3D-Geometry

Single Correct Answer Type

1. In a three dimensional co - ordinate system P, Q and R are images of a point $A(a, b, c)$ in the x y the $y-z$ and the $z-x$ planes respectively. If G is the centroid of triangle $P Q R$ then area of triangle AOG is (O is the origin)
a) 0
b) $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$
c) $\frac{2}{3}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)$
d) none of these
Key. A
Sol. Point A is (a, b, c)
\Rightarrow Points P, Q, R are $(a, b,-c),(-a, b, c)$ and $(a,-b, c)$ respectively.
\Rightarrow centroid of triangle PQR is $\left(\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{3}\right)$
$\Rightarrow \mathrm{G} \equiv\left(\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{3}\right)$
$\Rightarrow A, O, G$ are collinear \Rightarrow area of triangle $A O G$ is zero.
2. The four lines drawing from the vertices of any tetrahedron to the centroid of the opposite faces meet in a point whose distance from each vertex is ' k ' times the distance from each vertex to the opposite face, where k is
a) $\frac{1}{3}$
b) $\frac{1}{2}$
c) $\frac{3}{4}$
d) $\frac{5}{4}$

Key. C
Sol. Let $\mathrm{A}\left(x_{1}, y_{1}, z_{1}\right) \mathrm{B}\left(x_{2}, y_{2}, z_{2}\right) \mathrm{C}\left(x_{3}, y_{3}, z_{3}\right) \mathrm{D}\left(x_{4}, y_{4}, z_{4}\right)$ be the vertices of tetrahydron. If E is the centroid of face BCD and G is the centroid of ABCD the $\mathrm{AG}=3 / 4(A E) \therefore K=3 / 4$
3. The coordinates of the circumcentre of the triangle formed by the points $(3,2,-5),(-3,8,-5)(-$ $3,2,1$) are
a) $(-1,4,-3)$
b) $(1,4,-3)$
c) $(-1,4,3)$
d) $(-1,-4,-3)$

Key. A
Sol. Triangle formed is an equilateral \Rightarrow Circum centre $=$ centroid $=(-1,4,-3)$
4. The volume of a right triangular prism $\mathrm{ABCA}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ is equal to 3 . Than the co-ordinates of the vertex A_{1}, if the co-ordinates of the base vertices of the prism are $\mathrm{A}(1,0,1), \mathrm{B}(2,0,0)$ and $\mathrm{C}(0$, $1,0)$
a) $(-2,2,2)$ or $(0,-2,1)$
b) $(2,2,2)$ or $(0,-2,0)$
c) $(0,2,0)$ or $(1,-2,0)$
d) $(3,-2,0)$ or $(1,-2,0)$

Key. B
Sol. Volume $=$ Area of base \times height

$3=\frac{1}{2}, \sqrt{2}, \sqrt{3}, h$
$h=\sqrt{6}$
$\left(\mathrm{A}_{1} \mathrm{~A}\right)^{2}=\mathrm{h}^{2}=6$
$\overrightarrow{A_{1} A} \cdot \overrightarrow{A B}=0$
$\overrightarrow{A_{1} A} \cdot \overrightarrow{A C}=0$
$\overrightarrow{A A_{1}} \cdot \overrightarrow{B C}=0$
solving we get position vector of A_{1} are $(0,-2,0)$ or $(2,2,2)$
5. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a}+\vec{b}+\vec{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are angles between the vectors $\vec{a}, \vec{b} ; \vec{b}, \vec{c}$ and \vec{c}, \vec{a}, respectively, then among θ_{1}, θ_{2} and θ_{3}.
a) all are acute angles
b) all are right angles
c) at least one is obtuse angle
d) None of these

Key. C
Sol. Since $|\vec{a}+\vec{b}+\vec{c}|=1 \Rightarrow(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=1 \Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-1$

$$
\Rightarrow \cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=-1
$$

So, at least one of $\cos \theta_{1}, \cos \theta_{2}$ and $\cos \theta_{3}$ must be negative
6. Given that the points $A(3,2,-4), B(5,4,-6)$ and $C(9,8,-10)$ are collinear, the ratio in which B divides $\overline{A C}$ is :

1) $1: 2$
2) $2: 1$
3)3:2
4)2: 3

Key. 1
Sol. $\left(\frac{9 m+3 n}{m+n}, \frac{8 m+2 n}{m+n}, \frac{-10 m-4 n}{m+n}\right)=(5,4,-6)$

$$
\frac{m}{n}=\frac{1}{2}
$$

7. If $A(0,1,2), B(2,-1,3)$ and $C(1,-3,1)$ are the vertices of a triangle, then its circumcentre and orthocenter are situated at a distance of
1) 3 units
2) 2 units
3)3/2 units
3) $3 / \sqrt{2}$ units

Key. 4
Sol. ortho center- $(2,-1,3)$
Circum center- $\left(\frac{1}{2},-1, \frac{3}{2}\right)$
8. Equation of the plane passing through the origin and perpendicular to the planes $x+2 y+z=1,3 x-4 y+z=5$ is

1) $x+2 y-5 z=0$
2) $x-2 y-3 z=0$
3) $x-2 y+5 z=0$
4) $3 x+y-5 z=0$

Key. 4
Sol. $\left|\begin{array}{ccc}i & j & k \\ 1 & 2 & 1 \\ 3 & -4 & 1\end{array}\right|=0$
$A=3 i+j-5 k$
$\Rightarrow 3 x+y-5 z=0$
9. If θ is the angle between $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ and is such that $\sin \theta=1 / 3$, the value of $\lambda=$

1) $-\frac{4}{3}$
2) $\frac{4}{3}$
3) $-\frac{3}{5}$
4) $\frac{5}{3}$

Key. 4
Sol. $\quad \operatorname{Sin} \theta=\left|\frac{2-2+2 \sqrt{\lambda}}{3 \sqrt{5+\lambda}}\right|=\frac{1}{3}$
$\lambda=\frac{5}{3}$
10. The image of the point $(-1,3,4)$ in the plane $x-2 y=0$ is

1) $(15,11,4)$
2) $\left(-\frac{17}{3},-\frac{19}{3}, 1\right)$
3) $\left.\left(\frac{9}{5},-\frac{13}{5}, 4\right) 4\right)\left(-\frac{17}{3},-\frac{19}{3}, 4\right)$

