STRUCTURE OF ATOM

CHEMISTRY

	Single Correct Answer Type				
1.	Choose the incorrect relation on the basis of Bohr's t	heory			
	a) Velocity of electron $\propto \frac{1}{n}$	b) Frequency of revolution	$\operatorname{on} \propto \frac{1}{n^2}$		
	c) Radius of orbit $\propto n^2 Z$	d) Force on electron $\propto \frac{1}{n^4}$			
2.	X-rays were discovered by :				
	a) Becquerel b) Roentgen	c) Mme. Curie	d) Van Laue		
3.	Two electrons in the same orbital may be identified	with:	\sim		
	a) <i>n</i> b) <i>l</i>	c) m	d) <i>s</i>		
4.	An electron has principal quantum number 3. The respectively:	number of its (i) subshell	s and (ii) orbitals would be		
	a) 3 and 5 b) 3 and 7	c) 3 and 9	d) 2 and 5		
5.	Maximum number of electrons in a subshell of an ate	om is determined by the fo	llowing:		
	a) $2n^2$ b) $4l + 2$	c) 2 <i>l</i> + 1	d) 4 <i>l</i> − 2		
6.	Particle having mass 200 times that of an electron is				
	a) Proton b) Positron	c) Meson	d) Neutron		
7.	Which of the following has the maximum number of				
	a) Mg ²⁺ b) Ti ³⁺	c) Fe ²⁺	d) V ³⁺		
8.	An electron from one Bohr stationary orbit can go to	next higher orbit			
	a) By emission of electromagnetic radiation				
	b) By absorption of any electromagnetic radiation c) By absorption of electromagnetic radiation of particular frequency				
	d) Without emission or absorption of electromagnet	tic radiation			
9.	How many neutrons are present in tritium nucleus?				
	a) 2 b) 3	c) 1	d) 0		
10.	The number of wave made by an electron moving in	an orbit having maximum	magnetic quantum number		
	+3 is :	\ -			
	a) 4 b) 3	c) 5	d) 6		
11.	The wavelength of a spectral line emitted by hydrog	en atom in the Lyman serie	es is $\frac{10}{15R}$ cm. What is the		
	value of n_2 ?(R =Rydberg constant)				
	a) 2 b) 3	c) 4	d) 1		
12.	The statements, which is/are correct:				
	a) Number of total nodes in an orbital $= n - 1$				
\sim	b) Number of radial nodes in an orbital $= n - l - 1$				
	c) Number of angular nodes in an orbital $= l$				
	d) All of the above				
13.	If the wavelength of an electromagnetic radiation is		-		
	a) 9.94×10^{-12} b) 9.94×10^{-19}	c) 4.97×10^{-12}	d) 4.97×10^{-19}		
14.	Number of unpaired electrons in the electronic confi				
	a) 2 b) 3	c) 4	d) 6		
15.	A strong argument for the particle nature of cathode	e rays is that they:			
	a) Produce fluorescence				
	b) Travel through vacuum				

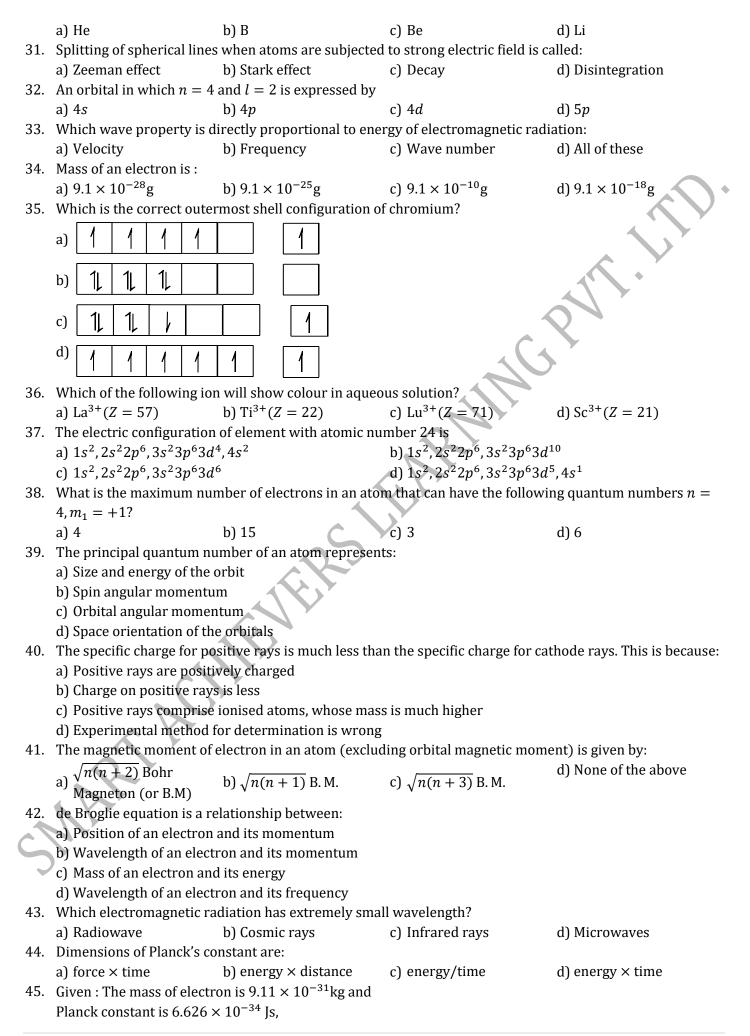
- d) Cast shadow
- 16. The electronic configuration $1s^2$, $2s^22p^6$, $3s^13p^1$ correctly describes:
 - a) Ground state of Na b) Ground state of Si⁺ c) Excited state of Mg d) Excited state of Al³⁺
- 17. What accelerating potential is needed to produce an electron beam with an effective wavelength of 0.090Å?
 - a) $1.86 \times 10^4 \text{eV}$ b) $1.86 \times 10^2 \text{eV}$

c) 2.86 × 10⁴eV

b) A proton and deuterium

d) An electron and γ -rays

d) 2.86 $\times 10^2 \text{eV}$


- 18. Which of the following pairs have identical values of e/m?
 - a) A proton and a neutron
 - c) Deuterium and an α -particles
- 19. Positive charge in an atom is:
 - a) Scattered all over the atom
 - b) Concentrated in the nucleus
 - c) Revolving around the nucleus
 - d) None is true
- 20. $[Cr(H_2O)_6]Cl_3$ (at. No. of Cr = 24) has a magnetic moment of 3.83 B. M. The correct distribution of 3*d* electrons in the chromium of the complex:
 - a) $3d_{xy}^1, 3d_{yz}^1, 3d_{xz}^1$
 - b) $3s_{xy}^1$, $3d_{yz}^1$, $3d_{z^2}^1$
 - c) $(3d_{x^2-y^2}^1)$, $3d_{z^2}^1$, $3d_{xz}^1$
 - d) $3d_{xy}^{1}$, $(3d_{x^{2}-v^{2}}^{1})$, $3d_{yz}^{1}$
- 21. The mass of an electron is *m*, its charge is *e* and it is accelerated from rest through a potential difference, *V*. The velocity of electron will be calculated by formula
 - a) $\sqrt{\frac{V}{m}}$

d) None of these

- 22. The present atomic weight scale is: a) C^{12} b) O^{16} c) H^1 d) C^{13}
- 23. Which one of the following set of quantum numbers is not possible for electron in the ground state of an atom with atomic number 19?
- a) n = 2, l = 0, m = 0
 b) n = 2, l = 1, m = 0
 c) n = 3, l = 1, m = -1
 d) n = 3, l = 2, m = +2
 24. Oxygen consists of 0¹⁶, 0¹⁷ and 0¹⁸ isotopes and carbon consists of isotopes of C¹² and C¹³. Total number of CO₂ molecules possible are:
- a) 6
 b) 12
 c) 18
 d) 1
 25. In order to designate an orbital *n* in an atom, the number of quantum number required are:
 a) 1
 b) 2
 c) 3
 d) 4
- 26. For a given value of azimuthal quantum number *l*, the total number of values for the magnetic quantum number *m* are given by:
- a) l+1
 b) 2l+1
 c) 2l-1
 d) l+2
 27. Magnetic quantum number for the last electron in sodium is:
 a) 3
 b) 1
 c) 2
 d) Zero
 28. The Heisenberg's uncertainty principle can be applied to:
 a) A cricket ball
 b) A football
 c) A jet aeroplane
 d) An electron
- 29. Isotopes are
 - a) Atoms of different elements having same mass number

b) $\frac{eV}{m}$

- b) Atoms of same elements having same mass number
- c) Atoms of same elements having different mass number
- d) Atoms of different elements having same number of neutrons
- 30. Which element possess non-spherical shells?

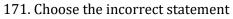
	the uncertainty involve	d in the measurement of ve	locity within a distance of	0.1 Å is:
	a) $5.79 \times 10^8 \text{ m s}^{-1}$	b) $5.79 \times 10^5 \text{ m s}^{-1}$	c) $5.79 \times 10^6 \text{ m s}^{-1}$	d) $5.79 \times 10^7 \text{ m s}^{-1}$
6.	If helium atom and hyd a) 4:1	rogen molecules are movin b) 1: 2	g with the same velocity, t c) 2:1	heir wavelength ratio will be d) 1:4
7.		break one mode of Cl – Cl	bonds in Cl ₂ is 242kJmol ⁻²	¹ . The longest wavelength of
		g a single Cl — Cl bond is		
	a) 594 nm	b) 640 nm	c) 700 nm	d) 494 nm
8.		nentum of an electron is 1 >	,	
	$(h = 6.62 \times 10^{-34} \text{ kg m})$		0 / 1 1 1	
	a) 2.36×10^{-28} m		c) 2.27× 10 ⁻³⁰ m	d) 5.27× 10 ⁻³⁰ m
9.	,	netic radiations possess sar		
	a) Energy	b) Velocity	c) Frequency	d) Wavelength
0.		tum numbers of valence el	, , ,	
	n = 4, l = 0, m = 0 and			
		$13 - +\frac{1}{2}$.		
	The element is			
	a) K	b) Ti	c) Na	d) Sc
1.	Ground state electronic	configuration of nitrogen a	itom can be represented as	<u> </u>
	a) 👭 👭 1111	b) 1 1 1 1 1 1	c) 4 4 4 + +	d) 4 4 4 4 4
2.	The value of charge o	n the oil droplets experir	nentally observed were -	-1.6×10^{-19} and -4×10^{-19}
		he electronic charge, indica		
	a) 1.6 × 10 ⁻¹⁹	b) -2.4×10^{-19}	c) -4×10^{-19}	d) -0.8×10^{-19}
3.		5,6 to $n = 3$ in hydrogen sp		.,
-	a) Lyman series	b) Paschen series	c) Balmer series	d) Pfund series
4	, ,	_		
	The atomic numbers of elements <i>X</i> , <i>Y</i> and <i>Z</i> are 19, 21 and 25 respectively. The number of electrons present in the <i>M</i> -shell of these elements follow the order			
	a) $Z > X > Y$	b) $X > Y > Z$		d) $Y > Z > X$
5		-	-	iber of protons, electrons ar
0.		present in the atom of the el		
		b) 12, 12, 11		d) 12, 11, 12
6		on the energy of the emitted		a) 12, 11, 12
0.	a) Larger than that of ir			
	b) Smaller than that of i			
	c) Same as that of incid			
	d) Proportional to inter			
	aj i ropor donar to inter			
7	Angular momentum of		viven hv :	
7.	Angular momentum of <i>h</i>	an electron in an orbital is g	given by : h	d) None of these
7.	Angular momentum of a) $n\frac{h}{2\pi}$	an electron in an orbital is g	given by : c) $n \frac{h}{4\pi}$	d) None of these
	a) $n \frac{h}{2\pi}$	an electron in an orbital is p_{l} b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$	c) $n \frac{h}{4\pi}$	
	a) $n \frac{h}{2\pi}$ What is the mass of a pl	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Ű?(<i>i</i>	$h = 6.63 \times 10^{-27} \text{ erg-s}$
8.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685 × 10 ⁻³³ g	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256 × 10 ⁻³³ g	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Ű?(c) 4.256×10^{-33} g	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) 3.752 × 10 ⁻³³ g
8. 9.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Ű?(c) 4.256×10^{-33} g	$h = 6.63 \times 10^{-27} \text{ erg-s}$
8. 9.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta l = 1 and 2 are respecti	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number ively	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Ű?(n c) 4.256 × 10 ⁻³³ g rs of electrons with the az	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) $3.752 \times 10^{-33} \text{ g}$ imuthal quantum numbers,
8. 9.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta l = 1 and 2 are respective a) 12 and 4	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number ively b) 12 and 5	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Ű?(c) 4.256×10^{-33} g	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) 3.752 × 10 ⁻³³ g
8. 9.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta l = 1 and 2 are respective a) 12 and 4 The charge on an electronic states of the states of t	an electron in an orbital is a b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number ively b) 12 and 5 on was discovered by	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Ű?(<i>i</i> c) 4.256 × 10 ⁻³³ g rs of electrons with the az c) 16 and 4	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) 3.752 × 10 ⁻³³ g imuthal quantum numbers, d) 16 and 5
8. 9. 0.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta l = 1 and 2 are respect a) 12 and 4 The charge on an electr a) J.J. Thomson	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number ively b) 12 and 5	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Å [°] ?(n c) 4.256 × 10 ⁻³³ g rs of electrons with the az c) 16 and 4 c) James Chadwick	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) $3.752 \times 10^{-33} \text{ g}$ imuthal quantum numbers, d) 16 and 5 d) Mullikan
8. 9. 0.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta l = 1 and 2 are respect a) 12 and 4 The charge on an electr a) J.J. Thomson	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number ively b) 12 and 5 ron was discovered by b) Neil Bohr	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Å [°] ?(n c) 4.256 × 10 ⁻³³ g rs of electrons with the az c) 16 and 4 c) James Chadwick	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) 3.752 × 10 ⁻³³ g imuthal quantum numbers, d) 16 and 5 d) Mullikan
8. 9.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta l = 1 and 2 are respective a) 12 and 4 The charge on an electron a) J.J. Thomson If an electron has spin of	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number ively b) 12 and 5 on was discovered by b) Neil Bohr quantum number of $+\frac{1}{2}$ and	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Å [°] ?(n c) 4.256 × 10 ⁻³³ g rs of electrons with the az c) 16 and 4 c) James Chadwick	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) 3.752 × 10 ⁻³³ g imuthal quantum numbers, d) 16 and 5 d) Mullikan ber of -1, it cannot be
8. 9. 0.	a) $n \frac{h}{2\pi}$ What is the mass of a pl a) 5.685×10^{-33} g Consider the ground sta l = 1 and 2 are respect a) 12 and 4 The charge on an electr a) J.J. Thomson If an electron has spin of represented in an a) <i>s</i> -orbital	an electron in an orbital is g b) $\frac{h}{2\pi} \times \sqrt{l(l+1)}$ hoton of sodium light with a b) 6.256×10^{-33} g ate of ($Z = 24$). The number ively b) 12 and 5 on was discovered by b) Neil Bohr quantum number of $+\frac{1}{2}$ and	c) $n \frac{h}{4\pi}$ a wavelength of 5890 Ű?(n c) 4.256 × 10 ⁻³³ g rs of electrons with the az c) 16 and 4 c) James Chadwick a magnetic quantum num c) d –orbital	$h = 6.63 \times 10^{-27} \text{ erg-s})$ d) 3.752 × 10 ⁻³³ g imuthal quantum numbers, d) 16 and 5 d) Mullikan ber of -1, it cannot be d) <i>f</i> -orbital

	a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$	b) Zero	c) $\frac{h}{2\pi}$	d) $\sqrt{2}$. $\frac{h}{2\pi}$
				211
63.	-	nic number <i>X</i> and mass nur		
	a) <i>X Y</i>	b) X Y	c) <i>X Y</i>	d) X Z $(1 Y)^2$
64.	Proton is :			
	a) Nucleus of deuterium			
	b) Ionised hydrogen mole			
	c) Ionised hydrogen atom	1		
	d) An α -particle			
65.	An isotone of $^{76}_{32}$ Ge is	1.5.77.4	2 77 0	
((a) ${}^{77}_{32}$ Ge	b) $^{77}_{33}$ As	c) $^{77}_{34}$ Se	d) ⁷⁸ ₃₆ Sc
66.		its the maximum number of	r electrons in an orbital to t	wo?
	a) Aufbau principle	inlo		
	b) Pauli's exclusion princic) Hund's rule of maximu			
	d) Heisenberg's uncertain			
67	Magnitude of kinetic ener		Ċ	
07.	a) Half of the potential en		b) Twice of the potential e	nergy
	c) One fourth of the poter		d) None of the above	
68.		nan series is: (Given $R_H = 1$	-	
	a) 991 Å	b) 700 Å	c) 600 Å	d) 811 Å
69.		atomic orbitals associated	-	•
	a) 9	b) 12	c) 16	d) 25
70.	The number of orbitals pr	resent in the shell with $n =$	4 is	
	a) 16	b) 8	c) 18	d) 32
71.		ng is the set of correct quant		
	a) $n = 3, l = 0, m = 0, s =$		b) $n = 2, l = 3, m = 0, s =$	-
	c) $n = 3, l = 1, m = 0, s =$		d) $n = 3, l = 2, m = 1, s =$	= +1/2
72.	•	series of hydrogen spectrun	0	
=0	a) Ultraviolet		c) Visible	d) Far infrared
73.	The first energy level that		-) 4	
74	a) 2 The upcontainty in the me	b) 3 omentum of an electron is 1	c) 4 0 $\times 10^{-5}$ kg mg ⁻¹ The unc	d) All are correct
74.	be	Sinelituin of an electron is 1	× 10 kg ills . The ulic	ertainty in its position will
	a) 1.50×10^{-28} m	b) 1.05×10^{-26} m	c) 5.27×10^{-30} m	d) 5 25 x 10^{-28} m
75.		irticles moving with same v		
7.01	wavelength?			a man sinance de Bregne
	a) Helium molecule	b) Oxygen molecule	c) Hydrogen molecule	d) Carbon molecule
76.	Stark effect refers to the	, ,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
	a) Splitting up of the lines	s in an emission spectrum i	n the presence of an extern	al electrostatic field
	b) Random scattering of l	ight by colloidal particles		
Ċ	c) Splitting up of the lines	s in an emission spectrum i	n a magnetic field	
		from metals when light falls	upon them	
77.	For which species, Bohr's			
	a) H	b) Be	c) He ⁺	d) Li ²⁺
78.		first orbit of He ⁺ is $(R_{\rm H} = -$	-871.6×10^{-20} J). The ene	rgy of electron in the first
	orbit of H is:		2 - 2 - 2 - 20 - 20 - 20 - 20 - 20 - 20	N (00 0 (0 - 20 x
= ^		b) -435.8×10^{-20} J	c) -217.9×10^{-20} J	d) -108.9×10^{-20} J
79.	The quantum levels upto		a) a <i>n</i> d lavala	d) a loval
	a) <i>s</i> and <i>p</i> -levels	b) <i>s</i> , <i>p</i> , <i>d</i> , <i>f</i> -levels	c) <i>s</i> , <i>p</i> , <i>d</i> -levels	d) s-level

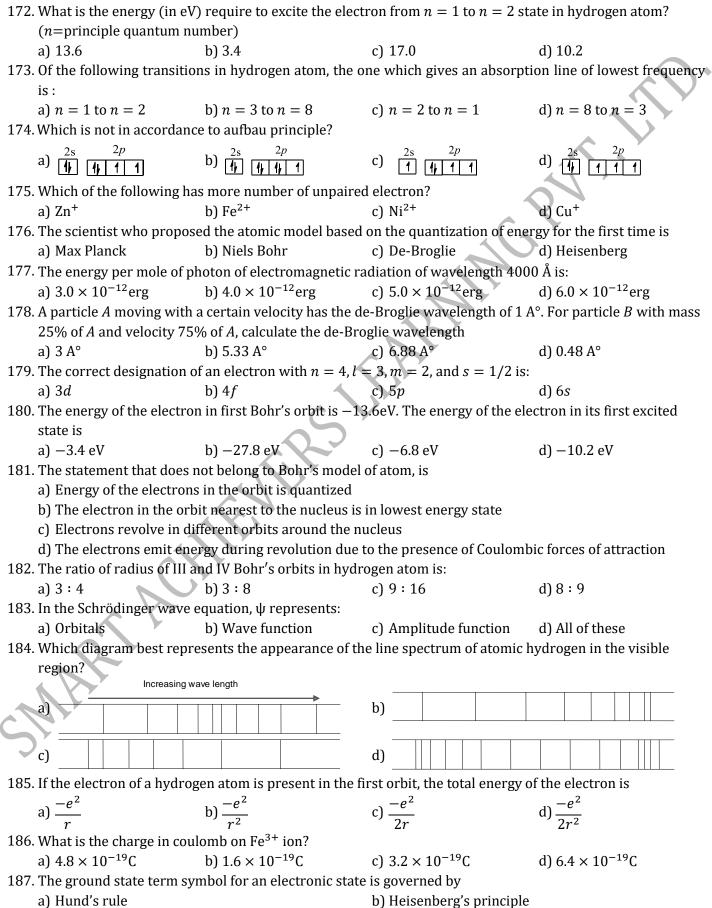
80.		s double dumb-bell shape?		
	a) <i>s</i>	b) <i>p</i>	c) <i>d</i>	d) <i>f</i>
81.	The lightest particle is			
	a) -particle	b) Positron	c) Proton	d) Neutron
82.	The ratio of speed of γ -ra			
	a) 1	b) < 1	c) > 1	d) None of these
83.		r's orbit of hydrogen atom		
_	a) 0.053 nm	b) 0.106 nm	c) 0.2116 nm	d) 0.4256 nm
84.	=	n shown by the radiation p	roves the dual nature of rac	liation?
	a) Scintillation			
	b) Interference and diffra			
	c) Interference and photo	Delectric effect		
05	d) None of the above	from an incondescent course	a of hudrogon ic.	
05.		from an incandescent sourc	e of flydfogen is:	
	a) A band spectrum in enb) A line spectrum in emi			\sim
	c) A band spectrum in ab		Ċ	X
	d) A line spectrum in abs			
86.	The total spin resulting fr	-		, ,
001	a) $\pm 1/2$	b) ± 2	c) ±1	d) ±3/2
87.	The path of deflection of ϕ	-		
-	-	to the magnitude of applied	magnetic field	
		to the magnitude of applie		
	, ,, ,	to the velocity of electron		
	d) Directly proportional t	-	V	
88.	Which one of the followin	ng groupings represents a c	ollection of isoelectronic sp	becies?
	(At. no. Cs=55, Br=35)			
	a) Na, Ca ² , Mg ²	b) N ³ , F, Na	c) Be, Al ³ , Cl	d) Ca ² , Cs, Br
89.	Which particle may be re		al atom with least energy cl	nange?
	a) An α -particle	b) A neutron	c) A proton	d) An electron
90.		ogen shows that it exists in	n two different forms whic	h are based on direction of
	spin of the:	\sim		
	a) Molecule of hydrogen	λ		
	b) Nuclei of hydrogen ato			
	c) Electrons of hydrogend) Atoms of hydrogen model			
91		e of different energy levels	in atom is supplied by:	
<i>)</i> 1.	a) Spectral lines	b) Mass defects	c) Atomic numbers	d) Atomic radii
92			ticles showed for the first t	-
<i>,</i> <u>,</u>	a) Electrons	b) Protons	c) Nucleus	d) Neutrons
93.		an series is : (Given $R_H = 1$		
	a) 1215 Å	b) 1315 Å	c) 1415 Å	d) 1515 Å
94.		of electron in <i>n</i> th orbit is gi	,	- ,
•				n^2h
	a) nh	b) $\frac{h}{2\pi n}$	c) $\frac{nh}{2\pi}$	d) $\frac{n^2h}{2\pi}$
95.	According to Bohr's post	ulates which quantity can ta	ake up only discrete values	:
	a) Kinetic energy	b) Angular momentum	c) Momentum	d) Potential energy
96.		ght incident on a metallic _l	plate is doubled, the <i>KE</i> of	the emitted photoelectrons
	will be:			
	a) Doubled			

b) Halved c) Increased but more than doubled of the previous KE d) Unchanged 97. The mass of one mole of electron is: a) 0.55 mg b) 0.008 mg c) 1.008 mg d) 0.184 mg 98. The velocities of two particles A and B are 0.05 and 0.02 ms⁻¹ respectively. The mass of B is five times the mass of A. The ratio of their de-Broglie's wavelength is a) 2:1 b) 1:4 c) 1:1 d) l4: 1 99. Which are in the ascending order of wavelength? a) H_{α} , H_{β} , H_{γ} ... lines in Balmer series of hydrogen atom b) Lyman limit, Balmer limit, Paschen limit in the hydrogen spectrum c) Blue, violet, yellow, red colours in solar spectrum d) None of the above electronic configuration of He by box-diagram 100. The representation of the ground state ↑ as is wrong because it violates a) Heisenberg's uncertainty principle b) Bohr's quantization theory of angular momenta c) Pauli exclusion principle d) Hund's rule 101. The electronic configuration of the element which is just above the element with atomic number 43 in the same particle group is: a) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^14p^6$ b) $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ c) $1s^2$, $2s^22p^6$, $3s^23p^63d^6$, $4s^1$ d) $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^5$ 102. The order of filling of electrons in the orbital of an atom will be: b) 4s 3d 4p 5s 4d c) 5s 4p 3d 4d 5s a) 3d 4s 4p 4d 5s d) 3d 4p 4s 4d 5s 103. The Bohr's energy equation for H atom reveals that the energy level of a shell is given by E = -13.58/ n^2 eV. The smallest amount that an H-atom will absorb, if in ground state is: b) 3.39 eV a) 1.0 eV c) 6.79 eV d) 10.19 eV 104. The amount of energy required to remove the electron from a Li²⁺ ion in its ground state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state? a) 9 b) 2 c) 3 d) 5 105. Compared to mass of lightest nucleus the mass of an electron is only: b) 1/360 a) 1/80 【 c) 1/1800 d) 1/1000 106. Bragg's equation will have no solution, if: a) $\lambda > 2d$ b) $\lambda < 2d$ c) $\lambda < d$ d) $\lambda = d$ 107. Size of the nucleus is: a) 10⁻¹⁵cm b) 10⁻¹³cm c) 10^{-10} cm d) 10^{-8} cm 108. The radius of Bohr's first orbit in H-atom is 0.053 nm. The radius of second orbit in He⁺ would be: **a**) 0.0265 nm b) 0.0530 nm c) 0.1060 nm d) 0.2120 nm 109. Splitting of spectrum lines in magnetic field is d) Rutherford effect a) Stark effect b) Raman effect c) Zeeman effect 110. If the radius of first Bohr's orbit be a_0 , then the radius of third Bohr's orbit would be: b) $6 \times a_0$ c) $9 \times a_0$ d) $1/9 \times a_0$ a) $3 \times a_0$ 111. Which of the following atoms has same number of protons and neutrons in its nucleus? a) Carbon b) Deuterium c) Tritium d) Nitrogen

112. The ratio of the difference in energy between the first and the second Bohr orbit to that between the


second and the third	Bohr orbit is		
a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{4}{9}$	d) $\frac{27}{5}$
<i>L</i>	diation emitted when electron	,	5
$(R_{\rm H} = -1.09678 \times 10^{-11})$			
a) 972 nm	b) 486 nm	c) 243 nm	d) 182 nm
,	ic number 29, mass number 5	-	2
a) 29	b) 30	c) 40	d) 59
,	,	,	hange in energy per mole of
atoms taking place w			nunge in energy per inere er
a) 6.62×10^{-30} J	b) 5.32×10^{-28} J	c) 6.62×10^{-20} J	d) 3.99 J
	sition of an electron (mass =		
accurate upon 0.001%		0, 10	
$(h = 6.63 \times 10^{-34} \text{ Js})$			
a) 19.2×10^{-2} m	b) 5.76 × 10 ⁻² m	c) 1.92×10^{-2} m	d) 3.84×10^{-2} m
117. Which of the followin	g is not possible?	,	
	b) $n = 2, l = 0, m = -1$	c) $n = 3, l = 0, m = 0$	d) $n = 3, l = 1, m = -1$
	a photon of wavelength λ is:		<u>></u>
a) Zero	b) <i>hc/λ</i>	c) h/cλ	d) h/λ
119. The atomic radius is o	of the order of :		
a) 10 ⁻⁸ cm	b) 10 ⁸ cm	c) 10 ⁻¹⁰ cm	d) 10 ⁻¹² cm
120. When electronic tran	sition occurs from higher ene	ergy state to a lower energ	y state with energy difference
equal to ΔE expressed	d in electron volts, the wavele	ngth of line emitted is app	roximately equal to:
a) $\frac{12375}{\Lambda E}$ Å	b) $\frac{12375}{\Lambda E} \times 10^{-8} \text{cm}$	c) $\frac{12375}{10^{-10}}$ × 10 ⁻¹⁰ m	d) Either of these
ΔL			
	nd state has a $4d^5$, $5s^1$ config		5^{10} , $5s^{1}$ configuration. This is
	is half-filled or completely fil		
a) Strongly exchange		b) Weakly exchange sta	
c) Weakly exchange of		d) Strongly exchange d	
		$\times 10^{\circ}$ Jmol ⁻¹ . The energy	required to excite the electron
in the atom from $n_1 =$			1) = 0.04 + 1.05 + 1-1
	b) $6.56 \times 10^5 \text{ J mol}^{-1}$		-
	g sets of quantum number is a		
a) $n = 4, l = 3, m = -$		b) $n = 4, l = 4, m = -4$	
c) $n = 4, l = 3, m = -124$. Number of electrons		d) $n = 3, l = 2, m = -2$	$s, s = \pm 1/2$
a) 24	b) 20	c) 22	d) 18
-	wo nuclei with mass numbers	,	u) 10
a) 1/2	b) 3/4	c) 3/2	d) 2/3
	f Ni and Cu are 28 and 29 resp	, ,	, ,
120.116 atomic number of $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$	-		Jinguration
a) Cu ⁺	b) Cu ²⁺	c) Ni ²⁺	d) Ni
	umbers <i>n</i> , <i>l</i> and <i>m</i> are the out	,	
a) Bohr's atomic theo		come on	
b) Solution of Schrödi	•		
-			
CI Heisennerg s lince	runney principie		
 c) Heisenberg's uncer d) Aufbau principle 			
d) Aufbau principle	t <i>e/m</i> ratio?		
d) Aufbau principle 128. Which has the highes	-	c) He ⁺	d) D ⁺
d) Aufbau principle 128. Which has the highes a) He ²⁺	t <i>e/m</i> ratio? b) H ⁺ uration of an element in ultim	c) He ⁺ ate and penultimate orbit	d) D ⁺ als is

a) 25	b) <724	c) 25	d) 30
130. The de-Broglie waveleng	,	,	,
(Planck's constant, $h = 6$		0 0 ,	, 11 ,
a) 10^{-33} m	b) 10^{-31} m	c) 10 ⁻¹⁶ m	d) 10 ⁻²⁵ m
131. The work-function for ph	,	•) = • • • • •	.,
a) Depends upon the free			
b) Is same for all metals	luciney of mendene ingite		
c) Is different for differer	nt metals		
d) None of the above			\frown
132. Line spectra is characteri	stic of ·		
a) Atoms	b) Molecules	c) Radicals	d) Ions
133. Which of the following is	-	-	
			$2\pi^2 m$
a) $\frac{\partial^2 \Psi}{\partial^2 x} + \frac{\partial^2 \Psi}{\partial^2 y} + \frac{\partial^2 \Psi}{\partial^2 z} + \frac{8}{2}$	$\frac{\pi}{h^2}(E-V)\Psi = 0$	b) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \partial^2 \Psi$	$\frac{\partial R}{h^2}(E-V)\Psi = 0$
5			n^2
c) $\frac{\partial \Psi^2}{\partial x^2} + \frac{\partial \Psi^2}{\partial y^2} + \frac{\partial \Psi^2}{\partial z^2} + \frac{\partial \Psi^2}{\partial z^2}$	$\frac{\pi^{2}m}{E}(E-V)\Psi = 0$	d) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \partial^2 \Psi$	E = E = E = 0
••• ••			n ²
134. If $n = 6$, the correct sequ	•	is will be:	
a) $ns \rightarrow np \rightarrow (n-1)d$ –			
b) $ns \rightarrow (n-2)f \rightarrow (n-2)f$, I		
c) $ns \rightarrow (n-1)d \rightarrow (n-1)d$			
d) $ns \rightarrow (n-2)f \rightarrow np$ –	, ,		
135. Which one is not true for	•		
a) They have kinetic ener			
b) They cause certain sub		ence	
c) They travel in straight			
d) They are electromagne		V	
136. Which of the following io			
a) ₂₇ Ni ³⁺	b) ₂₅ Mn ³⁺	c) ₂₆ Fe ³⁺	d) ₂₇ Co ³⁺
137. In an atom, an electron is	moving with a speed of 6	-	-
which the position of the	electron can be located is	s $\binom{h = 6.6 \times 10^{-34} \text{kg r}}{\text{mass of electron, } e_{\text{m}} = 9.2}$	$n^2 s^{-1}$,
which the position of the		$\int \max e_{\rm m} = 9.2$	$1 \times 10^{-31} \text{kg}$
a) 1.52×10^{-4} m	b) 5.10×10^{-3} m	c) 1.92×10^{-3} m	d) 3.84×10^{-3} m
138. Consider the ground state	e of Cr atom ($Z = 24$). Th	e numbers of electrons with	the azimuthal quantum
numbers, $l = 1$ and 2 are	, respectively		
a) 12 and 4	b) 12 and 5	c) 16 and 4	d) 16 and 5
139. Moseley's law is : (a and	b are constants, $Z =$ aton	nic number, $v =$ frequency)	
a) $\sqrt{\mathbf{v}} = aZ$	b) v = c/λ	c) $2d\sin\theta = n\lambda$	d) $\sqrt{\mathbf{v}} = a(Z - b)$
140. From the discharge tube	experiment, it is conclude	ed that:	
a) Mass of a proton is in f			
b) Matter contains electro			
c) Nucleus contains posit			
d) Positive rays are heavi			
141. Which atom has as many	•	ons?	
a) H	b) Mg	c) N	d) Na
142. The electronic configurat	, .	,	,
a) [Kr] $4d^8$	b) [Kr] $5s^24d^6$	c) [Kr] $4d^{6}$	d) [Kr] $4d^85s^2$
143. When α –particles are se	, , , ,	, , , ,	
a) Most part of the atom i	-	en, most of them go straight	an sugn are fon because
b) Alpha particles move v			
c) Alpha particles are mu		S	
e, inplia par deles al e lila		-	


d) Alpha particles are positively charged

- 144. A neutral atom of an element has 2K, 8L, 11M and 2N electrons. Total number of electrons with l = 2 will be:
- d) 10 a) Zero b) 3 c) 6 145. Mosley's name is connected with the discovery of : c) Atomic number d) Atomic weight a) Protons b) Neutrons 146. For a Bohr atom angular momentum *M* of the electron is (n = 0, 1, 2, ...)c) $\frac{\sqrt{\pi h^2}}{2}$ b) $\frac{n^2h^2}{4\pi}$ a) $\frac{nh^2}{4\pi}$ d) $\frac{nh}{2\pi}$ 147. When 3*d*-orbital is complete, the newly entering electron goes into: a) 4f b) 4s d) 4d c) 4p 148. Which of the followings sets of quantum numbers represents the highest energy of an atom? a) n = 3, l = 1, m = 1, s = +1/2b) n = 3, l = 2, m = 1, s = +1/2c) n = 4, l = 0, m = 0, s = +1/2d) n = 3, l = 0, m = 0, s = +1/2149. When an electron jumps from *L*-level to *M*-level, there occurs: a) Emission of energy b) Absorption of energy c) Emission of γ -radiations d) Emission of X-rays 150. If the kinetic energy of an electron is increased four times, the wavelength of the de-Broglie wave associated with it would becomes c) Four times a) Half times d) Two times b) $\frac{1}{4}$ times 151. The work function (Φ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metals is : Fe М L Ν К М С А Ρ et i а u t g g al Φ(e 2 2 3. 4. 4 4.7 2. 6 7 3 8 4 2 a) 2 b) 4 c) 6 d) 8 152. "Positronium" is the name given to an atom-like combination formed between:
 - a) A positron and a proton
 - b) A positron and a neutron
 - c) A positron and α -particle
 - d) A positron and an electron
- 153. The nucleus of helium contains:
 - a) Four protons
 - b) Four neutrons
 - c) Two neutrons and two protons
 - d) Four protons and two electrons
- 154. Photoelectric effect shows:
 - a) Particle-like behaviour of light
 - b) Wave-like behaviour of light
 - c) Both wave-like and particle-like behaviour of light
 - d) Neither wave-like and particle-like behaviour of light
- 155. When high speed electrons strike a target:
 - a) Only heat is produced

b) Only continuous X-rays are emitted					
c) Only continuous and characteristic X-rays are emitted					
	d) Heat is produced and simultaneously continuous and characteristic X-rays are emitted				
156. The de Broglie wavelength of a particle with mass					
a) 6.63×10^{-33} m b) 6.63×10^{-34} m	c) 6.63 × 10 ⁻³⁵ m	d) 6.65×10^{-35} m			
157. After np^6 electronic configuration, the next orbital	filled will be				
a) $(n+1)d$ b) $(n+1)s$	c) (<i>n</i> + 1) <i>f</i>	d) None of these			
158. Choose the incorrect statement					
a) The shape of an atomic orbital depends upon th	e azimuthal quantum numb	ber •			
b) The orientation of an atomic orbital depends up					
c) The energy of an electron in an atomic orbital of	f multi-electron atom deper	ids on principal quantum			
number					
d) The number of degenerate atomic orbitals of on	e type depends on the value	e of azimuthal and magnetic			
quantum numbers					
159. Photoelectric effect can be caused by :		\sim			
a) Visible light but not by X-rays		X			
b) Gamma-rays but not by X-rays					
c) Ultraviolet light only		<i>J</i>			
d) Visible light, ultraviolet rays, X-rays and gamma	rays also				
160. The number of neutrons present in $_{19}K^{39}$ is :					
a) 39 b) 19	c) 20	d) None of these			
161. Deflection back of a few particles on hitting thin fo	ll of gold snows that				
a) Nucleus is heavy					
b) Nucleus is small	\sim				
c) Both (a) and (b)	a particlas				
d) Electrons create hinderance in the movement of	-	n Mahall The number of a			
162. An atom has 2 electrons in <i>K</i> -shell, 8 electrons i electrons present in the element is:	II L-SHEII and 6 electrons I	II M-shen. The number of S-			
a) 10 b) 7	c) 6	d) 4			
163. Which orbital is represented by Ψ 4, 2, 0?	0	u) 4			
a) $4d$ b) $3d$	c) 4p	d) 4 <i>s</i>			
164. The electronic configuration of a dipositive ion M^2	<i>,</i> ,	2			
neutrons present is	15 2, 0, 11 and 165 mass na	inder 15 50. The number of			
a) 32 b) 42	c) 30	d) 34			
165. The angular momentum of an electron in 2 <i>p</i> -orbit	,				
		d) None of these			
a) $\frac{h}{2\pi}$ b) $\frac{h}{\sqrt{2\pi}}$	c) $\frac{2h}{\pi}$				
166. Which set has the same number of <i>s</i> -electrons?					
a) C, Cu ²⁺ , Zn b) Cu ²⁺ , Fe ²⁺ , Ni ²⁺	c) S ²⁻ , Ni ²⁺ , Zn	d) None of these			
167. The electronic configuration of P in H_3PO_4 is	J - 1 1	,			
a) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$	b) $1s^2$, $2s^2$, $2p^6$, $3s^2$				
c) $1s^2, 2s^2, 2p^6$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$,4s ¹			
168. The Bohr's orbit radius for the hydrogen atom $(n = 1)$					
excited state $(n = 2)$ orbit is	,				
	c) 2.12 Å	d) 3.12 Å			
169. The threshold frequency of a metal is $4 \times 10^{14} s^{-1}$. The minimum energy of p	photon to cause photoelectric			
effect is:		-			
a) 3.06×10^{-12} J b) 1.4×10^{-18} J	c) 3.4×10^{-19} J	d) 2.64 × 10 ⁻¹⁹ J			
170. Which wavelength falls in a X-rays region?					
a) 10,000 Å b) 1000 Å	c) 1Å	d) 10 ⁻² Å			
-					

- a) Every object emits radiation whose predominant frequency depends on its temperature
- b) The quantum energy of a wave is proportional to its frequency
- c) Photons are quanta of light
- d) The value of Planck's constant is energy dependent

c) Aufbau principle	d) Pauli's exclusion principle
188. The number of elliptical orbits, including circular or	bits in the M-shell of an atom is:
a) 3 b) 4	c) 2 d) 1
189. Wave mechanical model of the atom depends upon:	
a) de Broglie concept of dual nature of electron	
b) Heisenberg's uncertainty principle	
c) Schrödinger wave equation	
d) All of the above	
190. The velocity of a photon is:	
a) Independent of its wavelength	
b) Depends on its wavelength	
c) Depends on its source	
d) Equal to square of its amplitude	
191. The frequency of radiation emitted when the electro	on falls from $n=4$ to $n=1$ in a hydrogen atom will be
(Given, ionisation energy of	
$103 \text{ H}=2.18 \times 10^{-18} \text{ J} \text{ atom}^{-1} \text{ and } h = 6.625 \times 10^{-18} \text{ J} \text{ state}^{-1}$	34 Is)
a) $1.54 \times 10^{15} \text{s}^{-1}$ b) $1.03 \times 10^{15} \text{s}^{-1}$	c) $3.08 \times 10^{15} \text{s}^{-1}$ d) $2.00 \times 10^{15} \text{s}^{-1}$
192. A node is a surface on which the probability of findi	
a) Zero b > 1	c) > 10 d) > 90
193. In photoelectric effect, the photo-current:	
a) Increases with increase of frequency of incident	photon
b) Decreases with increase of frequency of incident	
c) Does not depend on the frequency of photon but	-
d) Depends both on intensity and frequency of the i	
194. Possible number of orientations of a subshell is:	
a) l b) n	c) $2l + 1$ d) n^2
195. The orientation of an atomic orbital is governed by:	
a) Magnetic quantum number	
b) Principal quantum number	
c) Azimuthal quantum number	
d) Spin quantum number	
196. The ratio of the radius of the orbit for the electron	n orbiting the hydrogen nucleus to that of an electron
orbiting a deuterium nucleus is:	
a) 1 : 1 b) 1 : 2	c) 2 : 1 d) 1 : 3
197. Which of the following sets of quantum numbers is	
a) $n = 3, l = 2, m = -2, s = +\frac{1}{2}$ b) $n = 4, l = 4, m = -4, s = -\frac{1}{2}$ c) $n = 4, l = 3, m = +1, s = +\frac{1}{2}$ d) $n = 4, l = 3, m = +4, s = +\frac{1}{2}$	
h) $m = 4.1 - 4.m = -4.5 = -\frac{1}{2}$	
$b) n = 4, t = 4, m = -4, s = -\frac{2}{2}$	
c) $n = 4, l = 3, m = +1, s = +\frac{1}{2}$	
d) $n = 4, l = 3, m = +4, s = +\frac{1}{2}$	
198. The electronic energy levels of the hydrogen atom in	n the Bohr's theory are called:
a) Orbitals b) Orbits	c) Rydberg levels d) Ground states
199. A photoelectric cell is a device, which :	ej nyaberg levels aj al outra states
a) Converts light into electricity	
b) Converts electricity into light	
c) Stores lights	
d) Stores electricity	
200. An <i>f</i> -shell containing 6 unpaired electrons can exch	ange
200. An <i>t</i> -shell containing 6 unpaired electrons can exch	ange

