3D-Geometry Single Correct Answer Type

- 1. In a three dimensional co ordinate system P, Q and R are images of a point A(a, b, c) in the x y the y z and the z x planes respectively. If G is the centroid of triangle PQR then area of triangle AOG is (O is the origin)
 - a) 0 b) $a^2 + b^2 + c^2$ c) $\frac{2}{3}(a^2 + b^2 + c^2)$ d) none of

these

Key. A

 \Rightarrow Points P, Q, R are (a, b, -c), (-a, b, c) and (a, -b, c) respectively.

$$\Rightarrow$$
 centroid of triangle PQR is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$

$$\Rightarrow \mathbf{G} \equiv \left(\frac{\mathbf{a}}{\mathbf{3}}, \frac{\mathbf{b}}{\mathbf{3}}, \frac{\mathbf{c}}{\mathbf{3}}\right)$$

 \Rightarrow A, O, G are collinear \Rightarrow area of triangle AOG is zero.

2. The four lines drawing from the vertices of any tetrahedron to the centroid of the opposite faces meet in a point whose distance from each vertex is 'k' times the distance from each vertex to the opposite face, where k is

a)
$$\frac{1}{3}$$
 b) $\frac{1}{2}$ c) $\frac{3}{4}$ d) $\frac{5}{4}$

Key. C

- Sol. Let A (x_1, y_1, z_1) B (x_2, y_2, z_2) C (x_3, y_3, z_3) D (x_4, y_4, z_4) be the vertices of tetrahydron. If E is the centroid of face BCD and G is the centroid of A B C D the AG=3/4(AE) \therefore K = 3/4
- 3. The coordinates of the circumcentre of the triangle formed by the points (3, 2, -5), (-3, 8, -5) (-3, 2, 1) are (-3, 2, 1) are

a) (-1, 4, -3) b) (1, 4, -3) c) (-1, 4, 3) d) (-1, -4, -3)

Key. A

Sol. Triangle formed is an equilateral \Rightarrow Circum centre = centroid = (-1, 4, -3)

4. The volume of a right triangular prism ABCA1B1C1 is equal to 3. Than the co-ordinates of the vertex A1, if the co-ordinates of the base vertices of the prism are A(1, 0, 1), B(2, 0, 0) and C(0, 1, 0)
(0.2.2.2) (0.2.1) (0.2.2) (0.2.2) (0.2.2)

a)
$$(-2, 2, 2)$$
 or $(0, -2, 1)$ b) $(2, 2, 2)$ or $(0, -2, 0)$
c) $(0, 2, 0)$ or $(1, -2, 0)$ d) $(3, -2, 0)$ or $(1, -2, 0)$

Key. B

Sol. Volume = Area of base \times height

solving we get position vector of A_1 are (0, -2, 0) or (2, 2, 2)

5. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a} + \vec{b} + \vec{c}$ is also a unit vector and θ_1, θ_2 and θ_3 are angles between the vectors $\vec{a}, \vec{b}; \vec{b}, \vec{c}$ and \vec{c}, \vec{a} , respectively, then among θ_1, θ_2 and θ_3 . a) all are acute angles b) all are right angles

c) at least one is obtuse angle

d) None of these

Key. C

Sol. Since $\left| \vec{a} + \vec{b} + \vec{c} \right| = 1 \Longrightarrow \left(\vec{a} + \vec{b} + \vec{c} \right) \cdot \left(\vec{a} + \vec{b} + \vec{c} \right) = 1 \Longrightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -1$ $\Rightarrow \cos \theta_1 + \cos \theta_2 + \cos \theta_3 = -1$

So, at least one of $\cos \theta_1, \cos \theta_2$ and $\cos \theta_3$ must be negative

6. Given that the points A(3,2,-4), B(5,4,-6) and C(9,8,-10) are collinear, the ratio in which B divides \overline{AC} is : 1)1:2 2)2:1 3)3:2 4)2:3 Key. 1 Sol. $\left(\frac{9m+3n}{m+n}, \frac{8m+2n}{m+n}, \frac{-10m-4n}{m+n}\right) = (5,4,-6)$

$$\frac{m}{n} = \frac{1}{2}$$

7. If
$$A(0,1,2), B(2,-1,3)$$
 and $C(1,-3,1)$ are the vertices of a triangle, then its circumcentre and orthocenter are situated at a distance of 1)3 units 2)2 units 3)3/2 units 4) $3/\sqrt{2}$ units Key. 4
Sol. ortho center- $(2,-1,3)$
Circum center- $(\frac{1}{2},-1,\frac{3}{2})$
8. Equation of the plane passing through the origin and perpendicular to the planes $x+2y+z=1,3x-4y+z=5$ is 1) $x+2y+5z=0$ 2) $x-2y-3z=0$ 3) $x-2y+5z=0$ 4) $3x+y-5z=0$
Key. 4
Sol. $\begin{vmatrix} i & j & k \\ 1 & 2 & 1 \\ 3 & -4 & 1 \end{vmatrix}$
 $A=3i+j-5k$
 $\Rightarrow 3x+y-5z=0$
9. If θ is the angle between $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2x-y+\sqrt{\lambda}z+4=0$
and is such that $\sin \theta = 1/3$, the value of $\lambda =$
 $1)-\frac{4}{3}$ 2) $\frac{4}{3}$ 3) $-\frac{3}{5}$ 4) $\frac{5}{3}$
Key. 4
Sol. $Sin\theta = \left|\frac{2-2+2\sqrt{\lambda}}{3\sqrt{5+\lambda}}\right| = \frac{1}{3}$
 $\lambda = \frac{5}{3}$
10. The image of the point $(-1,3,4)$ in the plane x-2y=0 is
 $1)(15,11,4)$ $2i(-\frac{17}{3},-\frac{19}{3},1)$ $3i(\frac{9}{5},-\frac{13}{5},4)4i(-\frac{17}{3},-\frac{19}{3},4)$
Key. 3
Sol. $\frac{h+1}{1}=\frac{k-3}{-2}=\frac{p-4}{0}=-2(-\frac{1-6}{5})$
 $(h,k,p)=(\frac{9}{5},-\frac{13}{5},4)$