Key. 3
Sol. $\quad \frac{h+1}{1}=\frac{k-3}{-2}=\frac{p-4}{0}=-2\left(\frac{-1-6}{5}\right)$
$(h, k, p)=\left(\frac{9}{5}, \frac{-13}{5}, 4\right)$
11. The plane passing through the points $(-2,-2,2)$ and containing the line joining the points $(1,1,1)$ and $(1,-1,2)$ makes intercepts on the coordinates axes, the sum of whose lengths is

1. 3
2. 4
3. 6
4. 12

Key. 4
Sol. Equation of the plane be $a(x+2)+b(y+2)+c(z-2)=0$. As it passes through $(1,1,1)$ and $(1,-1,2), \frac{a}{1}=\frac{b}{-3}=\frac{c}{-6}$. Equation of the plane is $\frac{x}{-8}+\frac{y}{8 / 3}+\frac{z}{8 / 6}=1$ and the required sum $=12$.
12. An equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $(0,7,-7)$ is

1. $x+y+z=0$
2. $x+2 y-3 z=35$
3. $3 x-2 y+3 z+35=0$
4. $3 x-2 y-z=21$

Key. 1
Sol. Equation of the plane is $A(x+1)+B(y-3)+C(z+2)=0$ where $3 A+2 B+1=0$ and $A+B(7-3)+C(-7+2)=0$
13. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at A, B, C respectively. D and E are the mid-points of $A B$ and $A C$ respectively. Coordinates of the mid-point of DE are

1. $(a, b / 4, c / 4)$
2. $(a / 4, b, c / 4)$
3. $(a / 4, b / 4, c)$
4. $(a / 2, b / 4, c / 4)$

Key. 4
Sol. $\quad A(a, 0,0), B(0, b, 0), C(0,0, c), D(a / 2, b / 2,0), E(a / 2,0, c / 2)$ so midpoint of $D E$ is ($a / 2, b / 4, c / 4)$.
14. The coordinates of a point on the line $x=4 y+5, z=3 y-6$ at a distance $3 \sqrt{26}$ from the point $(5,0,-6)$ are

1. $(17,3,3)$
2. $(-7,3,-15)$
3. $(-17,-3,-3)$
4. $(7,-3,15)$

Key. $\quad 1$
Sol. Line is $\frac{x-5}{4 / \sqrt{26}}=\frac{y}{1 / \sqrt{26}}=\frac{z+6}{3 / \sqrt{26}}$. A point on this line at a distance $3 \sqrt{26}$ from

$$
(5,0,-6) \text { is }(5 \pm(3 \times 4), \pm 3,-6 \pm 9)=(17,3,3) \text { or }(-7,-3,-15)
$$

15. The points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of
16. A right angled isosceles triangle
17. Equilateral triangle
18. An isosceles triangle
19. An obtuse angled triangle

Key. 1

Sol. Length of the sides are 18,18 and 36 .
16. Equation of a plane bisecting the angle between the planes $2 x-y+2 z+3=0$ and $3 x-2 y+6 z+8=0$ is

1. $5 x-y-4 z-45=0$
2. $5 x-y-4 z-3=0$
3. $23 x+13 y+32 z-45=0$
4. $23 x-13 y+32 z+5=0$

Key. 2
Sol. Equations of the planes bisecting the angle between the given planes are
$\frac{2 x-y+2 z+3}{\sqrt{2^{2}+(-1)^{2}+2^{2}}}= \pm \frac{3 x-2 y+6 z+8}{\sqrt{3^{2}+(-2)^{2}+6^{2}}}$
$\Rightarrow 7(2 x-y+2 z+3)= \pm 3(3 x-2 y+6 z+8)$
$\Rightarrow 5 x-y-4 z-3=0$ taking the $+v e$ sign, and $23 x-13 y+32 z+45=0$ taking the - ve sign.
17. If the perpendicular distance of a point P other than the origin from the plane $x+y+z=p$ is equal to the distance of the plane from the origin, then the coordinates of P are

1. $(p, 2 p, 0)$
2. $(0,2 p,-p)$
3. $(2 p, p,-p)$
4. $(2 p,-p, 2 p)$

Key. 3
Sol. The perpendicular distance of the origin $(0,0,0)$ from the plane $x+y+z=p$ is
$\left|\frac{-p}{\sqrt{1+1+1}}\right|=\frac{|p|}{\sqrt{3}}$.
If the coordinates of P are (x, y, z), then we must have

$$
\begin{aligned}
& \left|\frac{x+y+z-p}{\sqrt{3}}\right|=\frac{|p|}{\sqrt{3}} \\
& \Rightarrow|x+y+z-p|=|p|
\end{aligned}
$$

Which is satisfied by (c)
18. If p_{1}, p_{2}, p_{3} denote the distances of the plane $2 x-3 y+4 z+2=0$ from the planes $2 x-3 y+4 z+6=0,4 x-6 y+8 z+3=0$ and $2 x-3 y+4 z-6=0$ respectively, then

1. $p_{1}+8 p_{2}-p_{3}=0$
2. $p_{3}^{2}=16 p_{2}^{2}$
3. $8 p_{2}^{2}=p_{1}^{2}$
4. $p_{1}+2 p_{2}+3 p_{3}=\sqrt{29}$

Key. $\quad 1$ or 4
Sol. Since the planes are all parallel planes, $p_{1}=\frac{|2-6|}{\sqrt{2^{2}+3^{2}+4^{2}}}=\frac{4}{\sqrt{4+9+16}}=\frac{4}{\sqrt{29}}$
Equation of the plane $4 x-6 y+8 z+3=0$ can be written as $2 x-3 y+4 z+3 / 2=0$
So $p_{2}=\frac{|2-3 / 2|}{\sqrt{2^{2}+3^{2}+4^{2}}}=\frac{1}{2 \sqrt{29}}$ and $p_{3}=\frac{|2+6|}{\sqrt{2^{2}+3^{2}+4^{2}}}=\frac{8}{\sqrt{29}}$
$\Rightarrow \quad p_{1}+8 p_{2}-p_{3}=0$
19. The radius of the circle in which the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0$ is cut by the plane $x+2 y+2 z+7=0$ is

1. 2
2. 3
3.4
3. 1

Key. 2
Sol. Centre of the sphere is $(-1,1,2)$ and its radius is $\sqrt{1+1+4+19}=5$.
Length of the perpendicular from the centre on the plane is $\left|\frac{-1+2+4+7}{\sqrt{1+4+4}}\right|=4$
Radius of the required circle is $\sqrt{5^{2}-4^{2}}=3$.
20. The shortest distance from the plane $12 x+4 y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is