200. An *f*-shell containing 6 unpaired electrons can exchange

a) 6 electrons 201. Mg ²⁺ is isoelectrionic w	b) 9 electrons	c) 12 electrons	d) 15 electrons
a) Cu ²⁺	b) Zn^{2+}	c) Na ⁺	d) Ca ²⁺
	,	CJ Na	u) ca
202. The first orbital of H is r			
$\psi = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{5/2} e^{-r/a_0}$, w	where a_0 is Bohr's radius.	The probability of finding	the electron at a distance r ,
from the nucleus in the			
	C		ſ
a) ψ ² dr	b) $\int \psi^2 4\pi r^2 dv$	c) $\psi^2 4\pi r^2 dr$	d) $\int \psi dv$
203. The correct statement a			
a) It is a nucleus of deut	-	b) It is an ionized hydro	gen atom
c) It is an ionized hydro		d) It is an α - particle	
204. The energy ΔE correspo	-	-	
a) 2.10 eV	b) 43.37 eV	c) 47.12 eV	d) 2.11 kcal
205. One electron volt is:	6) 10.07 CV	c) 17.12 cv	
	b) 1.6×10^{-12} erg	c) 1.6×10^{-8} erg	d) 1.6×10^8 erg
206. The quantum number the			u) 1.0 × 10 crg
a) <i>l</i>	b) s	c) <i>n</i>	d) <i>m</i>
-	,	-	u) m
207. The de-Broglie wavelen			0.956
a) $\lambda = \frac{12.3A}{2}$	b) $\lambda = \frac{0.286}{\sqrt{22}} A^{\circ}$	c) $\lambda = \frac{0.101}{\sqrt{V}} A^{\circ}$	d) $\lambda = \frac{0.856}{\sqrt{2}} A^{\circ}$
VV	v v		v v
208. Calculate the wavelengt			$1.0 \times 10^{3} \text{ms}^{-1}$ (Mass of
	$kg and h = 6.63 \times 10^{-34} \text{ Js}$		
a) 0.032 nm	b) 0.40 nm	c) 2.5 nm	d) 14.0 nm
209. The number of waves in	an orbit are		
a) <i>n</i> ²	b) n	c) <i>n</i> – 1	d) <i>n</i> – 2
210. Which of the following e	electron transition in hydro	ogen atom will require large	est amount of energy?
a) From $n = 1$ to $n = 2$		b) From $n = 2$ to $n = 3$	
c) From $n = \infty$ to $n = 1$		d) From $n = 3$ to $n = 5$	
211. The principal quantum	number <i>n</i> can have integra	l values ranging from:	
a) 0 to 10	b) 1 to ∞	c) 1 to $(n = l)$	d) 1 to 50
212. Electrons will first enter	r into the set of quantum nu	The second seco	3, l = 2
	b) Both possible	c) $n = 3, l = 2$	d) Data insufficient
		-	100\AA and the energy E_2 of the
radiation with a wavele		5	
a) $E_1 = 6E_2$	b) $E_1 = 2E_2$	c) $E_1 = 4E_2$	d) $E_1 = 1/2E_2$
214. Which combinations of	, 1 5	, 1 5	
permissible solution of			
		1	1
a) 3, 2, 1, $\frac{1}{2}$	b) 3, 1, 1, - $\frac{1}{2}$	c) 3, 3, 1, $-\frac{1}{2}$	d) 3, 2, −2, ¹ / ₂
215. What is the lowest ener	gy of the spectral line emit	ted by the hydrogen atom i	n the Lyman series?
	=velocity of light, R =Rydb		
		e ,	7hcR
a) $\frac{5hcR}{36}$	b) $\frac{4hcR}{3}$	c) $\frac{3hcR}{4}$	d) $\frac{7hcR}{144}$
216. Which is not electromag	metic radiation?	Т	111
a) Infrared rays	b) X-rays	c) Cathode rays	d)γ-rays
217. Which one of the follow	, ,		,, ,
a) $n = 4, l = 0, m = 0, s$	$=+\frac{1}{2}$	b) <i>n</i> = 3, <i>l</i> = 1, <i>m</i> = 1, <i>s</i>	$=+\frac{1}{2}$
	_		2 1
c) $n = 3, l = 2, m = -2, m =$	$s = +\frac{1}{2}$	b) $n = 3, l = 1, m = 1, s$ d) $n = 3, l = 0, m = 0, s$	$=+\frac{1}{2}$
218. Which consists of partic	4		-
r			

a) Alpha rays	b) Beta rays	c) Cathode rays	d) All of these
219. If λ_1 and λ_2 are the w	vavelength of characteristic	X-rays and gamma rays r	espectively, then the relation
between them is:			
a) $\lambda_1 = 1/\lambda_2$	b) $\lambda_1 = \lambda_2$	c) $\lambda_1 > \lambda_2$	d) $\lambda_1 < \lambda_2$
220. Which best describe th	e emission spectra of atomic	c hydrogen?	
a) A series of only four	· lines		
b) A discrete series of	lines of equal intensity and e	qually spaced with respect	t to wavelength
c) Several discrete ser	ies of lines with both intensi	ty and spacings between li	nes decreasing as the wave
number increase wi	thin each series		
d) A continuous emiss	ion of radiation of all frequer	ncies	$\langle \nabla \rangle$
221. In the ground state of t	the H-atom, the electron is :		
a) In the second shell			
b) In the nucleus			
c) Nearest to the nucle	eus		
d) Farthest from the n	ucleus		
222. Atoms consist of elect	rons, protons and neutrons.	If the mass attributed to	neutron was halved and that
	ons was doubled, the atomic		
a) Same	b) Doubled	c) Halved	d) Reduced by 25%
223. The number of electro	ns in a neutral atom of an ele	ement is equal to its:	
a) Atomic weight	b) Atomic number	c) Equivalent weight	d) Electron affinity
224. Which particle contain	s 2 neutrons and 1 proton?		-
a) $_{1}H^{2}$	b) ₂ He ⁴	c) ₁ T ³	d) $_{1}D^{2}$
225. The highest number of	unpaired electrons are in		
a) Fe	-	b) Fe ²⁺	
c) Fe ³⁺		d) All have equal numb	er of unpaired electrons
,	lectrons in an orbit is given l		-
a) n^2	b) $2n^2$	c) $n^2/2$	d) None of these
227. The wave nature of ele	ectron is verified by		
a) De-Broglie		b) Davisson and Germe	r
c) Rutherford		d) All of these	
228. Compared to the mass	of lightest nuclei, the mass o	of an electron is only (app.))
a) 1/80	b) 1/800	c) 1/1800	d) 1/2800
229. Which one of the follow	wing pair of atoms/atom-ion	have identical ground stat	te configuration?
a) Li ⁺ and He ⁺	b) Cl^- and Ar	c) Na ⁺ and K ⁺	d) F ⁺ and Ne
230. The total number of or	bitals in a shell with principa	al quantum number $'n'$ is:	
a) 2 <i>n</i>	b) $2n^2$	c) <i>n</i> ²	d) <i>n</i> + 1
231. Which of the following	statements does not form a	part of Bohr's model of hy	drogen atom?
a) Energy of the electr	ons in the orbit is quantised		
b) The electron in the	orbit nearest the nucleus has	the lowest energy	
c) Electrons revolve in	different orbits around the	nucleus	
	locity of the electrons in the		d simultaneously
232. Penetration power of p	-		-
a) Greater than <i>e</i>	b) Less than electron	c) Greater than $'n'$	d) None of these
233. Bohr's theory is applic		-	-
a) He	b) Li ²⁺	c) He ²⁺	d) None of these
234. Which set of quantum	numbers is possible for the l	ast electron of Mg ⁺ ion?	-
a) $n = 3, l = 2, m = 0,$		2	
b) $n = 2, l = 3, m = 0,$			
c) $n = 1, l = 0, m = 0,$	-		
d) $n = 3, l = 0, m = 0,$			
· · · · · · · · · · · · · · · · · · ·			

235. The electronic configuration for $_{26}$ Fe is: a) [Ar] $3d^6$, $4s^2$ b) [Ar] $3d^7$, $4s^2$ 236. Which of the following radial distribution graphs of	c) [Ar] $3d^5$, $4s^2$ correspond to $n = 3$, $l = 2$ f	
a) $r^2 \Psi^2 \left \qquad \qquad r^2 \Psi^2 \right $ $a_0 \qquad \qquad b) \qquad \qquad a_0$	c) $r^2 \Psi^2 \qquad \qquad$	d) $r^2 \Psi^2$
237. In which orbital electron is most tightly bound to	he nucleus?	
a) $5s$ b) $4p$	c) 4d	d) 5 <i>d</i>
238. Ca^2 is isoelectronic with	cj iu	
a) Na b) Ar	c) Mg ²	d) Kr
239. Threshold wavelength depends upon :	0) 118	
a) Frequency of incident radiation		0
b) Velocity of electrons	•	
c) Work function		A
d) None of the above		
240. The electrons identified by quantum numbers		
I. $n = 4, l = 1$		
II. $n = 4, l = 0$		
III. $n = 3, l = 2$		
IV. $n = 2, l = 1$		
Can be placed in order of increasing energy from t	he lowest to highest as	
a) IV <ii<iii<i b)="" ii<iv<i<iii<="" td=""><td>c) I<iii<iv< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<iv<></td></ii<iii<i>	c) I <iii<iv< td=""><td>d) III<i<iv<ii< td=""></i<iv<ii<></td></iii<iv<>	d) III <i<iv<ii< td=""></i<iv<ii<>
241. The energy of an electron in first Bohr orbit of H-a	tom is –13.6 eV. The possi	ble energy value of electron
in the excited state of Li^{2+} is		
a) –122.4 eV b) 30.6 eV	c) -30.6 eV	d) 13.6 eV
242. When the azimuthal quantum number has the value		als possible are
a) 7 b) 5	c) 3	d) 0
243. Compared to the lightest atom the heaviest atom v	veighs:	
a) 200 times b) 238 times	c) 92 times	d) 16 times
244. If the following particles travel with equal speed, t	=	
a) Proton b) Neutron	c) α -particle	d) β -particle
245. The orbital cylindrically symmetrical about <i>x</i> -axis		
a) p_z b) p_y	c) p_x	d) d_{xz}
246. The orbital with maximum number of possible ori		
a) s b) p	c) <i>d</i>	d) <i>f</i>
247. Einstein's photoelectric equation states that $E_k =$	hv - W	
Here, E_k refers to		
a) Kinetic energy of all ejected electrons	b) Mean kinetic energy	
c) Minimum kinetic energy of emitted electrons	d) Maximum kinetic ene	ergy of emitted electrons
248. The orbital closest to the nucleus is:		
a) $7s$ b) $3d$	c) 6p	d) 4 <i>s</i>
249. Isoelectronic pair among the following is 124	$\lambda u = \lambda c^{2+}$	
a) Ca and K b) Ar and Ca^{2+}	c) K and Ca ²⁺	d) Ar and K
250. We can say that the energy of a photon of frequent momentum of a photon is $p = h/\lambda$, where λ is velocity of light I equal to:		
a) $(E/p)^{1/2}$ b) E/p	c) <i>Ep</i>	d) $(E/p)^2$

			ce is 10 ^{–5} m. Hence, uncertai	nty in velocity (ms ⁻¹) is
		$.6 \times 10^{-34}$ Js)		
a) 2.1 × 10 ⁻²	28	b) 2.1×10^{-34}	c) 0.5×10^{-34}	d) 5.0×10^{-24}
252. The mass of a	a neutron is	of the order of:		
a) 10 ⁻²³ kg		b) 10 ⁻²⁴ kg	c) 10 ⁻²⁶ kg	d) 10 ⁻²⁷ kg
253. The de Brogl	ie waveleng	th of a 66 kg man sking d	own Kufri Hill in Shimla at 1	$10^{3} \mathrm{msec^{-1}}$ is:
a) 1 × 10 ⁻³⁶	m	b) 1 × 10 ⁻³⁷ m	c) 1 × 10 ⁻³⁸ m	d) 1×10^{-39} m
254. The <i>Z</i> –com	ponent of an	gular momentum of an e	lectron in an atomic orbital	is governed by the
a) Magnetic	quantum nu	mber	b) Azimuthal quantum r	number
c) Spin quan	tum numbei	a	d) Principal quantum nu	ımber
255. An electron v	vith values 4	4, 2, -2 and $+1/2$ for the	set of four quantum number	rs n, l, m_l and s respectively,
belongs to			-	
a) 4 <i>s</i> -orbital		b) 4 <i>p</i> -orbital	c) 4 <i>d</i> -orbital	d) 4 <i>f</i> -orbital
256. Consider the	following st	<i>·</i> ·		
	-	plane in $3d_{x^2-y^2}$ orbital i	s zero	
		plane in $3d_{z^2}$ orbital is ze		
		spherical node		
	-	e nodal plane		
The correct s				
a) 2 and 3	latements a	b) 1,2,3,4	c) Only 2	d) 1 and 3
	n nrohahilit	y of finding electron in th		uj i allu 5
		y of finding electron in th	u_{xy} of bital is.	
a) Along the				
b) Along the				
		n the <i>x</i> -and <i>y</i> -axes		
		n the <i>x</i> -and <i>y</i> -axes		
		f an element cannot have		
-		antum number		
=	-	uantum number		
-		antum number		
		ntum numbers		
		gnetic radiation depends	on:	
a) Amplitude		ength		
b) Waveleng		(\mathbf{Y}')		
c) Amplitude				
		im through which it pass	es	
		uration of Cu^{2+} is:	-) [A]] J10 A]	91 01 01 01
a) $[Ar]3d^8, 4$			c) [Ar] $3d^{10}$, $4s^1$	d) [Ar]3 <i>d</i> 9
	1	ons and atoms is of:		
a) Relative si		b) Configuration	c) Presence of charge	d) All of these
262. Electronic co	nfiguration			
a) $1s^0$		b) 1 <i>s</i> ¹	c) $1 s^2$	d) $1s^1, 2s^2$
		mbol for an electronic st		
a) Heisenber			b) Hund's rule	
c) Aufbau pr	-		d) Pauli exclusion princ	-
		s from $n=2$ to $n=1$ will p	roduce shortest wavelength	in (where <i>n</i> =principle
quantum sta	te)	1.5.11	\	
a) Li ²⁺	1 6	b) He ⁺	c) H	d) H ⁺
	number of a	n element is 17. The nui	mber of orbitals containing	electron pairs in the valency
shell is:				
a) 8		b) 2	c) 3	d) 6

266. The number of electrons in an atom with atomic number 105 having $(n + l) = 8$ are:
a) 20 $b) 17$ $a) 1E$ $d) Ummunodiat-let-$
a) 30 b) 17 c) 15 d) Unpredictable
267. Three isotopes of an element have mass numbers, m , $(m + 1)$ and $(m + 2)$. If the mean mass number is
(m + 0.5) then which of the following ratios may be accepted for $m, (m + 1), (m + 2)$ in that order:
a) 1 : 1 : 1 b) 4 : 1 : 1 c) 3 : 2 : 1 d) 2 : 1 : 1
268. According to Bohr's theory the radius of electron in an orbit described by principle quantum number <i>n</i>
and atomic number Z is proportional to :
a) $Z^2 n^2$ b) $\frac{Z^2}{n^2}$ c) $\frac{Z^2}{n}$ d) $\frac{n^2}{Z}$
a) $Z n$ b) $\frac{1}{n^2}$ c) $\frac{1}{n}$ d) $\frac{1}{Z}$
269. The radius of the first Bohr orbit of hydrogen atom is 0.529 Å. The radius of the third orbit of H ⁺ will be
a) 8.46 Å b) 0.705 Å c) 1.59 Å d) 4.76 Å
270. The de Broglie wavelength associated with a material particle is:
a) Inversely proportional to momentum
b) Inversely proportional to its energy
c) Directly proportional to momentum
d) Directly proportional to its energy
271. Energy levels A, B, C of a certain atom corresponds to increasing values of energy, <i>i.e.</i> , $E_A < E_B < E_C$. If
λ_1, λ_2 and λ_3 are the wavelengths of radiations corresponding to the transitions <i>C</i> to <i>B</i> , <i>B</i> to <i>A</i> and <i>C</i> to <i>A</i>
respectively, which of the following statements is correct?
λ_1 B
λ_2 λ_3
a) $\lambda_3 = \lambda_1 + \lambda_2$ b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
272. Naturally occurring elements are mixtures of:
a) Isotone b) Isobars c) Isotopes d) Isomers
273. Krypton ($_{36}$ Kr) has the electronic configuration ($_{18}$ Ar) $4s^23d^{10}4p^6$, the 37th electron will go into which of
the following subshells?
a) 4 <i>f</i> b) 4 <i>d</i> c) 3 <i>p</i> d) 5 <i>s</i>
274. 1 fermi is equal to :
a) 10^{-13} cm b) 10^{-10} cm c) 10^{-4} cm d) 10^{-8} cm
275. When an electron moves from higher orbit to a lower orbit is produced
a) Absorption spectra b) Emission spectra c) α -particle d) None of these
276. A photon in <i>X</i> region is more energetic than in the visible region X is:
a) Infrared b) Ultraviolet c) Microwave d) Radiowave
277. According to aufbau principle, the correct order of energy of 3 <i>d</i> , 4 <i>s</i> and 4 <i>p</i> -orbitals is
a) $4p < 3d < 4s$ b) $4s < 4p < 3d$ c) $4s < 3d < 4p$ d) $3d < 4s < 4p$
278. The total number of valency electrons for NH_4^+ is :
a) 9 b) 8 c) 6 d) 11
279. According to Bohr's model of hydrogen atom
a) Total energy of the electron is quantizedb) Angular momentum of electron is quantisedb) Numerical distributionb) Angular momentum of electron is quantised
c) Both (a) and (b) d) None of the above
280. The H-spectrum show
a) Heisenberg's uncertainty principle b) Diffraction
c) Polarisation d) Presence of quantised energy level
c) Polarisation d) Presence of quantised energy level

82. Time period of a wave is 5×10^{-3} s, what is the frequency? a) 5×10^{-3} s⁻¹ b) 2×10^{2} s⁻¹ c) 23×10^{3} s⁻¹ d) 5×10^{2} s⁻¹

283. The increasing order (lowest	first) of the value of $\frac{e}{m}$	for electron (e), proton (p)	neutron (<i>n</i>) and alpha,
particle (α) will be			
a) n, α, p, e b) of	e, p, n, α	c) <i>n, p, e, α</i>	d) <i>n</i> , <i>p</i> , <i>α</i> , <i>e</i>
284. Orbitals processing the same	=		
	Valency orbitals	c) <i>d</i> -orbitals	d) Degenerate orbitals
285. Which set has the same numb	•	,	, ,
	Na, P, Cl	c) Na^+ , Mg^{2+} , Al	d) Cl ⁻ , Fe ³⁺ , Cr ³⁺
286. Wavelength of a photon is 2.0			-
a) 3.3×10^{-23} kg m s ⁻¹		, jei 1 ile ille ille ille ille ille ille i	
b) 3.3×10^{22} kg m s ⁻¹			
c) 1.452×10^{-44} kg m s ⁻¹			
d) 6.89×10^{43} kg m s ⁻¹			
287. The atomic number of an elem	pent is 35 and its mass	is 81 The number of electr	ons in its outermost shell is
a) 3 b) !		c) 7	d) 9
288. According to Dalton's atomic t		,	
_	Atom	c) Molecule	d) Ion
289. The possibility of finding an el		-	uj ion
· · · ·	Bohr	c) Heisenberg	d) Schrödinger
290. Which statement is/are corre		c) heisenberg	u) sem bunger
-			
a) Volume of proton is approx $(4/3 \pi r^3) = 1.5 \times 10^{-38} cm^3$	annatery		
b) The radius electron is 42.8			
c) The density of nucleus is 10	J ^r g/cm ³		
d) All of the above		$\mathbf{\nabla}^{\prime}$	
291. X-rays cannot penetrate throu	-		
· · · · · · · · · · · · · · · · · · ·	Paper	c) Aluminium	d) Lead
292. How many electrons can fit in			
a) 2 b) 8		c) 18	d) 32
293. The total values of magnetic q			
a) 9 b) o		c) 4	d) 2
294. Which transition in the hydro	gen atomic spectrum w	all have the same waveleng	th as the transition, $n=4$ to
n=2 of He ⁺ spectrum?			
a) $n = 4$ to $n = 3$ b) $(n = 1)^{-1}$			d) $n = 2$ to $n = 1$
295. According to $(n + l)$ rule after			
	(n + 1)s	c) nd	d) $(n+1)p$
296. If the series limit of wavelengt			2 A, then the series limit of
wavelength for the Balmer ser			0
	912 × 2 Å	c) 912 × 4 Å	d) 912/2 Å
297. The best metal to be used for			
	Sodium	c) Cesium	d) Lithium
298. The correct Schrödinger's way	ve equation of an electr	on with <i>E</i> as total energy a	nd <i>V</i> as potential energy is:
a) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2}{mh^2}$	$(F - V)\Psi = 0$		
b) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m}{h^2}$	(F - V)W = 0		
c) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{\partial \pi^2 m}{h^2}$			
$c_J \frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} + \frac{\partial z^2}{\partial z^2} + \frac{\partial z^2}{\partial z^2}$	$-(\underline{c} - v)\Psi = 0$		
d) $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m^2}{h}$			
a) $\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} + \frac{\partial z^2}{\partial z^2} + \frac{\partial z^2}{\partial z^2}$	$-(E - V)\Psi = 0$		

299. Electronic configuration of tritium is :

a) 1 <i>s</i> ¹	b) 1 <i>s</i> ² , 2 <i>s</i> ²	c) 1 <i>s</i> ¹ , 2 <i>s</i> ¹	d) None of these
300. The ratio of <i>e/m, i</i> .	.e., specific charge for a cath	ode ray:	
a) Has the smalles	t value when the discharge t	ube is filled with H ₂	
b) Is constant			
c) Varies with the	atomic number of gas in the	discharge tube	
-	atomic number of an elemer	_	
	oton is 3×10^{-12} ergs. What	is its wavelength in nm?	
$(h = 6.62 \times 10^{-27})$	ergs, $c = 3 \times 10^{10} \text{ cm/s}$)		
a) 662	b) 1324	c) 66.2	d) 6.62
	atom, which of the followin		three quantum numbers will
	rgy in the absence of magne	tic and electric fields?	
(A) $n = 1, l = 0, m$			
(B) $n = 2, l = 0, m$			
(C) $n = 2, l = 1, m$			
(D) $n = 3, l = 2, m$			\sim
(E)n = 3, l = 2, m	= 0		\sim \times
a) (D) and (E)			
b) (C) and (D)			
c) (B) and (C)			
d) (A) and (B)			·
303. Zeeman effect refe		when in the property of an	automal ala atra statia fiald
	he lines in an emission spect		external electrostatic field
	ing of light by colloidal parti he lines in an emission spect		
	ctrons from metals when light		
-	nd orbit of Be ³⁺ is equal to th		
a) 4th orbit of hyd	-	b) 2nd orbit of He ⁺	
c) 3rd orbit of Li ²⁴	_	d) First orbit of hyd	rogen
-			the photon of wavelength 5200
A°, will be	siecei on muse possess to deg	fune a momentam equal te	the photon of wavelengen 0200
a) 1398 ms^{-1}	b) 1298 ms ⁻¹	c) 1400 ms ⁻¹	d) 1300 ms ⁻¹
,	rder of energy level for 19th	,	
a) $3s > 3d$	b) $4s < 3d$	c) $4s > 4p$	d) $4s = 3d$
,	ronic configuration belongs	, ,	
a) Ti	b) Tl	c) Cu	d) V
-	electron is 4.8×10^{-10} esu. W		-
a) 4.8×10^{-10} esu		c) 1.44×10^{-9} esu	d) 2.4×10^{-10} esu
	of mass of an electron to the	mass of a proton?	2
a) 1:2	b) 1:1	c) 1:1837	d) 1:3
310. As the number of c	orbit increase from the nucle	eus, the difference between	the adjacent energy levels:
a) Increases	b) Remains constan	t c) Decreases	d) None of these
311. The potential ener	gy of an electron present in	the ground state of Li ²⁺ ior	ı is
$3e^2$	b) $-\frac{3e}{4\pi\epsilon_0 r}$	$3e^2$	$3e^2$
a) $+\frac{3e^2}{4\pi\varepsilon_0 r}$	b) $-\frac{1}{4\pi\varepsilon_0 r}$	c) $-\frac{3e^2}{4\pi\varepsilon_0 r}$	d) $-\frac{3e^2}{4\pi\varepsilon_0 r^2}$
312. The orbital angula	r momentum of a <i>p</i> -electron	is given as:	
h	_ h	$\overline{3}h$	_ h
a) $\frac{h}{\sqrt{2}\pi}$	b) $\sqrt{3}\frac{h}{2\pi}$	c) $\frac{3}{2\pi}$	d) $\sqrt{6} \cdot \frac{h}{2\pi}$
V 2 <i>h</i>		N	<u></u>
	= 2,3,4,5 to $n = 1$ is called		d) Prochest sories
a) Lyman series	b) Paschen series	c) Balmer series	d) Bracket series

		ke atom in an excited sta	te is -3.4 eV, then the de Broglie
wavelength of the x^{-10}		a) F v 10 ⁻⁹	$d = 2 \times 10^{-12}$
a) 6.6×10^{-10}	b) 3×10^{-10}	c) 5×10^{-9}	d) 9.3×10^{-12}
	oes not have four lobes?		
a) $d_{x^2 - y^2}$	b) d_{xy}	c) d_{z^2}	d) d_{xz}
316. The nucleus of an			
a) Proton and elec		b) Neutron and elect	
c) Proton and neu		d) Proton, neutron a	nd electron
	lectrons present in acetylene m		
a) 14	b) 26	c) 18	d) 16
	18 electrons in the outermost s		
a) Cu ⁺	b) Th ⁴⁺	c) Cs ⁺	d) K ⁺
	mber of electrons in a <i>p</i> -orbital		
a) 2	b) 6	c) 10	d) 14
320. The graph represe	enting node is	1	
	l l		
Ψ	$\Psi $	$\Psi $	Ψ
a)	b) \	c)	d)
	-		
0	a ₀		
321. Energy of photon	_		
a) 1 eV	b) 1 MeV	c) 1 eV	d) 1 keV
	wing statements is incorrect?	X) ^r	
	of half filled and completely fille	d orbitals among s and p	block elements is reflected in
² trends of IE acr		Y	
ni	of half-filled and completely fille	ed orbitals among <i>s</i> and <i>p</i>	block elements is reflected in
² EA trends acros	-		
CI	le is incorrect for cases where e	nergy difference betweer	n ns and $(n-1)d$ sub-shell us
larger			
	to half filled sub-shell is due to h	• • •	
=			uency than a certain minimum:
a) Frequency	b) Wavelength	c) Speed	d) Charge
	rence between the ground state		d state is $4.4 imes 10^{-4}$ J, the
	oton required to produce the tra		
a) 2.26 × 10 ⁻¹² m		c) 4.52 × 10 ⁻¹⁶ m	d) 4.52×10^{-12} m
	ollowing, the radius will be sam		-
a) $\text{He}^+, n = 2$	b) Li^{2+} , $n = 2$	c) Be ³⁺ , $n = 2$	d) $Li^{2+}, n = 3$
	roton is approximately;		
a) 1.5×10^{-30} cm ³	b) $1.5 \times 10^{-38} \text{cm}^3$	c) $1.5 \times 10^{-34} \text{cm}^3$	d) None of these
327. Normally, the time	e taken in the transition is :		
a) Zero	b) 1 sec	c) 10 ⁻⁵ sec	d) 10 ⁻⁸ sec
328. When the value of	azimuthal quantum number is	3, magnetic quantum nui	mber can have values:
a) +1, -1	b) +3, +2, +1, 0, -1, -	2, -ic) +2, +1, 0, -1, -2	d) +1, 0, −1
329. Positive rays or ca	inal rays are:		
a) Electromagneti	c waves		
b) A steam of posi	tively charged gaseous ions		
c) A steam of elec	trons		
d) Neutrons			
330. X-rays do not show	w the phenomenon of :		
5	-		

a) Diffraction

b) Polarisation

c) Deflection by electric field

d) Interference

331. For an electron, if the uncertainty in velocity is Δv , the uncertainty in its position (Δx) is given by:

a)
$$\frac{h}{2}\pi m\Delta v$$
 b) $\frac{2\pi}{hm\Delta v}$ c) $\frac{h}{4\pi m\Delta v}$ d) $\frac{2\pi m}{h\Delta v}$
If the shortest wavelength of H-atom in Lyman series is r , the longest wavelength in Balmer series of He⁺

c) $\frac{x}{\Lambda}$

d) Electron

332. If the shortest wavelength of H-atom in Lyman series is x, the longest wavelength in Balmer series of He⁺ is

a) $\frac{36x}{5}$ 333. Rydberg is :

a) Also called Rydberg constant and is a universal constant

b) $\frac{5x}{0}$

- b) Unit of wavelength and one Rydberg equal to $1.097 \times 10^{-7} \text{m}^{-1}$
- c) Unit of wave number and one Rydberg equal to $1.097 \times 10^7 \text{m}^{-1}$
- d) Unit of energy and one Rydberg equal to 13.6 eV

334. Which is not deflected by magnetic field:

a) Neutron b) Positron c) Proton

335. The quantum numbers $+\frac{1}{2}$ and $-\frac{1}{2}$ for an electron represent

a) Rotation of electron in clockwise and anticlockwise direction respectively

b) Rotation of electron in anticlockwise and clockwise direction respectively

- c) Magnetic moment of electron pointing up and down respectively
- d) Two quantum mechanical spin states which have no classical analogue

336. Increase in the frequency of the incident radiations increases the:

- a) Rate of emission of photo-electrons
- b) Work function
- c) Kinetic energy of photo-electrons
- d) Threshold frequency

337. What is the frequency of photon whose momentum is 1.1×10^{-23} kg ms⁻²? a) 5×10^{16} Hz b) 5×10^{17} Hz c) 0.5×10^{18} Hz d) 5×10^{18} Hz

- 338. A quanta will have more energy, if :
 - a) The wavelength is larger
 - b) The frequency is higher
 - c) The amplitude is higher
 - d) The velocity is lower

339. I₂ molecule dissociates into atoms after absorbing light of 4500 A°. If one quantum of energy is absorbed by each molecule, the KE of iodine atoms will be

(BE of $I_2 = 240 \text{ kJ/mol}$)

a) 240× 10 ⁻¹⁹ J	b) 0.216× 10 ⁻¹⁹ J	c) 2.16× 10 ⁻¹⁹ J	d) 2.40× 10 ⁻¹⁹ J
340. The rest mass of a	photon of wavelength λ is:		
a) Zero	b) hc/λ provequal to 4 x 10^{-12} erg. To	c) h/cλ	d) h/λ
341 An atom emits end	$r_{\sigma v}$ equal to $4 \times 10^{-12} erg$ To	which nart of electromag	netic spectrum it helongs?

341. An atom emits energy equal to 4×10^{-12} erg. To which part of electromagnetic spectrum it belongs?a) UV regionb) Visible regionc) IR regiond) Microwave region342. The valence shell electronic configuration of Cr^{2+} ion is

a) $4s^03d^4$ b) $4s^23d^2$ c) $4s^23d^0$ d) $3p^64s^2$

343. The total number of electrons present in all the 's' orbitals, all the 'p' orbitals and all the 'd' orbitals of cesium ion are respectively

a) 8, 26, 10	b) 10, 24, 20	c) 8, 22, 24	d) 12, 20, 22
344. In the above quest	ion, the velocity acquired by	the electron will be;	
a) $\sqrt{V/m}$	b) $\sqrt{(eV/m)}$	c) $\sqrt{(2eV/m)}$	d) None of these

345. The ionization energy of second orbit would be	the ground state hydrogen	atom is 2.18×10^{-18} J. The	e energy of an electron in its
	b) −5.45 × 10 ^{−19} J	c) -358×10^{-18} I	d) -4.68×10^{-19} J
346. The velocity of electron			-
-		•	d) Same
a) $\frac{1}{10}$ th	b) $\frac{1}{100}$ th	c) $\frac{1}{1000}$ th	ajounie
347. A gas absorbs photon of	355 nm and emits at two w	avelengths. If one of the em	nission is at 680 nm, the
other is at			
a) 1035 nm	b) 325 nm	c) 743 nm	d) 518 bm
348. Bohr's model violates th		because it assumes that:	
a) All electrons have san			
b) The nucleus have sam	-		
c) Electrons can revolve		a radiant an angu	· · ·
349. The stability of ferric ion	n accelerate without emittin	ig radiant energy	
a) Half filled <i>f</i> -orbitals	is uue to	b) Half filled <i>d</i> -orbitals	\sim
c) Completely filled <i>f</i> -or	hitala	d) Completely filled <i>d</i> -or	hitala
, , ,			oitais
350. The electron possesses v a) Bohr	b) de Broglie	c) Davission and germer	d) Schrödinger
351. The nature of canal rays	, ,	c) Davission and germer	u) sem bunger
a) Nature of electrode	uepenus on.		
b) Nature of discharging	tubo		
c) Nature of residual gas			
d) All of the above	•		
352. Total number of valency	electrons in nhosnhonium	ion PH ⁺ is:	
a) 16	b) 32	c) 8	d) 18
353. Neutron possesses:	0) 52	ej 0	uj 10
a) Positive charge	07	b) No net charge	
c) Negative charge		d) All are correct	
354. Cathode-ray tube is used	l in:	aj mare correct	
a) Compound microscop			
b) A radio receiver			
c) A television set			
d) A van de Graff genera	tor		
355. Non-directional orbital i			
a) 4 <i>p</i>	b) 4 <i>d</i>	c) 4 <i>f</i>	d) 3 <i>s</i>
356. How many unpaired elec	ctrons are present in Ni ²⁺ c	ation? (At. No. = 28)	-
a) 0	b) 2	c) 4	d) 6
357. The maximum sum of th	e number of neutrons and p	proton is an isotope of hydr	ogen is :
a) 6	b) 5	c) 4	d) 3
358. The magnitude of the sp	in angular momentum of an	electron is given by	
a) $S = \sqrt{s(s+1)} \frac{h}{2\pi}$	h = h	c) $S = \frac{3}{2} \times \frac{h}{2\pi}$	d) None of these
211	$0 J S = S - \frac{1}{2}$	$C_{J}S = \frac{1}{2} \times \frac{1}{2\pi}$	
	Ln		
	= +1/2 can have a magnetic		
a) +2	= +1/2 can have a magnetic b) +3	c) -3	d) +4
a) +2 360. The emission spectrum o	= +1/2 can have a magnetic b) +3 of hydrogen is found to satis	c) -3 sfy the expression for the e	nergy change, ΔE (in
a) +2 360. The emission spectrum (joules), such that $\Delta E = 2$	= +1/2 can have a magnetic b) +3 of hydrogen is found to satis 2.18 × 10 ⁻¹⁸ $\left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$ J, whe	c) -3 sfy the expression for the e	nergy change, ΔE (in
a) +2 360. The emission spectrum of joules), such that $\Delta E = 2$ correspond to Paschen s	= +1/2 can have a magnetic b) +3 of hydrogen is found to satis 2.18 × 10 ⁻¹⁸ $\left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$ J, where reries are	c) -3 sfy the expression for the energy $n_1 = 1,2,3, \dots$ and $n_2 =$	nergy change, ΔE (in
a) +2 360. The emission spectrum (joules), such that $\Delta E = 2$	= +1/2 can have a magnetic b) +3 of hydrogen is found to satis 2.18 × 10 ⁻¹⁸ $\left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$ J, where there is a re	c) -3 sfy the expression for the e	nergy change, ΔE (in

0.64				
361		3d-electrons having spin q		
0.40	a) 10	b) 14	c) 5	d) None of these
362	The ratio of nucleons in C			
	a) 8/9	b) 4/5	c) 9/8	d) 1
363		velocity 10 ⁶ m/s will have o	le-Broglie wavelength near	ly [Given, $m = 6.62 \times$
	10^{-27} kg, $h = 6.62 \times 10^{-3}$			
	a) 10 ⁻⁹ m	b) 10 ⁻¹³ m	c) 10 ⁻¹⁹ m	d) 1 Å
364	Which is not permissible	subshell?		
	a) 2 <i>d</i>	b) 4 <i>f</i>	c) 6p	d) 3 <i>s</i>
365	In Bohr's series of lines of	f hydrogen spectrum, the th	ird line from the red end co	orresponds to which one of
	the following inner-orbit	jumps of the electron for Bo	ohr orbit in an atom of hydi	rogen?
	a) 3→2	b) 5→2	c) 4→1	d) 2→5
366	If the electron in the hyd	rogen atom is excited to n	= 5, the number of different	nt frequencies of radiations
	which may be emitted is:			
	a) 4	b) 5	c) 8	d) 10
367	. The uncertainty principle	and the concept of wave na	ature of matter was propos	ed by and respectively
	a) Heisenberg, de Broglie	-	C .	
	b) de Brogli, Heisenberg			
	c) Heisenberg, Planck			
	d) Planck, Heisenberg			
368	Quantum theory was pos	tulated by:		
	a) Rutherford	b) Maxwell	c) Max Planck	d) Becquerel
369	2	electronic configuration 1s ⁷	-	
				the nucleus. Yet 1s ⁷ is not
	observed because is viola			
	a) Heisenberg's uncertair		>	
	b) Hund's rule		Y	
	c) Pauli's exclusion princ	inle		
	d) Bohr's postulate of sta	-		
370	The number of <i>p</i> -electron			
070	a) 12	b) 15	c) 7	d) 17
371	Potassium ion is isoelectr			
571	a) Ar	b) He	c) Fe	d) Mg
372		itum number $n = 3$ and $m = 3$,	
572	a) Must have spin value +		- 2.	
	b) Must have $l = 1$	1/2		
	c) Must have $l = 0,1$ or 2			
	d) Must have $l = 2$			
373	Cr has electronic configur	ration as		
575	a) $3s^23p^63d^44s^1$	b) $3s^2 3p^6 3d^5 4s^1$	c) $3c^2 3n^6 3d^6$	d) None of these
274		bitals of element with atom		a) None of these
574	a) 2	b) 4	c) 8	d) 6
275		,	,	,
575	a) –6.8 eV	round state is -13.6 eV, her b) —3.4 eV	c) –1.51eV	d) –4.53 eV
276		-	c) -1.51ev	u) –4.55 ev
370	As electron moves away f a) Decreases	b) Increases	c) Remains constant	d) None of these
				d) None of these
077		-	•	•
377	A hydrogen atom in its gr	ound state absorbs a photo	n. The maximum energy of	such a photon is:
	A hydrogen atom in its gr a) 1.5 eV	ound state absorbs a photo b) 3.4 eV	•	•
	A hydrogen atom in its gr	ound state absorbs a photo b) 3.4 eV	n. The maximum energy of	such a photon is: d) 13.6 eV

		ital, if the electron energy is -	
a) 1	b) 2	c) 3	d) Zero
	in have the same values of .	=	
a) One	b) Two	c) Three	d) Four
	n = 0, then atomic number		
a) 12 or 13	b) 13 or 14	c) 10 or 11	d) 11 or 12
		fect on sodium is 5000 Å. Its	
a) 4 × 10 ⁻¹⁹ J	b) 1 J	c) 2 × 10 ⁻¹⁹ J	d) 3×10^{-10} J
383. The first atom with	incomplete <i>d</i> -shell is:		
a) Sc	b) Cu	c) Fe	d) Zn
384. The wave number of	of the spectral line in the en	nission spectrum of hydrogen	n will be equal to $\frac{8}{2}$ times the
	if the electron jumps from		
a) $n = 3$ to $n = 1$	b) $n = 10$ to $n = 1$	c) $n = 9$ to $n = 1$	d) $n = 2$ to $n = 1$
,	lectron was experimentally	,	
a) Max Bon	b) J.J. Thomson	c) De-Broglie	d) Schrondinger
,		, ,	o successive orbits of hydrogen
atom is:	ingular momentain associa		successive orbits of hydrogen
a) h/π	b) <i>h/2π</i>	c) h/2	d) $(n-1)h/2\pi$
387. The volume of nucl	, ,		
a) 10^{-4} times that			
b) 10^{-12} times that			
c) 10^{-6} times that			
d) 10^{-10} times that			
-	more electrons than neutro		
a) F	b) Na ⁺	$a) 0^{2-}$	d) Mg ²⁺
,	not associated with Planck's	theory is	u) Mg
		s uneory is	
-	ssociated with energy	wantum is proportional to f	
	y is neither emitted nor abs	quantum is proportional to fi	requency
, .	y is neither emitted nor abs	•	
, .		-	and O ¹⁸ . Which of the following
mol. wt. of H_2O will		ind O has two isotopes O	and O : which of the following
_		a) 24	4) 22
a) 19	b) 20	c) 24	d) 22
	naximum magnetic momen		12 4434
a) Mn ³⁺	b) Cu ²⁺	c) Fe ³⁺	d) V ³⁺
392. Photoelectric effect	-		
a) Hallwach	b) Lenard	c) Einstein	d) Hertz
393. The electronic conf	0	2 1	
a) [Ar]3d ⁴ 4s ²	b) [Ar]3d ³ 4s ⁰	c) [Ar]3 <i>d</i> ² 4 <i>s</i> ¹	d) [Ar] $3d^54s^1$
	ted at the metal surface, the	emitted electrons:	
a) Are called photo			
b) Have random en	-		
, ,	at depend upon intensity of	•	
d) Have energies th	at depend upon the freque		
, ,	owest first) for the values o	f e/m for electron (e), proton	n (p), neutron (n) and α-
395. Increasing order (le			
395. Increasing order (le particles is			
- ,	b) <i>n</i> , <i>α</i> , <i>p</i> , <i>e</i>	c) n, p, e, α	d) <i>n</i> , <i>p</i> , <i>α</i> , <i>e</i>
particles is a) e, p, n, α	,		d) n, p, α, e hat is the ionisation energy of
particles is a) e, p, n, α	,		