1110111	cmuttes			OD acome	
11.	The plane passing through the points $(-2, -2, 2)$ and containing the line joining the points $(1, 1, 1)$ and $(1, -1, 2)$ makes intercepts on the coordinates axes, the sum of whose lengths is				
	1.3	2.4	3. 6	4. 12	
Key.	4				
Sol.	Equation of the plan	e be $a(x+2)+b(y+2)$	+c(z-2)=0. As it pa	sses through $(1,1,1)$ and	
(1,-1	$,2),\frac{a}{1} = \frac{b}{-3} = \frac{c}{-6}.$ Equ	uation of the plane is $\frac{x}{-8}$	$\frac{y}{3} + \frac{y}{8/3} + \frac{z}{8/6} = 1$ and t	he required sum $=12$.	
12.	An equation of the p	lane containing the line	$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and	d the point $(0,7,-7)$ is	
	1. $x + y + z = 0$		2. $x + 2y - 3z = 35$	\times \times	
	3. $3x - 2y + 3z + 35$	=0	2. $x+2y-3z=35$ 4. $3x-2y-z=21$	$\langle \rangle$	
Key.	1				
Sol.	Equation of the plane is $A(x+1)+B(y-3)+C(z+2)=0$ where $3A+2B+1=0$ and				
A+E	B(7-3) + C(-7+2) =	0			
			$\mathcal{O}(\mathcal{O})$		
13.	The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the coordinate axes at A, B, C respectively. D and E are the				
	mid-points of AB and AC respectively. Coordinates of the mid-point of DE are				
	1. (<i>a</i> , <i>b</i> /4, <i>c</i> /4)	2. (<i>a</i> /4, <i>b</i> , <i>c</i> /4)	3. (<i>a</i> /4, <i>b</i> /4, <i>c</i>)	4. (<i>a</i> /2, <i>b</i> /4, <i>c</i> /4)	
Key.	4				
Sol.	A(a,0,0), B(0,b,0)	C(0,0,c), D(a/2,b/2)	2,0), $E(a/2,0,c/2)$ so	midpoint of DE is	
(a/2)	<i>,b</i> /4 <i>,c</i> /4).				
	10				
14.	The coordinates of a point $(5, 0, -6)$ are	a point on the line $x = 4$	y + 5, z = 3y - 6 at a dis	stance $3\sqrt{26}$ from the	
	(1733)	2 (-7 3 -15)	3(-17 - 3 - 3)	A (7 - 315)	

2. (-7,3,-15) 3. (-17,-3,-3) 4. (7,-3,15) 1. (17,3,3)

Key.

- Line is $\frac{x-5}{4/\sqrt{26}} = \frac{y}{1/\sqrt{26}} = \frac{z+6}{3/\sqrt{26}}$. A point on this line at a distance $3\sqrt{26}$ from Sol. (5,0,-6) is $(5\pm(3\times4),\pm3,-6\pm9) = (17,3,3)$ or (-7,-3,-15).
- The points (0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are the vertices of 15. 1. A right angled isosceles triangle 2. Equilateral triangle 3. An isosceles triangle 4. An obtuse angled triangle

Key.

1

Sol. Length of the sides are 18, 18 and 36.

16. Equation of a plane bisecting the angle between the planes 2x - y + 2z + 3 = 0 and

3x-2y+6z+8=0is 1. 5x-y-4z-45=02. 5x-y-4z-3=03. 23x+13y+32z-45=04. 23x-13y+32z+5=0

Key. 2

Sol. Equations of the planes bisecting the angle between the given planes are

$$\frac{2x - y + 2z + 3}{\sqrt{2^2 + (-1)^2 + 2^2}} = \pm \frac{3x - 2y + 6z + 8}{\sqrt{3^2 + (-2)^2 + 6^2}}$$

$$\Rightarrow 7(2x - y + 2z + 3) = \pm 3(3x - 2y + 6z + 8)$$

$$\Rightarrow 5x - y - 4z - 3 = 0$$
 taking the +ve sign, and $23x - 13y + 32z + 45 = 0$ taking the -ve sign.

17. If the perpendicular distance of a point P other than the origin from the plane x + y + z = p is equal to the distance of the plane from the origin, then the coordinates of P are

1.
$$(p,2p,0)$$
 2. $(0,2p,-p)$ 3. $(2p,p,-p)$ 4. $(2p,-p,2p)$

Key. 3

Sol. The perpendicular distance of the origin (0,0,0) from the plane x + y + z = p is

$$\left|\frac{-p}{\sqrt{1+1+1}}\right| = \frac{|p|}{\sqrt{3}}.$$

If the coordinates of P are (x, y, z), then we must have

$$\left|\frac{x+y+z-p}{\sqrt{3}}\right| = \frac{|p|}{\sqrt{3}}$$
$$\Rightarrow |x+y+z-p| = |p|$$

Which is satisfied by (c)

18. If p_1, p_2, p_3 denote the distances of the plane 2x - 3y + 4z + 2 = 0 from the planes 2x - 3y + 4z + 6 = 0, 4x - 6y + 8z + 3 = 0 and 2x - 3y + 4z - 6 = 0 respectively, then 1. $p_1 + 8p_2 - p_3 = 0$ 2. $p_3^2 = 16p_2^2$

3D-Geometry

Mathematics
3.
$$8p_2^2 = p_1^2$$

4. $p_1 + 2p_2 + 3p_3 = \sqrt{29}$

Key. 1 or 4

Sol. Since the planes are all parallel planes,
$$p_1 = \frac{|2-6|}{\sqrt{2^2 + 3^2 + 4^2}} = \frac{4}{\sqrt{4+9+16}} = \frac{4}{\sqrt{29}}$$

Equation of the plane 4x-6y+8z+3=0 can be written as 2x-3y+4z+3/2=0

So
$$p_2 = \frac{|2-3/2|}{\sqrt{2^2+3^2+4^2}} = \frac{1}{2\sqrt{29}}$$
 and $p_3 = \frac{|2+6|}{\sqrt{2^2+3^2+4^2}} = \frac{8}{\sqrt{29}}$
 $\Rightarrow p_1 + 8p_2 - p_3 = 0$

19. The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ is cut by the plane x + 2y + 2z + 7 = 0 is 1. 2 2. 3 3. 4 4. 1

Key. 2

Sol. Centre of the sphere is (-1,1,2) and its radius is $\sqrt{1+1+4+19} = 5$.

