THERMODYNAMICS

CHEMISTRY

Single Correct Answer Type

1. Standard enthalpy of vapourisation $\Delta_{\text {vap. }} H^{\ominus}$ for water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The internal energy of vapourisation of water at $100^{\circ} \mathrm{C}\left(\right.$ in $\left.\mathrm{kJ} \mathrm{mol}{ }^{-1}\right)$ is:
a) +43.76
b) +40.66
c) +37.56
d) -43.76
2. The factor $\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{T}}\right)_{\mathrm{P}}-\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$ is equal to :
a) γ
b) R
c) $\frac{R}{M}$
d) $\triangle n R T$
3. Heat of combustion of a substance:
a) Is always positive
b) Is always negative
c) Is equal to heat of formation
d) Nothing can be said without reaction
4. The heat of formations of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are -26.4 kcal and -94.0 kcal respectively. The heat of combustion of carbon monoxide will be
a) -67.6 kcal
b) 36.5 kcal
c) -36.5 kcal
d) -46.5 kcal
5. Which reaction either endothermic or exothermic characteristics has the greater chance of occurring spontaneously?
a) One in which entropy change is positive
b) One is which entropy change is negative
c) One in which Gibbs energy change is negative
d) One in which equilibrium has been established
6. Net work done by the system in a cyclic process is equal to:
a) Zero
b) ΔU
c) ΔH
d) q
7. A thermodynamic quantity is that:
a) Which is used in thermochemistry
b) Which obeys all the laws of thermodynamics
c) Quantity which depends only on the state of the system
d) Quantity which is used in measuring thermal change
8. The Gibbs energy change for a reversible reaction at equilibrium is:
a) Zero
b) Small positive
c) Small negative
d) Large positive
9. If, $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} ; \Delta H=-298.2 \mathrm{~kJ} \quad \ldots(i)$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} ; \Delta H=-98.7 \mathrm{~kJ}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} ; \Delta H=-130.2 \mathrm{~kJ} \ldots(i i i)$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} ; \Delta H=-227.3 \mathrm{~kJ} \quad \ldots$ (iv)
The enthalpy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be:
a) -754.4 kJ
b) +320.5 kJ
c) -650.3 kJ
d) -433.7 kJ
10. The heat required to raise the temperature of a body by 1 K is called
a) Specific heat
b) Thermal capacity
c) Water equivalent
d) None of these
11. A system absorbs 10 kJ of heat and does 4 kJ of work. The internal energy of the system
a) Increases by 6 kJ
b) Decreases by 6 kJ
c) Decreases by 14 kJ
d) Increases by 14 kJ
12. Which of the following statement is true?
a) ΔH is positive for exothermic reactions
b) ΔH is negative for endothermic reactions
c) The enthalpy of fusion is negative
d) The heat of neutralization of strong acid with strong base is always the same
13. The temperature at which the reaction,
$\mathrm{Ag}_{2} \mathrm{O}(s) \rightarrow 2 \mathrm{Ag}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
Is at equilibrium is ...,gives, $\Delta H=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=0.066 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
a) 462.12 K
b) 362.12 K
c) 262.12 K
d) 562.12 K
14. During an adiabatic process:
a) Pressure is maintained constant
b) Gas is isothermally expanded
c) There is perfect heat insulation
d) The system changes heat with surroundings
15. If $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}=\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+q_{1}$ and $\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}+q_{2}$, then the enthalpy change for the reaction, $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$is equal to :
a) $q_{1}+q_{2}$
b) $q_{1}-q_{2}$
c) $q_{2}-q_{1}$
d) $-q_{1}-q_{2}$
16. Which of the following statements is true? The entropy of the universe
a) Increases and tends towards maximum value
b) Decreases and tends to be zero
c) Remains constant
d) Decreases and increases with a periodic rate
17. The standard change is Gibbs energy for the reaction,
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$at $25^{\circ} \mathrm{C}$ is:
a) 100 kJ
b) -90 kJ
c) 90 kJ
d) -100 kJ
18. Which is not characteristic of thermochemical equation?
a) It indicates physical state of reactants and products
b) It indicates whether the reaction is exothermic or endothermic
c) It indicates allotrope of reactants if present
d) It indicates whether reaction would occur or not
19. For the reaction,

$$
\begin{gather*}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})+x_{1} \mathrm{~kJ} \tag{i}\\
2 \mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})-x_{2} \mathrm{~kJ} \tag{ii}
\end{gather*}
$$

Which of the following statement is correct?
a) x_{1} and x_{2} are numerically equal
b) x_{1} and x_{2} are numerically different
c) $x_{1}-x_{2}>0$
d) $x_{1}-x_{2}<0$
20. For which process energy will be absorbed?
a) Separation of an electron from an electron
b) Separation of proton from a neutron
c) Separation of a neutron from neutron
d) Separation of an electron from a neutral atom
21. Which of the following is correct for an ideal gas:
a) $\left(\frac{\partial E}{\partial T}\right)_{V}=0$
b) $\left(\frac{\partial E}{\partial P}\right)_{T}=0$
c) $\left(\frac{\partial E}{\partial T}\right)_{P}=0$
d) All of these
22. An exothermic reaction is one in which the reacting substances
a) Have more energy than the products
b) Have less energy than the products
c) Are at a higher temperature than the product
d) None of the above
23. Heat energy change during the chemical reaction, $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ is known as :
a) Heat of combustion of CO
b) Latent heat of CO_{2}
c) Latent heat of vaporisation
d) Heat of formation of CO_{2}
24. Under the same conditions how many mL of $1 M \mathrm{KOH}$ and $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solutions, respectively when mixed for a total volume of 100 mL produce the highest rise in temperature?
a) $67: 33$
b) $33: 67$
c) $40: 60$
d) $50: 50$
25. The first law of thermodynamic is expressed as
a) $q-W=\Delta E$
b) $\Delta E=q-W$
c) $q=\Delta E-W$
d) $W=q+\Delta E$
26. One mole of a non-ideal gas undergoes a change of state $(2.0 \mathrm{~atm}, 3.0 \mathrm{~L}, 95 \mathrm{~K}) \rightarrow(4.0 \mathrm{~atm}, 5.0 \mathrm{~L}, 245 \mathrm{~K})$ with a change in internal energy, $\Delta U=30.0 \mathrm{~L}$ atm. The change in enthalpy (ΔH) of the process in L atm is:
a) 40.0
b) 42.3
c) 44.0
d) Not defined, because pressure is not constant
27. Which one of the following is an exothermic reaction?
a) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+180.8 \mathrm{~kJ} \rightarrow 2 \mathrm{NO}(\mathrm{g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})-92 \mathrm{~kJ} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
c) $\mathrm{C}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})-131.1 \mathrm{~kJ}$
d) $\mathrm{C}($ graphite $)+2 \mathrm{~S}(s) \rightarrow \mathrm{CS}_{2}(l)-91.9 \mathrm{~kJ}$
28. If liquids A and B from an ideal solution, the:
a) Enthalpy of mixing is zero
b) Entropy of mixing is zero
c) Free energy of mixing is zero
d) Free energy as well as the entropy of mixing are each zero
29. In which of the following cases entropy decreases?
a) Solid changing to liquid
b) Expansion of a gas
c) Crystals dissolve
d) Polymerisation
30. For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}: \Delta H$ is
a) $\Delta E-2 R T$
b) $\Delta E-R T$
c) $\Delta E+R T$
d) $\Delta E+2 R T$
31. When one mole of monoatomic ideal gas at T temperature undergoes adiabatic change under a constant external pressure of 1 atm change in volume is from 1 L to 2 L , the final temperature in Kelvin would be
a) $\frac{T}{2^{(2 / 3)}}$
b) $T+\frac{2}{3 \times 0.0821}$
c) T
d) $T-\frac{2}{3 \times 0.0821}$
32. In the combustion of 2.0 g of methane, 25 kcal heat is liberated. Heat of combustion of methane would be
a) 150 kcal
b) 200 kcal
c) 250 kcal
d) 350 kcal
33. 1 mole of an ideal gas at $25^{\circ} \mathrm{C}$ is subjected to expand reversibly ten times of its initial volume. The change in entropy of expansion is:
a) $19.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
b) $16.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
c) $22.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
d) None of these
34. The heat of formation $\left(\Delta H_{f}\right)$ of $\mathrm{H}_{2} \mathrm{O}(l)$ is equal to:
a) Zero
b) Molar heat of combustion of $\mathrm{H}_{2}(l)$
c) Molar heat of combustion of $\mathrm{H}_{2}(\mathrm{~g})$
d) Sum of heat of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$
35. The entropy change for the reaction given below,
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
Is...at 300 K . Standard entropies of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $126.6,201.20$ and $68.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.
a) $-318.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
b) $318.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
c) $31.84 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
d) None of these
36. Heat of combustion ΔH for $\mathrm{C}(s), \mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{CH}_{4}(\mathrm{~g})$ are $-94,-68$ and $-213 \mathrm{kcal} / \mathrm{mole}$ then ΔH for $\mathrm{C}(s)+$ $2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}$ (g) is :
a) -17 kcal
b) -111 kcal
c) -170 kcal
d) -85 kcal
37. A positive change in enthalpy occurs in :
a) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
c) $\mathrm{MgCO}_{3}(s) \rightarrow \mathrm{MgO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
38. A gas expands isothermally and reversibly. The work done by the gas is:
a) Zero
b) Minimum
c) Maximum
d) Equal to work done
39. What is Δn for combustion of 1 mole of benzene, when both the reactants and products are gas at 298 K
a) 0
b) 1
c) 0.5
d) 1.5
40. Internal energy and pressure of a gas of unit volume are related as:
a) $P=\frac{2}{3} U$
b) $P=\frac{3}{2} U$
c) $P=\frac{U}{2}$
d) $P=2 U$
41. A reaction accompanied with the absorption of energy is:
a) Burning of a candle
b) Rusting of iron
c) Electrolysis of water
d) Digestion of food
42. The second law of thermodynamics introduced the concept of:
a) Third law of thermodynamics
b) Work
c) Entropy
d) Internal energy
43. The enthalpy change is negative for :
a) $\mathrm{Cl}^{-}(\mathrm{g})+\mathrm{aq} \rightarrow \mathrm{Cl}^{-}(a q)$
b) $\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}^{+}(\mathrm{g})+\mathrm{e}$
c) $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}(\mathrm{g})$
d) $\mathrm{Cl}_{2}(l) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})$
44. Equal volumes of monoatomic and diatomic gases at same initial temperature and pressure are mixed. The ratio of specific heats of the mixture $\left(C_{p} / C_{v}\right)$ will be
a) 1
b) 2
c) 1.67
d) 1.2
45. If, $\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-393.5 \mathrm{~kJ}$ and $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-283.5 \mathrm{~kJ}$,
then the heat of formation of CO is:
a) -110.0 kJ
b) 676.5 kJ
c) -676.5 kJ
d) 110.5 kJ
46. Hess's law of constant heat summation is an application of :
a) Kirchhoff's law
b) First law of thermodynamics
c) Second law of thermodynamics
d) Entropy
47. The heat of reaction at constant pressure is equal to :
a) $\Sigma U_{P}-\Sigma U_{R}$
b) $\Sigma U_{R}-\Sigma U_{P}$
c) $\Sigma H_{P}-\Sigma H_{R}$
d) $\Sigma H_{R}-\Sigma H_{P}$
48. Select the correct limitations of III law of thermodynamics.
a) Glassy solids at zero kelvin has entropy greater than zero
b) Solids having mixture of isotopes do not have entropy zero at zero kelvin
c) Crystals of $\mathrm{CO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{H}_{2} \mathrm{O}$, etc., do not have zero entropy at zero kelvin
d) All of the above
49. Heat of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 1 atm and $25^{\circ} \mathrm{C}$ is $-243 \mathrm{~kJ} . \Delta U$ for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$ is :
a) 241.8 kJ
b) -241.8 kJ
c) -243 kJ
d) 243 kJ
50. Molar heat capacity of a gas at constant temperature and pressure is :
a) $(3 / 2) R$
b) $(5 / 2) R$
c) Infinite
d) Depends upon atomicity of gas
51. If water is formed from H^{+}ions and OH^{-}, the heat of formation of water is :
a) -13.7 kcal
b) +13.7 kcal
c) -63.4 kcal
d) +63.4 kcal
52. The process of evaporation of a liquid is accompanied by:
a) Increase in enthalpy
b) Decrease in Gibbs energy
c) Increase in entropy
d) All of the above
53. The work done during the process when 1 mole of gas is allowed to expand freely into vacuum is:
a) Zero
b) +ve
c) -ve
d) Either of these
54. The van't Hoff reaction isotherm is:
a) $\Delta G=R T \log _{e} K_{p}$
b) $-\Delta G=R T \log _{e} K_{p}$
c) $\Delta G=R T^{2} \ln K_{p}$
d) None of these
55. Which species have negative value of specific heat?
a) Ice
b) Water
c) Vapour
d) Saturated vapour
56. The standard heat of formation of sodium ions in aqueous solution from the following data will be:

Heat of solution $\mathrm{NaOH}($ aq.) from $\mathrm{NaOH}(s)=-470.7 \mathrm{~kJ}$
Heat of formation of OH^{-}(aq.) From $\mathrm{OH}^{-}(s)=-228.8 \mathrm{~kJ}$
a) -251.9 kJ
b) 241.9 kJ
c) -241.9 kJ
d) 251.9 kJ
57. An ideal gas expands in volume from $1 \times 10^{3} \mathrm{~m}^{3}$ to $1 \times 10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $1 \times$ $10^{5} \mathrm{Nm}^{-2}$. The work done is
a) 270 kJ
b) -900 kJ
c) -900 J
d) 900 kJ
58. For the reaction $3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3} ; \Delta H=+\mathrm{ve}$, we can say:
a) O_{3} is more stable than O_{2}
b) O_{3} is less stable than O_{2}
c) Both are equally stable
d) Formation of O_{3} is exothermic
59. One mole of a gas absorbs 200 J of heat at constant volume. Its temperature rises from 298 K To 308 K . The change in internal energy is:
a) 200 J
b) -200 J
c) $200 \times \frac{308}{298} \mathrm{~J}$
d) $200 \times \frac{298}{308} \mathrm{~J}$
60. Which of the following have same units?
(i) work
(ii) Heat
(iii) Energy (iv) Entropy
a) (i), (ii) and (iii)
b) (i), (ii) and (iv)
c) (ii), (iii) and (iv)
d) (iii) and (iv)
61. For an ideal gas, the relation between the enthalpy change and internal energy change at constant temperature is given by :
a) $H=U+P V$
b) $\Delta H=\Delta U+\Delta n R T$
c) $\Delta U=\Delta H+P \Delta V$
d) $\Delta H=\Delta G+T \Delta S$
62. Vibrational energy is:
a) Partially potential and
b) Only potential
c) Only kinetic
d) None of the above partially kinetic
63. The relation $\Delta G=\Delta H-T \Delta S$ was given by
a) Boltzmann
b) Faraday
c) Gibbs-Helmholtz
d) Thomson
64. Calculate the free energy change of
$2 \mathrm{CuO}(s) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
Given, $\Delta H=145.6 \mathrm{~kJ}$ per mol
$\Delta S=116 \mathrm{~J}$ per mol per K
a) 113.8 kJ per mol
b) 221.5 kJ per mol
c) 55.4 kJ per mol
d) 145.6 kJ per mol
65. The bond dissociation energy of $\mathrm{B}-\mathrm{F}$ in BF_{3} is $646 \mathrm{~kJ} \mathrm{~mol}^{-1}$, whereas that of $\mathrm{C}-\mathrm{F}$ in CF_{4} is $515 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The correct reason for higher $\mathrm{B}-\mathrm{F}$ bond dissociation energy as compared to that of $\mathrm{C}-\mathrm{F}$ is :
a) Stronger σ bond between B and F in BF_{3} as compared to that between C and F in CF_{4}
b) Significant $p \pi-p \pi$ interaction between B and F in BF_{3} whereas there is no possibility of such b) interaction between C and F in CF_{4}
c) Lower degree of $p \pi-p \pi$ interaction between B and F in BF_{3} than that between C and F in CF_{4}
d) Smaller size of B-atom as compared to that of C-atom
66. When water is added to quick lime, the reaction is :
a) Explosive
b) Endothermic
c) Exothermic
d) None of these
67. An engine operating between $150^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ takes 500 J heat from a higher temperature reservoir if there are no frictional losses, then work done by engine is
a) 165.85 J
b) 169.95 J
c) 157.75 J
d) 147.7 J
68. Least random state of water is:
a) Ice
b) Liquid water
c) Steam
d) All present in same random state
69. Given that standard heat enthalpy of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ are $-17.9,12.5,-24.8 \mathrm{kcal} / \mathrm{mol}$. The ΔH for $\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}$ is :
a) $-55.2 \mathrm{kcal} \mathrm{mol}^{-1}$
b) $-30.2 \mathrm{kcal} \mathrm{mol}^{-1}$
c) $55.2 \mathrm{kcal} \mathrm{mol}^{-1}$
d) $-19.4 \mathrm{kcal} \mathrm{mol}^{-1}$
70. Absorption of gasses on solid surface is generally exothermic because
a) Enthalpy is positive
b) Entropy decreases
c) Entropy increases
d) Free energy increases
71. Energy equivalent to one erg, one joule and one calorie are in order:
a) $1 \mathrm{erg}>1$ J $>1 \mathrm{cal}$
b) $1 \mathrm{erg}>1 \mathrm{cal}>1 \mathrm{f}$
c) $1 \mathrm{cal}>1 \mathrm{~J}>1 \mathrm{erg}$
d) 1 J >1 cal >1 erg
72. When the change of entropy is greater, then the ability for work is:
a) Maximum
b) Minimum
c) Medium
d) None of these
73. For which change $\Delta H \neq \Delta U$?
a) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
b) $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
74. Net work done by a system is given by:
a) Decrease in Helmholtz energy (ΔA)
b) Decrease in Gibbs energy (ΔG)
c) Decrease in internal energy
d) Decrease in heat enthalpy
75. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below :

The energy involved in the conversion of
$\frac{1}{2} \mathrm{Cl}_{2}$ (g) to $\mathrm{Cl}^{-}(a q)$
(using the data, $\Delta_{\text {diss }} H_{\mathrm{Cl}_{2}}^{\ominus}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{eg}} H_{\mathrm{Cl}}^{\ominus}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{hyd}} H_{\mathrm{Cl}^{-}}^{\ominus}=-381 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$) will be :
a) $+120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $+152 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $-850 \mathrm{~kJ} \mathrm{~mol}^{-1}$
76. The law of Lavoisier and Laplace is based on :
a) The principle of conservation of energy
b) Equivalence of mechanical and thermal energies
c) The principle of conservation of matter
d) Equivalence of mechanical and chemical energies
77. ΔH for the reaction given below represents, $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}=40 \mathrm{~kJ}:$
a) Heat of formation
b) Heat of combustion
c) Heat of neutralisation
d) Heat of reaction
78. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is -1349 kcal , then his daily consumption of sugar is:
a) 728 g
b) 0.728 g
c) 342 g
d) 0.342 g
79. The enthalpy of hydrogenation of cyclohexene is $-119.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If resonance energy of benzene is $-150.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, its enthalpy of hydrogenation would be:
a) $-269.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $-358.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $-508.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $-208.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
80. The incorrect expression among the following is:

In isothermal process
a) $W_{\text {reversible }}$
b) $\ln K=\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}$
c) $K=e^{-\Delta G^{\circ} / R T}$
d) $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
81. An ideal gas expands in volume from $1 \times 10^{-3} \mathrm{~m}^{3}$ to $1 \times 10^{-2} \mathrm{~m}^{3}$ at 300 K against a constant pressure of $1 \times 10^{5} \mathrm{Nm}^{-2}$. The work done is
a) -900 J
b) -900 kJ
c) 270 kJ
d) 900 kJ
82. $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$;
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
Then the heat of formation of CO is
a) $X-Y$
b) $Y-2 X$
c) $X+Y$
d) $2 X-Y$
83. The formation water from $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is an exothermic reaction because :
a) The chemical energy of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is more than that of water
b) The chemical energy of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is less than that of water
c) Not dependent on energy
d) The temperature of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ is more than that of water
84. Which statements are correct?
a) $2.303 \log \frac{P_{2}}{P_{1}}=\frac{\Delta H_{\text {vap }}}{R} \cdot \frac{\left[T_{2}-T_{1}\right]}{T_{1} T_{2}}$ is Clausius Clapeyron equation
b) $\frac{\Delta H_{\text {vap }} \text {. }}{\text { Boiling point }}=88 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ is called Trouton's rule
c) Entropy is a measure of unavailable energy, i.e., unavailable energy $=$ entropy \times temperature
d) All of the above
85. The work done in an open vessel at 300 K , when 112 g iron reacts with dil. HCl is:
a) 102 kcal
b) 0.6 kcal
c) 0.3 kcal
d) 0.2 kcal
86. A solution of 500 mL of $2 M \mathrm{KOH}$ is added to 500 mL of $2 M \mathrm{HCl}$ and the mixture is well shaken. The rise in temperature T_{1} is noted. The experiment is then repeated using 250 mL of each solution and rise in temperature T_{2} is again noted. Assume all heat is taken up by the solution:
a) $T_{1}=T_{2}$
b) T_{1} is 2 time as larger as T_{2}
c) T_{2} is twice larger as T_{1}
d) T_{1} is 4 time as larger as T_{2}
87. When 1 mole of gas is heated at constant volume. Temperature is raised from 298 to 308 K . Heat supplied to the gas is 500 J . Then which statement is correct?
a) $q=-W=500 \mathrm{~J}, \Delta U=0$
b) $q=\Delta U=500 \mathrm{~J}, W=0$
c) $q=W=500 \mathrm{~J}, \Delta U=0$
d) $\Delta U=0, q=W=-500 \mathrm{~J}$
88. The heat of formation is the change in enthalpy accompanying the formation of a substance from its elements at 298 K and 1 atm pressure. Since, the enthalpies of elements in their most stable state are taken to be zero, the heat of formation of compounds is :
a) Always negative
b) Always positive
c) Standard heat enthalpy of that compound
d) Zero
89. If enthalpies of methane and ethane are respectively 320 and 360 cal then the bond energy of $\mathrm{C}-\mathrm{C}$ bond is
a) 80 cal
b) 40 cal
c) 60 cal
d) 120 cal
90. Which correctly represents the physical significance of Gibbs energy change?
a) $-\Delta G=W_{\text {compression }}$
b) $\Delta G=W_{\text {expansion }}$
c) $\Delta G=-W_{\text {expansion }}=W_{\text {non-expansion }}$
d) $-\Delta G=W_{\text {expansion }}$
91. Heat of neutralisation of which acid-base reaction is -57.32 kJ for?
a) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
b) $\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH}$
c) $\mathrm{HCOOH}+\mathrm{KOH}$
d) $\mathrm{HNO}_{3}+\mathrm{LiOH}$
92. Entropy change of vaporisation at constant pressure is given by:
a) $\Delta S_{(v)}=\frac{\Delta H_{v}}{T}$
b) $\Delta S_{v}=\frac{\Delta U_{v}}{T}$
c) $\Delta S_{(v)}=\frac{\Delta H_{v}}{\Delta T}$
d) None of these
93. Given, $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+94.2 \mathrm{kcal}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+68.3 \mathrm{kcal}$
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+210.8 \mathrm{kcal}$....(iii)
The heat of formation in kcal will be :
a) 45.9
b) 47.8
c) -20.0
d) 47.3
94. The enthalpy of formation of HI is 30.4 kJ . Which statement is false according to this observation?
a) HI is an endothermic compound
b) For the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g}) ; \Delta H=60.8 \mathrm{~kJ}$
c) HI is a stable compound
d) HI is an unstable compound
95. Mark the correct statement
a) For a chemical reaction to be feasible, ΔG should be zero
b) Entropy is a measure of order in a system
c) For a chemical reaction to be feasible, ΔG should be positive
d) The total energy of an isolated system is constant
96. The entropy change for vaporisation of liquid water to steam at $100^{\circ} \mathrm{C}$ is...J $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$. Given that heat of vaporisation is $40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
a) 109.38
b) 100.38
c) 110.38
d) 120.38
97. Given the bond energies of $\mathrm{N} \equiv \mathrm{N}, \mathrm{H}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds as 945,436 and $39 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, the enthalpy of the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is :
a) -93 kJ
b) 102 kJ
c) 90 kJ
d) 105 kJ
98. When ammonium chloride is dissolved in water, the solution becomes cold. The change is:
a) Endothermic
b) Exothermic
c) Super cooling
d) None of these
99. The Gibbs energy change and standard Gibbs energy change are equal if reaction quotient is equal to:
a) Zero
b) 1
c) >1
d) <1
100. The bond energy of H_{2} is $104.3 \mathrm{kcal} \mathrm{mol}^{-1}$. It means : ($N=A v$. no.)
a) 104.3 kcal heat is required to break up N bonds in N molecules of H_{2}
b) 104.3 kcal heat is required to break up N molecules to 2 N atoms of H
c) 104.3 kcal heat is evolved during combination of 2 N atoms of H to from N molecules of H_{2} Heat of formation of H atom
d) $=\frac{1}{2} \times$ bond energy of $\mathrm{H}-\mathrm{H}$
101. For the process, $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}):$
a) Both ΔH and ΔS are + ve
b) ΔH is - ve and ΔS is +ve
c) ΔH is + ve and ΔS is $-v e$
d) Both ΔH and ΔS are -ve
102. The process, in which no heat enters or leaves the system is termed as
a) Isochoric
b) Isobaric
c) Isothermal
d) Adiabatic
103. The work done during the expansion of a gas from a volume of $4 \mathrm{dm}^{3}$ to $6 \mathrm{dm}^{3}$ against a constant external pressure of 3 atm is
a) -6 J
b) -608 J
c) +304 J
d) -304 J
104. Which are correct to express work terms?
a) Work $=$ Capacity factor \times Intensity factor; where capacity factor is a measure of extent of work done a) and intensity factor is a measure of force responsible for work
b) Electrical work $=E \times n F ; E$ is intensity factor; $n F$ is capacity factor
c) Expansion work $=P \times \Delta V ; P$ is intensity factor; ΔV is capacity factor
d) All of the above
105. Theenthalpy change for the transition of liquid water to steam is $\Delta H_{\text {vap }}=37.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 373 K . The entropy change for the process is
a) $132.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
b) $100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
c) $135.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
d) $75.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
106. Which is not a spontaneous process?
a) Expansion of a gas into vacuum
b) Water flowing down hill
c) Heat flowing from colder body to a hotter body
d) Evaporation of water from clothes during drying
107. In a chemical reaction $\Delta H=150 \mathrm{~kJ}$ and $\Delta S=100 \mathrm{JK}^{-1}$ at 300 K . The ΔG for the reaction is:
a) Zero
b) 300 kJ
c) 330 kJ
d) 120 kJ
108. Enthalpy of $\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ is negative. If enthalpy of combustion of CH_{4} and $\mathrm{CH}_{3} \mathrm{OH}$ are x and y respectively. Then which relation is correct?
a) $x>y$
b) $x<y$
c) $x=y$
d) $x \geq y$
109. The enthalpy and entropy change for the reaction,
$\mathrm{Br}_{2}(l)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{g})$
Are $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $105 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The temperature at which the reaction will be in equilibrium is:
a) 450 K
b) 300 K
c) 285.7 K
d) 273 K
110. The gas in a refrigerator causes cooling on expansion because:
a) Work done by the gas is converted into heat
b) Heat of the gas is lost as work is done by the gas
c) The heat is spread over a large space
d) None of the above
111. ΔS is positive for the change:
a) Mixing of two gases
b) Boiling of liquid
c) Melting of solid
d) All of these
112. In a flask, colourless $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is in equilibrium with brown coloured $\mathrm{NO}_{2}(\mathrm{~g})$. At equilibrium when the flask is heated to $100^{\circ} \mathrm{C}$, the brown colour deepens and on cooling it becomes coloured. Which statement is
incorrect about this observation?
a) The ΔH for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is +ve
b) Paramagnetism increases on cooling
c) The $\Delta H-\Delta U$ at $100^{\circ} \mathrm{C}$ is equal to 200 cal
d) Dimerisation is reduced on heating
113. A gaseous reaction was carried out, first keeping the volume constant and next keeping the pressure constant. In the second experiment, there was an increase in volume. The heats of reaction were different, because:
a) In the first case the energy was spent to keep the volume constant
b) In the second case energy was spent to expand the gases
c) Specific heats of compressed gases is more
d) Specific heats of rarefied gases is more
114. The maximum work done in expanding 16 g oxygen at 300 K and occupying a volume of $5 \mathrm{dm}^{3}$ isothermally until the volume become $25 \mathrm{dm}^{3}$ is:
a) $2.01 \times 10^{3} \mathrm{~J}$
b) $+2.81 \times 10^{3} \mathrm{~J}$
c) $2.01 \times 10^{-3} \mathrm{~J}$
d) $+2.01 \times 10^{-6} \mathrm{~J}$
115. The heat of neutralization of strong base and a strong acid is 57 kJ . The heat released when 0.5 mole of HNO_{3} solution is added to 0.20 mole of NaOH solution, is :
a) 11.4 kJ
b) 34.7 kJ
c) 23.5 kJ
d) 58.8 kJ
116. For which one of the following equations is $\Delta H_{\text {reaction }}^{\circ}$ equal to ΔH_{f}° for the product?
a) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$
b) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(l)+2 \mathrm{HCl}(\mathrm{g})$
c) $\mathrm{Xe}(\mathrm{g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{XeF}_{4}(\mathrm{~g})$
d) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
117. If a chemical change is brought about by one or more methods in one or more steps, then the amount of heat absorbed or evolved during the complete course of reaction is same, whichever method was followed. This law is known as :
a) Le-Chatelier's principle
b) Hess's law
c) Joule-Thomson effect
d) Trouton's law
118. When a gas undergoes adiabatic expansion, it gets cooled due to
a) Loss of kinetic energy
b) Fall in temperature
c) Decrease in velocity
d) Energy used in doing work
119. How much heat (in kJ) is evolved when 2.7 g of aluminium reacts with a stoichiometric amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$? $2 \mathrm{Al}_{2}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3} ; \Delta H^{o}=-852 \mathrm{~kJ}$
a) 852 kJ
b) 426 kJ
c) -42.6 kJ
d) +42.6 kJ