397. The minimum real cl	narge on of any particle, whi	ch can exist is:	
	mb b) 1.6×10^{-10} coulon		oulomb d) Zero
	photons of light of wavelen		
a) 2 × 10 ¹⁸	b) 2×10^9	c) 2×10^{20}	d) 2×10^{10}
,	om an outer orbit to an inne	r orbit with an energy	difference of 3.0eV. What will be
the wavelength of th			
a) 3660 Å	b) 3620 Å	c) 4140 Å	d) 4560 Å
400. When a gold sheet is	bombarded by a beam of α	-particles, only a few	of them get deflected, whereas most
go straight, undeflec	_		
a) The force of attra	ction exerted on α - particle b	by electrons is insuffic	ient C
b) The volume of nu	cleus is smaller than atom		
c) The force of repul	sion acting on fast moving $lpha$	-particle is very small	
d) The neutrons hav	e no effect on α -particle		
401. Which of the following	ng elements has least numbe	er of electrons in its <i>M</i>	-shell?
a) K	b) Mn	c) Ni	d) Sc
402. The mass of an elect	ron is <i>m</i> , its charge <i>e</i> and it	is accelerated from r	est through a potential difference V.
The kinetic energy o	f the electron in joules will b		
a) V	b) eV	c)MeV	d) None of these
403. In an atom wave me	chanics suggests that electro	ons:	
a) Move around the	nucleus in circular orbits		
-	nucleus in elliptical orbits		
•	ud around the nucleus		
d) None of the above			
404. Which of the followi			
a) $n = 4, l = 3, m =$	-		n = 1 d) $n = 4, l = 0, m = 0$
	figuration does not follow t		-
a) $1s^2$, $2s^2 2 p^4$	b) $1 s^2$, $2s^2 2p^4$, $3s^2$		d) $1s^2$, $2s^22p^6$, $3s^3$
		gy for $n = 1$ to $n = 2$	2,10.2eV, the energy for the same
transition in Be^{3+} is:			
a) 20.4 eV	b) 30.6 eV		d) 40.8 eV
	can be accommodated in a s		
a) 8 400 Which of the follow:	b) 6	c) 18	d) 32
408. Which of the followi		3	Rh
	tom when electrons return f		4
	oton : Independent of wav		
	e rays : Independent of gas i	n the discharge tube	
d) Radius of nucleus	: (Mass no.) $^{1/2}$		
	E_n to remove nucleon and	an energy E_e to remo	ove an electron from the orbit of an
atom, then:			
	b) $E_n < E_e$		
	form of energy, is treated as	a form of matter, by sa	aying that it consist of :
a) Photons or bundle			
b) Electrons or a way			
c) Neutrons, since el			
d) None of the above			
	d orbitals having electrons in		
a) 3, 6	b) 6, 3	c) 7,3	d) 3,8
	if energy of an electron in g	round state is -13.6 e	eV, then that in the 2nd excited state
is: a) —1.51 eV	b) -3.4 eV	c) -6.0 eV	d) –13.6 eV

413. The number of electr a) 16 and 5	ons with the azimuthal qu b) 12 and 5	antum number $l = 1$ and 2 c) 16 and 4	for ₂₄ Cr in ground state are: d) 12 and 4
,	,	,	u) 12 anu 4
	ce electrons in completely	-	1) 2
a) Zero	b) 4	c) 6	d) 2
415. An improbable config	•	() [A] (A) (A)	
a) $[Ar]3d^4, 4s^2$	b) [Ar] $3d^5$, $4s^1$	c) [Ar] $3d^6$, $4s^2$	d) [Ar]3d ¹⁰ ,4 <i>s</i> ¹
	radiation of wavelength 50		
a) $5 \times 10^{-7} \text{m}^{-1}$		c) $2 \times 10^{6} \text{m}^{-1}$	d) $500 \times 10^{-9} \text{m}^{-1}$
417. The energies E_1 and wavelengths <i>i. e.</i> λ_1 a		25 eV and 50 eV respecti	vely. The relation between their
a) $\lambda_1 = \frac{1}{2}\lambda_2$	b) $\lambda_1 = \lambda_2$	c) $\lambda_1 = 2\lambda_2$	d) $\lambda_1 = 4\lambda_2$
418. The nitrogen atom ha	as 7 electrons, the nitride i	on (N ^{3–}) will have	
a) 7 protons and 10 e			
b) 4 protons and 7 el			
c) 4 protons and 10 c			
d) 10 protons and 7 e			\sim
	lowing is correct for 5B in	normal state?	
1s 2p	lowing is correction 5D m	normal state.	
a) $1 \downarrow 1$]		
: Against Hund's r	j jle		
b) Against Aufbau n	rinciple as well as Hund's i	rule	
]		
c) : Violation of Pauli	's exclusion principle and i	not Hund's rule	
11 1			
d) Against Aufbau p	rinciple		
	duced when the pressure i	n the discharge tube is of t	he order of :
a) 76 cm of Hg			
b) 10^{-6} cm of Hg			
c) 1 cm of Hg			
d) 10^{-2} to 10^{-3} mm	of Hg		
-	a photon of wavelength 30	000 Å and 6000Å is	
a) 1:1	b) 2:1	c) 1:2	d) 1:4
-	ectric effect is useful in und	2	u) 1.1
a) Conservation of en		ici standing .	
b) Quantization of ch			
c) Conservation of ch	0		
	0		
d) Conservation of ki		leather with the question	$a_{1} = 1 - 2 = 1$
-2, s = 1/2?	rbital designation for the e	lectron with the quantum	numbers, $n = 4, l = 3, m =$
a) 3 <i>s</i>	b) 4 <i>f</i>	c) 5 <i>p</i>	d) 6 <i>s</i>
	V. The E_2 for He ⁺ would be		
→a) -6.8eV	5) 151661	c) -27.2eV	d) –108.8eV
425. The total number of	fundamental particles in or	ne atom of ${}^{14}_{6}$ C is:	
		c) 14	d) 20
a) 6	b) 8	CJ 14	u) 20
	,	,	itals populated by one or more
	,	,	2
426. In ground state of o	,	,	2
426. In ground state of a electrons is: a) 15	chromium atom $(Z = 24)$	the total number of orb	itals populated by one or more

428. Which set is not correc			
	b) 3, 2, 1, +1/2		
-		n electron, alpha particle a	nd a proton respectively, each
6	Broglie wavelength then		
	b) $E_e > E_\alpha > E_p$		
430. Which among the follow	ving species have the same	number of electrons in its	outermost as well as
penultimate shell?	2		
a) Mg ²⁺	b) 0 ²⁻	c) F ⁻	d) Ca ²⁺
431. Photons of energy 6 e stopping potential?	V are incidented on a po	otassium surface of work	function 2.1 eV. What is the
a) -6 V	b) –2.1 V	c) -3.9 V	d) –8.1 V
432. If uncertainty in position	,	,	· · · · · · · · · · · · · · · · · · ·
a) $\sqrt{\frac{h}{2\pi}}$	b) $\frac{1}{m} \sqrt{\frac{h}{\pi}}$	c) $\sqrt{\frac{h}{\pi}}$	d) $\frac{1}{n}$ $\frac{h}{n}$
$\sqrt{2\pi}$	$m\sqrt{\pi}$	$\sqrt{\pi}$	$2m\sqrt{\pi}$
433. Which one of the follow	ving ions is not isoelectroni	c with 0^{2-} ?	X
a) Ti ⁺	b) Na ⁺	c) F ⁻	d) N ³⁻
434. How many electrons w	ith $l = 2$ are there in an ato	om having atomic number 2	237
a) 2	b) 3	c) 4	d) 5
435. The statements are val	id for :		
(i) In filling a group of	orbitals of equal energy, it	t is energetically preferable	e to assign electrons to empty
orbitals rather than pai	ir them into a particular orł	pital	
(ii) When two electron	s are placed in two differen	t orbitals, energy is lower i	if the spins are parallel
a) Aufbau principle		S.Y	
b) Hund's rule	4		
c) Pauli's exclusion pri	nciple	\mathbf{V}'	
d) Uncertainty principl	e	7	
436. The radius of electron i	n the first excited state of h	ydrogen atom is	
(Where, a_0 is the Bohr'	s radius)		
a) <i>a</i> ₀	b) 4a ₀	c) 2 <i>a</i> ₀	d) 8a ₀
437. The momentum of a ph	oton of frequency 5×10^{17}	s^{-1} is nearly:	
a) 1.1×10^{-24} kg m s ⁻² b) 3.33×10^{-43} kg m s c) 2.27×10^{-40} kg m s			
b) 3.33×10^{-43} kg m s	-1		
c) 2.27×10^{-40} kg m s	-1		
d) 2.27×10^{-38} kg m s ⁻³⁸	-1		
438. In hydrogen atom, which	ch energy level order is not	correct:	
a) 1 <i>s</i> < 2 <i>p</i>	b) 2 <i>p</i> = 2 <i>s</i>	c) 2 <i>p</i> > 2 <i>s</i>	d) 2 <i>p</i> < 3 <i>s</i>
439. The frequency v of ce	rtain line of the Lyman s	eries of the atomic spectr	rum of hydrogen satisfies the
following conditions:			
(i) It is the sum of the f	requencies of another Lyma	an line and a Balmer line.	
(ii) It is the sum of the	frequencies of a certain line	e, a Lyman line, and a Pasch	ien line.
(iii) It is the sum of the	frequencies of a Lyman and	d a Paschen line but no Bra	icket line.
To what transition doe	s v correspond?		
a) $n_2 = 3$ to $n_1 = 1$	b) $n_2 = 3$ to $n_1 = 2$	c) $n_2 = 2$ to $n_1 = 1$	d) $n_2 = 4$ to $n_1 = 1$
440. An isobar of $_{20}$ Ca ⁴⁰ is			
	b) ₂₀ Ca ³⁸	c) ₂₀ Ca ⁴²	d) ₁₈ Ar ³⁸
		hydrogen atom is x , the spe	eed of the electron in the third
Bohr's orbit is:		-	
a) <i>x</i> /9	b) <i>x</i> /3	c) 3 <i>x</i>	d) 9 <i>x</i>
	in the fourth Bohr's orbit	of hydrogen is v. The velo	city of the electron in the first
-			

orbit would ne:			
	16 <i>v</i>	c) <i>v</i> /4	d) <i>v</i> /16
443. Which type of radiation is not			
	=	c) Visible light	d) γ-rays
444. If E_1, E_2 and E_3 represent res	-		
each having same de Broglie w			
a) $E_1 > E_3 > E_2$ b) I	-	c) $E_1 > E_2 > E_2$	d) $E_1 = E_2 = E_2$
445. The frequency of first line of			
emitted by singly ionised heliu		0 0 1	
a) $2v_0$ b) 4	$4v_0$	c) $v_0/2$	d) $v_0/4$
446. In a set of degenerate orbitals,	•		
This statement belongs to			
a) Pauli's exclusion principle		b) Aufbau principle	
c) Hund's rule of maximum m	ultiplicity	d) Slater's rule	
447. Electrons occupy the available	e sub-level which has lo	wer $n + l$ value. This is call	led:
a) Hund's rule			X i
b) Aufbau principle		. (.	
c) Heisenberg's uncertainty p	rinciple		
d) Pauli's principle			
448. Choose the correct statement			
a) Ψ^2 represents the atomic o			
b) The number of peaks in rad			
c) A node is a point in space an	round nucleus where th	he wave function Ψ has zer	o value
d) All of the above			
449. Which possesses an inert gas (2)	-	$D M_{-}$	d) Cr ³⁺
a) Fe ³⁺ b) (450. Angular momentum of an elec		c) Mg ⁺	2
a) $\frac{nh}{2\pi}$ b) r	nh	c) $\frac{2\pi}{nh}$	d) $\frac{\pi}{2nh}$
451. The discovered of neutron bec			
a) Neutrons are present in nu			
b) Neutrons are fundamental	particles		
c) Neutrons are chargeless			
d) All of the above	<i></i>		
452. The frequency of a spectral lin	e for electron transition	n in an atom is directly pro	portional to
a) Number of electrons under	going transition		
b) Velocity of electron			
c) The difference of energy be	tween energy levels inv	volved in the transition	
d) None of the above			
453. Photoelectric emission is ob-			
$(v_1 > v_2)$. If the maximum ki	netic energies of the p	hotoelectrons in the two	cases are in the ratio $1:k$,
then the threshold frequency	v _o is given by:]	V – V
then the threshold frequency (a) $\frac{v_2 - v_1}{k - 1}$ b) $\frac{1}{k}$	$\frac{kv_1 - v_2}{k - 1}$	c) $\frac{kv_2 - v_1}{k-1}$	d) $\frac{v_2 - v_1}{k}$
$\kappa = 1$ 454. The number of 2 <i>p</i> -electrons has	λ I	n I	ĸ
a) 6 b) (c) 2	d) 3
455. Which statement relating to th			
a) The lines can be defined by	=		
The lines of longest wavele	=	es corresponds to the trans	sition between $n = 3$ and
b) $n = 2$ levels	-	-	
c) The spectral lines are close	r together at longer wav	velengths	

Page | 29

d) A continuum occurs a			1
456. The atomic number of th			
a) 15	b) 10	c) 12	d) 8 d amh it a fhardan ann atam ia
457. The maximum waveleng	-		
a) 487 nm	b) 170 nm	c) 103 nm	d) 17 nm
458. The incorrect statement h^2	about boill's of bit of figure	b) KE of electron = PE of	alactron
a) $r = n^2 \frac{n}{(n^2)}$		$D \int KE O I e e c U O I - P E O I$	electron
a) $r = n^2 \frac{h^2}{4\pi^2 m\left(\frac{e^2}{4\pi\varepsilon_0}\right)}$			\frown
c) $E = -\frac{1}{n^2} \frac{2\pi^2 m \left(\frac{e^2}{4\pi\varepsilon_0}\right)}{h^2}$	$\Big)^2$	d) None of the above is in	ncorrect
459. Four different sets of qu		cons are given below	
$e_1 = 4, 0, 0, -\frac{1}{2}: e_2 = 3,$ $e_3 = 3, 2, 2, +\frac{1}{2}: e_4 = 3,$	$1, 1, -\frac{1}{2} \\ 0, 0, +\frac{1}{2}$		of the
The order of energy of e	_	Ć	
a) $e_1 > e_2 > e_3 > e_4$	b) $e_4 > e_3 > e_2 > e_1$	c) $e_2 > e_1 > e_2 > e_4$	d) $e_2 > e_3 > e_4 > e_1$
460. When electrons in N -sh			
spectrum is:			
a) 6	b) 4	c) 2	d) 3
461. The electrons occupying	the same orbital have alwa	ays spin:	,
a) Paired	b) Unpaired	c) Both (a) and (b)	d) None of these
462. The energy of hydrogen	atom in its ground state is	-13.6 eV. The energy of the	e level corresponding to the
quantum number $n=5$ is	5	\mathbf{X}	
a) -5.4 eV	b) –0.54 eV	c) −2.72 eV	d) –0.85 eV
463. According to Bohr's theo	ory, the angular momentum	for an electron of 5th orbi	t is:
a) $\frac{2.5h}{\pi}$	b) $\frac{5h}{\pi}$	c) <u>25h</u>	d) $\frac{6h}{2\pi}$
п		π	$\frac{1}{2\pi}$
464. In which of the orbit of H			
a) First orbit	b) Second orbit		d) Fourth orbit
465. Correct set of four quant			
	-	c) 5,1,1, $+\frac{1}{2}$	d) 6,0,0, $+\frac{1}{2}$
466. Electron density in the Y			
a) Zero	b) 0.50	c) 0.75	d) 0.90
467. The total number of orbi			
a) <i>n</i>	b) <i>n</i> ²	c) 2n	d) 2 <i>n</i> ²
468. Which does not characte	-		
a) The radiation can ion			
b) It causes Zns to fluore			
c) Deflected by electric a	_		
	rter than ultraviolet rays	atom will be	
469. The velocity of an electron 2^{2} $2^{70} \times 10^{7}$ cm (c	-		d) 0.2.7 $\times 10^7$ cm /s
a) 2.79×10^7 cm/s			d) 92.7 \times 10 ⁷ cm/s
470. The electronic configura			
a) 1 471 The orbital angular mon	b) Zero pentum of an electron in 2s	c) 3 orbital is	d) 5
471. The orbital angular mon $1 h$	b) Zero		_ h
a) $+\frac{1}{2}\cdot\frac{h}{2\pi}$	<i>bj L</i> ei 0	c) $\frac{h}{2\pi}$	d) $\sqrt{2} \frac{h}{2\pi}$
472. In the atomic spectrum of	of hydrogen the series of lir	2/1	211

 a) Balmer series b) Paschen series c) Bracket series 473. According to Bohr's model of hydrogen atom : a) The linear velocity of the electron is quantised b) The angular velocity of the electron is quantised c) The linear momentum of the electron is quantised d) The angular momentum of the electron is quantised 474. Which transition of electron in the hydrogen atom emits maximum energy 	d) Lyman series
a) $2 \rightarrow 1$ b) $1 \rightarrow 4$ c) $4 \rightarrow 3$	d) $3 \rightarrow 2$
475. The quantum number that does not describe the distance and the angular	· · · · · · · · · · · · · · · · · · ·
	d) s
a) n b) l c) m 476. Li ²⁺ and Be ³⁺ are:	uj s
a) Isotopes b) Isomers c) Isobars	d) Isoelectronic
477. In H atom, the electron is de-excited from 5th shell to 1st shell. How ma	
line spectrum?	any unterent mes may appear m
a) 4 b) 8 c) 10	d) 12
478. The electronic configuration with maximum exchange energy will be	
a) $3d_{xy}^1 3d_{yz}^1 3d_{zx}^1 4s^1$ b) $3d_{xy}^1 3d_{yz}^1 3d_{zx}^1 3$	1_{2} $3d^{1}4s^{1}$
a) $5u_{xy}5u_{yz}5u_{zx}+3$ b) $5u_{xy}5u_{yz}5u_{zx}+3$ b) $5u_{xy}5u_{yz}5u_{zx}+3$	$x^2 - y^2 = y^2 + 1$
c) $3d_{xy}^2 3d_{yz}^2 3d_{zx}^2 3d_{x^2-y^2}^2 3d_{z^2}^1 4s^1$ d) $3d_{xy}^2 3d_{yz}^2 3d_{zx}^2 3d_{z$	$x^2 - y^2 3a_{z^2}^2 4s^2$
479. The orbital diagram in which aufbau principle is violated is:	7
a) 1 1 1 1	
b) 1 1 1 1	
c) 1L 1 1 1	
480. In the ground state of Cu ⁺ , the number of shell occupied, sub-shells occup	ied fillied orbitals and unpaired
electrons respectively are	ieu, initeu or bituib unu unpui eu
a) 4,8,15,0 b) 3,6,15,1 c) 3,6,14,0	d) 4,7,14,2
481. If <i>h</i> is Planck's constant, the momentum of a photon of wavelength 0.01 Å	2
a) $10^{-2}h$ b) h c) $10^{2}h$	d) $10^{12}h$
482. What does the electronic configuration $1s^2$, $2s^2$, $2p^5$, $3s^1$ indicate?	
a) Ground state of fluorine b) Excited state of fluorine	uorine
c) Excited state of neon d) Excited state of the	
483. Each p -orbital and each d -orbital except one has lobes respectively as:	
a) 2,4 b) 1,4 c) 2,3	d) 1,1
484. Which of the following statements regarding an orbital is correct?	, , ,
a) An orbital is a definite trajectory around the nucleus in which electron	can move
b) An orbital always has spherical trajectory	
An orbital is the region around the nucleus where there is a $90 - 95\%$	probability of finding all the
c) electrons of an atom	
d) An orbital is characterized by 3 quantum numbers n, l and m	
485 An electronic transition in hydrogen atom results in the formation of H_{α} li	ine of hydrogen in Lyman series,
the energies associated with the electron in each of the orbits involved in	the transition (in kcal mol^{-1}) are
a) -313.6, -34.84 b) -313.6, -78.4 c) -78.4, -34.84	d) -78.4, -19.6
486. The wavelengths of the radiations emitted when in a H atom, electron fall	ls from infinity to stationary state
1, is:	
a) 9.1×10^{-8} nm b) 192 nm c) 406 nm	d) 91 nm
487. The values of quantum numbers for the outermost electron in scandium (
a) $n = 3, l = 2$ b) $n = 3, l = 3$ c) $n = 4, l = 0$	Sc = 21) are: d) $n = 2, l = 3$

		ce (work function = 4.2eV)	. The kinetic energy (in joule)
	mitted is approximately:		
a) 3×10^{-21}	b) 3 × 10 ⁻¹⁹	c) 3×10^{-17}	d) 3×10^{-15}
489. The number of spherica	al nodes in 3 <i>p</i> orbitals is		
a) 0	b) 1	c) 2	d) 3
490. The maximum number	of electron in <i>p</i> -orbital with	h $n = 5, m = 1$ is	
a) 6	b) 2	c) 14	d) 10
491. The species that has sa	me number of electrons as	$_{16}S^{32}$ is:	_
a) ₁₆ S ⁺	b) ₁₇ Cl ⁻	c) $_{16}S^{-}$	d) ₁₇ Cl ⁺
492. Select the odd man:	5 17	5 10	
a) Deuteron	b) Proton	c) Electron	d) Cyclotron
493. Assuming the velocity l	-		
a) An electron	b) A proton	c) An α -particle	d) All have same λ
2		2	according to aufbau principle
because:	erent electronic configurat	ion then what is expected (according to darbad principle
a) Cr is a metal			\sim
b) It belongs to <i>d</i> -block	almonts	Ć	
c) Half-filled <i>d</i> -orbitals			
-	give extra stability		
d) None of the above	tial far hudragen store is	12 Coll than the wavelow	ath of light required for the
		13.6ev, then the wavelen	gth of light required for the
ionisation of hydrogen			
a) 1911 nm	b) 912 nm	c) 68 nm	d) 91.2 nm
496. Bohr's atomic theory g			
a) Quantum numbers	b) Shape of sub-levels	c) Nucleus	d) Stationary states
497. Which species has mor	_		
a) Cl ⁻	b) Ca ²⁺	c) K ⁺	d) Sc ³⁺
498. Electronic configuratio			
a) [Kr]4 d^4 , 5 s^1	b) [Kr]4d ⁶	c) [Kr] $4d^3$, $5s^2$	d) [Kr] $5s^25 p^3$
499. The momentum of radi		n iskg m sec ^{-1} .	
a) 2×10^{-24}	b) 2×10^{-12}	c) 2 × 10 ⁻⁶	d) 2×10^{-48}
500. Predict the total spin in	Ni ²⁺ ion:		
a) ±5/2	b) ±3/2	c) ±1/2	d) ±1
501. An increasing order (lo	west first) for the values of	f e/m for electron (e), prote	on (p) , neutron (n) and alpha
(α) particle is:	X Y		
a) e, p, n, α	b) <i>n</i> , <i>α</i> , <i>p</i> , <i>e</i>	c) n, p, e, α	d) <i>n</i> , <i>p</i> , <i>α</i> , <i>e</i>
502. Choose the arrangemen		ng value of e/m for e, p, n a	nd α -particles
		c) n	-
503. The ' m ' value for an ele			
present in	1		5
a) $3d_{x^2 - y^2}$	b) $5f_{x(x^2-y^2)}$	() $4f_{m^{3}/\pi}$	d) None of these
504. The kinetic energy of a	, , ,	,	
(a) $\frac{h^2}{4\pi^2 m a_0^2}$	b) $\frac{h^2}{16\pi^2 m a_0^2}$	c) $\frac{n}{22 + 2}$	d) $\frac{h^2}{64\pi^2 m a_0^2}$
• 0	0	0	$64\pi^2 m a_0^2$
505. Number of electrons in			N 99
a) Zero	b) 14	c) 7	d) 20
		=	he nuclear charge Ze in the
	r, the potential energy of th		
a) Ze^{2}/r	b) $-Ze^{2}/r$	c) Ze^{2}/r^{2}	d) <i>mu²/r</i>
507. The orbital angular mo	mentum of an electron revo	olving in a <i>p</i> -otbital is	

a) Zero	b) $\frac{h}{\sqrt{2\pi}}$	c) $\frac{h}{2\pi}$	d) $\frac{1}{2} \frac{h}{2\pi}$
508. The ratio of specif	ic charge e/m of a proton to	that of an α -particle is:	2 2.0
a) 1 : 4	b) 1 : 2	c) 1 : 1/4	d) 1 : 1/2
	m' for a given value of n are		
a) <i>n</i> ²	b) 2 <i>l</i> + 1	c) <i>n</i>	d) 2 <i>l</i>
510. Common name for	-	5	, ,
		c) Meson	d) Nucleon
A: 3, 2, -2 B: 3, 0, 0, Which statement i a) A and B have sa b) A has more ene c) B has more ene d) A and B represe 512. Radius of nucleus a) A 513. The energy levels a) E _n for $A^{(+z-1)} =$ b) E _n for $A^{(+z-1)} =$ c) E _n for $A^{(+z-1)} =$ d) E _n for $A^{(+z-1)} =$ 514. The observation the configuration and a) Pauli's exclusion	+1/2, s correct for <i>A</i> and <i>B</i> ? une energy rgy than <i>B</i> rgy than <i>A</i> ents same electron is proportional towhere <i>A</i> b) $A^{1/3}$ for $_{z}A^{(+z-1)}$ can be given by = $Z^{2} \times E_{n}$ for H = $Z \times E_{n}$ for H = $\frac{1}{Z^{2}} \times E_{n}$ for H = $\frac{1}{Z} \times E_{n}$ for H hat the ground state of nitro not otherwise is associated	l is mass number c) A^2 : gen atom has 3 unpaired with	electrons in its electronic maximum multiplicity
			atom is -3.41 eV. The energy of the
	Bohr's orbit of He ⁺ ion wor		
a) -85 eV		c) -1.70eV	-
electron-nucleus s a) Increases to a g b) Decreases to a s c) Decreases to a s		istance close to the nuc	leus of the atom, the energy of the
	electron will have the four	quantum numbers:	
 518. The electrons wou the following? a) Aufbau principle b) Pauli's exclusion c) Hund's rule of rule d) Heisenberg's understand 	ild go to lower energy level e n principle naximum multiplicity ncertainty principle	s first and then to higher	1/2 d) 2 1 0 + $1/2energy levels according to which of$
a) Decreases	f electron increase, the spec b) Increases	c) Remains same	d) None of these
	nagnetic field <i>p</i> -orbitals are		-
a) Three	b) Two	c) One	d) Four
al luces	0110/0		

a) Lyman series b) Balmer series		d) Pfund series
522. The electronic configuration of an element is 1	ls ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ⁵ , 4s ² ,	. This represents its
a) Cationic form b) Anionic form	c) Ground state	d) Excited state
523. A body of mass x kg is moving with a velocity	of 100ms ⁻¹ . Its de-Broglie way	velength is 6.62×10^{-35} m.
Hence, <i>x</i> is $(h = 6.62 \times 10^{-34} \text{Js})$		
a) 0.1 kg b) 0.25 kg	c) 0.15 kg	d) 0.2 kg
524. Maximum number of electrons in a subshell w	with $l = 3$ and $n = 4$ is:	
a) 10 b) 12	c) 14	d) 16
525. One energy difference between the states n	n = 2 and $n = 3$ is $E eV$, in hybrid	ydrogen atom. The ionisation
potential of H atom is:		
a) 3.2 <i>E</i> b) 5.6 <i>E</i>	c) 7.2 <i>E</i>	d) 13.2 <i>E</i>
526. The first emission line in the electronic spectr	um of hydrogen in the Balmer	series appears at cm^{-1}
	c) $\frac{3R}{4}$ cm ⁻¹	
a) $\frac{9R}{400}$ cm ⁻¹ b) $\frac{7R}{144}$ cm ⁻¹	$c_{j} = c_{m} c_{m}$	d) $\frac{5R}{36}$ cm ⁻¹
527. The probability of finding an electron residing	g in a p_x orbital is not zero:	
a) In the <i>yz</i> plane b) In the <i>xy</i> plane	c) In the <i>y</i> direction	d) In the <i>z</i> direction
528. What is the electronic configuration of Mn ²⁺ ?	Ć	
a) [Ne] $3d^5$, $4s^0$ b) [Ar] $3d^5$, $4s^2$	c) [Ar]3d ⁵ ,4s ⁰	d) [Ne] $3s^5$, $4s^2$
529. Number of neutron in C^{12} is		
a) 6 b) 7	c) 8	d) 9
530. Which of the following reaction led to the disc	overy of neutrons?	,
a) ${}_{6}C^{16} + {}_{1}p^{1} \rightarrow {}_{7}N^{14} + {}_{0}n^{1}$	b) $_4\text{Be}^9 + _2\text{He}^4 \rightarrow _6$	$C^{12} + n^{1}$
c) ${}_{5}B^{11} + {}_{1}D^{2} \rightarrow {}_{6}C^{11} + {}_{0}n^{1}$	d) ${}_{4}\text{Be}^{8} + {}_{2}\text{He}^{4} \rightarrow {}_{6}$	
531. Combination of an α -particle with a nuclide re		
a) Less number of neutrons		
b) Equal number of electrons		
c) Lower mass number		
d) Higher atomic number	$\mathbf{\mathcal{I}}$	
532. The radius of which of the following orbit is sa	me as that of the first Bohr's o	rbit of hydrogen atom?
a) $\text{Li}^{2+}(n = 2)$ b) $\text{Li}^{2+}(n = 3)$		
533. Which statement is not correct in case of isoto		
a) Both have same atomic number		
b) Both have the same number of electrons		
c) Both have same number of neutrons		
d) Both have same number of protons		
534. Which has minimum number of unpaired d -el	ectrons?	
a) Fe^{3+} b) Co^{3+}	c) Co^{2+}	d) Mn ²⁺
535. The total spin for atoms with atomic number 2	y = -	u) Mii
a) $0,\pm 1,\pm 3,\pm 3/2$ b) $\pm 1,0,\pm 3/2,\pm 3/2$		d) ±3, ±1,0, ±3/2
536. A photo-sensitive metal is not emitting photo		
crossed. To cross the threshold we need to inc		t will do so when threshold is
a) Intensity b) Frequency	c) Wavelength	d) None of these
537. The <i>KE</i> of electron in He^+ will be maximum in	, .	uj nome or mese
a) 3rd orbit	1.	
b) 2nd orbit		
c) 1st orbit		
d) In orbit with $n = \infty$ 538. Which neutral atom has 18 electrons in its out	tor shall?	
a) Cu^+ b) Dd	c) Mn^{4+}	d) 7n
a) Cu ⁺ b) Pd 539. Rutherford scattering formula fails for very sn	c) Mn ⁴⁺	d) Zn

a) The kinetic energy of α - particles is larger				
b) The gold foil is very thin				
c) The full nuclear charge of the target atom is partially screened by its electron				
d) All of the above	5			
540. 3 <i>p</i> -orbital has :				
a) Two non-spherical nodes				
b) Two spherical nodes				
c) One spherical and one non-spherical node				
d) One spherical and two non-spherical nodes		· · ·		
541. Rutherford's alpha particle scattering experiment e	eventually led to the conclus	ion that:		
a) Mass and energy are related				
b) Electrons occupy space around the nucleus				
c) Neutrons are buried deep into the nucleus				
d) The point of impact with matter can be precisely				
542. The <i>d</i> -orbital with the orientation along X and Y as				
a) d_{z^2} b) d_{zx}	c) d_{yz}	d) $d_{x^2 - y^2}$		
543. Which of the following transitions are not allowed				
a) $2s \rightarrow 1s$ b) $2p \rightarrow 1s$	c) $3d \rightarrow 4p$	d) $5p \rightarrow 3s$		
544. In an atom two electrons move around the nuclei	is in circular orbits of radi	<i>R</i> and 4 <i>R</i> . The ratio of the		
time taken by them to complete one revolution is:	\rightarrow 1 · 0	4) 0 . 7		
a) $1:4$ b) $4:1$ 545. The value of Planck's constant is 6.63×10^{-34} Js. The va	c) $1:8$	d) 8 : 7 0^8 m s^{-1} Which value is		
closest to the wavelength in nanometre of a quantu				
a) 2×10^{-25} b) 5×10^{-18}	c) 4×10^{-8}	d) 3×10^{7}		
546. The number of electrons and protons in an atoms of		-		
a) <i>e</i> 20, <i>p</i> 20 b) <i>e</i> 18, <i>p</i> 20	c) <i>e</i> 18, <i>p</i> 18	d) e 19, p 20		
		<i>,</i> 1		
547. In photoelectric effect the number of photo-electro		<i>,</i> 1		
547. In photoelectric effect the number of photo-electro a) Intensity of incident beam		<i>,</i> 1		
547. In photoelectric effect the number of photo-electroa) Intensity of incident beamb) Frequency of incident beam		<i>,</i> 1		
547. In photoelectric effect the number of photo-electro a) Intensity of incident beam		<i>,</i> 1		
547. In photoelectric effect the number of photo-electroa) Intensity of incident beamb) Frequency of incident beamc) Velocity of incident beam	n emitted is proportional to	<i>,</i> 1		
 547. In photoelectric effect the number of photo-electro a) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 	n emitted is proportional to	<i>,</i> 1		
 547. In photoelectric effect the number of photo-electro a) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of 	n emitted is proportional to	<i>,</i> 1		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> –rays when strike with material 	n emitted is proportional to	:		
 547. In photoelectric effect the number of photo-electro a) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> –rays when strike with material d) None of the above 	n emitted is proportional to cathode rays? l having high atomic masses	5		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> – rays when strike with materiard) None of the above 549. In an atom no two electrons can have the same value 	n emitted is proportional to cathode rays? I having high atomic masses	s bers. This was proposed by:		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> – rays when strike with materiation of the above 549. In an atom no two electrons can have the same value a) Hund b) Pauli 	n emitted is proportional to cathode rays? I having high atomic masses te for all the quantum numb c) Dalton	5		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> – rays when strike with materiat d) None of the above 549. In an atom no two electrons can have the same value a) Hund b) Pauli 550. The minimum energy required to eject an electron 	n emitted is proportional to cathode rays? I having high atomic masses te for all the quantum numb c) Dalton from an atom is called :	s bers. This was proposed by: d) Avogadro		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beamb) Frequency of incident beamc) Velocity of incident beamd) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effectb) They carry negative chargec) They produce <i>X</i> – rays when strike with materiatd) None of the above 549. In an atom no two electrons can have the same valua) Hundb) Pauli 550. The minimum energy required to eject an electrona) Kinetic energyby 	n emitted is proportional to cathode rays? I having high atomic masses te for all the quantum numb c) Dalton from an atom is called : c) Chemical energy	s bers. This was proposed by: d) Avogadro d) Work function		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beamb) Frequency of incident beamd) Frequency of incident beamd) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effectb) They carry negative chargec) They produce <i>X</i> – rays when strike with materiatd) None of the above 549. In an atom no two electrons can have the same valuable a) Hundby Pauli 550. The minimum energy required to eject an electrona) Kinetic energyb) Electrical energy 551. The orbital angular momentum for an electron rev 	n emitted is proportional to cathode rays? I having high atomic masses te for all the quantum numb c) Dalton from an atom is called : c) Chemical energy	s bers. This was proposed by: d) Avogadro d) Work function		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beamb) Frequency of incident beamd) Frequency of incident beamd) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effectb) They carry negative chargec) They produce <i>X</i> – rays when strike with materiatd) None of the above 549. In an atom no two electrons can have the same valuable a) Hundby Pauli 550. The minimum energy required to eject an electrona) Kinetic energyb) Electrical energy 551. The orbital angular momentum for an electron rev 	n emitted is proportional to cathode rays? I having high atomic masses te for all the quantum numb c) Dalton from an atom is called : c) Chemical energy	s bers. This was proposed by: d) Avogadro d) Work function		
 547. In photoelectric effect the number of photo-electrona) Intensity of incident beamb) Frequency of incident beamd) Frequency of incident beamd) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effectb) They carry negative chargec) They produce <i>X</i> – rays when strike with materiatd) None of the above 549. In an atom no two electrons can have the same valuable a) Hundby Pauli 550. The minimum energy required to eject an electrona) Kinetic energyb) Electrical energy 551. The orbital angular momentum for an electron rev 	n emitted is proportional to cathode rays? I having high atomic masses the for all the quantum numb c) Dalton from an atom is called : c) Chemical energy olving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$	s bers. This was proposed by: d) Avogadro d) Work function		
547. In photoelectric effect the number of photo-electron a) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce X –rays when strike with material d) None of the above 549. In an atom no two electrons can have the same value a) Hund b) Pauli 550. The minimum energy required to eject an electron a) Kinetic energy b) Electrical energy 551. The orbital angular momentum for an electron rev s-electron is: a) $\frac{h}{2\pi}$ b) $\sqrt{2} \cdot \frac{h}{2\pi}$	n emitted is proportional to cathode rays? I having high atomic masses the for all the quantum numb c) Dalton from an atom is called : c) Chemical energy olving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$ c) $\frac{1}{2} \cdot \frac{h}{2\pi}$	s bers. This was proposed by: d) Avogadro d) Work function + 1). Thus momentum for a d) Zero		
547. In photoelectric effect the number of photo-electrona) Intensity of incident beamb) Frequency of incident beamc) Velocity of incident beamd) Work function of photo cathode548. Which of the following statements is wrong about ofa) They produce heating effectb) They carry negative chargec) They produce X —rays when strike with materiald) None of the above549. In an atom no two electrons can have the same valuea) Hundb) Pauli550. The minimum energy required to eject an electrona) Kinetic energyb) Electrical energy551. The orbital angular momentum for an electron revs-electron is:a) $\frac{h}{2\pi}$ b) $\sqrt{2} \cdot \frac{h}{2\pi}$ 552. The binding energy of the electron in the lowest	n emitted is proportional to cathode rays? I having high atomic masses the for all the quantum numb c) Dalton from an atom is called : c) Chemical energy olving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$ c) $\frac{1}{2} \cdot \frac{h}{2\pi}$ t orbit of the hydrogen ato	s bers. This was proposed by: d) Avogadro d) Work function + 1). Thus momentum for a d) Zero om is 13.6 eV. The energies		
547. In photoelectric effect the number of photo-electrona) Intensity of incident beamb) Frequency of incident beamc) Velocity of incident beamd) Work function of photo cathode548. Which of the following statements is wrong about ofa) They produce heating effectb) They carry negative chargec) They produce X – rays when strike with materiald) None of the above549. In an atom no two electrons can have the same valuea) Hundb) Pauli550. The minimum energy required to eject an electrona) Kinetic energyb) Electrical energy551. The orbital angular momentum for an electron revs-electron is:a) $\frac{h}{2\pi}$ b) $\sqrt{2} \cdot \frac{h}{2\pi}$ 552. The binding energy of the electron in the lowestrequired in eV to remove an electron from three low	n emitted is proportional to cathode rays? I having high atomic masses the for all the quantum numb c) Dalton from an atom is called : c) Chemical energy olving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$ c) $\frac{1}{2} \cdot \frac{h}{2\pi}$ t orbit of the hydrogen ato west orbits of the hydrogen	 a. Solution bers. This was proposed by: d) Avogadro d) Work function + 1). Thus momentum for a d) Zero bom is 13.6 eV. The energies atom are: 		
547. In photoelectric effect the number of photo-electron a) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> –rays when strike with material d) None of the above 549. In an atom no two electrons can have the same value a) Hund b) Pauli 550. The minimum energy required to eject an electron a) Kinetic energy b) Electrical energy 551. The orbital angular momentum for an electron rev <i>s</i> -electron is: a) $\frac{h}{2\pi}$ b) $\sqrt{2} \cdot \frac{h}{2\pi}$ 552. The binding energy of the electron in the lowess required in eV to remove an electron from three low a) 13.6, 6.8, 8.4 eV b) 13.6, 10.2, 3.4 eV	n emitted is proportional to cathode rays? I having high atomic masses the for all the quantum numb c) Dalton from an atom is called : c) Chemical energy olving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$ c) $\frac{1}{2} \cdot \frac{h}{2\pi}$ t orbit of the hydrogen ato west orbits of the hydrogen c) 13.6, 27.2, 40.8 eV	 a. Solution bers. This was proposed by: d) Avogadro d) Work function + 1). Thus momentum for a d) Zero bom is 13.6 eV. The energies atom are: 		
547. In photoelectric effect the number of photo-electron a) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> –rays when strike with material d) None of the above 549. In an atom no two electrons can have the same value a) Hund b) Pauli 550. The minimum energy required to eject an electron a) Kinetic energy b) Electrical energy 551. The orbital angular momentum for an electron rev <i>s</i> -electron is: a) $\frac{h}{2\pi}$ b) $\sqrt{2} \cdot \frac{h}{2\pi}$ 552. The binding energy of the electron in the lowest required in eV to remove an electron from three low a) 13.6, 6.8, 8.4 eV b) 13.6, 10.2, 3.4 eV 553. The probability of finding the electron in the orbital	n emitted is proportional to cathode rays? I having high atomic masses the for all the quantum numb c) Dalton from an atom is called : c) Chemical energy olving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$ c) $\frac{1}{2} \cdot \frac{h}{2\pi}$ t orbit of the hydrogen ato west orbits of the hydrogen c) 13.6, 27.2, 40.8 eV l is	 a. a. a		
547. In photoelectric effect the number of photo-electron a) Intensity of incident beam b) Frequency of incident beam c) Velocity of incident beam d) Work function of photo cathode 548. Which of the following statements is wrong about of a) They produce heating effect b) They carry negative charge c) They produce <i>X</i> –rays when strike with material d) None of the above 549. In an atom no two electrons can have the same value a) Hund b) Pauli 550. The minimum energy required to eject an electron a) Kinetic energy b) Electrical energy 551. The orbital angular momentum for an electron rev <i>s</i> -electron is: a) $\frac{h}{2\pi}$ b) $\sqrt{2} \cdot \frac{h}{2\pi}$ 552. The binding energy of the electron in the lowess required in eV to remove an electron from three low a) 13.6, 6.8, 8.4 eV b) 13.6, 10.2, 3.4 eV	n emitted is proportional to cathode rays? I having high atomic masses the for all the quantum numb c) Dalton from an atom is called : c) Chemical energy olving in an orbit is $\frac{h}{2\pi}\sqrt{l(l)}$ c) $\frac{1}{2} \cdot \frac{h}{2\pi}$ t orbit of the hydrogen ato west orbits of the hydrogen c) 13.6, 27.2, 40.8 eV	 a. Solution bers. This was proposed by: d) Avogadro d) Work function + 1). Thus momentum for a d) Zero bom is 13.6 eV. The energies atom are: 		

2	,	1	
a) $\frac{\lambda}{mu} = p$	b) $\lambda = \frac{h}{mu}$	c) $\lambda = \frac{h}{mp}$	d) $\lambda m = \frac{u}{p}$
mu	pecies having ionisation ene		P
a) H	b) He ⁺	c) B ⁴⁺	d) Li ²⁺
•		,	ipaired electron of chlorine atom is
a) 2, 1, 0	b) 2, 1, 1	c) 3, 1, 1	d) 3, 2, 1
•			und state of hydrogen atom is:
_			
a) $\frac{R_H c}{h}$	b) $\frac{I}{R_H ch}$	c) $\frac{hc}{R_H}$	d) $-R_H hc$
558. The radius of hydro	ogen atom is 0.53Å. The radi	11	\sim
a) 1.27 Å	b) 0.17 Å	c) 0.57 Å	d) 0.99 Å
,	,	,	metal ions have $3d^2$ electronic
ē	t. no. Ti=22, V=23, Cr=24, N		
a) Ti^{3+} , V^{2+} , Cr^{3+} , N	$4n^{4+}$ b) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mr	r^{7+} c) Ti ⁴⁺ , V ³⁺ , Cr ²⁺ ,	Mn ³⁺ d) Ti ²⁺ , V ³⁺ , Cr ⁴⁺ , Mn ⁵⁺
	paired electrons, in an unex		
a) 1	b) 2	c) 3	d) 4
,	for a metal is 4 eV. To em	it a photoelectron of zei	ro velocity from the surface of th
	gth of incident light should l		
a) 2700 Å	b) 1700 Å	c) 5900 Å	d) 3100 Å
562. The wave number of	of the first line in the Lyman	series in hydrogen spect	-
a) 72755.5cm ⁻¹	b) 109678 cm ⁻¹	c) 82258.5 cm ⁻¹	d) 65473.6 cm ⁻¹
563. The nodes present	-		-
a) One spherical, or	ne planar	b) Two spherical	
c) Two planar		d) One planar	
564. Electronic configur	ation of deuterium atom is	\mathbf{X}	
a) 1 <i>s</i> ¹	b) 2 <i>s</i> ²	c) 2 <i>s</i> ¹	d) 1 <i>s</i> ²
565. The number of <i>d</i> -el	ectrons retained in Fe ²⁺ (At	. No. Fe=26) ions is	
a) 3	b) 4	c) 5	d) 6
	ntum number $l = 3$, the max		ns will be:
a) 2	b) 6	c) Zero	d) 14
	ring sets of quantum numbe	rs is correct?	
a) $n = 5, l = 4, m =$ c) $n = 6, l = 0, m +$	= 0.s = + =	b) $n = 3, l = 3, m$	$= +3.s = +\frac{1}{-}$
	2		2
c) $n = 6, l = 0, m + 1$	$-1, s = -\frac{1}{2}$	d) $n = 4, l = 2, m$	= +2, s = 0
568. Correct energy valu			
a) $ns, np, nd, (n - 1)$		b) $ns_{1}np_{2}(n-1)d$	(n-2)f
c) $ns, np, (n-1)d$,		d) $ns_{1}(n-1)d_{1}np_{2}$	
	ke species will have same ra	,	
a) $n = 2$, Li ²⁺	b) $n = 2, Be^{3+}$	c) $n = 2$, He ⁺	
	-		f the nucleus of mass no. A is give
			no. is 64, the fraction of the atomi
volume that is occu		n atom 15 1 M. II the mass	
a) 1.0×10^{-3}	b) 5.0×10^{-5}	c) 2.5×10^{-2}	d) 1.25×10^{-13}
571. The expression Ze	,		aj 1120 / 10
a) The charge of α -			
b) The charge on a	•		
,	ne nucleus of atomic number	r Z	
d) The kinetic ener			
-	est number of unpaired elec	ctrons?	
a) Mn	b) Mn ⁵⁺	c) Mn ³⁺	d) Mn ⁴⁺
uj 1111	5, MII	C) 1111	<i>a</i> _j

