) e^{2}
4) 0

Key. 3
Sol. $\lambda=\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{x}}=\frac{e}{e^{-1}}=e^{2}$
10. $\quad f(x)=\frac{1}{q}$ If $x=\frac{p}{q}$ where p and q are integer and $q \neq 0$, G.C.D of $(\mathrm{p}, \mathrm{q})=1$ and $f(x)=0$

If x is irrational then set of continuous points of $f(x)$ is

1) all real numbers $\quad 2$) all rational numbers 3) all irrational number 4) all integers

Key. 3
Sol. Let $x=\frac{p}{q}$
$f(x)=\frac{1}{q}$
When $x \rightarrow \frac{p}{q} \quad f(x)=0$ for every irrational number $\in \operatorname{nbd}(p / q)$

$$
=\frac{1}{n} \text { if } n=\frac{m}{n} \in n b d(p / q)
$$

$$
\frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { since }
$$

There ∞ - number of rational $\in \operatorname{nbd}(p / q)$
$\therefore \lim _{x \rightarrow \frac{p}{q}} f(x)=0$ but $f\left(\frac{p}{q}\right)=\frac{1}{q} \neq 0$
Discontinuous at every rational

If $x=\alpha$ is irrational $\Rightarrow f(\alpha)=0$
Now $\lim _{x \rightarrow \alpha} f(x)$ is also 0
\therefore continuous for every irrational α
11. $f(x)=\max \{3-x, 3+x, 6\}$ is differentiable at
A) All points
B) No point
C) All points except two
D) All points expect at one point

Key. C
Sol.

$$
f(x)=\left\{\begin{array}{cc}
3-x & x<-3 \\
6 & -3 \leq x \leq 3 \\
3+x & x>3
\end{array}\right.
$$

Since these expressions are linear function in x or a constant
It is clearly differentiable at all points except at the border points at -3 and 3
At $x=-3, L H D=-1, R H D=0$
At $x=3, L H D=0, R H D=1$
\therefore At $x=-3$ and $\mathrm{x}=3$ it is not differentiable
12. If ([.] denotes the greatest integer function) then $f^{(x)}$ is
A) continuous and non-differentiable at $\mathrm{x}=-1$ and $\mathrm{x}=1$
B) continuous and differentiable at $\mathrm{x}=0$
C) discontinuous at $\mathrm{x}=1 / 2$
D) continuous but not differentiable at

$$
x=2
$$

Key. C
Sol.

$$
\mathrm{f}(\mathrm{x})= \begin{cases}-1 & , \frac{1}{2}<\mathrm{x}<1 \\ 0 & , 0<\mathrm{x} \leq \frac{1}{2} \\ 1 & , \mathrm{x}=0 \\ 0 & ,-\frac{1}{2} \leq \mathrm{x}<0 \\ -1 & ,-\frac{3}{2}<\mathrm{x}<-\frac{1}{2} \\ 2-\mathrm{x} & , 1 \leq \mathrm{x}<2 \quad \text { clearly discontinuous at } \mathrm{x}=\frac{1}{2}\end{cases}
$$

13. A function $f(x)$ is defined by,
$f(x)= \begin{cases}\frac{\left[x^{2}\right]-1}{x^{2}-1}, & \text { for } x^{2} \neq 1 \\ 0 & \text {, wher } x^{2}=1\end{cases}$
A) Continuous at $\mathrm{X}=-1$
B) Discontinuous at $\mathrm{X}=1$
C) Differentiable at $X=1$
D) None of these

Key. B
Sol.

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{\left[x^{2}\right]-1}{x^{2}-1}, & \text { for } x^{2} \neq 1 \\
0 & \text { for } x^{2}=1\end{cases} \\
& = \begin{cases}\frac{-1}{x^{2}-1}, & \text { for } 0<x^{2}<1 \\
0 & \text { for } x^{2}=1 \\
0 & \text { for } 1<x^{2}<2\end{cases}
\end{aligned}
$$

$\mathrm{RHL}^{\text {at }} \mathrm{x}=1$ is 0
Also LHL at $x=1$ is ∞
14.
$f(x)=\frac{\sin 2 \pi\left[\pi^{2} x\right]}{5+\left[x^{2}\right]}$. Where $[$.] denotes the greatest integer function then $f(x)$ is
A) Continuous
B) Discontinuous
C) $f^{\prime}(x)$ exist but $f^{\prime \prime}(x)$ does not exist
D) $f^{\prime}(x)$ is not differentiable

Key. A

$\Rightarrow \mathrm{f}(\mathrm{x})$ is constant function
$\Rightarrow \mathrm{f}(\mathrm{x})$ is continuous and differentiable any number of times
15. The no. of points of discontinuous of $g(x)=f(f(x))_{\text {where }} f(x)$ is
defined as, $f(x)=\left\{\begin{array}{l}1+x, 0 \leq x \leq 2 \\ 3-x, 2<x \leq 3\end{array}\right.$
A) 0
B) 1
C) 2
D) >2

Key. C
Sol.

$$
g(x)=\left\{\begin{array}{l}
2+x, 0 \leq x \leq 1 \\
2-x, 1<x \leq 2 \\
4-x, 2<x \leq 3
\end{array}\right.
$$

16.

Let $f(x)=\left\{\begin{array}{cc}x^{n} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$
then $f(x)$ is continuous but not differentiable at $x=0$, if
A) $n \in(0,1]$
B) $n \in[1, \infty)$
C) $n \in(-\infty, 0)$
D) $\mathrm{n}=0$

Key. A
Sol.

$$
\begin{align*}
& \text { R.H.L }=\lim _{x \rightarrow 0^{+}} f(x) \\
& =\lim _{h \rightarrow 0} f(0+h) \\
& =\lim _{h \rightarrow 0} h^{n} \cdot \sin \left(\frac{1}{h}\right) \\
& =0^{n} \cdot \sin (\infty) \\
& =0^{n} \cdot\{-1 \text { to } 1\} \\
& \because V \cdot F=f(0)=0 \\
& \therefore n>0 \ldots \ldots \ldots(1) \tag{1}\\
& R f^{I}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& \lim _{h \rightarrow 0} \frac{h^{n} \sin \left(\frac{1}{h}\right)-0}{h} \\
& \lim _{h \rightarrow 0} h^{n-1} \sin \left(\frac{1}{h}\right)=0^{n-1}(-1 \text { to } 1)
\end{align*}
$$

For not differentiable
$\mathrm{n}-1 \leq 0$
$\mathrm{n} \leq 1$.
From equation 1 and 2
$0<\mathrm{n} \leq 1$
$\mathrm{n} \in(0,1]$
17. The function $f(x)$ is defined as

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{|x|},|x|>2 \\
a+b x^{2},|x| \leq 2 \text { where } a \text { and } b \text { are }
\end{array}\right.
$$

constants. Then which one of the following is true?
A) f is differentiable at $x=-2$ if and only if $a=3 / 4, b=-1 / 16$
B) f is differentiable at $x=-2$ whatever be
the values of a and b
C)
f is differentiable at $\mathrm{x}=-2$ if $\quad b=-\frac{1}{16}$, whatever be the values of a
D)
f is differentiable $\mathrm{x}=-2$ if $\quad b=\frac{1}{16}$, whatever be the values of a.
Key. A

Sol. Conceptual

18.

Total number of points belonging to $(0,2 \pi)$ where
$f(x)=\min \{\sin x, \cos x, 1-\sin x\}$ is not differentiable
A) 2
B) 3
C) 4
D) 5

Key. B
Sol. By figure it is clear

$$
x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{4} \text { are }
$$

The points where $f(x)$ is not differentiable

19.

Where [.] is G.I.F. If $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$ then $\beta-\alpha$ equal to
A) 1
B) -1
C) 2
D) -2

Key. A
Sol. Conceptual

$$
\begin{aligned}
& \operatorname{RHL}(x=0)=\alpha+0=\alpha \\
& \frac{\sin x-x}{x^{3}}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-x}{x^{3}}=\frac{-1}{3!}+\frac{x^{2}}{5!}-. \\
& \lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=\frac{-1}{6} \\
& L H L=\beta-1
\end{aligned}
$$

20.

Given $f(x)=\left\{\begin{array}{cc}x^{2} e^{2(x-1)} & 0 \leq x \leq 1 \\ a \cos (2 x-2)+b x^{2} & 1<x \leq 2\end{array}\right.$
$f(x)$ is differentiable at $x=1$ provided
A) $a=-1, b=2$
B) $a=1, b=-2$
C) $a=-3, b=4$
D) $a=3, b=-4$

Key. A
Sol. $\mathrm{f}(1+0)=\mathrm{f}(1-0) \Rightarrow \mathrm{a}+\mathrm{b}=1$

$$
\begin{aligned}
& f^{1}(x)= \begin{cases}2 x^{2} e^{2(x-1)}+e^{2(x-1)} \cdot 2 x & 0<x<1 \\
-2 a \sin (2 x-2)+2 b x & 1<x<2\end{cases} \\
& f^{1}(1-0)=f^{1}(1+0) \Rightarrow 4=2 b \\
& \Rightarrow b=2, a=-1
\end{aligned}
$$

21.

The function $f(x)=\frac{x}{1+|x|}$ is differentiable in
A) R
B) $R-\{0\}$
C) $[0, \infty)$
D) $(0, \infty)$

Key. A
Sol. The function $f(x)$ is an odd function with Range $(-1,1) \Rightarrow$ it is differentiable every where

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{1}{1+|x|}=1
$$

22.

The domain of the derivative of the function $\quad \frac{1}{2}(|x|-1)$ if $|x|>1$ is
A) $\mathrm{R}-\{0\}$
B) $\mathrm{R}-\{1\}$
C) $\mathrm{R}-\{-1\}$
D) $\mathrm{R}-\{-1,1\}$

Key. D

Sol. The given function is $f(x)= \begin{cases}\tan ^{-1} x & \text { if }|x| \leq 1 \\ \frac{1}{2}(|x|-1) & \text { if }|x|>1\end{cases}$
$\Rightarrow f(x)=\left\{\begin{array}{ccc}\frac{1}{2}(-x-1) & \text { if } & x<-1 \\ \tan ^{-1} x & \text { if } & -1 \leq x \leq 1 \\ \frac{1}{2}(x-1) & \text { if } & x>1\end{array}\right.$
Clearly L.H.L at $(\mathrm{x}=-1)=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}(-1-\mathrm{h})$
R.H.L at $(x=-1)=\lim _{h \rightarrow 0} f(-1+h)=\lim _{h \rightarrow 0} \tan ^{-1}(-1+h)=-\pi / 4$
\therefore L.H.L \neq R.H.L at $\mathrm{x}=-1$
$\therefore \mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=-1$
Also we can prove in the same way, that $f(x)$ is discontinuous at $x=1$
$\therefore f(x)$ can not be found for $x= \pm 1$ or domain of $f^{\prime}(x)=R-(-1,1)$
23. If $f(x)=\frac{[x]}{|x|}, x \neq 0$ where [.] denotes the G.I.F then $f^{\prime}(1)$ is
A) -1
B) 1
C) ∞
D) Does not exist

Key. D

Sol.

$$
f(x)=\frac{[x]}{|x|}= \begin{cases}0, & 0<x<1 \\ 1, & 1 \leq x<2\end{cases}
$$

$$
\lim _{x \rightarrow 1^{-}} f(x)=0, \lim _{x \rightarrow 1^{+}} f(x)=1
$$

$\therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=1$
$f(x)$ is not differentiable at $x=1$
(1) does not exist
24.

If $\mathrm{f}(\mathrm{x})=\sin ^{\sin \left\{\frac{\pi}{3}[x]-x^{2}\right\}}$ for $2<\mathrm{x}<3$ and $\left([\mathrm{x}]\right.$ denotes the G.I.F) then $f^{\prime}\left(\sqrt{\frac{\pi}{3}}\right)_{\text {is }}$
A) $\sqrt{\frac{\pi}{3}}$
B) $-\sqrt{\frac{\pi}{3}}$
C) $-\sqrt{\pi}$
D)
$\sqrt{\pi}$

Key. B

Sol. For $2<x<3$, we have $[x]=2$

$$
\begin{aligned}
& \therefore f(x)=\sin \left(\frac{2 \pi}{3}-x^{2}\right) \\
& f^{1}(x)=-2 x \cos \left(\frac{2 \pi}{3}-x^{2}\right) \\
& f^{1}\left(\sqrt{\frac{\pi}{3}}\right)=-2 \sqrt{\frac{\pi}{3}} \cos \left(\frac{2 \pi}{3}-\frac{\pi}{3}\right) \\
& =-\sqrt{\frac{\pi}{3}}
\end{aligned}
$$

25.

The derivation of $f(\tan x)_{\text {with respect to }} g(\sec x)_{\text {at }} \quad x=\frac{\pi}{4}$. If $f^{\prime}(1)=2, g^{\prime}(\sqrt{2})=4$
A) $\frac{1}{\sqrt{2}}$
B) $\sqrt{2}$
C) $\frac{1}{2}$
D) 1

Key. A
Sol. Let $u=f(\tan x)$

$$
\begin{aligned}
& \frac{d u}{d x}=f^{\prime}(\tan x) \cdot \sec ^{2} x \\
& v=g(\sec x) \\
& \frac{d v}{d x}=g^{\prime}(\sec x) \cdot \sec x \tan x \\
& \text { Now }\left(\frac{d u}{d v}\right)=\frac{f^{\prime}(\tan x) \cdot \sec ^{2} x}{g^{\prime}(\sec x) \cdot \sec x \tan x}=\frac{f^{\prime}(1) 2}{g^{\prime}(\sqrt{2}) \cdot \sqrt{2}}=\frac{2 \cdot 2}{4 \cdot \sqrt{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

26.

$$
\begin{aligned}
& \text { If } y=\tan ^{-1} \frac{1}{x^{2}+x+1}+\tan ^{-1} \frac{1}{x^{2}+3 x+3}+\tan ^{-1} \frac{1}{x^{2}+5 x+7}+\ldots \text { nterms } \frac{d y}{d x}= \\
& \begin{array}{llll}
\text { A) } \frac{1}{1+(x+n)^{2}}-\frac{1}{1+x^{2}} & \text { B) } \frac{1}{1+(x+n)^{2}}+\frac{1}{1+x^{2}} & \text { C) } \frac{1}{1-(x+n)^{2}}-\frac{1}{1+x^{2}} & \text { D) } \frac{1}{1-(x+n)^{2}}+\frac{1}{1+x^{2}}
\end{array}
\end{aligned}
$$

Key. A
Sol. $y=\tan ^{-1} \frac{1}{x^{2}+x+1}+\tan ^{-1} \frac{1}{x^{2}+3 x+3}+\tan ^{-1} \frac{1}{x^{2}+5 x+7}+\ldots$ nterms

$$
\left.\left.\begin{array}{l}
\left.\begin{array}{rl}
y= & \tan ^{-1}\left(\frac{(x+1)-x}{1+x(x+1)}\right)
\end{array}\right)+\tan ^{-1}\left(\frac{(x+2)-(x+1)}{1+(x+1)(x+2)}\right) \\
\\
+\tan ^{-1}\left(\frac{(x+3)-(x+2)}{1+(x+2)(x+3)}\right)+\ldots+\tan ^{-1}\left(\frac{(x+n)-(x+n-1)}{1+(x+n)(x+n-1)}\right)
\end{array}\right) . \begin{array}{rl}
y=\tan ^{-1}(x+1)-\tan ^{-1} x+\tan ^{-1}(x+2)-\tan ^{-1}(x+1)+ \\
\tan ^{-1}(x+3)-\tan ^{-1}(x+2)+\ldots .+\tan ^{-1}(x+n)-\tan ^{-1}(x+n-1)
\end{array}\right] \begin{aligned}
& y=\tan ^{-1}(x+n)-\tan ^{-1} x \Rightarrow \frac{d y}{d x}=\frac{1}{1+(x+n)^{2}}-\frac{1}{1+x^{2}}
\end{aligned}
$$

27.