120 . Which reaction is endothermic in nature?
a) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
b) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
c) $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
121. The enthalpy and entropy change for a chemical reaction are $-2.5 \times 10^{3} \mathrm{cal}$ and $7.4 \mathrm{cal} \mathrm{K}^{-1}$ respectively. Predict that nature of reaction at 298 K is:
a) Spontaneous
b) Reversible
c) Irreversible
d) Non-spontaneous
122. If 50 calorie are added to a system and system does work of 30 calorie on surroundings, the change in internal energy of system is:
a) 20 cal
b) 50 cal
c) 40 cal
d) 30 cal
123. If a refrigerator's door is opened then, we get
a) Room heated
b) Room cooled
c) More amount of heat is passed out
d) No effect on room
124. When a bottle of perfume is opened, odourous molecules mix with air and slowly diffuse throughout the entire room. The incorrect fact about the process is;
a) $\Delta G=-\mathrm{ve}$
b) $\Delta H \simeq 0$
c) $\Delta S=-\mathrm{ve}$
d) $\Delta S=+v e$
125. Equilibrium constant of a reaction is related to:
a) Standard Gibbs energy change ΔG°
b) Gibbs energy change ΔG
c) Heat enthalpy
d) None of the above
126. 48 g of C (diamond) on complete combustion evolves 1584 kJ of heat. The standard heat of formation of gaseous carbon is $725 \mathrm{~kJ} / \mathrm{mol}$. The energies required for the process
(i)C (graphite) $\rightarrow \mathrm{C}$ (gas)
(ii) C (diamond) \rightarrow C(gas)are:
a) 725,727
b) 717,725
c) 725,723
d) None of these
127. An example of closed system is:
a) Hot water present in an open beaker
b) Some amount of water present in equilibrium with its vapour in a closed and insulated beaker
c) Some amount of hot water enclosed in a closed container which is not insulated
d) None of the above
128. At 1 atm pressure, $\Delta S=75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; \Delta H=30 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The temperature of the reaction at equilibrium is:
a) 400 K
b) 330 K
c) 200 K
d) 110 K
129. 2.1 g of Fe combines with S evolving 3.77 kJ . The heat of formation of FeS in $\mathrm{kJ} / \mathrm{mole}$ is
a) -1.79
b) -100.5
c) -3.77
d) None of these
130. In an isochoric process, the increase in internal energy is
a) Equal to the heat absorbed
b) Equal to the heat evolved
c) Equal to the work done
d) Equal to the sum of the heat adsorbed and work done
131. The sublimation energy of $\mathrm{I}_{2}(s)$ is $57.3 \mathrm{~kJ} / \mathrm{mol}$ and the enthalpy of fusion is $15.5 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy of vaporisation of I_{2} is
a) $41.8 \mathrm{~kJ} / \mathrm{mol}$
b) $-41.8 \mathrm{~kJ} / \mathrm{mol}$
c) $72.8 \mathrm{~kJ} / \mathrm{mol}$
d) $-72.8 \mathrm{~kJ} / \mathrm{mol}$
132. ΔG° for the reaction $X+Y \rightleftharpoons Z$ is -4.606 kcal . The value of equilibrium constant of the reaction at $227^{\circ} \mathrm{C}$ is ($R=2.0 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
a) 100
b) 10
c) 2
d) 0.01
133. The entropy values (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) of $\mathrm{H}_{2}(\mathrm{~g})=130.6 \mathrm{Cl}_{2}(\mathrm{~g})=223.0$ and $\mathrm{HCl}(\mathrm{g})=186.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ at 298 K and 1 atm pressure, the entropy change for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$ is
a) +540.3
b) +727.3
c) -166.9
d) +19.8
134. Bond energy of molecule:
a) Is always negative
b) Is always positive
c) Either positive or negative
d) Depends upon the physical state of the system
135. In which case of mixing of a strong acid and a base each of $1 N$ concentration, temperature increase is highest?
a) 20 mL acid -20 mL alkali
b) 10 mL acid -40 mL alkali
c) 25 mL acid -25 mL alkali
d) 35 mL acid -15 mL alkali
136. ΔS^{o} will be highest for the reaction
a) $\mathrm{Ca}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s})$
b) $\mathrm{CaCO}_{3}(\mathrm{~g}) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$
c) $\mathrm{C}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
137. Bond dissociation enthalpy of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 434,242 and $431 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ respectively. Enthalpy of formation of HCl is :
a) $-245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
138. Joule-Thomson expansion is
a) Isobaric
b) Isoenthalpic
c) Isothermal
d) None of these
139. The energy absorbed by each molecule $\left(A_{2}\right)$ of a substance is $4.4 \times 10^{-19} \mathrm{~J}$ and bond energy per molecule is $4.0 \times 10^{-19} \mathrm{~J}$. The kinetic energy of the molecule per atom will be :
a) $4.0 \times 10^{-20} \mathrm{~J}$
b) $2.0 \times 10^{-20} \mathrm{~J}$
c) $2.2 \times 10^{-19} \mathrm{~J}$
d) $2.0 \times 10^{-19} \mathrm{~J}$
140. Which one of the following is not a state function?
a) Enthalpy
b) Entropy
c) Work
d) Free energy
141. Temperature and heat are:
a) Extensive properties
b) Intensive properties
c) Intensive and extensive properties respectively
d) Extensive and intensive properties respectively
142. A schematic plot of $\operatorname{In} K_{e q}$ versus inverse of temperature for a reaction is shown below

The reaction must be
a) Exothermic
b) Endothermic
c) One with negligible enthalpy change
d) Highly spontaneous at ordinary temperature
143. For a reaction at $25^{\circ} \mathrm{C}$, enthalpy and entropy changes are $-11.7 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ and $-105 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. What is the Gibbs free energy?
a) 15.05 kJ
b) 19.59 kJ
c) 2.55 kJ
d) 22.55 kJ
144. Which of the following equations correctly represents the standard heat of formation $\left(\Delta H_{f}^{o}\right)$ of methane?
a) $\mathrm{C}($ diamond $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
b) $\mathrm{C}($ graphite $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(l)$
c) $\mathrm{C}($ graphite $)+2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
d) C (graphite) $+4 \mathrm{H} \rightarrow \mathrm{CH}_{4}$ (g)
145. Combustion of glucose takes place according to the equation
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{CO}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} ; \Delta H=-72 \mathrm{kcal}$. How much energy will be required for the production of 1.6 g of glucose (Molecular mass of glucose $=180$)?
a) 0.064 kcal
b) 0.64 kcal
c) 6.4 kcal
d) 64 kcal
146. In an irreversible process taking place at constant T and P and in which only pressure volume work is being done, the change in Gibbs free energy $(d G)$ and change in entropy
a) $(d S)_{V, E}<0(d G)_{T, P}<0$
b) $(d S)_{V, E}>0(d G)_{T, P}<0$
c) $(d S)_{V, E}>0(d G)_{T, P}=0$
d) $(d S)_{V, E}=0(d G)_{T, P}>0$
147. Hess's law states that
a) The standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reactions.
b) Enthalpy of formation of a compound is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign.
c) At constant temperature the pressure of a gas is inversely proportional to its volume.
d) The mass of a gas dissolved per litre of a solvent is proportional to the pressure of the gas in equilibrium with the solution.
148. Internal energy is sum of
a) Kinetic energy and potential energy
b) All types of energy of the system
c) Energy of internal system
d) None of the above
149. Heat given to a system under isochoric process is equal to:
a) W
b) q_{p}
c) ΔU
d) ΔH
150. All the naturally occurring processes, i.e., spontaneous proceed spontaneously in a direction which leads to:
a) Decrease of free energy
b) Increase of free energy
c) Decrease of entropy
d) Increase of enthalpy
151. Which phenomena cannot be described as oxidation?
a) Oxidation of coal in air
b) Burning of magnesium in nitrogen
c) Reaction of antimony with chlorine
d) Lighting of an electric lamp
152. Heat of formation of $\mathrm{H}_{2} \mathrm{O}$ is $-188 \mathrm{~kJ} / \mathrm{mol}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ is $-286 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy change for the reaction $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ is
a) 196 kJ
b) -196 kJ
c) 984 kJ
d) -984 kJ
153. When 1 g atom of carbon is converted into 1 g molecule of CO_{2}, the heat liberated is same:
a) Irrespective of whether the volume is kept constant or pressure is kept constant
b) Irrespective of the temperature at which the reaction is carried out
c) Whether the carbon is in the form of diamond or graphite
d) None of the above
154. For the gas phase reaction,
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Which of the following conditions are correct?
a) $\Delta H>0$ and $\Delta S>0$
b) $\Delta H<0$ and $\Delta S<0$
c) $\Delta H>0$ and $\Delta S<0$
d) $\Delta H=0$ and $\Delta S<0$
155. A system provided 50 joule of heat and work done on the system is 10 J . The change in internal energy during the process is:
a) 40 J
b) 60 J
c) 80 J
d) 50 J
156. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_{c} is
a) $\Delta G=R T \operatorname{In} K_{c}$
b) $-\Delta G=R T \operatorname{In} K_{c}$
c) $\Delta G^{\circ}=R T \operatorname{In} K_{c}$
d) $-\Delta G^{\circ}=R T \operatorname{In} K_{c}$
157. Identify the correct statement for change of Gibb's energy for a system ($\Delta G_{\text {system }}$) at constant temperature and pressure:
a) If $\Delta G_{\text {system }}=0$, the system is still moving in a particular direction
b) If $\Delta G_{\text {system }}=-$ ve, the process is not spontaneous
c) If $\Delta G_{\text {system }}=+v e$, the process is spontaneous
d) If $\Delta G_{\text {system }}=0$, the system has attained equilibrium
158. The standard heat of combustion of solid boron is :
a) $\Delta_{f} H^{\circ}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)$
b) $\frac{1}{2} \Delta_{f} \Delta H^{\circ}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)$
c) $-\Delta_{f} H^{0}\left(\mathrm{~B}_{2} \mathrm{O}_{3}\right)$
d) $-\frac{1}{2} \Delta_{f} \Delta H^{\circ}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)$
159. During an isothermal expansion of an ideal gas its:
a) Enthalpy decreases
b) Internal energy decreases
c) Internal energy increases
d) Internal energy remains constant
160. The exchange of heat energy during chemical reaction at constant temperature and pressure occurs in form of:
a) Free energy
b) Internal energy
c) Enthalpy
d) Bond energy
161. Using the data provided, calculate the multiple bond energy ($\mathrm{kJ} \mathrm{mol}^{-1}$) of a $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. Given that the heat of formation of $\mathrm{C}_{2} \mathrm{H}_{2}$ is $225 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (take the bond energy of $\mathrm{C}-\mathrm{H}$ bond as $350 \mathrm{~kJ} \mathrm{~mol}^{-1}$.) :
$2 \mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{C}(\mathrm{g})$
$\Delta H=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{C}(\mathrm{g})$
$\Delta H=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
$\Delta H=330 \mathrm{~kJ} \mathrm{~mol}^{-1}$
a) 1165
b) 837
c) 865
d) 815
162. The molar heat capacity of water at constant pressure is $75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand the increase in temperature of water is
a) 2.4 K
b) 3.6 K
c) 4.8 K
d) 1.2 K
163. For which of the process, ΔS is negative?
a) $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
b) $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
c) $\mathrm{N}_{2}(1 \mathrm{~g}$ atom $) \rightarrow \mathrm{N}_{2}(8 \mathrm{~g}$ atom $)$
d) $C_{\text {(diamond) }} \rightarrow C_{\text {(graphite) }}$
164. Given that, $\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) ; \Delta H=-166 \mathrm{~kJ}$. The bond energy $\mathrm{C}-\mathrm{H}$ will be
a) $-416 \mathrm{~kJ} / \mathrm{mol}$
b) $-41.6 \mathrm{~kJ} / \mathrm{mol}$
c) $832 \mathrm{~kJ} / \mathrm{mol}$
d) None of these
165. In an isobaric process, the ratio of heat supplied to the system ($d \theta$) and work done by the system ($d W$) for diatomic gas is
a) $1: 1$
b) $7: 2$
c) $7: 5$
d) $5: 7$
166. An adiabatic process occurs in
a) Open system
b) Closed system
c) Isolated system
d) In all the given system
167. The heat of formation of water is exothermic in nature because:
a) $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ have higher temperature than water
b) $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ have lower temperature than water
c) $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ have higher internal energy than water
d) None of the above
168. In an adiabatic process
a) $p . \Delta V=0$
b) $q=+W$
c) $\Delta E=q$
d) $q=0$
169. A well stoppered thermos flask containing some ice cubes is an example of:
a) Closed system
b) Open system
c) Isolated system
d) None of these
170. Internal energy is
a) Partly potential and partly kinetic
b) Totally kinetic
c) Totally potential
d) None of the above
171. The enthalpy of formation of ammonia gas at 298 K is $-46.11 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The equation to which this value relates is:
a) $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
b) $\mathrm{N}(\mathrm{g})+3 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(l)$
172. $\mathrm{C}_{\text {diamond }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=-395.3 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{\text {graphite }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=-393.4 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{\text {graphite }} \rightarrow \mathrm{C}_{\text {diamond }} ; \Delta \mathrm{H}=$?
a) -3.8
b) -1.9
c) +3.8
d) +1.9
173. The heat evolved in the combustion of methane is given by the following equations
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H=-890.3 \mathrm{~kJ}$
How many grams of methane would be required to produce 44.15 kJ of heat of combustion?
a) 4 g
b) 8 g
c) 12 g
d) 16 g
174. The calorific value of fat is:
a) Lesser than that of carbohydrate and protein
b) Lesser than that of protein but more than carbohydrates
c) Lesser than that of carbohydrate but more than protein
d) More than that of carbohydrate and protein
175. The standard heat of formation of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are 8.0 and $2.0 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively. The heat of dimerization of NO_{2} in kcal is :
a) 10.0
b) -6.0
c) -12.0
d) -14.0
176. Given that,
$3 \mathrm{C}(s)+2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \rightarrow 4 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(\mathrm{~g}) \Delta H^{o}=-93657 \mathrm{cal}$
$\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H^{o}=-94050 \mathrm{cal}$
If both the values of ΔH are at $25^{\circ} \mathrm{C}$ then calculate $\Delta H_{\mathrm{Fe}_{2} \mathrm{O}_{3}}^{\mathrm{O}}$
a) 16.750 kcal
b) -16.750 kcal
c) -94.25 kcal
d) -393 kcal
177. 16 g oxygen gas expands at STP to occupy double of its original volume. The work done during the process is:
a) 260 kcal
b) 180 kcal
c) 130 kcal
d) 272.8 kcal
178. One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 litre to 10 litre. The ΔU for this process is ($R=2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$):
a) 163.7 cal
b) 1381.1 cal
c) $1.0 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
d) $0.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
179. Gibbs energy G, enthalpy H and entropy S are related by:
a) $G=H+T S$
b) $G=H-T S$
c) $G-T S=H$
d) $S=H-G$
180. In a closed insulated container a liquid is stirred with a paddle to increase the temperature, which of the following is true?
a) $\Delta U+W \neq 0, q=0$
b) $\Delta U=W=q \neq 0$
c) $\Delta U=0, W=q \neq 0$
d) $W=0, \Delta U=q \neq 0$
181. The ionization energy of solid NaCl is 180 kcal per mole. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1 kcal per mol. If the solvation energies of Na^{+}and Cl^{-}ions are in the ratio $6: 5$, what is the enthalpy of hydration of sodiumion?
a) $-85.6 \mathrm{kcal} / \mathrm{mol}$
b) $-97.5 \mathrm{kcal} / \mathrm{mol}$
c) $82.6 \mathrm{kcal} / \mathrm{mol}$
d) $+100 \mathrm{kcal} / \mathrm{mol}$
182. Enthalpy of solution of NaOH (solid) in water is $-41.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, when NaOH is dissolved in water, the temperature of water
a) Increases
b) Decreases
c) Does not change
d) Fluctuates indefinitely
183. Mark out the enthalphy of formation of carbon monoxide (CO)

Given, $\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}), \Delta H=-393.3 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-282.8 \mathrm{~kJ} / \mathrm{mol}$
a) $110.5 \mathrm{~kJ} / \mathrm{mol}$
b) $676.1 \mathrm{~kJ} / \mathrm{mol}$
c) $282.8 \mathrm{~kJ} / \mathrm{mol}$
d) $300.0 \mathrm{~kJ} / \mathrm{mol}$
184. Heat of neutralization of a strong acid and a strong base is equal to ΔH of :
a) $\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}=\mathrm{H}_{3} \mathrm{O}^{+}$
c) $2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
185. The temperature of the system increases during an:
a) Isothermal expansion
b) Adiabatic compression
c) Adiabatic expansion
d) Isothermal compression
186. For an adiabatic expansion of a perfect gas $\Delta P / P$ is equal to:
a) $\Delta V / V$
b) $\gamma \frac{\Delta V}{V}$
c) $-\gamma \frac{\Delta V}{V}$
d) $-\gamma^{2} \frac{\Delta V}{V}$
187. The heat evolved during neutralisation is maximum in the reaction of :
a) $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
b) $\mathrm{NH}_{4} \mathrm{OH}$ and HCl
c) NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
d) NaOH and HCl
188. In which reaction ΔS is positive?
a) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
b) $3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
c) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
189. It is impossible to attain the lowest temperature known as zero degree absolute. This is a simple statement of:
a) First law of thermodynamics
b) Second law of thermodynamics
c) Third law of thermodynamics
d) None of the above
190. The total entropy change for a system and its surroundings increases, if the process is:
a) Reversible
b) Irreversible
c) Exothermic
d) Endothermic
191. Heat of formation of compound is defined as :
a) Heat evolved to form one mole of the compound from its elements
b) Heat required to form one molecule of a compound
c) Change in heat content of the system when one molecule of a compound is formed
d) None of the above
192. At absolute zero, the entropy of a perfect crystal is zero. This is ... of thermodynamics.
a) First law
b) Second law
c) Third law
d) None of these
193. Standard state Gibbs free energy changes for the isomerization reaction, cis-2-pentene \rightleftharpoons trans-2-pentene is $-3.67 \mathrm{~kJ} / \mathrm{mol}$ at 400 K . If more trans-2-pentene is added to the reaction vessel, then:
a) Equilibrium remains unaffected
b) Additional trans-2-pentene is formed
c) More cis-2-pentene is formed
d) Equilibrium is shifted in forward direction
194. If S° for $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are $0.13,0.22$ and $0.19 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$ respectively. The total change in standard entropy for the reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is:
a) $30 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
b) $40 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
c) $60 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
d) $20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
195. The total internal energy change for a reversible isothermal cycles is
a) Always 100 calories per degree
b) Always negative
c) Zero
d) Always positive
196. One mole of a gas occupying $3 \mathrm{dm}^{3}$ expands against constant external pressure of 1 atm to a volume of $13 \mathrm{dm}^{3}$. The work done is:
a) $-10 \mathrm{~atm} \mathrm{dm}^{3}$
b) $-20 \mathrm{~atm} \mathrm{dm}{ }^{3}$
c) $-39 \mathrm{~atm} \mathrm{dm}{ }^{3}$
d) $-48 \mathrm{~atm} \mathrm{dm}{ }^{3}$
197. The heat of combustion of methane is $-880 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If 3.2 g of methan is burnt:
a) -176 kJ of heat is evolved
b) 176 kJ of heat is absorbed
c) 88 kJ of heat is evolved
d) None of above
198. Heat of solution is defined as :
a) Heat required to dissolved one mole in excess of water
b) Heat evolved, when one mole is dissolved in excess of water
c) Change in heat content of the system when one mole of the solute is dissolved un excess of water, so that further dilution of solution does not bring any heat change
d) None of the above
199. A mixture of two moles of carbon monoxide and one mole of oxygen, in a closed vessel is ignited to convert the carbon monoxide to carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy, then
a) $\Delta H>\Delta E$
b) $\Delta H<\Delta E$
c) $\Delta H=\Delta E$
d) The relationship depends on the capacity of the vessel
200. Molar heat capacity is given by :
a) $\frac{d Q}{d T}$
b) $d Q \times d T$
c) $\Sigma Q \frac{1}{d T}$
d) None of these
201. Two mole of an ideal gas is expanded isothermally and reversibly from 1 L to 10 L at 300 K . The enthalpy change (in kJ) for the process is
a) 11.4
b) -11.4
c) 0
d) 4.8
202. A gaseous system changes from state $A\left(P_{1}, V_{1}, T_{1}\right)$ to $B\left(P_{2}, V_{2}, T_{2}\right), B$ to $C\left(P_{3}, V_{3}, T_{3}\right)$ and finally from C to A. The whole process may be called:
a) Reversible process
b) Cyclic process
c) Isobaric process
d) Spontaneous process
203. One mole of ice is converted into water at 273 K . The entropies of $\mathrm{H}_{2} \mathrm{O}(s)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are 38.20 and $60.01 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. The enthalpy change for the conversion is:
a) $59.54 \mathrm{~J} \mathrm{~mol}^{-1}$
b) $5954 \mathrm{~J} \mathrm{~mol}^{-1}$
c) $595.4 \mathrm{~J} \mathrm{~mol}^{-1}$
d) $320.6 \mathrm{~J} \mathrm{~mol}^{-1}$
204. For a diatomic molecule $A B$, the electronegativity difference between A and $B=0.2028 \sqrt{\Delta}$. [Where $\Delta=$ bond energy of $A B$ Geometric mean of the bond energies of A_{2} and B_{2}] The electronegativities of fluorine and chlorine are 4.0 and 3.0 respectively and the bond energies are of $\mathrm{F}-\mathrm{F}: 38 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\mathrm{Cl}-\mathrm{Cl}$: $58 \mathrm{kcal} \mathrm{mol}^{-1}$. The bond energy of $\mathrm{Cl}-\mathrm{F}$ is :
a) $\sim 71 \mathrm{kcal} / \mathrm{mol}$
b) $\sim 61 \mathrm{kcal} / \mathrm{mol}$
c) $-48 \mathrm{kcal} / \mathrm{mol}$
d) $\sim 75 \mathrm{kcal} / \mathrm{mol}$
205. Any series of operation so carried out that at the end, the system is back to its state is called
a) Boyle's cycle
b) Reversible process
c) Adiabatic process
d) Cyclic process
206. The heat of neutralisation of a strong acid and a strong alkali is $57.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The heat released when 0.5 mole of HNO_{3} solution is mixed with 0.2 mole of KOH is
a) 57.0 kJ
b) 11.4 kJ
c) 28.5 kJ
d) 34.9 kJ
207. The Kirchhoff's equation gives the effect ofon heat of reaction.
a) Pressure
b) Temperature
c) Volume
d) Molecularity
208. Δn values in $\Delta H=\Delta U+\Delta n R T$ may have:
a) Integer nature
b) Fractional value
c) Positive or negative
d) All of these
209. $A B, A_{2}$ and B_{2} are diatomic molecules. If the bond enthalpies of $A_{2}, A B$ and B_{2} are in the ratio 1:1:0.5 and the enthalpy of formation of $A B$ from A_{2} and B_{2} is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$, what is the bond enthalpy of A_{2} ?
a) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
210. Which of the following is an intensive property?
a) Temperature
b) Viscosity
c) Surface tension
d) All of these
211. The temperature of the system decreases in an
a) Adiábatic compression
b) Isothermal compression
c) Isothermal expansion
d) Adiabatic expansion
212. If a refrigerator door is kept open, then we get:
a) Room cooled
b) Room heated
c) More heat is passed out
d) No effect on room
213. The enthalpy of vaporization of a liquid is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and entropy of vaporization is $75 \mathrm{~J} \mathrm{~mol}^{-1}$. The boiling point of liquid at 1 atm is :
a) 250 K
b) 400 K
c) 450 K
d) 600 K
214. Which is correct about the heat of combustion?
a) The combustion be exothermic in some cases and endothermic in other cases
b) Heat of combustion is always exothermic
c) Its value change with temperature
d) All of the above
215. In an isothermal process
a) $q=0$ and $\Delta E=0$
b) $q \neq 0$ and $\Delta E=0$
c) $q=0$ and $\Delta E \neq 0$
d) $q \neq 0$ and $\Delta E \neq 0$
216. The enthalpy of combustion of H_{2}, cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are $-241,-3800$ and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexane is
a) $121 \mathrm{~kJ} / \mathrm{mol}$
b) $-121 \mathrm{~kJ} / \mathrm{mol}$
c) $+242 \mathrm{~kJ} / \mathrm{mol}$
d) $-242 \mathrm{~kJ} / \mathrm{mol}$
217. For the isothermal expansion of an ideal gas
a) E and H increases
b) E increases but H decreases
c) H increases but E decreases
d) E and H are unaltered
218. Heat evolved in the reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is 182 kJ . Bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$ are 430 and 242 $\mathrm{kJ} / \mathrm{mol}$ respectively. The $\mathrm{H}-\mathrm{Cl}$ bond energy is :
a) $245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $427 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $336 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $154 \mathrm{~kJ} \mathrm{~mol}^{-1}$
219. Which is not correct?
a) In an exothermic reaction, the enthalpy of products is less than that of reactants
b) $\Delta H_{\text {fusion }}=\Delta H_{\text {sublimation }}-\Delta H_{\text {vaporisation }}$
c) A reaction for which $\Delta H^{\circ}<0$ and $\Delta S^{\circ}>0$ is possible at all temperatures
d) ΔH is less than ΔU for the reaction,
d) $\mathrm{C}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
220. A cylinder of gas is assumed to contain 11.2 kg of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$. If a normal family needs 20000 kJ of energy per day. The cylinder will last (Given that ΔH for combustion of butane is -2658 kJ)
a) 20 days
b) 25 days
c) 26 days
d) 24 days
221. The enthalpy of formation of water from hydrogen and oxygen is $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy of decomposition of water into hydrogen and oxygen is:
a) $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) -143 kJ mol
c) $+286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $+143 \mathrm{~kJ} \mathrm{~mol}^{-1}$
222. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_{i} is the initial temperature and T_{f} is the final temperature, which of the following statements is correct?
a) $\left(T_{f}\right)_{\text {irrev }}>\left(T_{f}\right)_{\text {rev }}$
b) $T_{f}>T_{i}$ for reversible process but $T_{f}=T_{i}$ for irreversible process
c) $\left(T_{f}\right)_{\text {rev }}=\left(T_{f}\right)_{\text {irrev }}$
d) $T_{f}=T_{i}$ for both reversible and irreversible processes
223. Heat of fusion of a molecular solid is:
a) Very high
b) High
c) Low
d) None of these
224. Which plot represents for an exothermic reaction?
a)
b)

c)

d)