573. The ratio between the neutrons present in carbon and silicon with respect to atomic masses of 12 and 28 is: a) 3 : 7 b) 7 : 3 c) 3:4 d) 6 : 28 574. The last electron placed in the third (n = 3) quantum shell for: b) Zn d) Ca a) Kr c) Cu 575. Which have the same number of *s*-electrons as the *d*-electrons in Fe^{2+} ? a) Li b) Na c) N d) P 576. The number of spectral lines that can be possible when electrons in 7th shell in different hydrogen atoms return to the 2nd shell, is a) 12 b) 15 c) 14 d) 10 577. The value of Rydberg constant is a) 10,9678 cm^{-1} b) 10,9876 cm⁻¹ c) 10,8769 cm⁻¹ d) 10,8976 cm 578. In absence of Pauli exclusion principle, the electronic configuration of Li in ground state may be: d) $1s^2$, $2s^1 2p^1$ a) $1s^2 \cdot 2s^2$ b) 1*s*³ c) $1s^1, 2s^2$ 579. Which relates to light only as stream of particles? b) Photoelectronic effect c) Interference d) Planck's theory a) Diffraction 580. Who introduced the concept of electron spin? a) Schrödinger b) Planck c) Bohr d) Uhlenbeck and Gaudsmit 581. The unit of wavelength (nm) is equal to: c) 1000Å b) 100Å d) 55Å a) 10Å 582. Mass of neutron is ... times the mass of electron a) 1840 c) 2000 b) 1480 d) None of these 583. The highest excited state that unexcited hydrogen atom can reach when they are bombarded with 12.2 eV electron is : c) n = 3a) n = 1b) n = 2d) n = 4584. The total number of atomic orbitals in fourth energy level of an atom is: a) 4 b) 8 c) 16 d) 32 585. The radius of the first Bohr orbit of hydrogen atom is 0.529Å. The radius of the third orbit of H⁺ will be a) 8.46 Å b) 0.705 Å c) 1.59 Å d) 4.79 Å 586. Particles, which can be added to the nucleus of an atom without changing the chemical properties, are called: a) Electrons b) Protons c) Neutrons d) α -particles 587. An electron with values 4, 3, -2 and $+\frac{1}{2}$ for the set of four quantum numbers *n*, *l*, *m*₁ and *m*_s, respectively, belongs to a) 4s orbital b) 4*p* orbital c) 4d orbital d) 4f orbital 588. The total number of electrons that can be accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 is: a) 2 b) 4 c) 6 d) 8 589. When atoms are bombarded with α -particles suffer deflections while others pass through undeflected. This is because : a) The force of attraction on the α -particle by the oppositely charged electrons is not sufficient b) The nucleus occupies much smaller volume compared to the volume of the atom c) The force of repulsion on the fast moving α -particle small d) The effect in the nucleus do not have any effect on the α -particles 590. How many electrons with l = 3 are there in an atom having atomic number 54? c) 14 a) 3 b) 10 d) None of these 591. Suppose a completely filled or half filled set of *p* or *d*-orbitals is spherically symmetrical. Point out the

species, which is spher	rical symmetrical?		
a) 0	b) C	c) Cl ⁻	d) Fe
592. The number of electro	ns and neutrons of an elen	nent is 18 and 20 respectiv	ely. Its mass number is
a) 2	b) 17	c) 37	d) 38
593. Which <i>d</i> -orbital has di	fferent shape from rest of	all <i>d</i> -orbital?	
a) $d_{x^2 - y^2}$	b) d_{z^2}	c) d_{x^2y}	d) d_{xz}
594. Photoelectric effect is t	the phenomenon in which		
a) Photons come out o	f a metal when it is hit by a	a beam of electrons	
b) Photons come out o	f the nucleus of an atom u	nder the action of an electr	ric field
c) Electrons come out incident light wave	of a metal with a constant	velocity which depends or	n the frequency and intensity of
		-	certain value which depends
595. Total number of orient	cy of the incident light way	-	
			4) 22
a) $2n$	b) $2l + 1$	c) n^2	d) $2n^2$
596. What is the minimum of platinum metal? The th	hreshold frequency for pla	tinum is $1.3 \times 10^{15} \text{s}^{-1}$	
a) 3.6 × 10 ⁻¹³ erg	b) 8.2× 10 ⁻¹³ erg	c) 8.2×10 ⁻¹⁴ erg	d) 8.6× 10 ⁻¹² erg
597. For an electron in a hy	drogen atom, the wave fur	nction Ψ is proportional to	\exp^{-t/a_0} , where a_0 is the
Bohr's radius. What is	the ratio of the probability	y of finding the electron at t	the nucleus to the probability of
finding it at a_0 ?			
a) <i>e</i>	b) <i>e</i> ²	$\frac{1}{1}$	d) Zero
-		e^2	
598. Millikan's oil drop exp			
a) <i>e/m</i> ratio of electro		b) Electronic charge	
c) Mass of an electron		d) Velocity of an elect	cron
599. The maximum number	-		
a) 5	b) 7	c) 10	d) 6
	nodel of the hydrogen ato nber <i>n</i> is proportional to :	om, the radius of a station	nary orbit characterised by the
a) n^{-1}	b) <i>n</i>	c) n^{-2}	d) <i>n</i> ²
601. Which one of the follow	wing has unit positive char	rge and 1 u mass?	
a) Electron	b) Neutron	c) Proton	d) None of these
602. The frequency of a gre		wavelength is:	
a) 500 nm	b) 5 nm	c) 50,000 nm	d) None of these
603. Among the following s		which one is incorrect for /	
a) 4, 3, 2, $+\frac{1}{2}$	b) 4, 2, 1, $+\frac{1}{2}$	c) 4, 2, -2, $+\frac{1}{2}$	
	-	c) 4, 2, -2, $+\frac{1}{2}$	d) 4, 2, 1, $-\frac{1}{2}$
	-	c) 4, 2, -2, $+\frac{1}{2}$	d) 4, 2, 1, $-\frac{1}{2}$
604. Nitrogen has the ele	-	c) 4, 2, -2, $+\frac{1}{2}$	d) 4, 2, 1, $-\frac{1}{2}$
604. Nitrogen has the ele proposed by:	ctronic configuration 1s	c) 4, 2, -2, $+\frac{1}{2}$	d) 4, 2, 1, $-\frac{1}{2}$
604. Nitrogen has the ele proposed by: a) Aufbau principle	ctronic configuration 1s	c) 4, 2, -2, $+\frac{1}{2}$	d) 4, 2, 1, $-\frac{1}{2}$
604. Nitrogen has the ele proposed by: a) Aufbau principle b) Pauli's exclusion pri	ctronic configuration 1s	c) 4, 2, -2, $+\frac{1}{2}$	d) 4, 2, 1, $-\frac{1}{2}$
 604. Nitrogen has the ele proposed by: a) Aufbau principle b) Pauli's exclusion principle c) Hund's rule d) Uncertainty principle 	ctronic configuration 1 <i>s</i> inciple le	c) 4, 2, -2, $+\frac{1}{2}$ ² , 2s ² 2p _x ¹ 2p _y ¹ 2p _y ¹ and no	d) 4, 2, 1, $-\frac{1}{2}$ ot $1s^2$, $2s^2 2p_x^2 2p_x^1 2p_z^0$. It was
 604. Nitrogen has the ele proposed by: a) Aufbau principle b) Pauli's exclusion principle c) Hund's rule d) Uncertainty principle 	ctronic configuration 1s inciple le wing sets of ions represent	c) 4, 2, -2, $+\frac{1}{2}$ ² , 2s ² 2p _x ¹ 2p _y ¹ 2p _z ¹ and no	d) 4, 2, 1, $-\frac{1}{2}$ ot $1s^2$, $2s^2 2p_x^2 2p_x^1 2p_z^0$. It was
 604. Nitrogen has the ele proposed by: a) Aufbau principle b) Pauli's exclusion principle c) Hund's rule d) Uncertainty principle 605. Which one of the follow a) K⁺, Cl⁻, Ca²⁺, Sc³⁺ 	ctronic configuration 1 <i>s</i> inciple le wing sets of ions represent b) Ba ²⁺ , Sr ²⁺ , K ⁺ , S ^{2–}	c) 4, 2, -2, $+\frac{1}{2}$ ² , 2s ² 2p _x ¹ 2p _y ¹ 2p _z ¹ and no	d) 4, 2, 1, $-\frac{1}{2}$ ot $1s^2$, $2s^2 2p_x^2 2p_x^1 2p_z^0$. It was nic species?
 604. Nitrogen has the ele proposed by: a) Aufbau principle b) Pauli's exclusion principle c) Hund's rule d) Uncertainty principle 605. Which one of the follow 	ctronic configuration 1 <i>s</i> inciple le wing sets of ions represent b) Ba ²⁺ , Sr ²⁺ , K ⁺ , S ^{2–}	c) 4, 2, -2, $+\frac{1}{2}$ ² , 2s ² 2p _x ¹ 2p _y ¹ 2p _z ¹ and no	d) 4, 2, 1, $-\frac{1}{2}$ ot $1s^2$, $2s^2 2p_x^2 2p_x^1 2p_z^0$. It was nic species?
 604. Nitrogen has the ele proposed by: a) Aufbau principle b) Pauli's exclusion principle c) Hund's rule d) Uncertainty principie 605. Which one of the following a) K⁺, Cl⁻, Ca²⁺, Sc³⁺ 606. The <i>e/m</i> ratio is maximized 	ctronic configuration 1 <i>s</i> inciple le wing sets of ions represent b) Ba ²⁺ , Sr ²⁺ , K ⁺ , S ^{2–} num for: b) He ⁺	c) 4, 2, -2, $+\frac{1}{2}$ ² , 2s ² 2p _x ¹ 2p _y ¹ 2p _z ¹ and no ts a collection of isoelectro c) N ³⁻ , O ²⁻ , F ⁻ , S ²⁻ c) H ⁺	d) 4, 2, 1, $-\frac{1}{2}$ ot $1s^2$, $2s^2 2p_x^2 2p_x^1 2p_z^0$. It was nic species? d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺ d) He ²⁺

b) Pauli's exclusio	n principle		
c) Aufbau princip			
d) None of the abo			
•	electronic configuration of nitrog	en atom can he renresent	ed as
a) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		b) 11 11 1	
c) 11 11		d) All of the above	
,	n position of a minute particle	•	10^{-5} m The uncertainty in its
velocity (in m s ^{-1}			in the uncertainty in its
a) 2.1×10^{-34}	b) 0.5×10^{-34}	c) 2.1×10^{-28}	d) 0.5×10^{-23}
-	ements, number of elements havi	-	
a) 80	b) 10	c) 100	d) 60
	ons in 1.8 mL of H_2O are:	.,	
a) 6.02×10^{23}	b) 6.02×10^{24}	c) 6.02 × 10 ²²	d) 6.02×10^{25}
-	bitals present in the shell with <i>n</i>	= 4 is	
a) 8	b) 16	c) 18	d) 32
613. Number of electro	ons in the outermost orbit of the o	element of atomic number	15 is:
a) 7	b) 5	c) 3	d) 2
614. The angular mom	entum of electron of H-atom is p	roportional to:	S
a) <i>r</i> ²	b) $\frac{1}{r}$	c) \sqrt{r}	d $\frac{1}{2}$
aj l	$\frac{b}{r}$		$dJ \frac{1}{\sqrt{r}}$
	of electrons present in 1 mL Mg:		
	$_{12}$ Mg ²⁴ = 1.2 g/mL)		
a) 0.6 N	b) 6 N	c) 2 N	d) 3 N
_	tum number represents the elect	tron of the lowest energy?	
a) $n = 2, l = 0, m$			
b) $n = 2, l = 1, m$	-	\mathbf{V}	
c) $n = 4, l = 0, m$			
d) $n = 4, l = 0, m$,	
	both as a particle and a wave. Th		
a) Heisenberg	b) Gilbert N. Lewis	c) de-Broglie	d) L. Rutherford
	wing is isoelectronic with carbon		13 413+
a) N ⁺	b) 0^{2-}	c) Na ⁺	d) Al^{3+}
	n position for a dust particle (<i>m</i> e error in measurement of veloci		$= 10^{-1}$
	b) 5.27×10^{-5} cm	c) 5.27×10^{-6} cm	d) 5.27×10^{-7} cm
	postulate of Dalton's atomic the	,	u) 5.27 × 10 cm
	her created nor destroyed in a ch	•	
-	bound, the relative number and k		t
	ments are alike, including their r		t
-	s composed of extremely small pa		
	s quantum numbers (<i>n</i> , <i>l</i> , <i>m</i> , <i>s</i>) d		ch can have the largest value.
a) n	b) <i>l</i>	c) m	d) s
	al configuration of an element wi	,	
a) $3d^5$	b) $3d^3$, $4s^2$	c) $3d^2$, $4s^14p^1$	d) $3d^3$, $4s^14p^1$
,	, 'm' when annihilated completel		
a) mc^2	b) m/c^2	c) mc	d) c^2/m
,	four quantum number for the va	,	, ,
a) $n = 5, l = 0, m$	-	b) $n = 5, l = 1, m = 1,$	
c) $n = 5, l = 1, m$	-	d) $n = 6, l = 0, m = 0, l$	
625. A photon is :		,	
•			

a) A quanta of light	(or electromagnetic) energ	V	
b) A quanta of matte			
c) A positively charg			
	r measuring light intensity		
626. Which orbital is dun			
a) <i>s</i>	b) $2p_v$	c) 3 <i>s</i>	d) $3d_z^2$
-	es not give the correct arrar	,	
a) Cu and Zn	b) Co and Zn	c) Mn and Cr	d) Cu and Cr
628. Ordinary oxygen con a) Only 0-16 isotope b) Only 0-17 isotope c) A mixture of 0-16	ntains:		
d) A mixture of 0-16	5,0-17 and 0-18 isotopes		
629. The approximate qu	antum number of a circular	orbit of diameter, 20.6 nm	of the hydrogen atom according
to Bohr's theory is:			
a) 10	b) 14	c) 12	d) 16
630. A <i>p</i> -orbital in a given	n shell can accommodate up	oto	
a) Four electrons		b) Two electrons wit	h parallel spin
c) Six electrons		d) Two electrons wit	h opposite spin
631. An electron beam is	accelerated through a pote	ntial difference of 10,000 v	olt. The de-Broglie wavelength
of the electron beam	ı is		
a) 0.123 A°	b) 0.356 A°	c) 0.186 A°	d) 0.258 A°
632. Transition of electro	on from $n = 3$ to $n = 1$ level		
a) X-ray spectrum		n c) Band spectrum	d) Infrared spectrum
633. Atomic radius is of to occupied by nucleus		uclear radius of the order o	of 10^{-13} cm. The fraction of atom
a) 10 ⁻⁵	b) 10 ⁵	c) 10 ⁻¹⁵	d) None of these
634. The ratio of the mas	ses of proton and neutron a	ire:	
a) > 1	b) < 1	c) = 1	d) > $\sqrt{1}$
635. If the mass number	of an element is W and its a	tomic number is N, then:	
a) Number of $_{-1}e^{0}$ b) Number of proton c) Number of $_{0}n^{1} =$ d) Number of $_{0}n^{1} =$	= W - N		
b) Number of proton	$hs(_{1}H^{1}) = W - N$		
c) Number of $_0n^1 =$	W - N		
d) Number of $_0n^1 =$	N		
636. For a particular valu	e of azimuthal quantum nu	mber, the total number of r	nagnetic quantum number
values are given by			
a) $l = \frac{m+1}{2}$	b) $l = \frac{m-1}{2}$	c) $l = \frac{2m+1}{2}$	d) $m = \frac{2l+1}{2}$
637. The relation betwee	n energy of a radiation and	its frequency was given by	:
a) De Broglie	b) Einstein	c) Planck	d) Bohr
	level starts in the element of	of atomic number:	
a) 29	b) 31	c) 35	d) 19
	f the electron in the <i>n</i> th orb	oit of Bohr hydrogen atom i	S :
a) Directly proportion			
b) Inversely proport			
c) Inversely proport			
d) Inversely proport			
	iffers from chloride ion in t		
a) Protons	b) Neutrons	c) Electrons	d) None of these
641. If the ionisation pote	ential for hydrogen atom is	13.6 eV, then the ionisation	potential for He ⁺ ion should be

a) 13.6 eV	b) 6.8 eV	c) 54.4 eV	d) 72.2 eV
642. The λ for H_{α} line of	Balmer series is 6500 Å. Thu	us, λ for H_eta line of Balmer se	eries is :
a) 4814 Å	b) 4914 Å	c) 5014 Å	d) 4714 Å
643. According to Bohr's	theory, the angular momen	tum for an electron of 3rd or	rbit is
a) 3 <i>h</i>	b) 1.5 <i>h</i>	c) 9 <i>h</i>	d) $2\frac{h}{\pi}$
-	-		π
644. The de-Broglie equa	ation applies		
a) To protons only	1	b) To electrons only	
c) All the material of	•	d) To neutrons only	
	ing electronic configuration	-	
a) $1s^2, 2s^2$	b) $1s^2$, $2s^22p^6$	c) [Ar] $3d^{10}$, $4s^24p^2$	d) $1s^2$, $2s^22p^2$, $3s^1$ is:
		commodated in a <i>g</i> -subshell	
a) 14	b) 18	c) 12	d) 20
a) [Ar] $3d^54s^1$	state electronic configuration b) $[Ar]3d^44s^2$	c) [Ar] $3d^64s^0$	d) [Ar] $4d^54s^1$
,	,	, , ,	
a) 13.6 eV	b) 54.4 eV	eV. What will be the ionisati c) 122.4 eV	d) Zero
,	•		ber of spectral lines emitted is
equal to:	Juli 13 excited by giving 0.4	ev or energy, then the hum	iber of spectral lines clinited is
a) None	b) Two	c) Three	d) Four
	,	bility of finding electron. Its	-
a) Inside the nucleu			
b) Far from the nuc			
c) Near the nucleus			
d) Upon the type of			
, , , ,,	momentum of an electron in	n a <i>d</i> -orbital is	
a) $\sqrt{6}\frac{h}{2\pi}$	b) $\sqrt{2}\frac{h}{2\pi}$	c) $\frac{h}{2\pi}$	d) $\frac{2h}{2\pi}$
211			$\frac{dJ}{2\pi}$
	the proton and electron in h	ydrogen atom is:	
a) Filled with air			
b) Empty			
c) Filled with magn			
d) None of the abov			
		ith electrons, the next electr	
a) 5 <i>s</i>	b) 6s	c) 5 <i>d</i>	d) 5 <i>p</i>
	aired electrons in Fe ³⁺ ion is		4) 2
a) 3	b) 1 e^{2+} (at No. of Eq.	c) 5 -26 is not equal to that a	d) 2 ftho
a) p -electrons in Ne		e = 26) is not equal to that o	i ule:
b) s-electrons in Ma	. ,		
c) <i>d</i> -electrons in Fe			
d) <i>p</i> -electrons in Cl			
	, ,	is 1, magnetic quantum num	ber can have values :
a) -1 only	b) $+1$ only	c) +1,0,−1	d) +1 and -1
· ·	n dropped from $n = 3$ to $n =$		
a) 1.9 eV	b) 12 eV	c) 10.2 eV	d) 0.65 eV
658. The $n + l$ value for	-	-,	- ,
a) 4	b) 7	c) 3	d) 1
	-	d electrons in <i>N</i> -shell of an a	•
a) 4, 12, 32	b) 4, 16, 30	c) 4, 16, 32	d) 4, 32, 64
		y of 3600 km/h. Calculate the	2
5	-	•	=

 $(h = 6.626 \times 10^{-27} \text{erg} - \text{s})$ a) 6.626×10^{-28} cm b) 6.626×10^{-29} cm c) 6.626×10^{-30} cm d) 6.626×10^{-31} cm 661. The target used for production of X-ray beam must have: a) High melting point and high atomic number b) High melting point and low atomic number c) Low melting point and low atomic number d) Low melting point and high atomic number 662. When photons of energy 4.25eV strike the surface of a metal A, the ejected photoelectrons have maximum kinetic energy, T_A (expressed in eV) and de Broglie wavelength λ_A . The maximum kinetic energy of photoelectrons liberated from another metal *B* by photons of energy 4.70V is $T_B = T_A - 1.50$ eV. If the de Broglie wavelength of these photoelectrons is $\lambda_B = 2\lambda_A$, then which is not correct? a) The work function of A is 2.25 eV b) The work function of B is 3.70 eV c) $T_A = 2.00 \text{eV}$ d) $T_B = 0.5 \text{eV}$ 663. An electrons is in one of the 3*d*-orbitals, which of the quantum number is not possible? d) m = 2b) n = 3c) m = 1a) l = 1664. The momentum of a photon is *p*. The corresponding wavelength is: b) *hp* d) h/\sqrt{p} a) h/pc) p/h665. An electron, a proton and an alpha particle have KE of 16E, 4E and E respectively. What is the qualitative order of their de-Broglie wavelengths? a) $\lambda_e > \lambda_p > \lambda_\alpha$ b) $\lambda_p = \lambda_\alpha > \lambda_e$ d) $\lambda_{\alpha} < \lambda_{e} \approx \lambda_{p}$ c) $\lambda_p < \lambda_e < \lambda_\alpha$ 666. How many sets of four quantum number are possible for the electrons present in $He^{2-?}$ d) None of these a) 4 b) 3 c) 2 667. Which of the following has the maximum number of unpaired 'd' electrons? a) Zn²⁺ b) Fe²⁺ c) Ni³⁺ d) Cu⁺ 668. The electrons, identified by quantum number n and l, V. n = 3; l = 2VI. n = 5; l = 0VII. n = 4; l = 1VIII. n = 4; l = 2IX. n = 4; l = 0can be placed in order of increasing energy, as a) I<V<III<IV<II b) I<V<III<IV c) V<I<III<IV d) V<I<III<IV 669. Identify the least stable ion amongst the following a) Li⁻ b) Be⁻ c) B⁻ d) C⁻ 670. Mass number of atom represents the number of its: a) Protons only b) Protons and neutrons c) Protons and electrons d) Neutrons and electrons 671. The equation, $\lambda = \frac{h}{mv}$ was deduced by b) de-Broglie a) Newton c) Planck d) Heisenberg 672. Ionisation potential of hydrogen atom is 13.6 eV. Hydrogen atom in the ground state are excited by monochromatic light of energy 12.1 eV. The spectral lines emitted by hydrogen according to Bohr's theory will be: a) One b) Two c) Three d) Four 673. The line spectrum observed when electron falls from the higher level into *L*-level is known as: b) Paschen series c) Bracket series d) None of these a) Balmer series 674. Atomic weight of Ne is 20.2. Ne is a mixture of Ne²⁰ and Ne²². Relative abundance of heavier isotope is:

a) 90	b) 20	c) 40	d) 10
675. The number of waves i			
a) n^2	b) <i>n</i>	c) <i>n</i> − 1	d) <i>n</i> − 2
	agnetic moment equal to 4.9		
a) 3	b) 4	c) 2	d) 5
677. The number of electron			
a) 19	b) 20	c) 18	d) 40
•	n presence of magnetic field a	are;	
a) Three fold degenera			
b) Two fold degenerate	<u>.</u>		\sim
c) Non-degenerate			
d) None of these			
679. In 'aufbau principle', th	=		*
a) The name of scientis			
b) German term meani			\circ
c) The energy of electr		A	X
d) The angular momen			
	i in the hydrogen atom is 2.2	$2 \times 10^{\circ} \text{m/s}$. The de Broglie	wavelength for this electron
is:		.) 22.2	4) 0 22
a) 33 nm	b) 45.6 nm	c) 23.3 nm	d) 0.33 nm
	e of –1. It has 18 electrons ar		
a) 37	b) 35	c) 38	d) 20
	is related with both wave na b) $E = mc^2$	c) Diffraction	d = h a
a) Interference	n Bohr's fourth orbit. Its de-I		d) $E = hv$
the fourth orbit?	ii boiii s ioui tii oi bit. Its ue-i	Di Ogne wavelengur is n. wi	
	C)		4
a) $\frac{2}{\lambda}$	b) 2 λ	c) 4 λ	d) $\frac{4}{\lambda}$
684. Which of the following	sets of quantum numbers rep	presents an impossible arra	angement?
n l m s			
a) 3 2 -2 +	$\frac{1}{2}$	b) 3 2 $-3 + \frac{1}{2}$	
a) 3 2 -2 + c) 4 0 0 -	2	b) 3 2 $-3 + \frac{1}{2}$ d) 5 3 0 $-\frac{1}{2}$	
	2		
	is moving with a velocity of 1		
a) 0.01 cm	b) 6.6×10^{-34} m		
	etic energy and the total er	nergy of the electrons of h	hydrogen atom according to
Bohr's model is:			
a) 1 : -1	b) 1 : 1	c) 1 : 2	d) 2 : 1
	ogen atom is 13.6 eV. The bin		
a) 13.6 eV	b) 27.2 eV	c) 54.4 eV	d) 3.4 eV
	f an electron having wavelen	igth of 0.15 nm Mass of an e	electron is 9.109 \times 10 20 g.
$(h = 6.626 \times 10^{-27} \text{erg})$	-	-1	$1220(2) + 10^{-9} = -1$
	b) 2.062×10^{-15} cm. s ⁻¹		d) 2.062×10^{-5} cm. s ⁻¹
• •	otoelectric effect is based on		
a) Maxwell's electroma	gnetic theory of light	b) Planck's quantum theo	ory of light
c) Both of the above	noccocc angular rada?	d) None of the above	
690. Which orbital does not		a) d	d) f
a) s 601 The azimuthal quantum	b) <i>p</i> n number for an electron in a	c) d	d) <i>f</i>
a) May be zero		a Ju-01 011dl 15.	
b) Two			
0 1 1 1 0			

	less than 5 but greater th	an zero	
d) May be $+5$ to -5 in		<i>((((((((((</i>	· · · · · · · · · · · · · · · · · · ·
		mass 6.6 \times 10 ⁻⁷ kg movin	g with a speed of 10^5 cm s ⁻¹ ?
$(h = 6.6 \times 10^{-34} \text{kg m})$ a) $2 \times 10^{-12} \text{ m}$		a) 1×10^{-10} m	d) 2×10^{-10} m
,		c) 1×10^{-10} m	-
693. A transition element <i>X</i>			
a) 22	b) 25	c) 26	d) 19
694. The maximum energy	is possessed by an electro	=	
a) In nucleus		b) In ground state	
c) In first excited state		d) At infinite distance	
		s of the hydrogen atom a	re in the ratio 1:4. The energy
difference between th	•		
a) either 12.09 eV or 3			
b) either 2.55 eV or 10			
c) either 13.6 eV or 3.			\mathbf{O}
d) either 3.4 eV or 0.8			
		n = 40 to $n = 2$ of He ⁺ is eq	ual to the transition in H atom
corresponding to whi	ch of the following?		
a) $n = 3$ to $n = 1$		c) $n = 3$ to $n = 2$	
697. What is the atomic nu			
a) 25	b) 28	c) 27	d) 26
698. The first emission line			-
a) $\frac{9R_{\rm H}}{400}$ cm ⁻¹	b) $\frac{7R_{\rm H}}{144}$ cm ⁻¹	c) $\frac{3R_{\rm H}}{-1}$ cm ⁻¹	d) $\frac{5R_{\rm H}}{36}$ cm ⁻¹
100	111	T A	50
699. Which statement does			17
	rons in the orbit is quantiz		
	orbit nearest the nucleus		
-	n different orbits around t		
	-	the orbit cannot be determined	ined simultaneously
700. If <i>r</i> is the radius of first	st orbit, the radius of n^m c	orbit of the H atom will be r	
a) <i>rn</i> ²	b) <i>rn</i>	c) $\frac{7}{n}$	d) $r^2 n^2$
701. Neutron was discover	ed by:	n	
a) Thomson	b) Chadwick	c) Bohr	d) Rutherford
702. The frequency of radia			-
	3×10^{-18} J atom ⁻¹ and h		
a) $1.54 \times 10^{15} \text{ s}^{-1}$		c) $3.08 \times 10^{15} \text{ s}^{-1}$	d) $2.0 \times 10^{15} \text{ s}^{-1}$
703. Nuclides:	6) 1.05 × 10 - 5	c) 5.00 × 10 - 5	
a) Have same number	of protons		
b) Have specific atom	=		
	ic number and mass numb	vers	
d) Are isotopes	ie number and mass nume		
704. The compound in whi	ch cation is isoelectronic i	with anion is	
a) NaCl	b) CsF	c) Nal	d) K ₂ S
705. The electronic configu	,	,	uj K ₂ 5
a) [Ar] $3d^{10}$, $4s^1$		¹ c) [Kr] $4d^{10}$, $5s^1$	d) [Kr] $4d^9$, $5s^2$
706. <i>n</i> and <i>l</i> values of an or			
a) <i>B</i> is more than <i>A</i>		Ji anounci orbital D ale J	and 0. The chergy of.
b) A is more than B			
c) A and B are of same	aanarau		
d) None of the above	c chergy		
uj none or the above			

707. Which is correct in case of <i>p</i> -orbitals?		
a) They are spherical		
b) They have a strong directional char	acter	
c) They are five fold degenerate		
d) They have no directional character		
708. X-rays and γ -rays of same energies ma	ay be distinguished by:	
a) Velocity b) Ionizing	power c) Intensity	d) Method of production
709. A neutral atom always consist of :		
a) Protons		· · ·
b) Neutrons + protons		$\langle \cdot \rangle$
c) Neutrons + electrons		
d) Neutrons + protons + electrons		
710. A photon of 300 nm is absorbed b	y a gas then re-emits two pho	tons. One re-emitted photon has
wavelength 496 nm, the wavelength o	f second re-emitted photon is:	
a) 757 b) 857	c) 957	d) 657
711. If uncertainties in the measurement of	f position and momentum of an ele	ectron are equal, the uncertainty in
the measurement of velocity is		
a) $8.0 \times 10^{12} \text{ ms}^{-1}$ b) $4.2 \times 10^{12} \text{ ms}^{-1}$	¹⁰ ms ⁻¹ c) 8.5×10^{10} ms ⁻¹	d) $6.2 \times 10^{10} \text{ ms}^{-1}$
712. If the quantum number for the 5 th elec		
values would be		
a) 2, 1, 0, $-\frac{1}{2}$ b) 2, 0, 1, +	$\frac{1}{2}$ c) 2, 1, 1, $-\frac{1}{2}$	d) 2, 1, -1 , $+-\frac{1}{2}$
a) 2, 1, 0, $-\frac{1}{2}$ b) 2, 0, 1, +	$\overline{2}$ cj 2, 1, 1, $-\overline{2}$	a) 2, 1, -1 , $+-\frac{1}{2}$
713. A patient is asked to drink BaSO ₄ solu	tion for examining the stomach by	X-rays, because X-rays are:
a) Less absorbed by heavy atoms		
b) More absorbed by heavy atoms		
c) Diffracted by heavy atoms		
d) Refracted by heavy atoms	C Y	
714. Which of the following is correct for n	umber of electrons, number of orb	itals respectively in <i>n</i> -orbit?
a) 4, 4 and 8 b) 4, 8 and		d) 4, 16 and 32
715. Which has highest e/m ratio?	\mathbf{O}^{\prime}	
a) He ²⁺ b) H ⁺	c) He ⁺	d) H
716. The quantum number sufficient to des	cribe the electron in H atom is:	2
a) n b) 1	c) <i>m</i>	d) <i>s</i>
717. If an isotope of hydrogen has two neut	trons in its atom, its atomic numbe	-
a) 2 and 1 b) 3 and 1	c) 1 and 1	d) 1 and 3
718. The radius of hydrogen atom in the gr	-	2
similar state is		,
a) 0.176 Å b) 0.30 Å	c) 0.53 Å	d) 1.23 Å
719. The speed of the cathode rays is:		() 11 <u>0</u> 11
a) Equal to light		
b) Less than light		
c) Greater than light		
d) May be less than, greater than or eq	uual to light	
720. Bohr model can explain		
a) The solar spectrum		
b) The spectrum of hydrogen molecule	٩	
c) Spectrum of any atom or ion contai		
d) The spectrum of hydrogen atom on		
721. Which represents the correct set up of	-	electron?
a) $4, 3, 2, +1/2$ b) $4, 2, 1, 0$	c) $4, 3, -2, +1/2$	
	(j 4, 3, -2, +1/2)	d) 4, 0, 0, 1/2
722. Electron in the atom are held by:		

a) Coulombic for	-	c) Gravitational forces	-
_	ohr's theory, the angular momen		bit is
a) 25 ${h\over \pi}$	b) $1.0 \frac{h}{\pi}$	c) $10\frac{h}{\pi}$	d) 2.5 $\frac{h}{\pi}$
724. Positron is:			
a) Electron with	+ve charge		
b) A helium nuc	leus		
c) A nucleus wit	h two protons		
d) A nuclear wit	h one neutron and one proton		
725. The line spectra	of two elements are not identio	cal because	
a) The elements	do not have the same number	of neutrons	
b) They have dif	ferent mass numbers		
	ost electrons are at different en	nergy levels	
d) All of the abo			
	lowing expressions gives the de	e-Broglie relationship?	
_	h h	h h	v
a) $p = \frac{h}{mv}$	b) $\lambda = \frac{h}{mv}$	c) $\lambda = \frac{h}{mp}$	d) $\lambda m = -\frac{1}{p}$
727. Three electrons	in <i>p</i> -sublevel must have the qu	-	A
a) <i>n</i> = 2	b) $m = 0$	c) $l = 0$	d) $s = -1/2$ or $+1/2$
	vacant <i>d</i> -orbitals in completely	-	
a) 2	b) 3	c) 1	d) 4
729. The planck's cor			
a) Work	b) Energy	c) Angular momentum	d) Linear momentum
,	imbers of most energetic electr		-
a) 2, 1, 0, +1/2	b) 3, 1, 1, +1/2	c) 3, 0, 0, +1/2	d) 3, 1, 0, +1/2
, ,	ass ratio of α -particle is approx		
a) Six times	b) Four times	c) Half	d) Two times
	photons emitted per second by	-	
nm is $(h = 6.63)$			
a) 4×10^{-20}	b) 1.54×10^{20}	c) 3 × 10 ⁻²⁰	d) 2×10^{20}
733. Density of the el			
a) 2.77×10^{12} g		c) 2.17×10^{14} g/mL	d) None of these
, ,	of the radiation emitted, when	,	2
	e (Rydberg constant = 1.097×1000		tans nom minney to stationa
a) 91 nm	b) 192 nm	c) 406 nm	d) 9.1×10^{-8} nm
2	electrons accommodated in an o	,	,
a) 2	b) 6	c) 10	d) 8
-	of light energy is needed by the	2	2
	ons of green light ($\lambda = 550$ nm)		
a) 26	b) 27	c) 28	d) 29
	,	,	
a) 6.6×10^{-32} m	moving with a speed of 100 m/ b) 6.6×10^{-34} m	c) 1.0×10^{-35} m	d) 1.0×10^{-32} m
	,	$C_{\rm J} = 1.0 \times 10^{-0.0} {\rm m}$	u) 1.0 × 10 ⁻¹ m
738. Which of the follow	0	b) C^{14} and N^{14} and	
a) $_1H^1$ and $_2He$	-	b) ${}_{6}C^{14}$ and ${}_{7}N^{14}$ are i	-
	Ca ⁴⁰ are isotones	d) $_9F^{19}$ and $_{11}Na^{24}$ ar	e isociapners
•	of the atom was put forward by		
a) Rutherford	b) Aston	c) Neils Bohr	d) J.J. Thomson
	lowing is not permissible arran	gement of electrons in an ato	m?
,	n = -2, s = -1/2		
b) $n = 4, l = 0, r$	•		
c) $n = 5, l = 3, r$	n = 0, s = +1/2		

d) $n = 3, l = 2, m = -3, l = 2, l = -3, l = 2, l = 2, l = -3, l = 2, l = 2, l = 2,$	s = -1/2		
741. The measurement of th	e electron position is associ	ated with an uncertainty in	n momentum, which is equal
to 1×10^{-18} g cm s ⁻¹ . T	The uncertainty in electron v	elocity is:	
(mass of an electron is 9	9×10^{-28} g)		
a) 1×10^6 cm s ⁻¹	b) 1×10^5 cm s ⁻¹	c) 1×10^{11} cm s ⁻¹	d) 1.1×10^9 cm s ⁻¹
742. The two electrons ins K	-sub shell will differ in	,	2
a) Principal quantum nu		b) Azimuthal quantum nu	umber
c) Magnetic quantum n		d) Spin quantum number	
743. An atom having even nu			
a) Diamagnetic	, ,		\sim
b) Paramagnetic			
c) Diamagnetic or parar	magnetic		
d) None of the above	0		
744. Dual nature of particles	was proposed by		
a) Heisenberg	b) Lowry	c) de-Broglie	d) Schrodinger
745. In photoelectric effect, t	, ,		
a) Intensity of incident	=	b) Frequency of incident	
c) Wavelength of incide		d) All of the above	
746. A ball of mass 200 g is			measurement of velocity is
0.1%, the uncertainty in			
	b) 3.3×10^{-27} m	c) 5.3 × 10 ⁻²⁵ m	d) 2.64×10^{-32} m
747. The number of radial no	,	-	
a) 2, 0	b) 0, 2	c) 1, 2	d) 2, 11
748. The mass of a photon w	,	c) 1, 2	u) 2, 11
a) 6.135×10^{-29} kg	b) 3.60×10^{-29} kg	c) 6.135×10^{-33} kg	d) 3.60×10^{-27} kg
749. Correct set of four quan			u) 5.00 × 10 Kg
a) 4, 3, -2, 1/2	b) 4, 2, $-1, 0$	c) 4, 3, -2 , $+1/2$	d) 4, 2, −1, −1/2
750. The orbital angular mor		,	uj 1 , 2, 1, 1/2
_	h		d) Zero
a) $\frac{1}{2} \cdot \frac{h}{2\pi}$	b) $\frac{h}{2\pi}$	c) $\frac{1}{3} \cdot \frac{h}{2\pi}$	uj zero
751. The uncertainties in the		1 and B are 0.05 and 0.02 m	10^{-1} respecively. The mass
	of mass A. What is the ratio		
		· D ·	
a) 2	b) 0.25	c) 4	d) 1
752. Which of the following s		ydrogen atom is correct?	
	s all have the same energy		
	lower energy than 3 <i>d</i> -orbit	al	
c) 3 <i>p</i> -orbital is lower in			
d) 3 <i>s</i> -orbital is lower in			
753. Atoms in hydrogen gas	have preponderance of:		
a) ₁ H ¹ atoms			
b) Deuterium atoms			
b) Deuterium atomsc) Tritium atoms			
b) Deuterium atoms	and (c) are in equal ratio		
 b) Deuterium atoms c) Tritium atoms d) All the three (a),(b) a 		the nucleus in Bohr's mode	l is taken a:
 b) Deuterium atoms c) Tritium atoms d) All the three (a),(b) a 		the nucleus in Bohr's mode c) Negative	l is taken a: d) Any value
 b) Deuterium atoms c) Tritium atoms d) All the three (a),(b) a 754. The energy of the electral a) Zero 	on at infinite distance from b) Positive	c) Negative	d) Any value
 b) Deuterium atoms c) Tritium atoms d) All the three (a),(b) a 754. The energy of the electral a) Zero 	on at infinite distance from b) Positive	c) Negative	d) Any value
 b) Deuterium atoms c) Tritium atoms d) All the three (a),(b) a 754. The energy of the electrality a) Zero 755. The quantum numbers a a) Al 	on at infinite distance from b) Positive for the last electron in an ato b) Si	 c) Negative om are n = 3, l = 1 and m = c) Mg 	d) Any value = −1. The atom is:
 b) Deuterium atoms c) Tritium atoms d) All the three (a),(b) a 754. The energy of the electra a) Zero 755. The quantum numbers 	on at infinite distance from b) Positive for the last electron in an ato b) Si	 c) Negative om are n = 3, l = 1 and m = c) Mg 	d) Any value = −1. The atom is:

	a) Lithium	b) Boron	c) Carbon	d) Hydrogen
75	8. The radius of second stat	tionary orbit in Bohr's atom	s is <i>R</i> . The radius of third o	rbit will be:
	a) 3 <i>R</i>	b) 9 <i>R</i>	c) 2.25 <i>R</i>	d) <i>R</i> /3
75	9. Number of <i>f</i> -orbitals ass	ociated with $n = 5$ is:		
	a) 7	b) 5	c) 9	d) 10
76	0. The number of <i>d</i> -electro	ns retained in Fe ²⁺ ion is :		
	a) 5	b) 6	c) 3	d) 4
76	1. The triad of nuclei which	is isotonic is		
	a) ¹⁴ ₆ C, ¹⁴ ₇ N, ¹⁷ F	b) ¹⁴ ₆ C, ¹⁴ ₇ N, ¹⁹ ₉ F	c) ${}^{14}_{6}$ C, ${}^{15}_{7}$ N, ${}^{17}_{9}$ F	d) ¹² ₆ C, ¹⁴ ₇ N, ¹⁹ ₉ F
76	2. The wavelength of a spec	ctral line in Lyman series, w	hen electron jumps back fro	om 2nd orbit, is
	a) 1162 Å	b) 1216 Å	c) 1362 Å	d) 1176 Å
76	3. Ionisation energy of He ⁺	is 19.6×10^{-18} J atom ⁻¹ . Th	e energy of the first station	ary state $(n = 1)$ of Li ²⁺ is
	a) 4.41×10^{-16} J atom ⁻¹		b) -4.41×10^{-17} J atom ⁻²	
	c) -2.2×10^{-15} J atom ⁻¹		d) 8.82×10^{-17} J atom ⁻¹	
76	4. The energy of second Bo	hr orbit of the hydrogen ato	m is -328 kJ mol ⁻¹ ; hence	the energy of fourth Bohr
	orbit would be			
	a) –41 kJ mol ^{–1}	b) –1312 kJ mol ^{–1}	c) -164 kJ mol^{-1}	d) –82 kJ mol ⁻¹
76		ost energetic transitions of		
	a) Balmer series	b) Bracket series	c) Paschen series	d) Lyman series
76	,	ge (e/m) of an electron to the		, ,
	a) 1 : 1	b) 1840 : 1	c) 1 : 1840	d) 2 : 1
76		ents is not a whole number?		,
	a) Mass number			
	b) Atomic number		G, XY	
	c) Average atomic weigh	t 🔺	V	
	d) None of these			
76	2	ergy of the photoelectrons i	s found to be 6.63 $\times 10^{-19}$	I. When the metal is
		on of frequency 2×10^{15} Hz		
	a) $2 \times 10^{15} \mathrm{s}^{-1}$	b) $1 \times 10^{15} \text{ s}^{-1}$	c) $2.5 \times 10^{15} \text{ s}^{-1}$	d) $4 \times 10^{15} \text{ s}^{-1}$
76		Heisenberg uncertainty pri	,	,
	_		_	h h
	a) $\Delta x. \Delta p \ge \frac{h}{4\pi}$	b) $\Delta x. \Delta p = \frac{1}{4\pi}$	c) $\Delta x. \Delta p \leq \frac{h}{4\pi}$	d) $\Delta x. \Delta p < \frac{h}{4\pi}$
77	0. Which of the following m	ake up an isotonic triad?		
	a) ${}^{78}_{32}$ Ge, ${}^{77}_{33}$ As, ${}^{74}_{31}$ Ga	b) ${}^{40}_{18}$ Ar, ${}^{40}_{19}$ K, ${}^{40}_{20}$ Ca	c) ²³³ ₉₂ U, ²³² ₉₀ Th, ²³⁹ ₉₄ Pu	d) ${}^{14}_{6}$ C, ${}^{16}_{8}$ O, ${}^{15}_{7}$ N
77		umber for valency electron		
	a) 3	b) 2	c) 1	d) Zero
77	2. Which pair has elements	containing same number of	electrons in the outermost	t orbit?
	a) Cl and Br	b) Ca and Cl	c) Na and Cl	d) N and O
77	3. The electromagnetic rad	iation with maximum wavel	ength is:	
	a) Ultraviolet	b) Radiowaves	c) X-ray	d) Infrared
77	4. An element contains:			
Ć	a) Only one type of nucli	de		
	b) Two types of nuclides			
	c) Different types of nucl	lides		
	d) None of the above			
77	5. Which of the following st	atements is incorrect?		
	_	n and proton are equal and	opposite	
	b) Neutrons have no cha	= =		
		d electron are nearly the sa	me	
	d) None of the above	-		
	-			