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}[\mathrm{x}]$, (where [.] denotes the G.I.F). If x is not an integer, then $f^{\prime}(x)$ is
A) $2 x$
B) x
C) $[x]$
D) $3 x$

Key. C
Sol. $f(x)=x[x]$

$$
f^{\prime}(x)=[x]
$$

28.

Number of points at which the function $\quad \min \cdot\left(2 x-1, x^{2}\right)$ if $x \geq 1$ is not derivable is
A) 0
B) 1
C) 2
D) 3

Key. C
Sol.

29.

Given $f(x)=\left\{\begin{array}{cc}x^{2} e^{2(x-1)} & 0 \leq x \leq 1 \\ a \cos (2 x-2)+b x^{2} & 1<x \leq 2\end{array}\right.$
$f(x)$ is differentiable at $x=1$ provided
A) $a=-1, b=2$
B) $a=1, b=-2$
C) $a=-3, b=4$
D) $a=3, b=-4$

Key. A
Sol. $\quad \mathrm{f}(1+0)=\mathrm{f}(1-0) \Rightarrow \mathrm{a}+\mathrm{b}=1$

$$
\begin{aligned}
& \mathrm{f}^{1}(\mathrm{x})= \begin{cases}2 \mathrm{x}^{2} \mathrm{e}^{2(\mathrm{x}-1)}+\mathrm{e}^{2(\mathrm{x}-1)} \cdot 2 \mathrm{x} & 0<\mathrm{x}<1 \\
-2 \mathrm{a} \sin (2 \mathrm{x}-2)+2 \mathrm{bx} & 1<\mathrm{x}<2\end{cases} \\
& \mathrm{f}^{1}(1-0)=\mathrm{f}^{1}(1+0) \Rightarrow 4=2 \mathrm{~b} \\
& \Rightarrow \mathrm{~b}=2, \mathrm{a}=-1
\end{aligned}
$$

30.

$$
f(x)=\frac{x}{1+|x|} \text { is differentiable in }
$$

The function
A) R
B) $R-\{0\}$
C) $[0, \infty)$
D) $(0, \infty)$

Key. A
Sol. The function $f(x)$ is an odd function with Range $(-1,1) \Rightarrow$ it is differentiable every where

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{1}{1+|x|}=1
$$

31.

The value of $\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots \ldots a_{n}^{1 / x}}{n}\right)^{n x}$ is
A) $a_{1}+a_{2}+\ldots \ldots+a_{n}$
B) $e^{a_{1}+a_{2}+\ldots \ldots+a_{n}}$
C) $\frac{a_{1}+a_{2}+\ldots .+a_{n}}{n}$
D) $a_{1} a_{2} \ldots a_{n}$

Key.

```
        D
```

Sol. Let $x=\frac{1}{y}$. Then, $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow 0$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots .+a_{n}^{1 / x}}{n}\right)^{\mathrm{nx}} \\
& =\lim _{\mathrm{y} \rightarrow 0}\left(\frac{a_{1}^{y}+a_{2}^{y}+\ldots+a_{n}^{y}}{n}\right)^{\mathrm{n} / \mathrm{y}}=1^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{e}^{\lim _{\mathrm{y} \rightarrow 0}\left(\frac{1+a_{1}^{y}+a_{2}^{y}+\ldots .+a_{n}^{y}-n}{n}\right)^{\mathrm{n} / \mathrm{y}}} \\
& \left.=e^{\lim _{y \rightarrow 0} \frac{n}{y}\left(\frac{a_{1}^{y}+a_{2}+\ldots+a_{n}}{n}-1\right.}\right) \\
& \lim _{y \rightarrow 0}\left(\frac{a_{1}^{y}-1}{y}+\frac{a_{2}-1}{y}+\ldots \ldots+\frac{a_{n}-1}{y}\right) \\
& =\mathrm{e} \\
& { }^{\log a_{1}}+\log a_{2}+\log a_{3} \ldots \ldots+\log a_{n} \\
& =e \\
& =e^{\log \left(a_{1} \cdot a_{2} \cdot a_{3} \cdots \cdots \cdots a_{n}\right)}=\left(a_{1} a_{2} a_{3} \cdots \cdots a_{n}\right)
\end{aligned}
$$

32.

$$
\text { If } f(x)=\frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)} \text {, then } \lim _{x \rightarrow 2} f(x) \text { is given by }
$$

A) -2
B) -1
C) 0
D) 1

Key. D

Sol.

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left[\frac{\sin \left(e^{x-2}-1\right)}{e^{x-2}-1} \frac{e^{x-2}-1}{1} \cdot \frac{x-2}{\log (1+(x-2))}\right] \\
& =1 \cdot 1 \cdot 1=1
\end{aligned}
$$

33.

The value of
$\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})$
is
A) 0
B) $\frac{1}{2}$
C) $\frac{1}{4}$
D) 1

Key. B
Sol. $\quad \lim _{x \rightarrow \infty} \sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{\sqrt{x^{3}}}}}+1}=\frac{\sqrt{1+0}}{\sqrt{1+0+0}+1}=\frac{1}{2}
\end{aligned}
$$

34. Let $f(x, y)$ be a periodic function satisfying the condition $f(x, y)=f(2 x+2 y, 2 y-2 x)$ for all $x, y \in R$ and let $g(x)=f\left(2^{x}, 0\right)$. Then the period of $g(x)$ is
A) 2
B) 6
C) 12
D) 24

Key. C
Sol. $\quad f(x, y)=f(2 x+2 y, 2 y-2 x)$

$$
\begin{align*}
& =f(2(2 x+2 y)+2(2 y-2 x), 2(2 y-2 x)-2(2 x+2 y)) \tag{1}\\
& =f(8 y,-8 x) \ldots \ldots . .(2) \tag{2}\\
& f(8 y,-8 x)=f(-64 x,-64 y) \tag{3}\\
& f(-64 x,-64 y)=f\left(2^{12} x, 2^{12} y\right)
\end{align*}
$$

Replace $x_{\text {by }} 2^{x}$
$f(x, 0)=f\left(2^{12} x, 0\right)=f\left(2^{x+12}, 0\right)$
$g(x)=g(x+12)$
35.

The fundamental period of the function $\left.f(x)=\left|\sin \frac{x}{2}\right|+|\cos | x \right\rvert\,$ is
A) 2π
B)
C) 4π
D) $\frac{\pi}{2}$

Key. A
Sol. The fundamental period of $\left|\sin \frac{x}{2}\right|_{\text {is }} 2 \pi$ and that of $|\cos | x \|_{\text {is }} \pi$. L.C.M of $\pi_{\text {and } 2} \pi$ is 2π So fundamental period of $f(x)$ is 2π
36. If $\cos x=\tan y, \cos y=\tan z, \cos z=\tan x$ then the value of $\sin x$ is
A) $\sin 36^{\circ}$
B) $\cos 36^{\circ}$
C) $2 \sin 18^{\circ}$
D) $2 \cos 18^{\circ}$

Key. C
Sol. $\quad \cos x=\tan y \Rightarrow \cos ^{2} x=\tan ^{2} y$

$$
\begin{aligned}
& =\sec ^{2} y-1=\cot ^{2} z-1=\operatorname{cosec}^{2} z-2=\frac{1}{1-\cos ^{2} z}-2=\frac{1}{1-\tan ^{2} x}-2 \\
& =\frac{2 \tan ^{2} x-1}{1-\tan ^{2} x} \\
& \Rightarrow \cos ^{2} x=\frac{2 \sin ^{2} x-\cos ^{2} x}{\cos ^{2} x-\sin ^{2} x} \Rightarrow 1-\sin ^{2} x=\frac{3 \sin ^{2} x-1}{1-2 \sin ^{2} x} \\
& \Rightarrow 1-2 \sin ^{2} x-\sin ^{2} x+2 \sin ^{4} x=3 \sin ^{2} x-1 \\
& \Rightarrow 2 \sin ^{4} x-6 \sin ^{2} x+2=0 \\
& \Rightarrow \sin ^{4} x-3 \sin ^{2} x+1=0
\end{aligned}
$$

$$
\sin x=\frac{\sqrt{5}-1}{2}=2 \sin 18^{0}
$$

37. Define $f:[0, \pi] \rightarrow R$ by
$f(x)=\left\{\begin{array}{ll}\tan ^{2} x\left[\sqrt{2 \sin ^{2} x+3 \sin x+4}-\sqrt{\sin ^{2} x+6 \sin x+2}\right] & , x \neq \pi / 2 \\ k & , x=\pi / 2\end{array}\right.$ is continuous at
$\mathrm{x}=\frac{\pi}{2}$, then $\mathrm{k}=$
A) $\frac{1}{12}$
B) $\frac{1}{6}$
C) $\frac{1}{24}$
D) $\frac{1}{32}$

Key. A
Sol. Let $\sin \mathrm{x}=\mathrm{t}$ and evaluate $\lim _{\mathrm{t} \rightarrow 1} \frac{\mathrm{t}^{2}}{1-\mathrm{t}^{2}}\left[\sqrt{2 \mathrm{t}^{2}+3 \mathrm{t}+4}-\sqrt{\mathrm{t}^{2}+6 \mathrm{t}+2}\right]$ by rationalization
38. Let $\mid a_{1} \sin x+a_{2} \sin 2 x+$ \qquad .$+a_{8} \sin 8 x|\leq|\sin x|$ for $\mathrm{x} \in \mathrm{R}$
Define $\mathrm{P}=\mathrm{a}_{1}+2 \mathrm{a}_{2}+3 \mathrm{a}_{3}+\ldots+8 \mathrm{a}_{8}$. Then P satisfies
A) $|\mathrm{P}| \leq 1$
B) $|\mathrm{P}|<1$
C) $|\mathrm{P}|>1$
D) $|\mathrm{P}| \geq 1$

Key. A
Sol. $f(x)=a_{1} \sin x+a_{2} \sin 2 x+$ \qquad ${ }^{+} a_{8} \sin 8 x$
$\left|a_{1}+2 a_{2}+\ldots \ldots . .+8 a_{8}\right|=\left|f^{\prime}(0)\right|=\lim _{x \rightarrow 0}\left|\frac{f(x)-0}{x}\right|$

$$
\begin{aligned}
& =x_{x \rightarrow 0}\left|\frac{f(x)}{\sin x}\right|\left|\frac{\sin x}{x}\right| \\
& =\lim _{x \rightarrow 0}\left|\frac{f(x)}{\sin x}\right| \leq 1 \\
& |p| \leq 1
\end{aligned}
$$

39. If $f(x)=\left\{\begin{array}{cl}a+\frac{\sin [x]}{x}, & x>0 \\ 2, & x=0 \text { (where [.] denotes the greatest integer function). If } f(x) \text { is } \\ b+\left[\frac{\sin x-x}{x^{3}}\right], & x<0\end{array}\right.$
continuous at $x=0$, then b is equal to
A. $a-1$
B. $a+1$
C. $a+2$
D. $a-2$

Key. B
Sol. $\quad f(0+)={ }_{x \rightarrow 0}^{\operatorname{Lim}} a+\frac{\sin [x]}{x}=a$
since $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=\frac{-1}{6}$; we get $f(0-)=b-1$
Hence $b=a+1$
40. If $f(x)$ is a continuous function $\forall x \in R$ and the range of $f(x)=(2, \sqrt{26})$ and $g(x)=\left[\frac{f(x)}{a}\right]$ is continuous $\forall x \in R$ (where [.] denotes the greatest integral function). Then the least positive integral value of a is
A. 2
B. 3
C. 6
D. 5

Key. C
Sol. $g(x)$ is continuous only when $\frac{f(x)}{a}$ lies between two consecutive integers Hence $\left(\frac{2}{a}, \frac{\sqrt{26}}{a}\right)$ should not contain any integer. The least integral value of a is $6\left(\sin c e \frac{\sqrt{26}}{a}<1\right)$
41. $f(x)=\left[x^{2}\right]-[x]^{2}$, then (where [.] denotes greatest integer function)
A. f is not continuous $x=0$ and $x=1$
B. f is continuous at $x=0$ but not at $x=1$
C. f is not continuous at $x=0$ but continuous
D. f is continuous at $x=0$ and $x=1$ at $x=1$

Key. C
Sol. $\quad f(0-)=0-(-1)^{2}=-1$ and $f(0)=0$. Hence f is not continuous at $x=0$ (1) $f(1-)=0-0=0$, $f(1+)=1-1=0 \quad f(1)=0$ and Thus f is continuous at $x=1$
42. Let $f(x)=\sec ^{-1}\left(\left[1+\sin ^{2} x\right]\right)$; where [.] denotes greatest integer function. Then the set of points where $f(x)$ is not continuous is
A. $\left\{\frac{n \pi}{2}, n \in I\right\}$
B. $\left\{(2 n-1) \frac{\pi}{2}, n \in I\right\}$
C. $\left\{(n-1) \frac{\pi}{2}, n \in I\right\}$
D. $\{n \pi / n \in I\}$