225. For a spontaneous chemical change the Gibbs energy change is:
a) Positive
b) Negative
c) Zero
d) Depends whether the reaction is exothermic or endothermic
226. An ideal gas undergoing expansion in vacuum shows:
a) $\Delta U=0$
b) $W=0$
c) $q=0$
d) All of these
227. Select the incorrect statement
a) $P V$ work is usually negligible for solid and liquid
b) For a closed system with $P-V$ work only, an isobaric process that has $q=+$ ve must have $\Delta T=+$ ve.
c) For a cyclic process $q=0$
d) Black phosphorus is most stable form of P but $H_{f}^{\circ}=0$ for white phosphorus.
228. Entropy decreases during:
a) Crystallization of sucrose from solution
b) Rusting of iron
c) Melting of ice
d) Vaporization of camphor
229. At $27^{\circ} \mathrm{C}$ latent heat of I fusion of a compound is $2930 \mathrm{~J} / \mathrm{mol}$. Entropy change during fusion is:
a) $9.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
b) $10.77 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
c) $9.07 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
d) $0.977 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
230. The values of ΔH and ΔS for the reaction.
$C_{\text {(graphite) }}+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
Are 170 kJ and $170 \mathrm{JK}^{-1}$ respectively. this reaction will be spontaneous at:
a) 510 K
b) 710 K
c) 910 K
d) 1110 K
231. The temperature of 5 mL of a strong acid increases by $5^{\circ} \mathrm{C}$ when 5 mL of strong base is added to it. If 10 mL of each is mixed and complete neutralisation takes place then rise in temperature will be
a) $20^{\circ} \mathrm{C}$
b) $10^{\circ} \mathrm{C}$
c) $5^{\circ} \mathrm{C}$
d) $2^{\circ} \mathrm{C}$
232. When an ideal gas is compressed adiabatically and reversibly, the final temperature is:
a) Higher than the initial temperature
b) Lower than the initial temperature
c) The same as the initial temperature
d) Dependent on the rate of compression
233. In a closed insulated container, a liquid is stirred with a paddle to increase its temperature. In this process, which of the following is true
a) $\Delta E=W \neq 0, Q=0$
b) $\Delta E \neq 0, Q=W=0$
c) $\Delta E=W=Q=0$
d) $\Delta E=0, Q \neq 0, W=0$
234. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio of 1: 1:05 and ΔH for the formation of $X Y$ is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
a) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
235. The dissociation energy of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ are respectively 360 and $620 \mathrm{kcal} / \mathrm{mol}$. The bond energy of $\mathrm{C}-\mathrm{C}$ bond is:
a) $260 \mathrm{kcal} / \mathrm{mol}$
b) $180 \mathrm{kcal} / \mathrm{mol}$
c) $130 \mathrm{kcal} / \mathrm{mol}$
d) $80 \mathrm{kcal} / \mathrm{mol}$
236. In a calorimeter, the temperature of the calorimeter increases by 6.12 K , the heat capacity of the system is $1.23 \mathrm{~kJ} / \mathrm{g} \mathrm{deg}$. What is the molar heat of decomposition for $\mathrm{NH}_{4} \mathrm{NO}_{3}$?
a) $-7.53 \mathrm{~kJ} / \mathrm{mol}$
b) $-398.1 \mathrm{~kJ} / \mathrm{mol}$
c) $-16.1 \mathrm{~kJ} / \mathrm{mol}$
d) $-602 \mathrm{~kJ} / \mathrm{mol}$
237. The bond energies of $\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2} are $155.4,243.6,193.2$ and $151.2 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ respectively. The strongest bond is :
a) $\mathrm{F}-\mathrm{F}$
b) $\mathrm{Cl}-\mathrm{Cl}$
c) $\mathrm{Br}-\mathrm{Br}$
d) I - I
238. The enthalpy changes of formation of the gaseous oxides of nitrogen $\left(\mathrm{N}_{2} \mathrm{O}\right.$ and NO$)$ are positive because of:
a) The high bond energy of the nitrogen molecule
b) The high electron affinity of oxygen atoms
c) The high electron affinity of nitrogen atoms
d) The tendency of oxygen to form O^{2-}
239. If $900 \mathrm{~J} / \mathrm{g}$ of heat is exchanged at boiling point of water then increase in entropy
a) $43.4 \mathrm{~J} / \mathrm{mol}$
b) $87.2 \mathrm{~J} / \mathrm{mol}$
c) $900 \mathrm{~J} / \mathrm{mol}$
d) Zero
240. A reaction occurs spontaneously if:
a) $T \Delta S=\Delta H$ and both ΔH and ΔS are positive
b) $T \Delta S>\Delta H$ and both ΔH and ΔS are positive
c) $T \Delta S<\Delta H$ and both ΔH and ΔS are positive
d) $T \Delta S>\Delta H$ and ΔH is positive and ΔS are negative
241. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}(\mathrm{g})=2 \mathrm{HCl}(\mathrm{g}) ; \Delta \mathrm{H}(298 \mathrm{~K})=22.06 \mathrm{kcal}$. For this reaction, ΔU is equal to:
a) $-22.06+2 \times 10^{-3} \times 298 \times 2 \mathrm{kcal}$
b) $-22.06+2 \times 298 \mathrm{kcal}$
c) $-22.06-2 \times 298 \times 4 \mathrm{kcal}$
d) -22.06 kcal
242. The heat change taking place during the reaction $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is: [Given, ΔH_{f} of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-57 \mathrm{kcal}$, $\left.\Delta H_{f}=\mathrm{H}_{2} \mathrm{O}(l)=-68.3 \mathrm{kcal}\right]$
a) +11.3 kcal
b) -11.3 kcal
c) -115.3 kcal
d) +115.3 kcal
243. ΔH for $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$ is $176 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 1240 K . The ΔU for the change is equal to:
a) 160 kJ
b) 165.6 kJ
c) 186.3 kJ
d) 180.0 kJ
244. When one mole of monoatomic ideal gas at $T \mathrm{~K}$ undergoes adiabatic change under a constant external pressure of 1 atm changes volume from 1 L to 2 L . The final temperature in Kelvin would be
a) $\frac{T}{2^{2 / 3}}$
b) $T+\frac{2}{3 \times 0.0821}$
c) T
d) $T-\frac{2}{3 \times 0.0821}$
245. $\Delta H^{\circ},(298 \mathrm{~K})$ of methanol is given by the chemical equation
a) $\mathrm{CH}_{4}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
b) $\mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
c) $\mathrm{C}($ diamond $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
d) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
246. For the reaction, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O} ; \Delta \mathrm{U}=-1415 \mathrm{~kJ}$. Then ΔH at $27^{\circ} \mathrm{C}$ is :
a) -1410 kJ
b) -1420 kJ
c) +1420 kJ
d) +1410 KJ
247. The heat of combustion of ethanol determined by a bomb calorimeter is $-670.48 \mathrm{kcal} \mathrm{mol}^{-1}$ at $25^{\circ} \mathrm{C}$. What is ΔU at $25^{\circ} \mathrm{C}$ for the following reaction?
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a) -335.24 kcal
b) -669.28 kcal
c) -670.48 kcal
d) +670.48 kcal
248. Which has the least entropy?
a) Graphite
b) Diamond
c) $\mathrm{N}_{2}(\mathrm{~g})$
d) $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$
249. A carnot engine operates between temperature T and $400 \mathrm{~K}(T>400 \mathrm{~K})$. If efficiency of engine is 25%, the temperature T is:
a) 400 K
b) 500 K
c) 533.3 K
d) 600 K
250. It is a general principle that if a system has the less energy then it is:
a) More stable
b) Less stable
c) Unstable
d) More unstable
251. For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, which is true?
a) $\Delta H=\Delta U$
b) $\Delta H<\Delta U$
c) $\Delta H>\Delta U$
d) None of these
252.
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$; $\Delta \mathrm{H}=-68.39 \mathrm{kcal}$
$\mathrm{K}+$ aq. $\rightarrow \mathrm{KOH}(\mathrm{aq})+\frac{1}{2} \mathrm{H}_{2}$;

$$
\begin{equation*}
\Delta \mathrm{H}=-48 \mathrm{kcal} \tag{ii}
\end{equation*}
$$

$\mathrm{KOH}+\mathrm{aq} . \rightarrow \mathrm{KOH}(\mathrm{aq}) ;$
$\Delta \mathrm{H}=-14 \mathrm{kcal}$
The heat of formation (in kcal) of KOH is :
a) $-68.39+48-14$
b) $-68.39-48+14$
c) $68.39-48+14$
d) $68.39+48+14$
253. Which of the following expressions represents the first law of thermodynamics?
a) $\Delta E=-q+W$
b) $\Delta E=q-W$
c) $\Delta E=q+W$
d) $\Delta E=-q-W$
254. A thermodynamic state function is:
a) One which obeys all the laws of thermodynamics
b) A quantity which is used to measure thermal changes
c) A quantity whose value is independent of the path
d) A quantity which is used to express pressure-volume work
255. When two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the molecule is:
a) Greater than that of separate atoms
b) Equal to that of separate atoms
c) Lower than that of separate atoms
d) Sometimes lower and sometimes higher
256. The enthalpies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO are 28 and $90 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy of the reaction, $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})$ is equal to :
a) 8 kJ
b) 88 kJ
c) -16 kJ
d) 304 kJ
257. Heat of combustion of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ are $-890,-1411$ and $-1560 \mathrm{~kJ} / \mathrm{mol}$ respectively. Which has the lowest calorific fuel value in kJ / g ?
a) CH_{4}
b) $\mathrm{C}_{2} \mathrm{H}_{4}$
c) $\mathrm{C}_{2} \mathrm{H}_{6}$
d) All same
258. Given that $\Delta H_{r 298 \mathrm{~K}}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S_{r 298 \mathrm{~K}}^{\circ}=10 \mathrm{~J} \mathrm{~mol}^{-1}$ and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The value of $\log _{10} K$ for a reaction, $A \rightleftharpoons B$ is:
a) 5
b) 10
c) 95
d) 100
259. Hess's law is based on
a) Law of conservation of mass
b) Law of conservation of energy
c) First law of thermodynamics
d) None of the above
260. What is the entropy change (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) when one mole of ice is converted into water at $0^{\circ} \mathrm{C}$? (The enthalpy change for the conversion of ice to liquid water is $6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $0^{\circ} \mathrm{C}$)
a) 20.13
b) 2.013
c) 2.198
d) 21.98
261. Which is an extensive property of the system?
a) Temperature
b) Volume
c) Refractive index
d) Viscosity
262. For the reaction; $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ which one is true?
a) $\Delta H=\Delta U-R T$
b) $\Delta H=\Delta U+R T$
c) $\Delta H=\Delta U+2 R T$
d) $\Delta H=\Delta U-2 R T$
263. The heat atomisation of $\mathrm{PH}_{3}(\mathrm{~g})$ is 228 kcal per mol and that of $\mathrm{P}_{2} \mathrm{H}_{4}(\mathrm{~g})$ is 335 kcal per mol. The energy of $\mathrm{P}-\mathrm{P}$ bond is
a) $102 \mathrm{kcal} / \mathrm{mol}$
b) $31 \mathrm{kcal} / \mathrm{mol}$
c) $26 \mathrm{kcal} / \mathrm{mol}$
d) $204 \mathrm{kcal} / \mathrm{mol}$
264. If, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl} ; \Delta H^{\circ}=-44 \mathrm{kcal}$
$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow 2 \mathrm{NaCl}(s)+\mathrm{H}_{2}(\mathrm{~g}) ;$

$$
\Delta H=-152 \mathrm{kcal} \text { then, }
$$

$\mathrm{Na}(\mathrm{s})+0.5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{s}) ; \Delta H^{\circ}=$?
a) 108 kcal
b) 196 kcal
c) -98 kcal
d) 54 kcal
265. From the reaction, $\mathrm{P}_{\text {(white) }} \rightarrow \mathrm{P}_{(\text {red })} ; \Delta \mathrm{H}=-18.4 \mathrm{~kJ}$ it following that:
a) Red P is readily formed from white P
b) White P is readily formed from red P
c) White P cannot be converted to red P
d) White P can be converted into red P and red P is more stable
266. If $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+13.7 \mathrm{kcal}$ then the heat of neutralization for complete neutralization of one mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by a base will be :
a) -13.7 kcal
b) -27.4 kcal
c) -6.85 kcal
d) -3.425 kcal
267. Assuming that water vapours are ideal gas. The change in internal energy (ΔU) when 1 mol of water is vaporized at 1 bar pressure and $100^{\circ} \mathrm{C}$. (Given molar enthalpy of vaporization at 1 bar and 373 K is 41 kJ mol^{-1} and $R=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$) will be:
a) $41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $4.100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $3.7904 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $37.904 \mathrm{~kJ} \mathrm{~mol}^{-1}$
268. Change in entropy for a reaction is given by:
a) $2.303 n R \log _{10} \frac{V_{2}}{V_{1}}$
b) $n R \log _{e} \frac{V_{2}}{V_{1}}$
c) $n R \log _{e} \frac{P_{1}}{P_{2}}$
d) All of these
269. At constant pressure and temperature, the direction of any chemical reaction is one where, the ... decrease.
a) Entropy
b) Enthalpy
c) Gibbs energy
d) None of these
270. Which of the following conditions will always lead to a non spontaneous change?
a) Positive ΔH and positive ΔS
b) Negative ΔH and negative ΔS
c) Positive ΔH and negative ΔS
d) Negative ΔS and positive ΔS
271. Equal volume of two monoatomic gases, A and B, at same temperature and pressure are mixed. The ratio of specific heats $\left(C_{P} / C_{V}\right)$ of the mixture will be:
a) 0.83
b) 1.50
c) 3.3
d) 1.67
272. Two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the H_{2} molecule is :
a) Greater than that of separate atoms
b) Equal to that of separate atoms
c) Lower than that of separate atoms
d) Sometimes lower and sometimes higher
273. The heats of neutralization of four acids A, B, C and D are $-13.7,-9.4,-11.2$ and -12.4 kcal respectively when they are neutralized by a common base. The acidic character obeys the order :
a) $A>B>C>D$
b) $A>D>C>B$
c) $D>C>B>A$
d) $D>B>C>A$
274. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H=-68 \mathrm{kcal}$. The heat change, for the decomposition of 3.6 g of water is :
a) 136 kcal
b) 13.6 kcal
c) 1.36 kcal
d) 68 kcal
275. When 500 J heat is given to the gas X in an isobaric process its work done comes out as 142.8 J . The gas X is
a) O_{2}
b) NH_{3}
c) He
d) SO_{2}
276. Diborane is a potential rocket fuel which undergoes combustion according to the equation
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Calculate the enthalpy change for the combustion of diborane. Given
(i) $2 \mathrm{~B}(s)+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(s) ; \Delta H=-1273 \mathrm{~kJ}$ per mol
(ii) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H=-286 \mathrm{~kJ}$ per mol
(iii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=44 \mathrm{~kJ}$ per mol
(iv) $2 \mathrm{~B}(s)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g}) ; \Delta H=36 \mathrm{~kJ}$ per mol
a) +2035 kJ per mol
b) -2035 kJ per mol
c) +2167 kJ per mol
d) -2167 kJ per mol
277. To calculate the amount of work done in joules during reversible isothermal expansion of an ideal gas, the volume must be expressed in
a) m^{3} only
b) dm^{3} only
c) cm^{3} only
d) Any of these
278. Calorific value of carbohydrates is approximately:
a) $4.0 \mathrm{kcal} / \mathrm{g}$
b) $16.0 \mathrm{kcal} / \mathrm{g}$
c) $20 \mathrm{kcal} / \mathrm{g}$
d) $9.0 \mathrm{kcal} / \mathrm{g}$
279. For a given substance T_{1} and T_{2} are freezing point and melting point of a substance. Which of the graph represents correctly, the variation of ΔS with temperature?
a)

b) $\Delta \mathrm{S}$

c)

d) $\Delta \mathrm{S} \underbrace{\overbrace{\mathrm{T}_{1}}^{\mathrm{T}_{2}}}_{T}$
280. Which is correct for an endothermic reaction?
a) ΔH is positive
b) ΔH is negative
c) ΔE is negative
d) $\Delta H=0$
281. When a solid melts, there is:
a) An increase in enthalpy
b) No change in enthalpy
c) A decrease in enthalpy
d) A decrease in internal energy
282. Maximum entropy will be in which of the following?
a) Ice
b) Liquid water
c) Snow
d) Water vapour
283. When enthalpy and entropy change for a chemical reaction are $-2.5 \times 10^{3} \mathrm{cal}$ and 7.4 cal deg^{-1} respectively predict the reaction at 298 K is
a) Spontaneous
b) Reversible
c) Irreversible
d) Non-spontaneous
284. A closed flask contains water in all its three states, solids, liquid and vapour at $0^{\circ} \mathrm{C}$. In this situation the average KE of the water molecule will be:
a) Maximum in vapour state
b) Maximum in solid state
c) Greater in the liquid than in vapour state
d) Same in all the three states
285. If $\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=r$
and $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=s$ then, the heat of formation of CO is
a) $r+s$
b) $r-s$
c) $s-r$
d) $r s$
286. The value of $\Delta \mathrm{H}^{\circ}$ for the reaction $\mathrm{Cu}^{+}(\mathrm{g})+\mathrm{I}^{-}(\mathrm{g}) \rightarrow \mathrm{CuI}(\mathrm{g})$ is $-446 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the ionisation energy of $\mathrm{Cu}(\mathrm{g})$ is $745 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the electron affinity of (I)g is $-295 \mathrm{~kJ} \mathrm{~mol}^{1}$, then the value of ΔH° for the formation of one mole of $\mathrm{CuI}(\mathrm{g})$ from $\mathrm{Cu}(\mathrm{g})$ and $\mathrm{I}(\mathrm{g})$ is :
a) $-446 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $450 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $594 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
287. The entropy of the universe:
a) Increasing and tending towards maximum value
b) Decreasing and tending to be zero
c) Remains constant
d) Decreasing and increasing with a periodic rate
288. The internal energy of a substance
a) Increases with increase in temperature
b) Decreases with increases in temperature
c) Can be calculated by the relation $E=m c^{2}$
d) Remains unaffected with change in temperature
289. ΔH_{f} of graphite is $0.23 \mathrm{~kJ} / \mathrm{mol}$ and ΔH_{f} of diamond is $1.896 \mathrm{~kJ} / \mathrm{mole} . \Delta \mathrm{H}_{\text {transition }}$ from graphite to diamond is :
a) $1.66 \mathrm{~kJ} / \mathrm{mole}$
b) $2.1 \mathrm{~kJ} / \mathrm{mole}$
c) $2.33 \mathrm{~kJ} / \mathrm{mole}$
d) $1.5 \mathrm{~kJ} / \mathrm{mole}$
290. When two moles of hydrogen expands isothermally against a constant pressure of 1 atm , at $25^{\circ} \mathrm{C}$ from 15 L to 50 L , the work done (in litre atm) will be
a) 17.5
b) 35
c) 51.5
d) 70
291. Which value of heat of formation indicates that the product is the least stable?
a) -94 kcal
b) -231.6 cal
c) +21.4 kcal
d) +64.8 kcal
292. The heat of combustion for $\mathrm{C}, \mathrm{H}_{2}$ and CH_{4} are $-349.0,-241.8$ and -906.7 kJ respectively. The heat of
formation of CH_{4} is :
a) 174.1 kJ
b) 274.1 kJ
c) 374.1 kJ
d) 74.1 kJ
293. Given,
(i) $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}, \Delta H=-298.2 \mathrm{~kJ}$
(ii) $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}, \Delta H=-98.7 \mathrm{~kJ}$
(iii) $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta H=-130.2 \mathrm{~kJ}$
(iv) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta H=-287.3 \mathrm{~kJ}$

Then the enthalpy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be
a) -814.4 kJ
b) +320.5 kJ
c) -650.3 kJ
d) -933.7 kJ
294. Based on the first law of thermodynamics, which one of the following is correct?
a) For an isochoric process $=\Delta E=-Q$
b) For an adiabatic process $=\Delta E=-W$
c) For an isothermal process $=\mathcal{Q}=+W$
d) For a cyclic process $=Q=-W$
295. According to Hess's law, the heat of reaction depends upon
a) Initial condition of reactants
b) Initial and final conditions of reactants
c) Intermediate path of the reaction
d) End conditions of reactants
296. In which case, a spontaneous reaction is possible at any temperature?
a) $\Delta H-$ ve, $\Delta S+$ ve
b) $\Delta H-$ ve, ΔS - ve
c) $\Delta H+$ ve, $\Delta S+\mathrm{ve}$
d) In none of the cases
297. Select the incorrect statement :
a) Combustion of F_{2} is exothermic
b) Combustion of N_{2} to $\mathrm{N}_{2} \mathrm{O}$ is endothermic
c) A good fuel have higher calorific value
d) Nutrition calorie $=10^{3}$ calories or 1 cal or 1 kcal
298. The enthalpy change for the following reaction. $\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ is -57 kJ . Predict the value of the enthalpy change in the following reaction: $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{BaSO}_{4}(s)+$ $2 \mathrm{H}_{2} \mathrm{O}(l)$
a) -57 kJ
b) -76 kJ
c) -114 kJ
d) -228 kJ
299. At $27^{\circ} \mathrm{C}$ one mole of an ideal gas is compressed isothermally and reversible from a pressure of 2 atm to 10 atm . The value of ΔE and q are $(R=2 \mathrm{cal})$
a) $0,-965.84 \mathrm{cal}$
b) $-965.84 \mathrm{cal},-865.58 \mathrm{cal}$
c) $+865.58 \mathrm{cal},-865.58 \mathrm{cal}$
d) $+965.84 \mathrm{cal},+865.58 \mathrm{cal}$
300. Change in entropy is negative for
a) Bromine $(l) \rightarrow$ Bromine (g)
b) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
c) $\mathrm{N}_{2}(\mathrm{~g}, 10 \mathrm{~atm}) \rightarrow \mathrm{N}_{2}(\mathrm{~g}, 1 \mathrm{~atm})$
d) $\mathrm{Fe}(1 \mathrm{~mol}, 400 \mathrm{~K}) \rightarrow \mathrm{Fe}(1 \mathrm{~mol}, 300 \mathrm{~K})$
301. Hess's law is related to:
a) Change in heat during a reaction
b) Rates of reaction
c) Equilibrium constant
d) Influence of pressure on volume of a gas
302. Heat of dissociation of benzene of elements is $5335 \mathrm{~kJ} / \mathrm{mol}$. The bond enthalpies of

bonds are 347.3 , 615 and 416.2 kJ respectively. Resonance energy of benzene is
a) 1.15 kJ
b) 15.1 kJ
c) 937.2 kJ
d) 1511 kJ
303. 2 mole of ideal gas at $27^{\circ} \mathrm{C}$ temperature is expanded reversibly from 2 litre to 20 litre. Find entropy change ($R=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$).
a) 92.1
b) 0
c) 4
d) 9.2
304. Work done by the system on surroundings is:
a) Positive
b) Negative
c) Zero
d) None of these
305. What is ΔE for system that does 500 cal of work on surrounding and 300 cal of heat is absorbed by the system?
a) -200 cal
b) -300 cal
c) +200 cal
d) +300 cal
306. Which fuel provides the highest calorific value?
a) Charcoal
b) Kerosene
c) Wood
d) Dung
307. The value of ΔE for combustion of $16 \mathrm{~g} \mathrm{of} \mathrm{CH}_{4}$ is -885389 J at 298 K . The ΔH combustion for CH_{4} in $\mathrm{J} \mathrm{mol}^{-1}$ at this temperature will be
(Given that, $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
a) -55337
b) -880430
c) -885389
d) -890348
308. Human body is an example of
a) Open system
b) Closed system
c) Isolated system
d) None of these
309. A hypothetical reaction $A \rightarrow 2 B$, proceeds through following sequence of steps
(i) $A \rightarrow C ; \Delta H=q$
(ii) $C \rightarrow D ; \Delta H=v$
(iii) $\frac{1}{2} D \rightarrow B ; \Delta H=x$