776. Heaviest particle is:			
a) Meson	b) Neutron	c) Proton	d) Electron
777. The set of quantum num	•	,	-
_			
a) 4, 1, 1, $+\frac{1}{2}$	b) 3, 2, 2, $+\frac{1}{2}$	c) 4, 0, 0, $+\frac{1}{2}$	d) 4, 2, 2, $+\frac{1}{2}$
778. A certain negative ion X	x^{2-} has in its nucleus 18 r	neutrons and 18 electrons	in its extra nuclear structure.
What is the mass numbe	er of the most abundant iso	otope of X?	
a) 36	b) 35.46	c) 32	d) 39
779. Atom containing an odd	number of electron is:		
a) Ferromagnetic	b) Ferrimagnetic	c) Paramagnetic	d) Diamagnetic
780. Amplification of electron		=	roduces:
a) Polarised light	b) Neutrons	c) Laser	d) γ-rays
781. In the discharge tube en		uires:	
a) Low potential and low	-		
b) Low potential and hig			
c) High potential and high			X
d) High potential and lov	-		
782. Which electron transitio		<u> </u>	
		c) From $n = \infty$ to $n = 1$	d) From $n = 3$ to $n = 5$
783. The number of electrons			
a) 2 704 A substatively of 0.5 km is	b) 4	c) 6	d) 8
784. A cricket ball of 0.5 kg is	b) 6.6×10^{-34} m	c) 1.32×10^{-35} m	d) 6.6×10^{-28} m
a) 1/100 cm 785. A body of mass 10 mg is	-		2
associated with it would		100 ms ⁻ . The wavelength	of de-blogile wave
$(h = 6.63 \times 10^{-34} \text{Js})$	De		
	b) 6.63×10^{-34} m	c) 6.63×10^{-31} m	d) 6.63×10^{-37} m
786. The absolute value of th			u) 0.03 × 10 III
a) J.J. Thomson	b) R.A. Millikan	c) Rutherford	d) Chadwick
787. Which of the following v		,	2
	2p		2p
		b) 11 11 11	$\frac{1}{1}$
	.p	d) None of the above	<u> </u>
$^{\rm CJ}$ $[1]$ $[1]$ $[1]$		-	
788. The angular momentum	of an electron in an atomi	c orbital is governed by the	2:
a) Principal quantum nu			
b) Azimuthal quantum n	umber		
c) Magnetic quantum nu			
d) Spin quantum numbe			
			tion of an electron in the orbit
	volution of the electron in		
a) 1 : 2	b) 2 : 1	c) 1 : 4	d) 1 : 8
790. The "spin-only" magneti	c moment [in unit of Bohr	magneton, (μ_B)] of Ni ²⁺ in	aqueous solution would be:
(At. no. Ni = 28)			N 4 50
a) 2.84	b) 4.90	c) 0	d) 1.73
			r bending out of place. These
	y they carry are studied by		d) IIV are a store
a) X-ray spectra	b) Visible spectra	c) IR spectra	d) UV spectra $n = 2$ and spin quantum
792. The maximum number of	n electrons that can have p	n norpre quantum number,	n = 5 and spin quantum
number, $m_s = -\frac{1}{2}$, is			

a) 3	b) 5	c) 7	d) 9
793. Maximum number of elec	-		1) 0
a) 18 704 Which clastronic local ar	b) 32	c) 2	d) 8
794. Which electronic level w		-	
a) 1s	b) 2s	c) 2 <i>p</i>	d) 2 <i>d</i>
795. The mass of electron mor		c) Infinite	d) Zana
a) $2m_e$ 706 The electron configuration	b) $3m_e$	•	d) Zero
796. The electron configuration a) Sulphide ion	b) Nitride ion	c) Oxygen atom	d) Nitrogen atom
797. If S_1 be the specific charge	-		
			d) Either of these
a) $S_1 = S_2$	b) <i>S</i> ₁ < <i>S</i> ₂	c) $S_1 > S_2$	a) Either of these
7			

STRUCTURE OF ATOM

CHEMISTRY

						ANS	W	ER K	EY :					
1)	С	2)	b	3)	d	4)	С	169)	d	170)	С	171)	d	172) d
-) 5)	b	-) 6)	c	7)	c	8)	c	173)	b	174)	c	175)	b	176) b
-) 9)	a	10)	a	11)	c	12)	d	177)	a	178)	b	179)	b	-
13)	a	14)	a) 15)	С	, 16)	С	, 181)	d	182)	С	183)		184) c
17)	а	18)	С	19)	b	20)	а	185)	С	186)	а	187)	~	188) a
21)	с	22)	а	23)	d	24)	b	189)	d	190)	а	191)	С	192) a
25)	С	26)	b	27)	d	28)	d	193)	С	194)	С	195)	а	196) a
29)	с	30)	b	31)	b	32)	С	197)	С	198)	b	199)	а	200) d
33)	d	34)	а	35)	d	36)	b	201)	С	202)	С	203)	b	204) a
37)	d	38)	d	39)	а	40)	С	205)	b	206)	b	207)	С	208) b
41)	а	42)	b	43)	b	44)	d	209)	b	210)	a	211)	b	212) c
45)	С	46)	b	47)	d	48)	d	213)	b 🔺	214)	с	215)	С	216) c
49)	b	50)	а	51)	а	52)	d	217)	С	218)	d	219)	С	220) c
53)	b	54)	С	55)	а	56)	b	221)	С	222)	d	223)	b	224) c
57)	b	58)	d	59)	b	60)	а	225)	С	226)	b	227)	b	228) c
61)	а	62)	b	63)	b	64)	C	229)	b	230)	С	231)	d	232) b
65)	b	66)	b	67)	а	68)	а	233)	b	234)	d	235)	a	236) c
69)	d	70)	а	71)	d	72)	а	237)	b	238)	b	239)	С	240) a
73)	b	74)	С	75)	b	76)	а	241)	С	242)	b	243)	b	244) d
77)	b	78)	С	79)	С	80)	С	245)	С	246)	d	247)	d	248) b
81)	b	82)	а	83)	С	84)	С	249)	b	250)	b	251)	а	252) d
85)	b	86)	d	87)	b	88)	b	253)	С	254)	b	255)	С	256) d
89)	d	90)	b	91)	а	92)	С	257)	С	258)	d	259)	b	260) d
93)	а	94)	C .	95)	b	96)	С	261)	d	262)	С	263)	b	264) a
97)	а	98)	a	99)	b	100)	С	265)	С	266)	b	267)	b	268) d
101)	b	102)	b	103)	d	104)	а	269)	d	270)	а	271)	b	272) c
105)	С	106)	a	107)	b	108)	С	273)	d	274)	а	275)	b	276) b
109)	С	110)	C	111)	b	112)	d	277)	С	278)	b	279)	С	280) d
113)	b	114)	a	115)	d	116)	С	281)	С	282)	b	283)	а	284) d
117)	b	118)	С	119)	а	120)	d	285)	а	286)	а	287)	С	288) b
121)	d	122)	d	123)	С	124)		289)	d	290)	d	291)	d	292) c
125)	b	126)	а	127)	b	128)	b	293)	С	294)	d	295)	b	296) c
129)	С	130)	а	131)	С	132)		297)	С	298)	С	299)	а	300) b
133)	b	134)	а	135)	d	136)		301)	а	302)	а	303)	С	304) d
137)	С	138)	b	139)	d	140)		305)	С	306)	b	307)	С	308) a
141)	b	142)	а	143)	а	144)		309)	С	310)	С	311)	С	312) a
145)	С	146)	d	147)	С	148)		313)	а	314)	а	315)	С	316) c
149)	b	150)	а	151)	b	152)		317)	а	318)	а	319)	а	320) c
153)	С	154)	а	155)	d	156)		321)	а	322)	С	323)	а	324) d
157)	b	158)	С	159)	d	160)		325)	С	326)	b	327)	d	328) b
161)	С	162)	С	163)	a	164)		329)	b	330)	С	331)	С	332) d
165)	b	166)	b	167)	С	168)	С	333)	d	334)	а	335)	d	336) c

-	d	338)	b		b	340)	a	541)	b	542)	d	543)	a	544) c
341)	b	342)	а	343)	b	344)	С	545)	С	546)	а	547)	а	548) d
,	b	346)	b	347)	С	348)	d	-	b	550)	d	551)	d	552) d
,	b	350)	С	351)	С	352)	С	553)	b	554)	b	555)	b	556) c
353)	b	354)	С	355)	d	356)	b	557)	d	558)	b	559)	d	560) a
,	d	358)	а	359)	a	360)	С	561)	d	562)	С	563)	а	564) a
361)	С	362)	а	363)	b	364)	а	565)	d	566)	d	567)	а	568) d
,	b	366)	d	367)	a	368)	С	569)	С	570)	d	571)	С	572) a
,	С	370)	d	371)	a	372)	d	573)	а	574)	С	575)	d	576) b
373)	b	374)	d	375)	С	376)	a	577)	а	578)	b	579)	b	580) d
-	d	378)	b	379)	b	380)	d	581)	а	582)	а	583)	C	
-	d	382)	а	383)	a	384)	a	585)	d	586)	С	587)	d	588) c
-	b	386)	b	387)	b	388)	С	589)	b	590)	d	591)	С	592) d
-	d	390)	С	391)	С	392)	d	593)	b	594)	d	595)	C	596) d
,	b	394)	d	395)	b	396)		597)	d	598)	b	599)	b	600) d
,	a	398)	а	399)	С	400)	b	601)	С	602)	а	603)	а	604) c
,	a	402)	b	403)	С	404)	С	605)	а	606)	С	607)	С	608) c
-	d	406)	С	407)	b	408)		609)	С	610)	а	611)	а	612) b
,	С	410)	а	411)	d	412)	a	613)	b	614)	С	615)	а	616) a
,	b	414)	С	415)	a	416)	С	617)	С	618)	а	619)	С	620) c
,	С	418)	а	419)	С	420)		621)	а	622)	b	623)	а	624) a
-	b	422)	а	423)	b	424)		625)	а	626)	b	627)	d	628) d
,	d	426)	а	427)	d	428)		629)	b	630)	С	631)	а	632) b
,	d	430)	d	431)	С	432)		633)	С	634)	b	635)	С	636) b
,	a	434)	b	435)	С	436)		637)	С	638)	b	639)	d	640) c
,	a	438)	С	439)	d	440)		641)	C	642)	a	643)	а	644) c
-	b	442)	а	443)	d	,	a	645)	d	646)	b	647)	а	648) b
,	b	446)	С	447)	b	448)		649)	а	650)	d	651)	a	652) b
,	b	450)	a	451)	C	452)	С	653)	С	654)	С	655)	d	656) c
-	b	454) 450)	d	,	С	456)		657)	а	658)	a L	659) ((2)	С	660) b
,	C	458) 4(2)	b	459)	C	460)		661)	a	662)	b	663)	a h	664) a
,	a	462) 466)	b		a h	464)		665)	a h	666) (70)	a L	667) (71)	b h	668) c
	a	466) 470)	a		b հ	468) 472)		669) 672)	b	670) 674)	b d	671) 675)	b h	672) c
,	C d	470) 474)	C		b d	472) 476)		673) 677)	a h	674) 679)	d	675) 670)	b h	676) a
,,	d c	474) 478)	a d		d h	476) 480)		677) 681)	b	678) 682)	C d	679) 692)	b	680) d 684) b
-	C d	478)		, ,	b	480) 484)		685)	a	682)	d	683) 687)	C	
-	d h	482)	ď	,	a	484) 499)		-	C h	686) 600)	a	687) 601)	C h	688) c
-	b h	400)	d b	487) 491)	c d	488) 492)		689) 693)	b	690) 694)	a d	691) 695)	b b	692) c 696) b
	b C	490)		491) 495)	u d	492) 496)		697)	с b	694) 698)		699)	b d	
	c a	494)	с а		u a	490) 500)		701)	b	702)	d c	703)	d b	700) a 704) d
	a b	502)		-	a b	500) 504)		705)		702) 706)		703) 707)	b	704) d
		502) 506)	a b	-	b b	504) 508)		703) 709)	C	700)	a	707) 711)		708) d 712) d
	a c	500) 510)	d d	-	b b	508) 512)		709) 713)	a c	710) 714)	a c	711) 715)	a b	
	C C	-		-		-			c d	-	C	-		
-	a c	514) 519)	b	-	b	516) 520)	C C	-		718) 722)	a	719) 722)	b d	-
,	C d	518) 522)	a c		a a	520) 524)		721) 725)	d C	722) 726)	a h	723) 727)	d d	724) a 728) a
	d C	522) 526)	c d	-	a b	524) 528)	C C	725) 729)	C C	726) 730)	b	727) 731)	d C	728) a 732) d
	C	520) 530)	u b	-	d	526) 532)	C C		C 2	730) 734)	C	731) 735)	c d	
	a c	530) 534)				532) 536)	C h	733) 737)	a c	734) 738)	a c	733) 739)		736) c 740) d
	с с	534) 538)	с b		с с	530) 540)		737) 741)	c d	730) 742)	c d	739) 743)	a c	740) u 744) c
557J	L	5505	U	3375	L	5405	L	/ 1 1 J	u	/ 44 J	u	/435	L	-
														Dagal 52

 745) a 749) d 753) a 757) a 761) c 765) d 769) a 773) b 777) c 781) d 785) c 	746)d750)d754)a758)c762)b766)b770)d774)c778)c782)a786)b	747)a751)a755)a759)a763)b767)c771)d775)c779)c783)a787)c	748)c752)a756)d760)b764)d768)b772)a776)b780)c784)c788)b		
789) d 793) b 797) c	790) a 794) a	791) c 795) c	792) d 796) b	RMM	
SMr					

STRUCTURE OF ATOM

CHEMISTRY

: HINTS AND SOLUTIONS : 2 (b) Reentgen discovered X-rays. 3 (d) Spins of an electron are $\pm 1/2$ in an orbital 4 (c) No. of subshell = n; no. of orbitals = n^2 . 5 (b) No. of electrons in an orbital = 2 No. of orbitals in a subshell = $2l + 1$ \therefore No. of electrons in an orbital = $2(2l + 1)$ 6 (c) Mesons are electrically neutral (π^0) or charged (π^-, π^+) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ² [Two unpaired electrons] Ti ³⁺ = [Ar]3d ² [Two unpaired electrons] N ³⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is supplied to an electron if may jump from a lower energy level to higher energy level, Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) 10 (a) 11 $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $\pi = 4$. Also no. of wave in an orbit = no. of orbit 10 (a) 11 $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $\pi = 4$. Also no. of wave in an orbit = no. of orbit 12 (c) 43 (c) 44 (c) 45 (c) 46 (c) 47 (a) 46 $\frac{h^2}{\sqrt{2m(KE)}}$ 46 (c) 47 (a) 47 (a) 48 $\frac{h^2}{\sqrt{2m(KE)}}$ 40 $\frac{h^2}{22 \times (0.090 \times 20^{-10})^2 \times 91 \times 10^{-21}}$ 2.98 $\times 10^{-15}$ eV 2.98 $\times 10^{-15}$ eV 3.99 $\times 10^{-15}$ eV 3.18 (c) 4.90 $\times \frac{h^2}{4m}$		LUNTS AND	SO	
3 (d) Spins of an electron are $\pm 1/2$ in an orbital 4 (c) No. of subshell = n ; no. of orbitals = n^2 . 5 (b) No. of electrons in an orbital = 2 No. of orbitals in a subshell = $2l + 1$ \therefore No. of electrons in an orbital = $2(2l + 1)$ 6 (c) Mesons are electrically neutral (π^0) or charged (π^-,π^+) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ar]3d ¹ [One unpaired electrons] Ti ³⁺ = [Ar]3d ² [Two unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] V ⁴ (a) In <i>p</i> -orbitals electrons are present as $\boxed{\frac{1}{1} \ 1 \ 1} \ 1}$ 15 (c) Rest all are evidence for wave nature. 16 (c) Ground state of ${}_{12}Mg$ is $1s^2, 2s^22p^6, 3s^2$. 17 (a) $\lambda = \frac{h}{\sqrt{2m(KE)}}$ KE = $\frac{h^2}{2k^2m}$ $= \frac{(6.626 \times 10^{-34})^2}{2 \times (0.090 \times 20^{-10^2} \times 9.1 \times 10^{-31}}$ $= 2.98 \times 10^{-13}$] Accelerating potential $= \frac{2.98 \times 10^{-13}}{(6 \times 10^{-19})^2} eV$ $= 1.86 \times 10^4 eV$ 18 (c) 18 (c)	2		30	
3 (d) Spins of an electron are $\pm 1/2$ in an orbital 4 (c) No. of subshell = n ; no. of orbitals = n^2 . 5 (b) No. of electrons in an orbital = 2 No. of orbitals in a subshell = $2l + 1$ \therefore No. of electrons in an orbital = $2(2l + 1)$ 6 (c) Mesons are electrically neutral (π^0) or charged (π^-, π^+) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ar]3d ² [Ore unpaired electrons] Fe ²⁺ = [Ar]3d ² [Dre unpaired electrons] Pe ²⁺ = [Ar]3d ² [Twe unpaired electrons] V ³⁺ = [Ar]3d ² [Twe unpaired electrons] V ⁴ = $\frac{h^2}{2x^2}$ (a) 10 (a) 11 (a) 12 (a) 13 (a) 13 (a) 14 (b) 15 (c) 15 (c) 16 (c) 17 (a) 17 (a) 18 $\frac{h}{\sqrt{2m(KE)}}$ 19 (a) 19 (a) 10 (a) 11 $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit	2			$\frac{15R}{16} = R \left \frac{1}{1^2} - \frac{1}{n^2} \right $
Spins of an electron are $\pm 1/2$ in an orbital 4 (c) No. of subshell = n; no. of orbitals = n ² . 5 (b) No. of electrons in an orbital = 2 No. of orbitals in a subshell = 2l + 1 \therefore No. of electrons in an orbital = 2(2l + 1) 6 (c) Mesons are electrically neutral (π^0) or charged (π^-, π^+) particles having their mass 236 times of electron. 7 (c) Mg ³⁺ = [Ne] [Zero unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit cang to the thigher orbit by the absorption of electromagetic radiation of particular frequency. 9 (a) Trithum is the isotope of hydrogen. Its composition is as follows: Lelectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit	3			
4 (c) No. of subshell = n; no. of orbitals = n ² . 5 (b) No. of electrons in an orbital = 2 No. of orbitals in a subshell = 2l + 1 \therefore No. of electrons in an orbital = 2(2l + 1) 6 (c) Messons are electrically neutral (π^0) or charged (π^-, π^+) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ¹ [One unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is absorbed in the form of quanta (or photon). $\Delta E = h\nu$ Where, ν is the frequency. According to above postulate an electron from one Bohr stationary orbit cango to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Trithum is the isotope of hydrogen. Its composition is as follows : helectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit	-			$\frac{16R}{16R} = \left \frac{n_2^2}{n^2} \right $
5 (b) No. of electrons in an orbital = 2 No. of electrons in an orbital = $2(2l + 1)$ 6 (c) Mesons are electrically neutral (π^{0}) or charged (π^{-},π^{+}) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ² [Dro unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] S ²⁺⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy tevel. Energy is absorbed in the form of quarta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows: helectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit	4	-		
5 (b) No. of electrons in an orbital = 2 No. of electrons in an orbital = $2(2l + 1)$ 6 (c) Mesons are electrically neutral (π^{0}) or charged (π^{-},π^{+}) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ² [Dro unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] S ²⁺⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy tevel. Energy is absorbed in the form of quarta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows: helectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit		No. of subshell = n ; no. of orbitals = n^2 .		$\frac{15}{16} = \frac{n_2}{n^2}$
No. of electrons in an orbital = 2 No. of orbitals in a subshell = 2l + 1 \therefore No. of electrons in an orbital = 2(2l + 1) 6 (c) Mesons are electrically neutral (π^0) or charged (π^-, π^+) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ¹ [One unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] Ya ³⁺ = [Ar]3d ² [Two unpaired electrons] Ya ³⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level. Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : helectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit p	5	(b)		2
No. of of orbitals in a subscheft = $2l + 1$ \therefore No. of electrons in an orbital = $2(2l + 1)$ 6 (c) Mesons are electrically neutral (π^0) or charged (π^-, π^+) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ¹ [One unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level. Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : helectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit (a)		No. of electrons in an orbital $= 2$		
A No. of electrons in an orbital = 2(2l + 1) 6 (c) Messons are electrically neutral (π ⁰) or charged (π ⁻ , π ⁺) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ² [Dre unpaired electrons] Fe ²⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] Kocording to Bohr's atomic model, if energy is absorbed in the form of quanta (or photon). Δ <i>E</i> = hv Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : h.electron, 1 proton and 2 neutrons 10 (a) If <i>m</i> = +3 (maximum), then <i>l</i> = 3 (maximum). Thus, maximum value of <i>n</i> = 4. Also no. of waves in an orbit = no. of orbit The desired formulae to calculate nodes. 13 the desired formulae to calculate nodes. 14 (a) In porbitals electrons are present as 15 (c) Ground state of 12 Mg is 1s ² , 2s ² 2p ⁶ , 3s ² . 17 (a) According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. According to a 100 e postulate an electron is a follows: h.electron, 1 proton and 2 neutrons 10 (a) If <i>m</i> = +3 (maximum), then <i>l</i> = 3 (maximum). Thus, maximum value of <i>n</i> = 4. Also no. of waves in an orbit = no. of orbit			12	
6 (c) Mesons are electrically neutral (π^{0}) or charged (π^{-},π^{+}) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Ti ³⁺ = [Ar]3d ² [One unpaired electrons] Fe ²⁺ = [Ar]3d ² [Five unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : helectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit		\therefore No. of electrons in an orbital = $2(2l + 1)$	12	
Mesons are electrically neutral (π°) or charged (π^{-},π^{+}) particles having their mass 236 times of electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] $Ti^{3+} = [Ar]3d^{1}$ [One unpaired electrons] $V^{3+} = [Ar]3d^{2}$ [Tive unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level, Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : helectron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit	6		13	
electron. 7 (c) Mg ²⁺ = [Ne] [Zero unpaired electrons] Fe ²⁺ = [Ar]3d ⁵ [Five unpaired electrons] V ³⁺ = [Ar]3d ⁵ [Five unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit				
7 (c) $Mg^{2+} = [Ne] [Zero unpaired electrons] Fi3+ = [Ar]3d1 [One unpaired electrons] Fe2+ = [Ar]3d5 [Five unpaired electrons] V3+ = [Ar]3d2 [Two unpaired electrons] 8 (c) According to Bohr's atomic model, if energy is absorbed in the form of quanta (or photon). \Delta E = hvWhere, v is the frequency.According to above postulate an electron fromone Bohr stationary orbit can go to next higherorbit by the absorption of electromagneticradiation of particular frequency.9 (a)Tritium is the isotope of hydrogen. Itscomposition is as follows :1 electron, 1 proton and 2 neutrons10 (a)If m = +3 (maximum), then l = 3 (maximum).Thus, maximum value of n = 4. Also no. of wavesin an orbit = no. of orbit$				$v = \overline{\lambda} = \frac{1}{2000 \times 10^{-8}} = 1.5 \times 10^{15} \text{s}^{-1}$
$Mg^{2+} = [Ne] [Zero unpaired electrons] Ti^{3+} = [Ar]3d^{1} [One unpaired electrons] Fe^{2+} = [Ar]3d^{5} [Five unpaired electrons] V^{3+} = [Ar]3d^{2} [Two unpaired electrons] V^{3+} = [Ar]3d^{2} [Two unpaired electrons] V^{3+} = [Ar]3d^{2} [Two unpaired electrons] According to Bohr's atomic model, if energy is absorbed in the form of quanta (or photon). \Delta E = hvWhere, v is the frequency.According to above postulate an electron fromone Bohr stationary orbit can go to next higherorbit by the absorption of electromagneticradiation of particular frequency.9 (a)Tritium is the isotope of hydrogen. Itscomposition is as follows :1 electron, 1 proton and 2 neutrons10 (a)If m = +3 (maximum), then l = 3 (maximum).Thus, maximum value of n = 4. Also no. of wavesin an orbit = no. of orbitMg^{2+} = [Me] (2ero unpaired electrons] Mg^{2+} = [Me] (2ero unpaired electrons] p = 9.94 \times 10^{-12} erg14 (a)In p-orbitals electrons are present as\boxed{11 (c)}Rest all are evidence for wave nature.15 (c)Rest all are evidence for use nature.16 (c)Ground state of _{12}Mg is 1s^2, 2s^22p^6, 3s^2.17 (a)\lambda = \frac{h}{\sqrt{2m(KE)}}KE = \frac{h^2}{2\lambda^2m}= \frac{(6.626 \times 10^{-34})^2}{(2 \times (0.090 \times 20^{-10})^2 \times 9.1 \times 10^{-31})}= 2.98 \times 10^{-15}Accelerating potential= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}} eV= 1.86 \times 10^4 eV18 (c)e$	-			$h = 6.6 \times 10^{-27} \text{erg s.}$
Ti ³⁺ = [Ar]3d ¹ [One unpaired electrons] Fe ²⁺ = [Ar]3d ⁵ [Five unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level. Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, <i>v</i> is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit	/			$E = hv = 6.6 \times 10^{-27} \times 1.5 \times 10^{15}$
Fe ²⁺ = [Ar]3d ⁵ [Five unpaired electrons] V ³⁺ = [Ar]3d ² [Two unpaired electrons] N ³⁺ = [Ar]3d ² [Two unpaired electrons] According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level. Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, <i>v</i> is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit			X	$= 9.94 \times 10^{-12} \text{erg}$
$V^{3+} = [Ar]3d^{2} [Two unpaired electrons]$ 8 (c) According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level, Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, <i>v</i> is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If <i>m</i> = +3 (maximum), then <i>l</i> = 3 (maximum). Thus, maximum value of <i>n</i> = 4. Also no. of waves in an orbit = no. of orbit			14	
8 (c) According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level, Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit				In <i>p</i> -orbitals electrons are present as
According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level. Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, <i>v</i> is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit According to Bohr's atomic model, if energy is supplied to an electron it may jump from a lower energy level to higher energy level. Energy is Rest all are evidence for wave nature. 16 (c) Ground state of $_{12}Mg$ is $1s^2, 2s^22p^6, 3s^2$. 17 (a) $\lambda = \frac{h}{\sqrt{2m(KE)}}$ $KE = \frac{h^2}{2\lambda^2m}$ $= \frac{(6.626 \times 10^{-34})^2}{2 \times (0.090 \times 20^{-10})^2 \times 9.1 \times 10^{-31}}$ $= 2.98 \times 10^{-15}$ Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}}$ eV $= 1.86 \times 10^4$ eV 18 (c) <i>e</i>	8			
supplied to an electron it may jump from a lower energy level to higher energy level. Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit	0		15	
energy level to higher energy level. Energy is absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit			15	
absorbed in the form of quanta (or photon). $\Delta E = hv$ Where, v is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit			16	
$\Delta E = hv$ Where, <i>v</i> is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $\Delta = \frac{h}{\sqrt{2m(KE)}}$ $KE = \frac{h^2}{2\lambda^2 m}$ $= \frac{(6.626 \times 10^{-34})^2}{2 \times (0.090 \times 20^{-10})^2 \times 9.1 \times 10^{-31}}$ $= 2.98 \times 10^{-15}$ Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}}$ eV $= 1.86 \times 10^4$ eV 18 (c) <i>e</i>		absorbed in the form of quanta (or photon).	10	
Where, <i>v</i> is the frequency. According to above postulate an electron from one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit A $= \frac{h}{\sqrt{2m(KE)}}$ $KE = \frac{h^2}{2\lambda^2m}$ $KE = \frac{h^2}{2\lambda^2m}$ $= \frac{(6.626 \times 10^{-34})^2}{2 \times (0.090 \times 20^{-10})^2 \times 9.1 \times 10^{-31}}$ $= 2.98 \times 10^{-15}$ Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}}$ eV $= 1.86 \times 10^4$ eV 18 (c) e		$\Delta E = hv$	17	
one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $KE = \frac{h^2}{2\lambda^2 m}$ $KE = \frac{h^2}{2\lambda^2 m}$ $KE = \frac{h^2}{2\lambda^2 m}$ $KE = \frac{h^2}{2\lambda^2 m}$ $RE = \frac{h^2}{2\lambda^2 m}$		-		h
one Bohr stationary orbit can go to next higher orbit by the absorption of electromagnetic radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $KE = \frac{h^2}{2\lambda^2 m}$ $KE = \frac{h^2}{2\lambda^2 m}$ $KE = \frac{h^2}{2\lambda^2 m}$ $KE = \frac{h^2}{2\lambda^2 m}$ $RE = \frac{h^2}{2\lambda^2 m}$				$\lambda \equiv \frac{1}{\sqrt{2m(\text{KE})}}$
radiation of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $KE = \frac{2\lambda^2 m}{2\lambda^2 m}$ $= \frac{(6.626 \times 10^{-34})^2}{2 \times (0.090 \times 20^{-10})^2 \times 9.1 \times 10^{-31}}$ $= 2.98 \times 10^{-15}$ Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}}$ eV $= 1.86 \times 10^4$ eV 18 (c) e				h^2
Production of particular frequency. 9 (a) Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $= \frac{(6.626 \times 10^{-34})^2}{2 \times (0.090 \times 20^{-10})^2 \times 9.1 \times 10^{-31}}$ $= 2.98 \times 10^{-15}$ Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}} \text{ eV}$ $= 1.86 \times 10^4 \text{ eV}$ 18 (c) e				$KE = \frac{1}{2\lambda^2 m}$
Tritium is the isotope of hydrogen. Its composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $= 2.98 \times 10^{-15}$ Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}} \text{ eV}$ $= 1.86 \times 10^4 \text{ eV}$ 18 (c) e	0			$(6.626 \times 10^{-34})^2$
composition is as follows : 1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $= 2.98 \times 10^{-15}$ Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}} \text{ eV}$ $= 1.86 \times 10^4 \text{ eV}$ 18 (c) e	9			
1 electron, 1 proton and 2 neutrons 10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit Accelerating potential $= \frac{2.98 \times 10^{-15}}{1.6 \times 10^{-19}} eV$ $= 1.86 \times 10^4 eV$ 18 (c) e				-
10 (a) If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $= \frac{2.98 \times 10^{-10}}{1.6 \times 10^{-19}} \text{ eV}$ $= 1.86 \times 10^{4} \text{ eV}$ 18 (c) e	Ċ	-		
If $m = +3$ (maximum), then $l = 3$ (maximum). Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $= 1.86 \times 10^4 \text{eV}$ 18 (c) e	10	-		$=\frac{2.98 \times 10^{-15}}{10^{-15}}$ eV
Thus, maximum value of $n = 4$. Also no. of waves in an orbit = no. of orbit $\begin{bmatrix} 18 & (c) \\ e & e \end{bmatrix}$				
in an orbit = no. of orbit e		Thus, maximum value of $n = 4$. Also no. of waves	18	
-4m		in an orbit = no. of orbit	10	e
11 (c) $\frac{m_d}{2a} = \frac{m_d - p}{1} = 1$	11	(c)	1	$\frac{\overline{m_d}}{2e} = \frac{4m_{a-p}}{4m_d} = 1$
m_{q-n}		-	1	
$\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$ So, deuterium and an α -particles have identical value of a/m		$\frac{1}{R} = R \left[\frac{1}{R} - \frac{1}{R} \right]$		
$\lambda \begin{bmatrix} 1^2 & n_2^2 \end{bmatrix}$ value of e/m		$\lambda \begin{bmatrix} 1^2 & n_2^2 \end{bmatrix}$	1	_

19 **(b)** Follow Stark effect. All the protons carrying +ve charge are present in 32(c) nucleus. n = 4, means electron is in 4th shell and l = 2, 20 (a) means subshell is d. Therefore, the orbital is in $Cr^{3+}: 1s^2, 2s^22p^6, 3s^23p^63d^3$. The 4d-subshell. $3d_{xy}^1$, $3d_{xz}^1$, $3d_{yz}^1$ has lower energy. 33 (d) $E = hv = \frac{hc}{\lambda} = hc\overline{v}$ 21 (c) We know that kinetic energy = eV34 (a) or $=\frac{1}{2}mv^{2}$ $m_e = 9.108 \times 10^{-28} g = 9.108 \times 10^{-31} \text{kg}$ So, $\frac{1}{2}mv^2 = eV$ 35 (d) $v^2 = \frac{2eV}{m}$ Cr has $3d^5$, $4s^1$ configuration. 36 **(b)** $_{22}$ Ti³⁺: 3 d^1 , *i. e.*, one unpaired electron. $\therefore v = \sqrt{\frac{2eV}{m}}$ 37 (d) The electronic configuration of element with 22 (a) atomic number 24 is At. wt. scale now-a-days is based on C¹². $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^1, 3d^5$ 23 (d) (:Exactly half-filled orbitals are more stable than $K(Z = 19): 1s^2, 2s^22p^6, 3s^23p^6, 4s^1$ nearly half-filled orbitals.) In the ground state the value of *l* can be either 38 (d) zero or one. $n = 4, m_l = +1$ Hence, the set (d) of quantum numbers *i.e.*, $m_1 = +1$ shows the *p*-subshell, the maximum (n = 3, l = 2, m = +2) cannot possible in the number of electron will be six. 39 **(a)** ground state. 24 **(b)** Principal quantum number specifies size and Six with C¹² as C¹²O¹⁶O¹⁶, C¹²O¹⁶O¹⁷, C¹²O¹⁷O¹⁷ energy level of orbit. $C^{12}O^{18}O^{18}, C^{12}O^{16}O^{18}, C^{12}O^{17}O^{18}$ and six with C^{13} 40 (c) 25 (c) Specific charge = e/m; Higher is *m*, lesser will be To designate an orbital, *n*, *l*, *m* are required. e/m. 26 **(b)** 41 (a) Total values of *m* for a given subshell (2l + 1). The formula for magnetic moment of an atom. 27 (d) 42 **(b)** Na has 3s¹ configuration for last electron. $\lambda = h/mu$. 28 (d) 43 **(b)** The principle is valid only for sub-atomic The cosmic rays are highest energy rays having particles. smallest λ , of the order of less than 10^{-15} m. 29 (c) 44 (d) Isotopes are atoms of same elements having Planck's constant $h = \frac{E}{v}$. Put dimensions of energy different mass number and frequency, *i.e.*, energy/time⁻¹ = energy × Isobars are atoms of different elements having time. same mass number. 45 (c) Isotones are atoms of different elements having $\Delta u \cdot \Delta x = \frac{h}{4\pi m}$ same number of neutrons. Nuclear isomers are atoms with the same atomic 6.626×10^{-34} number and same mass number but different $\Delta u = \frac{0.020 \times 10^{-10}}{4 \times 3.14 \times 9.11 \times 10^{-31} \times 0.1 \times 10^{-10}}$ radioactive properties. $= 5.8 \times 10^{6} \text{m/sec}$ 30 **(b)** 46 **(b)** B has $1s^2$, $2s^22p^1$ configuration; p is non-According to de-Broglie, spherically shell. $\lambda = \frac{h}{mv}$ 31 **(b)**

or
$$\frac{\lambda_{\text{He}}}{\lambda_{\text{H}_2}} = \frac{m_{\text{H}_2}}{m_{\text{He}}} \times \frac{v_{\text{H}_2}}{v_{\text{He}}}$$

Given, $v_{\text{H}_2} = v_{\text{He}}$
 $\therefore \qquad \frac{\lambda_{\text{He}}}{\lambda_{\text{H}_2}} = \frac{2}{4} \times \frac{v_{\text{He}}}{v_{\text{He}}}$
$$= \frac{1}{2}$$

47 **(d)**

Energy required for 1 Cl₂ molecule = $\frac{242 \times 10^3}{N_A}$ J

$$E = \frac{hc}{\lambda}$$

or $\lambda = \frac{hc}{E}$
$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8 \times 6.02 \times 10^{23}}{242 \times 10^3}$$

$$= 494 \times 10^{-9} \text{m} = 494 \text{ nm}$$

48 (d)

$$\Delta x \cdot \Delta P = \frac{h}{4\pi}$$
$$\Delta x = \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 10^{-5}}$$
$$= \frac{5.27 \times 10^{-35}}{1 \times 10^{-5}}$$
$$= 5.27 \times 10^{-30} \text{ m}$$

49 **(b)**

Velocity of light is same for all types of radiations.50 (a)

Four quantum numbers are

 $n = 4, l = 0, m = 0, s = +\frac{1}{2}$ n = 4 indicates that the valence electron is present in 4th shell (4th period), l = 0 indicates that the valence electron is present in *s*-subshell. m = 0 indicates that the valence electron is present in orbital of *s*-subshell. $s = +\frac{1}{2}$ indicates

that the spining of electron in orbital is clockwise. So, from the above discussion it is clear that valence electron is present in 4s subshell as $4s^1 \cdot s^1$ indicates that the element is present in IA group. So, the element present in 4th period and IA group is potassium (K).

51 (a)

The atomic number of nitrogen is 7 and its electronic configuration in ground state is as :

 $_{7}N^{14}: 1s^{2} 2s^{2} 2p^{3}$

52 **(d)**

Free charge can exist only as integer multiple of electronic charge.

53 **(b)**

For Paschen series electron must fall in 3rd shell.

54	(c)					
	Symbols	K	L	М	N	
	$_{19}X =$	= 2	8	8	1	
	$_{21}Y =$	= 2	8	9	2	
	$_{25}Z =$	= 2	8	13	2	
	Hence, th	e orde	r of	f numł	ber of	electrons in M
	shell is					
	Z > Y > X	ζ				
55	(a) Mass no. = Mass no. = At. no. = N	= No. c	of p		: + No	o. of neutrons;
56		10 01 p	100	0115		
50	(b)		- 6			
					· ·	sed up to do work
	against co	ulomb	oic f	orces	of att	ractions.
57	(b)					•
	_				<i>v</i>	ngular momentum
	of an elect	tron in	an	orbita	ıl.	
58	(d)					
	$\lambda = \frac{h}{mc}$ or	m = -	h			
	mc 6	63 × 1	1C 0-1	27		
	$=\frac{0.5}{5890 \times 10^{-5}}$				0	
	$= 3.752 \times$			× 10		
59	(b)	. 10	8			
		$-1c^{2}$	20	2 7n6	3.2	$3p^{6}, 4s^{1}, 3d^{5}$
	. ,	-		· • •	-	orbitals have total
	i = 1, mea 12 electro	-	וטונ	itals al	iu <i>p</i> -0	of bitals liave total
			برام ز	tolo or	44	orbitala harra tatal
			IDI	tais ai	u <i>a</i> -	- orbitals have total
(0)	5 electron	IS				
60	(a)	(T)			р.	
		. Thom	ISOI	n	Dete	rmined charge on
	ele	ectron				
	2. Ne	eil Boh	r		Gave	e structure of atom
	_					
	3. Ja	mes Cl	iad	wick	Disco	overed neutron
	4. M	ullikan	l		Carr	ied out oil drop
	ex	perim	ent			
(1	(-)					
61	(a)			c		
60		s not p	oss	ible to	r s-0	rbital $(l = 0)$
62	(b)					
	For <i>s</i> -elec	tron, l	=	0		
63	(b)					
	A heavy e	lement	t ha	is aton	nic nu	umber X and mass
	number Y	•				
	The atomi	ic num	ber	of he	avy e	lement is smaller
	than its m	ass nu	mb	er.		
	i.e., X <	< <i>Y</i>				
64	(c)					

Proton is referred as H⁺.