Key. B
Sol. $\quad f(n \pi+)=\sec ^{-1} 1=0$ and $f(n \pi-)=\sec ^{-1} 1=0$ and $f(n \pi)=0$
$\therefore f$ is continuous at $x=n \pi$
$f\left((2 n-1) \frac{\pi}{2}+\right)=\sec ^{-1} 1=0$ but $f\left((2 n-1) \frac{\pi}{2}\right)=\sec ^{-1} 2=\frac{\pi}{3}$
$\therefore f$ is discontinuous at $x=(2 n-1) \frac{\pi}{2}$ for all $n \in I$
43. The number of points at which the function $f(x)=\max .\{a-x, a+x, b\},-\infty<x<\infty, 0<a<b$ cannot be differentiable is,
A. 2
B. 3
C. 1
D. 0

Key. A
Sol. $\quad f(x)=\left\{\begin{array}{clc}a-x & \text { if } & x<a-b \\ b & \text { if } & a-b \leq x \leq b-a \\ a+x & \text { if } & x>b-a\end{array}\right.$
Hence f is not differentiable at $x=a-b, b-a$
44. $\lim _{x \rightarrow-1-}[x \sin \pi x]=\quad[.] \rightarrow$ denotes greatest integer function

1) -1
2) 1
3) 0
4) does not exist

Key. 1
Sol. $\quad x<-1 \Rightarrow \pi x<-\pi \Rightarrow \pi x \in 2^{\text {nd }}$ quadrant

$$
\begin{array}{rl}
\Rightarrow \sin \pi x>0 & x<0 \\
\Rightarrow & x \sin \pi x<0 \\
& {[x \sin \pi x]=-1}
\end{array}
$$

45. The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|)$ is not differentiable at
A) -1
B) 0
C) 1
D) 2

Key. D
Sol. Here $\cos (|x|)=\cos (\pm x) \cos x$
$f(x)=-\left(x^{2}-1\right)\left(x^{2}-3 x+2\right)+\cos x, 1 \leq x \leq 2$
$=\left(x^{2}-1\right)\left(x^{2}-3 x+2\right)+\cos x, x \leq 1$ or $x \geq 2$
Clearly $f(1)=\cos 1, \underset{x \rightarrow 1}{\operatorname{Lt} f}(x)=\cos 1$
$f(2)=\cos 2, \operatorname{Lt}_{x \rightarrow 2} f(x)=\cos 2$
Hence $f(x)$ is continuous at $x=1,2$
Now $f^{\prime}(x)=-2 x\left(x^{2}-3 x+2\right)-\left(x^{2}-1\right)(2 x-3)-\sin x, 1 \leq x<2$

$$
=2 \mathrm{x}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)+\left(\mathrm{x}^{2}-1\right)(2 \mathrm{x}-3)-\sin \mathrm{x}, \mathrm{x}<1 \text { or } \mathrm{x}>2
$$

$f^{\prime}(1-0)=-\sin 1, f^{\prime}(1+0)=-\sin 1$
$f^{\prime}(2-0)=-3-\sin 2$,
$\mathrm{f}^{\prime}(2+0)+3-\sin 2$
Hence $f(x)$ is not differentiable at $x=2$.
46. If $f(x)$ is a function such that $f(0)=a, f^{\prime}(0)=a b, f^{\prime \prime}(0)=a b^{2}, f^{\prime \prime \prime}(0)=a b^{3}$, and so on and $b>0$, where dash denotes the derivatives, then $\underset{x \rightarrow-\infty}{\operatorname{Lt}} f(x)=$
A) ∞
B) $-\infty$
C) 0
D) none of these

Key. C
Sol. Given $f(0)=a, f^{\prime}(0)=a b, f^{\prime \prime}(0)=a b^{2}$

$$
\begin{array}{ll}
& \mathrm{f} ' \\
\therefore \quad & \mathrm{f}(0)=\mathrm{ab}^{3} \text { and so on. } \\
\therefore \quad \mathrm{x})=\mathrm{ab}^{\mathrm{x}} \\
\therefore & \operatorname{Lt}_{\mathrm{x} \rightarrow-\infty} \mathrm{f}(\mathrm{x})=\operatorname{Lt}_{\mathrm{x} \rightarrow-\infty} \mathrm{ae}^{\mathrm{bx}}=0[\mathrm{Qb}>0]
\end{array}
$$

47. If $f(x)=p|\sin x|+q e^{|x|}+r|x|^{\beta}$ and $f(x)$ is differentiable at $x=0$, then
A) $p=q=r=0$
B) $p=0, q=0, r=$ any real number
C) $q=0, r=0, p$ is any real number
D) $r=0, p=0, q$ is any real number

Key. B
Sol. At $x=0$,
L. H. derivative of $p|\sin x|=-p$
R.H. derivative of $p|\sin x|=p$
. for $p|\sin x|$ to be differentiable at
$x=0, p=-p$ or $p=0$
at $x=0$, L.H. derivative of $q e^{|x|}=-q$
R.H. derivative of $\mathrm{qe}^{|x|}=\mathrm{q}$

For $\mathrm{qe}^{|x|}$ to be differentiable at $\mathrm{x}=0$,

$$
-q=q \text { or } q=0
$$

d.e. of $r|x|^{3}$ at $x=0$ is 0
\therefore for $\mathrm{f}(\mathrm{x})$ to be differentiable at $\mathrm{x}=0$
$P=0, q=0$ and r may be any real number.
Second Method:
$\mathrm{f}^{\prime}(0-0)=\operatorname{Lt}_{\mathrm{h} \rightarrow 0-0} \frac{\mathrm{f}(\mathrm{h})-\mathrm{f}(0)}{\mathrm{h}}$
$\underset{\mathrm{h} \rightarrow 0-0}{\operatorname{Lt}} \frac{\mathrm{p}|\sinh |+\mathrm{qe}^{\mathrm{h} \mid}+\mathrm{r}|\mathrm{h}|^{3}-\mathrm{q}}{\mathrm{h}}$
$\underset{\mathrm{h} \rightarrow 0-0}{\operatorname{Lt}} \frac{-\mathrm{p} \sinh +\mathrm{qe}^{-\mathrm{h}}-\mathrm{rh}^{3}-\mathrm{q}}{\mathrm{h}}$
$=\operatorname{Ltt}_{h \rightarrow 0-0}\left\{-p \frac{\sinh }{h}-\frac{q\left(e^{-h}-1\right)}{-h}-\mathrm{rh}^{2}\right\}$
$=-p-q$
Similarly, $\mathrm{f}^{\prime}(0+0)=\mathrm{p}+\mathrm{q}$
Since $f(x)$ is differentiable at $x=0$

$$
\begin{array}{ll}
\therefore & \mathrm{f}^{\prime}(0-0)=\mathrm{f}^{\prime}(0+0) \Rightarrow-\mathrm{p}-\mathrm{q}=\mathrm{p}+\mathrm{q} \\
\Rightarrow & \mathrm{p}+\mathrm{q}=0
\end{array}
$$

Here r may be any real number.
\therefore Correct choice is (b)
48. The number of points in (1,3), where $f(x)=a^{\left[x^{2}\right]}, a>1$, is not differentiable where $[x]$ denotes the integral part of x is
A) 0
B) 3
C) 5
D) 7

Key. D
Sol. Here $1<x<3$ and in this interval x^{2} is an increasing function.

$$
\therefore \quad \begin{aligned}
& 1<x^{2}<9 \\
& {\left[x^{2}\right]=} 1,1 \leq x<\sqrt{2} \\
&=2, \sqrt{2} \leq x<\sqrt{3} \\
&=3, \sqrt{3} \leq x<2 \\
&=4,2 \leq x<\sqrt{5} \\
&=5, \sqrt{5} \leq x<\sqrt{6} \\
&=6, \sqrt{6} \leq x<\sqrt{7} \\
&=7, \sqrt{7} \leq x<\sqrt{8} \\
&=8, \sqrt{8} \leq x<3
\end{aligned}
$$

Clearly $\left[\mathrm{x}^{2}\right]$ and also $\mathrm{a}^{\left[\mathrm{x}^{2}\right]}$ is discontinuous and not differentiable at only 7 points $x=\sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}$
49. Let $f(x)$ be defined in $[-2,2]$ by $f(x)=\max \left(\sqrt{4-x^{2}}, \sqrt{1+x^{2}}\right),-2 \leq x \leq 0$
$=\min \left(\sqrt{4-\mathrm{x}^{2}}, \sqrt{1+\mathrm{x}^{2}}\right), 0<\mathrm{x} \leq 2$, then $\mathrm{f}(\mathrm{x})$
A) is continuous at all points
B) has a point of discontinuity
C) is not differentiable only at one point D) is not differentiable at more than one point

Key. B,D
Sol. $\quad \sqrt{4-\mathrm{x}^{2}}-\sqrt{1+\mathrm{x}^{2}}$

$$
=\frac{3-2 x^{2}}{\sqrt{4-x^{2}}+\sqrt{1+x^{2}}}
$$

\therefore Sign scheme for $\left(\sqrt{4-\mathrm{x}^{2}}-\sqrt{1+\mathrm{x}^{2}}\right)$ is same as that of $3-2 \mathrm{x}^{2}$
Sign scheme for $3-2 x^{2}$ is

$$
\begin{aligned}
\therefore \quad & \mathrm{f}(\mathrm{x})=\sqrt{1+\mathrm{x}^{2}},-2 \leq \mathrm{x} \leq-\sqrt{\frac{3}{2}} \\
& =\sqrt{4-\mathrm{x}^{2}},-\sqrt{\frac{3}{2}} \leq \mathrm{x} \leq 0 \\
& =\sqrt{1+\mathrm{x}^{2}}, 0<\mathrm{x} \leq \sqrt{\frac{3}{2}} \\
& =\sqrt{4-\mathrm{x}^{2}}, \sqrt{\frac{3}{2}} \leq \mathrm{x} \leq 2
\end{aligned}
$$

Clearly $f(x)$ is continuous at $x=-\sqrt{\frac{3}{2}}$ and $x=\sqrt{\frac{3}{2}}$ but it is discontinuous at $x=0$

$$
\begin{aligned}
\text { Also } \mathrm{f}^{\prime}(\mathrm{x}) & =\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}-2 \leq \mathrm{x}<-\sqrt{\frac{3}{2}} \\
= & -\frac{\mathrm{x}}{\sqrt{4-\mathrm{x}^{2}}}-\sqrt{\frac{3}{2}}<\mathrm{x}<0 \\
= & \frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}, 0 \leq \mathrm{x}<\sqrt{\frac{3}{2}} \\
& =-\frac{\mathrm{x}}{\sqrt{4-\mathrm{x}^{2}}} \sqrt{\frac{3}{2}}<\mathrm{x} \leq 2
\end{aligned}
$$

$\mathrm{F}(\mathrm{x})$ is not differentiable at $\mathrm{x}= \pm \sqrt{\frac{3}{2}}$ and also at $\mathrm{x}=0$ as it is discontinuous at $\mathrm{x}=0$.
50. If $\mathrm{f}(\mathrm{x})=\mathrm{a}\left|\sin ^{7} \mathrm{x}\right|+\mathrm{be} \mathrm{e}^{|\mathrm{x}|}+\mathrm{c}|\mathrm{x}|^{5}$ and if $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$, then which of the following in necessarily true
A) $a=b=c=0$
B) $a=0, b=0, c \in R$
C) $b=c=0, c \in R$
D) $b 0$ and a and $c \in R$

Key. D

Sol. $\quad \therefore \mathrm{a}\left|\sin ^{7} \mathrm{x}\right|$ is differentiable at $\mathrm{x}=0$ and its d.e. is 0 for all $\mathrm{a} \in \mathrm{R}$ and $\mathrm{c}|\mathrm{x}|^{5}$ is differentiable at $\mathrm{x}=0$ and its d.e. is 0 for all $c \in R$.
But at $x=0$, L.H. derivative of $b e^{|x|}=-b$ and R.H. derivative $=b$
\therefore for be ${ }^{|x|}$ to be differentiable at $\mathrm{x}=0, \mathrm{~b}=-\mathrm{b}$
$\Rightarrow \quad b=0$
51. If $[x]$ denotes the integral part of x and
$\mathrm{f}(\mathrm{x})=[\mathrm{x}]\left\{\frac{\sin \frac{\pi}{[\mathrm{x}+1]}+\sin \pi[\mathrm{x}+1]}{1+[\mathrm{x}]}\right\}$; then
A) $f(x)$ is continuous in R
B) $f(x)$ is continuous but not differentiable in R
C) f " (x) exists for all x in R
D) $f(x)$ is discontinuous at all integral points in R

Key. D
Sol. $\quad \sin \pi[x+1]=0$.
Also $[x+1]=[x]+1$
$\therefore \quad f(x)=\frac{[x]}{1+[x]} \sin \frac{\pi}{[x]+1}$
at $\mathrm{x}=\mathrm{n}, \mathrm{n} \in \mathrm{I}, \mathrm{f}(\mathrm{x})=\frac{\mathrm{n}}{1+\mathrm{n}} \sin \frac{\pi}{\mathrm{n}+1}$
For $\mathrm{n}<\mathrm{x}<\mathrm{n}+1, \mathrm{n} \in \mathrm{I}$,

$$
\mathrm{f}(\mathrm{x})=\frac{\mathrm{n}}{1+\mathrm{n}} \sin \frac{\pi}{\mathrm{n}+1}
$$

For $\mathrm{n}-1<\mathrm{x}<\mathrm{n},[\mathrm{x}]=\mathrm{n}-1$
$\therefore \quad f(x)=\frac{n-1}{n} \sin \frac{\pi}{n}$
Hence $\operatorname{Ltt}_{x \rightarrow n=0} f(x)=\frac{n-1}{n} \sin \frac{\pi}{4}$,
$\mathrm{f}(\mathrm{n})=\frac{\mathrm{n}}{1+\mathrm{n}} \sin \frac{\pi}{\mathrm{n}+1}$
$f(x)$ is discontinuous at all $n \in I$
52. In $x \in\left[0, \frac{\pi}{2}\right]$, let $f(x) \underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{2^{x}-x^{n} \sin x}{1+x^{n}}$, then
A) $f(x)$ is a constant function
B) $f(x)$ is continuous at $x=1$
C) $f(x)$ is discontinuous at $x=1$
D) none of these