1. $11 \frac{3}{4}$
2. 13
3. 39
4. 26

Key. 2
Sol. The centre of the sphere is $(-2,1,3)$ and its radius is $\sqrt{4+1+9+155}=13$
Length of the perpendicular from the centre of the sphere on the plane is

$$
\left|\frac{-24+4+9-327}{\sqrt{144+16+9}}\right|=\frac{338}{13}=26
$$

So the plane is outside the sphere and the required distance is equal to $26-13=13$.
21. An equation of the plane passing through the line of intersection of the planes
$x+y+z=6$ and $2 x+3 y+4 z+5=0$ and the point $(1,1,1)$ is

1. $2 x+3 y+4 z=9$
2. $x+y+z=3$
3. $x+2 y+3 z=6$
4.

$$
20 x+23 y+26 z=69
$$

Key. 4
Sol. Equation of any plane through the line of intersection of the given planes is
$2 x+3 y+4 z+5+\lambda(x+y+z-6)=0$
It passes through $(1,1,1)$ if $(2+3+4+5)+\lambda(1+1+1-6)=0 \Rightarrow \lambda=14 / 3$ and the required equation is therefore, $20 x+23 y+26 z=69$.
22. The volume of the tetrahedron included between the plane $3 x+4 y-5 z-60=0$ and the coordinate planes is

1. 60
2. 600
3. 720
4. None of these

Key. 2
Sol. Equation of the given plane can be written as $\frac{x}{20}+\frac{y}{15}+\frac{z}{-12}=1$
Which meets the coordinates axes in points $A(20,0,0), B(0,15,0)$ and $C(0,0,-12)$ and the coordinates of the origin are $(0,0,0)$.
\therefore the volume of the tetrahedron $O A B C$ is

$$
\frac{1}{6}\left|\begin{array}{cccc}
0 & 0 & 0 & 1 \\
20 & 0 & 0 & 1 \\
0 & 15 & 0 & 1 \\
0 & 0 & -12 & 1
\end{array}\right|=\left|\frac{1}{6} \times 20 \times 15 \times(-12)\right|=600
$$

23. Two lines $x=a y+b, z=c y+d$ and $x=a^{1} y+b^{1}, z=c^{1} y+d^{1}$ will be perpendicular, if and only if
24. $a a^{1}+b b^{1}+c c^{1}=0$
25. $\left(a+a^{1}\right)\left(b+b^{1}\right)\left(c+c^{1}\right)=0$
26. $a a^{1}+c c^{1}+1=0$
27. $a a^{1}+b b^{1}+c c^{1}+1=0$

Key. $\quad 3$
Sol. Lines can be written as $\frac{x-b}{a}=\frac{y}{1}=\frac{z-d}{c}$ and $\frac{x-b^{1}}{a^{1}}=\frac{y}{1}=\frac{z-d^{1}}{c^{1}}$ which will be perpendicular if and only if $a a^{1}+1+c c^{1}=0$
24. A tetrahedron has vertices at $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then the angle between the faces $O A B$ and $A B C$ will be

1. $\cos ^{-1}(17 / 31)$
2. 30^{0}
3. 90^{0}
4. $\cos ^{-1}(19 / 35)$

Key. 4
Sol. Let the equation of the face $O A B$ be $a x+b y+c z=0$ where
$a+2 b+c=0$ and $2 a+b+3 c=0 \Rightarrow \frac{a}{5}=\frac{b}{-1}=\frac{c}{-3}$
25. If the angle θ between the lines $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=1 / 3$, then the value of λ is

1. $3 / 4$
2. $-4 / 3$
3. $5 / 3$
4. $-3 / 5$

Key. 3
Sol. Since the line makes an angle θ with the plane in makes an angle $\pi / 2-\theta$ with normal to the plane
$\therefore \quad \cos \left(\frac{\pi}{2}-\theta\right)=\frac{2(1)+(-1)(2)+(\sqrt{\lambda})(2)}{\sqrt{1+4+4} \times \sqrt{4+1+\lambda}}$
$\Rightarrow \frac{1}{3}=\frac{2 \sqrt{\lambda}}{3 \sqrt{\lambda+5}} \Rightarrow \lambda+5=4 \lambda$
$\Rightarrow \lambda=5 / 3$
26. The ratio in which the $y z$ plane divides the segment joining the points $(-2,4,7)$ and $(3,-5,8)$ is

1. $2: 3$
2. $3: 2$
3. $4: 5$
4. $-7: 8$

Key. 1
Sol. Let $y z$ plane divide the segment joining $(-2,4,7)$ and $(3,-5,8)$ in the ration $\lambda: 1$. Then $\Rightarrow \frac{3 \lambda-2}{\lambda+1}=0 \Rightarrow \lambda=\frac{2}{3}$ and the required ratio is $2: 3$.
27. The coordinates of the point equidistant from the points $(a, 0,0),(0, a, 0),(0,0, a)$ and $(0,0,0)$ are

1. $(a / 3, a / 3, a / 3)$
2. $(a / 2, a / 2, a / 2)$
3. (a, a, a)
4. $(2 a, 2 a, 2 a)$

Key. 2

Sol. Let the coordinates of the required point be (x, y, z) then
$x^{2}+y^{2}+z^{2}=(x-a)^{2}+y^{2}+z^{2}=x^{2}+(y-a)^{2}+z^{2}=x^{2}+y^{2}+(z-a)^{2}$ $\Rightarrow x=a / 2=y=z$. Hence the required point is $(a / 2, a / 2, a / 2)$.
28. Algebraic sum of the intercepts made by the plane $x+3 y-4 z+6=0$ on the axes is

1. $-13 / 2$
2. $19 / 2$
3. $-22 / 3$
4. $26 / 3$

Key. 1
Sol. Equation of the plane can be written as $\frac{x}{-6}+\frac{y}{-2}+\frac{z}{3 / 2}=1$
So the intercepts on the coordinates axes are $-6,-2,3 / 2$ and the required sum is $-6-2+3 / 2=-13 / 2$.
29. If a plane meets the co-ordinate axes in A, B, C such that the centroid of the triangle $A B C$ is the point $\left(1, r, r^{2}\right)$, then equation of the plane is

1. $x+r y+r^{2} z=3 r^{2}$
2. $r^{2} x+r y+z=3 r^{2}$
3. $x+r y+r^{2} z=3$
4. $r^{2} x+r y+z=3$

Key. 2
Sol. Let an equation of the required plane be $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$

This meets the coordinates axes in $A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$.