65 (b) The isotones are a species which have equal number of neutrons. No. of neutrons is ${}^{77}_{32}$ Ge = 77 - 32 = 45 No. of neutrons in ${}^{77}_{33}$ As = 77 - 33 = 44 No. of neutrons $^{77}_{34}$ Se = 77 - 34 = 43 No. of neutron ${}^{77}_{36}Sc = 76 - 36 = 40$ No. of neutrons in ${}^{76}_{32}$ Ge = 76 - 32 = 44 $\therefore \frac{77}{33}$ As is isotone of $\frac{76}{32}$ Ge. 66 **(b)** Follow Pauli's exclusion principle. 67 (a) Kinetic energy in an orbit= $\frac{Ze^2}{8\pi E^\circ r}$... (i) 76 Potential energy in an orbit $= \frac{Ze^2}{4\pi E^\circ r}$... (ii) Comparing Eqs. (i) and (ii) 77 $KE = \frac{1}{2}PE$ 68 (a) For shortest λ of Lyman series, $n_1 = 1 \text{ and } n_2 = \infty; \frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ Because $\Delta E = \frac{hc}{\lambda}$ is maximum when λ is small Thus, $\Delta E = E_{\infty} - E_1$ 69 (d) 80 No. of orbitals for a given value of $n = n^2$. 70 (a) The number of orbitals in an orbit (or shell) = n^2 where, n = no. of orbit or shell81 Given, n = 4 \therefore No. of orbitals in the 4th shell = (4)² 82 71 (d) 83 For 3*d*-orbital, n = 3For *d*-orbital, l = 2and m = -2, -1, 0, +1, +2. The correct set for 3*d*-orbital is $n = 3, l = 2, m = 1, s = +\frac{1}{2}$ 72 (a) Lyman series falls in UV region. 73 **(b)** The 3rd shell as well as all higher shells have d-84 subshells. 74 (c) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$ 85

where, Δx =uncertainty in position. Δp =uncertainty in momentum. $= 1.0 \times 10^{-5} \text{kg ms}^{-1}$ $\therefore \Delta x \times 1.0 \times 10^{-5} \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14}$ $\Delta x \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 1.0 \times 10^{-5}}$ $> 5.27 \times 10^{-30}$ m 75 **(b)** De-Broglie wavelength, $\lambda = \frac{h}{mv}$ or $\lambda = \frac{1}{m}$ (a) Splitting of spectral lines under the influence of an external electrostatic field is called Stark effect. (b) Bohr's model is applicable to one electron system only. 78 (c) $E_{1\,\mathrm{He}^+} = E_{1\,\mathrm{H}} \times Z^2$ $\therefore -871.6 \times 10^{-20} = E_{1 \, \text{H}} \times 4$ $\therefore E_{1 \text{ H}} = -217.9 \times 10^{-20} \text{ J}$ 79 (c) For n = 3, l may have values $0_{(s)}$, $1_{(p)}$ and $2_{(d)}$. (c) s-orbitals are spherical; p-orbitals are dumb-bell; *d*-orbitals are double dumb-bell; *f*-orbitals are complicated. (b) Positron is as heavy as an electron. (a) Both are waves of radiant energy. (c) Give that, Bohr's orbit of hydrogen atom (n)=2Atomic number of hydrogen (Z)=1By using $r = \frac{0.529 n^2}{Z}$ $= \frac{0.529 \times (2)^2}{1} \\ = \frac{0.529 \times 4}{1}$ = 2.116 Å = 0.2116 nm(c) Interference shows the wave nature and photoelectric effect represents particle nature. **(b)**

Elements show characteristics line spectrum

which is finger print of atom. For particle A $\lambda_A = \frac{h}{x \times 0.05}$ 86 (d) ... (i) d^7 configuration has three unpaired electrons. For particle B Thus, total spin = $\pm 1/2 \times$ no. of unpaired $\lambda_B = \frac{h}{5x \times 0.02}$ electrons. ... (ii) 87 **(b)** Eq. (i)/(ii) Radius of deflected path = $\frac{mu}{e \cdot H}$; where *H* is $\frac{\lambda_A}{\lambda_B} = \frac{5x \times 0.02}{x \times 0.05}$ magnetic field. 88 (b) $\frac{\lambda_A}{\lambda_B} = \frac{2}{1}$ $N^{3-7} + 3 = 10$ electrons $F^{-}9 + 1 = 10$ electrons or 2:1 $Na^{+}11 - 1 = 10$ electrons 99 (b) λ increase in the order $\begin{array}{c} Lyman < Balmer < Paschen \\ (U,V) \end{array}$ (Visible) (IR) 89 (d) Rest all involves nuclear forces of higher degree. 100 (c) 90 **(b)** According to Pauli Exclusion Principle, In any H₂ has two nuclear isomers knows as ortho orbital, maximum two electrons can exist, having (same spin of nuclei) and para (anti-spin). opposite spin. 91 (a) 101 (b) Spectral lines of different λ suggest for different Element just above element having at no. 43 is energy levels. one which has at.no. 25. 92 (c) 102 **(b)** Rutherford's scattering experiment for the first Follow (n + l) rule time showed the presence of positively charged 103 (d) nucleus at the centre of atom. The smallest value that an electron in H atom in 93 (a) ground state can absorb. For longest λ of Lyman series $n_1 = 1$ and $n_2 = 2$, $= E_2 - E_1$ = $\frac{-13.58}{4} - \left(\frac{-13.58}{12}\right)d = 10.19$ $\frac{1}{\lambda} = R_{\rm H} \left| \frac{1}{n_1^2} - \frac{1}{n_2^2} \right|$ Because $\Delta E = \frac{hc}{\lambda}$ is minimum when λ is longest 104 (a) $E_{\mathrm{Li}^{2+}} = E_{\mathrm{H}} \times Z^2$ Thus, $\Delta E = E_2 - E_1$ $\therefore \frac{E_{1 \text{Li}^{2+}}}{E_{1 \text{H}}} = Z^2 = 3^2 = 9$ 94 **(c)** Angular momentum of electron in an orbit = $n \frac{h}{2\pi}$ 105 (c) 95 (b) $m_e = 9.108 \times 10^{-31} \text{kg}$ Angular momentum = $n \cdot \frac{h}{2\pi}$; where *n* is integer $m_{\rm H} = 1.672 \times 10^{-27} \rm kg$ and thus discrete value. 106 (a) 96 (c) Bragg's equation is $n\lambda = 2d \sin \theta$, $\sin \theta = \frac{n\lambda}{2d}$; $hv_1 =$ work function + $K \cdot E_1$ if $\lambda > 2d$; sin $\theta > 1$ which is not possible. $2 \times hv_1 =$ work function + $K \cdot E_2$ 107 (b) 97 (a) An experimental fact. Mass on one mole electron 108 (c) $= N \times m_e = 6.023 \times 10^{23} \times 9.108 \times 10^{-31}$ kg r_n for He⁺ = $\frac{r_n$ for H 98 (a) Given, velocity of particle $A = 0.05 \text{ ms}^{-1}$ $\therefore r_2 \text{ for He}^+ = \frac{r_2 \text{ for H}}{2}$ Velocity of particle $B = 0.02 \text{ ms}^{-1}$ Let the mass of particle A = x $=\frac{r_1 \text{ for H} \times 2^2}{2} (\because r_n = r_1 \times n^2)$ \therefore The mass of particle B = 5x $\therefore r_2$ for He⁺ = 0.053 × 2 = 0.106nm de-Broglie's equation is $\lambda = \frac{h}{mv}$ 109 (c)

Stark Effect The splitting of spectral lines under

the influence of electric field is called Stark effect. **Raman Effect** When light of frequency v_0 is scattered by molecules of a substance which have a vibrational frequency of v_1 , the scattered light when analysed spectroscopically has lines of frequency v where

 $v = v_0 \pm v_0$

Zeeman Effect The splitting of spectral lines under the influence of magnetic field is called Zeeman Effect.

Rutherford Effect According to Rutherford on the bombardment of the atoms by high speed α particles, the center of the atom scatters the α -particles.

110 **(c)**

 $r_n = r_1 \times n^2.$

111 **(b)**

Deuterium is $_{1}$ H² (*ie*, have 1 proton and 1 neutron.)

(\therefore C may be ${}_{6}C^{12}$ or ${}_{6}C^{14}$. Similar is true for N.) 112 (d)

$$E_{1} - E_{2} = 1312 \times Z^{2} \left[\frac{1}{12} - \frac{1}{2^{2}}\right]$$

$$E_{1} - E_{2} = 1312 \times Z^{2} \left[\frac{3}{4}\right] \qquad \dots (i)$$

$$E_{2} - E_{3} = 1312 \times Z^{2} \left[\frac{5}{36}\right] \qquad \dots (ii)$$
From Eqs. (i) and (ii)

$$\frac{E_{1} - E_{2}}{E_{2} - E_{3}} = \frac{3 \times 36}{4 \times 5} = \frac{27}{5}$$
113 (b)

$$\frac{1}{\lambda} = R_{H} \times \left[\frac{1}{2^{2}} - \frac{1}{4^{2}}\right] = 4.86 \times 10^{-7} \text{m} = 486 \text{ nm}$$
114 (a)
No. of electrons = no. of protons.
115 (d)

$$E = Nhv$$

$$= 6.023 \times 10^{23} \times 6.626 \times 10^{-34} \times 10^{4} \times 10^{6}$$

$$= 3.99 \text{ j}$$
116 (c)

$$\Delta x. \Delta v \ge \frac{h}{4\pi m}$$

$$\Delta x$$

$$= \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 300 \times 0.001 \times 10^{-2}}$$

$$= 0.01933$$

$$= 1.93 \times 10^{-2}$$
117 (b)
5. $n = 2, l = 1, m = 0$ it is possible

- 6. n = 2, l = 0, m = -1 it is not possible because if l = 0, m must be 0. The value of m totally depends upon the value of l(m = -l to + l).
- 7. n = 3, l = 0, m = -0 it is possible.

8.
$$n = 3, l = 1, m = -1$$
 it is possible.

118 **(c)**

 $\lambda = \frac{h}{m}$ 119 (a)

An experimental value.

120 (d) $\Delta E(eV) = \frac{12375}{\lambda}; \text{ where } \lambda \text{ in } \text{ Å.}$

121 (d)

A subshell having nearly half-filled or nearly completely filled configurations tends to acquire exactly half-filled or exactly completely filled nature to have lower energy level in order to attain extra stability

122 **(d)**

lonisation enthalpy of hydrogen atom is 1.312×10^{6} J mol⁻¹.

It suggests that the energy of electron in the ground state (first orbit) is -1.312×10^6 J mol⁻¹. $\Delta E = E_2 - E_1$

$$= \left(\frac{-1.312 \times 10^6}{2^2}\right) - \left(\frac{-1.312 \times 10^6}{1}\right)$$

= 9.84 × 10⁵ J mol⁻¹

123 (c)

Any sub-orbit is represented as nl such that n is the principal quantum number (in the form of values) and l is the azimuthal quantum number (its name).

Value of *l* < *n*, *l*: 0 1 2 3 4

Value of m: -l, ..., 0, ..., + l

Value of $s: +\frac{1}{2}$ or $-\frac{1}{2}$

Thus, for 4f: n = 4, l = 3, m = any value between -3 to +3.

124 **(a)**

No. of electrons in $-CONH_2 = No.$ of electrons in (C + O + N + H) + 1 (for covalent bond).

125 **(b)**

 $r_{\rm nucleus} \propto ({\rm mass \ no.})^{1/3}$

126 **(a)**

Electronic configuration of

 $_{28}$ Ni = 1 s^2 , 2 s^2 2 p^6 , 3 s^2 3 p^6 3 d^8 , 4 s^2 Ni²⁺ = 1 s^2 , 2 s^2 2 p^6 , 3 s^2 3 p^6 3 d^8 , 4 s^0

$_{29}$ Cu = 1s ² , 2s ² 2p ⁶ , 3s ² 3p ⁶ 3d ¹⁰ , 4s ¹	6.6×10^{-34}
$Cu^+ = 1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^0$	Hence, $\Delta x = \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 0.03 \times 9.1 \times 10^{-31}}$
So, the given configuration is of Cu ⁺ .	$= 1.92 \times 10^{-3}$ m.
127 (b)	138 (b)
The three quantum no. <i>n</i> , <i>l</i> , <i>m</i> were obtained as a	EC of Cr ($Z = 24$) is
result of solution of Schrödinger wave equation.	Outer n
128 (b)	configuration
	$\frac{1}{1s^2}$ 1 0
e/m ratio for He ²⁺ = $\frac{2}{4}$	$2s^2$ 2 0
1	$2p^{6}$ 2 1
e/m ratio for H ⁺ = $\frac{1}{1}$	$3s^2$ 3 0
1	$3p^{6}$ 3 1
e/m ratio for He ⁺ = $\frac{1}{4}$	3d ⁵ 3 2
_	$4s^1$ 4 0
e/m ratio for D ⁺ = $\frac{1}{2}$	Thus, electrons with $l = 1$, are 12
\therefore The <i>e</i> / <i>m</i> is highest for hydrogen.	With $l = 2$, are 5
229 (c)	139 (d)
When $n = 4$ and $x = 5$ then electronic	Acc. to Mosley : $\sqrt{v} = a(Z - b)$.
	140 (b)
configuration can be written as	
$(4-1)s^2(4-1)p^6(4-1)d^54s^2$	Follow discovery of cathode rays.
This electronic configuration represents Mn and	141 (b)
its atomic number is 25. Hence, number of	$_{12}$ Mg : $1s^2$, $2s^2 2p^6$, $3s^2$, <i>i. e.</i> , six <i>s</i> - and six <i>p</i> -
protons are 25 in its nucleus.	electrons.
30 (a)	142 (a)
$\lambda = \frac{h}{mn}$	Pd is $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^64d^{10}$ and
$\lambda = \frac{1}{mv}$	thus, $Pd^{2+} = [Kr]4d^8$.
6.63×10^{-34}	144 (b)
$=\frac{6.63\times10^{-34}}{60\times10^{-3}\times10}$	l = 2 means <i>d</i> -orbital and thus,
$= 1.105 \times 10^{-33}$ m	$1s^2, 2s^22p^6, 3s^23p^63d^3, 4s^2$ has 3 electrons in d
.31 (c)	subshell.
Each metal has different effective nuclear charge.	145 (c)
.32 (a)	
A characteristic of each element is its line	Mosley proposed the new periodic law based on
	atomic number.
spectrum.	146 (d)
.33 (b)	Angular momentum of electrons = $mvr = \frac{nh}{2\pi}$
Schrodinger wave equation is	147 (c)
$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V)\Psi = 0$	4 p has $(n + l)$ value, $(i. e. 5)$ lesser than
$\partial x^2 + \partial y^2 + \partial z^2 + h^2 + h^2 = 0$	4d, (<i>i.e.</i> ,6) and $4f$ (<i>i.e.</i> ,7) $4s$ has already filled
.34 (a)	
<i>np</i> is filled after <i>ns</i> in each shell	before 3 <i>d</i> .
.35 (d)	148 (b)
Cathode rays are fastly moving electrons.	n + l = 5 maximum.
36 (d)	149 (b)
27Co ³⁺ :3 <i>d</i> ⁶ .	Jump of electron from lower energy level
	L, (i. e.,2nd shell) to higher energy level
37 (c)	M, (i. e., 3rd shell) absorbs energy.
By Heisenberg's uncertainty principle	150 (a)
$\Delta x. m \Delta V = \frac{h}{4\pi}$	
	$\lambda = \frac{h}{\sqrt{2Em}}$
$\Delta V = 0.005\%$ or 600 m/s $= \frac{600 \times 0.005}{100} = 0.03$	When kinetic energy of electron becomes four
	times, the de-Broglie wavelength will become ha
$\Delta x \times 9.1 \times 10^{-31} \times 0.03 = \frac{6.6 \times 10^{-34}}{4 \times 3.14}$	
T ^ J.IT	151 (b)

Energy of photon= $\frac{hc}{\lambda}J = \frac{hc}{e\lambda}eV$ = $\frac{6.625 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9} \times 1.602 \times 10^{-19}} = 4.14 eV$

For photoelectric effect to occur, energy of incident photons, must be greater than work functions of metal. Hence, only Li, Na, K and Mg have work functions less than 4.14 V.

152 (d)

Positron + Electron \rightarrow Positroniu.

153 (c)

Nucleus of He is $_2$ He⁴.

154 (a)

It is an experimental evidence for particle nature of electron.

155 (d)

An experimental fact supported by argument. 156 **(a)**

$$\lambda = \frac{h}{mu} = \frac{6.63 \times 10^{-34}}{1 \times 10^{-3} \times 100}$$
$$= 6.63 \times 10^{-33} \text{m}$$

159 **(d)**

For photoelectric effect, energy of the incident radiations must be greater than work function of the metal.

160 **(c)**

No. of neutrons = Mass no. –Atomic no.

161 (c)

Deflection back shows that the nucleus is heavy but of only a few particles shows that nucleus is small.

162 (c)

Configuration of atom $1s^2$, $2s^22p^6$, $3s^23p^4$.

163 **(a)**

n = 4, l = 2, m = 0, i. e., 4d

164 **(c)**

Number of electrons in $M^{2+} = 24$ \therefore Number of electrons in M=26 i. e., atomic number (Z)=26Mass number (A)=56 \therefore Number of neutrons =A - Z = 56 - 26 = 30165 **(b)** Angular momentum in an orbital $= \frac{h}{2\pi} \sqrt{l(l+1)}$.

166 **(b)**

Each has sic *s*-electrons.

167 (c)

In H₃PO₄, P is present as P⁵⁺ $_{15}$ P = 1s², 2s², 2p⁶, 3s², 3p³ P⁵⁺ = 1s², 2s², 2p⁶

168 **(c)**

Radius of *n*th orbit of hydrogen atom $=0.529n^2$

where, n = no. of orbit = 2 $\therefore r_2 = 0.529 \times (2)^2 = 2.116\text{\AA} = 2.12\text{\AA}$

 $E_{\rm Mini} = hv_0$ 170 (c)

An experimental fact.

172 (d)

$$\Delta E = 13.6 Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

= 13.6 × (1)² $\left(\frac{1}{1} - \frac{1}{2^2} \right)$
= 13.6 $\left(1 - \frac{1}{4} \right)$
= 13.6 × $\frac{3}{4}$ = 10.2eV

173 **(b)**

 $E_8 - E_3$ is minimum. Also, transition from 3 to 8 result in absorption spectrum.

174 **(c)**

Aufbau principle states that in the ground state of an atom, the orbital with lower energy is filled up first before the filling of the orbitals with a higher energy commences.

Increasing order of energy of various orbitals is 1*s*, 2*s*, 2*p*, 3*s*, 3*p*, 4*s*, 3*d*, 4*p*, 5*s*, ... etc.

Therefore,

Is not obeyed by aufbau principle. Without fully filling of *s*-subshell electrons cannot enter in *p*-subshell in ground state of atom.

175 **(b)**

The configuration are : $Zn^+: [Ar]3d^{10}, 4s^1; Fe^{2+}: [Ar]3d^6$ $Ni^+: [Ar]3d^7; Cu^+[Ar]3d^{10}$

176 **(b)**

Niels Bohr utilised the concepts of quantisation of energy (proposed by Max planck) first time to give a new model of atom.

177 **(a)**

$$E = \frac{N \cdot hc}{\lambda}$$

$$\lambda_{A} = \frac{h}{m_{A}v_{A}} \text{ and } \lambda_{B} = \frac{h}{m_{B}v_{B}}$$

$$\frac{\lambda_{A}}{\lambda_{B}} = \frac{m_{B}v_{B}}{m_{A}v_{A}}$$

$$\frac{1 \times 10^{-10}}{\lambda_{B}} = \frac{m_{A} \times 3v_{A}}{m_{A} \times 4 \times v_{A} \times 4}$$

$$\lambda_{B} = \frac{16 \times 10^{-10}}{3} = 5.33 \text{ Å}$$
179 **(b)**

$$m = 4 l = 2 \text{ means } 4f \text{ singe } l$$

n = 4, l = 3, means 4f, since l = 3 for f-subshell.

180	(a)
	For first excited state $n = 2$
	$\therefore \qquad \qquad E_n = \frac{E_1}{n^2}$
	it it
	(Where, E_1 = energy of first
	Bohr's orbit)
	:. $E_2 = \frac{-13.6}{(2)^2}$
	$(2)^{-}$ = -3.4 <i>eV</i>
182	
102	$r_n = r_1 \times n^2$
183	
100	All are same terms having same meaning.
184	
	Line spectrum of atomic hydrogen in the visible
	region.
185	(c)
	Kinetic energy $=\frac{1}{2}mv^2$,
	Potential energy $=\frac{-e^2}{r}$
	But, $mv^2 = \frac{e^2}{r}$
	$KE = \frac{1}{2} \frac{e^2}{r}$
	21
	Total energy = $KE + PE$
	$=\frac{1}{2}\frac{e^{2}}{r}-\frac{e^{2}}{r}=\frac{e^{2}}{r}\left(\frac{1}{2}-1\right)=\frac{-e^{2}}{2r}$
188	
100	Each shell possesses one circular and rest all
	elliptical orbits.
	Total number of orbits $= n$.
189	
207	Based on all these three principles.
190	
	Velocity of light is constant.
191	
	Ionisation energy of H
	$= 2.18 \times 10^{-18} \text{J} \text{ atom}^{-1}$
	$\therefore E_1$ (Energy of 1st orbit of H-atom)
	$= -2.18 \times 10^{-18} \text{J} \text{ atom}^{-1}$
~	$\therefore E_n = \frac{-2.18 \times 10^{-18}}{n^2} \mathrm{J} \mathrm{atom}^{-1}$
	$E_n = \frac{1}{n^2}$ J atom 1
	Z = 1 for H – atom
	$\Delta E = E_4 - E_1$
	$=\frac{-2.18\times10^{-18}}{4^2}-\frac{-2.18\times10^{-18}}{1^2}$
	$= -2.18 \times 10^{-18} \times \left[\frac{1}{4^2} - \frac{1}{1^2}\right]$
	$\Delta E = hv = -2.18 \times 10^{-18} \times -\frac{15}{16}$
	$-\pm 2.0437 \times 10^{-18}$ J at m^{-1}

 $= +2.0437 \times 10^{-18} \text{J} \text{ atom}^{-1}$

1		
		$\therefore v = \frac{\Delta E}{h} = \frac{2.0437 \times 10^{-18} \text{J atom}^{-1}}{6.625 \times 10^{-34} \text{Js}}$
		$= 3.084 \times 10^{15} \text{s}^{-1} \text{atom}^{-1}$
	192	
		Node is the surface where electron density $= 0$.
	193	
		Higher photo-current implies , higher no. of
		electrons emitted/sec.
	194	
		No. of subshells in a subshell = $2l + 1$
	195	
		Magnetic quantum number signifies the possible
		number of orientations of an orbital.
	196	(a)
		It is due to isotopic effect.
	197	
		For $n = 4, l \neq 4$, for $n = l = 3, m \neq 4$
	198	(b)
		Bohr proposed the concept of stationary state
		known as orbits.
	199	(a)
		Follow photoelectric effect.
	200	(d)
4	$\boldsymbol{\zeta}$	AA
	V'	
	<i>v</i>	
		5 + 4 + 3 + 2 + 1 = 15
	201	
		Isoelectronic species have same number of
		electron. Mg ²⁺ and Na ⁺ both have 10 electrons
		hence, they are isoelectronic species.
	202	
		This is obtained by the solution of Schrodinger
		wave equation
		Probability = $\Psi^2 dV$
		Ist orbital is spherically symmetrical
		$\therefore V = \frac{4}{3}\pi r^3, \therefore \frac{dV}{dr} = 4\pi r^2$
		3 dr $\therefore \text{ Probability} = \Psi^2 4\pi r^2 dr$
	204	5
	204	
		${\Delta E \atop (eV)} = {12375 \over \lambda_{in} \ \hbar} = {12375 \over 5890} = 2.10 \text{ eV}$
	205	IIIA
	205	
	201	$1 \text{ eV} = 1.602 \times 10^{-12} \text{ erg.}$
	206	
	207	s can have only two values $+1/2$ and $-1/2$.
	207	
		The de-Broglie wavelength associated with the
		charged particle as

٠

For electron,
$$\lambda = \frac{12.27}{\sqrt{V}} \text{\AA}$$

For proton, $\lambda = \frac{0.286}{\sqrt{V}} \text{\AA}$
For α -particles, $\lambda = \frac{0.101}{\sqrt{V}} \text{\AA}$

208 **(b)**

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{1.67 \times 10^{-27} \times 1 \times 10^3}$$

= 3.97 × 10⁻¹⁰ m~0.40 nm.

209 **(b)**

The number of waves in an orbit=n.

210 **(a)**

$$E \propto \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

or $E \propto \frac{1}{n^2}$

211 **(b)**

n is an integer except zero.

212 **(c)**

According to aufbau principle, electrons enter into orbitals according to their energy. The electrons first enters into orbital having lesser value of (n + n)*l*). If the value of n + l is same for two orbitals then the electron will first enter into orbital having lesser value of *n*. $n = 5, l = 0 \therefore n + l = 5 + 0 = 5$ For other. n = 3, l = 2 $\therefore n + l = 3 + 2 = 5$: Both of the orbitals have same value for n + l. : Electron will enter into orbital having lower value of *n*. : Electron will enter into n = 3, l = 2 orbital. 213 (b) $E = \frac{hc}{\lambda}$, h and c for both causes are same so, $\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{16000}{8000}$ $E_1 = 2E_2$ 214 (c) When n = 3, number of values of l are 0 to (n-1)i.e., 0, 1, 2Hence, when n = 3, then l = 3 does not exist. 215 (c) We know that, $\Delta E = hc. R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ For lowest energy, of the spectral line in Lyman series, $n_1 = 1, n_2 = 2$ Hence, $\Delta E = hc. R \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$

$$\Delta E = \frac{3hcR}{4}$$

216 (c)

Cathode rays are fastly moving electrons.

217 **(c)**

9.

$$n = 4, l = 0, m = 0, s = +\frac{1}{2}$$

 \rightarrow 4*s* energy level.

10.
$$n = 3, l = 1, m = -1, s = +\frac{1}{2}$$

11.
$$n = 3, l = 2, m = -2, s = +\frac{1}{2}$$

→ 3*d* energy level.
12. $n = 3, l = 0, m = 0, s = +\frac{1}{2}$

$$\rightarrow$$
 3s energy level.

According to aufbau principle, the energy of orbitals (other than H-atom) depend upon n + 1 value.

n + l for 3d = 3 + 2 = 5

So, it is highest energy level (in the given options).

218 **(d)**

Each one possesses mass.

219 **(c)**

X-rays have larger wavelength than γ -rays.

220 (c)
$$\Delta E = \frac{hc}{\lambda}$$

221 **(c)**

H atom has $1s^1$ configuration.

222 **(d)**

No charge by doubling mass of electrons, however, by reducing mass of neutron to half total atomic mass becomes 6 + 3 instead of 6 + 6. Thus, reduced by 25%.

223 **(b)**

It is a characteristic fact.

224 **(c)**

Tritium contains 2 neutrons and 1 proton.

225 **(c)**

Fe(26) = $1s^2$, $2s^22p^6$, $3s^23p^63d^6$, $4s^2$ $3d^6$ means 11111Hence, it has 4 unpaired electrons. Fe²⁺ = $1s^2$, $2s^22p^6$, $3s^23p^63d^6$, $4s^0$ \therefore It also has 4 unpaired electrons.

Page | 63

$$Fe^{3+} = 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^0$$

3d⁵ means 111111

Hence, it has 5 unpaired electrons.

226 **(b)**

Follow Pauli's exclusion principle.

228 **(c)**

The mass of electron = $\frac{1}{1837}$ (mass of lightest nuclei) or approximately $\frac{1}{1800}$

Both have $1s^2$, $2s^22p^6$, $3s^23p^6$ configuration.

230 **(c)**

No. of orbitals in a shell = n^2 .

231 **(d)**

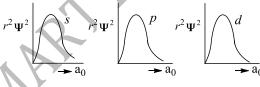
According to Bohr's model of hydrogen atom, the energy of electrons in the orbit is quantised, the electron in the orbit nearest to nucleus has lowest energy and electrons revolve in different orbits around the nucleus.

Whereas according to Heisenberg's uncertainty principle position and velocity of the electrons in the orbit cannot be determined simultaneously.

232 **(b)**

A proton requires more energy for penetration due to its relatively higher mass and positive charge than electron.

234 **(d)**


Last electron of Mg^+ is $3s^1$.

235 **(a)**

₂₆Fe has 2,8,14,2 configuration.

236 **(c)**

The electron density is directly proportional to Ψ^2 . The larger the electron density, the larger the value of Ψ^2 and more is the probability of finding the electrons

237 **(b)**

4*p* is more closer to nucleus.

238 **(b)**

 $Ca^{2+}(2,8,8)$ and Ar (2, 8, 8) contains equal number (18) of electrons, hence they are isoelectronic.

239 **(c)**

Threshold frequency (v_0) means for zero kinetic energy of electrons; Thus,

 $hv = \text{work function} + (1/2)mu^2$

- or hv_0 = work function 240 (a) 1. For n = 4, l = 1; 4p2. For n = 4, l = 0; 4s
 - 3. For n = 3, l = 2; 3d
 - 4. For n = 2, l = 1; 2p

The order of increasing energy is as

$$2p < 4s < 3d < 4p$$

241 **(c)**

$$E_n = \frac{E_1}{n^2} \times Z^2$$

= $\frac{-13.6}{4} \times 9 = -30.6 \text{ eV}$

(for the excited state, n = 2 and for $Li^{2+}ion, Z = 3$)

242 **(b)**

Given, azimuthal quantum number (l)=2Number of orbital's =(2l+1)

$$= (2 \times 2 + 1) = 4 + 1 = 5$$

Heaviest atom has mass no. 238, (*i.e.*, $_{92}U^{238}$) and lighter one is $_{1}H^{1}$.

$$\lambda = \frac{n}{mu}.$$

245 **(c)**

 p_x orbital has two lobes on *x*-axis.

246 **(d)**

f-orbital has 7 orientations.

248 **(b)**

III shell is more closer to nucleus.

249 **(b)**

Ar and Ca^{2+} are isoelectronic species as they have same number of electrons, *i. e.*, 18.

$$p = mu = \frac{h}{\lambda} \text{ and } E = \frac{hc}{\lambda}$$

 $\therefore E = \frac{c}{\lambda} \cdot p \cdot \lambda = c \cdot p$

251 **(a)**

25

$$\Delta x. \Delta v \ge \frac{h}{4\pi m}$$
$$\Delta x \ge \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 25 \times 10^{-3} \times 10^{-5}}$$
$$= 2.10 \times 10^{-28} m$$
2 (d)

Page | 64

Mass of neutron = 1.675×10^{-27} kg. 253 (c) $\lambda = \frac{h}{mu} = \frac{6.62 \times 10^{-34}}{66 \times 10^3 \times 1}$ 255 (c) n = 4(4th shell) l = 2(d-subshell) $m_1 = -2(d_{xy} \text{ orbital})$ $s = +\frac{1}{2}(\uparrow)$ Hence, electron belongs to 4d-orbital. 256 (d) The four lobes of $d_{x^2-y^2}$ orbital are lying along xand y axes, while the two lobes of d_{z^2} orbital are lying along *z*-axis, and contain a ring of negative charge surrounding the nucleus in xy plane 2s orbitals has one spherical node, where electron density is zero *p*-orbital have direction character Orbital $\rightarrow p_z \quad p_x \quad p_y$ $m \rightarrow 0 \pm 1 \pm 1$ Nodal plane $\rightarrow xy \quad yz \quad zx$ 257 (c) d_{xy} orbital lies at 45° angle in between x-and yaxes. 258 (d) According to Pauli exclusion principle. 259 (b) $E = \frac{hc}{\lambda}$. 260 (d) Cu has configuration $[Ar]3d^{10}, 4s^1$; the two electrons are lost, one from $4s^1$ and one from $3d^{10}$. 261 (d) Ions have charge, different size and configuration than atom. 262 (c) H⁻ has two electrons. 263 **(b)** In the ground state of an atom the number of states is limited by Hund's rule. There are $\frac{|r| \cdot |n-r|}{|r|}$ ways in which electron in an orbital may be arranged which do not violate Pauli's exclusion principle. Where, *n*=number of maximum electrons that can be filled in an orbital and *r*=number of electrons present in orbital. But the valid ground state term is calculated by Hund's rule of maximum multiplicity. As Hund's

rule gives the most stable electronic configuration of electrons. 264 (a) $\frac{1}{\lambda} = Z^2 \cdot R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ $\Longrightarrow \frac{1}{\lambda} = (Z)^2 \cdot R_H \left\{ \frac{1}{1} - \frac{1}{4} \right\} = \frac{3}{4} R_H Z^2$ $\therefore \lambda \propto \frac{1}{7^2}$ Hence for shortest λ , *Z* must be maximum, which is for Li²⁺. 265 (c) Element with atomic no. 17 has $3s^2 3p^5$ valence shell. 266 **(b)** The electronic configuration of element with at. no. 105 is: $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^64d^{10}4f^{14},$ $5s^25p^65d^{10}5f^{14}, 6s^26p^66d^3, 7s^2$ for 5f(n+l) = 5 + 3 = 8for 6d(n+l) = 6 + 2 = 8267 **(b)** Average mass = (m + 0.5) = $\frac{m \times 4 + (m+1) \times 1 + (m+2) \times 1}{6} = \frac{6m+3}{6}$ 268 (d) $r_n = \frac{r_1 n^2}{z}$; r_1 is radius of H-atom. 269 (d) According to Bohr model, Radius of hydrogen atom $(r_n) = \frac{0.529 \times n^2}{Z} \text{\AA}$ Whe

ere,
$$n =$$
 number of orbit
 $Z =$ atomic number
 $r_3 = \frac{0.529 \times (3)^2}{1} = 4.761 \text{\AA}$

270 (a)

de Broglie equation is $\lambda = \frac{h}{mu}$

271 **(b)**

$$E_3 = E_1 + E_2 \text{ or } \frac{hc}{\lambda_3} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}$$

272 (c) *e. g.*, oxygen has 0¹⁶, 0¹⁷ and 0¹⁸ isotopes.

273 (d)

Energy order : 5s < 4d < 4f.

274 (a)

```
1F = 10^{-13} \text{ cm} = 10^{-15} \text{ m}
```

```
275 (b)
```

The difference of energy is given out.

276 **(b)**

$E_X > E_{VR} \therefore \lambda_{VR} > \lambda_X$ or <i>X</i> is UV region.	three-dimensional region in which probability for
277 (c)	finding electron is maximum.
According to aufbau principle, as electron enters	290 (d)
the orbital of lowest energy first and subsequent electrons are fed in the order of increasing	All are facts 291 (d)
energies. The relative energies of various orbital	Pb sheets cut X-rays.
in increasing order are	292 (c)
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p	
278 (b)	293 (c) $(-2\pi)^{-1}$
No. of (valence) electrons in $NH_4^+ = 8$,	Total values of 'm' in a given shell = n^2 .
No. of valence electron in N, $(i. e., 5)$ + No. of e in	294 (d)
4H, (i. e., 4) - 1(of + ve charge).	
280 (d)	$\frac{1}{\lambda} = Z^2, R_H \left \frac{1}{n_1^2} - \frac{1}{n_2^2} \right $
Hydrogen spectrum is an emission spectrum. It	
shows the presence of quantized energy levels in	For He ⁺ , $\frac{1}{\lambda} = 2^2$. $R_H \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = 4 \times \frac{3}{16} = \frac{3}{4}$
hydrogen atom.	For H, $\frac{1}{\lambda} = 1^2 \cdot R_H \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3}{4}$
281 (c)	
Total no. of protons in all the elements from at. no.	
1 to at no. $n = n \times (n + 1)/2$.	295 (b)
282 (b)	After filling up of electron in <i>np</i> , the next electron
Frequency $(n) = \frac{1}{\text{time period } (T)}$	occupies $(n + 1)s$ level.
1	296 (c)
Here, $T = 5 \times 10^{-3} s$	$\frac{1}{\lambda_{\rm max}} = R_{\rm H} \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right];$
$n = \frac{1}{5 \times 10^{-3}} = 0.2 \times 10^3$	n Lyman Li
5×10^{-5} = 2 × 10 ² s ⁻¹	$\frac{1}{\lambda_{\text{Balmer}}} = R_{\text{H}} \left[\frac{1}{2^2} - \frac{1}{\infty^2} \right]$
283 (a)	297 (c)
$\frac{e}{m}$ for : (i) neutron = $\frac{0}{1} = 0$	Work function for Cs is minimum.
_	298 (c)
(ii) α -particle = $\frac{2}{4}$ = 0.5	It is famous Schrödinger wave equation.
(iii)proton $=\frac{1}{1}=1$	299 (a)
(iv)electron $=\frac{1}{1/1837} = 1837$	Tritium has only one electron.
	300 (b)
284 (d) It is the definition of degenerate orbitals.	A characteristic of cathode rays particles
285 (a)	(electrons).
N and P have 3 unpaired electrons in $2p$ and $3p$	301 (a)
respectively; V has 3 unpaired electrons in $2p$ and $3p$.	$E = 3 \times 10^{-12} \text{ergs}$
286 (a)	$\lambda = ?$
	$h = 6.62 \times 10^{-27} \text{ ergs}$
Momentum of photon = $mu = \frac{h}{\lambda} \left(\because \lambda = \frac{h}{mu} \right)$	$c = 3 \times 10^{10} \mathrm{cms}^{-1}$
$=\frac{6.6\times10^{-34}}{2\times10^{-11}}=3.3\times10^{-23}$ kg m s ⁻¹	$E = \frac{hc}{\lambda}$
	X
287 (c)	$3 \times 10^{-2} = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{\lambda}$
$35 = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}, 4p^5$	$6.62 \times 10^{-27} \times 3 \times 10^{10}$
Thus, it contains 7 electrons in 4th or outermost	$\lambda = \frac{6.62 \times 10^{-27} \times 3 \times 10^{10}}{3 \times 10^{-12}}$
shell	$= 6.62 \times 10^{-5} \text{cm}$
288 (b)	$= 662 \times 10^{-7} \text{cm}$
Follow Dalton's assumptions.	$= 662 \times 10^{-9} \mathrm{m}$
289 (d)	= 662 nm.
Schrödinger proposed the concept of orbitals –a	302 (a)

٠

6. 2*s*

7. 2p

8. 3*d*

9. 3*d*

In the absence of any field, 3*d* in (D) and (E) will be of equal energy.

303 (c)

Zeeman effect is splitting up of the lines of an emission spectrum in a magnetic field.

304 **(d)**

Bohr radius for *n*th orbit = $0.53 \times \frac{n^2}{7}$

Where, Z = atomic number

- $\therefore \text{ Bohr radius of 2nd orbit of Be}^{3+} = \frac{0.53 \times (2)^3}{4}$ = 0.53 Å
 - (d) Bohr radius of 1st orbit of H= $\frac{0.53 \times (1)^2}{1}$

Hence, Bohr's radius of 2nd orbit of Be³⁺is equal to that of first orbit of hydrogen.

305 **(c)**

 $\lambda = \frac{h}{mv}$ $\therefore mv = \frac{6.626 \times 10^{-34}}{5200 \times 10^{-10}} = 1.274 \times 10^{-34}$ For electron, $m = 9.1 \times 10^{-31}$ kg $9.1 \times 10^{-31} \times v = 1.274 \times 10^{-31}$ v = 1400 m/s306 **(b)** (n + l) is more for a subshell, more will be its energy. 307 (c) [Ar] $3d^{10}$, $4s^1$ (atomic no. 29) electronic configuration belongs to copper. 308 (a) Li⁺ has charge of 1 proton due to loss of electron. 309 (c) Mass or proton = 1.672614×10^{27} kg Mass of electron = 1.60211×10^{-31} kg \therefore Mass of proton/Mass of electron = $\frac{1}{1837}$ 310 (c) Follow : $E_n = E_1/n^2$ 312 (a) Orbital angular momentum = $\sqrt{l(l+1)} \times \frac{h}{2\pi}$

For *p*-electron $(l = 1) = \sqrt{1(1+1)} \times \frac{h}{2\pi}$ $= \sqrt{2} \times \frac{h}{2\pi} = \frac{h}{\sqrt{2}\pi}$

313 **(a)**

Transition from any higher level to n = 1 gives Lyman series.

Total energy
$$= \frac{-e^2}{2r_n} = -3.4 \text{ eV} = \frac{E_1}{n^2}$$

 $\therefore n^2 = \frac{-13.6}{-3.4} = 4 \therefore n = 2$
The velocity in II orbit
 $= \frac{u_1}{2} = \frac{2.18 \times 10^8}{2} \text{ cm sec}^{-1}$

$$\therefore \lambda = \frac{h}{mu} = \frac{6.6 \times 10^{-27} \times 2}{9.108 \times 10^{-28} \times 2.18 \times 10^8} = 6.6 \times 10^{-10}$$

315 **(c)**

The orbital d_{z^2} has 2 lobes.

316 **(c)**

Nucleus of an atom is small in size but carries the entire mass *i. e.*, contains all the neutrons and protons.

317 **(a)**

In C_2H_2 total electrons = 6 + 6 + 1 + 1 = 14.

318 **(a)**

 Cu^+ has $3d^{10}$ configuration.

319 **(a)**

Only 2 electrons in *p*-orbitals can have m = 0. 321 (a)

 λ for visible light is in the range of 400 to 780 nm. $E = \frac{hc}{\lambda}$.

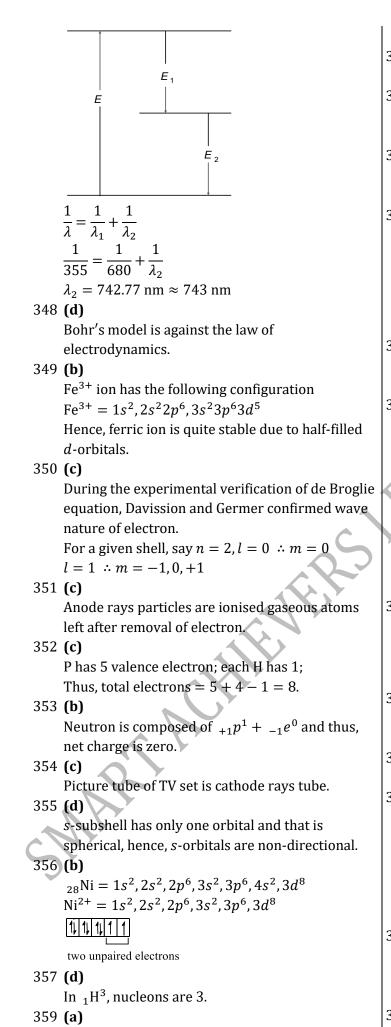
This, it is in the range of electron volt (eV).

323 **(a)**

To cross over threshold energy level.

$$\Delta E = hv = \frac{hc}{\lambda}$$
$$\lambda = \frac{hc}{\Delta E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{4.4 \times 10^{-14}}$$
$$= 4.52 \times 10^{-12} \text{m}$$

325 (c)


$$r_2 \operatorname{Be}^{3+} = \frac{r_1 \operatorname{H}}{4} \times 2^2$$
$$\left(: r_2 \operatorname{H} = r_1 \operatorname{H} \times 2^2 \text{ and } r_n \operatorname{Be}^{3+} = \frac{r_n \operatorname{H}}{n}\right)$$

326 **(b)**

An experimental fact.