Key. C
Sol. $f(x)=\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{2^{x}-x^{n} \sin x}{1+x^{n}}$
$=\left\{\begin{array}{cc}\frac{2^{x},}{2^{x}-\sin x} & 0 \leq x<1 \\ -\sin x & x=1 \\ x>1\end{array}\right.$
Now $f(1)=\frac{2-\sin 1}{2}$
$\operatorname{Lt}_{x \rightarrow 1-0} f(x)=\operatorname{Lt}_{x \rightarrow 1-0} 2^{x}=2$
Hence $f(x)$ is discontinuous at $x=1$
53. Let $f(x)=[\cos x+\sin x], 0<x<2 \pi$, where $[x]$ denotes the integral part of x, then the number of points of discontinuity of $f(x)$ is
A) 3
B) 4
C) 5
D) 6

Key. C
Sol. $f(x)=\left[\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)\right]$
But $[x]$ is discontinuous only at integral points.
Also $-\sqrt{2} \leq \sqrt{2} \cos \left(x-\frac{\pi}{4}\right) \leq \sqrt{2}$
Integral values of $\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)$ when
$0<x<2 \pi$ are
-1 , at $\mathrm{x}=\pi, \frac{3 \pi}{2}$
0 , at $\mathrm{x}=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
1 , at $\mathrm{x}=\frac{\pi}{2}$
$\therefore \ln (0,2 \pi), \mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=\frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{3 \pi}{2}, \frac{7 \pi}{4}$.
54. If $[x]$ denotes the integral part of x and in $(0, \pi)$, we define
$f(x)=\left[\frac{2\left(\sin x-\sin ^{n} x\right)+\left|\sin x-\sin ^{n} x\right|}{2\left(\sin x-\sin ^{n} x\right)-\left|\sin x-\sin ^{n} x\right|}\right]$. Then for $n>1$.
A) $f(x)$ is continuous but not differentiable at $x=\frac{\pi}{2}$
B) both continuous and differentiable at $\mathrm{x}=\frac{\pi}{2}$
C) neither continuous nor differentiable at $x=\frac{\pi}{2}$
D) $\underset{x \rightarrow \frac{\pi}{2}}{\operatorname{Lt}} f(x)$ exists but $\underset{x \rightarrow \frac{\pi}{2}}{\operatorname{Lt}} f(x) \neq f\left(\frac{\pi}{2}\right)$

Key. B
Sol. For $0<x<\frac{\pi}{2}$ or $\frac{\pi}{2}<x<\pi$,

$$
\begin{array}{ll}
\therefore & 0<\sin x<1 \\
\therefore & \text { for } n>1, \sin x>\sin ^{4} x \\
\therefore & f(x)=\left[\frac{3\left(\sin x-\sin ^{n} x\right)}{\sin x-\sin ^{n} x}\right]=3, x \neq \frac{\pi}{2} \\
=3, x=\frac{\pi}{2}
\end{array}
$$

Thus in $(0, \pi), f(x)=3$.
Hence $f(x)$ is continuous and differentiable at $x=\frac{\pi}{2}$.
55. If $[x]$ denotes the integral part of x and $f(x)=[n+p \sin x], 0<x<\pi, n \in I$ and p is a prime number, then the number of points where $f(x)$ is not differentiable is
A) $p-1$
B) p
C) $2 p-1$
D) $2 p+1$

Key. C
Sol. $[x]$ is not differentiable at integral points.
Also $[n+p \sin x]=n+[p \sin x]$
$\therefore \quad[p \sin x]$ is not differentiable, where
$P \sin x$ is an integer. But p is prime and $0<\sin x \leq 1[Q 0<x<\pi]$
$\therefore \quad \mathrm{p} \sin \mathrm{x}$ is an integer only when

$$
\sin x=\frac{r}{p} \text {, where } 0<r \leq p \text { and } r \in N
$$

For $r=p, \sin x=1 \Rightarrow x=\frac{\pi}{2}$ in $(0, \pi)$
For $0<r<p, \sin x=\frac{r}{p}$

$$
\therefore \quad x=\sin ^{-1} \frac{r}{p} \text { or } \pi-\sin ^{-1} \frac{r}{p}
$$

Number of such values of
$x=p-1+p-1=2 p-2$
\therefore Total number of points where $f(x)$ is not differentiable $=1+2 p-2=2 p-1$
56. Let $f(x)$ and $g(x)$ be two differentiable functions, defined as $f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2)$ and $g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x)$.
The value of $f(1)+g(-1)$ is
A) 0
B) 1
C) 2
D) 3

Key. C
Sol. $f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2)$

$$
\begin{aligned}
& f^{\prime}(x)=2 x+g^{\prime}(1) \\
& f^{\prime \prime}(x)=2 \\
& f^{\prime \prime \prime}(x)=0 \\
& \text { and } g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x) \\
& g(x)=f(1) x^{2}+x\left\{2 x+g^{\prime}(1)\right\}+2 \\
& =f(1) x^{2}+2 x^{2}+x g^{\prime}(1)+2=x^{2}\{2+f(1)\}+x g^{\prime}(1)+2 \\
& g^{\prime}(x)=2 x\{2+f(1)\}+g^{\prime}(1) \\
& g^{\prime \prime}(x)=2\{2+f(1)\} \\
& \therefore f(1)+g(-1) \\
& =1+g^{\prime}(1)+g^{\prime \prime}(2)+f(1) \cdot(-1)^{2}+f^{\prime}(-1)(-1)+f^{\prime \prime}(-1)
\end{aligned}
$$

$$
\left[\because g^{\prime}(2)=4+2 f(1)\right.
$$

$$
f^{\prime \prime}(-1)=2
$$

$$
\left.f^{\prime}(-1)=1-g^{\prime}(1)+g^{\prime \prime}(2)\right]
$$

$$
=1+g^{\prime}(1)+4+2 f(1)+f(1)-\left\{1-g^{\prime}(1)+g^{\prime \prime}(2)\right\}+2
$$

$$
=6+2 g^{\prime}(1)+3 f(1)-g^{\prime \prime}(2)
$$

$$
=6+2 g^{\prime}(1)+3 f(1)-\{4+2 f(1)\}=2+f(1)+2 g^{\prime}(1)
$$

$$
f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2)
$$

$$
f^{\prime}(x)=2 x+g^{\prime}(1)
$$

$$
f^{\prime \prime}(x)=2
$$

$$
f^{\prime \prime \prime}(x)=0
$$

$$
f^{i v}(x)=0
$$

$$
g(x)=f(1) x^{2}+x \cdot f^{\prime}(x)+f^{\prime \prime}(x)
$$

$$
g^{\prime}(x)=2 f(1) x+x \cdot f^{\prime \prime}(x)+f^{\prime}(x) \cdot 1+f^{\prime \prime \prime}(x)
$$

$$
g^{\prime \prime}(x)=2 f(1)+x \cdot f^{\prime \prime \prime}(x)+f^{\prime \prime}(x) \cdot 1+f^{\prime \prime}(x)+f^{i v}(x)
$$

$$
\therefore g^{\prime}(x)=2 f(1) x+2 x+2 x+g^{\prime}(x)+0
$$

$$
g^{\prime}(x)=\{2 f(1)+4\} x+g^{\prime}(x)
$$

$$
g^{\prime \prime}(x)=2 f(1)+0+2+2+0
$$

$$
g^{\prime \prime}(x)=4+2 f(1)
$$

$\therefore f(1)+g(-1)$
$=1+g^{\prime}(1)+g^{\prime \prime}(2)+1+(-1) g^{\prime}(-1)+g^{\prime \prime}(2)$
$=2+2 g^{\prime \prime}(2)+g^{\prime}(1)-g^{\prime}(-1)$
$=2+2\{4+2 f(1)\}+0 \quad\left[\because g^{\prime}(1)=g^{\prime}(-1)\right]$
$=2+2\{0\}+(0)=2$
57. Let $f(x)$ be a real function not identically zero, such that
$f\left(x+y^{2 n+1}\right)=f(x)+\{f(y)\}^{2 n+1} ; n \in N$ and x, y are real numbers and $f^{\prime}(0) \geq 0$. Find the values of $f(5)$ and $\mathrm{f}^{\prime}(10)$.
Sol. As in the preceding example, $f^{\prime}(x)=0$ or $\{f(x)\}^{2 n}=x^{2 n} \Rightarrow f(x)=f(0)=0$ or $f(x)=x$.
But $f(x)$ is given to be not identically zero.
$\therefore f(x)=0$ is inadmissible. Hence $f(x)=x$.
$\therefore \mathrm{f}(\mathrm{x})=5$ and $\mathrm{f}^{\prime}(10)=1$.

Sol. Given that $f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right)$.
Putting $x=0, y=0$, we have $f(0)=0$.
Differentiating both sides with respect to x, treating y as constant, we get

$$
\begin{align*}
f(x)+0 & =f^{\prime}\left(\frac{x+y}{1-x y}\right)\left\{\frac{(1-x y) \cdot 1-(x+y) \cdot(-y)}{(1-x y)^{2}}\right\} \\
& =f^{\prime}\left(\frac{x+y}{1-x y}\right)\left\{\frac{1-x y+x y+y^{2}}{(1-x y)^{2}}\right\}=f^{\prime}\left(\frac{x+y}{1-x y}\right)\left\{\frac{1+y^{2}}{(1-x y)^{2}}\right\} \tag{1}
\end{align*}
$$

Similarly differentiating both sides with respect to y, keeping x as constant, we get

$$
\begin{equation*}
f^{\prime}(y)=f^{\prime}\left(\frac{x+y}{1-x y}\right)\left\{\frac{1+x^{2}}{(1-x y)^{2}}\right\} \tag{2}
\end{equation*}
$$

From (1) and (2), we get

$$
\begin{aligned}
& \quad \frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}^{\prime}(\mathrm{y})}=\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}} \Rightarrow\left(1+\mathrm{x}^{2}\right) \mathrm{f}^{\prime}(\mathrm{x})=\left(1+\mathrm{y}^{2}\right) \mathrm{f}^{\prime}(\mathrm{y})=\mathrm{k}(\text { say })\left\{=\mathrm{f}^{\prime}(0)\right\} \\
& \Rightarrow \quad \\
& \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{k}}{1+\mathrm{x}^{2}} \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{k} \int \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}=\mathrm{k} \tan ^{-1} \mathrm{x}+\alpha .
\end{aligned}
$$

Putting $\mathrm{x}=0$, we have $\mathrm{f}(0)=\mathrm{k} \times 0+\alpha \Rightarrow \alpha=0, \mathrm{Q} \mathrm{f}(0)=0$.
Thus $\mathrm{f}(\mathrm{x})=\mathrm{k} \tan ^{-1} \mathrm{x}$.
Again $\frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}=\mathrm{k} \frac{\tan ^{-1} \mathrm{x}}{\mathrm{x}} \Rightarrow \underset{\mathrm{x} \rightarrow 0}{\mathrm{Lt}} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}=\mathrm{k} \operatorname{Lt} \frac{\tan ^{-1}}{\mathrm{x}} \Rightarrow 2=\mathrm{k} \times 1 \Rightarrow \mathrm{k}=2$.

Hence $f(x)=2 \tan ^{-1} x$.
$\therefore \mathrm{f}(\sqrt{3})=2 \tan ^{-1}(\sqrt{3})=2 \times \frac{\pi}{3}=\frac{2 \pi}{3}$ and $\mathrm{f}^{\prime}(-2)=\frac{2}{1+(-2)^{2}}=\frac{2}{5}$.
59. If $2 f(x)=f(x y)+f\left(\frac{x}{y}\right)$ for all $x, y \in R^{+}, f(1)=0$ and $f^{\prime}(1)=1$, find $f(e)$ and $f^{\prime}(e)$.

Sol. Given $2 f(x)=f(x y)+f\left(\frac{x}{y}\right)$.
Differentiating partially with respect to x (keeping y as constant), we get

$$
\begin{equation*}
2 f^{\prime}(x)=f^{\prime}(x y) \cdot y+f^{\prime}\left(\frac{x}{y}\right) \cdot \frac{1}{y} \tag{1}
\end{equation*}
$$

Again, differentiating partially with respect to y (keeping x as constant), we get

$$
\begin{array}{r}
0=f^{\prime}(x y) \cdot x+f^{\prime}\left(\frac{x}{y}\right) \cdot x\left(-\frac{1}{y^{2}}\right) \tag{2}\\
(2) \Rightarrow \quad \frac{x}{y^{2}} f^{\prime}\left(\frac{x}{y}\right)=x f^{\prime}(x y) \Rightarrow f^{\prime}\left(\frac{x}{y}\right)=y^{2} f^{\prime}(x) .
\end{array}
$$

Hence from (1), $2 f^{\prime}(x)=y f^{\prime}(x y)=2 f^{\prime}(x y) \Rightarrow f^{\prime}(x)=y f^{\prime}(x y)$.
Now, putting $x=1$, we have $y f^{\prime}(y)=f^{\prime}(1)=1$
$\Rightarrow \quad f^{\prime}(y)=\frac{1}{y} \Rightarrow \int f^{\prime}(y) d y=\int \frac{1}{y} d y \Rightarrow f(y)=\log y+c$.
Putting $y=1$, we have $f(1)=0+c \Rightarrow 0=c ; Q f(1)=0$
$\therefore \quad c=0$.
Hence $f(y)=\log y$ i.e. $f(x)=\log x(x>0)$.
Hence $f(e)=\log e=1$ and $f^{\prime}(e)=\frac{1}{e}$
60. A function $y=f(x)$ is defined for all $x \in[0,1]$ and $f(x)+f(y)=f\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)$. And $\mathrm{f}(0)=\frac{\pi}{2}, \mathrm{f}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$ Find the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$

Sol. Given $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})=\mathrm{f}\left(\mathrm{xy}-\sqrt{1-\mathrm{x}^{2}} \sqrt{1-\mathrm{y}^{2}}\right)$
Differentiating partially with respect to x (treating y as constant), we get

$$
\begin{align*}
& f^{\prime}(x)+0=f^{\prime}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) \times\left\{y-\sqrt{1-y^{2}}, \frac{-2 x}{2 \sqrt{1-x^{2}}}\right\} \\
\Rightarrow \quad & f^{\prime}(x)=f^{\prime}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) \times\left\{\frac{y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}\right\} \tag{2}
\end{align*}
$$

Similarly, differentiating (2) partially with respect to y (treating x as constant), we get

$$
\begin{equation*}
f^{\prime}(y) f^{\prime}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right) \times\left\{\frac{x \sqrt{1-y^{2}}+y \sqrt{1+x^{2}}}{\sqrt{1-y^{2}}}\right\} \tag{3}
\end{equation*}
$$