Length of the perpendicular from the centre on the plane is $\left|\frac{-1+2+4+7}{\sqrt{1+4+4}}\right| = 4$

Radius of the required circle is $\sqrt{5^2 - 4^2} = 3$.

20. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is 1. $11\frac{3}{4}$ 2. 13 3. 39 4. 26 Key. 2 Sol. The centre of the sphere is (-2,1,3) and its radius is $\sqrt{4+1+9+155} = 13$

Length of the perpendicular from the centre of the sphere on the plane is $\left|\frac{-24+4+9-327}{\sqrt{144+16+9}}\right| = \frac{338}{13} = 26$

So the plane is outside the sphere and the required distance is equal to 26-13=13.

21.	An equation of the plane passing through the line of intersection of the planes $x+y+z=6$ and $2x+3y+4z+5=0$ and the point $(1,1,1)$ is				
	1. $2x + 3y + 4z = 9$	2. $x + y + z = 3$	3. $x + 2y + 3z = 6$	4. $20x + 23y + 26z = 69$	
Key.	4				
Sol.	Equation of any plane through the line of intersection of the given planes is $2x+3y+4z+5+\lambda(x+y+z-6)=0$ It passes through (1,1,1) if $(2+3+4+5)+\lambda(1+1+1-6)=0 \implies \lambda=14/3$ and the				
require	ed equation is therefore,	20x + 23y + 26z = 69			
22.	The volume of the tetrahedron included between the plane $3x+4y-5z-60=0$ and the coordinate planes is				
	1.60	2.600	3. 720	4. None of these	
Key.	2				
Sol.	Equation of the given plane can be written as $\frac{x}{20} + \frac{y}{15} + \frac{z}{-12} = 1$				
Which meets the coordinates axes in points $A(20,0,0)$, $B(0,15,0)$ and $C(0,0,-12)$ and the coordinates of the origin are $(0,0,0)$.					
\therefore the volume of the tetrahedron <i>OABC</i> is					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\sim			
	1 20 0 0 1				

- $\frac{1}{6} \begin{vmatrix} 20 & 0 & 0 & 1 \\ 0 & 15 & 0 & 1 \\ 0 & 0 & -12 & 1 \end{vmatrix} = \begin{vmatrix} \frac{1}{6} \times 20 \times 15 \times (-12) \end{vmatrix} = 600.$
- 23. Two lines x = ay + b, z = cy + d and $x = a^1y + b^1$, $z = c^1y + d^1$ will be perpendicular, if and only if

1.
$$aa^{1}+bb^{1}+cc^{1}=0$$
2. $(a+a^{1})(b+b^{1})(c+c^{1})=0$ 3. $aa^{1}+cc^{1}+1=0$ 4. $aa^{1}+bb^{1}+cc^{1}+1=0$

Key. 3

Sol. Lines can be written as
$$\frac{x-b}{a} = \frac{y}{1} = \frac{z-d}{c}$$
 and $\frac{x-b^1}{a^1} = \frac{y}{1} = \frac{z-d^1}{c^1}$ which will be perpendicular if and only if $aa^1 + 1 + cc^1 = 0$

Key.

<u>Math</u>	ematics			<u>3D-Geomet</u>	
24.	A tetrahedron has vertices at $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then the angle				
	between the faces $O\!AB$ and ABC will be				
	1. $\cos^{-1}(17/31)$	2. 30 ⁰	3. 90°	4. $\cos^{-1}(19/35)$	
Key.	4				
Sol.	Let the equation of	the face OAB be c	x+by+cz=0 where		
	a+2b+c=0 and 2	$2a+b+3c=0 \Rightarrow$	$\frac{a}{5} = \frac{b}{-1} = \frac{c}{-3}$		
25.	If the angle $ heta$ betwe	een the lines $\frac{x+1}{1}$	$=\frac{y-1}{2}=\frac{z-2}{2}$ and the p	plane $2x - y + \sqrt{\lambda}z + 4 = 0$ is	
	such that $\sin heta = 1$	/3, then the value	of λ is		
	1.3/4	24/3	3. 5/3	43/5	
Key.	3		. (
Sol.	Since the line makes the plane	an angle $ heta$ with t	he plane in makes an ang	gle $\pi/2{-} heta$ with normal to	
	$\therefore \cos(\frac{\pi}{2} - \theta) = \frac{2}{2}$	$\frac{(1) + (-1)(2) + (\sqrt{\lambda})}{\sqrt{1 + 4 + 4} \times \sqrt{4 + 1}}$	$\overline{\overline{\iota}}$)(2) $\overline{+\lambda}$		
	$\Rightarrow \frac{1}{3} = \frac{2\sqrt{\lambda}}{3\sqrt{\lambda+5}} =$	$\Rightarrow \lambda + 5 = 4\lambda$			
	$\Rightarrow \lambda = 5/3$				
26.	The ratio in which th	e yz plane divides	the segment joining the	points $(-2, 4, 7)$ and	
	(3,-5,8) is				
	1 2.3	2. 3:2	3. 4:5	4. –7:8	
Key.	1. 2. 3	2. 3.2	5. 4.5	47.0	
Sol.	Let vz plane divide t	the segment ioining	σ (-2 4 7) and (3 -5 8) in the ration $ \lambda : 1 . $ Then	
001.	$\Rightarrow \frac{3\lambda - 2}{\lambda + 1} = 0 \Rightarrow \lambda$				
27.	The coordinates of t	he point equidistan	It from the points $(a, 0, 0)$	(0, a, 0), (0, 0, a) and	
	(0, 0, 0) are				