327 **(d)** The transition is almost instantaneous process 328 (b) The values of *m* are -l to +l through zero. 329 (b) A fact. 330 (c) X-rays are light waves or a form of light energy. 331 (c) $\Delta x \cdot \Delta v \ge \frac{h}{4\pi m}$ 332 (d $\overline{v} = \frac{1}{\lambda} = R'Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ For shortest wavelength (maximum energy) in Lyman series of hydrogen $Z = 1, n_1 = 1, n_2 \rightarrow \infty$ and $\lambda = x$ $\frac{1}{x} = R'$ For longest wavelength (minimum energy) in Balmer series of He⁺, Z = 2 and $n_1 = 2$, $n_2 = 3$ $\frac{1}{\lambda} = R' 2^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$ $\frac{1}{\lambda} = \frac{4}{x} \left[\frac{1}{4} - \frac{1}{9} \right]$ $\frac{1}{\lambda} = \frac{4}{x} \frac{5}{36}$ $\lambda = \frac{9x}{r}$ 333 (d) Rydberg is an unit of energy. 334 (a) Neutrons are neutral particles. 335 (d) $+\frac{1}{2}$ and $-\frac{1}{2}$ spinning produces angular momentum equal to Z – component of angular momentum which is given as $m_s(h/2\pi)$ 336 (c) Since, $hv = \text{work function} + (1/2)mu^2$. 337 (d $\frac{3 \times 10^8 \times 1.1 \times 10^{-23}}{6.6 \times 10^{-34}}$ $= 5.0 \times 10^{18}$ Hz 338 (b) $E = \frac{hc}{\lambda} = hv$ 339 (b) Step 1 Calculate energy given to I_2 molecule by $\frac{hc}{1}$

Step 2 Calculate energy used to break I₂ molecule. The difference in above two energies will be the KE of two I atoms 340 (a) It is a fact. 341 (b) Find λ from $E = \frac{hc}{\lambda}$; It comes out to be 4965 Å, which represents visible region (i.e., in between 3800 – 7600 Å). 342 (a) The ground state configuration of chromium is $_{24}$ Cr = [Ar] $3d^54s^1$:. $_{24} cr^{2+} = [Ar] 3d^4 4s^0$ 343 (b) The atomic number of cesium is 55. The electronic configuration of cesium atom is 55CS $= 1s^2, 2s^22p^6, 3s^23p^6, 4s^2, 3d^{10}4p^6, 5s^2, 4d^{10}, 5p^{\epsilon}$ The electronic configuration of cesium atom is Cs⁺ $= 1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^64d^{10}, 5s^25p^6, 6$ So, the total number of *s*-electrons =10, The total number of p-electrons=24, The total number of d-electrons=20 344 (c) $KE = (1/2)mu^2 = eV$ $\therefore u = \sqrt{\frac{2eV}{m}}$ 345 (b) Sine, $E \propto -\frac{1}{n^2}$ The energy of an electron in the second orbit will be $E_2 = \frac{E_1}{4} = \frac{(-2.18 \times 10^{-18} \text{J})}{4}$ $= -5.45 \times 10^{-19}$ 346 **(b)** Velocity of an electron in first orbit of H atom is $u = \frac{2.1847 \times 10^8}{1} \,\mathrm{cms^{-1}}$ Hence, it is $\frac{1}{100}$ th as compared to the velocity of light. 347 (c) Energy values are always additive. $E_{\text{total}} = E_1 + E_2$ $\frac{hc}{\lambda} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}$

m can be +2, +1 and 0 for 3*d*-subshell. 360 (c) For Paschen series, $n_1 = 3$ and $n_2 = 4, 5, 6$ 361 (c) 3d-subshell has five orbitals. Each orbital can have one electron with spin +1/2. 362 (a) The no. of nucleons in O^{16} and O^{18} are 16 and 18 respectively. 363 (b) de-Broglie wavelength, $\lambda = \frac{h}{p} = \frac{h}{mv}$ $(\because momentum \ p = mv)$ $\Rightarrow \lambda = \frac{6.62 \times 10^{-34} \text{J} - \text{s}}{6.62 \times 10^{-27} \times 10^{6} \text{kg m/s}}$ $= 10^{-13}$ m 364 (a) For n = 2; *l* can have value only 0 and 1, *i*. *e*., *s* and *p*-subshells. 365 **(b)** Hydrogen spectrum coloured radiation means visible radiation corresponds to Balmer series $(n_1 = 2, n_2 = 3, 4 \dots)$ visible 2nd orbit 3rd line from the red end it means $5 \rightarrow 2$ 366 (d) Frequencies emitted $=\sum (n-1) = \sum (5-1) = \sum 4$ = 1 + 2 + 3 + 4 = 10367 (a) Heisenberg's uncertainty principle; de Broglie's dual concept. 368 (c) Follow planck's quantum theory. 369 (c) As per Pauli's exclusion principle "no two electrons in the same atom can have all the four quantum numbers equal or an orbital cannot contain more than two electrons and it can accommodate two electrons only when their directions of spins are opposite."

370 **(d)**

Br (At. no.=35) E. C. = $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^5$ \therefore Br atom has 17 *p*-electrons.

382 (a) K⁺ and Ar both have 18 electrons. 372 (d) hv =work function +*KE*; Since m = 2 and thus, *l* must be not lesser than *m*. or $hv = hv_0 + KE$; 373 (b) $hv_0 = \text{work function} = \frac{hc}{\lambda_0};$ $Cr(24) = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$ where λ_0 is threshold wavelength. 374 (d) 383 (a) Configuration of atomic number 14 is The Sc atom has $3d^1$, $4s^2$ configuration. $1s^2, 2s^22p^6, 3s^23p^2;$ 384 (a) One *p*-orbital and five *d*-orbitals are vacant. Wave number of spectral line in emission 375 (c) spectrum of hydrogen, $E_n = -\frac{13.6}{n^2} \text{eV}$ $\bar{v} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ For second excited state n = 3, Given, $\bar{v} = \frac{8}{9}R_H$ $E_3 = -\frac{13.6}{9} = -1.51$ eV On putting the value of \bar{v} in Eq. (i), we get 376 (a) $\frac{8}{9} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ Kinetic energy = $\frac{Ze^2}{2r}$ 377 (d) $E_1 = -13.6 \text{ eV}$; Thus, it can absorb 13.6 eV to get itself knocked out. 378 (b) Wave-nature of electrons was first demonstrated by de-Broglie's who gave following equation for $n_2 = 3$ the wavelength of electrons Hence, electron jumps from $n_2 = 3$ to $n_1 = 1$ $\lambda = \frac{h}{m}$ 385 (b) J.J. Thomson (1987) was first experimentally 379 (b) demonstrated particle nature of electron. It was $E_n = \frac{-13.6 \times Z^2}{n^2} \text{eV}$ first of all proposed by Millikan's oil drop For H atom, Z = 1, experiment. $-3.4 = \frac{-13.6 \times (1)^2}{n^2}$ 386 (b) Angular momentum for n and (n + 1) shells are $\Rightarrow n^2 = 4$ $\frac{nh}{2\pi}$ and $(n+1)\frac{h}{2\pi}$ $\therefore n = 2$ 387 (b) 380 (d) The volume of nucleus : volume of atom, This is according to Pauli's exclusion principle. $\frac{4}{3}\pi r_n^3:\frac{4}{3}\pi r^3$ atom. The principle states that no two electrons of the same atom can have all the four quantum number 388 (c) values identical. 0^{2-} has 10 electrons but 8 neutrons ($_{8}0^{16}$). 381 (d) 390 (c) The values of quantum number will give idea Possible mol. wt. may be 18,20,19,20,22,21 about the last subshell of element. From that respectively for value we can find the atomic number of element, H¹H¹O¹⁶, H²H²O¹⁶, H¹H²O¹⁶, H¹H¹O¹⁸, H²H²O¹⁸, H n = 3 means 3rd-shell $l = 0 \\ m = 0$ }means subshell 391 (c) Magnetic moment = $\sqrt{[n(n+2)]}$ where *n* is It means it is 3s-subshell which can have 1 or 2 number of unpaired electrons. electrons. 392 (d) : Configuration of element is Hertz for the first time noticed the effect. $1s^2, 2s^2, 2p^6, 3s^{1-2}$ 393 (b) ∴ Atomic *i. e.*, number is 11 or 12.

Cr (24): [Ar]3d⁵4s¹ $Cr^{3+}: [Ar] 3d^3 4s^0$

394 (d)

A part of energy of photon (*hv*-work function) is used for kinetic energy of electrons.

395 (b)

$$\frac{e}{m} \text{ for electron } (e) = \frac{1.6 \times 10^{-19}}{9.1 \times 10^{-28}} \\ = 1.758 \times 10^8 \\ \frac{e}{m} \text{ for proton } (p) = \frac{1.6 \times 10^{-19}}{1.672 \times 10^{-24}} \\ = 9.56 \times 10^4 \\ \frac{e}{m} \text{ for neutron } (n) = \frac{0}{1.675 \times 10^{-24}} = 0 \\ \frac{e}{m} \text{ for } \alpha - \text{ particle } = \frac{2}{4} = 0.5 \\ \text{Hence, the increasing order of } \frac{e}{m} \text{ is as} \\ n < \alpha < p < e \\ e \le 10^{-24} \\ \text{ for } \alpha = 10^{-24$$

396 (d)

Ionisation energy of nitrogen = energy of photon $= Nh\frac{c}{\lambda}$ where, $N = 6.02 \times 10^{23}$ $c = 3 \times 10^8 \text{ms}^{-1}$ $\lambda = 854 \text{ Å} = 854 \times 10^{-10} \text{m}$ $6.02 \times 10^{23} \times 6.6 \times 10^{-34} \times 3 \times 10^{8}$ 854×10^{-10} $= 1.4 \times 10^{6} \text{ J mol}^{-1}$ $= 1.4 \times 10^3 \text{ kJ mol}^{-1}$ 397 (a) e/m for proton $=\frac{1}{1}$; e/m for $\alpha =$ 398 (a) $E = n \frac{hc}{2}$ $h = 6.6 \times 10^{-34}$ Js or 1J $\times 6.6 \times 10^{-34} \times 3 \times 10^{8}$ 399 (c) We know that the energy is emitted in the form of quanta and is given by, $\Delta E = hv = \frac{hc}{\lambda}$ or $\lambda = \frac{hc}{\Delta E}$ $=\frac{6.62\times10^{-27}\times3\times10^{10}}{3\times1.6\times10^{-12}}$ $= 4.14 \times 10^{-5}$ cm - 4140 Å

401 (a)

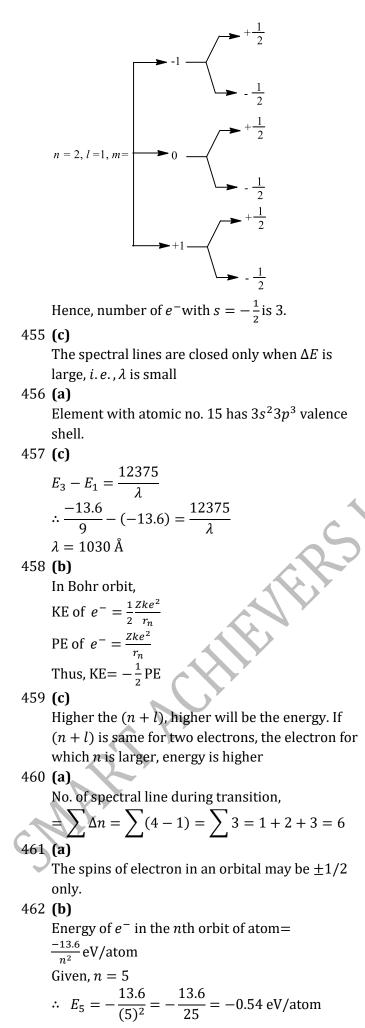
$$_{19}K = 1s^2, 2s^22p^6, 3s^23p^6, 4s^1$$

 $_{25}Mn = 1s^22s^22p^63s^23p^64s^23d^5$
 $_{28}Ni = 1s^22s^22p^63s^23p^64s^23d^8$

 d^8

 $_{21}$ Sc = 1s² 2s²2p⁶ 3s²3p⁶ 4s²3d¹ Therefore, K has least number of electrons in its *M*-shell (n = 3) = 8. 402 (b) *KE* of charged particle = change \times pot. Difference. 403 (c) According to wave mechanics, the latest approach for electron in orbital. 404 (c) According to rules of quantum number the possible values of *n*, *l*, *m* and *s* are n = 1 to ∞ any whole number l = 0 to (n - 1) for every value of nm = -l to zero to +l for every value of l $s = \frac{1}{2}$ or $-\frac{1}{2}$ 0. n = 4, l = 3, m = 0All the values are according to rules. n = 4, l = 2, m = 11. All the values are according to rules. n = 4, l = 4, m = 1: The value of *l* can have maximum $(n - 1)^{l}$ 1) value *i.e.*, 3 in this case. : This set of quantum numbers is nonpermissible. n = 4, l = 0, m = 03. All the values are according to rules. \therefore Choice (a), (b) and (d) are permissible. 405 (d) s-orbital can have only two electrons. 406 (c) ΔE for H = 10.2 eV for n = 1 to n = 2 $\therefore \Delta E$ for Be³⁺ = 10.2 × Z² for n = 1 to n = 2 $\therefore Z = 4 \quad \therefore \Delta E = 10.2 \times 16 = 163.2$ 407 (b) In 3p-subshell max. no of electrons = 6. 408 (a) $\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3R}{4}$ $\lambda = \frac{h}{p}$ $P = \frac{h}{\lambda} = h \times \frac{3R}{4} = \frac{3Rh}{4}$ 409 (c)

l = 3 represent for f – subshell. $E_n > E_e$ 410 (a) 424 (b) $E_n = \frac{E_1}{n^2}$: $E_2 = \frac{-54.4}{4} = -13.6 \text{ eV}$ Follow Planck's quantum theory. 411 (d) 425 (d) $_{14}$ Si: $1s^2$, $2s^22p^6$, $3s^23p^2$, *i.e.*, 3 orbits of *s* and 8 No. of fundamental particles = 6 protons +orbitals of p. 6 electrons + 8 neutrons = 20.412 (a) 426 (a) 2nd excited state means 3rd energy level. The configuration of $_{24}$ Cr is $E_3 = \frac{E_1}{n^2} = \frac{-13.6}{9} = -1.51 \text{ eV}$ $1s^2$, $2s^22p^6$, $3s^23p^63d^5$, $4s^1$ 413 (b) \therefore Total *s*-orbitals = 4 $_{24}$ Cr = 1s², 2s²2p⁶, 3s²3p⁶3d⁵, 4s¹ Total *p*-orbitals =6Thus, l = 1 is *s*-orbital and l = 2 is *p*-orbital Total *d*-orbitals = 5 and thus Total orbitals = 4 + 6 + 5 = 15414 (c) In excited state S has six unpaired electrons. 428 (c) $m \ge l$ for l = 1. 415 (a) 429 (d) Nearly half-filled orbitals tend to acquire exactly $\lambda = \frac{h}{mv}$ half-filled nature to attain lower energy level. $[mv = \sqrt{2m \cdot KE}]$ 416 (c) $\overline{v} = \frac{1}{\lambda} = \frac{1}{500 \times 10^{-9}} = 2 \times 10^6 \text{m}^{-1}$ 417 (c) $KE \propto \frac{1}{\lambda^2 \sqrt{2m}}$ $E_1 = \frac{hc}{\lambda_1}$ and $E_2 = \frac{hc}{\lambda_2}$ Since, λ is same, $\therefore \frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1}$ $\text{KE} \propto \frac{1}{m}$ The order of mass of electron, alpha particle and $\frac{25}{50} = \frac{\lambda_2}{\lambda_1}$ proton is $m_a > m_p > m_e$ Thus, the order of KE is $E_e > E_p > E_a$ $\lambda_1 = 2\lambda_2$ 430 (d) 418 (a) $_{20}$ Ca = 2, 8, 8, 2 N³⁻ has three more electrons than N atom. $Ca^{2+} = 2, 8, 8$ 419 (c) Hence, Ca²⁺ has 8 electrons each in outermost Option (c) is correct as in it Pauli's exclusion and penultimate shell. principle is violated but Hund's rule does not 431 (c) 420 (d) $\frac{1}{2}mu^2 = E_k^{\max} = hv - w = (6 - 2.1)\text{eV}$ An experimental fact. 421 (b) $= 3.9 \text{ eV} \text{ or } eV_0 = 3.9 \text{ eV}$ $\lambda_1 = 3000\text{\AA}, \lambda_2 = 6000\text{\AA}$ Thus, stopping potential = -3.9 eV $E_1 = \frac{hc}{\lambda_1} = \frac{hc}{3000}$ $E_2 = \frac{hc}{\lambda_2} = \frac{hc}{6000}$ 432 (d) $\Delta x = \Delta p \quad \therefore \Delta x \cdot \Delta p = \frac{h}{4\pi}$ $\frac{E_1}{E_2} = \frac{\frac{hc}{hc}}{\frac{hc}{hc}} = \frac{hc}{3000} \times \frac{6000}{hc} = \frac{2}{1}$ or $\Delta x = \sqrt{\frac{h}{4\pi}}$ Now, $\Delta x \cdot \Delta u = \frac{h}{4\pi m}$ $E_1: E_2 = 2:1$ $\therefore \Delta u = \frac{h}{4\pi m} \times \sqrt{\frac{4\pi}{h}} = \frac{1}{2m} \times \sqrt{\frac{h}{\pi}}$ 422 (a) The radiation energy absorbed is used to overpower effective nuclear charge and imparting 433 (a) velocity to electron hv = W + KE. ₈0^{2–} has 10 electrons. ₁₈Ti⁺ has 80 electrons.


423 (b)

434 (b)
l = 2 means <i>d</i> -subshell; ₂₃ V =
$1s^2$, $2s^22p^6$, $3s^239^63d^3$, $4s^2$.
435 (c)
Follow Hund's multiplicity rules
436 (b)
For first excited state (<i>i.e.</i> , second energy level)
n=2
$r_n = \frac{a_0 \cdot n^2}{Z}$
(where, $a_0 = \text{Bohr radius} = 0.53 \text{ Å}$)
$r_2 = \frac{a_0(2)^2}{1}$ (for H, Z = 1)
1
$=4a_0$
437 (a) $h \qquad h \qquad h \times v$
$\lambda = \frac{h}{\text{momentum}}$: momentum $= \frac{h}{\lambda} = \frac{h \times v}{c}$
3.0×10^8
$= 1.1 \times 10^{-24} \text{ kg m sec}^{-1}$
438 (c)
In H-atom subshell of a shell possess same energ
lavel.
439 (d)
For $n = 4$ to $n = 1$ transition
$= v_{\text{Lyman}(2 \to 1)} + v_{\text{Balmer}(4 \to 2)}$
also = $v_{\text{Paschen}(4\rightarrow3)} + v_{\text{Balmer}(3\rightarrow2)} + v_{\text{L}(2\rightarrow1)}$
also = $v_{\text{Paschen}(4\rightarrow3)} + v_{\text{Lyman}(3\rightarrow1)}$
440 (a)
Isobars have same atomic mass but different atomic number.
Thus, the isobar of ${}_{20}Ca^{40}$ is ${}_{18}Ar^{40}$.
441 (b)
$u_n = \frac{u}{n}$.
442 (a)
$u_n = \frac{u_1}{n}$
443 (d)
γ -rays emission occurs due to radioactive change
a nuclear phenomenon.
444 (a)
$KE = (1/2)mu^2$
and $\lambda = \frac{h}{mu}$
$\therefore KE = \frac{1}{2}m\frac{h^2}{m^2\lambda^2} = \frac{h^2}{2m\lambda^2}$
445 (b)
for $H \frac{1}{\lambda_{B_1}} = R_H \left[\frac{1}{2^2} - \frac{1}{3^2} \right];$
for He ⁺ $\lambda_{B_1} = 2^2 R_H \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$
$M_{B_1} = 2 M_H [2^2 3^2]$

447 (b) This is one of the principles laid down in aufbau principles. 448 (d) Ψ^2 is a probability factor. For hydrogen wave function, number of nodes (the space where probability of finding electron is zero) can be calculated as Radial nodes = (n - l - 1)Angular nodes = lTotal number of nodes = (n - 1)449 (b) Cl^{-} has $3s^{2}3p^{6}$ configuration, *i.e.*, of Ar. 450 (a) According to Bohr, an electron can move only in those orbits in which its angular momentum is a simple multiple of $\frac{h}{2\pi}$. *i.e.*, equal to $\frac{nh}{2\pi}$ (where, *n* is an integer) 451 **(c)** A fact for late discovery of neutron. 453 **(b)** $hv_{1} = hv_{0} + \frac{1}{2}mu_{1}^{2} \quad \dots (i)$ $hv_{2} = hv_{0} + \frac{1}{2}mu_{2}^{2} \quad \dots (ii)$ $\because \frac{1}{2}mu_{1}^{2} = \frac{1}{k}\left\{\frac{1}{2}mu_{2}^{2}\right\}$:. From (i) $hv_1 = hv_0 + \frac{1}{2k}mu_2^2$... (iii) or $\frac{1}{2}mu_2^2 = khv_1 - khv_0$... (iv) By Eqs. (ii) and (iv), $hv_2 = hv_0 - khv_0 + khv_1$ or $v_0(1-k) = v_2 - kv_1$ or $v_0 = \frac{kv_1 - v_2}{(k-1)}$

454 **(d)**

For 2*p*-subshell,

463 (a) Angular momentum $= \frac{n \cdot h}{2\pi} = \frac{5 \cdot h}{2\pi} = \frac{2.5 h}{\pi}$. 464 (a) Angular momentum in an orbit = $\frac{nh}{2\pi}$ if n = 1, it will be $\frac{h}{2\pi}$. 465 (a) Electronic configuration of $Rb_{(37)}$ is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6, 5s^1$ So, for the valence shell electron $5s^1$ $n = 5, l = 0, m = 0, s = +\frac{1}{2}$ 466 (a) Electron density of $3d_{x^2-y^2}$ orbital in *yz* plane is zero. 467 **(b)** Total number of orbitals for principal quantum number *n* is equal to n^2 . 468 (c) X-rays represents radiant energy. 469 **(c)** $\frac{2.18 \times 10^8 \times Z}{2.18 \times 10^8} \mathrm{cm} \mathrm{s}^{-1}$ For H atom, Z = 1 and third orbit, n = 3, $v_3 = \frac{2.18 \times 10^8 \times 1}{3}$ $= 7.26 \times 10^7 \text{ cm s}^{-1}$ 470 (c) All the three electrons in *p* are unpaired. 471 (b) Orbital angular momentum $=\sqrt{l(l+1)}.\frac{h}{2\pi}$ For 2*s*-orbital, l = o: Orbital angular momentum $=\sqrt{0(0+1)}\frac{h}{2\pi}=$ zero 472 (a) Balmer series wavelengths lies in between 6564Å to 3647Å *i.e.*, visible region. 473 (d) Follow assumptions of Bohr's model. 474 (a) $E_2 - E_1$ is maximum for H-atom and $E_2 - E_1 = \frac{hc}{\lambda}$. 475 (d) s describes only spin of electron. 476 (d) Each has one electron. 477 (c) No. of line given during a jump = $\sum \Delta n$;

where $\Delta n = n_2 - n_1$	Energy of electron in n_2 orbit
$\therefore \sum \Delta n = \sum (5-1) = \sum 4 = 10$	$= -\frac{313.52 \times (1)^2}{(2)^2} \text{ kcal mol}^{-1}$
478 (d)	(-)
The energy of electrons in the same orbital is the	$=-\frac{313.52}{4}$ kcal mol ⁻¹
same. For 3 <i>d</i> orbitals,	$= -78.38 \text{ kcal mol}^{-1}$
$3d_{xy}$, $3d_{yz}$, $3d_{zx}$, $3d_{z_2^2}$, $3d_{x^2-y^2}$, are at the same	486 (d)
level of energy, irrespective of their orientation.	$\frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{1^2} - \frac{1}{m^2} \right]$
The electronic configuration	
$3d_{xy}^2$, $3d_{yz}^2$, $3d_{zx}^2$, $3d_{x^2-y^2}^2$, $3d_{z^2}^2$, $4s^1$ has maximum	487 (c)
exchange energy	The outermost electron in $_{21}$ Sc is $4s^2$.
479 (b)	488 (b)
s-subshell should be filled first as it possesses	hv = work function + KE;
lower energy level than <i>p</i> -subshell.	$\therefore KE = 6.2 - 4.2 = 2.0 \text{ eV}$
480 (c)	Find $\frac{1}{2}mu^2$ in J
$_{29}$ Cu = 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 4s ¹ , 3d ¹⁰	489 (b)
$Cu^+ = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^0$	Number of spherical nodes in $3p$ orbital
Total number of shells occupied $= 3$	= n - l - 1 = 3 - 1 - 1 = 1
Number of sub-shell occupied $= 6$	490 (b)
Number of orbitals filled = 14	The maximum number of electron in any orbital is
Number of unpaired electrons $= 0$	2.
481 (d)	491 (d)
$\lambda = \frac{n}{mu}$; where <i>mu</i> is momentum.	Each has 16 electrons.
482 (c)	492 (d) Rest all are particles.
The atomic number of neon is 10.	493 (c)
G. S. Ne[10]: $1s^2$, $2s^2$, $2p^6$	<i>L</i>
E. S. Ne [10]: $1s^2$, $2s^2$, $2p^5$, $3s^1$	de Broglie wavelength $\lambda = \frac{n}{mu'}$,
Hence, $1s^2$, $2s^2$, $2p^5$, $3s^1$ electronic configuration	<i>m</i> is maximum for α -particle.
indicates the excited state of neon.	494 (c)
483 (a)	$3d^5$, $4s^1$ is more stable configuration than
<i>p</i> -orbitals have two lobes; except d_{z^2} all the four	$3d^4, 4s^2$.
<i>d</i> -orbitals have four lobes.	495 (d)
485 (b)	$E = \frac{12375}{\lambda}$; where E in eV and λ in Å.
Energy of an electron in <i>n</i> th orbit, $2-2k^2m^2/2e^4$	496 (d)
$E_n = \frac{2\pi^2 k^2 m Z^2 e^4}{n^2 h^2}$	Follow text.
On submitting the values of k , m , e and h , we get	497 (a)
	Cl^- has 18 electrons and 17 protons.
$E_n = -\frac{2.172 \times 10^{-18} Z^2}{n^2} \text{J atom}^{-1}$	498 (a)
or = $-\frac{1311.8Z^2}{n^2}$ kJ mol ⁻¹	No doubt in Cr it is $3d^5$, $4s^1$; but in Nb it is
	$4d^4, 5s^1.$
or = $-\frac{313.52Z^2}{n^2}$ kcal mol ⁻¹ [:: 1 kcal = 4.184 kJ]	499 (a)
	$mu = \frac{h}{\lambda}$
For H-atom, $Z = 1$	500 (d)
For Lyman series, $n_1 = 1, n_2 = 2$	No. of unpaired electrons in Ni ²⁺ is two.
Energy of electron in n_1 orbit	501 (b)
$= -\frac{313.52 \times (1)^2}{(1)^2} \text{kcal mol}^{-1}$	Charge on neutrons is zero and mass of electron is
	minimum.
$= -313.52 \text{ kcal mol}^{-1}$ $\approx -313.6 \text{ kcal mol}^{-1}$	502 (a)
~ -313.0 Kcai iliui	Mass of electron = 9.1×10^{-31} kg,

Mass of proton = 1.67×10^{-27} kg This observation that the ground state of nitrogen Mass of neutron = 1.675×10^{-27} kg atom has 3 unpaired electrons in its electronic Mass of α -particle = 6.67 × 10⁻²⁷ kg configuration and not otherwise is associated So, increasing order of e/m for e, p, n and α with Hund's rule of maximum multiplicity. particle is $e > p > \alpha > n$ (:: neutron has no 515 (b) $E_{2\mathrm{He}^+} = \frac{E_{1\mathrm{H}} \times Z^2}{2^2}$ charge) 503 **(b)** $E_{1H} = -13.62 \text{ eV}$ Total value of m = (2l + 1) = 3 for l = 1 m = 3 is 516 (c) for *f*-subshell orbitals As a result of attraction, some energy is released. 504 (c) 517 (c) As per Bohr's postulate, kinetic energy in II orbit 4th electron of Be is in 2*s*-subshell. $= + \frac{e^2}{2r_2} = \frac{e^2}{2a_0 \times 2^2} \quad (\because r_2 = r_1 \times n^2)$ 518 (a) Filling up of electron is made according to aufbau $=\frac{e^2}{8a_0}$ principle. 519 (a) Since, $a_0 = \frac{h^2}{4\pi^2 m e^2}$ $m_e = \frac{m_e(\text{in rest})}{\sqrt{1 - (v/c)^2}};$: Kinetic energy in II orbit = $\frac{h^2}{4\pi^2 m a_0} \times \frac{1}{8a_0}$ = The mass of moving electron increase with h^2 increase in velocity and thus e/m decreases $32\pi^2 m a_0^2$ 520 (a) 505 (a) *p*-orbital are three, *i*. *e*., p_x , p_y and p_z each having Nucleus does not contain electron in it. same energy level, i.e., degenerate orbitals. 506 (b) 521 (d) Potential energy in an orbit = $-Ze^2/r_n$ Pfund series spectral lines have longer 507 **(b)** wavelength and thus lesser energy Orbital angular momentum = $\sqrt{l(l+1)} \frac{h}{2\pi}$ 523 (a) For *p*-orbital, l = 1 $\lambda = \frac{h}{mv}$: Orbital angular momentum $=\sqrt{1(1+1)}\frac{h}{2\pi} = \frac{\sqrt{2}h}{2\pi}$ $=\frac{6.62\times10^{-34}}{6.62\times10^{-35}\times100}$ $= 0.1 \, \text{kg}$ $=\frac{n}{\sqrt{2}\pi}$ 524 (c) 508 (d) If n = 4, l = 3, i. e., 4f-orbital. Thus total number of electrons in 4*f* orbital is 14. *e/m* for proton 525 (c) e/m for α -particle = $E_3 - E_2 = E(eV) \text{ or } -\frac{E_1}{9} + \frac{E_1}{4} = E$ 509 (c) $\therefore E_1 = \frac{36E}{5} = 7.2 E$ The total values of *m* for n = 2 are four. 510 **(d)** 526 (d) Common name for proton and neutron is nucleon. $\bar{v} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ 511 (b) For A, (n + l) = 5 Thus, larger is value of (n + l). For Balmer series For B, (n + l) = 3 more is energy level. $n_1 = 2, n_2 = 3, 4, 5, \dots \infty$ 512 (b) For first emission line $n_2 = 3$ $r_{\text{nucleus}}_{(\text{cm})} = (1.3 \times 10^{-13}) A^{\frac{1}{3}}$ $\therefore \ \overline{v} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$ Where A is mass no. of nucleus $= R\left(\frac{1}{4}-\frac{1}{9}\right) = R\left(\frac{5}{36}\right)$ 513 (a) $E_{\rm He^+} = E_{\rm H} \times 2^2$; $E_{\rm Li^{2+}} = E_{\rm H} \times 3^2$ $\bar{v} = \frac{5R}{36} \text{ cm}^{-1}$ 514 **(b)**

$p_{x} \text{ orbital has electron density along } x\text{-axis.}$ 528 (c) Electronic configuration of Mn(25) is $1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{6}, 4s^{2}, 3d^{5}$ \therefore Electronic configuration of Mn ²⁺ is $1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{6}, 3d^{5}$ $\therefore Mn^{2+} = [Ar]3d^{5}, 4s^{0}$ $= [Ar] \boxed{111111}$ 529 (a) No. of neutron=atomic mass-atomic number. For C ¹² No. of neutron = $12 - 6 = 6$ 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{H} = 0.529 \text{ Å}$ $r_{n} = r_{H} \times \frac{n^{2}}{Z}$ For Li ²⁺ ($n = 2$), $r_{Li^{2+}} = r_{H} \times \frac{(2)^{2}}{3} = \frac{r_{H} \times 4}{9}$ For Li ²⁺ ($n = 3$), $r_{Li^{2+}} = r_{H} \times \frac{(3)^{3}}{3} = 3r_{H}$ For Be ³⁺ ($n = 2$) (2) ²	 539 540 541 542 543 544 	According to Rutherford Scattering angle $\propto \frac{1}{\sin^4(6)}$ It fails for very small sca full nuclear charge of the screened by its electron (c) Radial node = $n - l - 1$ (b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbita (a) Atoms corresponds to d
Electronic configuration of Mn(25) is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^5$ \therefore Electronic configuration of Mn ²⁺ is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5$ \therefore Mn ²⁺ = [Ar]3d ⁵ , 4s ⁰ $= [Ar] \boxed{111111}$ 529 (a) No. of neutron=atomic mass-atomic number. For C ¹² No. of neutron = 12 - 6 = 6 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529\text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ (n = 2), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ (n = 2)	541 542 543	Scattering angle $\propto \frac{1}{\sin^4(6)}$ It fails for very small sca full nuclear charge of the screened by its electrone (c) Radial node = $n - l - 1$ (b) This led Rutherford to pe (d) It is d_{xy} or $d_{x^2-y^2}$ orbita (a) Atoms corresponds to de higher energy levels to be
$1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{6}, 4s^{2}, 3d^{5}$ $\therefore Electronic configuration of Mn^{2+} is$ $1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{6}, 3d^{5}$ $\therefore Mn^{2+} = [Ar]3d^{5}, 4s^{0}$ $= [Ar] \frac{3d^{5}}{(1 + 1 + 1 + 1)} \frac{4s^{0}}{(1 + 1 + 1 + 1)} \frac{3}{(1 $	541 542 543	It fails for very small sca full nuclear charge of th screened by its electron (c) Radial node = $n - l - 1$ (b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbita (a) Atoms corresponds to d
$\therefore \text{ Electronic configuration of } \text{Mn}^{2+} \text{ is } \\ 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5 \\ \therefore \text{Mn}^{2+} = [\text{Ar}] 3d^5, 4s^0 \\ = [\text{Ar}] \boxed{111111} \boxed{1} \\ 529 \text{ (a)} \\ \text{No. of neutron=atomic mass-atomic number.} \\ \text{For } \text{C}^{12}\text{No. of neutron} = 12 - 6 = 6 \\ 531 \text{ (d)} \\ \text{Combination of } \alpha\text{-particle with nuclide always increases mass no. by four units and at.no. by two units.} \\ 532 \text{ (c)} \\ r_{\text{H}} = 0.529 \text{\AA} \\ r_n = r_{\text{H}} \times \frac{n^2}{Z} \\ \text{For } \text{Li}^{2+}(n = 2), \\ r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(2)^2}{3} = \frac{r_{\text{H}} \times 4}{9} \\ \text{For } \text{Li}^{2+}(n = 3), \\ r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}} \\ \text{For } \text{Be}^{3+}(n = 2) \\ \end{array}$	541 542 543	It fails for very small sca full nuclear charge of the screened by its electron (c) Radial node = $n - l - 1$ (b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbit (a) Atoms corresponds to constant of higher energy levels to be
$1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{6}, 3d^{5}$ $\therefore Mn^{2+} = [Ar]3d^{5}, 4s^{0}$ $= [Ar] \boxed{1111111}$ 529 (a) No. of neutron=atomic mass-atomic number. For C^{12}No. of neutron = 12 - 6 = 6 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_{\rm n} = r_{\rm H} \times \frac{n^{2}}{Z}$ For Li ²⁺ ($n = 2$), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^{2}}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ ($n = 3$), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^{3}}{3} = 3r_{\rm H}$ For Be ³⁺ ($n = 2$)	541 542 543	full nuclear charge of the screened by its electron (c) Radial node = $n - l - 1$ (b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbits (a) Atoms corresponds to d higher energy levels to b
$\therefore \operatorname{Mn}^{2+} = [\operatorname{Ar}] 3d^{5}, 4s^{0}$ $= [\operatorname{Ar}] \boxed{1 1 1 1 1} \boxed{1}$ 529 (a) No. of neutron=atomic mass-atomic number. For C ¹² No. of neutron = 12 - 6 = 6 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\mathrm{H}} = 0.529 \text{\AA}$ $r_{n} = r_{\mathrm{H}} \times \frac{n^{2}}{Z}$ For Li ²⁺ (n = 2), $r_{\mathrm{Li}^{2+}} = r_{\mathrm{H}} \times \frac{(2)^{2}}{3} = \frac{r_{\mathrm{H}} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{\mathrm{Li}^{2+}} = r_{\mathrm{H}} \times \frac{(3)^{3}}{3} = 3r_{\mathrm{H}}$ For Be ³⁺ (n = 2)	541 542 543	screened by its electron (c) Radial node = $n - l - 1$ (b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbit (a) Atoms corresponds to c higher energy levels to b
$= [Ar] \underbrace{1 + 1 + 1 + 1}_{3d^{5}} \underbrace{4s^{0}}_{4s^{0}}$ $= [Ar] \underbrace{1 + 1 + 1 + 1}_{529} \underbrace{4s^{0}}_{19}$ 529 (a) No. of neutron=atomic mass-atomic number. For C ¹² No. of neutron = 12 - 6 = 6 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_{\rm n} = r_{\rm H} \times \frac{n^{2}}{Z}$ For Li ²⁺ (<i>n</i> = 2), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^{2}}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ (<i>n</i> = 3), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^{3}}{3} = 3r_{\rm H}$ For Be ³⁺ (<i>n</i> = 2)	541 542 543	(c) Radial node = $n - l - 1$ (b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbits (a) Atoms corresponds to d higher energy levels to b
529 (a) No. of neutron=atomic mass-atomic number. For C ¹² No. of neutron = 12 - 6 = 6 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ (n = 2), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ (n = 2)	541 542 543	Radial node = $n - l - 1$ (b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbita (a) Atoms corresponds to d higher energy levels to b
529 (a) No. of neutron=atomic mass-atomic number. For C ¹² No. of neutron = 12 - 6 = 6 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ ($n = 2$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ ($n = 3$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ ($n = 2$)	542 543	(b) This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbits (a) Atoms corresponds to d higher energy levels to b
No. of neutron=atomic mass-atomic number. For C ¹² No. of neutron = 12 - 6 = 6 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ ($n = 2$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ ($n = 3$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ ($n = 2$)	542 543	This led Rutherford to p (d) It is d_{xy} or $d_{x^2-y^2}$ orbita (a) Atoms corresponds to d higher energy levels to 1
For C ¹² No. of neutron = $12 - 6 = 6$ 531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ ($n = 2$), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ ($n = 3$), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ ($n = 2$)	543	(d) It is d_{xy} or $d_{x^2-y^2}$ orbit (a) Atoms corresponds to c higher energy levels to
531 (d) Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ ($n = 2$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ ($n = 3$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ ($n = 2$)	543	It is d_{xy} or $d_{x^2-y^2}$ orbit (a) Atoms corresponds to c higher energy levels to
Combination of α -particle with nuclide always increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ ($n = 2$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ ($n = 3$), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ ($n = 2$)		(a) Atoms corresponds to d higher energy levels to d
increases mass no. by four units and at.no. by two units. 532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ (n = 2), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ (n = 2)		Atoms corresponds to d higher energy levels to 1
units. 532 (c) $r_{\rm H} = 0.529 \text{ Å}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ (n = 2), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{{\rm Li}^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ (n = 2)	544	higher energy levels to
532 (c) $r_{\rm H} = 0.529 \text{\AA}$ $r_n = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ (n = 2), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ (n = 2)	544	
$r_{\rm H} = 0.529 \text{\AA}$ $r_{\rm n} = r_{\rm H} \times \frac{n^2}{Z}$ For Li ²⁺ (n = 2), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(2)^2}{3} = \frac{r_{\rm H} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{\rm Li^{2+}} = r_{\rm H} \times \frac{(3)^3}{3} = 3r_{\rm H}$ For Be ³⁺ (n = 2)	011	
$r_{n} = r_{H} \times \frac{n^{2}}{Z}$ For Li ²⁺ (n = 2), $r_{Li^{2+}} = r_{H} \times \frac{(2)^{2}}{3} = \frac{r_{H} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{Li^{2+}} = r_{H} \times \frac{(3)^{3}}{3} = 3r_{H}$ For Be ³⁺ (n = 2)		
For $\text{Li}^{2+}(n = 2)$, $r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(2)^2}{3} = \frac{r_{\text{H}} \times 4}{9}$ For $\text{Li}^{2+}(n = 3)$, $r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}}$ For $\text{Be}^{3+}(n = 2)$		$T = \frac{2\pi r_n}{u_n} = \frac{2\pi r_1 \times n^2}{u_1/n}$
For $\text{Li}^{2+}(n = 2)$, $r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(2)^2}{3} = \frac{r_{\text{H}} \times 4}{9}$ For $\text{Li}^{2+}(n = 3)$, $r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}}$ For $\text{Be}^{3+}(n = 2)$		or $T \propto n^3$; $n = 2$ here
$r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(2)^2}{3} = \frac{r_{\text{H}} \times 4}{9}$ For Li ²⁺ (n = 3), $r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}}$ For Be ³⁺ (n = 2)	545	
For $\text{Li}^{2+}(n = 3)$, $r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}}$ For $\text{Be}^{3+}(n = 2)$	515	
For $\text{Li}^{2+}(n = 3)$, $r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}}$ For $\text{Be}^{3+}(n = 2)$		$v = \frac{c}{\lambda}, \therefore \lambda = \frac{3 \times 10^8}{8 \times 10^{15}} = 4$
$r_{\text{Li}^{2+}} = r_{\text{H}} \times \frac{(3)^3}{3} = 3r_{\text{H}}$ For Be ³⁺ (n = 2)	546	
For $Be^{3+}(n=2)$		The third alkaline metal
For $Be^{3+}(n=2)$		protons and 20 electror
	547	
		More intense beam will
$r_{\rm Be^{3+}} = r_{\rm H} \times \frac{(2)^2}{4} = r_{\rm H}$	549	(b)
For $He^+(n=2)$		Follow Pauli's exclusion
	550	
$r_{\rm He^+} = r_{\rm H} \times \frac{(2)^2}{2} = 2r_{\rm H}$		hv = work function + K
Thus, Be ³⁺ $(n = 2)$ has same radius as that of the		if KE = 0;
first Bohr's orbit of H-atom		hv = work function.
533 (c)	551	
Isotopes of an element have different number of		For <i>s</i> -orbital $l = 0$.
neutrons.	552	
534 (c)		$E_1 = -13.6 \text{ eV};$
Co^{2+} has $1s^2$, $2s^22p^6$, $3s^23p^63d^7$ configuration		$\therefore E_2 = \frac{E_1}{2^2}$ and $E_3 = \frac{E_1}{3^2}$
having 3 unpaired electron only,	553	- 0
535 (c)	555	The probability of finding
		orbital is 90-95%.
Total spin = $\pm \frac{1}{2} \times$ number of unpaired electrons	554	
in atom	554	
536 (b)		de Broglie equation is λ
More is frequency of photon, more is energy.	555	(b)
537 (c)		Out of other alternates,
Kinetic energy = $\frac{Ze^2}{r_m}$		of 54.4 eV because in He
- n		is fairly high and ionic s
538 (b)	556	

guration and is diamagnetic. rd (θ/2) cattering angles because the he target atom is partially n 1; Angular node = l. propose nucleus. ital. different transitions from lower energy levels 4×10^{-8} . cal is $\frac{40}{20}$ Ca. It contains 20 ons. ll give out more electrons. on principle. KE; 1 ling the electrons in the $\lambda = \frac{h}{mu}.$ s, He⁺has ionisation energy He⁺effective nuclear charge size is small. C