Now, dividing (2) by (3), we get

$$
\frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}^{\prime}(\mathrm{y})}=\frac{\sqrt{1-\mathrm{y}^{2}}}{\sqrt{1-\mathrm{x}^{2}}} \Rightarrow \sqrt{1-\mathrm{x}^{2}} \mathrm{f}^{\prime}(\mathrm{x})=\sqrt{1-\mathrm{y}^{2}} \mathrm{f}^{\prime}(\mathrm{y})=\mathrm{k} \text { (say) }
$$

Thus, $\quad \sqrt{1-\mathrm{x}^{2}} \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{k} \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{k}}{1-\mathrm{x}^{2}}$
$\Rightarrow \quad \int f^{\prime}(x) d x=k \int \frac{1}{\sqrt{1-x^{2}}} d x \Rightarrow f(x)=k \sin ^{-1} x+\alpha$
Now, $\quad x=0 \Rightarrow f(0)=k .0+\alpha \Rightarrow \frac{\pi}{2}=\alpha$.
Again $\quad x=\frac{1}{\sqrt{2}} \Rightarrow f\left(\frac{1}{\sqrt{2}}\right)=k \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\alpha$
$\Rightarrow \quad \frac{\pi}{4}=\mathrm{k} \frac{\pi}{4}=\alpha \Rightarrow \frac{\pi}{4}=\mathrm{k} \frac{\pi}{4}+\frac{\pi}{2}, \mathrm{Q} \alpha=\frac{\pi}{2}$
$\Rightarrow \quad \mathrm{k} \frac{\pi}{4}=\frac{\pi}{4}-\frac{\pi}{2}=-\frac{\pi}{4} \Rightarrow \mathrm{k}=-1$.
Hence putting $\mathrm{k}=-1$ and $\alpha=\frac{\pi}{2}$ in (4), we get $\mathrm{f}(\mathrm{x})=-\sin ^{-1} \mathrm{x}+\frac{\pi}{2}=\cos ^{-1} \mathrm{x}$.
61. Let $\mathrm{f}(\mathrm{x})=\operatorname{Lt}_{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=0}^{\mathrm{n}-1} \frac{\mathrm{r}}{(\mathrm{rx}+1)\{(\mathrm{r}+1) \mathrm{x}+1\}}$, then
A) $f(x)$ is continuous but not differentiable at $x=0$
B) $f(x)$ is both continuous and differentiable at $x=0$
C) $f(x)$ is neither continuous not differentiable at $x=0$
D) $f(x)$ is a periodic function

Key. C
Sol. $\quad \mathrm{t}_{\mathrm{r}+1}=\frac{\mathrm{x}}{(\mathrm{rx}+1)\{(\mathrm{r}+1) \mathrm{x}+1\}}$

$$
=\frac{(\mathrm{r}+1) \mathrm{x}+1-(\mathrm{rx}+1)}{(\mathrm{rx}+1)[(\mathrm{r}+1) \mathrm{x}+1]}
$$

$$
=\frac{1}{(r x+1)}-\frac{1}{(r+1) x+1}
$$

$$
S_{n}=\sum_{r=0}^{n-1} t_{r+1} \frac{1}{n x+1}
$$

$$
=1, x \neq 0
$$

$$
=0, x=0
$$

$\therefore \quad \underset{\mathrm{n} \rightarrow \infty}{\mathrm{Lt}} \mathrm{S}_{\mathrm{n}}=\underset{\mathrm{n} \rightarrow \infty}{\mathrm{Lt}}\left(1-\frac{1}{\mathrm{nx}+1}\right)$
Thus, $\mathrm{f}(\mathrm{x})$ is neither continuous nor differentiable at $\mathrm{x}=0$.
Clearly $f(x)$ is not a periodic function.
62. If $f(x)$ is a polynomial function which satisfy the relation
$(f(x))^{2} f^{\prime \prime \prime}(x)=\left(f^{\prime \prime}(x)\right)^{3} f^{\prime}(x), f^{\prime}(0)=f^{\prime}(1)=f^{\prime}(-1)=0, f(0)=4, f(\pm 1)=3$, then $f^{\prime \prime}(i)($ where $i=\sqrt{-1})$ is equal to
(A) 10
(B) 15
(C) -16
(D) -15

Key. C
Sol. Solving the equation
We will get $f(x)=x^{4}-2 x^{2}+4$
63. If $f(x)$ is a polynomial function which satisfy the relation
$(f(x))^{2} f^{\prime \prime \prime}(x)=\left(f^{\prime \prime}(x)\right)^{3} f^{\prime}(x), f^{\prime}(0)=f^{\prime}(1)=f^{\prime}(-1)=0, f(0)=4, f(\pm 1)=3$, then $f^{\prime \prime}(i)$ (where $i=\sqrt{-1}$) is equal to
(A) 10
(B) 15
(C) -16
(D) -15

Key. C
Sol. Solving the equation
We will get $f(x)=x^{4}-2 x^{2}+4$
64. If $f(x)$ is a polynomial function which satisfy the relation
$(f(x))^{2} f^{\prime \prime \prime}(x)=\left(f^{\prime \prime}(x)\right)^{3} f^{\prime}(x), f^{\prime}(0)=f^{\prime}(1)=f^{\prime}(-1)=0, f(0)=4, f(\pm 1)=3$, then $f^{\prime \prime}(i)($ where $\mathrm{i}=\sqrt{-1})$ is equal to
(A) 10
(B) 15
(C) -16
(D) -15

Key. C
Sol. Solving the equation
We will get $f(x)=x^{4}-2 x^{2}+4$
65. Let a function $f(x)$ be such that $f^{\prime \prime}(x)=f^{\prime}(x)+e^{x}$ and $f(0)=0, f^{\prime}(0)=1$, then $\ln \left(\frac{(f(2))^{2}}{4}\right)$ equal to
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4

Key. D
Sol. $\quad f^{\prime \prime}(x)-f^{\prime}(x)=e^{x}$
put $\quad f^{\prime}(x)=v$
$\frac{d v}{d x}+v(-1)=e^{x}$
$\Rightarrow \quad \mathrm{ve}^{-\mathrm{x}}=\int \mathrm{e}^{\mathrm{x}} . \mathrm{e}^{-\mathrm{x}} \mathrm{dx}$
$\mathrm{ve}^{-\mathrm{x}}=\mathrm{x}+\mathrm{C}_{1}, \mathrm{f}^{\prime}(0)=1 \Rightarrow \mathrm{C}_{1}=1$
$f^{\prime}(x)=x e^{x}+e^{x}$
$\mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}+\mathrm{C}_{2}$
$\Rightarrow \mathrm{f}(0)=0 \Rightarrow \mathrm{C}_{2}=0$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}} \Rightarrow \mathrm{f}(2)=2 \mathrm{e}^{2}$
$\ln \left(\frac{(\mathrm{f}(2))^{2}}{4}\right)=4$.
66. If $\int_{\sin x}^{1} t^{2} . f(t) d t=1-\sin x, \forall x \in\left(0, \frac{\pi}{2}\right)$ then the value of $f\left(\frac{1}{\sqrt{3}}\right)$ is
(A) $\frac{1}{\sqrt{3}}$
(B) $\sqrt{3}$
(C) $\frac{1}{3}$
(D) 3

Key. D
Sol. $\quad \int_{\sin x}^{1} t^{2} . f(t) d t=1-\sin x$
Differentiating both sides with respect to ' x '
$0-\sin ^{2} x . f(\sin x) \cdot \cos x=-\cos x \Rightarrow \cos x\left[1-\sin ^{2} x \cdot f(\sin x)\right]=0$
But $\cos x \neq 0$
So, $f(\sin x)=\frac{1}{\sin ^{2} x}$
$f\left(\frac{1}{\sqrt{3}}\right)=3$
67. Let $\mathrm{f}:(0, \infty) \rightarrow \mathrm{R}$ and $\mathrm{F}(\mathrm{x})=\int_{1} \mathrm{f}(\mathrm{t}) \mathrm{dt}$. If $\mathrm{F}\left(\mathrm{x}^{2}\right)=\mathrm{x}^{2}(1+\mathrm{x})$ then $\mathrm{f}(4)$ equals
(A) $5 / 4$
(B) 7
(C) 4
(D) 2

Key. C
Sol. $\quad F^{\prime}(x)=f(x)$
$F(x)=x(1+\sqrt{x})=x+x^{3 / 2}$
$\therefore F^{\prime}(x)=f(x)=1+\frac{3}{2} \sqrt{x}$
$\mathrm{f}(4)=4$
68. If $f(x)=\int_{0}^{x}\left(1+t^{3}\right)^{-1 / 2} d t$ and $g(x)$ is the inverse of f, then the value of $\frac{g "(x)}{g^{2}(x)}$ is
(A) $3 / 2$
(B) $2 / 3$
(C) $1 / 3$
(D) $1 / 2$

Key. A

Sol. $f(x)=\int_{0}^{x}\left(1+t^{3}\right)^{-1 / 2} d t$
i.e. $f[g(x)]=\int_{0}^{g(x)}\left(1+t^{3}\right)^{-1 / 2} d t$
i.e. $\quad x=\int_{0}^{g(x)}\left(1+t^{3}\right)^{-1 / 2} d t \quad[Q \quad g$ is inverse of $f \Rightarrow f[g(x)]=x]$

Differentiating with respect to x , we have

$$
1=\left(1+\mathrm{g}^{3}\right)^{-1 / 2} \cdot \mathrm{~g}^{\prime}
$$

i.e. $\quad\left(g^{\prime}\right)^{2}=1+g^{3}$

Differentiating again with respect to x , we have

$$
\begin{aligned}
& 2 g^{\prime} g^{\prime \prime}=3 g^{2} g^{\prime} \\
& \text { gives } \quad \frac{g^{\prime \prime}}{g^{2}}=\frac{3}{2}
\end{aligned}
$$

69. If $f(x)$ be positive, continuous and differentiable on the interval (a, b). If $\lim _{x \rightarrow a^{+}} f(x)=1$ and $\lim _{x \rightarrow b^{-}} f(x)=3^{1 / 4}$ also $f^{\prime}(x)>(f(x))^{3}+\frac{1}{f(x)}$ then
a) $b-a>\frac{\pi}{24}$
b) $b-a<\frac{\pi}{24}$
c) $b-a=\frac{\pi}{12}$
d) $b-a=\frac{\pi}{24}$

Key. B
Sol. $\frac{f^{\prime}(x) f(x)}{f(x)^{4}+1}>1$
Integrating both sides with respect to "x" from a to b

$$
\begin{aligned}
& \Rightarrow \frac{1}{2}\left[\tan ^{-1}\left((f(x))^{2}\right)\right]_{a}^{b}>(b-a) \\
& \Rightarrow \frac{1}{2}\{\pi / 3-\pi / 4\}>(b-a) \\
& \Rightarrow b-a<\frac{\pi}{24}
\end{aligned}
$$

70. $\begin{aligned} f(x) & =\left(\tan \left(\frac{\pi}{4}+x\right)\right)^{\frac{1}{x}} \\ & \text { if } x \neq 0 \\ & =\lambda\end{aligned}$
1) 1
2) e
3) e^{2}
4) 0

Key. 3
Sol. $\lambda=\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{x}}=\frac{e}{e^{-1}}=e^{2}$
71. $\quad f(x)=\frac{1}{q}$ If $x=\frac{p}{q}$ where p and q are integer and $q \neq 0, \mathrm{G} . \mathrm{C} . \mathrm{D}$ of $(\mathrm{p}, \mathrm{q})=1$ and $f(x)=0$

If x is irrational then set of continuous points of $f(x)$ is

1) all real numbers 2) all rational numbers 3) all irrational number 4) all integers

Key. 3
Sol. Let $x=\frac{p}{q}$
$f(x)=\frac{1}{q}$
When $x \rightarrow \frac{p}{q} \quad f(x)=0$ for every irrational number $\in \operatorname{nbd}(p / q)$

$$
\begin{aligned}
&=\frac{1}{n} \text { if } n=\frac{m}{n} \in \operatorname{nbd}(p / q) \\
& \frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { since }
\end{aligned}
$$

$$
\text { There } \infty \text { - number of rational } \in n b d(p / q)
$$

$$
\therefore \lim _{x \rightarrow \frac{p}{q}} f(x)=0 \text { but } f\left(\frac{p}{q}\right)=\frac{1}{q} \neq 0
$$

Discontinuous at every rational
If $x=\alpha$ is irrational $\Rightarrow f(\alpha)=0$
Now $\lim _{x \rightarrow \alpha} f(x)$ is also 0
\therefore continuous for every irrational α
72. If a function $f:[-2 a, 2 a]^{\circledR} R$ is an odd function such that $f(x)=f(2 a-x)$ for $x \hat{\mathrm{I}}[a, 2 a]$ and the left hand derivative at $\mathrm{x}=\mathrm{a}$ is zero then left hand derivative at $x=-a$ is \qquad
a) a
b) 0
c) -a
d) 1

Key. B
Sol. LHD at $\mathrm{x}=-$ a is $\lim _{h \rightarrow 0} \frac{f(-a)-f(-a-h)}{h}=-\lim _{h \rightarrow 0} \frac{f(a)-f(2 a-a+h)}{h}$
$=-\lim _{h \circledast 0} \frac{f(a)-f(a-h)}{h}=0$ by hypothesis

a) n I $(0,1]$
b) n I $[1, ¥$)
c) n I (-¥ , o)
d) $n=0$

Key. A
Sol. $\quad \lim _{x ® 0} x^{n} \sin \frac{1}{x}=0$ for $\mathrm{n}>0 \therefore$ continuous for $\mathrm{n}>0 \quad$ Similarly $\mathrm{f}(\mathrm{x})$ is non-differentiable for $n \leq 1$
$\therefore n \in(0,1]$ for $\mathrm{f}(\mathrm{x})$ to be continuous and non-differentiable at $\mathrm{x}=0$.
74. If $f(x)$ is continuous on $[-2,5]$ and differentiable over $(-2,5)$ and $-4 £ f^{\prime}(x) £ 3$ for all x in $(-2,5)$ then the greatest possible value of $f(5)-f(-2)$ is
a) 7
b) 9
c) 15
d) 21