1.
$$(a/3, a/3, a/3)$$
 2. $(a/2, a/2, a/2)$ 3. (a, a, a) 4. $(2a, 2a, 2a)$
2

______ Mathematics

<u>Matn</u>	ematics			<u>3D-Geometr</u>
Sol.	Let the coordinates of the required point be (x, y, z) then $x^{2} + y^{2} + z^{2} = (x-a)^{2} + y^{2} + z^{2} = x^{2} + (y-a)^{2} + z^{2} = x^{2} + y^{2} + (z-a)^{2}$			
			oint is $(a/2, a/2, a/2)$.	
28.	Algebraic sum of	the intercepts made by	, the plane $x+3y-4z+$	$6\!=\!0$ on the axes is
	113/2	2. 19/2	322/3	4. 26/3
Key.	1			
Sol.	Equation of the pla	the can be written as $\frac{x}{-4}$	$\frac{y}{5} + \frac{y}{-2} + \frac{z}{3/2} = 1$	
	So the intercepts or	the coordinates axes a	are $-6, -2, 3/2$ and the re	equired sum is
	-6-2+3/2=-13	3/2.		$\langle \cdot \rangle$
29.	If a plane meets the	co-ordinate axes in A ,	B, C such that the centro	id of the triangle ABC is
	the point $(1, r, r^2)$,	hen equation of the pla	ane is	
	$1. x + ry + r^2 z = 3r$	² 2. $r^2 x + ry + z = 3$	r^2 3. $x + ry + r^2 z = 3$	$4. r^2 x + ry + z = 3$
Key.	2			
Sol.	Let an equation of t	he required plane be $\frac{x}{a}$	$+\frac{y}{b}+\frac{z}{c}=1$	
This n	neets the coordinates a	exact in $A(a, 0, 0), B(0, 0)$	(b, 0) and $C(0, 0, c)$.	
So tha	t the coordinates of t	he centroid of the trian	gle ABC are	
(<i>a</i> /3,	$(b/3, c/3) = (1, r, r^2)$	$(given) \Rightarrow a = 3, b = 3$	$3r, 3r^2$ and the required equired e	quation of the plane is
$\frac{x}{3} + \frac{y}{3r} + \frac{z}{3r^2} = 1 \text{ or } r^2 x + ry + z = 3r^2.$				
30. An equation of the plane passing through the point $(1, -1, 2)$ and parallel to the plane				
3x + 4y - 5z = 0 is				
	1.	2. $3x + 4y - 5z = 1$	1 3. $6x + 8y - 10z = 1$	4. $3x + 4y - 5z = 2$
	3x + 4y - 5z + 11 =	0		
Key.	1 Equation of any pla	no parallol to the plane	3x + 4x = 5z = 0 is $3x + 1$	A_{12} $5 - V$
Sol.			3x + 4y - 5z = 0 is $3x + 4y - 5z = 0$	4y - 3z - K
	If it passes through	(1,-1,2), then $3-4-3$	$5(2) = K \Longrightarrow K = -11$	
	So the required equ	ation is 3x+4y-5z+11=0).	
9				

31. Equations of a line passing through (2, -1, 1) and parallel to the line whose equations are x-3 y+1 z-2.

$$\overline{\frac{2}{2}} = \frac{y}{7} = \frac{y}{-3}, \text{is}$$
1. $\frac{x-2}{3} = \frac{y+1}{-1} = \frac{z-1}{2}$
2. $\frac{x-2}{2} = \frac{y+1}{7} = \frac{z-1}{-3}$
3. $\frac{x-2}{2} = \frac{y-7}{-1} = \frac{z+3}{1}$
4. $\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z-2}{1}$

Key.

2

Sol. The required line passes through (2, -1, 1) and its direction cosines are proportional to

2, 7, -3 so its equation is
$$\frac{x-2}{2} = \frac{y+1}{7} = \frac{z-1}{-3}$$

32.The ratio in which the plane 2x-1=0 divides the line joining (-2,4,7) and (3,-5,8) is1. 2:32. 4:53. 7:84. 1:1

Key. 4

Sol. Let the required ratio be k:1, then the coordinates of the point which divides the join of the points (-2, 4, 7) and (3, -5, 8) in this ratio are given by $(\frac{3k-2}{k+1}, \frac{-5k+4}{k+1}, \frac{8k+7}{k+1})$

As this point lies on the plane 2x - 1 = 0.

$$\Rightarrow \frac{3k-2}{k+1} = \frac{1}{2} \Rightarrow k = 1 \text{ and thus the required ratio as } 1:1.$$

33. If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , are d.c.'s of \overrightarrow{OA} , \overrightarrow{OB} such that $|\underline{AOB} = \theta$ where 'O' is the origin, then the d.c.'s of the internal bisector of the angle $|\underline{AOB}|$ are

(A)
$$\frac{l_1 + l_2}{2\sin\theta/2}, \frac{m_1 + m_2}{2\sin\theta/2}, \frac{n_1 + n_2}{2\sin\theta/2}$$

(B) $\frac{l_1 + l_2}{2\cos\theta/2}, \frac{m_1 + m_2}{2\cos\theta/2}, \frac{n_1 + n_2}{2\cos\theta/2}$
(C) $\frac{l_1 - l_2}{2\sin\theta/2}, \frac{m_1 - m_2}{2\sin\theta/2}, \frac{n_1 - n_2}{2\sin\theta/2}$
(D) $\frac{l_1 - l_2}{2\cos\theta/2}, \frac{m_1 - m_2}{2\cos\theta/2}, \frac{n_1 - n_2}{2\cos\theta/2}$
B

Key.

Sol. Let OA and OB be two lines with d.c's l_1 , m_1 , n_1 and l_2 , m_2 , n_2 . Let OA = OB = 1. Then, the coordinates of A and B are (l_1, m_1, n_1) and (l_2, m_2, n_2) , respectively. Let OC be the bisector of $\angle AOB$. Then, C is the mid point of AB and so its coordinates are $\left(\frac{l_1+l_2}{2}, \frac{m_1+m_2}{2}, \frac{n_1+n_2}{2}\right)$.

: d.r's of OC are
$$\frac{l_1 + l_2}{2}$$
, $\frac{m_1 + m_2}{2}$, $\frac{n_1 + n_2}{2}$

- 34. A line is drawn from the point P(1,1,1) and perpendicular to a line with direction ratios (1,1,1) to intersect the plane x+2y+3z=4 at Q. The locus of point Q is
 - A) $\frac{x}{1} = \frac{y-5}{-2} = \frac{z+2}{1}$ B) $\frac{x}{-2} = \frac{y-5}{1} = \frac{z+2}{1}$ C) x = y = zD) $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$

Key.