For chlorine atom, electronic configuration 567 (a) $= 1s^2, 2s^2, 2p^6, 3s^2, 3p^5$ For $3p^5$, n = 3, l = 1, m = -1, 0, +1557 (d) 568 (d) The relative for E_1 ; $E_1 = -R_H \cdot h \cdot c$. 558 (b) The radius of hydrogen atom=0.53Å ₃Li²⁺ion also has only one electron but it has 3 proton in nucleus, hence its electron feels three times more attraction from nucleus in comparison 569 **(c)** of hydrogen atom. Thus, the radius of ₃Li²⁺will be $=\frac{0.53}{2}=0.17$ Å 559 (d) $Ti^{2+} = 1s^2, 2s^22p^6, 3s^23p^63d^2, 4s^0$ $V^{3+} = 1s^2, 2s^22p^6, 3s^23p^6, 3d^2, 4s^0$ $Cr^{4+} = 1s^2, 2s^22p^6, 3s^23p^63d^2, 4s^0$ $Mn^{5+} = 1s^2, 2s^22p^6, 3s^23p^63d^2, 4s^0$ 560 (a) The configuration of 29Cu is $1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^1.$ 570 (d) 561 (d) hv =work function +*KE*; Given KE = 0; 571 (c) Thus, $hv = 4 \text{ eV or } 4 = \frac{12375}{\lambda}$, where λ is in Å. 562 (c) 572 (a) Applying Rydberg formula, $\bar{v} - \frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \mathrm{cm}^{-1}$ 573 (a) For the first line in Lyman series, 574 (c) $n_1 = 1$ and $n_2 = 2$ $So, \bar{v} = 109678 \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{109678 \times 3}{4}$ 575 (d) $= 82258.5 \text{cm}^{-1}$ 563 **(a)** Number of spherical nodes in 3 *p*-orbital's = 3 -576 (b) 1 - 1 = 1There is one planner node in all *p*-orbitals. 564 (a) Deuterium is an isotope of hydrogen. Its atomic 577 (a) number is one. Hence, its electronic configuration is 578 (b) $_{1}D^{2}:1s^{1}$ 565 (d) 579 (b) ${}_{26}$ Fe = [Ar] $3d^{6}4s^{2}$ Fe²⁺(24 electrons)=[Ar] $3d^{6}4s^{0}$ evidenced by photoelectric effect. 566 (d)

No. of electrons in a subshell is (4l + 2). When, n = 5, l = 0, 1, 2, 3 or 4 and m = -4 to + 4 \therefore $n = 5, l = 4, m = 0, s = +\frac{1}{2}$ is a correct set of quantum numbers. Subshell having lower value of (n + l) will be of lower energy, where *n* is the principle and *l* is the azimuthal quantum number. Thus, Correct energy value order is ns, (n-1)d, np, (n-1)f.Radius of orbit $(r) = \frac{n^2 h^2}{4\pi^2 m e^2} \times \frac{1}{Z}$ In it h, π, m and e are constants, so after substituting these values, we get $r = \frac{0.529n^2}{Z} \text{\AA}$ Z = 1 for H $\therefore \quad r_H = \frac{0.529n^2}{1} \text{\AA}$... (i) The transition from n = 2 to n = 1 in H-atom will have the same wavelength as the transition from n = 4 to n = 2 in He⁺ ion. $\frac{V_n}{V_a} = \frac{(43)\pi r_n^3}{(43)\pi r_a^3} = \frac{r_n^3}{r_a^3} = \frac{\left[1.25 \times 10^{-13} \times (64)^{1/3}\right]^3}{(10^{-8})^3}$ Z is atomic no. and e is charge on proton. Mn has five unpaired electrons. Carbon is ${}_{6}C^{12}$ and silicon is ${}_{14}Si^{28}$. The 29th electron enters into $3d^9$ to have $3d^{10}$ configuration in Cu. P has 6 electrons in s-subshells as in s-shell of Fe^{2+} . Number of spectral lines = $\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{2}$ = $\frac{(7 - 2)(7 - 2 + 1)}{2} = 15$ The value of Rydberg constant is $10,9678 \text{ cm}^{-1}$. All the three electrons are to be kept in 1s. Particle nature of electron was experimentally

580 (d) They proposed the concept of electron spin. 581 (a) $1 \text{ nm} = 1 \times 10^9 \text{m} = 10 \times 10^{-10} \text{m} = 10 \text{ Å}$ 582 (a) Mass of neutron = 1.675×10^{-27} kg Mass of electron = 9.108×10^{-31} kg 583 (c) $E_1 = -13.6 \text{ eV}$ After absorption of 12.2 eV energy $E_{\rm H} = -13.6 + 12.2$ = -1.4 eVNow $E_n = \frac{E_1}{n^2} \therefore n^2 = \frac{-13.6}{-1.4} = 9.71$ 584 (c) Number of atomic orbitals in 4th energy shell = $4^2 = 16$ 585 (d) According to Bohr model, Radius of hydrogen atom $(r_n) = \frac{0.529 \times n^2}{7} \text{\AA}$ (where, *n*=number of orbit, *Z*=atomic number) $r_3 = \frac{0.529 \times (3)^2}{1} = 4.761 \text{\AA}$ 586 (c) Isotopes have same chemical nature. 587 (d) The value of '*n*' and '*l*' equal to 4 and 3 respectively corresponds to 4*f*-orbital, hence the electron will belong to 4*f*-orbital. 588 (c) *p*-orbitals (l = 1) can have six electrons. 589 (b) It is a fact derived by Rutherford from his α scattering experiment. 590 (d) At. no. 54 does not contain electron in *f*-orbital. Filling of *f*-orbital takes place from at. no. 58. 591 (c) Cl^{-} has ns^2np^6 configuration. 592 (d) The mass number = atomic number + number of neutron Atomic number=no. of proton =no. of electron (for an atom) So, mass number =18+20=38593 (b) All *d*-orbitals except d_{z^2} have four lobes. 594 (d)

 $\frac{1}{2}mu_{\max}^2 = hv - W$ 595 (c) No. of subshells in a shell = n^2 . 596 (d) The threshold frequency (v_0) is the lowest frequency that photons may possess to produce the photoelectric effect. The energy corresponding to this frequency is the minimum energy (E) $E = hv_0$ = $(6.625 \times 10^{-27} \text{erg s}) (1.3 \times 10^{15} \times \text{s}^{-1})$ $= 8.6 \times 10^{-12} \text{ erg}$ 597 (d) Higher values of Ψ^2 means greater probability for finding electron and a zero value of Ψ^2 means the probability for finding the electron is zero (at nucleus) 598 (b) It provides experimental determination of charge on electron. 599 (b) f-orbital possesses 7 subshells and thus, maximum number of unpaired electrons = 7. 600 (d) $r_n = r_1 \cdot n^2$ 601 (c) The proton has unit positive charge $(+1.602 \times 10^{-19} \text{C})$ and its mass is $1.007 \text{ u} (1.677 \times 10^{-27} \text{kg}).$ 602 (a) $v = \frac{c}{\lambda}$ where v is frequency; c is velocity and λ is wavelength for light used. 603 (a) For 4d electron, n = 4, l = 2, m = -2, -1, 0, +1, +2 $s = +\frac{1}{2} \text{ or } -\frac{1}{2}$ 604 (c) Follow Hund's multiplicity rule. 605 (a) Isoeletronic means having same number of electrons. K⁺, Cl⁻, Ca²⁺, Sc³⁺ (all are having 18 electrons). 606 (c) e/m for D⁺, H⁺, He⁺ and He²⁺ are $\frac{1}{2}$, $\frac{1}{1}$, $\frac{1}{4}$ and $\frac{2}{4}$. 607 (c) Filling up of electrons in an atom obey aufbau principle.

```
609 (c)
```

 $\Delta u = \frac{h}{4\pi m \cdot \Delta x} = \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 25 \times 10^{-3} \times 10^{-5}}$ l = 0(::It is s-subshell) m = 0 $= 2.1 \times 10^{-28} \text{ m/s}$ $s = \pm 1/2$ 610 (a) 625 (a) Elements from atomic no.21 to 100, each has 3d-Follow Plank's quantum theory. electron in its configuration. 626 **(b)** 611 (a) *p*-orbitals are dumb-bell type. $1.8 \text{ mL H}_20 = 1.8 \text{ g H}_20$. also 18 g H_20 has 10N627 (d) Aufbau principle does not give the correct electrons; Find electrons in 1.8 g H₂O arrangement of filling up of atomic orbitals in 613 (b) copper and chromium because half-filled and The configuration of at. no. 15 is completely filled electronic configuration of Cr $1s^2, 2s^22p^6, 3s^23p^3.$ and Cu have lower energy and therefore, more 614 (c) stable. $Cr(Z = 24): 1s^2, 2s^22p^6, 3s^23p^63d^5, 4s^1$ From Bohr's model : $\frac{mu^2}{r} = \frac{e^2}{r^2}$ $Cu(Z = 29): 1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^1$ or $\frac{mr^2mu^2}{r} = \frac{e^2}{r^2} \cdot mr^2$ or $(mur)^2 = e^2m \cdot r$ 628 (d) 0 has 0 – 16, 0 – 17, 0 – 18 isotopes. \therefore Angular momentum $\propto \sqrt{r}$ 629 (b) 615 (a) $r_n = r_1 \times n^2$ \therefore $n^2 = \frac{r_n}{r_1} = \frac{10.3 \times 10^9}{0.529 \times 10^{-10}} \therefore n = 14$ $1 \text{ mL} \equiv 1.2 \text{ g Mg}$; Also 24 g Mg has 12N electrons. 616 (a) 630 (c) 2*s* has minimum energy level. A *p*-orbital has 3 dumbles (*i.e.* p_x , p_y and p_z) and 617 (c) each dumble can accommodate maximum of 2 de-Broglie, first of all suggested that electron, like electrons. So, maximum number of electrons in plight photons, possess wave nature. He proposed orbital is 6. that all micro-particles have dual nature *i.e.*, both 631 (a) wave nature and particle nature. The wavelength $\lambda = \frac{h}{\sqrt{2eVm_e}}$ of electron is given by $e = 1.6 \times 10^{-19}$ C, V = 10,000 V, $m_e = 9.1 \times 10^{-31}$ h =Planck's constant kg where, $\lambda = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 1.6 \times 10^{-19} \times 10,000 \times 9.1 \times 10^{-31}}}$ 619 (c) Use, $\Delta v \times \Delta x = \frac{h}{4\pi m}$ or $\Delta x = \frac{h}{4\pi m \cdot \Delta n}$ = 0.123 Å 620 (c) 632 (b) Atoms of an element are alike. The jump of electron from higher level to lower 621 (a) one shows a decrease in energy and thus, *n* lies from 1 to ∞ ; l = 0 to (n - 1); m = -1 to +lequivalent amount of energy is given out as through zero. emission spectra. 622 **(b)** 633 (c) Electronic configuration of 23V is $\frac{V_n}{V_a} = \frac{4/3\pi (r_n)^3}{4/3\pi (r_a)^3}$ $1s^2$, $2s^22p^6$, $3s^23p^63d^3$, $4s^2$ 623 (a) $=\frac{r_n^3}{r_n^3}=\frac{(10^{-13})^3}{(10^{-8})^3}=10^{-15}$ Einstein mass-energy relation is $E = mc^2$ 624 (a) 634 (b) Rb – Atomic number is 37, $m_p < m_n$ So configuration is $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^2, 3d^{10}, 4p^6, 5s^1$ 635 (c) : Last electron (valence electron) is $5s^1$ No. of neutron = Mass no. - At. no. (: Electron enters 5 energy level) 636 (b) $\therefore n = 5$

For a particular value of azimuthal quantum number, the total number of magnetic quantum number, m = 2l + 1or 2l = m - 1 $l = \frac{m-1}{2}$ 637 (c) According to Planck, E/photon= hv. 638 (b) At. no. 30 has configuration ... $3d^{10}$, $4s^2$ and thus, 31 has $...3d^{10}$, $4s^24p^1$ 639 (d) Angular speed is $\frac{u}{r}$; Also $u_n \propto \frac{1}{n}$ and $r_n \propto n^2$ 640 (c) Cl has 17 electrons, Cl⁻ has 18 electrons. 641 (c) IP for Fe⁺ ion =IP for $H \times (Z)^2$ where, Z = atomic number \therefore IP = 13.6 × (2)² $= 13.6 \times 4 = 54.4 \text{ eV}$ 642 (a) $\frac{1}{\lambda_{a}} = R_{\rm H} \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$ and $\frac{1}{\lambda_{e}} = R_{\rm H} \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$ 643 (a) Angular momentum, $mvr = \frac{nh}{2\pi}$ $=3h \left[\because h = \frac{h}{2\pi}\right]$ 644 (c) First of all, de-Broglie told that like light, all the microscopic moving particles also have dual nature, i.e., both wave and particle nature. Hence, for any microscopic particle (like e^{-} , $p^{+}n$ etc) the wavelength is given by where, *h*=Planck's constant *mv*=*p*=momentum 645 (d) According to aufbau principle, 2p-orbital will be filled before 3s-orbital. Therefore, the electronic configuration $(1s^2, 2s^22p^2, 3s^1)$ is not possible. 646 (b) No. of electrons in a subshell = 2(2l + 1) = 4l + 2Also, l = 4 for *g*-subshell. 648 **(b)**

Ionisation energy of He⁺ = $13.6 \times Z^2$ eV $= 13.6 \times (2)^2 eV$ $= 13.6 \times 4 \text{ eV} = 54.4 \text{ eV}$ 649 (a) For excitation of electron from ground state the minimum energy needed is 10.2 eV; $E_2 - E_1 =$ -3.4 - (-13.6). 650 (d) For *s*-orbitals, Ψ^2 is maximum for closer to nucleus. For *p*-orbital, Ψ^2 maximum for far away distance from nucleus. 651 (a) Orbital angular momentum $(L) = \sqrt{l(l+1)} \frac{h}{2\pi}$ For *d*-orbital, l = 2(L) = $\sqrt{2(2+1)} \frac{h}{2\pi}$ √6h 652 (b) A fact. 653 (c) (n + l) for 4f and 5d is same but n being lesser in 4f and thus, energy order, 4f < 5d. 654 (c) The electronic configuration of Fe atom is Fe (26) = $[Ar]3d^64s^2$ $Fe^{3+} = [Ar]3d^54s^0$ 1 1 1 1 1 five unpaired electrons 655 (d) Fe^{2+} has 6 electrons in 3*d*-shell; Cl^{-} has 12*p*electrons. 656 (c) *m* can have values -l to =+l through zero. 657 (a) $E_n = \frac{13.6}{n^2} \text{eV}$ $E_3 - E_2 = 13.6 \left(\frac{1}{(2)^2} - \frac{1}{(3)^2}\right) \text{eV}$ $E_3 - E_2 = 13.6 \left(\frac{1}{4} - \frac{1}{9}\right) eV$ $E_3 - E_2 = 13.6 \times \left(\frac{5}{26}\right) \text{eV}$ = 1.9 eV658 (a) $n = 3; l = 1 \therefore (n + l) = 4$ 659 (c) For 'N' shell

: The number of shell (n)=4: The number of sub-levels or sub-shell (l)=4The number of orbitals $= n^2 = 4^2 = 16$ and the number of electrons = $2n^2 = 2 \times 4^2 = 32$ 660 **(b)** $\lambda = \frac{h}{mv}$ Here, $v = 3600 \, \text{km/h}$ $= 10^{5} cm/s$ $m = 1.0 \text{mg} = 10^{-3}$ $\lambda = \frac{6.626 \times 10^{-27}}{10^{-3} \times 10^5}$ $= 6.626 \times 10^{-29} \text{cm}$ 661 (a) A fact to produce X-rays. 662 **(b)** Let work function of A and B be w_A and w_B and T_A , T_B are kinetic energy $\therefore 4.25 = w_A + T_A$ or $T_A = 4.25 - w_A$...(i) Similarly $T_B = 4.70 - w_B$...(ii) $\therefore T_B - T_A = 0.45 + w_A - w_B$ $-1.5 = 0.45 + w_A - w_B \quad (\because T_B - T_A = -1.5)$ or $w_B - w_A = 1.95$ $\therefore \lambda = \frac{h}{mv} = \frac{h}{\sqrt{2K \times m}}$ $\therefore \lambda \propto \frac{1}{\kappa}$ (*K* is kinetic energy) $\therefore \frac{\lambda_B}{\lambda_A} = \sqrt{\frac{K_A}{K_B}} = 2$ Also $\frac{T_A}{T_B} = 4 = \frac{K_A}{K_B}$ $\therefore \frac{T_A}{T_A - 1.5} = 4$ $\therefore T_A = 2 \text{ eV}$ $T_B = 0.5 \text{ eV}$ $w_A = 2.25 \text{ eV}$ $w_{B} = 4.2 \text{ eV}$ 663 (a) For 3*d*-orbital *l* cannot be 1. 664 **(a)** $\lambda = \frac{h}{mu} = \frac{h}{p}$ 665 (a) $\lambda = \frac{h}{mv}$, ie, $\lambda \propto \frac{1}{\sqrt{mE}}$ and m > > > EThus, correct order is $\lambda_e > \lambda_p > \lambda_{\alpha}$ 666 (a) He²⁻ has four electrons and thus, four sets are possible (Pauli's exclusion principle. 667 **(b)**

 $Zn(30) = [Ar]3d^{10}, 4s^2$ $Zn^{2+} = [Ar]3d^{10}$ (no unpaired electron) $Fe(26) = [Ar]3d^6, 4s^2$ $Fe^{2+} = [Ar]3d^6$ **1** 1 1 1 1 $3d^6$ (four unpaired electrons) $Ni(28) = [Ar]3d^8, 4s^2$ $Ni^{3+}[Ar]3d^{7}$ <u>4 4 1 1 1 1</u> $3d^7$ (three unpaired electrons) $(Cu(29) = [Ar]3d^{10}, 4s^1$ $Cu^+ = [Ar] 3d^{10}$ (no unpaired electron) 668 (c) Higher the value of (n + l), higher will be the energy of electrons. If value of (n + l) is same for any two or more electrons, the electron with higher value of n, has higher energy. Hence, the correct order of energy is V < I < III < II < IV(n+1) 4 5 5 5 6 669 **(b)** $Li^{-} = 1s^{2}, 2s^{2}$ (In it all subshells are saturated so, it is stable) $Be^- = 1s^2, 2s^2, 2p^1$ (very much less stable) $B^- = 1s^2, 2s^2, 2p^2$ (less stable) $C^{-} = 1s^{2}, 2s^{2}, 2p^{3}$ (stable due to presence of halffilled 2p-subshell) 670 (b) Mass no. of an element represents no. of nucleons in it. 671 (b) According to de-Broglie, all the microscopic particles have dual nature. The wavelength of these is given by $\lambda = \frac{h}{mm}$ 672 (c) The electron in H atom is excited to III shells after absorbing 12.1 eV; because, $E_3 - E_1 = \frac{-13.6}{9} + 13.6 = 12.1$ Thus, possible transitions are $\sum (3-1) = 3$ 673 (a) Fall of electron from higher level to L-level, (i.e., 2nd shell) gives Balmer series. 674 (d) Average isotopic wt. per cent × wt. of isotope + per cent × wt. of othe

 $\therefore 20.2 = \frac{a \times 20 + (100 - a) \times 22}{100}$ $\therefore a = 90$; per cent of lighter isotope = 100 - 90 = 10675 **(b)** The total number of waves in an orbit $\frac{\text{circumference of orbit}}{\text{wavelenght}} = \frac{2\pi r}{\lambda}$ $= \frac{2\pi r \cdot m u}{h}$ $=n \left(\because mur = \frac{nh}{2\pi}\right)$ 676 (a) Magnetic moment = $\sqrt{n(n+2)}$; where *n* is no. of unpaired electron $\therefore 4.9 = \sqrt{n(n+2)}$ or n = 4Thus, electronic configuration of Mn^{a+} having 4 unpaired electron is $_{25}$ Mn³⁺: 1s², 2s²2p⁶, 3s²3p⁶3d⁴. 677 (b) K^{-} has 19 + 1 = 20 electrons. 678 (c) Under the influence of magnetic field orbitals (*p*, *d*) are non degenerate, *i*. *e*., have different energy levels. 679 (b) Aufbau is a German term meaning for building up. 680 (d) $\lambda = \frac{h}{mu};$ Given $u = 2.2 \times 10^{-6} \text{m/s}$ $m_e=9.10\times 10^{-31}\rm kg$ 681 (a) A^- has 18 electrons, thus, neutral atom A has 17 electrons or 17 protons. Also neutron = 20 thus, mass no. = 17 + 20 = 37682 (d) 14. Interference and diffraction support the wave nature of electron. $E = mc^2$ support the particle nature of 15. electron. $E = hv = \frac{hc}{\lambda}$ is de-Broglie equation and it 16. supports both wave nature and particles nature of electron. 683 (c) According to Bohr's concept, an electron always move in the orbit with angular momentum (*mvr*) equal to $nh/2\pi$.

 $\therefore mvr = \frac{nh}{2\pi}$ or $r = \frac{n}{2\pi} \cdot \left(\frac{h}{mv}\right)$ or $r = \frac{n\lambda}{2\pi}$ (From de-Broglie equation, $\lambda = \frac{h}{mv}$) for fourth orbit (n = 4) $r = \frac{2\lambda}{\pi}$ $\therefore \text{ Circumference} = 2\pi r = 2\pi \times \frac{2\lambda}{\pi} = 4\lambda$ 685 (c) From de-Broglie equation, $\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34}}{0.5 \times 100}$ $= 1.32 \times 10^{-32}$ 686 (a) $KE = -\frac{e^2}{2r_n}; TE =$ $\therefore \frac{KE}{TE} = \frac{1}{-1} = 687 \text{ (c)}$ $E_{1\,\mathrm{He}^+} = E_{1\,\mathrm{H}} \times Z^2$ 688 (c) $\lambda =$ $v = \frac{h}{m\lambda} = \frac{6.626 \times 10^{-27}}{9.109 \times 10^{-28} \times 0.15 \times 10^{-7}}$ 690 (a) Angular node = l; Also l = 0 for *s*-orbitals. 691 (b) 5d-orbital has l = 2. 692 (c) $\lambda = \frac{h}{mv} = \frac{6.6 \times 10^{-34} \text{ kg m}^2 \text{s}^{-1}}{6.6 \times 10^{-27} \text{ kg} \times 10^3 \text{ ms}^{-1}}$ $= 1 \times 10^{-10} \text{ m}$ 693 (c) $_{26}$ Fe³⁺ has $3d^5$ configuration. 694 (d) We know that $E_n \propto \left[-\frac{1}{n^2}\right]$, where *n* is the number of orbit. Hence, as the value of *n* increases, energy of the electron also increases. Hence, when n becomes infinite, energy also becomes infinite. Hence, due to this reason maximum energy is possessed by an electron, when it is present at infinite distance from the nucleus. 695 **(b)** The two orbits are either I and II or II and IV

 $\therefore \frac{r_{n_2}}{r} = \frac{4}{1} \text{ and } r_n \propto n^2$ Thus, $E_2 - E_1 = \frac{-13.6}{4} + 13.6 = 10.2 \text{ eV}$ and $E_4 - E_2 = \frac{-13.6}{16} + \frac{13.6}{4} = 2.55 \text{ eV}$ 696 **(b)** $\Delta E = hv = \frac{2\pi^2 m Z^2 e^4 k^2}{h^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ If electron falls from n_2 –level to n_1 –level. \therefore In He⁺ for the $n_2 = 4$ to $n_1 = 2$ transition $v(\text{He}^+) = \text{constant}(4) \left[\frac{1}{2^2} - \frac{1}{4^2} \right] \quad [\because Z_{\text{He}^+} = 2]$ = constant $\times 4 \left[\frac{3}{16} \right] = \frac{3}{4}$ constant $v(H) = \text{constant} (1)^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ = constant $\times \left| \frac{1}{n_1^2} - \frac{1}{n_2^2} \right|$ (*a*)For $n_2 = 3$ and $n_1 = 1$, $v(H) = \text{constant} \left[\frac{1}{1} - \frac{1}{0}\right]$ $=\frac{8}{9}$ constant $\neq \frac{3}{4} \times \text{constant}$ (b)For $n_2 = 2$ and $n_1 = 1$, $v(H) = \text{constant} \times \left[\frac{1}{1} - \frac{1}{4}\right]$ $=\frac{3}{4}$ × constant $= v (He^+)$ 697 **(b)** E.C. of $M = [Ar]4s^2 3d^8$ E.C. of $M^{2+} = [Ar]4s^0 3d^8$ Total electrons =28=atomic number 698 (d) $\overline{v} = \frac{1}{\lambda} = R_{\mathrm{H}} \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$; $n_1 = 2$ for Balmer series and $n_2 = 3$ for first line or H_a line of Balmer series. 699 (d) It represent Heisenberg's uncertainty principle. 701 **(b)** Follow Chadwick experiment for discovery of)neutrons. 702 (c) $\Delta E = E_4 - E_1 = \frac{hc}{\lambda} = hv$ $\therefore v = \frac{E_4 - E_1}{h} = \frac{-21.76 \times 10^{-19} \left[\frac{1}{4^2} - \frac{1}{1^2}\right]}{6.625 \times 10^{-34}}$ $= 3.079 \times 10^{15} \text{s}^{-1}$ 703 (b)

A nuclide has a definite number of proton. 704 (d) The isoelectronic species have same number of electrons. NaCl has Na⁺ and Cl⁻ ions 17. Electrons in $Na^{+} = 11 - 1 = 10$ Electrons in $Cl^{-} = 17 + 1 = 18$ ∴ They are not isoelectronic. 18. CsF has Cs⁺ and F⁻ ions Electrons in $Cs^{+} = 55 - 1 = 54$ Electrons in $F^- = 9 + 1 = 10$ ∴ They are not isoelectronic. NaI has Na⁺ and I⁻ ions 19. Electrons in $Na^{+} = 11 - 1 = 10$ Electrons in $I^{-} = 53 + 1 = 54$ These are not isoelectronic. 20. K_2S has K^+ and S^{2-} ions Electrons in $K^{+} = 19 - 1 = 18$ Electrons in $S^{2-} = 16 + 2 = 18$ \therefore In K₂S, the ions K⁺ and S²⁻ are isoelectronic. 705 (c) Completely filled orbitals are extra stable. 706 (a) A is 3d and B is 5s; (n + l) for both is 5 and thus, lower value of 'n' decides lower energy level. 707 **(b)** *p*-orbitals are dumb-bell in shape and thus, have directional nature. 708 (d) Both have different modes of preparation. 709 (a) ¹H¹ does not have neutrons. 710 (a) $E_{\text{Photon absorbed}} = \frac{E_1 + E_2}{\text{Energy released}}$ or $\frac{hc}{\lambda} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2}$ or $\frac{1}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$ 711 (a) Given, $\Delta x = \Delta P$ or $\Delta x = m \cdot \Delta v$ Heisenberg's uncertainty principle,

$$\Delta x \cdot m \cdot \Delta v = \frac{h}{4\pi}$$

$$m \cdot \Delta v \cdot m\Delta v = \frac{h}{4\pi}$$

$$(\Delta v)^2 = \frac{h}{4\pi m^2}$$

$$(\Delta v)^2 = \frac{h}{4\pi m^2}$$

$$\Delta v = \frac{1}{2m} \sqrt{\frac{h}{\pi}}$$

$$= \frac{1}{2 \times 9.1 \times 10^{-311}} \sqrt{\frac{6.63 \times 10^{-44}}{3.14}}$$

$$= 7.98 \times 10^{12} \text{ms}^{-1} \approx 8 \times 10^{12} \text{ms}^{-1}$$
712 (d)

$$e^{-2} = 1s^2, 2s^2, 2s^2, 2s^2$$
For 6th electron; $n = 2, l = 1, m = -1$ and $s = +\frac{1}{2}$
713 (c)

$$Ba^{2^{+}} \text{ ions scatter X-rays.}$$
714 (c)

$$For N-\text{shell}, n = 4$$

$$l = 0, 1, 2, 3$$
(subshell s $p = d = f$
orbitals $1 = 3 = 5 = 7$
Hence, total sub shells $= 4$, orbitals $= 16$ and
number of electrons $= 32$
715 (b)
Mass of H + is minimum.
716 (a)

$$r_0 = \frac{r_0 \times n^2}{3} = -0.176 \text{ Å}$$
718 (a)

$$r_0 = \frac{r_0 \times n^2}{3} = 0.176 \text{ Å}$$
719 (b)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
721 (d)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
721 (d)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
721 (d)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
721 (d)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
721 (d)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
722 (d)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
721 (d)
For f's level, $n = 4, l = 0$.
722 (d)
The velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
722 (d)
For the velocity of light is maximum.
720 (c)
Bohr's theory is applicable to untelectron atom or
in only.
721 (d)
For $n = e^{1} n = 7 + \frac{1}{3} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$

= 91.1 nm $(1 \text{ nm} = 10^{-9} \text{ m})$ 735 (d) The number of electrons $=2n^2$ where, n = principal quantum number. For n = 2Number of electrons = $2(2)^2 = 8$ 736 (c) Energy of one photon, $E = \frac{hc}{\lambda}$ $=\frac{6.626\times10^{-34}\times3\times10^8}{550\times10^{-9}\,\mathrm{m}}$ $\therefore \text{ Number of photons} = \frac{\text{energy required}}{\text{energy of one photon}}$ $=\frac{10^{-17}}{3.61\times10^{-19}}=27.67=28$ 737 (c) $\lambda = \frac{h}{mu} = \frac{6.6 \times 10^{-34}}{0.66 \times 100} = 1 \times 10^{-35} \mathrm{m}$ 738 (c) Isotones are species which have equal number of neutrons. Neutrons in $_{19}K^{39} = 39 - 19 = 20$ Neutrons in $_{20}$ Ca⁴⁰ = 40 - 20 = 20 739 (a) Rutherford showed the existence of nucleus in an atom by his α –particles scattering experiment. He postulated that every atom has a small central part which has positive charge and almost all the mass of atom (i.e., nucleus consists of protons and neutrons). 740 (d) For l = 2, m can have values -2, -1, 0, +1, +2741 (d) $\Delta x \cdot \Delta u = \frac{h}{4 \pi m}$ $\Delta p = 1 \times 10^{-18} \mathrm{g} \, \mathrm{cm} \, \mathrm{sec}^{-1}$ $m \times \Delta u = 1 \times 10^{-18}$ $\therefore \Delta u = \frac{1 \times 10^{-18}}{9 \times 10^{-28}} = 1.1 \times 10^{9} \text{ cm sec}^{-1}$ 743 (c) ${}_{6}C^{12}$ has six electrons, two of them are unpaired and thus, paramagnetic 12 Mg²⁴ has twelve electrons, all are paired and thus, diamagnetic. 744 (c) Dual nature of particles was proposed by de-Broglie. 745 (a) Number of photoelectrons ejected per unit area,

per unit time is directly proportional to the

intensity of the incident radiation

 $= \frac{h}{4\pi m}$ $\therefore \Delta x = \frac{6.625 \times 10^{-34}}{4 \times 10^{-2} \times 3.14 \times 200 \times 10^{-3}}$ 747 (a) Number of radial nodes = (n - l - 1)For 3s, n = 3, l = 0 (number of radial node=2) For 2p, n = 2, l = 1 (number of radial node=0) 748 (c) We know that, $E = mc^2 = \frac{hc}{\lambda}$ $\therefore \lambda = \frac{h}{mc}$ or $m = \frac{h}{\lambda c}$ where, λ =wavelength of photon h = Planck's constantm = mass of photonc = velocity of light Given, $\lambda = 3.6 \text{ Å} = 3.6 \times 10^{-10} \text{ m}$ $m = \frac{6.62 \times 10^{-34}}{3.6 \times 10^{-10} \times 3 \times 10^8}$ $= 6.135 \times 10^{-33} \text{kg}$ 749 **(d)** 4*d*-subshell has $n = 4, l = 2, m = \pm 2, \pm 1, 0, s =$ $\mp 1/2$ 750 (d) The orbital angular momentum $=\frac{h}{2\pi}\sqrt{l(l+1)}$ For 3*s*-electron, l = 0: Orbital angular momentum $=\frac{h}{2\pi}\sqrt{0(0+1)}$ = 0(zero)751 (a) According to Heisenberg $\Delta x \times m \times \Delta v = \frac{h}{4\pi}$ where, Δx =uncertainty in position. *m*=mass of particle Δv =uncertainty in velocity. According to question $\Delta x_A \times m \times 0.05 = \frac{h}{4\pi}$...(i) $\Delta x_B \times 5m \times 0.02 = \frac{h}{4\pi} \quad \dots \text{(ii)}$ Eq. (i) divided by Eq. (ii), then $\frac{\Delta x_A \times m \times 0.05}{\Delta x_B \times 5m \times 0.02} = 1$

 $\Delta u = \frac{0.1}{100} \times 10 = 10^{-2} \,\mathrm{m \, sec^{-1}}; \,\mathrm{Now} \,\,\Delta u \cdot \Delta x$

746 (d)

or $\frac{\Delta x_A}{\Delta x_B} = 2$ 752 (a)	The energy of second Bohr orbit of hydrogen
Hydrogen atom is in $1s^1$ and these $3s$, $3p$ and $3d$	atom (E_2) is -328 kJ mol ⁻¹ because
orbitals will have same energy w.r.t. 1 <i>s</i> -orbital.	$E_2 = -\frac{1312}{2^2} \text{kJ mol}^{-1}$
753 (a)	L
$_{1}$ H ¹ has more % in H ₂ .	$\therefore \qquad E_n = -\frac{1312}{n^2} \text{kJ mol}^{-1}$
754 (a)	If $n = 4$
The energy level increase with increase in	
	$\therefore \qquad E_4 = -\frac{1312}{4^2} \text{kJ mol}^{-1}$
distance from the nucleus and the negative value	$= -82 \text{ kJ mol}^{-1}$
of electrons energy near to nucleus decrease to	765 (d)
zero at infinite distance.	
755 (a)	Lyman series spectral lines have smaller λ and
It is $3p_x$ or $3p_y$ orbital, <i>i. e.</i> , Al having $3s^23p^1$	thus, higher energy.
configuration .	766 (b)
756 (d)	Charge on electron and H^+ is same; the ratio e/m
The max. no. of orbitals in a shell $= 2l + 1$,	is ratio of mass of proton to electron.
\therefore Max. no. of electron= $2(2l + 1) = 4l + 2$,	767 (c)
757 (a)	It is average isotopic weight.
Li has 2s ¹ configuration of valence shell.	768 (b)
758 (c)	Kinetic energy = $h(v - v_0)$
$r_n = r_1 \times n^2$	$KE = hv - hv_0$
r_3 9	$v_0 = v - \frac{KE}{h} = 2 \times 10^{15} - \frac{6.63 \times 10^{-19}}{6.63 \times 10^{-34}}$
$\therefore \frac{r_3}{r_2} = \frac{9}{4}$	
759 (a)	$= 1 \times 10^{15} s^{-1}$
No. of <i>f</i> -orbitals in any shell = 7.	769 (a)
760 (b)	It is impossible to determine simultaneously the
₂₆ Fe ²⁺ : 1s ² , 2s ² 2p ⁶ , 3s ² 3p ⁶ 3d ⁶	exact position and momentum of moving particle
761 (c)	like electron, proton, neutron.
Isotonic species are those species which have	$\Delta x \times \Delta p \ge \frac{h}{4\pi}$
equal number of neutrons,	
<i>e.g.</i> , ${}^{14}_{6}$ C, ${}^{15}_{7}$ N and ${}^{17}_{9}$ F.	where, Δx =uncertainty in position.
762 (b)	Δp =uncertainty in momentum.
	770 (d)
$\frac{1}{\lambda} = R_{\rm H} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$	${}_{6}^{14}C_{,8}^{16}O_{,7}^{15}N =$ isotonic triad
For Lyman series, $n_1 = 1, n_2 = 2$	Isotonic=same number of neutron.
	All species contain 8 neutrons.
$\frac{1}{\lambda} = 10,9678 \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right]$	771 (d)
10,9678 × 3	Valence electron for Na is 3s ¹ ;
$=\frac{-3}{4}$	Thus, $n = 3, l = 0, m = 0$.
$\lambda = 1216 \text{ Å}$	772 (a)
763 (b)	Both Cl and Br have 7 electrons in their valence
$IE = -E_1$	shell.
E_1 for He ⁺ = -19.6 × 10 ⁻¹⁸ J atom ⁻¹	773 (b)
	The λ order is : Radiowave > Infrared > UV > X-
$\frac{(E_1)_{\rm He^+}}{(E_1)_{\rm Li^2+}} = \frac{(Z_{\rm He^+})^2}{(Z_{\rm Li^{2+}})^2}$	rays.
$(L_1)L_1^2 + (L_1^2 + J^-)$ -106 × 10 ⁻¹⁸ /	774 (c)
$\frac{-19.6 \times 10^{-18}}{(E_1)_{\mathrm{Li}^{2+}}} = \frac{4}{9}$	For example oxygen contains ${}_{8}O^{16}$, ${}_{8}O^{17}$ and
	₈ 0 ¹⁸ nuclides, <i>i. e.</i> , of different types.
or $E_1(\text{Li}^{2+}) = \frac{-19.6 \times 9 \times 10^{-18}}{4}$	776 (b)
$= -4.41 \times 10^{-17} \text{J} \text{ atom}^{-1}$	Neutron has more mass among all.
$= -4.41 \times 10^{-1}$ J atom -	

777 (c) The electronic configuration of the Cu atom is $_{29}$ Cu = [Ar] $3d^{10}4s^{1}$ Since, the outermost shell is 4s, thus outermost electron is in it. For $4s^1$, $n = 4, l = 0, m = 0, s = +\frac{1}{2}$ 778 (c) The X-atom has 18 neutrons and 16 electrons and thus, 16 protons also. Thus, it is ${}_{16}S^{34}$. The most abundant isotope of sulphur is $_{16}S^{32}$. 779 (c) Unpaired electron leads to paramagnetism. 780 (c) Laser is abbreviated as light amplification by simulated emission of radiation. 781 (d) These are required conditions to obtain cathode rays. 782 (a) $E_2 - E_1$ is maximum. 784 (c) From de-Broglie equation $\lambda = \frac{h}{mv}$ $=\frac{6.62\times10^{-34}}{0.5\times100}$ $= 1.32 \times 10^{-35} \text{m}$ 785 (c) $m = 10 \text{ mg} = 10 \times 10^{-6} \text{kg}$ $v = 100 \text{ ms}^{-1}$ $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^7}{10 \times 10^{-6} \times 10^{-6}}$ $= 6.63 \times 10^{-31}$ 788 (b) Angular momentum of electron in an orbit and orbital are $\frac{nh}{2\pi}$ and $\sqrt{l(l+1)}$. $\frac{h}{2\pi}$ respectively. 789 (d) Period of one revolution = $\frac{2\pi r}{u}$ $=\frac{2\pi r_2}{u_2}\times\frac{u_1}{2\pi r_1}=\frac{r_2u_1}{r_1u_2}$

Also $u_n = \frac{u_1}{n}$; $r_n = r_1 \times n^2$ $\frac{T_1}{T_2} = 1:8$ 790 (a) $Ni^{2+}: 1s^2, 2s^22p^6, 3s^23p^63d^8$ (with two unpaired electrons) Thus, magnetic moment = $\sqrt{n(n+2)} = \sqrt{8} =$ 2.83 BM. 791 (c) A technique to study the given fact. 792 (d) When n = 3, l = 0, 1, 2 *i*. *e*., there are 3*s*, 3*p* and 3d-orbital's. If all these orbitals are completely occupied as Total 18 electrons, 9 electrons with $s = +\frac{1}{2}$ and 9 with 793 (b) No. of electron in a shell = $2n^2$ 794 (a) $1s^1$ being lowest level of energy and thus, it can absorb photon but cannot release photon. 795 (c) $m'_e = \frac{m_e}{\sqrt{1 - \left\{\frac{v}{e}\right\}^2}}$ 796 (b) Species having the same number of electrons as in oxide ion, has the same electronic configuration as oxide ion. O^{2-} or N^{3-} both species have same number of electrons (10 electrons). 797 (c) Mass of positively charged ions in positive rays is more than mass of electrons.

STRUCTURE OF ATOM

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** Energy of the orbitals increases as $1s < 2s = 2p > 3p = 3d = 3d < 4s = 4p = 4d = 4f < \dots$
- **Statement 2:** Energy of the electron depends completely on the principal quantum numbers.

2

- **Statement 1:** K and Cs are used in photoelectric cells.
- **Statement 2:** K and Cr emit electrons on exposure to light.

3

- **Statement 1:** An orbital cannot have more than the electrons
- **Statement 2:** The two electrons in an orbital create opposite magnetic field.

4

5

- Statement 1: The charge to mass ratio of the particles in anode rays depends on nature of the gas taken in the discharge tubeStatement 2: The particles in anode rays carry positive charge
 - Statement 1: Only principal quantum number determines the energy of an electron in an orbital in sodium atom
 Statement 2: For one electron system, the expression of energy is the same as that obtained in Bohr's theory

6

- **Statement 1:** Isobars are identical in chemical properties.
- **Statement 2:** Isobars have same atomic numbers.

	Statement 1:	Kinetic energy of photoelectrons is directly proportional to the intensity of the incident radiation
	Statement 2:	Each photon of light causes the emission of only one photoelectrons
8		
	Statement 1:	The radius of second orbit of $\mathrm{He^{+}}$ is equal to that of first orbit of hydrogen
	Statement 2:	The radius of an orbit in hydrogen like species is directly proportional to n^2 and inversely proportional to Z
9		
	Statement 1:	The orbital with $l = 0$ is spherical in shape
	Statement 2:	Azimuthal quantum number describes the shape of an orbital which is according to the quantum theory, in the space around the nucleus
10		
	Statement 1:	Radiant energy of quantum is given by $E=hv$.
	Statement 2:	Quantum in the energy equation signifies the principal quantum number.
11		
	Statement 1:	5 <i>s</i> orbital has greater energy then 4 <i>s</i> .
	Statement 2:	Energy of the orbital depends on the azimuthal quantum number.

STRUCTURE OF ATOM

CHEMISTRY

: ANSWER KEY :														
1)	d	2)	а	3)	b	4)	b 9)	а	10)	С	11)	С		
5)	d	6)	d	7)	d	8)	d							

STRUCTURE OF ATOM

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(d)**

The energy of an electron is determined by principal quantam number for multi electron system. Energy also depends on azimuthal quantam number. Energies of different subshell present with in the same principal shell are found to be in order of s>p>d>f.

2 **(a)**

Both K and Cs are used in photoelectric cells. This is explained on the basic that energy from the flame excites the electrons to higher energy levels. When these electrons return to their original levels, the absorbed energy in now emitted as different.

3 **(b)**

According to Pauli's exclusion principle, 'An orbital cannot have more than two electrons, which cannot show the same value of all quantum numbers. *n*, *I* and *m*, have the same value of both the electrons but the spin quantum numbers have two different value

 $+\frac{1}{2}$ and $-\frac{1}{2}$ and shows opposite magnetic field.

4 **(b)**

The particles in anode rays are positive ions formed by loss of one or more electrons by atoms of the gas in the discharge tube

5 **(d)**

In a multi-electron atom such as sodium atom energy of the electron is determined by both n and l

7 **(d)**

Kinetic energy of photoelectrons is proportional to the frequency of the incident radiation and not on the intensity

8 **(d)**

The radius of second orbit of He⁺ is twice that of

the first orbit of hydrogen. Bohr expression for radius of the electron in a particular orbit in hydrogen and hydrogen like species is

$$r_n = \frac{n^2 h^2}{4\pi^2 kmZe^2}$$

(a)

9

An orbital is the space around the nucleus where there is 90.95% probability of finding the electrons. The orbital with l = 0 is spherical, for l = 1 the shape is dumb-bell and for l = 2, the shape is double dumb-bell

10 **(c)**

- 1. If Assertion is True, Reason is True, Reason is correct explanation of 1
- 2. If Assertion is True, Reason is True, Reason is not correct explanation of 1
- 3. If Assertion is True, Reason is False
- 4. If Assertion is False, Reason is True
- 11 **(c)**

Size and energy of the orbital depend upon the principal quantam number for multi electron system Energy also depends on azimuthal quantam number specifies the shape of orbital.