Key. D
Sol. Using LMVT in $[-2,5]$
$\frac{f(5)-f(-2)}{5-(-2)}=f^{1}(c) ; c \in(-2,5)$
$\therefore f(5)-f(-2)=7 f^{1}(c) \leq 21$ since $-4 \leq f^{1}(x) \leq 3$
$\therefore \max \{f(5)-f(-2)\}=21$
75. If [.] denotes the integral part of x and $f(x)=[x]\left\{\frac{\sin \frac{\pi}{[x+1]}+\sin \pi[x+1]}{1+[x]}\right\}$, then
(A) $f(x)$ is continuous in R
(B) $f(x)$ is continuous but not differentiable in R
(C) $f^{\prime}(x)$ exists $\forall x \in R$
(D) $f(x)$ is discontinuous at all integral points in R

Key: D
Hint: At $x=n, f(n)=\frac{n}{n+1} \sin \left(\frac{\pi}{n+1}\right)=f\left(n^{+}\right)$
$\mathrm{f}(\mathrm{n})=\frac{\mathrm{n}-1}{\mathrm{n}} \sin \frac{\pi}{\mathrm{n}}$
$\Rightarrow f(x)$ is discontinuous at all $n \in 1$
76. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\mathrm{x}, & \mathrm{x} \leq 1 \\ \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}, & \mathrm{x}>1\end{array}\right.$ and $\mathrm{f}(\mathrm{x})$ is differentiable for all $\mathrm{x} \in \mathrm{R}$, then
a) $\mathrm{b}=-1, \mathrm{c} \in \mathrm{R}$
b) $\mathrm{c}=1, \mathrm{~b} \in \mathrm{R}$
c) $\mathrm{b}=1, \mathrm{c}=-1$
d) $\mathrm{b}=-1, \mathrm{c}=1$

Key. 4
Sol.

$$
L f^{\prime}(1)=1, \mathrm{Rf}^{\prime}(1)=2+b \quad \Rightarrow b=-1
$$

$\mathrm{f}(1-)=1$ AND $\mathrm{f}(1+)=1+\mathrm{b}+\mathrm{c} \quad \Rightarrow \mathrm{c}=1$
77. If $f(x)=\left\{\begin{array}{cc}x^{m} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ then the interval in which m lies so that $f(x)$ is both continuous and differentiable at $x=0$ is
a) i
b) $(0, \infty)$
c) $(0,1]$
d) $(1, \infty)$

Key. 4
Sol. $\underset{x \rightarrow 0}{\operatorname{Lt}} f(x)=\underset{x \rightarrow 0}{\operatorname{Lt}} x^{m} \sin \frac{1}{x}$ exists if $m>0$ I.E., $m \in[0, \infty)$
$f^{\prime}(0)=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{f(x)-f(0)}{x-0}=\underset{x \rightarrow 0}{\operatorname{Lt}} x^{m-1} \sin \frac{1}{x}$ EXISTS IF M $-1>0$ IF M >1 OR $m \in(1, \infty)$
78. $f(x)=\operatorname{Max}\left\{x, x^{3}\right\}$, then at $\mathrm{x}=0$
a) $f(x)$ is both continuous and differentiable
b) $f(x)$ is neither continuous nor differentiable
c) $f(x)$ is continuous but not differentiable
d) $f(x)$ is differentiable but not continuous

Key. 3
Sol. $f(x)=\left\{\begin{array}{cc}x & 0 \leq x \leq 1 \\ x^{3} & -1 \leq x \leq 0\end{array} \quad f(0+)=0 \quad f(0-)=0=f(0) \quad L f^{\prime}(0)=0 \quad R^{\prime}(0)=1\right.$
79. $f(x)=\left\{\begin{array}{cl}\left(\frac{e^{\frac{1}{x}}-e^{-\frac{1}{x}}}{e^{\frac{1}{x}}+e^{-\frac{1}{x}}}\right. & x \neq 0 \\ 0 & x=0\end{array} \quad\right.$ then at $\mathrm{x}=0$
a) $f(x)$ is both continuous and differentiable
b) $f(x)$ is neither continuous nor differentiable
c) $f(x)$ is continuous but not differentiable
d) $f(x)$ is differentiable but not continuous

Key. 2
Sol. $L t e^{-\frac{1}{x}}=0, \operatorname{Lt}_{x \rightarrow 0-} e^{\frac{1}{x}}=0 \quad f(0-)=\underset{x \rightarrow 0-}{\operatorname{Lt}}\left(\frac{e^{\frac{2}{x}}-1}{e^{\frac{2}{x}+1}}\right)=\underset{x \rightarrow 0-}{\operatorname{Lt}}\left(\frac{0-1}{0+1}\right)=-1$
$f(0+)=\underset{x \rightarrow 0+}{L t}\left(\frac{1-e^{-\frac{1}{x}}}{1+e^{-\frac{1}{x}}}\right)=1 \quad \underset{\mathrm{x} \rightarrow 0}{\mathrm{Lt}} \mathrm{f}(\mathrm{x})$ DOES NOT EXIST
80. If $f\left(\frac{x+2 y}{3}\right)=\frac{f(x)+2 f(y)}{3} \forall x, y \in R$ and $f^{\prime}(0)=1$; then $f(x)$ is
a). a second degree polynomial in x
b). Discontinuous $\forall x \in R$
c). not differentiable $\forall x \in R$
d). a linear function in x

Key. 4
Sol. We have $f\left(\frac{x+2 y}{3}\right)=\frac{f(x)+2 f(y)}{3} \forall x, y \in R \rightarrow(1)$ replacing x by $3 x$ and putting $y=0$ in (1),
we get $f(x)=\frac{f(3 x)+2 f(0)}{3} . \Rightarrow f(3 x)=3 f(x)-2 f(0) \rightarrow(2)$
. Now, $f^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(\frac{3 x+2 \cdot \frac{3 h}{2}}{3}\right)-f(x)}{h}$
$=\operatorname{Lim}_{h \rightarrow 0} \frac{\frac{f(3 x)+2 \cdot f\left(\frac{3 h}{2}\right)}{3}-f(x)}{h}($ from (1))
$=\operatorname{Lim}_{h \rightarrow 0} \frac{f(3 x)+2 f\left(\frac{3 h}{2}\right)-3 f(x)}{3 h}=\operatorname{Lim}_{h \rightarrow 0} \frac{2 f\left(\frac{3 h}{2}\right)-2 f(0)}{3 h}($ from(2))
$=\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(\frac{3 h}{2}\right)-f(0)}{\frac{3 h}{2}}=f^{\prime}(0)=1$ (given) $\Rightarrow f^{\prime}(x)=1 \Rightarrow f(x)=x+c . \therefore f(x)$ is a linear
function in x, continuous $\forall x \in R$ and differentiable $\forall x \in R . \therefore$ Only 4 is correct option
81. Let f be a function defined by $f(x)=2^{\left|\log _{2} x\right|}$, then at $x=1$
(A) f is continuous as well as differentiable
(B) continuous but not differentiable
(C) differentiable but not continuous
(D) neither continuous nor differentiable

Key. B
Sol. $f(x)=\left\{\begin{array}{ll}1 / x, & 0<x<1 \\ x, & x \geq 1\end{array}, f\right.$ is continuous
$f^{\prime}(x)=\left\{\begin{array}{ll}-1 / x^{2}, & 0<x<1 \\ 1, & x>1\end{array}, f\right.$ is not differentiable at $x=1$.
82. If the function $f(x)=\left[\frac{(x-2)^{3}}{a}\right] \sin (x-2)+a \cos (x-2)$ [.] GIF, is continuous and differentiable in (4, 6), then a belongs
A) $[8,64]$
B) $(0,8]$
C) $(64, \infty)$
D) $(0,64)$

Key. C

Sol. $\quad a>(x-2)^{3}$
$8 \leq(x-2)^{3} \leq 64 \Rightarrow a>64$
83. The equation $x^{7}+3 x^{3}+4 x-9=0$ has
A) no real root
B) all its roots real
C) a unique rational root
D) a unique irrational root

Key. D
Sol. Let $f(x)=x^{7}+3 x^{3}+4 x-9$
$f^{1}(x)=7 x^{6}+9 x^{2}+4>0 \quad \forall x \in R$
$\therefore f$ is strictly increasing.
$\therefore f(x)=0$ has a unique real root.
$f(1) f(2)<0$
\therefore The real root belongs to the interval (1, 2). If $f(x)=0$ has rational roots, they must be integers.
But there are no integers between 1 and 2.
84. A function $f: R \rightarrow R$ is such that $f(0)=4, f^{1}(x)=1$ in $-1<x<1$ and $f^{1}(x)=3$ in $1<x<3$. Also f is continuous every where. Then $f(2)$ is
A) 5
B) 7
C) 8
D) Can not be determined

Key. C
Sol. If $-1<x<1$ then $f(x)=x+4$
If $1<x<3$ then $f(x)=3 x+c$
But f is continuous at $x=1$
$\therefore f(1)=1+4=3+c \Rightarrow c=2$ and $f(1)=5$
$\therefore f(2)=8$
85. $\mathrm{f}(\mathrm{x})=\mathrm{a}|\sin \mathrm{x}|+\mathrm{be} \mathrm{e}^{|\mathrm{x}|}+\mathrm{c}|\mathrm{x}|^{3}$. If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$, then
a) $a+b+c=0$
b) $\mathrm{a}+\mathrm{b}=0$ and c can be any real number
c) $\mathrm{b}=\mathrm{c}=0$ and a can be any real number
d) $\mathrm{c}=\mathrm{a}=0$ and b can be any real number.

Key. B
Sol. $\quad f(x)=-a \sin x+b e^{-x}-c x^{3}, x \leq 0$

$$
=a \sin x+b e^{x}+c x^{3}, x \geq 0
$$

Clearly continuous at 0 , for differentiability $-a-b=a+b$
86. Let $\mathrm{f}:[0,1] \rightarrow[0,1]$ be a continuous function. The equation $\mathrm{f}(\mathrm{x})=\mathrm{x}$
a) will have at least one solution.
b) will have exactly two solutions.
c) will have no solution
d) None of these

Key. A
Sol. $\quad g(x)=f(x)-x$

$$
\mathrm{g}(0) \mathrm{g}(1)=\mathrm{f}(0)(\mathrm{f}(1)-1) \leq 0
$$

87. The value of $f(0)$, so that the function $f(x)=\frac{1-\cos (1-\cos x)}{x^{4}}$ is continuous everywhere, is
a) $1 / 8$
b) $1 / 2$
c) $1 / 4$
d) $1 / 16$

Key. A
Sol. $f(0)=\lim _{h \rightarrow 0} \frac{1-\cos (1-\cos h)}{h^{4}} \times \frac{1+\cos (1-\cos h)}{1+\cos (1-\cos h)}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin ^{2}(1-\cos h)}{h^{4} \cdot(1+\cos (1-\cos h)} \cdot \frac{(1-\cos h)^{2}}{(1-\cos h)^{2}} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin (1-\cos h)}{(1-\cos h)}\right]^{2} \times \lim _{h \rightarrow 0}\left(\frac{1-\cos h}{h^{2}}\right)^{2} \times \lim _{h \rightarrow 0} \frac{1}{1+\cos (1-\cos h)} \\
& =(1)^{2} \times \frac{1}{4} \times \frac{1}{2}=\frac{1}{8} .
\end{aligned}
$$

88. Let $f(x+y)=f(x) f(y)$ for all x and y. Suppose that $f(3)=3$ and $f^{\prime}(0)=11$ then $f^{\prime}(3)$ is given by
a) 22
b) 44
c) 28
d) 33

Key. D
Sol. $\mathrm{Q} f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h}
$$

$$
=f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h}
$$

$$
\left.=f(x) f^{\prime}(0) \text { since } 1=f(0) \text { [By putting } x=3, y=0, \text { we can show that } f(0)=1\right]
$$

$$
f^{\prime}(3)=f(3) f^{\prime}(0)
$$

$$
=3 \times 11=33
$$

89. Let $f(x)=[\cos x+\sin x], 0<x<2 \pi$, where $[x]$ denotes the greatest integer less than or equal to x. The number of points of discontinuity of $f(x)$ is
a) 6
b) 5
c) 4
d) 3

Key. B
Sol. $\quad[\cos x+\sin x]=[\sqrt{2} \cos (x-\pi / 4]$
We know that $[x]$ is discontinuous at integral values of x,
Now, $\sqrt{2} \cos (x-\pi / 4)$ is an integer.
at $\quad x=\pi / 2,3 \pi / 4, \pi, 3 \pi / 2,7 \pi / 4$
90. The function f defined by $f(x)=\left\{\begin{array}{l}\frac{1}{2} \text { if } x \text { is rational } \\ \frac{1}{3} \text { if } x \text { is Irrational }\end{array}\right.$
(a) Discontinuous for all x
(b) Continuous at $x=2$
(c) Continuous at $x=\frac{1}{2}$
(d) Continuous at $x=3$

Key. A
Sol. If x is Rational any interval there lie many rationals as well as infinitely many Irrationals
$\therefore \forall n \in N \exists$ an Irrational number x_{n} such that $x-\frac{1}{n}<x_{n}<x+\frac{1}{n} \Rightarrow\left|x_{n}-x\right|<\frac{1}{n}, \forall n$
$\Rightarrow \underset{n \rightarrow \infty}{\operatorname{Lt}} f\left(x_{n}\right)=\frac{1}{3}$, Similarly in case of Irrational
91. Number of points where the function $f(x)=\max (|\tan x|, \cos |x|)$ is non differentiable in the interval $(-\pi, \pi)$ is
A) 4
B) 6
C) 3
D) 2

Key. A
Sol. The function is not differentiable and continuous at two points between $x=-\pi / 2 \& x=\pi / 2$ also function is not continuous at $x=\frac{\pi}{2}$ and $x=-\frac{\pi}{2}$ hence at four points function is not differentiable

92. The function $f(x)=$ maximum $\{\sqrt{\mathrm{x}(2-\mathrm{x})}, 2-\mathrm{x}\}$ is non-differentiable at x equal to
A) 1
B) 0.2
C) 0,1
D) 1,2

Key. D
Sol.