Sol. Locus of \mathcal{Q}' is the line of intersection of the plane x + 2y + 3z = 4 and $1(x-1) + 1(y-1) + 1(z-1) = 0 \Rightarrow_{\text{then the line is}} \frac{x}{1} = \frac{y-5}{-2} = \frac{z+2}{1}$

35. A line is drawn from the point P(1, 1, 1) and perpendicular to a line with direction ratios (1,1,1) to intersect the plane x+2y+3z=4 at Q. The locus of point Q is

A)
$$\frac{x}{1} = \frac{y-5}{-2} = \frac{z+2}{1}$$
 B) $\frac{x}{-2} = \frac{y-5}{1} = \frac{z+2}{1}$ C) $x = y = z$ D) $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$

Key: A

Hint: Locus of Q is the line of intersection of the plane x+2y+3z=4 and

$$1(x-1)+1(y-1)+1(z-1)=0 \Rightarrow$$
 then line is $\frac{x}{1} = \frac{y-5}{-2} = \frac{z+2}{1}$

If a line with direction ratios 2 : 2: 1 intersects the line $\frac{x-7}{3} = \frac{y-5}{2} = \frac{z-3}{1}$ and 36. $\frac{x-1}{2} = \frac{y+1}{4} = \frac{z+1}{3}$ at A and B then AB=. a) $\sqrt{2}$ c) √3 b) 2 d) 3 Key: Hint $A(7+3\alpha,5+2\alpha,3+\alpha), B(1+2\beta,-1+4\beta,-1+3\beta)$ Dr's of AB are 2:2:1 $\frac{6+3\alpha-2\beta}{2} = \frac{3+\alpha-2\beta}{1} = \frac{4+\alpha-3\beta}{1}$ $\alpha = -2, \beta = 1$ A(1,1,1)B(3,3,2) AB = 337. A, B, C are the points on x, y and z axes respectively in a three dimensional co-ordinate

system with O as origin. Suppose the area of triangles OAB, OBC and OCA are 4, 12 and 6 respectively, then the area of the triangle ABC equals (A) 16 **(B)** 14 (C) 28 (D) 32

Key:

Sol

В

 $\left[ABC\right] = \sqrt{\left[OAB\right]^2 + \left[OBC\right]^2 + \left[OCA\right]^2}$ Hint where [ABC] = area of triangle ABC

The area of the figure formed by the points (-1, -1, 1); (1, 1, 1) and their mirror images on the 38. plane 3x+2y+4z+1=0 is

(a)
$$\frac{5\sqrt{33}}{29}$$
 (b) $\frac{4\sqrt{33}}{29}$ (c) $\frac{20\sqrt{33}}{27}$ (d) $\frac{20\sqrt{33}}{29}$
Key. D
 $Q(1,1,1)$
 P
 $(-1,-1,1)$
Sol.
Req. area = ΔPQQ^{1}
 $= 2\Delta PQM$
 $= 2 \cdot \frac{1}{2} \cdot QM \cdot PM$

39.	If a plane passes	through the	point	(1,1,1)	and is	perpendicular to the line
	$\frac{x-1}{3} = \frac{y-1}{0} = \frac{z-1}{4}$ then its perpendicular distance from the origin is					
	(A) $\frac{3}{4}$	(B) $\frac{4}{3}$		(C)	(D) 1
Key:	С					
Hint:	The d.r of the no	ormal to the p	plane is	s 3, 0,	4 . The	e equation of the plane is
	3x+0y+4z+d=	0 since it passe	s throug	gh (1, 1, 1	l) so; d =	= -7
	Now distance of the	plane 3x+4z-	-7=0	from (0,	0,0) is -	$\frac{7}{\sqrt{3^2+4^2}} = \frac{7}{5}$ unit
40.	-					in a point P and one of them he third line passes through a
	fixed point (0, 0, c) on the z-axis. Then the locus of P is					
	A) $x^2 + y^2 + z^2 - 2cx$	=0		,	~	$z^2 - 2cy = 0$
	C) $x^2 + y^2 + z^2 - 2cz$	=0		D) 3	$x^2 + y^2 +$	$z^2 - 2c(x+y+z) = 0$
Key:	С					
Hint:	Let L_1, L_2, L_3 be the mutually perpendicular lines and P $\left(x_0, y_0, z_0 ight)$ be their point of					
	concurrence. If $L_{\!1}^{}$ cuts the x-axis at A(a, 0, 0), $L_{\!2}^{}$ meets the y-axis at B(0, b, 0) and C(0, 0, c)					
	$\in L_3$, then $L_1 11(x_0 - a, y_0, z_0)$, $L_2 11(x_0, y_0 - b, z_0)$ and $L_3 11(x_0, y_0, z_0 - c)$. Hence					
	$x_0(x_0 - a) + y_0(y_0 - b) + z_0^2 = 0$					
	$x_0^2 + (y_0 - b) y_0 + z_0 (z_0 - c) = 0 $					
	$x_0(x_0-a) + y_0^2 + z_0(z_0-c) = 0$					

Eliminating a and b from the equations, we get

$$x_0^2 + y_0^2 + z_0^2 - 2cz_0 = 0$$

The centroid of the triangle formed by (0, 0, 0) and the point of intersection of 41. $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{1}$ with x = 0 and y = 0 is

(a) (1,1,1) (b)
$$\left(\frac{1}{6}, \frac{-1}{3}, \frac{1}{6}\right)$$
 (c) $\left(\frac{-1}{6}, \frac{1}{3}, \frac{-1}{6}\right)$ (d) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Key. B