So that the coordinates of the centroid of the triangle $A B C$ are
$(a / 3, b / 3, c / 3)=\left(1, r, r^{2}\right)($ given $) \Rightarrow a=3, b=3 r, 3 r^{2}$ and the required equation of the plane is
$\frac{x}{3}+\frac{y}{3 r}+\frac{z}{3 r^{2}}=1$ or $r^{2} x+r y+z=3 r^{2}$.
30. An equation of the plane passing through the point $(1,-1,2)$ and parallel to the plane

$$
3 x+4 y-5 z=0 \text { is }
$$

1.
2. $3 x+4 y-5 z=11$
3. $6 x+8 y-10 z=1$
4. $3 x+4 y-5 z=2$
$3 x+4 y-5 z+11=0$

Key. 1
Sol. Equation of any plane parallel to the plane $3 x+4 y-5 z=0$ is $3 x+4 y-5 z=K$

If it passes through $(1,-1,2)$, then $3-4-5(2)=K \Rightarrow K=-11$

So the required equation is $3 x+4 y-5 z+11=0$.
31. Equations of a line passing through $(2,-1,1)$ and parallel to the line whose equations are $\frac{x-3}{2}=\frac{y+1}{7}=\frac{z-2}{-3}$, is

1. $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-1}{2}$
2. $\frac{x-2}{2}=\frac{y+1}{7}=\frac{z-1}{-3}$
3. $\frac{x-2}{2}=\frac{y-7}{-1}=\frac{z+3}{1}$
4. $\frac{x-3}{2}=\frac{y+1}{-1}=\frac{z-2}{1}$

Key. 2
Sol. The required line passes through $(2,-1,1)$ and its direction cosines are proportional to $2,7,-3$ so its equation is $\frac{x-2}{2}=\frac{y+1}{7}=\frac{z-1}{-3}$
32. The ratio in which the plane $2 x-1=0$ divides the line joining $(-2,4,7)$ and $(3,-5,8)$ is

1. $2: 3$
2. $4: 5$
3. $7: 8$
4. $1: 1$

Key. 4
Sol. Let the required ratio be $k: 1$, then the coordinates of the point which divides the join of the points $(-2,4,7)$ and $(3,-5,8)$ in this ratio are given by $\left(\frac{3 k-2}{k+1}, \frac{-5 k+4}{k+1}, \frac{8 k+7}{k+1}\right)$

As this point lies on the plane $2 x-1=0$.
$\Rightarrow \frac{3 k-2}{k+1}=\frac{1}{2} \Rightarrow k=1$ and thus the required ratio as $1: 1$.
33. If $l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $l_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$, are d.c.'s of $\overrightarrow{O A}, \overrightarrow{O B}$ such that $\lfloor A O B=\theta$ where ' O ' is the origin, then the d.c.'s of the internal bisector of the angle $\lfloor A O B$ are
(A) $\frac{l_{1}+l_{2}}{2 \sin \theta / 2}, \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{2 \sin \theta / 2}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2 \sin \theta / 2}$
(B) $\frac{l_{1}+l_{2}}{2 \cos \theta / 2}, \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{2 \cos \theta / 2}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2 \cos \theta / 2}$
(C) $\frac{l_{1}-l_{2}}{2 \sin \theta / 2}, \frac{\mathrm{~m}_{1}-\mathrm{m}_{2}}{2 \sin \theta / 2}, \frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{2 \sin \theta / 2}$
(D) $\frac{l_{1}-l_{2}}{2 \cos \theta / 2}, \frac{\mathrm{~m}_{1}-\mathrm{m}_{2}}{2 \cos \theta / 2}, \frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{2 \cos \theta / 2}$

Key. B
Sol. Let $O A$ and $O B$ be two lines with d.c's I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2}. Let $O A=O B=1$. Then, the coordinates of A and B are $\left(I_{1}, m_{1}, n_{1}\right)$ and $\left(I_{2}, m_{2}, n_{2}\right)$, respectively. Let $O C$ be the bisector of $\angle A O B$. Then, C is the mid point of $A B$ and so its coordinates are $\left(\frac{l_{1}+l_{2}}{2}, \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{2}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2}\right)$.
\therefore d.r's of OC are $\frac{l_{1}+l_{2}}{2}, \frac{\mathrm{~m}_{1}+\mathrm{m}_{2}}{2}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2}$

We have, $\mathrm{OC}=\sqrt{\left(\frac{\mathrm{l}_{1}+\mathrm{l}_{2}}{2}\right)^{2}+\left(\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{2}\right)^{2}+\left(\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2}\right)^{2}}$
$=\frac{1}{2} \sqrt{\left(l_{1}^{2}+\mathrm{m}_{1}^{2}+\mathrm{n}_{1}^{2}\right)+\left(l_{2}^{2}+\mathrm{m}_{2}^{2}+\mathrm{n}_{2}^{2}\right)+2\left(l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right)}$
$=\frac{1}{2} \sqrt{2+2 \cos \theta} \quad\left[\mathrm{Q} \cos \theta=l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right]$
$=\frac{1}{2} \sqrt{2(1+\cos \theta)}=\cos \left(\frac{\theta}{2}\right)$

\therefore d.c's of OC are $\frac{l_{1}+l_{2}}{2(\mathrm{OC})}, \frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{2(\mathrm{OC})}, \frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2(\mathrm{OC})}$
34. A line is drawn from the point $P(1,1,1)$ and perpendicular to a line with direction ratios $(1,1,1)$ to intersect the plane $x+2 y+3 z=4$ at Q. The locus of point Q is
A) $\frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}$
B) $\frac{x}{-2}=\frac{y-5}{1}=\frac{z+2}{1}$
C) $\quad x=y=z$
D) $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$

Key. A
Sol. Locus of ' Q ' is the line of intersection of the plane $x+2 y+3 z=4$ and

$$
1(x-1)+1(y-1)+1(z-1)=0 \Rightarrow \text { then the line is } \frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}
$$