93. Let $f(x)=[n+p \sin x], x \in(0, \pi), n \in Z, p$ is a prime number and $[x]$ is greatest integer less than or equal to x. The number of points at which $f(x)$ is not differentiable is
A) p
B) $p-1$
C) $2 p+1$
D) $2 p-1$

Key. D
Sol. $\mathrm{f}(\mathrm{x})=[\mathrm{n}+\mathrm{p} \sin \mathrm{x}]=\mathrm{n}+[\mathrm{p} \sin \mathrm{x}]$

$$
[p \sin x]=\left\{\begin{array}{cc}
0 & 0 \leq \sin x<\frac{1}{p} \\
1 & \frac{1}{\mathrm{p}} \leq \sin x<\frac{2}{\mathrm{p}} \\
2 & \frac{2}{\mathrm{p}} \leq \sin x<\frac{3}{\mathrm{p}} \\
\mathrm{p}-1 & \frac{\mathrm{p}-1}{\mathrm{p}} \leq \sin \mathrm{x}<1 \\
\mathrm{p} & \sin \mathrm{x}=1
\end{array}\right.
$$

$\therefore \quad$ Number of points of discontinuituy are $2(p-1)+1=2 p-1$ else where it is differentiable and the value $=0$
94. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be any function and $\mathrm{g}(\mathrm{x})=\frac{1}{\mathrm{f}(\mathrm{x})}$. Then g is
A) onto if f is onto
B) one-one if f is one-one
C) continuous if f is continuous
D) differentiable if f is differentiable

Key. B
Sol. $\quad \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \quad \mathrm{g}(\mathrm{x})=\frac{1}{\mathrm{f}(\mathrm{x})}$
$g^{\prime}(x)=-\frac{1}{f(x)^{2}} \cdot f^{\prime}(x)$
$\Rightarrow \quad g$ is one - one if f is one - one
95. If $f(x)=[x](\sin k x)^{p}$ is continuous for real x, then
A) $k \in\{n \pi, n \in I\}, p>0$
B) $\mathrm{k} \in\{2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{I}\}, \mathrm{p}>0$
C) $\mathrm{k} \in\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}\}, \mathrm{p} \in \mathrm{R}-\{0\}$
D) $\mathrm{k} \in\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}, \mathrm{n} \neq 0\}$, $\mathrm{p} \in \mathrm{R}-\{0\}$

Key. A
Sol. $\quad f(x)=[x](\sin k x)^{p}$
$(\sin k x)^{p}$ is continuous and differentiable function $\forall x \in R, k \in R$ and $p>0$.
$[\mathrm{X}]$ is discoutinuous at $\mathrm{x} \in \mathrm{I}$
For $\mathrm{k}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$
$\mathrm{f}(\mathrm{x})=[\mathrm{x}](\sin (\mathrm{n} \pi \mathrm{x}))^{\mathrm{p}}$
$\lim _{x \rightarrow a} f(x)=0, a \in I$
and $f(a)=0$
So. $f(x)$ becomes coutinuous for all $x \in R$

96
$f(x)=\left\{\begin{array}{cc}x+2 & x<0 \\ -x^{2}-2 & 0 \leq x<1 \\ x & x \geq 1\end{array}\right.$
Then the number of points of discontinuity of $|f(x)|$ is
A) 1
B) 2
C) 3
D) none of these

Key. A
Sol. $\quad f(x)=\left\{\begin{array}{cc}x+2 & x<0 \\ -x^{2}-2 & 0 \leq x<1 \\ x & x \geq 1\end{array}\right.$
$\therefore \quad|f(x)|=\left\{\begin{array}{cc}-x-2 & x<-2 \\ x+2 & -2 \leq x<0 \\ x^{2}+2 & 0 \leq x<1 \\ x & x \geq 1\end{array}\right.$
Discontinuous at $\mathrm{x}=1$
$\therefore \quad$ number of points of discount. 1
97. $f(x)=\left\{\begin{array}{cc}\frac{e^{e / x}-e^{-e / x}}{e^{1 / x}+e^{-1 / x}} & , \quad x \neq 0 \\ x & , x=0\end{array}\right.$
A) f is continuous at x, when $k=0$
B) f is not continuous at $x=0$ for any real k.
C) $\lim _{x \rightarrow 0} f(x)$ exist infinitely
D) None of these

Key. B
Sol. $\lim _{x \rightarrow 0^{+}} \frac{e^{e / x}-e^{-e / x}}{e^{1 / x}+e^{-1 / x}}=\lim _{x \rightarrow 0^{+}} \frac{e^{\frac{e-1}{e x}}\left(1-e^{-2 e / x}\right)}{\left(1+e^{-2 / x}\right)}=+\infty$
$\lim _{x \rightarrow 0^{-}} \frac{e^{e / x}-e^{-e / x}}{e^{1 / x}+e^{-1 / x}}=\lim _{x \rightarrow 0^{-}} \frac{e^{-e / x}\left(e^{2 e / x}-1\right)}{e^{-e / x}\left(e^{+2 / x}+1\right)}=\lim _{x \rightarrow 0^{-}} e^{-\left(\frac{e-1}{x}\right)}\left(\frac{e^{2 e / x}-1}{e^{2 / x}+1}\right)=-\infty$
Limit doesn't exist So $f(x)$ is discoutinous
98. The correct statement for the function $f(x)=\left\{\begin{array}{cc}x, & x \in Q \\ -x, & x \in R \sim Q\end{array}\right.$ IS
A) continuous every where
B) $f(x)$ is a periodic function
C) discontinuous everywhere except at $x=0$
D) $f(x)$ is an even function

Key. C
Sol. $\quad \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a, x \in Q$
$\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a}(-x)=-a, x \in R-Q$
The limit exists $\Leftrightarrow \mathrm{a}=0$
99. If $f(x)=\operatorname{sgn}(x)$ and $g(x)=x\left(1-x^{2}\right)$, then the number of points of discontinuity of function $f(g(x))$ is
A) exact two
B) exact three
C) finite and more than 3
D) infinitely many

Key. B
Sol. $f(g(x))=\left\{\begin{array}{ccc}1 & , & x<-1 \\ 0 & , & x=-1 \\ -1 & , & -1<x<0 \\ 0 & , & x=0 \\ 1 & , & 0<x<1 \\ 0 & , & x=1 \\ -1 & , & x>1\end{array}\right.$
100. The value of $\operatorname{Argz}+\operatorname{Arg} \bar{z}=0, z=x+i y, \forall x, y \in R$ is ($\operatorname{Arg} z$ stands for principal argument of $z)$
A) 0
B) Non-zero real number
C) Any real number
D) Can't say

Key. D
Sol. Let $\mathrm{z}=-2+0 \mathrm{i}$, then $\overline{\mathrm{z}}=-2-0 \mathrm{i}$
$\therefore \quad \operatorname{Arg}(\mathrm{z})+\operatorname{Arg}(\overline{\mathrm{z}})=2 \pi \neq 0$
If $z=2+3 i$
$\operatorname{Arg}(2-3 i)$ is $\tan ^{-1}\left(-\frac{3}{2}\right)$
$\operatorname{Arg}(2+3 \mathrm{i})+\operatorname{Arg}(2-3 \mathrm{i})=0$
101. If $f(x)=$ maximum $\left(\cos x, \frac{1}{2},\{\sin x\}\right), 0 \leq x \leq 2 \pi$, where $\{$. \} represents fractional part function, then number of points at which $f(x)$ is continuous but not differentiable, is
A) 1
B) 2
C) 3
D) 4

Key. D
Sol. See figure
There are 4 points

102. Function $\left\{\begin{array}{cl}2 x \tan x-\frac{\pi}{\cos x} & , x \neq \frac{\pi}{2} \\ k \quad, & x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$ if $k=$
A) -2
B) 2
C) $\frac{1}{2}$
D) no such values of k exists

Key. A
Sol. $\lim _{x \rightarrow \frac{\pi}{2}}\left(2 x \tan x-\frac{\pi}{\cos x}\right)$
$=\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{2 x \sin x-\pi}{\cos x}\right)=\lim _{h \rightarrow 0}\left(\frac{2\left(\frac{\pi}{2}+h\right) \cosh -\pi}{-\sinh }\right)$
$=\lim _{x \rightarrow 0}-\frac{2 h \cosh }{\sinh }=-2 \quad \therefore \quad k=-2$
103. If $f(x)=\left\{\begin{array}{cl}x^{2}\left\{e^{1 / x}\right\} & x \neq 0 \\ k & x=0\end{array}\right.$ is continuous at $x=0$, then
(\{) denotes fractional part function)
A) It is differentiable at $\mathrm{x}=0$
B) $\mathrm{k}=1$
C) continuous but not differentiable at $\mathrm{x}=0$
D) continuous everywhere in its domain

Key. A
Sol. $\lim _{x \rightarrow 0}(x)=0 \quad\left\{Q \quad \lim _{x \rightarrow 0} x^{2}=0\right.$ and $\left\{e^{1 / x}\right\}$ is a bounded function $\}$
$\lim _{x \rightarrow 0} \frac{f(0+x)-f(0)}{x}=\lim _{x \rightarrow 0} x\left\{e^{1 / x}\right\}=0$
$\therefore \quad f^{\prime}(0)=0$
not continuous at $\mathrm{x}=\log _{2} \mathrm{e}, \log _{3} \mathrm{e}, \ldots$. etc.
104. Let $f(x)=a|\sin x|+b e^{|x|}+c|x|^{3}$. If $f(x)$ is differentiable at $\mathrm{x}=0$ then
A) $\mathrm{c}=\mathrm{a}=0$ and b can be any real number
B) $a+b=0$ and c can be any real number
C) $b=c=0$ and a can be any real number
D) $a=b=c=0$

Key. B
Sol. we have $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}-a \sin x+b e^{-x}-c x^{3} \text { if } x<0 \\ a \sin x+b e^{x}+c x^{3} \text { if } x \geq 0\end{array}\right\}$
$\mathrm{f}(\mathrm{x})$ is obviously continuous at zero.

$$
\begin{aligned}
& \text { L.H.D }=\text { R.H.D } \\
& \left(-a \cos x-b e^{-x}-2 c x^{2}\right)_{x=0}=\left(a \cos x+b e^{x}+2 c x^{2}\right)_{x=0} \\
& \Rightarrow-a-b=a+b \\
& \Rightarrow a+b=0 \text {, and } \mathrm{c} \text { can be any real number }
\end{aligned}
$$

105. The function $f(x)=\min \{|x|-1,|x-2|-1,|x-1|-1\}$ is not differentiable at
A) 2 points
B) 5 points
C) 4 points
D) 3 points

Key. B
Sol. From the graph, it is clear that function is non-differentiable at $0,1 / 2,1,3 / 2,2$.

Continuity \& Differentiability

Integer Answer Type

1. The function $\mathrm{f}(\mathrm{x})=\left|\mathrm{x}^{2}-3 \mathrm{x}+2\right|+\cos |\mathrm{x}|$ is not differentiable at how many values of x .
Key. 2
Sol. $\quad \mathrm{Q} f(\mathrm{x})=\left|\mathrm{x}^{2}-3 \mathrm{x}+2\right|+\cos |\mathrm{x}|$
$=|(x-1)||(x-2)|+\cos |x|$
$f(x)=\left\{\begin{array}{l}x^{2}-3 x+2+\cos x, x<0 \\ x^{2}-3 x+2+\cos x, 0 \leq x<1 \\ -x^{2}-3 x-2+\cos x, 1 \leq x<2 \\ x^{2}-3 x+2+\cos x, x>2\end{array}\right.$
$\therefore f^{\prime}(x)=\left\{\begin{array}{l}2 x-3-\sin x, x<0 \\ 2 x-3-\sin x, 0 \leq x<1 \\ -2 x+3-\sin x, 1 \leq x<2 \\ 2 x-3-\sin x, x>2\end{array}\right.$
it is clear $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=1$.
$\therefore \mathrm{f}^{\prime}\left(1^{-}\right)=-1-\sin 1$
and $f^{\prime}\left(1^{+}\right)=1-\sin 1$.
 $f(x)$ in $[0,1]$ is [[.] denotes G.I.F]
Key. 4

\ $\mathrm{f}(\mathrm{x})=[4 \mathrm{x}]$ which will become discontinuous at $x=\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}$
2. The number of two digits numbers 'a' whose sum of digits is 9 such that

$$
f(x)=\left[\left(\frac{x-2}{a}\right)^{3}\right] \sin (x-2)+a \cos (x-2) \text { is continuous in }[4,6] \text { is. }
$$

Here [.] denotes the greatest integer function
Key. 9
Sol. Clearly $\left(\frac{(x-2)^{3}}{a}\right)=0, \quad x \in[4,6]$
$(x-2)^{3} \in(8,64) \quad \Rightarrow a>64 \Rightarrow a=72,81,90$
No of values
4. If $a \hat{\text { Î }}(-\not ¥,-1) \mathrm{E}(-1,0)$ then the number of points where the function $f(x)=\left|x^{2}+(\alpha-1)\right| x|-\alpha|$ is not differentiable is.
Key. 5

Sol.