Then the heat of reaction i
a) $q-v+2 x$
b) $q+v-2 x$
c) $q+v+2 x$
d) $q+2 v-2 x$
310. The entropy of crystalline substances at absolute zero by the third law of thermodynamics should be taken as
a) 100
b) 50
c) Zero
d) Different for different substance
311. Identify the state quantity among the following:
a) q
b) $q-W$
c) $q+W$
d) q / W
312. For the following two reactions,
(i) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$
$\Delta H=-890.4 \mathrm{~kJ}$
(ii) $2 \mathrm{HgO}(\mathrm{s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})-181,6 \mathrm{~kJ}$

Which one of the following statements is correct?
a) Both of them are exothermic
b) Both of them are endothermic
c) (i) is exothermic and (ii) is endothermic
d) (i) is endothermic and (ii) is exothermic
313. From the following data, the heat of formation of $\mathrm{Ca}(\mathrm{OH})_{2}(s)$ at $18^{\circ} \mathrm{C}$ iskcal:
$\mathrm{CaO}(s)+\mathrm{H}_{2} \mathrm{O}(l)=\mathrm{Ca}(\mathrm{OH})_{2}(s) ;$

$$
\Delta H=-15.26 \mathrm{kcal} \ldots . \text { (i) }
$$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) ;$

$$
\begin{equation*}
\Delta H=68.37 \mathrm{kcal} . \tag{ii}
\end{equation*}
$$

$\mathrm{Ca}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{CaO}(\mathrm{s}) ;$
$\Delta H=-151.80 \mathrm{kcal} \ldots \ldots$ (iii)
a) -98.69
b) -235.43
c) 194.91
d) 98.69
314. If $\frac{1}{2} X_{2} \mathrm{O}(s) \rightarrow X(s)+\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g}) ; \Delta H=90 \mathrm{~kJ}$, then heat change during reaction of metal ' X with one more of O_{2} to form oxide to maximum extent is :
a) 360 KJ
b) -360 KJ
c) -180 KJ
d) +180 KJ
315. Decrease in Gibbs energy of a reacting system indicates to:
a) Exothermic reaction
b) Equilibrium reaction
c) Spontaneous reaction
d) Slow reaction
316. $\mathrm{S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+2 x \mathrm{kcal}$;
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y \mathrm{kcal} ;$
The heat of formation of SO_{2} is:
a) $y-2 x$
b) $(2 x+y)$
c) $(x+y)$
d) $2 x / y$
317. The standard molar heat of formation of ethane, CO_{2} and water (l) are respectively $-21.1-94.1$ and -68.3 kcal . The standard molar heat of combustion of ethane will be
a) -372 kcal
b) 162 kcal
c) -240 kcal
d) 183.5 kcal
318. Among them intensive property is
a) Mass
b) Volume
c) Surface tension
d) Enthalpy
319. Equal volume of $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} are combusted under identical condition. The ratio of their heat of combustion is :
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \quad \Delta \mathrm{H}=-241.8 \mathrm{~kJ}$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ;$
$\Delta H=-1300 \mathrm{~kJ}$
a) $5.37 / 1$
b) $1 / 5.37$
c) $1 / 1$
d) None of these
320. 1 litre - atmosphere is equal to:
a) 101.3 J
b) 24.206 cal
C) $101.3 \times 10^{7} \mathrm{erg}$
d) All of these
321. For the precipitation of AgCl by Ag^{+}ions and HCl ;
a) $\Delta H=0$
b) $\Delta G=0$
c) $\Delta G=-v e$
d) $\Delta H=\Delta G$
322. When a certain amount of ethylene was burnt 6226 kJ heat was evolved. If heat of combustion of ethylene is 1411 kJ , the volume of O_{2} (at NTP) that entered into the reaction is:
a) 296.5 mL
b) 296.5 litre
c) 6226×22.4 litre
d) 22.4 litre
323. The heat change for the reaction, $\mathrm{C}(s)+2 \mathrm{~S}(s) \rightarrow \mathrm{CS}_{2}(l)$ is called:
a) Heat of solution of CS_{2}
b) Heat of fusion of CS_{2}
c) Heat of formation of CS_{2}
d) Heat of combustion of carbon
324. Given enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{CaO}(\mathrm{s})$ are -94.0 kJ and -152 kJ respectively and the enthalpy of the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ is 42 kJ . The enthalpy of formation of $\mathrm{CaCO}_{3}(\mathrm{~s})$ is :
a) -42 kJ
b) -202 kJ
c) +202 kJ
d) -288 kJ
325. The ratio of slopes of $\log P$ vs $\log V$ for reversible adiabatic process and reversible isothermal process of an ideal gas is equal to:
a) γ
b) $1-\gamma$
c) $\gamma-1$
d) $\frac{1}{\gamma}$
326. In which of the following processes of neutralization magnitude of $\Delta H_{\text {neutralisation }}$ is less than that of $\Delta H_{\text {ionisation }}$ of water?
a) $\mathrm{HCl}+\mathrm{NaOH}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH}$
c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
d) $\mathrm{HClO}_{4}+\mathrm{KOH}$
327. A boiled egg show a/an ...in entropy.
a) Increase
b) Decrease
c) No change
d) None of these
328. Which unit represents largest amount of energy?
a) Calorie
b) Joule
c) Erg
d) Electron volt
329. The heat of combustion of carbon to CO_{2} is $-393 \mathrm{~kJ} / \mathrm{mol}$. The heat released upon formation of 35.2 g of CO_{2} from carbon and oxygen gas is
a) +325 kJ
b) -31.5 kJ
c) -315 kJ
d) +31.5 kJ
330.A thermally isolated gaseous system can exchange energy with the surroundings. The mode of transference of energy can be:
a) Heat
b) Work
c) Heat and radiation
d) None of these
331. Warming ammonium chloride with sodium hydroxide in a test tube is an example of:
a) Closed system
b) Isolated system
c) Open system
d) None of these
332. Identify the correct statements regarding entropy
a) ${ }^{\text {At }} 0^{\circ} \mathrm{C}$, the entropy of a perfectly crystalline substance is taken to be zero
b) At absolute zero of temperature, the entropy of all perfectly crystalline substance is positive
c) At absolute zero of temperature, the entropy of all d) At absolute zero of temperature, the entropy of a crystalline substance is taken to be negative perfectly crystalline substance is taken to be zero
333. The matter has highest entropy in:
a) Solid state
b) Liquid state
c) Gaseous state
d) Equal in all
334. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H_{298 \mathrm{~K}}=-68.32 \mathrm{kcal}$. Heat of vaporization of water at 1 atm and $25^{\circ} \mathrm{C}$ is 10.52 kcal . The standard heat of formation (in kcal) of 1 mole of water vapour at $25^{\circ} \mathrm{C}$ is :
a) -78.84
b) 78.84
c) +57.80
d) -57.80
335. For vaporization of water at 1 atmospheric pressure, the values of ΔH and ΔS are $40.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. The temperature when Gibbs energy change (ΔG) for this transformation will be zero, is:
a) 273.4 K
b) 393.4 K
c) 373.4 K
d) 293.4 K
336. For an adiabatic process:
a) $Q=+W$
b) $Q=0$
c) $\Delta U=q$
d) $P \Delta V=0$
337. The $\Delta H_{\text {ionisation }}^{\circ}$ for HCN and $\mathrm{CH}_{3} \mathrm{COOH}$ are 45.2 and $2.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which of the following correct?
a) $p K a_{\mathrm{HCN}}<p K a_{\mathrm{CH}_{3} \mathrm{COOH}}$
b) $p K a_{\mathrm{HCN}}>p K a_{\mathrm{CH}_{3} \mathrm{COOH}}$
c) $p K a_{\mathrm{HCN}}=p K a_{\mathrm{CH}_{3} \mathrm{COOH}}$
d) None of the above
338. Which of the following taking place in the blast furnace is endothermic?
a) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
b) $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$
c) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
d) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
339. Hess's law is used to calculate
a) Enthalpy of reaction
b) Entropy of reaction
c) Work done in reaction
d) All of these
340. For spontaneity of a cell, which is correct?
a) $\Delta G=0, \Delta E=0$
b) $\Delta G=-\mathrm{ve}, \Delta E=0$
c) $\Delta G=+v e, \Delta E=+v e$
d) $\Delta G=-v e, \Delta E=+v e$
341. If heat of neutralisation is -13.7 kcal and $\mathrm{H}_{f}^{0} \mathrm{H}_{2} \mathrm{O}=-68 \mathrm{kcal}$, then enthalpy of OH^{-}would be :
a) 54.3 kcal
b) -54.3 kcal
c) 71.3 kcal
d) -71.3 kcal
342. Work done in reversible isothermal process is given by:
a) $2.303 R T \log \frac{V_{2}}{V_{1}}$
b) $\frac{n R}{(\gamma-1)}\left(T_{2}-T_{1}\right)$
c) $2.303 R T \log \frac{V_{1}}{V_{2}}$
d) None of these
343. Internal energy of an ideal gas depends on:
a) Pressure
b) Temperature
c) Volume
d) None of these
344. For a given substance, melting point T_{B} and freezing point is T_{A}, which of the following represents correct variation of $\Delta S v S T$?
a)

b)

c)

d) $\Delta s \underbrace{\underbrace{\prime}}_{T^{T_{A}} M^{T_{B}}}$
345. Bond energies of $(\mathrm{H}-\mathrm{H}),(\mathrm{O}=0)$ and $(\mathrm{O}-\mathrm{H})$ are 105,120 and $220 \mathrm{kcal} / \mathrm{mol}$ respectively, then ΔH in the reaction, $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$:
a) -115
b) -130
c) -118
d) -550
346. The apparatus generally used for measuring heat changes is:
a) Voltameter
b) Voltmeter
c) Calorimeter
d) Coulometer
347. The enthalpy change for the process, $\mathrm{C}(s) \rightarrow \mathrm{C}(\mathrm{g})$ is known as enthalpy of :
a) Fusion
b) Vaporisation
c) Combustion
d) Sublimation
348. Standard heat of formation of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and water $25^{\circ} \mathrm{C}$ are $-17.9,-94.1$ and $-68.3 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively. Calculate the heat change (in kcal) in the following reaction at $25^{\circ} \mathrm{C}$:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

a) -144.5
b) -180.3
c) -248.6
d) -212.8
349. Which is the best definition of heat of neutralization?
a) The heat absorbed when one gram molecule of an b) The heat set free or absorbed when one gram acid is neutralized by one gram molecule of a base atom of an acid is neutralized by one gram atom of
in dilute solution at a stated temperature
c) The heat set free or absorbed when a normal solution containing one gram-equivalent of an acid neutralized by a normal solution containing one gram-equivalent of a base at a stated temperature
a base at a stated temperature
d) The heat set free when one gram-equivalent of an acid is neutralized by one gram-equivalent of a base in dilute solution at a stated temperature
350. Thermochemistry is the study of relationship between heat energy and :
a) Chemical energy
b) Activation energy
c) Frictional energy
d) None of these
351. Enthalpy change for the reaction, $4 \mathrm{H}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})$ is -869.6 kJ

The dissociation energy of $\mathrm{H}-\mathrm{H}$ bond is
a) +217.4 kJ
b) -434.8 kJ
c) -869.6 kJ
d) +434.8 kJ
352. Which of the following is true for an adiabatic process?
a) $\Delta H=0$
b) $\Delta W=0$
c) $\Delta q=0$
d) $\Delta V=0$
353. Which of the following is an intensive property?
a) Volume
b) Enthalpy
c) Surface tension
d) Free energy
354. $\mathrm{C}_{6} \mathrm{H}_{12}(l)+9 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{H}_{2} \mathrm{O}(l)+6 \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H_{298 \mathrm{~K}}=-936.9 \mathrm{kcal}$. Thus :
a) $-936.9=\Delta U-\left(2 \times 10^{-3} \times 298 \times 3\right) \mathrm{kcal}$
b) $+936.9=\Delta U+\left(2 \times 10^{-3} \times 298 \times 3\right) \mathrm{kcal}$
c) $-936.9=\Delta U-\left(2 \times 10^{-3} \times 298 \times 2\right) \mathrm{kcal}$
d) $-936.9=\Delta U+\left(2 \times 10^{-3} \times 298 \times 2\right) \mathrm{kcal}$
355. The work done by a weightless piston in causing an expansion ΔV (at constant temperature), when the opposing pressure, P is variable, is given by:
a) $W=-\int P \Delta V$
b) $W=0$
c) $W=-P \Delta V$
d) None of these
356. If a gas has 2 atm and 5 atm pressure at $30^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ respectively. Then it will
a) Cool on expansion
b) Warm on expansion
c) No change on expansion
d) None of these
357. Two moles of helium gas expanded isothermally and irreversible at $27^{\circ} \mathrm{C}$ from volume $1 \mathrm{dm}^{3}$ to $1 \mathrm{~m}^{3}$ at constant pressure of 100 k Pa. Calculate the work done.
a) 99900 kJ
b) 99900 J
c) 34464.65 kJ
d) 34464.65 J
358. The efficiency of heat engine is maximum when:
a) Temperature of source $>$ temperature of sink
b) Temperature of sink $>$ temperature of source
c) Temperature difference of source and sink is minimum
d) Temperature difference of source and sink is maximum
359. Which one of the following has ΔS° greater than zero?
a) $\mathrm{CaO}+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})$
b) $\mathrm{NaCl}(a q) \rightleftharpoons \mathrm{NaCl}(s)$
c) $\mathrm{NaNO}_{3}(s) \rightleftharpoons \mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)$
d) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
360. A spontaneous change is one in which the system suffers
a) A lowering of entropy
b) No energy change
c) An increase in internal energy
d) A lowering of free energy
361. Which of the following are not state functions?
$\begin{array}{ll}\text { (I) } q+w & \text { (II) } q\end{array}$
(III) w (IV) $H-T S$
a) (II), (III) and (IV)
b) (I), (II) and (III)
c) (II) and (III)
d) (I) and (IV)
362. An isolated system is that system in which:
a) There is no exchange of energy with the surroundings
b) There is exchange of mass and energy with the surroundings
c) There is no exchange of mass and energy with the surroundings
d) There is exchange of mass with the surroundings
363. Thermodynamics is concerned with:
a) Total energy of a system
b) Energy changes in a system
c) Rate of chemical change
d) Mass changes in nuclear reactions
364. Which of the reactions defines $\Delta H^{\circ} f$?
a) $\mathrm{C}_{\text {(diamond) }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
b) $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{HF}(\mathrm{g})$
c) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
365. A process is taking place at constant temperature and pressure. Then
a) $\Delta H=\Delta E$
b) $\Delta H=T \Delta S$
c) $\Delta H=0$
d) $\Delta S=0$
366. An isothermal process is associated with:
a) Constant entropy
b) Constant temperature
c) Constant enthalpy
d) Large change in heat content
367. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-94 \mathrm{kcal}$
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-135.2 \mathrm{kcal}$
The heat of formation of $\mathrm{CO}(\mathrm{g})$ is
a) -26.4 kcal
b) 41.2 kcal
c) 26.4 kcal
d) 229.2 kcal
368. $C_{\text {graphite }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$;

$$
\begin{array}{ll}
C_{\text {diamond }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; & \Delta H=-94.05 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& \Delta H=-94.05 \mathrm{kcal} \mathrm{~mol}^{-1} \text { therfore : }
\end{array}
$$

a) $C_{\text {diamond }} \rightarrow C_{\text {graphite }} ; \quad \Delta H_{298 \mathrm{~K}}^{\circ}=+450 \mathrm{cal} \mathrm{mol}^{-1}$
b) $C_{\text {graphite }} \rightarrow C_{\text {diamond }} ; \quad \Delta H_{298 \mathrm{~K}}^{\circ}=-450 \mathrm{cal} \mathrm{mol}^{-1}$
c) Diamond is harder than graphite
d) Graphite is the stabler allotrope
369. Enthalpy change for a reaction does not depend upon
a) The physical states of reactants and products
b) Use of different reactants for the same products
c) The nature of intermediate reaction steps
d) The differences in initial and final temperature of involved substances
370. Which of the following is correct option for free expansion of an ideal gas under adiabatic condition?
a) $q=0, \Delta T<0, w \neq 0$
b) $q=0, \Delta T \neq 0, w=0$
c) $q \neq 0, \Delta T=0, w=0$
d) $q=0, \Delta T=0, w=0$
371. For a reaction at $25^{\circ} \mathrm{C}$ enthalpy change (ΔH) and entropy change (ΔS) are $-11.7 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ and $-105 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. The reaction is:
a) Spontaneous
b) Non-spontaneous
c) Instantaneous
d) None of these
372. Which of the following is a path function?
a) Internal energy
b) Enthalpy
c) Work
d) Entropy
373. The work done by a system is 8 J , when 40 J heat is supplied to it. The change in internal energy of the system during the process is:
a) 32 J
b) 40 J
c) 36 J
d) 44 J
374. Heat of reaction at constant volume is equal to :
a) $\Sigma U_{P}-\Sigma U_{R}$
b) $\Sigma U_{R}-\Sigma U_{P}$
c) $\Sigma H_{P}-\Sigma H_{R}$
d) $\Sigma H_{R}-\Sigma H_{P}$
375. Boiling point of a liquid is 50 K at 1 atm and $\Delta H_{\text {vap. }}=460.6 \mathrm{cal} \mathrm{mol}^{-1}$. What will be its b. p. at 10 atm ?
a) 150 K
b) 75 K
c) 100 K
d) 200 K
376. The change in the enthalpy during the reaction, $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$, is called :
a) Heat of reaction
b) Heat of neutralization
c) Heat of formation
d) Heat of liquefaction
377. The heat of combustion of rhombic and monoclinic sulphur are 70.96 and 71.03 kcal. The heat of transition of $S_{R \rightarrow M}$ is:
a) 70.96 kcal
b) 71.03 kcal
c) -70 cal
d) +70 cal
378. Hess law is applicable for the determination of heat of
a) Reaction
b) Formation
c) Transition
d) All of these
379. A heat engine absorbs heat Q_{1} at temperature T_{1} and heat Q_{2} at temperature T_{2}, work done by the engine is $\left(Q_{1}+Q_{2}\right)$ this data
a) Violates 1 st law of thermodynamics
b) Violates 1st law of thermodynamics if a_{1} is -ve
c) Violates 1st law of thermodynamics if a_{2} is -ve
d) Does not violates 1st law of thermodynamics
380. In which of the following condition a chemical reaction can not occur?
a) ΔH and ΔS increase and $T \Delta S>\Delta H$
b) ΔH and ΔS decrease and $\Delta H>T \Delta S$
c) ΔH increase and ΔS decreases
d) ΔH decreases and ΔS increases
381. $C_{\text {diamond }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-395 \mathrm{~kJ}$
$C_{\text {graphite }}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-393.5 \mathrm{~kJ}$
The ΔH, when diamond is formed from graphite, is :
a) -1.5 kJ
b) +1.5 kJ
c) +3.0 kJ
d) -3.0 kJ
382. Entropy change of fusion at constant pressure is given by:
a) $\Delta S_{(f)}=\frac{\Delta H_{f}}{T}$
b) $\Delta S_{(f)}=\frac{\Delta G_{f}}{T}$
c) $\Delta S_{(f)}=\frac{\Delta H_{f}}{\Delta T}$
d) None of these
383. At $27^{\circ} \mathrm{C}$, one mole of an ideal gas is compressed isothermally and reversibly from a pressure of 2 atm to 10 atm. The values of ΔE and q are $(R=2)$
a) $0,-965.84 \mathrm{cal}$
b) $-965.84 \mathrm{cal},-865.58 \mathrm{cal}$
c) $+865.58 \mathrm{cal},-865.58 \mathrm{cal}$
d) $-865.58 \mathrm{cal},-865.58 \mathrm{cal}$
384. When hydrogen and oxygen burn to form water in an oxyhydrogen torch, the entropy change is:
a) Negative
b) Positive
c) Zero
d) May be positive or negative
385. The temperature coefficient of e.m. f. of a cell can be given by:
a) $\left(\frac{\partial E}{\partial T}\right)_{P}=\frac{\Delta S}{n F}$
b) $\left(\frac{\partial E}{\partial T}\right)_{P}=\left(\frac{E_{2}-E_{1}}{T_{2}-T_{1}}\right)_{P}$
c) $\left(\frac{\partial E}{\partial T}\right)_{P}=\left[\frac{\Delta H}{n F}+E\right] \frac{1}{T}$
d) All of these
386. The internal energy of one mole of a gas is:
a) $\frac{3}{2} R T$
b) $\frac{K T}{2}$
c) $\frac{R T}{2}$
d) $\frac{3 K T}{2}$
387. The resultant heat change in a reaction is the same whether it takes place in one or several stages. This statement is called
a) Lavoisier and Laplace law
b) Hess's law
c) Joule's law
d) Le-Chatelier's principle
388. ΔH for transition of carbon in the diamond form to carbon in the graphite form, is -453.5 cal. This suggests that:
a) Graphite is chemically different from diamond
b) Graphite is as stable as diamond
c) Graphite is more stable than diamond
d) Diamond is more stable than graphite
389. The enthalpy of fusion of ice per mole is
a) 18 kJ
b) 8 kJ
c) 80 kJ
d) 6 kJ
390. For the reversible vaporisation of water at $100^{\circ} \mathrm{C}$ and 1 atmospheric pressure, ΔG is equal to:
a) ΔH
b) ΔS
c) Zero
d) $\Delta H / T$
391. Molar heat of vaporisation of a liquid is $6 \mathrm{kJmol}^{-1}$. If the entropy change is $16 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, the boiling point of the liquid is
a) 273 K
b) $375^{\circ} \mathrm{C}$
c) 375 K
d) $102^{\circ} \mathrm{C}$
392. The enthalpy of fusion of water is $1.435 \mathrm{kcal} / \mathrm{mol}$. The molar entropy change for the melting of ice at $0^{\circ} \mathrm{C}$ is:
a) $5.260 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
b) $0.526 \mathrm{cal} /(\mathrm{mol}$ K)
c) $10.52 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
d) $21.04 \mathrm{cal} /(\mathrm{mol} \mathrm{K})$
393. Which of the following is an endothermic reaction?
a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})-92 \mathrm{~kJ} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
b) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+180.8 \mathrm{~kJ} \rightarrow 2 \mathrm{NO}(\mathrm{g})$
c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+184.6 \mathrm{~kJ}$
d) C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+74.8 \mathrm{~kJ}$
394. The ΔG in the process of melting of ice at $-15^{\circ} \mathrm{C}$ is:
a) $\Delta G=-\mathrm{ve}$
b) $\Delta G=+v e$
c) $\Delta G=0$
d) All of these
395. A container has hydrogen and oxygen mixture in ratio of $1: 1$ by weight, then
a) Internal energy of the mixture decreases
b) Internal energy of the mixture increases
c) Entropy of the mixture increases
d) Entropy of the mixture decreases
396. Which one is not a spontaneous process?
a) Dissolution of CuSO_{4} in water
b) Water flowing down the hills
c) Flow of current from low potential to high potential
d) None of the above
397. 1 mole of gas occupying 3 L volume is expanded against a constant external pressure of 1 atm to a volume of 15 litre. The work done by the system is:
a) $1.215 \times 10^{3} \mathrm{~J}$
b) $12.15 \times 10^{3} \mathrm{~J}$
c) $121.5 \times 10^{3} \mathrm{~J}$
d) None of these
398. The heat evolved during the combustion of 112 litre of water gas (mixture of equal volume of H_{2} and CO) is :
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=-241.8 \mathrm{~kJ}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-283 \mathrm{~kJ}$
a) 241.8 kJ
b) 283 kJ
c) -1312 kJ
d) 1586 kJ
399. Work done in reversible adiabatic process is given by:
a) $2.303 R T \log \frac{V_{2}}{V_{1}}$
b) $\frac{n R}{(\gamma-1)}\left(T_{2}-T_{1}\right)$
c) $2.303 R T \log \frac{V_{1}}{V_{2}}$
d) None of these
400. The $\mathrm{H}-\mathrm{H}$ bond energy is $430 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\mathrm{Cl}-\mathrm{Cl}$ bond energy is $240 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta H$ for HCl is $-90 \mathrm{kJ}$. $\mathrm{H}-\mathrm{Cl}$ bond energy is about:
a) $425 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $213 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
401. Given,
$\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g}) ;-\Delta H_{1}$
$\begin{array}{lc}\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; & -\Delta H_{2} \\ \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g}) ; & \Delta H_{3}\end{array}$
The heat of formation of $\mathrm{NCl}_{3}(\mathrm{~g})$ in the terms of $\Delta H_{1}, \Delta H_{2}$ and ΔH_{3} is:
a) $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
b) $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
c) $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
d) None of the above
402. 50 mL of water takes 5 min to evaporate from a vessel on a heater connected to an electric source which delivers 400 W . The enthalpy of vaporisation of water is
a) 40.3 kJ per mol
b) 43.2 kJ per mol
c) 16.7 kJ per mol
d) 180.4 kJ per mol
403. The work done by a system in an expansion against a constant external pressure is:
a) $\Delta P \cdot \Delta V$
b) $-P \cdot \Delta V$
c) Q
d) $V \cdot \Delta P$
404. If, combustion of 4 g of CH_{4} liberates 2.5 kcal of heat, the heat of combustion of CH_{4} is :
a) $-2 \mathrm{kcal} \mathrm{mol}^{-}$
b) $-10 \mathrm{kcal} \mathrm{mol}{ }^{-}$
c) $2.5 \mathrm{kcal} \mathrm{mol}^{-1}$
d) $-5 \mathrm{kcal} \mathrm{mol}^{-1}$
405. A gas expands isothermally against a constant external pressure of 1 atm from a volume of 10 dm^{3} to a volume of $20 \mathrm{dm}^{3}$. It absorbs 800 J of thermal energy from its surroundings. The ΔU is
a) -312 J
b) +123 J
c) -213 J
d) +231 J
406. Enthalpy of vaporisation for water is $186.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The entropy change during vaorisation is ...kJ K ${ }^{-1} \mathrm{~mol}^{-1}$.
a) 0.5
b) 1.0
c) 1.5
d) 2.0
407. ΔC_{p} for: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is :
a) $C_{p} \mathrm{NH}_{3}+C_{p} \mathrm{~N}_{2}+C_{p} \mathrm{H}_{2}$
b) $C_{p} \mathrm{NH}_{3}-C_{p} \mathrm{~N}_{2}-C_{p} \mathrm{H}_{2}$
c) $2 C_{p} \mathrm{NH}_{3}-C_{p} \mathrm{~N}_{2}-3 C_{p} \mathrm{H}_{2}$
d) $2 C_{p} \mathrm{NH}_{3}+C_{p} \mathrm{~N}_{2}-3 C_{p} \mathrm{H}_{2}$
408. Which statement(s) is/are correct?
a) $\left(\frac{\partial H}{\partial T}\right)_{P}-\left(\frac{\partial U}{\partial T}\right)_{V}=R$
b) $\left(\frac{\partial H}{\partial T}\right)_{P}>\left(\frac{\partial U}{\partial T}\right)_{V}$
c) $\left(\frac{\partial U}{\partial V}\right)_{T}$ for ideal gas is zero
d) All of the above
409. For a reversible process at $T=300 \mathrm{~K}$, the volume of 2 mole of ideal gas is increased from 1 litre to 10 litre, the ΔH for isothermal change is:
a) 11.47 kJ
b) 4.98 kJ
c) 0
d) 2.49 kJ
410. If $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) ; \Delta H=-X_{1} \mathrm{kcal}$
$\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) ; \Delta H=-X_{2} \mathrm{kcal}$
$\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}(\mathrm{~g})+\mathrm{H}(\mathrm{g}) ; \Delta H=+Y \mathrm{kcal}$
The average bond energy of $\mathrm{C}-\mathrm{H}$ bond in ${\mathrm{kcal} \mathrm{mol}^{-1} \text { is : }}_{\text {a }}$.
a) $\frac{X_{1}}{4}$
b) Y
c) $\frac{X_{2}}{4}$
d) X_{1}
411. The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ is given by :
a) $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) ; \Delta H=-\mathrm{X}_{1} \mathrm{~kJ}$
b) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \quad \Delta H=-\mathrm{X}_{2} \mathrm{~kJ}$
c) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H=-\mathrm{X}_{3} \mathrm{~kJ}$
d) $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \Delta H=-\mathrm{X}_{4} \mathrm{~kJ}$
412. A gas can expand from 100 mL to 250 mL under a constant pressure of 2 atm . The work done by gas is
a) 30.38 J
b) 25 J
c) 5 kg J
d) 16 J
413. A system is changed from state A to state B by one path and from B to A by another path. If E_{1} and E_{2} are the corresponding changes in internal energy, then;
a) $U_{1}+U_{2}=+v e$
b) $U_{1}+U_{2}=-v e$
c) $U_{1}+U_{2}=0$
d) None of these
414. Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be:
a) Infinite
b) 3 joules
c) 9 joules
d) Zero
415. Which of the following is always negative for exothermic reaction?
a) ΔH
b) ΔS
c) ΔG
d) None of these
416. In a flask colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown coloured NO_{2}. At equilibrium when the flask is heated at $100^{\circ} \mathrm{C}$, the brown colour deepens and on cooling it becomes less coloured. The change in enthalpy, ΔH for this system is :
a) Negative
b) Positive
c) Zero
d) Undefined
417. If gas at constant temperature and pressure expands then its
a) Internal energy increases and then decreases
b) Internal energy increases
c) Internal energy remains the same
d) Internal energy decreases
418. If the enthalpy change for the reaction