35. A line is drawn from the point $\mathrm{P}(1,1,1)$ and perpendicular to a line with direction ratios $(1,1,1)$ to intersect the plane $x+2 y+3 z=4$ at Q . The locus of point Q is
A) $\frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}$
B) $\frac{x}{-2}=\frac{y-5}{1}=\frac{z+2}{1}$
C) $x=y=z$
D) $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$

Key: A
Hint: Locus of Q is the line of intersection of the plane $x+2 y+3 z=4$ and

$$
1(x-1)+1(y-1)+1(z-1)=0 \Rightarrow \text { then line is } \frac{x}{1}=\frac{y-5}{-2}=\frac{z+2}{1}
$$

36. If a line with direction ratios $2: 2: 1$ intersects the line $\frac{x-7}{3}=\frac{y-5}{2}=\frac{z-3}{1}$ and $\frac{x-1}{2}=\frac{y+1}{4}=\frac{z+1}{3}$ at A and B then $A B=$.
a) $\sqrt{2}$
b) 2
c) $\sqrt{3}$
d) 3

Key:
Hint $\mathrm{A}(7+3 \alpha, 5+2 \alpha, 3+\alpha), \mathrm{B}(1+2 \beta,-1+4 \beta,-1+3 \beta)$
Dr's of $A B$ are 2:2:1
$\frac{6+3 \alpha-2 \beta}{2}=\frac{3+\alpha-2 \beta}{1}=\frac{4+\alpha-3 \beta}{1}$
$\alpha=-2, \beta=1$
$A(1,1,1) B(3,3,2)$
$A B=3$
37. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the points on x, y and z axes respectively in a three dimensional co-ordinate system with O as origin. Suppose the area of triangles OAB, OBC and OCA are 4, 12 and 6 respectively, then the area of the triangle ABC equals
(A) 16
(B) 14
(C) 28
(D) 32

Key: B
Hint $\quad[A B C]=\sqrt{[O A B]^{2}+[O B C]^{2}+[O C A]^{2}}$
where $[A B C]=$ area of triangle $A B C$
38. The area of the figure formed by the points $(-1,-1,1) ;(1,1,1)$ and their mirror images on the plane $3 x+2 y+4 z+1=0$ is
(a) $\frac{5 \sqrt{33}}{29}$
(b) $\frac{4 \sqrt{33}}{29}$
(c) $\frac{20 \sqrt{33}}{27}$
(d) $\frac{20 \sqrt{33}}{29}$

Key. D

Sol.
Req. area $=\triangle P Q Q^{1}$
$=2 \Delta P Q M$
$=2 \cdot \frac{1}{2} \cdot Q M \cdot P M$
39. If a plane passes through the point $(1,1,1)$ and is perpendicular to the line $\frac{x-1}{3}=\frac{y-1}{0}=\frac{z-1}{4}$ then its perpendicular distance from the origin is
(A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $\frac{7}{5}$
(D) 1

Key: C
Hint: The d.r of the normal to the plane is $3,0,4$. The equation of the plane is $3 x+0 y+4 z+d=0$ since it passes through $(1,1,1)$ so; $d=-7$
Now distance of the plane $3 x+4 z-7=0$ from $(0,0,0)$ is $\frac{7}{\sqrt{3^{2}+4^{2}}}=\frac{7}{5}$ unit
40. Three straight lines mutually perpendicular to each other meet in a point P and one of them intersects the x-axis and another intersects the y-axis, while the third line passes through a fixed point ($0,0, c$) on the z-axis. Then the locus of P is
A) $x^{2}+y^{2}+z^{2}-2 c x=0$
B) $x^{2}+y^{2}+z^{2}-2 c y=0$
C) $x^{2}+y^{2}+z^{2}-2 c z=0$
D) $x^{2}+y^{2}+z^{2}-2 c(x+y+z)=0$

Key: C
Hint: Let L_{1}, L_{2}, L_{3} be the mutually perpendicular lines and $\mathrm{P}\left(x_{0}, y_{0}, z_{0}\right)$ be their point of concurrence. If L_{1} cuts the x -axis at $\mathrm{A}(\mathrm{a}, 0,0), L_{2}$ meets the y -axis at $\mathrm{B}(0, \mathrm{~b}, 0)$ and $\mathrm{C}(0,0, \mathrm{c})$ $\in L_{3}$, then $L_{1} 11\left(x_{0}-a, y_{0}, z_{0}\right), L_{2} 11\left(x_{0}, y_{0}-b, z_{0}\right)$ and $L_{3} 11\left(x_{0}, y_{0}, z_{0}-c\right)$. Hence $\left.x_{0}\left(x_{0}-a\right)+y_{0}\left(y_{0}-b\right)+z_{0}^{2}=0\right\}$
$x_{0}^{2}+\left(y_{0}-b\right) y_{0}+z_{0}\left(z_{0}-c\right)=0$
$x_{0}\left(x_{0}-a\right)+y_{0}^{2}+z_{0}\left(z_{0}-c\right)=0$
Eliminating a and b from the equations, we get

$$
x_{0}^{2}+y_{0}^{2}+z_{0}^{2}-2 c z_{0}=0
$$

41. The centroid of the triangle formed by $(0,0,0)$ and the point of intersection of $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{1}$ with $x=0$ and $y=0$ is
(a) $(1,1,1)$
(b) $\left(\frac{1}{6}, \frac{-1}{3}, \frac{1}{6}\right)$
(c) $\left(\frac{-1}{6}, \frac{1}{3}, \frac{-1}{6}\right)$
(d) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Key. B
Sol. Any point on the given line $(K+1,2 K+1, K+1)$
but $x=0 \Rightarrow A(0,-1,0)$

$$
y=0 \quad \Rightarrow B\left(\frac{1}{2}, 0, \frac{1}{2}\right) ; 0(0,0,0)
$$

42. The plane $x-y-z=4$ is rotated through 90° about its line of intersection with the plane $x+y+2 z=4$ and equation in new position is $A x+B y+C z+D=0$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are least positive integers and $D<0$ then
(a) $D=-10$
(b) $A B C=-20$
(c) $A+B+C+D=0$
(d) $A+B+C=10$