Sol. Any point on the given line (K+1, 2K+1, K+1)but $x=0 \implies A(0,-1,0)$ 1 1 J

$$y=0 \Rightarrow B(\frac{1}{2}, 0, \frac{1}{2}); 0(0, 0, 0)$$

The plane x - y - z = 4 is rotated through 90° about its line of intersection with the plane 42. x+y+2z=4 and equation in new position is Ax+By+Cz+D=0 where A,B,C are least positive integers and D < 0 then (a) D = -10(b) ABC = -20(c) A + B + C + D = 0(d) A + B + C = 10Key. D Given planes are x - y - z = 4 ------ (1) and x + y + 2z = 4 ----- (2) Sol. Since required plane passes through the line of intersection (1) & (2) \Rightarrow Its equation is $(x-y-z-4)+\alpha(x+y+2z-4)=0$ $\Rightarrow (1+\alpha)x + (\alpha-1)y + (2\alpha-1)z - (4\alpha+4) = 0 \dots (3)$ Since (1) & (3) are perpendicular $\Rightarrow 1(1+\alpha)-1(\alpha-1)-1(2\alpha-1)=0$ $1+\alpha-\alpha+1-2\alpha+1=0 \qquad \Rightarrow \alpha=3/2$ $\Rightarrow \text{ Its equations is } (x-y-z-4) + \frac{3}{2}(x+y+2z-4) = 0$ 5x + y + 4z - 20 = 0Three lines y-z-1=0=x; z+x+1=0=y; x-z-1=0=y intersect the xy plane at A, 43. B, C then orthocenter of triangle ABC is (a) (0,1,0)(b) (-1,0,0)(c) (0,0,0)(d) (1,1,1)Key. A Intersection of y-z-1=0=x with xy plane gives A(0,1,0) similarly B(-1,0,0), Sol. C(1,0,0) \therefore orthocentre is (0, 1, 0) $=\frac{z-a-d}{\alpha+\delta}; \frac{x-b+c}{\beta-r}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+r}$ are coplanar and the The lines $\frac{x-a+d}{d}$ 44. α equation of the plane in which they lie is (a) x + y + z = 0(b) x - y + z = 0(c) x-2y+z=0 (d) x+y-2z=0Key. С Sol. A(b-c,b,b+c)C(a-d,a,a+d) $\alpha - \delta, \alpha, \alpha + \delta$

The reflection of the point P(1, 0, 0) in the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ is 45. (a) (3, −4, −2) (c) (1, -1, -10) (b) (5, -8, -4) (d) (2, −3, 8) Key: b Coordinates of any point Q on the given line are Hint: (2r + 1, -3r - 1, 8r - 10) for some $r \in \mathbb{R}$ So the direction ratios of PQ are 2r, -3r - 1, 8r - 10Now PQ is perpendicular to the given line if 2(2r) - 3(-3r - 1) + 8(8r - 10) = 0 \Rightarrow 77r - 77 = 0 \Rightarrow r = 1 and the coordinates of Q, the foot of the perpendicular from P on the line are (3, -4, -2). Let R(a, b, c) be the reflection of P in the given lines when Q is the mid-point of PR $\Rightarrow \frac{a+1}{2}=3, \frac{b}{2}=-4, \frac{c}{2}=-2$ \Rightarrow a = 5, b = -8, c = -4 and the coordinates of the required point are (5, -8, -4)46. Reflection of plane 2x + 3y + 4z + 1 = 0 in plane x + 2y + 3z - 2 = 0 is (A) 6x - 19y + 32z = 47(B) 6x + 19y + 32z = 47(C) 6x + 19y + 16z = 47(D) 3x + 19y + 16z = 47В Key. Sol. 2x + 3y + 4z + 1 = 0x + 2y + 3z - 2 = 0....(ii) (1)• P (2)۰T (iii) is reflection of plane reflection of ax + by + cz + d = 0 in a'x + b'y + c'z + d' = 0=(aa'+bb'+cc')(a'x+b'y+c'z+d') $=(a'^{2}+b'^{2}+c'^{2})(ax+by+cz+d)$ $2(2+6+12)(x+2y+3z-2) = (1^2+2^2+3^2)(2x+3y+4z+1)$ 4(x+2y+32-2)=14(2x+3y+4z+1)12x + 38y + 64z = 94 \Rightarrow 6x + 19y + 32z = 47

The reciprocal of the distance between two points, one on each of the lines 47. $\frac{x-2}{3} = \frac{y-4}{2} = \frac{z-5}{5}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ (B) having minimum value $5\sqrt{3}$ (A) cannot be less than 9 (D) cannot be $2\sqrt{19}$ (C) cannot be greater than 78 Key. D The shortest distance (SD) = $\frac{\begin{vmatrix} 2-1 & 4-2 & 5-3 \\ 2 & 3 & 4 \\ 3 & 2 & 5 \end{vmatrix}}{\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 2 & 5 \end{vmatrix}} = \frac{1}{\sqrt{78}}$ Sol. So, $\frac{1}{SD} = \sqrt{78}$ Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3}$ $\frac{2}{4}$ and perpendicular to the plane 48. containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is (B) 3x + 2y - 2z = 0(D) 5x + 2y - 4z = 0(A) x + 2y - 2z = 0(C) x - 2y + z = 0(C) x - 2y + z = 0C Vector along the required plane is $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 2 \\ 4 & 2 & 3 \end{vmatrix} = 8\hat{i} - \hat{j} - 10\hat{k}$ So, normal vector (\vec{n}) to the plane is $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 8 & -1 & -10 \\ 2 & 3 & 4 \end{vmatrix} = 26\hat{i} - 52\hat{j} + 26\hat{k}$. Key. С Sol. So, equation of the plane is $\vec{r}.\vec{n}=0 \Rightarrow x - 2y + z = 0$ The distance between the plane x - 2y + z - 6 = 0 and the plane containing the sets of points 49. $(1+2\lambda, 2+3\lambda, 3+4\lambda)$ and $(2+3\mu, 3+4\mu, 4+5\mu)$, where λ , μ are parameters, is (A) $\sqrt{3/2}$ (B) $\sqrt{6}$ (C) $\sqrt{12}$ (D) 2√6 Key. B lî jî k

Sol. Normal vector :
$$\begin{vmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = -\hat{i} + 2\hat{j} - \hat{k}$$

equation of plane: $-1(x - 1) + 2(y - 2) - 1(z - 3) = 0$
 $\Rightarrow x - 2y + z = 0$

So, required distance =
$$\frac{|6|}{\sqrt{1+4+1}} = \sqrt{6}$$

50. If the point (0, λ , 1) lies within the triangular prism formed by the planes x = 0, 2y - z + 2 = 0 and 2y + 3z - 6 = 0 then the set of values of λ is

(A) (-2, 2)
(B)
$$\left(-\frac{1}{2}, \frac{3}{2}\right)$$

(C) $\left(-4, -\frac{4}{3}\right)$
(D) (0, 4)

Key.