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}),
$$

$\Delta H=-25 \mathrm{kcal}$. Bond energy of $\mathrm{C}-\mathrm{H}$ is $20 \mathrm{kcal} \mathrm{mol}^{-1}$ greater than the bond energy of $\mathrm{C}-\mathrm{Cl}$ and bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{H}^{-\mathrm{Cl}}$ are same in magnitude, then for the reaction : $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$ $\mathrm{HCl}(\mathrm{g}) ; \quad \Delta H=$?
a) $-22.5 \mathrm{kcal} / \mathrm{mol}$
b) $-20.5 \mathrm{kcal} / \mathrm{mol}$
c) $-32.5 \mathrm{kcal} / \mathrm{mol}$
d) $-12.5 \mathrm{kcal} / \mathrm{mol}$
419. Internal energy is an example of
a) Path function
b) State function
c) Both (a) and (b)
d) None of these
420. In a closed container, a liquid is stirred with a paddle to increase the temperature. Which of the following is true?
a) $\Delta E=W \neq 0, q=0$
b) $\Delta E=W=q \neq 0$
c) $\Delta E=0, W=q \neq 0$
d) $W=0, \Delta E=q \neq 0$
421. In a reaction, ΔH and ΔS both are positive. In which of the following cases, the reaction would not be spontaneous?
a) $\Delta H>T \Delta S$
b) $\Delta S=\frac{\Delta H}{T}$
c) $\Delta H=T \Delta S$
d) All of these
422. The bond dissociation energies of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{HClare} 104,58$ and 103 kcal respectively. The enthalpy of formation of HClgas would be
a) -44 kcal
b) 44 kcal
c) -22 kcal
d) 22 kcal
423. The internal energy change when a system goes from state A to B is $40 \mathrm{~kJ} / \mathrm{mol}$. If the system goes from A to B by a reversible path and returns to state A by an irreversible path, what would be the
net change in internal energy?
a) 40 kJ
b) $>40 \mathrm{~kJ}$
c) $<40 \mathrm{~kJ}$
d) Zero
424. The enthalpy of vaporisation of a substance is $840 \mathrm{~J} / \mathrm{mol}$ and its boiling point is $-173^{\circ} \mathrm{C}$. Its entropy of vaporisation is
a) $4.8 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$
b) $12 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$
c) $210 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$
d) $49 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$
425. The ΔH_{f}^{o} of $\mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{NH}_{3}$ and HI are $142.2-393.3,-46.2$ and +25.9 kJ per mol respectively. The order of their increasing stabilities will be
a) $\mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{HI}$
b) $\mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{HI}, \mathrm{O}_{3}$
c) $\mathrm{O}_{3}, \mathrm{HI}, \mathrm{NH}_{3}, \mathrm{CO}_{2}$
d) $\mathrm{NH}_{3}, \mathrm{HI}, \mathrm{CO}_{2}, \mathrm{O}_{3}$
426. For the reaction, C (graphic) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$ at 298 K and $1 \mathrm{~atm}, \Delta H=-26.4 \mathrm{kcal}$. What is ΔE, if the molar volume of graphite is 0.0053 L ?
($R=0.002 \mathrm{kcal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
a) -26.7 kcal
b) +26.7 kcal
c) -52.4 kcal
d) +52.4 kcal
427. For the reaction of one mole of zinc dust with one mole of sulphuric acid in a bomb calorimeter, ΔU and W correspond to
a) $\Delta U<0, W=0$
b) $\Delta U=0, W<0$
c) $\Delta U>0, W=0$
d) $\Delta U=0, W>0$
428. The quantity of heat measured for a reaction in a bomb calorimeter is equal to
a) ΔG
b) ΔH
c) $p \Delta V$
d) ΔE
429. For the reactions:
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=-393 \mathrm{~kJ}$
$2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO} ; \Delta H=-412 \mathrm{~kJ}$
which one is correct?
a) Carbon can reduce ZnO to Zn
b) Oxidation of carbon is not feasible
c) Oxidation of Zn is not feasible
d) Zn liberates more heat than carbon during oxidation
430. The following two reactions are known
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{Fe}_{(s)}+3 \mathrm{CO}_{2(\mathrm{~g})}$;
$\Delta H=-26.8 \mathrm{~kJ}$
$\mathrm{FeO}_{(s)}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{Fe}_{(s)}+\mathrm{CO}_{2(\mathrm{~g}) ;} ;$
$\Delta H=-16.5 \mathrm{~kJ}$
The value of ΔH for the following reaction

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(s)}+\mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{FeO}_{(s)}+\mathrm{CO}_{2(\mathrm{~g})} \text { is : }
$$

a) +10.3 kJ
b) -43.3 kJ
c) -10.3 kJ
d) +6.2 kJ
431. The process in which pressure remains constant throughout a change is:
a) Adiabatic
b) Isochoric
c) Isobaric
d) Isothermal
432. Entropy of vaporisation of water at $100^{\circ} \mathrm{C}$, if molar heat of vaporisation is $9710 \mathrm{cal} \mathrm{mol}^{-1}$ will be:
a) $20 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
b) $26.0 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
c) $24 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
d) $28.0 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
433. Which is an extensive property?
a) Temperature
b) Chemical potential
c) Gibb's free energy
d) Molar volume
434. ΔE° of combustion of isobutylene is $-x \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of ΔH° is
a) $=\Delta E^{\circ}$
b) $>\Delta E^{\circ}$
c) $=0$
d) $<\Delta E^{\circ}$
435. Which of the following reaction defines ΔH_{f}^{o} ?
a) $\mathrm{C}($ diamond $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
b) $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~F}(\mathrm{~g}) \rightarrow \mathrm{HF}(\mathrm{g})$
c) $\mathrm{N}_{2}(\mathrm{l})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
d) $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
436. The heat change for the reaction, $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is called as :
a) Heat of vaporisation
b) Heat of solution
c) Heat of fusion
d) Heat of formation
437. The law of conservation of energy states that:
a) The internal energy of a system is constant
b) The heat content of a system is constant
c) Energy is neither created nor destroyed
d) There is an equivalence between energy and mass
438. Heat of neutralization of HF is :
a)

1. kJ
b) $>57.32 \mathrm{~kJ}$
c) $<57.32 \mathrm{~kJ}$
d) None of these
2. From the following bond energies :
$\mathrm{H}-\mathrm{H}$ bond energy : $431.37 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C트C bond energy : $606.10 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}-\mathrm{C}$ bond energy : $336.49 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C-H bond energy : $410.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy for the reaction,

will be :
a) $553.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $1523.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $-243.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $-120.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. The enthalpies of formation of organic substances can be conveniently determined from :
a) Heats of combustion data
b) Boiling point
c) Melting point
d) Heats of neutralisation
4. The free energy change for a reversible reaction at equilibrium is
a) Large, positive
b) Small, negative
c) Small, positive
d) 0
5. In an irreversible process, the value of $\Delta S_{\text {system }}+\Delta S_{\text {surr }}$ is:
a) +ve
b) -ve
c) $=0$
d) All of these
6. A container has hydrogen and oxygen mixture in ratio of $4: 1$ by weight, then:
a) Entropy of these gases increase
b) Internal energy increases
c) Internal energy of the gas decreases
d) Entropy of the gases decrease
7. Equal volume of $1 M \mathrm{HCl}$ and $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are neutralised by dilute NaOH solution and x and y kcal of heat are liberated respectively. Which of the following is true?
a) $x=y$
b) $x=0.5 y$
c) $x=0.4 y$
d) None of these
8. Identify the intensive quantity from the following
a) Enthalpy and temperature
b) Volume and temperature
c) Enthalpy and volume
d) Temperature and refractive index
9. A mixture of hydrogen and chlorine on exposure to ultra violet sunlight reacts with explosion. The step involved in the initiation of the reaction is :
a) $\mathrm{H}_{2} \rightarrow \mathrm{H}^{\bullet}+\mathrm{H}^{\bullet}$
b) $\mathrm{Cl}^{\bullet}+\mathrm{Cl}^{\bullet} \longrightarrow \mathrm{Cl}_{2}$
c) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
d) $\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{\bullet}+\mathrm{Cl}^{\bullet}$
10. The amount of heat measured for a reaction in a bomb calorimeter is
a) ΔG
b) ΔH
c) ΔE
d) $p . \Delta V$
11. The mathematical form of the first law of thermodynamics when heat (q) is supplied and W is work done by the system (+ve) is:
a) $\Delta U=q+W$
b) $\Delta U=q-W$
c) $\Delta U=-q+W$
d) $\Delta U=-q-W$
12. Which one of the following bonds has the highest average bond energy ($\mathrm{kcal} / \mathrm{mol}$)?
a) $S=0$
b) $\mathrm{C} \equiv \mathrm{C}$
c) $\mathrm{C} \equiv \mathrm{N}$
d) $\mathrm{N} \equiv \mathrm{N}$
13. If gas, at constant temperature and pressure expands then its
a) Entropy increases and then decreases
b) Internal energy increases
c) Internal energy remains the same
d) Internal energy decreases
14. For a reaction, $\Delta H=9.08 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}=35.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Which of the following statement is correct for the reaction?
a) Reversible and isothermal
b) Reversible and exothermic
c) Spontaneous and endothermic
d) Spontaneous and exothermic
15. The correct thermochemical equation is:
a) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=-94 \mathrm{kcal}$
b) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=+94 \mathrm{kcal}$
c) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-94 \mathrm{kcal}$
d) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=+94 \mathrm{kcal}$
16. In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibbs's energy change $\left(\Delta G^{\circ}\right)$ decreases sharply with increasing temperature?
a) $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(s)$
b) $\frac{1}{2} \mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \frac{1}{2} \mathrm{CO}_{2}(\mathrm{~g})$
c) $\mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
d) $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
17. The heat of formation of methane $\mathrm{C}(s)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ at constant pressure is 18500 cal at $25^{\circ} \mathrm{C}$. The heat of reaction at constant volume would be:
a) 19096 cal
b) 18798 cal
c) 18202 cal
d) 17904 cal
18. Minimum work is obtained when 1 kg of ...gas expanded under 500 kPa to 200 kPa pressure at $0^{\circ} \mathrm{C}$.
a) Chlorine
b) Oxygen
c) Nitrogen
d) Methane
19. The temperature of the system decreases in an
a) Adiabatic compression
b) Isothermal compression
c) Isothermal expansion
d) Adiabatic expansion
20. The bond of energies of $\mathrm{H}-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$ and $\mathrm{H}-\mathrm{Br}$ are 433,192 and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respecively. The ΔH° for the reaction; $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$ is :
a) -261 kJ
b) +103 kJ
c) +261 kJ
d) -103 kJ
21. The absolute enthalpy of neutralisation of the reaction $\mathrm{MgO}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ will be
a) Greater than $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $57.33 \mathrm{kJmol}^{-1}$
c) Less than $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d) $-57.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
22. We believe in the laws of thermodynamics because they are
a) Theoretical
b) Derived based on mathematical analysis
c) Empirical and nobody disproved
d) Mere statements
23. The enthalpy of dissolution of $\mathrm{BaCl}_{2}(s)$ and $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s)$ are -20.6 and 8.8 kJ per mol respectively. The enthalpy of hydration for, $\mathrm{BaCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s)$ is
a) 29.4 kJ
b) -29.4 kJ
c) -11.8 kJ
d) 38.2 kJ
24. The enthalpies of the elements in their standard states are assumed to be
a) Zero at 298 K
b) Unit at 298 K
c) Zero at all temperature
d) Zero at 273 K
25. The change in entropy, ΔS is positive for an endothermic reaction. If enthalpy charge ΔH occurs at the
same temperature T, then the reaction is feasible:
a) At all temperatures
b) When $\Delta H>T \Delta S$
c) When $\Delta H<T \Delta S$
d) Not feasible at all
26. If the enthalpy change for the transition of liquid water to steam is $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $27^{\circ} \mathrm{C}$, the entropy change for the process would be:
a) $100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
b) $10 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
c) $1.0 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
d) $0.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
27. For the reaction, $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at constant temperature, $\Delta H-\Delta U$ is :
a) $+R T$
b) -3 RT
c) +3 RT
d) -RT
28. The total amount of energy in the universe is fixed, but:
a) Matter is increasing
b) Gravitation is decreasing
c) Disorder is increasing
d) Lightening is increasing
29. Which compound will absorb the maximum amount of heat when dissolved in the same amount of water? (Integral heats of solution at $25^{\circ} \mathrm{C}$ in $\mathrm{kcal} / \mathrm{mol}$ of each solute are given in brackets):
a) $\mathrm{HCl}(\Delta H=-17.74)$
b) $\mathrm{HNO}_{3}(\Delta H=-7.85)$
c) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\Delta H=+16.08)$
d) $\mathrm{NaCl}(\Delta \mathrm{H}=+1.02)$

THERMODYNAMICS

CHEMISTRY

353)	c	354)	a	355)	a	356)	b	413)	c	414)	d	415)	a	416)
357)	b	358)	d	359)	c	360)	d	417)	c	418)	a	419)	b	420)
361)	C	362)	C	363)	b	364)	b	421)	d	422)	c	423)	d	424)
365)	a	366)	b	367)	a	368)	d	425)	c	426)	a	427)	a	428)
369)	c	370)	a	371)	b	372)	c	429)	a	430)	d	431)	c	432)
373)	a	374)	a	375)	C	376)	b	433)	C	434)	d	435)	c	436)
377)	d	378)	d	379)	d	380)	c	437)	c	438)	b	439)	d	440)
381)	b	382)	a	383)	a	384)	a	441)	d	442)	a	443)	a	444)
385)	d	386)	a	387)	b	388)	c	445)	d	446)	d	447)	c	448)
389)	d	390)	C	391)	C	392)	a	449)	d	450)	c	451)	c	452)
393)	b	394)	b	395)	c	396)	c	453)	c	454)	a	455)		456)
397)	a	398)	c	399)	b	400)	a	457)	d	458)	c	459)	d	460)
401)	a	402)	b	403)	b	404)	b	461)	a	462)	c	463)		464)
405)	c	406)	a	407)	c	408)	d	465)	c	466)	c			
409)	b	410)	c	411)	b	412)	a							

THERMODYNAMICS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (c)
$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(v) \quad \therefore \Delta n=1$
$\Delta H^{\circ}=\Delta U^{\circ}+\Delta n R T$
$40.66 \times 10^{3}=\Delta U^{\circ}+1 \times 8.314 \times 373$
$\therefore \Delta U^{\circ}=37559 \mathrm{~J}=37.56 \mathrm{~kJ}$
2 (b)
$\left(\frac{\partial Q}{\partial T}\right)_{P}=C_{p}$ and $\left(\frac{\partial Q}{\partial T}\right)_{V}=C_{v}$ and $C_{p}-C_{v}=R$.
4 (a)
$\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H_{1}=-26.4$
$\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H_{2}=-96.0$
We have to find for ΔH, for reaction
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H_{1}=$?
Eqs.(ii) - (i), we get
$\Delta H=-94-(-26.4)=-67.6 \mathrm{kcal}$
5 (c)
If $\Delta G=-$ ve, process is spontaneous
6 (d)
$\Delta U-W=q$
If cyclic process, then $q=-W$.
7 (c)
e. g. , U, H, S, etc.

8 (a)
$\Delta G=0$ for an equilibrium state.
9 (a)
Find ΔH for, $\mathrm{H}_{2}+\mathrm{S}+2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
11 (a)
$q=+10 \mathrm{~kJ}, W=-4 \mathrm{~kJ}$
$\because \Delta E=q+W$
$=10-4=6 \mathrm{~kJ}$
So, energy increases by 6 kJ
12 (d)
Heat of neutralisation is $-13.7 \mathrm{kcal} \mathrm{eq}^{-1}$.
13 (a)
$\Delta G=\Delta H-T \Delta S$
$\Delta G=0$, at equilibrium
$\therefore \Delta H=T \Delta S$
or $30.5=T \times 0.066$
$T=462.12 \mathrm{~K}$
14 (c)
An adiabatic process is one in which exchange of heat is not taking place in between system and
surroundings. This can be made by putting insulation at the boundries of system
15 (b)

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+q_{1} \\
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow-\mathrm{H}_{2} \mathrm{O}+q_{2} \\
-\quad-\quad{ }_{-}^{-} \mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}+\left(q_{1-}-q_{2}\right)
\end{gathered}
$$

17 (b)
$\Delta G^{\circ}=-2.303 R T \log K \quad\left(K\right.$ for $\left.\mathrm{H}_{2} \mathrm{O}=\frac{10^{-14}}{55.6}\right)$
$=-2.303 \times 8.314 \times 298 \times \log \frac{10^{-14}}{55.6}$
$=-89.84 \mathrm{~kJ}$
18 (d)
The spontaneity of reaction cannot be decided by simply looking the chemical change. We need ΔG value for $i t$.
19 (a)
ΔH for a reaction is equal but opposite to backward reaction.
20 (d)
Follow definition of ionisation energy.
21 (b)
Internal energy of an ideal gas is function of temperature and thus $\left(\frac{\partial E}{\partial P}\right)_{T}=0$
22 (a)
For exothermic reactions $H_{p}<H_{R}$
23 (a)
Heat of combustion is defined as the amount of the energy released during complete combustion of 1 mole of a substance in oxygen or air.
24 (d)
50 Meq. of KOH and 50 Meq. Of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will produce maximum heat.
25
(c)

The first law of thermodynamics can be expressed as :

$$
\begin{aligned}
& \Delta E=q+W \\
& q=\Delta E-W
\end{aligned}
$$

26 (c)
$H=U+P V$
$\therefore H_{2}-H_{1}=U_{2}-U_{1}+\left(P_{2} V_{2}-P_{1} V_{1}\right)$
$\therefore \Delta H=30+(4 \times 5-2 \times 3)$
$=44 \mathrm{~L} \mathrm{~atm}$
27 (b)
The reactions in which products has lesser energy than reactants, then energy is released in the reaction and such reactions are known as exothermic reactions e.g.,

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}+92 \mathrm{~kJ}
$$

In this equation energy is released, so, it is an example of exothermic reaction.
28 (a)
$\Delta H_{\text {mixing }}=0$ for ideal solutions.
29 (d)
In (a), (b), (c) randomness increase.
30 (a)
$\Delta H=\Delta E+\Delta n R T$
Since, $\Delta n=2-4=-2$
Therefore, $\Delta H=\Delta E-2 R T$
31 (a)
$\frac{T}{T_{\text {final }}}=\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1}$
$\frac{T}{T_{\text {final }}}=\left(\frac{2}{1}\right)^{(5 / 3-1)}=2^{(2 / 3)}$
$T_{\text {final }}=\frac{T}{2^{(2 / 3)}}$
32 (b)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Molecular weight of $\mathrm{CH}_{4}=12+4=16$
\therefore On the combustion of 2.0 g of methane $=25.0$ kcal
\therefore On the combustion of 16.0 g methane $=\frac{25 \times 16}{2}=$ 200 kcal
33 (a)
$\Delta S=\frac{q}{T}=\frac{2.303 n R T}{T} \log \frac{V_{2}}{V_{1}}$
$=2.303 \times 1 \times 8.314 \log 10$
$=19.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
34 (c)
Heat of formation of $\mathrm{H}_{2} \mathrm{O}(l)$
i.e., $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$

Is also heat of combustion of $\mathrm{H}_{2}(\mathrm{~g})$.
35
$\Delta S_{\text {reaction }}=\sum S_{\text {product }}-\sum S_{\text {reactant }}$
$=2 \times S_{\mathrm{H}_{2} \mathrm{O}}-\left[2 \times S_{\mathrm{H}_{2}}+S_{\mathrm{O}_{2}}\right]$
$=2 \times 68-[2 \times 126.6+201.20]$
$=-318.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
36 (a)
Solve using Hess's law

Decomposition of MgCO_{3} occurs only on heating.
38 (c)
Maximum work is obtained under reversible conditions (either isothermal or adiabatic).
39 (c)
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta n=6+3-1-\frac{15}{2}=+0.5$
40 (a)
$P \times 1=R T$
Also internal energy, $U=\frac{3}{2} R T$
$\therefore U=\frac{3}{2} P$
or $P=\frac{2}{3} U$
41 (c)
Electrical energy is used to bring in electrolysis.
$42 \quad$ (c)
The second law of thermodynamics has been defined as - the entropy of universe is always increasing in the course of every spontaneous process.
(a)

Rest all are endothermic process. Hydration is always exothermic.
44 (d)
For monoatomic gas, $\gamma_{2}=\frac{C_{p}}{C_{v}}=1.67$
For diatomic gas, $\gamma_{2}=\frac{C_{p}}{C_{v}}=1.40$
$\therefore \gamma_{1}: \gamma_{2}=\frac{1.67}{1.40}=1.19: 1$
45 (a)
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \quad \Delta \mathrm{H}=-393.5 \mathrm{~kJ}$
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \quad \Delta H=-283.5 \mathrm{~kJ}$
On subtracting, $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO} ; \Delta H-110.0 \mathrm{~kJ}$
46 (b)
It is based on the fact that neither heat can be produced nor destroyed, i.e., Ist law of thermodynamics.
(c)
$\Delta H=H_{P}-H_{R}$; Measurements at constant pressure give ΔH values.
48 (d)
These all are limitations of third law.
49 (b)

$$
\begin{aligned}
\Delta H & =\Delta U+\Delta n R T \\
\Delta n & =-1 / 2 \\
\therefore \quad-43 & =\Delta U+(-1 / 2) \times 8.314 \times 298 \\
& \times 10^{-3}
\end{aligned}
$$

$\therefore \quad \Delta U=-241.76 \mathrm{~kJ}$
50 (c)
Molar heat capacity $=\left(\frac{\delta Q}{\delta T}\right)_{P}$
If $\delta T=0$ at constant temperature.
Molar heat capacity $=\infty$
51 (a)
It is heat of neutralization of water.
52 (d)
Vapour phase has more heat enthalpy and the evaporation being spontaneous and thus, $\Delta G=$ - ve. Also randomness or disorder is more in vapour phase.
53 (a)
$W=-P_{\text {ext. }}\left(V_{2}-V_{1}\right)$
$\because P_{\text {ext. }}=0$
$\therefore W=0$
54 (b)
$\Delta G=-R T \ln K_{p}=-2.303 R T \log _{10} K_{p}$
55 (d)
Negative specific heat refers that in order to rise the temperature, certain quantity of heat is to be withdrawn from the body.
56 (c)
$\mathrm{Na}^{+}(s)+\mathrm{OH}^{-}(s)+a q . \rightarrow \mathrm{Na}^{+}(a q)+.\mathrm{OH}^{-}(a q$.
$\Delta H=-470.7 \mathrm{~kJ}$
$\mathrm{OH}^{-}(s)+a q . \rightarrow \mathrm{OH}^{-}(a q.) ; \quad \Delta H=-228.8 \mathrm{~kJ}$
$-\quad-\quad+\quad$ -
$\therefore \mathrm{Na}^{+}(s)+a q . \rightarrow \mathrm{Na}^{+}(a q.) ; \quad \Delta H=-241.9 \mathrm{~kJ}$
57 (c)
$W=-P \Delta V=-1 \times 10^{5}\left(1 \times 10^{-2}-1 \times 10^{-3}\right)$ $=-900 \mathrm{~J}$
58 (b)
O_{3} has more energy than O_{2}
59 (a)
$q=\Delta U-W=\Delta U(\because W=0$, at constant volume)
60 (a)
$q=\Delta U-W$: all have same units.
61 (b)
Energy change at constant pressure is called enthalpy change or change in heat content, i.e., ΔH
Also, $\Delta H=\Delta U+\Delta n R T$
if $\Delta n=0, \Delta H=\Delta U$, i.e., heat change at constant volume.
62 (a)
Vibration energy has both components kinetic and potential energy.