Key. D
Sol. Given planes are $x-y-z=4$ \qquad (1) and $x+y+2 z=4$ \qquad
Since required plane passes through the line of intersection (1) \& (2)
\Rightarrow Its equation is $(x-y-z-4)+\alpha(x+y+2 z-4)=0$
$\Rightarrow(1+\alpha) x+(\alpha-1) y+(2 \alpha-1) z-(4 \alpha+4)=0$
Since (1) \& (3) are perpendicular
$\Rightarrow 1(1+\alpha)-1(\alpha-1)-1(2 \alpha-1)=0$
$1+\alpha-\alpha+1-2 \alpha+1=0 \quad \Rightarrow \alpha=3 / 2$
\Rightarrow Its equations is $(x-y-z-4)+\frac{3}{2}(x+y+2 z-4)=0$
$5 x+y+4 z-20=0$
43. Three lines $y-z-1=0=x ; z+x+1=0=y ; x-z-1=0=y$ intersect the xy plane at A, B, C then orthocenter of triangle $A B C$ is
(a) $(0,1,0)$
(b) $(-1,0,0)$
(c) $(0,0,0)$
(d) $(1,1,1)$

Key. A
Sol. Intersection of $y-z-1=0=x$ with xy plane gives $A(0,1,0)$ similarly $B(-1,0,0)$, $C(1,0,0)$
\therefore orthocentre is $(0,1,0)$
44. The lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta} ; \frac{x-b+c}{\beta-r}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+r}$ are coplanar and the equation of the plane in which they lie is
(a) $x+y+z=0$
(b) $x-y+z=0$
(c) $x-2 y+z=0$
(d) $x+y-2 z=0$

Key. C
Sol.

45. The reflection of the point $P(1,0,0)$ in the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ is
(a) $(3,-4,-2)$
(b) $(5,-8,-4)$
(c) $(1,-1,-10)$
(d) $(2,-3,8)$

Key: b
Hint: Coordinates of any point Q on the given line are
$(2 r+1,-3 r-1,8 r-10)$ for some $r \in R$
So the direction ratios of $P Q$ are $2 r,-3 r-1,8 r-10$
Now $P Q$ is perpendicular to the given line
if $2(2 r)-3(-3 r-1)+8(8 r-10)=0$
$\Rightarrow 77 r-77=0 \Rightarrow r=1$
and the coordinates of Q, the foot of the perpendicular from P on the line are $(3,-4,-2)$.
Let $R(a, b, c)$ be the reflection of P in the given lines when Q is the mid-point of $P R$
$\Rightarrow \frac{\mathrm{a}+1}{2}=3, \frac{\mathrm{~b}}{2}=-4, \frac{\mathrm{c}}{2}=-2$
$\Rightarrow a=5, b=-8, c=-4$
and the coordinates of the required point are $(5,-8,-4)$.
46. Reflection of plane $2 x+3 y+4 z+1=0$ in plane $x+2 y+3 z-2=0$ is
(A) $6 x-19 y+32 z=47$
(B) $6 x+19 y+32 z=47$
(C) $6 x+19 y+16 z=47$
(D) $3 x+19 y+16 z=47$

Key. B
Sol. $\quad 2 x+3 y+4 z+1=0$
$x+2 y+3 z-2=0$

(iii) is reflection of plane
reflection of $a x+b y+c z+d=0$ in $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$
$=\left(a a^{\prime}+b b^{\prime}+c c^{\prime}\right)\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)$
$=\left(\mathrm{a}^{\prime 2}+\mathrm{b}^{\prime 2}+\mathrm{c}^{\prime 2}\right)(\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d})$
$2(2+6+12)(x+2 y+3 z-2)=\left(1^{2}+2^{2}+3^{2}\right)(2 x+3 y+4 z+1)$
$4(x+2 y+32-2)=14(2 x+3 y+4 z+1)$
$12 x+38 y+64 z=94$
$\Rightarrow 6 \mathrm{x}+19 \mathrm{y}+32 \mathrm{z}=47$
47. The reciprocal of the distance between two points, one on each of the lines $\frac{x-2}{3}=\frac{y-4}{2}=\frac{z-5}{5}$ and $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
(A) cannot be less than 9
(B) having minimum value $5 \sqrt{3}$
(C) cannot be greater than 78
(D) cannot be $2 \sqrt{19}$

Key. D
Sol. The shortest distance $(S D)=\frac{\left.\left|\begin{array}{ccc}2-1 & 4-2 & 5-3 \\ 2 & 3 & 4 \\ 3 & 2 & 5\end{array}\right| \right\rvert\,}{\left.\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 3 & 4 \\ 3 & 2 & 5\end{array}\right| \right\rvert\,}=\frac{1}{\sqrt{78}}$ So, $\frac{1}{\mathrm{SD}}=\sqrt{78}$
48. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
(A) $x+2 y-2 z=0$
(B) $3 x+2 y-2 z=0$
(C) $x-2 y+z=0$
(D) $5 x+2 y-4 z=0$

Key. C
Sol. Vector along the required plane is $\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 2 \\ 4 & 2 & 3\end{array}\right|=8 \hat{i}-\hat{j}-10 \hat{k}$
So, normal vector ($\overrightarrow{\mathrm{n}}$) to the plane is $\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 8 & -1 & -10 \\ 2 & 3 & 4\end{array}\right|=26 \hat{\mathrm{i}}-52 \hat{\mathrm{j}}+26 \hat{\mathrm{k}}$.
So, equation of the plane is $\vec{r} \cdot \vec{n}=0 \Rightarrow x-2 y+z=0$.
49. The distance between the plane $x-2 y+z-6=0$ and the plane containing the sets of points $(1+2 \lambda, 2+3 \lambda, 3+4 \lambda)$ and $(2+3 \mu, 3+4 \mu, 4+5 \mu)$, where λ, μ are parameters, is
(A) $\sqrt{3 / 2}$
(B) $\sqrt{6}$
(C) $\sqrt{12}$
(D) $2 \sqrt{6}$

Key. B
Sol. Normal vector : $\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|=-\hat{i}+2 \hat{j}-\hat{k}$
equation of plane: $-1(x-1)+2(y-2)-1(z-3)=0$
$\Rightarrow x-2 y+z=0$

So, required distance $=\frac{|6|}{\sqrt{1+4+1}}=\sqrt{6}$
50. If the point $(0, \lambda, 1)$ lies within the triangular prism formed by the planes $x=0,2 y-z+2=0$ and $2 y+3 z-6=0$ then the set of values of λ is
(A) $(-2,2)$
(B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$
(C) $\left(-4,-\frac{4}{3}\right)$
(D) $(0,4)$

Key. B
Sol. The planes are $2 y+z=0,5 x-12 y=13$ and $3 x+4 z=10$
Solving we get $\mathrm{z}=\frac{11}{2}$