В

Sol. The planes are 2y + z = 0, 5x - 12y = 13 and 3x + 4z = 10Solving we get $z = \frac{11}{2}$

(2, 1)

F

A (a, b)

3D-Geometry Integer Answer Type

- 1. The foot of the perpendicular from (1,2,3) to the join of (6,7,7), (9,9,5) is (3,5, λ) then $\lambda =$ Key. 9
- Sol. Any point of the line joing the given points can be taken as (6+3t,7+2t,7-2t) if it is the required foot of the \perp of (1,2,3) we get 3 (5+3t)+2 (5+2t)-2(4-2t) =0 \implies t = -1

2. The plane 2x-2y+z=3 is rotated about the line where it cuts the xy plane by an acute angle α . If the new position of plane contains the point (3, 1, 1) then $9\cos\alpha$ equal to B (a, b) C (c, b) 7

Key:

Let equation of new plane $2x-2y+z-3+\lambda z=0$ Hint: Point (3, 1, 1) lie on $it \Longrightarrow \lambda = -2$ Hence equation of new plane 2x - 2y - z = 3 $\cos \alpha = \frac{4+4-1}{3} = \frac{7}{0}$

- 3. Shortest distance between the z-axis and the line x + y + 2z - 3 = 0 = 2x + 3y + 4z - 4 is
- 2. Ans:
- Equation of any plane; continuing the general plane is Hint :

 $x+y+2z-3+\lambda(2x+3y+4z-4)=0---(1)$

if plane (1) is parallel to z-axis $\Rightarrow \lambda = -\frac{1}{2}$

Therefore plane, parallel to z-axis is y+2=0----(2)

Now, shortest distance between any point on z-axis (0, 0, 0) (say) from plane (2) is 2

4. The point P (1,2,3) is reflected in the xy – plane, then its image Q is rotated by 180° about the x – axis to produce R, and finally R is translated in the direction of the positive y – axis through a distance d to produce S (1,3,3). The value of d is

ANS : 3

- Hint Reflecting the point (1,2,3) in the xy – plane produces (1,2,-3). A half turn about the x – axis yields (1,-2,3). Finally translation 5 units will produce (1,3,3)
- 5. Let A, B, C be three non-collinear points. Then n be the no. of lines lying in plane containing the points A, B, C which are equidistant from all three points then n+5=

8 Key:

6. The equation of the plane passing through the intersection of the planes 2x-5y+z=3 and x+y+4z=5 and parallel to the plane x+3y+6z=1 is x+3y+6z=k, where k is

Key : 7

Sol :	Equation of plane passing through the intersection of the planes $2x - 5y + z = 3$ and		
	x + y + 4z = 5 is		
	$(2x-5y+z-3)+\lambda(x+y+4z-5)=0$		
	$\Rightarrow (2+\lambda)x + (-5+\lambda)y + (1+4\lambda) - 3 - 5\lambda = 0$	(i)	
	which is parallel to the plane x + 3y + 6z = 1.		
	Then $\frac{2+\lambda}{1} = \frac{-5+\lambda}{3} = \frac{1+4\lambda}{6}$		
	Then, $\frac{2+\lambda}{1} = \frac{-5+\lambda}{3} = \frac{1+4\lambda}{6}$	<u> </u>	
	$\therefore \lambda = \frac{-11}{2}$		
	from eq. (i),		
	$-\frac{7}{2}x - \frac{21}{2}y - 21z + \frac{49}{2} = 0$		
	$\therefore x + 3y + 6z = 7$		
	Hence, k = 7		

7. If the distance of a point lying on the plane 2x + 3y + 6z = p from the point (3, 0, 1) is unity then the total number of possible values of p, where p is a prime number, is

Key. 6

Sol.

 $\frac{|2(3)+3+6(1)-p|}{\sqrt{2^2+3^2+6^2}} \le 1$ $\Rightarrow |12-p| \le 7 \Rightarrow -7 \le p-12 \le 7$ $\Rightarrow 5 \le p \le 19 \Rightarrow 5, 7, 11, 13, 17, 19$ i.e. six possible values of p.

8. A line from the origin meets the lines $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1}$ and $\frac{x-8/3}{2} = \frac{y+3}{-1} = \frac{z-1}{1}$ at P and Q respectively. If the distance PQ = l then the value of [l] (where [.] represents the greatest integer function), is

Key.

2

Sol. From the given conditions, we have,

$$\frac{2\mu + 8/3}{\lambda + 2} = \frac{\mu + 3}{2\lambda - 1} = \frac{\mu + 1}{\lambda - 1}$$
$$\Rightarrow \lambda = 3, \ \mu = \frac{1}{3}$$
$$\Rightarrow P \equiv (5, -5, 2) \ Q \equiv \left(\frac{10}{3}, \frac{-10}{3}, \frac{4}{3}\right)$$
$$\Rightarrow l = PQ = \sqrt{6} \Rightarrow [l] = 2$$

- 9. The shortest distance between the z-axis and the line, x + y + 2z - 3 = 0, 2x + 3y + 4z - 4 = 0 is :
- Key.

2

(

Sol. The equation of any plane containing the given line is

$$x+y+2z-3$$
)+ $\lambda(2x+3y+4z-4)=0$

$$\Rightarrow (1+2\lambda)x + (1+3\lambda)y + (2+4\lambda)z - (3+4\lambda) = 0 \quad \dots (1)$$

If the plane is parallel to z-axis whose direction cosines are 0, 0, 1; then the normal to the plane will be perpendicular to z-axis

$$\therefore \quad (1+2\lambda)(0)+(1+3\lambda)(0)+(2+4\lambda)(1)=0$$
$$\Rightarrow \quad \lambda=-\frac{1}{2}$$

Put in eq. (1), the required plane is

$$(x+y+2z-3) - \frac{1}{2}(2x+3y+4z-4) = 0 \Longrightarrow y+2 = 0...(2)$$

$$\therefore \text{ S.D. = distance of any point say (0, 0, 0) on z-axis from plane (2)}$$

$$=\frac{2}{\sqrt{\left(1\right)^2}}=2$$

If equation of the plane through the straight line $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{5}$ and perpendicular to the 10. plane x - y + z + 2 = 0 is ax - by + cz + 4 = 0, then find the value of $10^3a + 10^2b + 10c$

Ans. 1710

> ·.. i.e.