Use $\Delta G=\Delta H-T \Delta S$
$\Delta G=145.6-273 \times 0.116$
$=113.93 \mathrm{~kJ} / \mathrm{mol}$
(b)

In $\mathrm{BF}_{3} p \pi-p \pi$ interaction leads to back bonding due to vacant p-orbitals of boron and completely filled p-orbitals of F .
(c)
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2} ; \quad \Delta H=-$ ve; the solution of lime heats up.
67 (d)
$T_{2}=150+273=423 \mathrm{~K}$,
$T_{1}=25+273=298 \mathrm{~K}$
$Q=500 \mathrm{~K}$
$\frac{W}{Q}=\frac{T_{2}-T_{1}}{T_{2}}$
$\therefore W=500\left(\frac{423-298}{423}\right)=147.7 \mathrm{~J}$
68 (a)
The order of randomness, Gas $>$ Liquid $>$ Solid.
69 (d)
$\Delta H=H_{\mathrm{C}_{3} \mathrm{H}_{8}}-H_{\mathrm{CH}_{4}}-H_{\mathrm{C}_{2} \mathrm{H}_{4}}$
$=-24.8-(-17.9)-12.5$
$=19.4 \mathrm{kcal} / \mathrm{mol}$
70 (b)
Due to randomness of particles is reduced since, entropy decreases
71 (c)
$1 \mathrm{cal}=4.185 \mathrm{~J}=4.18 \times 10^{7} \mathrm{erg}=\frac{4.18}{1.602} \times 10^{19} \mathrm{eV}$.
72 (a)
The change ΔS will be more and the q or W will be more because $\Delta S=\frac{q}{T}$ and work depends on q.
73 (d)
$\Delta H=\Delta U+\Delta n R T$
For (a), (b), (c) $\Delta n=0$ and for (d) $\Delta n=-2$
74 (a)
Helmholtz free energy change ΔA represents network done.
75 (c)

$$
\begin{aligned}
\Delta H^{\circ} & =\frac{1}{2} \times \Delta_{\mathrm{diss}} \cdot H_{\mathrm{Cl}_{2}}^{\circ}+\Delta_{\mathrm{eg}} H_{\mathrm{Cl}}^{\circ}+\Delta_{\mathrm{hyd}} H_{\mathrm{Cl}}^{\circ} \\
& =\frac{1}{2} \times 240-349-381 \\
& =-610 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(a)

The energy can neither be created nor destroyed.
77 (d)
Heat changes during any chemical reaction are referred as heat of reaction are referred as heat of reaction for that change.

78 (a)
Amount of sugar needed $=\frac{2870 \times 342}{1349}=727.6 \mathrm{~g}$
79 (d)

$-358.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The obs. $\Delta H=\Delta H+$ Energy needed to disturb resonance

$$
\begin{aligned}
= & -358.5+150.4 \\
& =-208.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

80 (b)
$\because \Delta G^{\circ}=-R T \ln K$
Also $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\therefore-R T \ln K=\Delta H^{\circ}-T \Delta S^{\circ}$
or $\ln K=\frac{T \Delta S^{\circ}-\Delta H^{\circ}}{R T}$
81 (a)
Work done due to change in volume against constant pressure,

$$
\begin{aligned}
& W=-p\left(V_{2}-V_{1}\right) \\
& =-1 \times 10^{5} \mathrm{Nm}^{-2}\left(1 \times 10^{-2}-1 \times 10^{-3}\right) \mathrm{m}^{3} \\
& =-900 \mathrm{Nm}=-900 \mathrm{~J} \quad(1 \mathrm{Nm}=1 \mathrm{~J})
\end{aligned}
$$

82 (a)
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=x \ldots$ (i)
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=y$
Eqs. (i) -(ii)
$\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}, \Delta H=x-y$
83 (a)
$\Delta H=H_{\text {product }}-H_{\text {reactant }} ; \quad H_{R}>$
H_{P}.Thus, -ve.
84 (d)
These allare facts.
85 (a)
$\mathrm{Fe}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$
mole of $\mathrm{Fe}=\frac{112}{56}=2, \therefore$ mole of H_{2} formed $=2$.
now, work done $=P\left(V_{2}-V_{1}\right) ; V_{2}=V_{\mathrm{H}_{2}}$ and
$V_{1}=0$ (for solid and liquid)
$=P \cdot V_{\mathrm{H}_{2}}=P \cdot \frac{n R T}{P}=n R T$
$=2 \times 2 \times 300=1200 \mathrm{cal}=1.2 \mathrm{kcal}$
86 (a)
No doubt, heat evolved in first process is twice to second but volume absorbing this heat is also twice in comparison to first.
$87 \quad$ (b)
At constant volume $P \Delta V=0, \therefore q=\Delta U$.
88 (c)
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H^{\circ} f=$? if reaction is made at $25^{\circ} \mathrm{C}$ and 1 atm .
$\Delta H^{\circ} f=H_{\mathrm{CO}_{2}}^{\circ}-H_{C}^{\circ}-H_{\mathrm{O}_{2}}^{\circ}=H_{\mathrm{CO}_{2}}^{\circ}-0-0$
$\Delta H^{\circ} f=H_{\mathrm{CO}_{2}}^{\circ}\left(H_{\mathrm{C}}^{\circ}\right.$ and $H_{\mathrm{O}_{2}}^{\circ} \quad$ are assumed arbitrarily zero)
(d)

A decrease in Gibbs energy results for useful work done by the system, i.e., work of expansion
($-W_{\text {expansion }}$) or $-\Delta G=W_{\text {exp }}$.
91 (d)
Strong acid $\left(\mathrm{HNO}_{3}\right)$ and strong base (LiOH).
92 (a)
This is derived formula.
93 (c)
$\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4} ; \Delta H=$?
Find ΔH by eqs. (i) $+2 \times$ (ii) - (iii)
94
(c)

Due to positive $\Delta H, \mathrm{HI}$ is endothermic compound and unstáble.
96 (a)

$$
\Delta S=\frac{\Delta H_{v}}{T}
$$

$\Delta H=40.8 \mathrm{~kJ}$
$T=373 \mathrm{~K}$
$\therefore \Delta S=\frac{40.8 \times 10^{3}}{373}=109.38 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
97 (a)

$$
\begin{gathered}
\Delta H=-2\left[3 \times e_{\mathrm{N}-\mathrm{H}}\right]+e_{\mathrm{N} \equiv \mathrm{~N}}+3 \times e_{\mathrm{H}-\mathrm{H}} \\
=-2 \times 3 \times 391+945+436 \times 3 \\
=-93 \mathrm{~kJ}
\end{gathered}
$$

98 (a)
The heat is provided by solvent and thus, feels cooler.
99 (b)
$\Delta G=\Delta G^{\circ}+2.303 R T \log Q$
if $Q=1, \Delta G=\Delta G^{\circ}$
100 (c)
Bond energy is the amount of heat required (or evolved) to break (or form) 1 mole bond. Also,

$$
\mathrm{H}_{2} \rightarrow 2 \mathrm{H} ; \Delta H=104.3 \mathrm{kcal}
$$

\therefore Heat of formatin for H atom $\frac{1}{2} \mathrm{H}_{2} \rightarrow \mathrm{H}$
i.e., equal to $\frac{1}{2} \times 104.3 \mathrm{kcal}$

101 (a)
Sublimation requires energy, i.e., $\Delta H=+\mathrm{ve}$, also, $\Delta S=+\mathrm{ve}$.

Work done $(W)=-p_{\text {ext }}\left(V_{2}-V_{1}\right)$

$$
\begin{aligned}
& =-3 \times(6-4)=-6 \mathrm{~L} \mathrm{~atm} \\
& =-6 \times 101.32 \mathrm{~J}(\therefore 1 \mathrm{~L}
\end{aligned}
$$

atm $=101.32 \mathrm{~J}$)

$$
=-607.92 \approx-608 \mathrm{~J}
$$

104 (d)
These are the expressions to explain work.
105 (b)
$\Delta S_{\text {vap }}=\frac{\Delta H_{\text {vap }}}{T}=\frac{37.3 \mathrm{~kJ} \mathrm{~mol}^{-1}}{373 \mathrm{~K}^{2}}$
$=0.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$=100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
106 (c)
Heat cannot be itself pass from colder to hotter body.
107 (d)
$\Delta G=\Delta H-T \Delta S$
$\Delta G=150-\frac{100 \times 300}{10^{-3}}=120 \mathrm{~kJ}$
108 (a)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ; \quad \Delta H=-x$

$$
\begin{array}{llr}
\mathrm{CH}_{3} \mathrm{OH}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ; & \Delta H= & -y \\
-\quad-\quad- & + & + \\
\hline \mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH} ; & \Delta H=y-x \\
\because \because y-x=-\mathrm{ve} &
\end{array}
$$

$$
\therefore \quad x>y
$$

109 (c)
$\Delta G=\Delta H-T \Delta S$
For $\Delta G=0$ at equilibrium
$T \Delta S=\Delta H$
$T=\frac{\Delta H}{\Delta S}=\frac{30 \times 10^{3}}{105}=285.7 \mathrm{~K}$
110 (b)
The gives rise to cooling.
111 (d)
In every process randomness increases.
112 (c)
$\Delta H-\Delta U=\Delta n R T=1 \times 2 \times 373=746 \mathrm{cal}$.
113 (b)
In first case it was equal to ΔU.It II case it is ΔH.
The two values are related by
$\Delta H=\Delta U+P \Delta V$
114 (a)
$-W=+2.303 n R T \log \frac{V_{2}}{V_{1}}$
$-W=2.303 \times \frac{16}{32} \times 300 \times 8.314 \log \frac{25}{5}$
$-W=2.01 \times 10^{3} \mathrm{~J}$
115 (a)
0.2 mole of HNO_{3} are neutralized by 0.2 mole of

NaOH to give heat $=57 \times 0.2=11.4 \mathrm{~kJ}$
116 (c)
Heat of formation is given when compound is formed from its components.
117 (b)
The statement is definition of Hess's law.
118 (a)
When a gas undergoes adiabatic expansion, $d q=$ 0 , it gets cooled due to loss of kinetic energy
119 (c)
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3} ; \Delta H^{\circ}=-852 \mathrm{~kJ}$
$\because 2 \mathrm{~mol} \mathrm{Al}(=54 \mathrm{~g})$ evolved heat $=-852 \mathrm{~kJ}$
$\therefore 2.7 \mathrm{gAl}$ will evolve heat $=-\frac{852 \times 2.7}{54}$
$=-42.6 \mathrm{~kJ}$
120 (a)
Decomposition of CaCO_{3} is made on heating.
121 (a)
$\Delta G=\Delta H-T \Delta S=-2500-298 \times 7.4=$ -4705.2 kcal and thus, spontaneous.
122 (a)
$q=\Delta U+W$
$50=\Delta U+30$
$\therefore \Delta U=20 \mathrm{cal}$
123 (a)
The compressor has to run for longer time releasing more heat to the surroundings
124 (c)
$S_{V}^{\circ}-S_{L}^{\circ}=+\mathrm{ve}$. Conversion of liquid to vapour occurs process.
125 (a)
$-\Delta G^{\circ}=2.303 R T \log K_{p}$
126 (c)
As graphite is thermodynamically more stable than diamond hence, more heat is required to convert graphite to gaseous carbon
127 (c)
Closed systems cannot exchange mass with surrounding. Only exchange of energy is possible.
128 (a)
$\Delta G=\Delta H-T \Delta S$
at equilibrium, $\Delta G=0, \therefore T=\frac{\Delta H}{\Delta S}=\frac{30 \times 10^{3}}{75}=$
400 K
129 (b)
$\Delta H / \mathrm{mol}$ of $\mathrm{FeS}=\frac{3.77 \times 56}{2.1}=100.5$
130 (a)
For isochoric process, $\Delta V=0$ so, $q_{v}=\Delta E$ ie, heat given to a system under constant volume is used up in increasing ΔE
131 (a)

According to Hess's law total heat changes during a chemical reaction are independent of path of reaction.
Given, $\mathrm{I}_{2}(s) \rightarrow \mathrm{I}_{2}(\mathrm{~g}), \Delta H_{1}=57.3 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{equation*}
\mathrm{I}_{2}(s) \rightarrow \mathrm{I}_{2}(l), \Delta H_{2}=+15.5 \mathrm{~kJ} / \mathrm{mol} \tag{i}
\end{equation*}
$$

Required equation $\mathrm{I}_{2}(l) \rightarrow \mathrm{I}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{1}=$? subtract
Eq. (ii) from Eq. (i)
$\therefore \quad \mathrm{I}_{2}(l) \rightarrow \mathrm{I}_{2}(\mathrm{~g}), \quad \Delta H=57.3+(-15.5)$
$=+41.8 \mathrm{~kJ} / \mathrm{mol}$
132 (a)
$\Delta G=-2.303 R T \log K$
$-4.606=-2.303 \times 0.002 \times 500 \log K$
$\log K=2, K=100$
133 (d)
$\Delta S^{0}=2 S_{\mathrm{HCl}}^{\mathrm{o}}-\left(S_{\mathrm{H}_{2}}^{\mathrm{o}}+S_{\mathrm{Cl}_{2}}^{\mathrm{o}}\right)$
$=2 \times 186.7-(130.6+223.0)=19.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
134 (b)
The energy required to break a bond.
135 (c)
25 Meq. Of acid and 25 Meq. of base (the maximum value of Meq.) react.
136 (b)
Eq.(b) shows largest phase change $i e$,gas \rightarrow solid
137 (b)
$\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
$\Delta H_{f}=-e_{\mathrm{H}-\mathrm{Cl}}+\left[\frac{1}{2} e_{\mathrm{H}-\mathrm{H}}+\frac{1}{2} e_{\mathrm{Cl}-\mathrm{Cl}}\right]$
$=-431+\left[\frac{1}{2} \times 434+\frac{1}{2} \times 240\right]$
$=-93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
139 (b)
$A_{2}+E_{\text {given }} \rightarrow 2 A+E_{\text {left }}$
$\therefore E_{\text {left }}$ per molecule

$$
\begin{aligned}
& =E_{\text {given }}-E_{\text {used }} \text { for dissociation } \\
= & 4.4 \times 10^{-19}-4.0 \times 10^{-19} \\
& =4 \times 10^{-20} \mathrm{~J}
\end{aligned}
$$

The kinetic energy per atom $=\frac{4 \times 10^{-20}}{2}=2 \times$ $10^{-20} \mathrm{~J}$
140 (c)
Macroscopic properties which determine the state of a system are referred as state functions. The change in the state properties depends only upon the initial and final state
of the system. All thermodynamic functions are state functions except work and heat.

Temperature is a measure of intensity of energy, whereas heat is a measure of quantity of energy.

For exothermic reactions, $K_{\text {eq }}$ varies inversely with T while in case of endothermic reactions, $K_{\text {eq }}$ varies directly with T
143 (b)
$\Delta G=\Delta H-T \Delta S, T=25+273=298 \mathrm{~K}$
$=-11.7 \times 10^{3}-298 \times(-105)=19590 \mathrm{~J}$

$$
=19.59 \mathrm{~kJ}
$$

144 (c)
Standard heat of formation of methane is represented by C (graphite) $+2 \mathrm{H}(\mathrm{g})=\mathrm{CH}_{4}(\mathrm{~g})$ because the elements taken are in their standard state
145 (b)
ΔH per $1.6 \mathrm{~g}=\frac{72 \times 1.6}{180}=0.64 \mathrm{kcal}$
(b)
$(d S)_{V, E>0}(d G)_{T, P<0}$
147 (a)
According to second law of thermo chemistry the law states that the total heat change (ΔH) accompanying a chemical reaction is the same whether the reaction takes place in one or more steps.
It means that heat of a reaction depends only on the initial reactants and final products and not on intermediate products that may be formed.
Now, $\Delta H=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}$
Enthalpy change in a reaction is always constant and independent of the path followed.
148 (b)
Every system having some quantity of matter, is associated with a definite amount of energy. This energy is known as internal energy. It is sum of many type of energies, such as translation energy, rotational energy, vibrational energy, electronic energy and bonding energy of the molecule.

$$
E=E_{\text {trans }}+E_{\text {rot }}+E_{\text {vib }}+E_{\text {bonding }}+
$$

$E_{\text {electronic }}$

149 (c)
For an isochoric process $V=$ constant ; thus $\Delta V=$

0 from 1st law $q=\Delta U-W$
or $q_{v}=\Delta U$.
150 (a)
For a spontaneous process $\Delta G=-$ ve or <0.
151 (d)
It is a physical change.
152 (a)
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} ; \Delta H=-188 \mathrm{~kJ} / \mathrm{mol} \ldots$ (i)
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} ; \Delta H=-286 \mathrm{~kJ} / \mathrm{mol} \ldots$ (ii)
By Eq.(i) - (ii)
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$;
$\Delta H=2(-188)-2(-286)=+196 \mathrm{~kJ}$
153 (a)
$\mathrm{C}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

$$
\Delta n=0
$$

$\therefore \quad \Delta H=\Delta U$
154 (a)
$\Delta H=+$ ve and $\Delta S=+$ ve; the disorder increases with increase in moles.
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2} ; \Delta H=+\mathrm{ve}$ (dissociation)
155
$q=\Delta U-W ;-W$ is work done by the system
$\therefore \Delta U=q+W=50+10=60$
$(+W$ is work done on the system)
157 (d)
$\Delta G_{\text {system }}=-\mathrm{ve}$, the system is spontaneous;
$\Delta G_{\text {system }}=0$, the system has attained equilibrium $\Delta G=+\mathrm{ve}$, the system is non-spontaneous.
158 (d)
$2 \mathrm{~B}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{3} ;$
$\Delta_{f} H^{\circ}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)$
$\therefore \quad \Delta_{C} H^{\circ}(\mathrm{B})=\frac{1}{2} \Delta_{f} H^{\circ}\left(\mathrm{B}_{2} \mathrm{O}_{3}\right)$
The heat is given out.
159 (d)
At isothermal condition $T=$ constant.
160 (c)
Heat changes at constant pressure are referred as ΔH. Heat changes at constant volume are referred as ΔU.
161 (d)
(i) $2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}(\mathrm{g}) \quad \Delta H$

$$
=225 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(ii) $2 \mathrm{C}(\mathrm{s})+2 \mathrm{C}(\mathrm{g})$

$$
=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(iii) $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}(\mathrm{g})$ ΔH

$$
=330 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

From equation (i) :

$$
\begin{aligned}
225= & {\left[2 \times \Delta H_{\mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{C}(\mathrm{~g})}+1 \times e_{\mathrm{H}-\mathrm{H}}\right] } \\
& -\left[2 \times e_{\mathrm{C}-\mathrm{H}}+1 \times e_{\mathrm{C} \equiv \mathrm{C}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 225= {[1410+1 \times 330] } \\
&-\left[2 \times 350+1 \times e_{\mathrm{C} \equiv \mathrm{C}}\right] \\
& 225= {[1410+330]-\left[700+e_{\mathrm{C} \equiv \mathrm{C}}\right] } \\
& 225=1740-700-e_{\mathrm{C} \equiv \mathrm{C}} \\
& e_{\mathrm{C} \equiv \mathrm{C}}=1040-225=815 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& B E_{\mathrm{C} \equiv \mathrm{C}}=815 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

162 (a)
Heat capacity of water per gram $=\frac{75}{18}=4.17 \mathrm{~J}$
$Q=m s t=100 \times 4.17 \times t=1000$
$t=\frac{1000}{100 \times 4.17}=2.4 \mathrm{~K}$
163 (c)
When gas is compressed its entropy decreases so, ΔS is negative
164 (b)
Bond energy of $\mathrm{C}-\mathrm{H}$ bond $=\frac{-166}{4}=-41.5$
kJ/mol
165 (b)
$-\frac{d Q}{d W}=\frac{d Q}{d Q-d E} ;[\because d E=d W+d Q:-d W$ $=d Q-d E]$
$=\frac{n C_{p} d T}{n C_{p} d T-n C_{v} d T}=\frac{C_{p}}{\left(C_{p}-C_{v}\right)}$
$=\frac{7}{2}$ for diatomic gas
166 (c)
In an adiabatic process, no exchange of heat takes place between the system and surroundings, i.e., $d \mathcal{Q}=0$. Such a condition exists when the system is thermally isolated.
167 (c)
$\Delta H=H_{P}-H_{R}$
$H_{\mathrm{H}_{2} \mathrm{O}}-H_{\mathrm{H}_{2}}-H_{\mathrm{O}_{2}}=-\mathrm{ve}$
168 (d)
In the adiabatic process no heat enters or
leaves the system i.e., $q=0$.
169 (c)
An isolated system neither shows exchange of heat nor matter with surroundings.
170 (a)
The exact value of internal energy is not known as it includes all type of energies of molecules constituting the given mass of matter such as translational, vibrational and rotational. The kinetic and potential energy of the nuclei and electron with in the individual molecules and the manner in which the molecule are linked together, are
$E=E_{\text {translational }}+E_{\text {rotational }}+E_{\text {vibrational }}$ Thus, we can say that internal energy is partly
potential ad partly kinetic
171 (a)
Heat of formation of NH_{3} is given by $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta H_{f}$
172 (d)
By (ii)-(i) C(graphite) $\rightarrow C$ (diamond);
$\Delta H=-393.4-(-395.3)=+1.9$
173
CH_{4} required $=\frac{445.15 \times 16}{890.3}=8 \mathrm{~g}$
174 (d)
Calorific value : Fat > Carbohydrate > Protein
175 (d)
$\frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2} ; \Delta H=8 \mathrm{kcal}$
$\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4} ; \Delta H=2 \mathrm{kcal}$
By eq. (i) $\times 2-$ (ii),

$$
\begin{equation*}
2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4} ; \Delta H=-14.0 \mathrm{kcal} \tag{ii}
\end{equation*}
$$

176 (c)
Calculate it for the equation
$2 \mathrm{Fe}(s)+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s)$
Eqs. 3(ii) - (i), we have
$4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)$
$\Delta H^{\circ}=3(-94050)-(-93657)$
$=-18493 \mathrm{cal}=188.493 \mathrm{kcal}$
$\because 2$ moles $\mathrm{Fe}_{2} \mathrm{O}_{3}$ has $\Delta H^{\circ}=-188.493 \mathrm{kcal}$
$\therefore 1 \mathrm{~mole} \mathrm{Fe}_{2} \mathrm{O}_{3}$ has $\Delta H^{\circ}=-\frac{188.493}{2}$
$=-94.25 \mathrm{kcal} / \mathrm{mol}$
177 (d)
At STP, $16 \mathrm{~g} \mathrm{O}_{2}$ or $\frac{1}{2}$ mole O_{2} will occupy 11.2 litre. Thus, if volume is doubled, it means
$\left(V_{2}-V_{1}\right)=22.4-11.2=11.2$ litre
Now, $W=P \times\left(V_{2}-V_{1}\right)=1 \times 11.2$ litre atm
$=\frac{1 \times 11.2 \times 2}{0.0821}$
$=272.84 \mathrm{kcal}$
178 (d)
For isothermal process $\Delta U=0$.
179 (b)
Gibbs energy change ΔG is given by:
$\Delta G=\Delta H-T \Delta G$
Also, $G=H-T S$
180 (a)
For insulated container $q=0$.
181 (b)
$\Delta_{\text {solution }}=\Delta H_{i}+\Delta H_{h}$
or $1=180+\Delta H_{h}$
$\Delta H_{h}=-179 \mathrm{kcal} \mathrm{mol}^{-1}$

The total $\Delta H_{h}=\Delta H_{h_{\mathrm{Na}^{+}}}+\Delta H_{h_{C l^{-}}}=\frac{61}{11}+\frac{5 a}{11}=a$ Where a is total heat of hydration $\left(\Delta H_{h}\right)$.
Thus, $\Delta H_{h_{\mathrm{Na}^{+}}}=-\frac{6 \times 179}{11}=-97.63 \mathrm{kcal} \mathrm{mol}^{-1}$
182 (a)
Since, process is exothermic, heat is evolved, due to this temperature of water increases
183 (a)

$$
\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})
$$

This equation can be obtained by subtraction of

$$
\left[\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})\right]
$$

from

$$
\left[\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})\right]
$$

Hence, $\Delta H_{f}=(\mathrm{CO})=[-393.3-(-282.8)] \mathrm{kJ}$

$$
=110.5 \mathrm{~kJ} / \mathrm{mol}
$$

184 (a)
Heat of neutralisation is also defined as the heat of formation of $\mathrm{H}_{2} \mathrm{O}$ from H^{+}and OH^{-}ions.
185 (b)
$q=\Delta U-W$, if $q=0$ for adiabatic process, than
$-\Delta U=-W$ or $\Delta U=W$, i.e., work done on the system or work of compression brings in an increase in temperature
186 (c)
$P V^{r}=$ constant
${ }_{P \cdot \gamma} V^{\gamma-1} d V+V^{\gamma} \cdot d P=0$
$\therefore \frac{d P}{P}=\frac{\gamma^{\prime} \cdot V^{r-1} d V}{V^{\gamma}}=-\gamma\left(\frac{d V}{V}\right)$
187 (d)
Strong acid (HCl) and strong base (NaOH).
188 (d)
The randomness in gaseous state is more than liquid state.
189 (c)
The definition of third law of thermodynamics.
190 (b)
$\Delta S=+$ ve for irreversible process.
191 (a)
It is the definition of heat of formation.
192 (c)
This is definition of third law of thermodynamics.
193 (c)
Follow Le-chatelier principle.
194 (a)
$\Delta S=S_{P}-S_{R}$
$=(2 \times 0.19)-0.13-0.22$
$=0.03 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$=30 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
196 (a)
$W_{\exp }=-P \times \Delta V$
$=-1 \times(13-3)=-10 \mathrm{~atm} \mathrm{dm} 3$
197 (a)
Heat evolved during combustion of 3.2 g
$\mathrm{CH}_{4}=\frac{880 \times 3.2}{16}=-176 \mathrm{~kJ}$
198 (c)
It is defined of heat of solution.
199 (b)
Formation of CO_{2} from CO is an exothermic reaction. Heat is evolved from the system ie, energy is lowered thus exothermic reactions occur spontaneously on account of decrease in enthalpy of system. Thus, $\Delta E>\Delta H$
200 (d)
$\mathrm{dQ}=\mathrm{nS} \Delta \mathrm{T}, \quad \therefore \mathrm{S}=\frac{\mathrm{dQ}}{\mathrm{dT}}$ (for 1 mole $)$.
201 (c)
$\Delta H=n C_{p} \Delta T$
The process is isothermal therefore,
$\Delta G=0$
$\therefore \Delta H=0$
202 (b)
The system returns to its original state, i.e., cyclic process.
203 (b)
$\Delta G=\Delta H-T \Delta S$; at equilibrium,
$\Delta G=0, \quad \therefore \Delta H=T \Delta S$
or $\Delta H=273 \times(60.01-38.20)$

$$
=5954.13 \mathrm{~J} \mathrm{~mol}^{-1}
$$

204 (a)
$E N_{\mathrm{F}} \sim \mathrm{EN}_{\mathrm{Cl}}=0.2028 \sqrt{\Delta}$
and $\quad \Delta=\left[e_{\mathrm{F}-\mathrm{Cl}}-\left(e_{\mathrm{F}-\mathrm{F}} \times e_{\mathrm{Cl}-\mathrm{Cl}}\right)^{1 / 2}\right]$
$\therefore E N_{\mathrm{F}} \sim \mathrm{EN}_{\mathrm{Cl}}=0.2028\left[e_{\mathrm{F}-\mathrm{Cl}}\right.$

$$
\left.-\left(e_{\mathrm{F}-\mathrm{F}} \times e_{\mathrm{Cl}-\mathrm{Cl}}\right)^{1 / 2}\right]^{1 / 2}
$$