3D-Geometry

Integer Answer Type

1. The foot of the perpendicular from $(1,2,3)$ to the join of $(6,7,7),(9,9,5)$ is $(3,5, \lambda)$ then $\lambda=$ Key. 9
Sol. Any point of the line joing the given points can be taken as $(6+3 t, 7+2 t, 7-2 t)$ if it is the required foot of the \perp of $(1,2,3)$ we get $3(5+3 t)+2(5+2 t)-2(4-2 t)=0 \Rightarrow t=-1$
2. The plane $2 x-2 y+z=3$ is rotated about the line where it cuts the xy plane by an acute angle α. If the new position of plane contains the point $(3,1,1)$ then $9 \cos \alpha$ equal to
Key: 7

Hint: Let equation of new plane $2 x-2 y+z-3+\lambda z=0$ Point $(3,1,1)$ lie on it $\Rightarrow \lambda=-2$
Hence equation of new plane $2 x-2 y-z=3$
$\cos \alpha=\frac{4+4-1}{3.3}=\frac{7}{9}$

A (a, b)
3. Shortest distance between the z-axis and the line $x+y+2 z-3=0=2 x+3 y+4 z-4$ is
\qquad
Ans: 2.
Hint : Equation of any plane ; continuing the general plane is
$x+y+2 z-3+\lambda(2 x+3 y+4 z-4)=0---(1)$
if plane (1) is parallel to z -axis $\Rightarrow \lambda=-\frac{1}{2}$
Therefore plane, parallel to z-axis is $y+2=0----(2)$
Now, shortest distance between any point on z-axis ($0,0,0$) (say) from plane (2) is 2
4. The point $P(1,2,3)$ is reflected in the $x y$ - plane, then its image Q is rotated by 180° about the x - axis to produce R, and finally R is translated in the direction of the positive y-axis through a distance d to produce $S(1,3,3)$. The value of d is
ANS: 3
Hint Reflecting the point (1,2,3) in the $x y$ - plane produces ($1,2,-3$) . A half turn about the x-axis yields (1,-2,3). Finally translation 5 units will produce $(1,3,3)$
5. Let A, B, C be three non-collinear points. Then n be the no. of lines lying in plane containing the points A, B, C which are equidistant from all three points then $n+5=$
Key: 8
6. The equation of the plane passing through the intersection of the planes $2 x-5 y+z=3$ and $x+y+4 z=5$ and parallel to the plane $x+3 y+6 z=1$ is $x+3 y+6 z=k$, where k is
Key: 7

Sol: Equation of plane passing through the intersection of the planes $2 \mathrm{x}-5 \mathrm{y}+\mathrm{z}=3$ and
$x+y+4 z=5$ is
$(2 x-5 y+z-3)+\lambda(x+y+4 z-5)=0$
$\Rightarrow(2+\lambda) x+(-5+\lambda) y+(1+4 \lambda)-3-5 \lambda=0$
which is parallel to the plane $x+3 y+6 z=1$.
Then $\frac{2+\lambda}{1}=\frac{-5+\lambda}{3}=\frac{1+4 \lambda}{6}$
Then, $\frac{2+\lambda}{1}=\frac{-5+\lambda}{3}=\frac{1+4 \lambda}{6}$
$\therefore \lambda=\frac{-11}{2}$
from eq. (i),
$-\frac{7}{2} x-\frac{21}{2} y-21 z+\frac{49}{2}=0$
$\therefore \mathrm{x}+3 \mathrm{y}+6 \mathrm{z}=7$
Hence, $k=7$
7. If the distance of a point lying on the plane $2 x+3 y+6 z=p$ from the point $(3,0,1)$ is unity then the total number of possible values of p, where p is a prime number, is
Key. 6
Sol. $\quad \frac{|2(3)+3+6(1)-p|}{\sqrt{2^{2}+3^{2}+6^{2}}} \leq 1$
$\Rightarrow|12-\mathrm{p}| \leq 7 \Rightarrow-7 \leq \mathrm{p}-12 \leq 7$
$\Rightarrow 5 \leq \mathrm{p} \leq 19 \Rightarrow 5,7,11,13,17,19$
i.e. six possible values of p.
8. A line from the origin meets the lines $\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{1}$ and
$\frac{x-8 / 3}{2}=\frac{y+3}{-1}=\frac{z-1}{1}$ at P and Q respectively. If the distance $P Q=l$ then the value of $[l]$ (where [.] represents the greatest integer function), is
Key. 2
Sol. From the given conditions, we have,

$$
\begin{aligned}
& \frac{2 \mu+8 / 3}{\lambda+2}=\frac{\mu+3}{2 \lambda-1}=\frac{\mu+1}{\lambda-1} \\
\Rightarrow & \lambda=3, \mu=\frac{1}{3} \\
\Rightarrow & \mathrm{P} \equiv(5,-5,2) \mathrm{Q} \equiv\left(\frac{10}{3}, \frac{-10}{3}, \frac{4}{3}\right) \\
\Rightarrow & l=\mathrm{PQ}=\sqrt{6} \Rightarrow[l]=2
\end{aligned}
$$

9. The shortest distance between the z-axis and the line, $x+y+2 z-3=0,2 x+3 y+4 z-4=0$ is :
Key. 2
Sol. The equation of any plane containing the given line is
$(x+y+2 z-3)+\lambda(2 x+3 y+4 z-4)=0$
$\Rightarrow(1+2 \lambda) x+(1+3 \lambda) y+(2+4 \lambda) z-(3+4 \lambda)=0$
If the plane is parallel to z-axis whose direction cosines are $0,0,1$; then the normal to the plane will be perpendicular to z-axis
$\therefore \quad(1+2 \lambda)(0)+(1+3 \lambda)(0)+(2+4 \lambda)(1)=0$
$\Rightarrow \lambda=-\frac{1}{2}$
Put in eq. (1), the required plane is
$(x+y+2 z-3)-\frac{1}{2}(2 x+3 y+4 z-4)=0 \Rightarrow y+2=0$.
\therefore S.D. $=$ distance of any point say $(0,0,0)$ on z-axis from plane (2)
$=\frac{2}{\sqrt{(1)^{2}}}=2$
10. If equation of the plane through the straight line $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{5}$ and perpendicular to the plane $x-y+z+2=0$ is $a x-b y+c z+4=0$, then find the value of $10^{3} a+10^{2} b+10 c$
Ans. 1710
Sol. Let equation of a plane containing the line be $l(x-1)+m(y+2)+n z=0$
then $2 l-3 \mathrm{~m}+5 \mathrm{n}=0$ and $l-\mathrm{m}+\mathrm{n}=0$