Take $g(x)=x^{2}+(\alpha-1) x-\alpha$
$\Rightarrow f(x)=(|x|-1)(|x|+\alpha)$
From graph it is clear that $f(x)$ is not differentiable at ' 5 ' points.
5. If the function f defined by $f(x)=\frac{x(1+a \cos x)-b \sin x}{x^{3}}$ if $x \neq 0$ and $f(0)=1$ is continuous at $x=0$ then $2 a-8 b=$

Key. 7
Sol. $1=f(0)=\operatorname{Lim}_{x \rightarrow 0}^{\operatorname{Lim}} f(x)==_{x \rightarrow 0}^{\operatorname{Lim}} \frac{x\left(1+a\left(1-\frac{x^{2}}{\underline{2}}+\ldots .\right)-b\left(x-\frac{x^{3}}{\underline{3}}+\ldots \ldots\right.\right.}{x^{3}}$
$=\operatorname{Lim}_{x \rightarrow 0}^{\operatorname{Lim}} \frac{x(1+a-b)+x^{3}\left(\frac{-a}{2}+\frac{b}{6}\right)+x^{5}(\lambda)+\ldots \ldots . .}{x^{3}}$
$\Rightarrow 1+a-b=0$ and $\frac{-a}{2}+\frac{b}{6}=1 \Rightarrow a=\frac{-5}{2}, b=\frac{-3}{2}$ and $2 a-8 b=7$
6. If $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all $x, y \in R, f^{1}(0)$ exists and equals to -1 and $f(0)=1$ then $5-f(2)=$
Key. 6
Sol. $\quad f(x+y)=\frac{f(2 x)+f(2 y)}{2}$ and $f(2 x)=2 f(x)-1($ put $y=0)$

Now $f^{1}(x)={ }_{h \rightarrow 0}^{\operatorname{Lim}} \frac{f(x+h)-f(x)}{h}$
$={ }_{h \rightarrow 0}^{L i m} \frac{f(2 x)+f(2 h)-2 f(x)}{2 h}={ }_{h \rightarrow 0}^{L i m} \frac{f(2 h)-1}{2 h}$
$=f^{1}(0)=-1$
/home/mod_jklog/mod_jk.log since $f(0)=1$
$\therefore f(x)=1-x$ and $5-f(2)=5-(-1)=6$
7. The number of two digits numbers ' a ' whose sum of digits is 9 such that

$$
f(x)=\left[\left(\frac{x-2}{a}\right)^{3}\right] \sin (x-2)+a \cos (x-2) \text { is continuous in }[4,6] \text { is. }
$$

Here [.] denotes the greatest integer function
Key. 9
Sol. Clearly $\left(\frac{(x-2)^{3}}{a}\right)=0, \quad x \in[4,6]$

$$
(x-2)^{3} \in(8,64) \quad \Rightarrow a>64 \Rightarrow a=72,81,90
$$

No of values
8. If $f(x)$ is twice differentiable function such that $f(1)=0, f(3)=2, f(4)=-5, f(6)=2$, $f(9)=0$ then the minimum number of zero's of $g^{\prime}(x)=x^{2} f^{\prime \prime}(x)+2 x f^{\prime}(x)+f^{\prime \prime}(x)$ in the interval $(1,9)$ is
Key. (2)
Sol. $\quad f^{\prime}(x)=0$ has minimum three solution between $(1,9)$

$f^{\prime \prime}(x)=0$ has minimum two solution between $(1,9)$
Given equations $\frac{\mathrm{d}}{\mathrm{dx}}\left\{\left(\mathrm{x}^{2}+1\right) \mathrm{f}^{\prime}(\mathrm{x})\right\}=0$
9. In $\triangle \mathrm{ABC}, \frac{\mathrm{r}}{\mathrm{r}_{1}}=\frac{1}{2}$, then the value of $4 \tan \left(\frac{\mathrm{~A}}{2}\right)\left(\tan \frac{\mathrm{B}}{2}+\tan \frac{\mathrm{C}}{2}\right)$ must be

Key. 2
Sol. $\quad \frac{\mathrm{r}}{\mathrm{r}_{1}}=\tan \frac{\mathrm{B}}{2} \tan \frac{\mathrm{C}}{2}=\frac{1}{2}$
$\tan \frac{\mathrm{A}}{2}\left(\tan \frac{\mathrm{~B}}{2}+\tan \frac{\mathrm{C}}{2}\right)=1-\tan \frac{\mathrm{B}}{2} \tan \frac{\mathrm{C}}{2}=\frac{1}{2}$
$\therefore 4 \tan \frac{\mathrm{~A}}{2}\left(\tan \frac{\mathrm{~B}}{2}+\tan \frac{\mathrm{C}}{2}\right)=2$
10. Let $f(x)=\left\{\begin{array}{l}x^{\left[\frac{1}{|x|}\right]} \sum_{r=0} \quad ; x \neq 0 \\ \frac{k}{2} ; \quad \text { otherwise }\end{array}\right.$ ([.]denotes the greatest integer function)

The value of k such that f become continuous at $\mathrm{x}=0$ is
Key. 1
Sol. In the vicinity of $\mathrm{x}=0$, we have $\mathrm{x}^{2} \sum_{\mathrm{r}=0}^{\left[\frac{1}{|x|}\right]} \mathrm{r} \quad=\mathrm{x}^{2}\left(1+2+3+\ldots\left[\frac{1}{|\mathrm{x}|}\right]\right)$
Use sandwich theorem

$$
\begin{aligned}
& \mathrm{P}=\left(1+2+3+\left[\frac{1}{|\mathrm{x}|}\right]\right)=\frac{\mathrm{x}^{2}\left(1+\left[\frac{1}{|\mathrm{x}|}\right]\right.}{2}\left[\frac{1}{|\mathrm{x}|}\right] \\
& \text { So } \frac{1}{2}(1-|\mathrm{x}|)<\mathrm{P} \leq \frac{1}{2}(1+|\mathrm{x}|)
\end{aligned}
$$

Then the limit is $\frac{1}{2}$
11. Let $f:(-\infty, \infty) \rightarrow[0, \infty)$ be a continuous function
such that $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}), \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$. Also $\mathrm{f}^{\prime}(0)=1$.
Then $\left[\frac{f(4)}{f(2)}\right]$ equals ([g| represents greatest integer function)
Key. 8
Sol. Rewrite the equation as
$1+\mathrm{f}(\mathrm{x}+\mathrm{y})=(1+\mathrm{f}(\mathrm{x}))(1+\mathrm{f}(\mathrm{y}))$
Put $g(x)=1+f(x)$ to get

$$
g(x+y)=g(x) g(y)
$$

As $\mathrm{g}(\mathrm{x}) \geq 1$, the function $\ln \mathrm{g}(\mathrm{x})$ is defined.
Also continuous of f implies continuity of g
Let $\mathrm{h}(\mathrm{x})=\ln \mathrm{g}(\mathrm{x})$, we get

$$
h(x+y)=h(x)+h(y)
$$

The only continuous solution of this is $h(x)=k x$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{kx}}-1, \mathrm{f}^{\prime}(0)=1$ gives $\mathrm{k}=1$
12. Let $f(x)=\left[x^{2}\right] \sin \pi x, x \in R$, the number of points in the interval $(0,3]$ at which the function is discontinuous is \qquad
Key. 6
Sol. $f(x)=0 \quad 0<x<1$

$$
\begin{array}{ll}
=\sin \pi x & 1 \leq x<\sqrt{2} \\
=2 \sin \pi x & \sqrt{2} \leq x<\sqrt{3} \\
=3 \sin \pi x & \sqrt{3} \leq x<2 \\
=4 \sin \pi x & \\
2 \leq x<\sqrt{5} \text { etc. }
\end{array}
$$

The function is discontinuous at $\mathrm{x}=\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots \ldots . \sqrt{\mathrm{K}}$ where K is not a perfect square.
Points of discontinuity (desired) $=\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt{8}$
13. The number of integral solution for the equation $x+2 y=2 x y$ is

Key. 2
Sol. $\quad 2 \mathrm{y}=\frac{\mathrm{x}}{\mathrm{x}-1}$
Since y is an integer 2 y is even such that x and $\mathrm{x}-1$ are consecutive integers and hence the only values of x that satisfy are 2 and 0 .
14. The function $f(x)=\left|x^{2}-3 x+2\right|+\cos |x|$ is not differentiable at how many values of x .

Key: 2
Sol: $\quad \mathrm{Q} f(\mathrm{x})=\left|\mathrm{x}^{2}-3 \mathrm{x}+2\right|+\cos |\mathrm{x}|$

$$
\begin{aligned}
& =|(x-1)||(x-2)|+\cos |x| \\
& f(x)=\left\{\begin{array}{l}
x^{2}-3 x+2+\cos x, x<0 \\
x^{2}-3 x+2+\cos x, 0 \leq x<1 \\
-x^{2}-3 x-2+\cos x, 1 \leq x<2 \\
x^{2}-3 x+2+\cos x, x>2
\end{array}\right. \\
& \therefore f^{\prime}(x)=\left\{\begin{array}{l}
2 x-3-\sin x, x<0 \\
2 x-3-\sin x, 0 \leq x<1 \\
-2 x+3-\sin x, 1 \leq x<2 \\
2 x-3-\sin x, x>2
\end{array}\right.
\end{aligned}
$$

it is clear $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=1$.
$\therefore \mathrm{f}^{\prime}\left(1^{-}\right)=-1-\sin 1$
and $\mathrm{f}^{\prime}\left(1^{+}\right)=1-\sin 1$.
15. If the function f defined by $f(x)=\frac{\log (1+x)^{1+x}}{x^{2}}-\frac{1}{x}$ if $x \neq 0$ is continuous at $x=0$, then $6(f(0))=$
Key. 3
Sol. $\quad f(0)==_{x \rightarrow 0}^{\operatorname{Lim}} \frac{\ln (1+x)^{1+x}-x}{x^{2}}={ }_{x \rightarrow 0}^{L i m} \frac{(1+x) \ln (1+x)-x}{x^{2}}$
$={ }_{x \rightarrow 0}^{\operatorname{Lim}} \frac{1+\ln (1+x)-1}{2 x}=\frac{1}{2} \therefore 6 f(0)=3$
16. A function $f: R \rightarrow R$ where R is a set of real numbers satisfies the equation $f\left(\frac{x+y}{3}\right)=\frac{f(x)+f(y)+f(0)}{3}$ for all $x, y \in R$. If the function is differentiable at $x=0$ then show that it is differentiable for all x in R
Sol. $\quad f\left(\frac{x+y}{3}\right)-\frac{f(x)+f(y)+f(0)}{3}$
$\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=$ exist .
$\lim _{h \rightarrow 0} \frac{f(x-h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f\left(\frac{3 x+3 h}{3}\right)-f\left(\frac{3 x+0}{3}\right)}{h}$
$\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{f(3 x)+f(3 h)+f(0)}{3}-\frac{f(3 x)+f(0)+f(0)}{3}\right]=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{f(3 h)-f(0)}{3}\right]$
$=\lim _{h \rightarrow 0} \frac{f(3 h)-f(0)}{3 h}=f^{\prime}(0)$
17. If $f(x)=\left\{\begin{array}{ll}\frac{\tan \left[x^{2}\right] \pi}{a x^{2}}+a x^{3}+b & , 0 \leq x \leq 1 \\ 2 \cos \pi x+\tan ^{-1} x & , 1<x \leq 2\end{array}\right.$ is differentiable in [0, 2], then $b=\frac{\pi}{4}-\frac{26}{k_{2}}$. Find $\mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}$ \{where [] denotes greatest integer function\}.
Ans. 180
Sol. $f(x)=\left\{\begin{array}{cll}a x^{3}+b & , & 0 \leq x \leq 1 \\ 2 \cos \pi x+\tan ^{-1} & , & 1<x \leq 2\end{array}\right.$
$f^{\prime}(x)=\left\{\begin{array}{cl}3 a^{2} & , 0<x<1 \\ -2 \pi \sin \pi x+\frac{1}{1+x^{2}} & , 1<x<2\end{array}\right.$
As the function is differentiable in $[0,2]$
$\Rightarrow \quad$ function is differentiable at $x=1$

$$
\begin{array}{ll}
\therefore & \mathrm{f}^{\prime}\left(1^{-}\right)=\mathrm{f}^{\prime}\left(1^{+}\right) \\
\Rightarrow & 3 \mathrm{a}=\frac{1}{2} \Rightarrow \quad \mathrm{a}=\frac{1}{6}
\end{array}
$$

Function will also be continuous at $\mathrm{x}=1$

$$
\begin{array}{ll}
\therefore & \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} f(x) \\
\Rightarrow & a+b=-2+\frac{\pi}{4} \\
\therefore & b=-2-\frac{1}{6}+\frac{\pi}{4}=\frac{\pi}{4}-\frac{13}{6} \Rightarrow k_{1}=6 \& k_{2}=12 \quad \Rightarrow \quad k_{1}^{2}+k_{2}^{2}=180 \text { Ans. }
\end{array}
$$

18. Let $f(x)=\left\{\begin{array}{cl}|x|^{p} \sin \frac{1}{x}+|\tan x|^{q} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$ be differentiable at $x=0$, then find the least possible value of [$\mathrm{p}+\mathrm{q}$], (where[.] represents greatest integer function)
Ans. 1
Sol. $\lim _{x \rightarrow 0^{+}} \frac{|x|^{p} \sin \frac{1}{x}+x|\tan x|^{q}-0}{x}$
$=\lim _{x \rightarrow 0^{+}}\left(\mathrm{x}^{\mathrm{p}-1} \sin \frac{1}{\mathrm{x}}+|\tan \mathrm{x}|^{q}\right)=0$ if $\mathrm{p}-1>0$ and $\mathrm{q}>0$
$\lim _{x \rightarrow 0^{-}}\left((-1)^{\mathrm{p}} \mathrm{x}^{\mathrm{p}-1} \sin \frac{1}{\mathrm{x}}+|\tan \mathrm{x}|^{\mathrm{q}}\right)=0$ if $\mathrm{p}-1>0$ and $\mathrm{q}>0$
19. (i) If $f(x)=\sin ^{-1} 2 x \sqrt{1-x^{2}}$, then find the values of $f^{\prime}(1 / 2)$ and $f^{\prime}(-1 / 2)$.
(ii) If $f(x)=\cos ^{-1}\left(1-2 x^{2}\right)$, then find the values of $f^{\prime}(1 / 2)$ and $f^{\prime}(-1 / 2)$.

Ans. $\frac{-4}{\sqrt{3}}$

Sol. (i)

$$
-\pi-2 \sin ^{-1} x \quad, \quad-1 \leq x<-\frac{1}{\sqrt{2}}
$$

$$
\begin{array}{lll}
\frac{2}{\sqrt{1-x^{2}}} & , & -\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}} \\
\frac{-2}{\sqrt{1-x^{2}}} & , & \frac{1}{\sqrt{2}}<x<1
\end{array}
$$

$$
f^{\prime}(1 / 2)=\frac{4}{\sqrt{3}}, \quad f^{\prime}(-1 / 2)=\frac{4}{\sqrt{3}}
$$

(ii) $\quad f(x)=\pi-\cos ^{-1}\left(2 x^{2}-1\right)=\pi-\cos ^{-1}(\cos 2 \theta)$, where $x=\cos \theta, \quad 0 \leq \theta \leq \pi$

$$
\begin{aligned}
& =\left\{\begin{array}{ccc}
\pi-2 \theta, & 0 \leq \theta \leq \frac{\pi}{2} \\
\pi-(2 \pi-2 \theta), & \frac{\pi}{2}<\theta \leq \pi
\end{array}=\left\{\begin{array}{lll}
\pi-2 \cos ^{-1} \mathrm{x}, & 0 \leq \mathrm{x} \leq 1 \\
2 \cos ^{-1} \mathrm{x}-\pi & , & -1 \leq \mathrm{x}<0
\end{array}\right.\right. \\
& \therefore \quad \mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{lll}
\frac{2}{\sqrt{1-x^{2}}}, & 0<\mathrm{x}<1 \\
\frac{-2}{\sqrt{1-\mathrm{x}^{2}}}, & -1<\mathrm{x}<0
\end{array}\right. \\
& \therefore \quad f^{\prime}\left(\frac{1}{2}\right)=\frac{4}{\sqrt{3}}, \mathrm{f}^{\prime}\left(-\frac{1}{2}\right)=\frac{-4}{\sqrt{3}}
\end{aligned}
$$