Or $1=0.2028\left[e_{\mathrm{F}-\mathrm{Cl}}-(38 \times 58)^{1 / 2}\right]^{1 / 2}$
$\therefore \quad e_{\mathrm{F}-\mathrm{Cl}}=71.26 \mathrm{kcal} \mathrm{mol}^{-1}$.
206 (b)
0.2 mole will neutralize 0.2 mole of HNO_{3} heat
evolved $=51 \times 0.2=11.4 \mathrm{~kJ}$
207 (b)
Kirchhoff's equation is : $\Delta H_{2}-\Delta H_{1}=\Delta C_{p}\left(T_{2}-\right.$ T_{1})
208 (d)
Δn depends on stoichiometry of reaction.
209 (a)
$e_{A-A}=a$ Also, $\frac{1}{2} A_{2}+\frac{1}{2} B_{2} \rightarrow A B ;$
$e_{A-B}=a \Delta H=-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$e_{B-B}=0.5 a$
$\therefore \quad \Delta H=-\left[e_{A-B}\right]+\frac{1}{2}\left[e_{A-A}+e_{B-B}\right]$

$$
=a+\frac{1}{2}[a+0.5 a]
$$

$$
-100=-0.25 a
$$

$\therefore \quad a=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
210 (d)
The properties of the system whose value is independent of the amount of substance present in the system are called intensive properties e.g., viscosity, surface tension, temperature, pressure etc.
211 (d)
When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled
212 (b)
The room got heated because heat is lost to surroundings
213 (b)
$T_{b}=\frac{\Delta H}{\Delta S}=\frac{30 \times 10^{3}}{75}=400 \mathrm{~K}$
214 (d)
Heat of combustion is always exothermic; Few combustion reactions such as
F_{2} to $\mathrm{F}_{2} \mathrm{O}, \mathrm{N}_{2}$ to $\mathrm{N}_{2} \mathrm{O}$ and NO are endothermic but these reactions do not give heat of combustion because the substance should be completely oxidized. In $\mathrm{F}_{2} \mathrm{O}, \mathrm{F}_{2}$ is reduced and $\mathrm{N}_{2} \mathrm{O}$ and NO are not completely oxidized state of N_{2}. However, three reactions are exceptions but these do not represent heat of combustion. These are,

$$
\begin{array}{lr}
\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O} ; & \Delta H=+\mathrm{ve} \\
\mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO} ; & \Delta H=+\mathrm{ve}
\end{array}
$$

and $\mathrm{F}_{2}+(1 / 2) \mathrm{O}_{2} \rightarrow \mathrm{~F}_{2} \mathrm{O} ; \quad \Delta H=+\mathrm{ve}$
215 (b)
For an isothermal process $\Delta T=0$ and $\Delta E=$ 0 and $q \neq 0$.
216 (b)
Given: (i) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} ; \Delta H=-241 \mathrm{~kJ}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{10}+\frac{17}{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} ; \Delta H=-3800$ kJ
(iii) $\mathrm{C}_{6} \mathrm{H}_{12}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} ; \Delta H=-3920$
kJ for the reaction
$\mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}$
[It is infact Eq.(i)+Eq.(ii)-Eq.(iii)]
Thus, $\Delta H=-241-3800-(-3920)=-121 \mathrm{~kJ}$
217 (d)
In isothermal reversible process, ideal gas has
constant volume and so, $\Delta E=0$ and $\Delta H=\Delta E=0$ 218 (a)
$\Delta H=-2 \times e_{\mathrm{H}-\mathrm{Cl}}+e_{\mathrm{H}-\mathrm{H}}+e_{\mathrm{Cl}-\mathrm{Cl}}$
$\therefore \quad n 182=-2 \times a+430+242$
$\therefore \quad a=245 \mathrm{~kJ} \mathrm{~mol}^{-1}$
219 (d)
$\Delta H=\Delta U+\Delta n R T$
$\Delta n=+1 / 2$
Thus, $\Delta H>\Delta U$
220 (c)
Cylinder contains 11.2 kg or 193.10 mole butane.
$(\because$ molecular mass of butane $=58)$
\because Energy released by 1 mole of butane $=-2658$
\therefore Energy released by 193.10 mole of butane
$=-2658 \times 193.10$
$=5.13 \times 10^{5} \mathrm{~kJ}$
$\therefore \frac{5.13 \times 10^{5}}{20000}=25.66$ or 26 days
221 (c)
Heat of formation of $\mathrm{H}_{2} \mathrm{O}=-$ heat of decomposition of water.
222 (a)
$T_{f_{\text {irreversible }}}>T_{f_{\text {reversible }}}$ it is an adiabatic
expansion and W (rev) is maximum.
223 (c)
Molecular solids are covalent compounds having low m.p.
224 (a)
$\Delta H=H_{P}-H_{R}$
Thus, ΔH is negative because $H_{P}<H_{R}$.
225 (b)
$\Delta G=-\mathrm{ve}$ for a spontaneous change.
226 (d)
Ideal gas does not show intermolecular forces of attractions.
227 (b)
Rest all are correct.
228 (a)
During solidification disorder decreases.
229 (a)
$\Delta S=\frac{\Delta H_{f}}{T}=\frac{2930}{300}=9.77 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
230 (d)
$\Delta G=\Delta H-T \Delta S$
The reaction will be spontaneous
If $T \Delta S>\Delta \mathrm{H} \quad$ (i.e., $\Delta G=-\mathrm{ve}$)
$T>\frac{\Delta H}{\Delta S}=\frac{170}{170 \times 10^{-3}}=1000 \mathrm{~K}$
231 (c)
θ is independent of initial amount as long as
relative amount is constant
232 (b)
$q=\Delta U-W$, if adiabatic process $q=0$, then $-\Delta U=-W$, i.e., a decrease in free energy brings in work done by the system $(-W)$.
233 (a)
As the system is closed and insulated, no heat enter or leave the system, $i e, q=0$
$\therefore \Delta E=q+W=W$
234 (b)
$X Y \rightarrow X(\mathrm{~g})+Y(\mathrm{~g}) ; \Delta H=+a \mathrm{~kJ} / \mathrm{mol} \ldots$ (i)
$X_{2} \rightarrow 2 X ; \Delta H=+a \mathrm{~kJ} / \mathrm{mol}$
$Y_{2} \rightarrow 2 Y ; \Delta H=+0.5 a \mathrm{~kJ} / \mathrm{mol}$
$\frac{1}{2} \times(\mathrm{ii})+\frac{1}{2} \times(\mathrm{iii})-(\mathrm{i})$ gives
$\frac{1}{2} X_{2}+\frac{1}{2} Y_{2} \rightarrow X Y$
$\Delta H=\left(+\frac{a}{2}+\frac{0.5}{2} a-a\right) \mathrm{kJ} / \mathrm{mol}$
$\therefore-200=+\frac{a}{2}+\frac{0.5 a}{2}-a$
or $a=800$
235 (d)
$\mathrm{CH}_{4} \rightarrow \mathrm{C}+4 \mathrm{H} ; \quad \Delta H=360 \mathrm{kcal} / \mathrm{mol}$
$e_{\mathrm{C}-\mathrm{H}}=90 \mathrm{kcal}$
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow 2 \mathrm{C}+6 \mathrm{H} ; \Delta H=620 \mathrm{kcal} / \mathrm{mol}$
$\therefore \quad 620=e_{\mathrm{C}-\mathrm{C}}+6 e_{\mathrm{C}-\mathrm{H}}$
$\therefore \quad e_{\mathrm{C}-\mathrm{C}}=620-540=80 \mathrm{kcal} / \mathrm{mol}$
236 (d)
Molecular weight of $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$
\therefore Molar heat of decomposition
$H=m s \Delta t=80+1.23 \times 6.12$
$=602 \mathrm{~kJ} / \mathrm{mol}$
237 (b)
Greater is bond energy more is stability to bond.
238 (a)
Due to high bond energy of $N \equiv N$, more heat is absorbed to break up N_{2} molecule.
239 (a)
$\Delta S_{\text {vap }}=\frac{(900 \times 18)}{373}=43.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
240 (b)
For spontaneous reaction $\Delta G=-\mathrm{ve}$.
$\Delta G=\Delta H-T \Delta S$
$\Delta H=+$ ve, $\Delta S=+$ ve and $T \Delta S>\Delta H$
241 (d)

$$
\begin{array}{rlrl}
& \Delta n & =0 \\
\therefore \quad \Delta H & =\Delta U
\end{array}
$$

242 (a)
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=-57.0 \mathrm{kcal} \ldots \ldots$ (i)
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(l) ; \quad \Delta H=-68.3 \mathrm{kcal}$ \qquad

By eq. (i) and (ii),

$$
\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \quad \Delta H=+11.3 \mathrm{kcal}
$$

243 (b)
$\Delta H=\Delta U+\Delta n R T$
$\therefore \Delta U=176-1 \times 8.314 \times 1240 \times 10^{-3}$

$$
=165.6 \mathrm{~kJ}
$$

244 (a)
$T V^{\gamma-1}=$ constant

$$
\begin{aligned}
\frac{T}{T_{\text {final }}} & =\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1} \\
\frac{T}{T_{\text {final }}} & =\left(\frac{2}{1}\right)^{(5 / 3-1)}=2^{(2 / 3)} \\
\frac{T}{T_{\text {final }}} & =\frac{T}{2^{(2 / 3)}}
\end{aligned}
$$

246 (b)

$$
\begin{aligned}
\therefore \quad & \Delta n
\end{aligned}=-2
$$

247 (c)
Experimental determination of heats of reaction by bomb calorimeter represents its value at constant volume, i.e., ΔU.
248 (b)
Graphite possesses $s p^{2}$-hybridisation and has flat layer structure whereas diamond possesses $s p^{3}$ hybridisation and has rigid tetrahedral nature.
249 (c)
$n_{\text {efficiency }}=\frac{T_{2}-T_{1}}{T_{2}}$
or $0.25=\frac{T-400}{T}$
$\therefore T=533.3 \mathrm{~K}$
250 (a)
Lower is energy level of a system, more is its stability.
251
(b)
$\Delta H=\Delta U+\Delta n R T$
Since, $\Delta n=-2$
Thus, $\Delta H<\Delta U$
252 (b)
$\mathrm{K}+\frac{1}{2} \mathrm{O}_{2}+\frac{1}{2} \mathrm{H}_{2} \rightarrow \mathrm{KOH} ; \Delta H=$?
Find ΔH by Eq. [(i) + (ii)] - (iii).
254 (c)
The fact for a quantity referred as state function.
255
Bond formation is always exothermic.
256
6 (d)
$\mathrm{N}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O} ; \quad \Delta H=28 \mathrm{~kJ}$
$\frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{NO} ; \Delta H=90 \mathrm{~kJ}$
By eq. $[4 \times$ (ii) $]-[2 \times(\mathrm{i})]$,

$$
2 \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{NO} ; \Delta H=304 \mathrm{~kJ}
$$

257 (b)
Calorific value $=$ Heat of combustion per g of fuel,
i.e., for $\mathrm{C}_{2} \mathrm{H}_{4}$, it is $\frac{-1411}{28}$, the lowest value.

258 (b)
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$=-54.07-298 \times 10 \times 10^{-3}$
$=-57.05 \mathrm{~kJ}$
Also, $\Delta G^{\circ}=2.303 R T \log _{10} K$
$\log _{10} K=\frac{-57.05 \times 10^{3}}{2.303 \times 8.314 \times 298}$
259 (b)
Hess's law is based upon law of conservation of energy ie., first law of thermodynamics.
260 (d)
$\Delta S_{f}=\frac{\Delta H_{f}}{T}=\frac{6 \times 10^{3}}{273}=21.98 \mathrm{~J}$
261 (b)
Properties which are mass independent are intensive properties and others which are mass dependent are extensive properties.
262 (a)
$\Delta n=2-3=-1 \quad \therefore \Delta H=\Delta U-R T$
263 (b)
Step1. P - H bond energy from bond dissociation energy of $\mathrm{PH}_{3}(\mathrm{~g})$ containing 3 such $\mathrm{P}-\mathrm{H}$ bonds $=\frac{228}{3}=76 \mathrm{kcal} / \mathrm{mol}$
Step 2. The structure of $\mathrm{P}_{2} \mathrm{H}_{4}$ is

one $\mathrm{P}-\mathrm{P}$ bond, so $\mathrm{P}-\mathrm{P}$ bond energy can be
calculated by $4 \times \mathrm{P}-\mathrm{H}+\mathrm{P}-\mathrm{P}=$ bond
dissociation energy $\mathrm{P}_{2} \mathrm{H}_{4}$
$\therefore \mathrm{P}-\mathrm{P}$ bond energy $=335-4(76)$
$=31 \mathrm{kcal}$ per mol
264 (c)
By Eq. (i) + (ii),
$2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl} ; \Delta H=-196 \mathrm{kcal}$
265 (d)
Energy of red P is lesser than white P and thus, red P is more stable.
266 (b)
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$\Delta H=2 \times(-13.7) \mathrm{kcal}$

267 (d)
$\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(v) ; \quad \Delta H=41.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H=\Delta U+\Delta n R T$
$41.0=\Delta U+1 \times 8.314 \times 373 \times 10^{-3}$
$\therefore \quad \Delta U=37.89 \mathrm{~kJ} \mathrm{~mol}^{-1}$
268 (d)
These are derived formulae.
269 (c)
Spontaneous process shows a decrease in ΔG.
271 (d)
For monoatomic gases $C_{P}: C_{V}$ is 1.67.
272 (c)
Bond formation is always exothermic.
273 (b)
Lower is heat of neutralisation, more is dissociation energy, weaker is acid.
274 (b)
Heat change for $3.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\frac{683.6}{18}=13.6 \mathrm{kcal}$ 275 (a)
$\because \Delta T=\frac{W}{n R} \therefore \mathrm{Q}=n C_{p}(\Delta T)=n C_{p} \frac{W}{n R}=\frac{C_{p} W}{R}$
$C_{p}=\frac{Q R}{W}=\frac{500 \times 2}{142.8}=7$
$C_{p}=7$ indicates that the gas is diatomic. Thus, it should be O_{2}
276 (b)
For the equation
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Eqs.(i) +3 (ii) +3 (iii) - (iv)
$\Delta H=-1273+3(-286)+3(44)-36$
$=-1273-858+132-36$
$=-2035 \mathrm{~kJ} / \mathrm{mol}$
277 (d)
As we know that,
Work done $(W)=2.303 n R T \log \frac{V_{2}}{V_{1}}$.
Hence, V_{1} and V_{2} are in ratio in the relation. So, unit may be expressed in any one of $\mathrm{m}^{3}, \mathrm{dm}^{3}$ or cm^{3}.
278 (a)
Fuel value per g of substance produced on burning.
279 (a)
T_{1} and T_{2} are same for a substance.
280 (a)
For an endothermic reactions ΔH is positive because in endothermic reaction heat is always absorbed.
281 (a)
Ice takes up heat to melt and thus, enthalpy
change is +ve.
283 (a)
When $\Delta H=-\mathrm{ve}, \Delta S=+\mathrm{ve}$ and $\Delta G=-\mathrm{ve}$ than reaction is spontaneous
284
(d)
$\mathrm{KE}=(3 / 2) R T$
285 (b)
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=r$
...(i)
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=s$
...(ii)
$\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \Delta H=$?
Subtract Eq. (ii) from Eq. (i)
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=r$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=s$
$\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \Delta H=r-s$
286 (d)
$\mathrm{Cu}(\mathrm{g}) \rightarrow \mathrm{Cu}^{+}(\mathrm{g})+\mathrm{e}, \quad \Delta H=745 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{I}(\mathrm{g})+\mathrm{e} \rightarrow \mathrm{I}^{-}(\mathrm{g}) ; \quad \Delta H=-295 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\frac{\text { Adding Cu }{ }^{+}(\mathrm{g})+\mathrm{I}^{-}(\mathrm{g}) \rightarrow \mathrm{CuI}(\mathrm{g}) ; \Delta H^{\circ}=-446 \mathrm{~kJ} \mathrm{r}}{\mathrm{Cu}(\mathrm{g})+\mathrm{I}(\mathrm{g}) \rightarrow \mathrm{CuI}(\mathrm{g}) ; \quad \Delta H^{\circ}=4 \mathrm{~kJ} \mathrm{~mol}^{-}}$
287 (a)
Entropy of universe is tending towards maximum.
289 (a)
$\Delta H_{(\text {reaction })}=\Delta H_{f(\text { diamond })}-\Delta H_{f(\text { graphite })}$

$$
=1.896-
$$

$0.23=1.666 \mathrm{~kJ} / \mathrm{mol}$
290 (b)
$p=1 \mathrm{~atm}$

$$
\begin{aligned}
& \Delta V=(50-15)=35 \mathrm{~L} \\
& \therefore \quad W=-p . \Delta V=-1 \times 35 \\
& =-35 \mathrm{Latm}
\end{aligned}
$$

Hence, work done by the system on the surroundings is equal to $35 \mathrm{~L}-\mathrm{atm}$.
291 (d)
The product possesses maximum energy and thus, least stable.
292 (d)
By eq. [(i) $+2 \times$ (ii)] - (iii),

$$
\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4} ; \Delta H=74.1 \mathrm{~kJ}
$$

293 (a)
For the equation,
$\mathrm{H}_{2}+\mathrm{S}+2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

Eqs. (i) + (ii) + (iii) + (iv)
$\Delta H=-287.3+(298.2)+(-98.7)+(-130.2)$ $=814.4 \mathrm{~kJ}$
294 (d)
(a) For isochoric process, $\Delta V=0$

$$
\begin{array}{ll}
& W=p \Delta V=0 \\
\therefore & \Delta E=Q
\end{array}
$$

(b) For adiabatic process, $Q=0$

$$
\Delta E=W
$$

(c) For isothermal process, $\Delta T=0$ and

$$
\begin{aligned}
& \Delta E=0 \\
& \mathcal{Q}=-W
\end{aligned}
$$

(d) For cyclic process, state functions like

$$
\begin{aligned}
\Delta E & =0 \\
Q & =-W
\end{aligned}
$$

296 (a)
$\Delta G=\Delta H-T \Delta S=-\mathrm{ve}-\mathrm{ve}=-\mathrm{ve}$
297 (a)
$\mathrm{F}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{~F}_{2} \mathrm{O} ; \quad \Delta H=+\mathrm{ve}$.
298 (c)
Two equivalent of each are used.
299 (a)
Isothermally (at constant temperature) and reversible work.

$$
\begin{aligned}
W & =2.303 n R T \log \frac{p_{2}}{p_{1}} \\
& =2.303 \times 1 \times 2 \times 300 \log \frac{10}{2} \\
& =2.303 \times 600 \times \log 5=965.84
\end{aligned}
$$

At constant temperature, $\Delta E=0$

$$
\Delta E=q+W, q=-W=-965.84 \mathrm{cal}
$$

304 (b)
Work done by the system or work of expansion is negative.
Work done on the system or The modern concept. work of compression positive.]
305 (a)
From first law of thermodynamic.
$\Delta E=q+W$ Given, $q=+300 \mathrm{cal}$
(\because Heat is absorbed)
$W=-500 \mathrm{cal}$
(\because Work is done on surroundings)

300 (d)
The gaseous phase have more entropy and thus, ΔS is +ve in (a) and (b). Also decrease in pressure increases disorder and thus, ΔS is +ve in (c). In
(d) the disorder decreases in liquid state due to decrease in temperature. Thus, $\Delta S=-\mathrm{ve}$.
301 (a)
Hess's law states that the total change in heat enthalpy during the complete course of reaction is same, whether the change is brought in one step or in several steps by one method or other method.
302 (c)
First we calculate the expected bond dissociation energy of benzene molecules as
$3 \times \mathrm{C}-\mathrm{C}+3 \times \mathrm{C}=\mathrm{C}+6 \times \mathrm{C}-\mathrm{H}$
\therefore Calculated value $=3(347.3)+3(615)+$
6(412.2)
$=4397.8$
Resonance energy = Experimental value -
calculated value
$=5335-4397.8$
$=937.2 \mathrm{~kJ}$ per mol
303 (d)

$$
\begin{aligned}
& \Delta S=2.303 n R \log \frac{V_{2}}{V_{1}} \\
& =2.303 \times 2 \times 2 \log \frac{20}{2}=9.2
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \Delta E & =q+W=300+(-500) \\
& =-200 \mathrm{cal}
\end{aligned}
$$

An experimental fact.
307 (b)

$$
\begin{array}{r}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(l) \\
\Delta n_{\mathrm{g}}=1-3=-2
\end{array}
$$

We know that,

$$
\begin{array}{rlrl}
& & \Delta E & =\Delta H+\Delta n_{\mathrm{g}} R T \\
\therefore & \Delta H & =(-885389)-(-2) \times 8.314 \times \\
298 & & & \\
& & =-885389+4955.1440 \\
& & =-880433.86 \mathrm{~J} \mathrm{~mol}^{-1}
\end{array}
$$

308 (a)
Human body is an example of open system as it can exchange both mass and energy with the surroundings.
309 (c)
According to Hess's law, the total heat changes occurring during a chemical reaction are independent of path.

$$
\Delta H=q+V+2 x
$$

311 (c)
$\because q_{a b s}=\Delta U+(-W)$
$\therefore \Delta U=q+W ; \Delta U$ is state function.
312 (c)
For exothermic reaction, $\Delta H=(-)$ for endothermic reaction, $\Delta H=(+)$.
313 (b)
Find ΔH for,

$$
\mathrm{Ca}+\mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}
$$

314 (b)
For maximum extent of reaction,

$$
4 X(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 X_{2} \mathrm{O}(\mathrm{~s}) ; \Delta H=a
$$

Also, $X(s)+\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \frac{1}{2} X_{2} \mathrm{O}(\mathrm{s}) ; \quad \Delta H=-90 \mathrm{~kJ}$
$\therefore \quad a=-90 \times 4=-360 \mathrm{~kJ}$
315 (c)
For spontaneous process $\Delta G=-\mathrm{ve}$
316 (a)

$$
\begin{aligned}
& \mathrm{S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} ; \Delta H=-2 x \\
& \mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{SO}_{3} ; \Delta H=-y \\
& -\quad-\quad+\quad+ \\
& \hline \mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} ; \quad \Delta H=(y-2 x)
\end{aligned}
$$

317 (a)
Given, $2 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} ; \Delta H=-21.1$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=-94.1$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} ; \Delta H=-68.3$
Eqs.2(ii) +3 (iii) - (i)
$\mathrm{C}_{2} \mathrm{H}_{6}+\frac{3}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\Delta x=2(-94.1)+3(-68.3)-(-21.1)$
$=-372 \mathrm{kcal}$
318 (c)
Surface tension is an intensive property because it does not depend upon the quantity of matter present in the system
319 (a)
$\frac{1300}{241.8}=\frac{5.37}{1}$
320 (d)
$P V=1 \times 1$ lit - atm
$=10^{-3} \mathrm{~m}^{3} \times 0.76 \times 13.6 \times 9.8 \times 10^{3} \mathrm{Nm}^{-2}$
$=101.3 \mathrm{~J}$
321 (c)
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$ is a spontaneous reaction.
322 (b)
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Thus, $V_{\mathrm{O}_{2}}$ used $=\frac{6226 \times 3 \times 22.4}{1411}$

$$
=296.5 \text { litre }
$$

323 (c)
CS_{2} is formed from its initial components carbon and hydrogen.
324 (d)

$$
\begin{align*}
& \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \quad \Delta H=-94 \mathrm{~kJ} \ldots . . \text { (i) } \\
& \mathrm{Ca}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CaO}(\mathrm{~s}) ; \quad \Delta H=-152 \mathrm{~kJ} \ldots . \text { (ii) } \\
& \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H \\
& \\
& =42 \mathrm{~kJ} \ldots \ldots \text { (iii) }
\end{align*}
$$

By eq. [(i) + (ii)]- (iii),

$$
\mathrm{Ca}+\mathrm{C}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{CaCO}_{3} ; \Delta H=-288 \mathrm{~kJ} .
$$

325 (a)
$P V^{\gamma}=$ constant for adiabatic expansion and
$P V=$ constant for isothermal expansion
$\therefore \log P=-\gamma \log V \quad$ slope $=-\gamma$
$\log P=-\log V \quad$ slope $=-1$
326 (c)
A part of heat is used in dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$, a weak acid.
327 (a)
No doubt solidification shows a decrease in entropy but in egg proteins structure are disordered in solid state due to denaturation.
328 (a)
$1 \mathrm{cal}=4.18 \mathrm{~J}=4.18 \times 10^{7} \mathrm{erg}$

$$
=\frac{4.18}{1.602} \times 10^{19} \mathrm{eV}
$$

329 (c)
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta H=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\because 44 \mathrm{~g}$ of CO_{2} formed by which heat released $=$ -393.5 kJ
$\therefore 1 \mathrm{~g}$ of CO_{2} formed by which heat released $=$ $\frac{-393.5}{44}$
$\therefore 35.2 \mathrm{~g}$ (given) of CO_{2} formed by which heat released
$=-\frac{393.5}{44} \times 35.2=-314.8 \mathrm{~kJ}$
330

(b)

Only work can be done by a thermally isolated system between it and surroundings.
331 (c)
An open system is one which involves exchange of mass and energy.
333 (c)
Gaseous molecules have more random motion.
334 (d)
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(l) ; \quad \Delta H=-68.32 \mathrm{kcal}$
$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \quad \Delta H=10.52 \mathrm{kcal}$
$\therefore \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=-57.80 \mathrm{kcal}$
335 (c)
$\Delta G=\Delta H-T \Delta S$
$\Delta G=0, \therefore \Delta H=T \Delta S$
$T=\frac{\Delta H}{\Delta S}=\frac{40.63 \times 10^{3}}{108.8}=373.4 \mathrm{~K}$
336 (b)
No exchange of heat in between system and surroundings under adiabatic conditions.
337 (b)
More is heat of ionization of acid more is stability of acid or lesser is dissociation or $K_{a \mathrm{CH}_{3} \mathrm{COOH}}>$
$K_{a \mathrm{HCN}}$. Thus, $p K_{a_{\mathrm{HCN}}}>p K_{a_{\mathrm{CH}_{3} \mathrm{COOH}}}$
338 (a)
Bond breaking process or decomposition processes are endothermic process.
339 (a)
Hess's law states that enthalpy changes during and process are independent of path. So, this law is used in calculating enthalpy.
340 (d)
$\Delta G=\Delta H-T \Delta S: \Delta G=\Delta E+p \Delta V-T \Delta S$
For spontaneity $\Delta G=-$ ve
341 (b)
$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} ; \quad \Delta H=-13.7 \mathrm{kcal}$
Also, $\Delta H=\mathrm{H}_{f}^{\circ} \mathrm{H}_{2} \mathrm{O}-\left[\mathrm{H}_{\mathrm{H}^{+}}^{\circ}+\mathrm{H}_{\mathrm{OH}^{-}}^{\circ}\right]$
Or $-13.7=-68.0-\left[0+\mathrm{H}_{\mathrm{OH}^{-}}^{\circ}\right]$
$\left.\mathrm{H}_{\mathrm{H}^{+}}^{\circ}=0\right]$
$\therefore \quad H_{\mathrm{OH}^{-}}^{\circ}=-54.3 \mathrm{kcal}$