Sol. Let equation of a plane containing the line be l(x - 1) + m(y + 2) + nz = 0then 2l - 3m + 5n = 0 and l - m + n = 0

$$\frac{l}{2} = \frac{m}{3} = \frac{n}{1}$$

the plane is $2(x - 1) + 3(y + 2) + z = 0$
 $2x + 3y + z + 6 = 0$
 $a = 2, b = -3, c = 1$
 $10^3 a + 10^2 b + 10c = 2000 - 300 + 10 - 1710$

...

·. $+10^{2}b+10c = 2000-300+10=1710$ Ans.

11. Find the equation to the line which intersects the lines x + y + z = 1, 2x - y - z = 2x + y - z = 3, 2x + 4y - z = 4

and passes through the point (1, 1, 1)

Ans. 19 Sol. The line intersecting the given lines is $(x + y + z - 1) + \lambda (2x - y - z - 2) = 0$...(i) $(x - y - z - 3) + \mu (2x + 4y - z - 4) = 0$ If it passes through (1, 1, 1), then we get from (1) $\lambda = 1$ and $\mu = 4$ Hence the required equations to the intersecting line are x - 1 = 0 = 9x + 15y - 5z + 19. Ans 12. Find the shortest distance and the vector equation of the line of shortest distance between the lines given by $\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(3\vec{i} - \vec{j} + \vec{k})$ and $\vec{r} = -3\vec{i} - 7\vec{j} + 6\vec{k} + \mu(-3\vec{i} + 2\vec{j} + 4\vec{k})$. $\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(-6\vec{i} - 15\vec{j} + 3\vec{k})$ Ans. $\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(3\vec{i} - \vec{j} + \vec{k})$...(i) Sol. $\vec{r} = -3\vec{i} - 7\vec{j} + 6\vec{k} + \mu(-3\vec{i} + 2\vec{j} + 4\vec{k})$...(ii) Let L and M be points on the line (i) and (ii) respectively So that LM is perpendicular to both the lines Let position vector of L be $3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda_0(3\vec{i} - \vec{j} + \vec{k})$ and the position vector of M be $-3\vec{i} - 7\vec{j} + 6\vec{k} + \mu_0 \left(-3\vec{i} + 2\vec{j} + 4\vec{k} \right)$ then $\vec{LM} = -6\vec{i} - 15\vec{j} + 3\vec{k} - \lambda_0 (3\vec{i} - \vec{j} + \vec{k}) + \mu_0 (-3\vec{i} + 2\vec{j} + 4\vec{k})$ since \overrightarrow{LM} is perpendicular to both the lines (i) and (ii) $\overrightarrow{LM}.(\overrightarrow{3i}-\overrightarrow{j}+\overrightarrow{k})=0$ and $\overrightarrow{LM}.(-\overrightarrow{3i}+2\overrightarrow{j}+4\overrightarrow{k})=0$ ÷. Thus $-18 + 15 + 3 - \lambda_0 (9 + 1 + 1) + \mu_0 (-9 - 2 + 4) = 0$ $-11 \lambda_0 - 7\mu_0 = 0$ i.e. ...(iii) $18 - 30 + 12 - \lambda_0 (-9 - 2 + 4) + \mu_0 (9 + 4 + 16) = 0$ and $7\lambda_0 + 29\mu_0 = 0$ i.e. ...(iv) from (iii) and (iv) we get $\lambda_0 = \mu_0 = 0$ $\vec{LM} = -6\vec{i} - 15\vec{j} + 3\vec{k}$ $\left| \overrightarrow{\text{LM}} \right| = \sqrt{36 + 225 + 9} = \sqrt{270} = 3\sqrt{30}$ Position vector of L is $3\vec{i} + 8\vec{j} + 3\vec{k}$ equation of the line of shortest distance (LM) is $\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(-6\vec{i} - 15\vec{j} + 3\vec{k})$ $\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(-6\vec{i} - 15\vec{j} + 3\vec{k})$

 $x^{2} + y^{2} + 14x - 4y + 28 = 0$ and $x^{2} + y^{2} - 14x + 4y - 28 = 0$ are λ and μ . Then the value of is equal to (where [.] denotes greatest integer function) 4

Ans. Sol.

$$c_{1}c_{2} > r_{1} + r_{2}$$

External = $\sqrt{d^{2} - (r_{2} - r_{1})^{2}} = 14 = \lambda$
Internal = $\sqrt{d^{2} - (r_{1} + r_{2})} = 4 = \mu$
 $\lambda + \mu = 18$ $\left[\frac{\lambda + \mu}{4}\right] = 4$

Consider two concentric circle $C_1: x^2 + y^2 = 1$ and $C_2: x^2 + y^2 - 4 = 0$. A parabola is drawn through 14. the points where C_1 meet the x-axis and having arbitrary tangent of C_2 as its directrix. Then locus of focus of drawn parabola is $\frac{3}{4}x^2 + y^2 = k$, then value of k is

(1)

(2)

Ans.

Ans. 3
Sol.
$$(h-1)^2 + k^2 = (\cos \theta - 2)^2$$

 $(h+1)^2 + k^2 = (\cos \theta + 2)^2$
 $(2) - (1)$ gives us $\cos \theta = \frac{h}{2}$
 $(2) + (1)$
 $2(h^2 + k^2 + 1) = 2(\cos^2 \theta + \frac{3}{4}x^2 + y^2) = 3$

All chords of the curve $3x^2 - y^2 - 2x + 4y = 0$ that subtend a right angle at the origin, pass 15. through a fixed point (h, k) then h - k is equal to

Ans.

3

Let the equation of the chord to y = mx + cSol. Combined equation of the line joining the point of intersection with origin is

$$3x^{2} - y^{2} - 2(x - 2y)\left(\frac{y - mx}{c}\right) = 0$$

$$\Rightarrow x^{2}(3c + 2m) - y^{2}(c - 4) - 2xy(1 + 2m) = 0$$

From the condition of perpendicularity, we get 3c + 2m - c + 4 = 0 $\Rightarrow m + c = -2$

i.e the line y = mx + c, passes through (1, -2)