$$
\frac{l}{2}=\frac{\mathrm{m}}{3}=\frac{\mathrm{n}}{1}
$$

$\therefore \quad$ the plane is $2(\mathrm{x}-1)+3(\mathrm{y}+2)+\mathrm{z}=0$
i.e. $\quad 2 x+3 y+z+6=0$
$\therefore \quad a=2, b=-3, c=1$
$\therefore \quad 10^{3} \mathrm{a}+10^{2} \mathrm{~b}+10 \mathrm{c}=2000-300+10=1710$ Ans.
11. Find the equation to the line which intersects the lines
$x+y+z=1,2 x-y-z=2$
$\mathrm{x}+\mathrm{y}-\mathrm{z}=3,2 \mathrm{x}+4 \mathrm{y}-\mathrm{z}=4$
and passes through the point $(1,1,1)$

Ans. 19
Sol. The line intersecting the given lines is

$$
\left.\begin{array}{l}
(x+y+z-1)+\lambda(2 x-y-z-2)=0 \tag{i}\\
(x-y-z-3)+\mu(2 x+4 y-z-4)=0
\end{array}\right\}
$$

If it passes through $(1,1,1)$, then we get from (1)
$\lambda=1$ and $\mu=4$
Hence the required equations to the intersecting line are $x-1=0=9 x+15 y-5 z+19$. Ans
12. Find the shortest distance and the vector equation of the line of shortest distance between the lines given by $\overrightarrow{\mathrm{r}}=3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=-3 \overrightarrow{\mathrm{i}}-7 \overrightarrow{\mathrm{j}}+6 \overrightarrow{\mathrm{k}}+\mu(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})$.
Ans. $\quad \overrightarrow{\mathrm{r}}=3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda(-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}})$
Sol. $\quad \overrightarrow{\mathrm{r}}=3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=-3 \overrightarrow{\mathrm{i}}-7 \overrightarrow{\mathrm{j}}+6 \overrightarrow{\mathrm{k}}+\mu(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})$
Let L and M be points on the line (i) and (ii) respectively
So that LM is perpendicular to both the lines
Let position vector of L be $3 \vec{i}+8 \vec{j}+3 \overrightarrow{\mathrm{k}}+\lambda_{0}(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})$
and the position vector of M be $-3 \vec{i}-7 \vec{j}+6 \overrightarrow{\mathrm{k}}+\mu_{0}(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})$
then $\overrightarrow{\mathrm{LM}}=-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}-\lambda_{0}(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})+\mu_{0}(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})$
since $\overrightarrow{\mathrm{LM}}$ is perpendicular to both the lines (i) and (ii)
$\therefore \quad \overrightarrow{\mathrm{LM}} \cdot(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})=0$ and $\overrightarrow{\mathrm{LM}} \cdot(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})=0$
Thus $-18+15+3-\lambda_{0}(9+1+1)+\mu_{0}(-9-2+4)=0$
i.e. $\quad-11 \lambda_{0}-7 \mu_{0}=0$
and $\quad 18-30+12-\lambda_{0}(-9-2+4)+\mu_{0}(9+4+16)=0$
i.e. $\quad 7 \lambda_{0}+29 \mu_{0}=0$
from (iii) and (iv) we get
$\lambda_{0}=\mu_{0}=0$

$$
\begin{array}{ll}
\therefore & \overrightarrow{\mathrm{LM}}=-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}} \\
\therefore & |\overrightarrow{\mathrm{LM}}|=\sqrt{36+225+9}=\sqrt{270}=3 \sqrt{30}
\end{array}
$$

Position vector of L is $3 \vec{i}+8 \vec{j}+3 \vec{k}$
$\therefore \quad$ equation of the line of shortest distance (LM) is
$\overrightarrow{\mathrm{r}}=3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda(-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda(-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}})$
13. If the lengths of external and internal common tangents to two circles
$x^{2}+y^{2}+14 x-4 y+28=0$ and $x^{2}+y^{2}-14 x+4 y-28=0$ are λ and μ. Then the value of $\left[\frac{\lambda+\mu}{4}\right]$ is equal to (where [.] denotes greatest integer function)
Ans. 4
Sol. $\quad c_{1} c_{2}>r_{1}+r_{2}$
External $=\sqrt{d^{2}-\left(r_{2}-r_{1}\right)^{2}}=14=\lambda$
Internal $=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)}=4=\mu$
$\lambda+\mu=18 \quad\left[\frac{\lambda+\mu}{4}\right]=4$
14. Consider two concentric circle $C_{1}: x^{2}+y^{2}=1$ and $C_{2}: x^{2}+y^{2}-4=0$. A parabola is drawn through the points where C_{1} meet the x-axis and having arbitrary tangent of C_{2} as its directrix. Then locus of focus of drawn parabola is $\frac{3}{4} x^{2}+y^{2}=k$, then value of k is
Ans. 3
Sol. $\quad(h-1)^{2}+k^{2}=(\cos \theta-2)^{2}$
$(h+1)^{2}+k^{2}=(\cos \theta+2)^{2}$
(2) $-(1)$ gives us $\cos \theta=\frac{h}{2}$
(2) $+(1)$
$2\left(h^{2}+k^{2}+1\right)=2\left(\cos ^{2} \theta+4\right)$
$\frac{3}{4} x^{2}+y^{2}=3$
15. All chords of the curve $3 x^{2}-y^{2}-2 x+4 y=0$ that subtend a right angle at the origin, pass through a fixed point (h, k) then $h-k$ is equal to
Ans. 3
Sol. Let the equation of the chord to $y=m x+c$
Combined equation of the line joining the point of intersection with origin is
$3 x^{2}-y^{2}-2(x-2 y)\left(\frac{y-m x}{c}\right)=0$
$\Rightarrow x^{2}(3 c+2 m)-y^{2}(c-4)-2 x y(1+2 m)=0$
From the condition of perpendicularity, we get $3 \mathrm{c}+2 \mathrm{~m}-\mathrm{c}+4=0$
$\Rightarrow m+c=-2$
i.e the line $y=m x+c$, passes through $(1,-2)$