342 (a)
This is the derived formula for $W_{\text {rev }}$ is isothermal change.
343 (b)
Internal energy depends upon the temperature of gas and not on P and V.
344 (a)
T_{A} and T_{B} are same for a liquid.
345 (d)
$\Delta H=-2 \times\left[2 \times e_{\mathrm{O}-\mathrm{H}}\right]+2 \times e_{\mathrm{H}-\mathrm{H}}+e_{\mathrm{O}-\mathrm{O}}$ $=-4 \times 220+2 \times 105+120=-550 \mathrm{~kJ}$
346 (c)
Heat measurements are made in calorimeter usually made of copper.
347 (d)
The process involves conversion of 1 mole of $\mathrm{C}(s)$ to $\mathrm{C}(\mathrm{g}), i . e$., sublimation.
348 (d)
$\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4} ; \quad \Delta H=-17.9 \mathrm{kcal}$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \quad \Delta H=-94.1 \mathrm{kcal}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} ; \quad \Delta H=-68.3 \mathrm{kcal} .$.
Eqs. $[(\mathrm{ii})+2 \times(\mathrm{iii})]-(\mathrm{i})$,
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
350 (a)
The branch deals with interconversion of heat and chemical energy.
351 (d)
$2 \mathrm{H}_{2} \rightarrow 4 \mathrm{H} ; \quad \Delta H=-869.6 \mathrm{~kJ}$
$\therefore e_{\mathrm{H}-\mathrm{H}}=\frac{969.6}{2}=+434.8 \mathrm{~kJ}$
353 (c)
The properties, which do not depend on the amount of substance, are called intensive property. e.g., surface tension, viscosity etc.
354 (a)
Use $\Delta H=\Delta U+\Delta n R T$

$$
\Delta n=-3
$$

355 (a)
$W_{\text {rev }}=-\int P d V$ or $-\int P \Delta V$; note that opposing pressure is not constant throughout.
356 (b)
Joule-Thomson coefficient
$\mu=\frac{d T}{d P}=\frac{27-30}{5-2}=-1$
For all negative values of μ,the gas warms on expansion
357 (b)
$W=-p \Delta V$
Given, $p+100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$,

$$
V_{1}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}, V_{2}=1 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
& W=10^{5} \times\left(1-10^{-3}\right) \mathrm{J} \\
\therefore & W=99900 \mathrm{~J}
\end{aligned}
$$

358 (d)
The efficiency of engine is given as, $\eta=\frac{T_{2}-T_{1}}{T_{2}} ; \eta$ is more when $T_{2}-T_{1}$ is maximum.
360 (d)
A spontaneous change is accompanied by lowering of free energy
361 (c)
E and $G(H-T S)$ are state functions. Also, $\Delta E=$ $q+w$ is state function. But q and w are path dependent and not state functions.
362 (c)
An isolated system neither shows exchange of heat nor matter with surroundings.
364 (b)
No doubt (a) and (b) both represent heat of formations but standard heat of formation $\left(\Delta H^{\circ} f\right)$ for CO_{2} will be from $\mathrm{C}_{(\text {graphite })}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ as $\mathrm{C}_{\text {(graphite) }}$ is most stable form of carbon.
365 (a)
For an isothermal process, $\Delta E=0$
As the process is taking place at constant T and p hence, from equation,

$$
\Delta H=\Delta E+\Delta p \cdot V
$$

We have, $\Delta H=0+0 \times V=0$
Hence, for the process, $\Delta H=\Delta E=0$
366 (b)
At isothermal condition $T=$ constant.
367 (a)
The heat of formation of CO is calculated by using Hess's law. According to it, the total heat changes occurring during a chemical reaction are independent of path.
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) ; \quad \Delta H=$
$-135.2 \mathrm{kcal}$
$(\mathrm{I}) \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) ; \quad \Delta H=\frac{135.2}{2}$
kcal
(II) $\mathrm{C}(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \quad \Delta H=-94 \mathrm{kcal}$

Required equation
$\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \quad \Delta H=$?
Add Eqs. (I) and (II)
$\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) ; \quad \Delta H=-26.4$
kcal
368 (d)
Graphite possesses lesser energy than diamond.

370 (a)
Under adiabatic conditions work is done on the cost of internal energy of system.
371 (b)
$\Delta G=\Delta H-T \Delta S$
$\therefore \Delta G=-11700-298 \times(-105)$
$=+19590 \mathrm{~J}=+19.59 \mathrm{~kJ}$
Thus, reaction is non-spontaneous.
372 (c)
Internal energy, enthalpy and entropy are state functions but work and heat are path functions.
373 (a)
$q=\Delta U-W ;-W$ is work done by the system
$\Delta U=40-8=32 \mathrm{~J} \quad(:-W=8)$
374 (a)
At constant volume, heat of reaction is ΔU.
$2.303 \log \frac{P_{2}}{P_{1}}=\frac{\Delta H}{R} \frac{\left[T_{2}-T_{1}\right]}{T_{1} T_{2}}$
$\therefore 2.303 \log \frac{10}{1}=\frac{460.6}{2} \times \frac{\left[T_{2}-50\right]}{50 \times T_{2}}$
$\therefore T_{2}=100 \mathrm{~K}$
376 (b)
Heat of neutralization is defined as the energy released during neutralization of 1 eq . of an acid by 1 eq. of base.
377 (d)
$S_{R}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} ; \quad \Delta H=-70.96 \ldots \ldots$ (i)
$S_{M}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} ; \quad \Delta H=-71.03$
By eq. (i) - (ii),
$S_{R} \rightarrow S_{M} ; \quad \Delta H=0.07 \mathrm{kcal}$ or 70 cal
379 (d)
It does not violate the first law of thermodynamics but violates the II law of thermodynamics
380 (c)
If $\Delta H=+$ ve and $\Delta S=-$ ve then the reaction is spontaneous
381 (b)
By eq. (ii) - (i),

$$
\mathrm{C}_{\mathrm{G}} \rightarrow \mathrm{C}_{\mathrm{D}} ; \quad \Delta H=+1.5 \mathrm{~kJ}
$$

382 (a)
This is derived formula.
383 (a)
$W=2.303 n R T \log \frac{p_{2}}{p_{1}}$
$=2.303 \times 1 \times 2 \times 300 \log \frac{10}{2}=965.84$
At constant temperature, $\Delta E=0$
$\Delta E=q+W$;
$q=-W=-965.84 \mathrm{cal}$
384 (a)
$\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta n=-1 / 2$ and thus, ΔS decreases or - ve
385 (d)
$\Delta G=\Delta H+T\left[\frac{\partial \Delta G}{\partial T}\right]_{P}$ (Gibbs-Helmholtz equation)
Also, $\Delta G=\Delta H-T \Delta S$; and $-\Delta G=n F \cdot E$
$\therefore \quad \Delta G-\Delta H=-T \Delta S$
or $-T \Delta S=T\left[\frac{\partial \Delta G}{\partial T}\right]_{P}=T\left(\frac{-n F \partial E}{\partial T}\right)_{P}$
or $\left[\frac{\partial E}{\partial T}\right]_{P}=\frac{\partial S}{n F}$; similarly derive for other values.
386 (a)
Internal energy of 1 mole of gas $=\frac{3}{2} R T$
388 (c)
$C_{D} \rightarrow C_{G} ; \Delta H=-453.5 \mathrm{cal}$,
i.e., Energy of C_{G} is less and thus, more stable.

390 (c)
At equilibrium $\Delta G=0$.
391 (c)
$\Delta S=16 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$T_{\mathrm{b} . \mathrm{p}}=\frac{\Delta H_{\mathrm{vapour}}}{\Delta S_{\mathrm{vapour}}}=\frac{6 \times 1000}{16}$
$=375 \mathrm{~K}$
392 (a)
$\Delta S=\frac{\Delta H}{T}=\frac{1.435 \times 10^{3}}{273}=5.260 \mathrm{cal} \mathrm{mole}^{-1} \mathrm{~K}^{-1}$
393 (b)
Endothermic reactions are those in which heat energy is absorbed.
394 (b)
The melting of ice at $-15^{\circ} \mathrm{C}$ is not an spontaneous process.
395 (c)
Mixing of gases increases the entropy
396 (c)
Current flows from higher potential to lower one.
397 (a)
$-W_{\mathrm{irr}}=P_{\text {ext. }}\left(V_{2}-V_{1}\right)$
$=1 \times(15-3)=12$ litre atm
$=\frac{12 \times 1.987 \times 4.184}{0.0821}$
$=1.215 \times 10^{3} \mathrm{~J}$
398 (c)
ΔH for combustion of 56 litre $\mathrm{H}_{2}=\frac{-24.1 \times 56}{22.4}$
ΔH for combustion of 56 litre $\mathrm{CO}=\frac{-263 \times 56}{22.4}$
\therefore Total $\Delta H=-1312 \mathrm{~kJ}$
399 (b)
This is the derived formula for W_{rev} in adiabatic
process.
400 (a)
$\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{HCl} ; \quad \Delta H=-90 \mathrm{~kJ}$
$\therefore \quad \Delta H=\frac{1}{2} e_{\mathrm{H}-\mathrm{H}}+\frac{1}{2} e_{\mathrm{Cl}-\mathrm{Cl}}$
or $\quad-90=\frac{1}{2} \times 430+\frac{1}{2} \times 240-e_{\mathrm{H}-\mathrm{Cl}}$
$\therefore \quad e_{\mathrm{H}-\mathrm{Cl}}=425 \mathrm{~kJ} \mathrm{~mol}^{-1}$
401 (a)
Find $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}$;
Multiply Eqs. (ii) by $1 / 2$, (iii) $3 / 2$ and subtract from Eq.(i); we get
$\Delta H_{f}=-\Delta H_{1}-\left[-\frac{\Delta H_{2}}{2}+\frac{3}{2} \Delta H_{3}\right]$

$$
=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3} .
$$

402 (b)
Work done in $1 \mathrm{~s}=400 \mathrm{~J}$
Hence, work in $5 \mathrm{~min}(300 \mathrm{~s})$
$=400 \times 300=120 \mathrm{~kJ}$
$\Delta H_{\mathrm{vap}}^{\mathrm{o}}=\frac{120 \mathrm{~kJ}}{50 / 18}=43.2 \mathrm{~kJ} / \mathrm{mol}$
403 (b)
$W_{\text {irr. }}$ For a process at constant pressure $=-P$.
ΔV; note that work is irreversible if expansion is made at constant pressure.
404 (b)
$\Delta H=\frac{2.5 \times 16}{4}=-10 \mathrm{kcl} \mathrm{mol}^{-1}$
405 (c)
$W=\int_{1 / 1}^{1 / 2} p d V=-p\left(V_{2}-V_{1}\right)$
$W=-1(20-10)=-10 \mathrm{dm}^{3} \mathrm{~atm}$

$$
=-10 \mathrm{dm}^{3} \times \frac{8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}}{0.0821 \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}=-1013 \mathrm{~J}
$$

From, 1st law of thermodynamics

$$
\begin{aligned}
\Delta U & =q+W \\
& =800 \mathrm{~J}+(-1013 \mathrm{~J})=-213 \mathrm{~J}
\end{aligned}
$$

406 (a)
$\Delta S=\frac{\Delta H_{v}}{T}$
$\Delta H=186.5 \mathrm{~kJ}$
$T=373 \mathrm{~K}$
$\therefore \Delta S=\frac{186.5}{373}=0.5 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
407 (c)
$\Delta C_{p}=\Sigma C_{p}$ product $-\Sigma C_{p}$ reactant note C_{p} is for 1 mole.
408 (d)
$\left(\frac{\partial H}{\partial T}\right)_{P}=C_{P} ;\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}$.
Also, $(\delta U / \delta V) T$ for ideal gas $=0$.
409 (b)
$T=300 \mathrm{~K}, \Delta V=10-1=9$ litre
$\because \Delta H=\Delta U+\Delta P V=\Delta U+2 \times R T \quad(\because P V$

$$
=n R T)
$$

$=0+2 \times 8.314 \times 300=4.98 \mathrm{~kJ}$
$(\because \Delta E=0$ for isothermal)
410 (c)
Average bond energy

$$
=\frac{\text { Heat of dissociation of } \mathrm{CH}_{4}}{4}
$$

411 (b)
Follow definition of heat of formation.
412 (a)
$V_{1}=100 \mathrm{~mL}$
$V_{2}=250 \mathrm{~mL}$
Pressure $p=2 \mathrm{~atm}$ or $2 \times 1.01 \times 10^{5} \mathrm{Nm}^{-2}$
Work done by the gas
$W=p \Delta V$ or $p\left(V_{2}-V_{1}\right)$
Put the value in given formula
$W=2 \times 1.01 \times 10^{5}\left(0.250 \times 10^{-3}-0.100 \times\right.$ 10^{-3})

$$
\begin{aligned}
& =2 \times 1.01 \times 10^{5} \times 0.15 \times 10^{-3} \\
& =30.30 \mathrm{~J}
\end{aligned}
$$

413 (c)
$\Delta U=0$ for a cyclic process.
414 (d)
$W=P \times \Delta V$
$=0 \times \Delta V=0$
416 (b)
On heating $\mathrm{N}_{2} \mathrm{O}_{4}=2 \mathrm{NO}_{2}$, if NO_{2} is formed more, it means $\Delta H=+$ ve because endothermic reactions are favoured with increase in temperature.
417 (c)
We know that internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, than its internal energy remains same
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g}) ; \Delta H$

$$
=-25 \mathrm{kcal}
$$

Given, $e_{\mathrm{C}-\mathrm{H}}=20+e_{\mathrm{C}-\mathrm{Cl}}=20+a\left(e_{\mathrm{C}-\mathrm{Cl}}=a\right)$
and $e_{\mathrm{H}-\mathrm{H}}=e_{\mathrm{HCl}}=b$
Now, ΔH reaction $=-\left[e_{\mathrm{C}-\mathrm{Cl}}+e_{\mathrm{H}-\mathrm{Cl}}\right]+$ $\left[e_{\mathrm{C}-\mathrm{H}}+e_{\mathrm{Cl}-\mathrm{Cl}}\right]$
or $-25=-[a+b]+\left[20+a+e_{\mathrm{Cl}-\mathrm{Cl}}\right]$
$\therefore \quad e_{\mathrm{Cl}-\mathrm{Cl}}=-25-20+b=-45+b$

Now for, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}) ; \Delta H_{1}=$?
$\therefore \Delta H_{1}=-2\left[e_{\mathrm{H}-\mathrm{Cl}}\right]+\left[e_{\mathrm{H}-\mathrm{H}}+e_{\mathrm{Cl}-\mathrm{Cl}}\right]$
$=-2[b]+[b+(-45+b)]$
$\Delta H 1=-45 \mathrm{kcal} \mathrm{mol}^{-1}$
$\therefore \Delta H$ formation for $\mathrm{HCl}=-22.5 \mathrm{kcal} \mathrm{mol}^{-1}$
420 (a)
$\Delta E=q+W$
$q=0$
(\because Temperature is to be increase, no heat should enter or leave the system)

$$
\begin{array}{ll}
& \Delta E=q+W=0+W \text { or } \Delta E=W \\
\therefore & W \neq 0, q=0
\end{array}
$$

421 (d)
$\Delta G=+\mathrm{ve}$ in each case.
422 (c)
Required equation is $\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
$\Delta H=\sum \mathrm{BE}_{\text {(products) }}-\sum \mathrm{BE}_{\text {(reactants) }}$
$=\mathrm{BE}(\mathrm{HCl})-\left[\frac{1}{2} \mathrm{BE}\left(\mathrm{H}_{2}\right)+\frac{1}{2} \mathrm{BE}\left(\mathrm{Cl}_{2}\right)\right]$
$=-103-\left[\frac{1}{2}(-104)+\frac{1}{2}(-58)\right]$
$=-103-(-52-29)=-22 \mathrm{kcal}$
423 (d)
In a cyclic process, $\Delta E=0$.
424 (a)
$\Delta S_{\text {vap }}=\frac{\Delta H_{\text {vap }}}{T_{b}}=\frac{840}{173}=4.8 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$
425 (c)
Energy absorbed $\propto \frac{1}{\text { stability of compound }}$
Energy released \propto stability of compound
Thus, the order of stability is
$142.2>25.9>-46.2>-393.2$
ie, $\mathrm{O}_{3}>\mathrm{HI}>\mathrm{NH}_{3}>\mathrm{CO}_{2}$
426 (a)
C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$

$$
\begin{aligned}
& \Delta n_{g}=1-\frac{1}{2}=\frac{1}{2} \\
& \Delta H=\Delta E+\Delta n_{g} R T \\
& \begin{array}{l}
\Delta E=\Delta E-\Delta n_{g} R T \\
\quad=-26.4-\frac{1}{2} \times 0.002 \times 298 \\
\quad=-26.7 \mathrm{kcal}
\end{array}
\end{aligned}
$$

427 (a)
Bomb calorimeter is commonly used to find the heat of combustion of organic substance which consists of a sealed combustion chamber called a bomb, if a process is run in a sealed container then no expansion or compression is allowed, so $W=0$ and $\Delta U=q$. Thus it has $\Delta U<0, W=0$

428 (d)
Heat of combustion is usually measured by placing a known mass of a compound in a steel container called a constant volume bomb calorimeter.

$$
\Delta E=C \times \Delta t \times \frac{M}{m}
$$

Where, $C=$ heat capacity of calorimeter, $\Delta t=$ ($t_{2}-t_{1}$) $m=$ mass of substance taken and $M=$ molar mass of substance
429 (a)
$\Delta H /$ mole for carbon is more and thus carbon can reduce ZnO to Zn .
430 (d)
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} ;$

$$
\Delta H=-26.8 \mathrm{~kJ}
$$

$2 \mathrm{FeO}+2 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+2 \mathrm{C} ; \Delta H=-33.0 \mathrm{~kJ}$
$\overline{\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow 2 \mathrm{FeO}+\mathrm{CO}_{2} ; \Delta H=+6.2 \mathrm{~kJ}}$
431 (c)
An isobaric process is one in which changes are made at constant pressure.
432 (b)
$\Delta S_{\text {vap }}=\frac{\Delta H_{\text {vap }}}{T}=\frac{9710}{373}=26.032 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
433 (c)
The property of the system whose value depends upon the amount of substance present in the system is called extensive property.
Gibb's free energy is an extensive property.
434 (d)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g})$
$\rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta n g=4-7=-3$ (ie, negative)
We know that $\Delta H=\Delta E+\Delta n_{\mathrm{g}} R T$
$=\Delta E-(\Delta m) R T \quad\left(\because \Delta n_{\mathrm{g}}=-\mathrm{ve}\right)$
$\therefore \Delta H<\Delta E$

436 (a)

The process involves conversion of 1 mole of $\mathrm{H}_{2} \mathrm{O}$
from liquid to vapour state and thus, heat changes are called heat of vaporisation.
437 (c)
This is definition.
438 (b)
Due to extensive solvation of F^{-}ion on account of smaller size, observed value of heat of neutralization of HF appears more.
439 (d)

$$
\begin{aligned}
& \Delta H_{\text {reaction }}=-\left[l_{\mathrm{C}-\mathrm{C}}+6 \times l_{\mathrm{C}-\mathrm{H}}\right]+\left[l_{\mathrm{C}=\mathrm{C}}+4 \times\right. \\
&\left.l_{\mathrm{C}-\mathrm{H}}+l_{\mathrm{H}-\mathrm{H}}\right] \\
&= {[336.49+6 \times 410.50] } \\
& \quad+[606.10+4 \times 410.50 \\
& \quad+431.37] \\
&= 120.02 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

440 (a)
This is significance of Hess's law, e.g., Heat of formation cannot be determined experimentally for $6 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} ; \Delta H=$? Because the reaction does not occur. However, if heat of combustion for $\mathrm{C}, \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ are determined experimentally as A, B, C, respectively, then we can calculate, $\Delta H=6 A+3 B-C$.
442 (a)
$\Delta S_{\text {total }}=\Delta S_{\text {sys. }}+\Delta S_{\text {surr. }}=+\mathrm{ve}$.
443 (a)
On mixing gases entropy increases due to increase in disorderness.
444 (b)
$1 \mathrm{MH}_{2} \mathrm{SO}_{4}=2$ eq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
$1 \mathrm{MHCl}=1 \mathrm{eq} . \mathrm{HCl}$
Thus, for equal volume of two acids to be neutralized separately with NaOH , heat evolved will be twice in case of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to that of HCl .
446 (d)
It is Cl_{2} molecule which dissociates to give free radicals on exposure to light.

Bomb calorimeter measures q_{v} which is equal to ΔE.
448 (b)
If work done by the system is positive, then $q=$ $\Delta U+W$. However, new terminology has revealed that work done by the system is negative and work done on the system is positive. Thus, according to this, $q=\Delta E-W$.
449 (d)
B. E. of $\mathrm{S}=\mathrm{O}, \mathrm{C} \equiv \mathrm{C}, \mathrm{C} \equiv \mathrm{N}$ and $\mathrm{N} \equiv \mathrm{N}$ are 523, 839,891 and $941 \mathrm{~kJ} \mathrm{~mol}^{-} 1$ respectively.
450 (c)
Internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, then its internal energy remains same.
451 (c)
ΔH and ΔS both are +ve for spontaneous change and $\Delta H=+\mathrm{ve}$ for endothermic reaction

452 (c)
It provides information about physical states of reactants and products as well as about thermal changes. (d) is wrong because combustion is exothermic.
453 (c)
$\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})} ; \Delta n+\frac{1}{2} ;$
Also the moles of gases increase and therefore entropy change (ΔS) is positive. An increase in temperature will cause more change in $T \Delta S$. Also it is a combustion reaction and thus $\Delta H=-$ ve
Since $\Delta G=\Delta H-T \Delta S$
$=-\mathrm{ve}-(+\mathrm{ve})=-\mathrm{ve}$
454 (a)
$\Delta H=18500=\Delta U+\Delta n R T$
or $18500=\Delta U+(-1) \times 2 \times 298$
or $\quad \Delta U=19096 \mathrm{cal}$
455 (a)
Work obtained is isothermal

$$
W=-2.303 n R T \log \frac{p_{1}}{p_{2}}
$$

Given, $p_{1}=500 \mathrm{kPa}, p_{2}=200 \mathrm{kPa}$

$$
\begin{aligned}
(W) & =-2.303 n R T=\log \frac{500}{200} \\
& =-2.303 n R T \times 0.3980 n R T
\end{aligned}
$$

\therefore Minimum work will be obtained when number of moles (n) is minimum.
Moles of substances, mass $=1 \mathrm{~kg}=1000 \mathrm{~g}$
2. Moles of $\mathrm{Cl}_{2}=1000 / 71$
3. Moles of $\mathrm{O}_{2}=1000 / 32$
4. Moles of $\mathrm{N}_{2}=1000 / 28$
5. Moles of $\mathrm{CH}_{4}=1000 / 16$
\because Moles of Cl_{2} are least.
Minimum work is obtained when 1 kg of chlorine gas expands.

456 (d)
In adiabatic expansion work is done by the
system so it will lose heat to the surrounding. Thus, temperature of the system decreases.
(d)

$$
\begin{aligned}
\Delta H^{\circ} & =-2 \times e_{\mathrm{H}-\mathrm{Br}}+e_{\mathrm{H}-\mathrm{H}}+e_{\mathrm{Br}-\mathrm{Br}} \\
& =-2 \times 364+433+192 \\
& =-103 \mathrm{~kJ}
\end{aligned}
$$

458 (c)
Heat of neutralisation will be less than -57.33
$\mathrm{kJ} /$ mole because some amount of this energy will be required for the dissociation of weak base (MgO)
459 (d)
Only the laws of thermodynamics are mere statements, so they, are believed. Many mathematical expression are derived on the basis of these laws.
462 (c)
Given $\Delta H=+\mathrm{ve} ; \Delta S=+\mathrm{ve}$
Thus, ΔG is -ve only when $\Delta H<T \Delta S$.
463 (a)
$\Delta S=\frac{\Delta H}{T}=\frac{30 \times 10^{3}}{300}=100 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
464 (b)
$\Delta H=\Delta U+\Delta n R T \quad \because \Delta n=3-5-1=-3$
$\therefore \quad \Delta H-\Delta U=-3 R T$

465 (c)

Entropy (a measure of disorder) of universe is increasing towards maximum. This is second law of thermodynamics.
466 (c)
Move +ve is ΔH_{s} more is heat of solution.

THERMODYNAMICS

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0 . Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: Internal energy is an extensive property
Statement 2: Internal energy depends upon the amount of the system

Statement 1: Helium has lower entropy than CO_{2} gas which has lower entropy than gaseous benzene
Statement 2: The larger the complexity of molecule, the larger is its absolute entropy

Statement 1: Zeroth law can also be termed as law of thermal equilibrium
Statement 2: Two objects in thermal equilibrium with the third one, are in thermal equilibrium with each other

Statement 1: The mass and volume of a substance are the extensive properties and are proportional to each other
Statement 2: The ratio of mass of a sample to its volume is an intensive property

Statement 1: Absolute values of internal energy of substance can's be determined
Statement 2: It is impossible to determine exact values of constituent energies of the substances

THERMODYNAMICS

CHEMISTRY

: ANSWER KEY:

1) $\quad \mathrm{a}$
2) a
3) a
4) b

THERMODYNAMICS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (a)
The properties whose magnitude depends upon the quantity of matter present in the system are called extensive properties $e g$, internal energy

2 (a)

Entropy is randomness. So, more the complexity of molecule, more will be its absolute entropy. That's why benzene shows more entropy thanCO CO_{2} which has also. More entropy than He

3 (a)
Zeroth law of temperature can also be summarized as two objects at different temperature in thermal contact with each other tend to move towards the same temperature

4 (b)
The mass and volume depend upon the quantity
of matter so these are extensive properties while ratio of mass to its volume does not depend upon the quantity of matter so this ratio is an extensive property
$5 \quad$ (a)
It is fact that absolute values of internal energy of substance can not be determined. It is also true that to determine exact values of constituent energies of the substance is impossible

