SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

Single Correct Answer Type

1.		mole each of Fe ₂ O ₃ and FeO		
_	a) 3:2	b) 1:2	c) 2:1	d) 3:1
2.		valent metal is 37.2. The mo		
_	a) 412.2	b) 216	c) 145.4	d) 108.2
3.	=	rate of empirical formula C	H_2O contain 1 g of hydroge	en. The molecular formula of
	the carbohydrate is			
	a) $C_5H_{10}O_5$	b) $C_3H_4O_3$	c) $C_{12}H_{22}O_{11}$	d) $C_6H_{12}O_6$
4.	_	$Zn(OH)_2$ in the following r	eaction is equal to its,	
	$Zn(OH)_2 + HNO_3 \rightarrow Zn(OH)_2 + HNO_3 $			
	a) Formula wt.	b) Formula wt.	c) 2 × formula wt.	d) $3 \times$ formula wt.
5.	5.85 g of NaCl are dissolv	ed in 90 g of water. The mo	ole fraction of NaCl is:	
	a) 0.1	b) 0.01	c) 0.2	d) 0.0196
6.	2.76 g of silver carbonate	on being strongly heated y	vield a residue weighing	
	a) 2.16 g	b) 2.48 g	c) 2.64 g	d) 2.32 g
7.	A solution contains Na ₂ C	O_3 and NaHCO ₃ .10 mL of the	ne solution required 2.5 mL	4 of 0.1 M H ₂ SO ₄
				ded when a further 2.5 mL
		ired. The amount of Na ₂ CO		
	a) 5.3 g and 4.2 g	b) 3.3 g and 6.2 g		d) 6.2 g and 3.3 g
8.	, ,	one molecule of water (der	₹	, , ,
	a) 18 cm ³	b) 22400 cm ³	c) $6.023 \times 10^{-23} \text{cm}^3$	d) $3.0 \times 10^{-23} \text{cm}^3$
9.	•	orization in Victor meyer's	•	
	molecular weight of the l		· FF	,
	a) 130	b) 17	c) 170	d) 1700
10.	•	should be added to 2 M HC		, · · ·
	a) 0.25 L	b) 1.00 L	c) 0.75 L	d) 2.50 L
11.		ar sodium carbonate soluti	_	.,
	a) 2	b) 1	c) 0.5	d) 1.5
12.		$_{4} + 2H_{2}O \rightarrow 2H_{3}O^{+} + SO_{4}^{2}$,	
	will be	4 1 21120 1 21130 1 004,	then total number of fond p	770ddeed by 0.1 1112004
	a) 9.03×10^{21}	b) 3.01×10^{22}	c) 6.02×10^{22}	d) 1.8×10^{23}
13		,	•	ent weight of the element is:
13.				
		b) $\left[\frac{W_1}{W_2 - W_1}\right] \times 8$	- ·· I	-·· 1 ··· 2-
		phosphate $(NH_4)_3PO_4$ cont	ains 6.36 moles of hydroge	n atoms. The number of
-	moles of oxygen atom in	•		
	(atomic mass of $N = 14.0$	4, H = 1, P = 31, O = 16		
	a) 0.265	b) 0.795	c) 2.12	d) 4.14
15.	To neutralise 20 mL of M	I/ 10 NaOH, the volume of I	M/20 HCl needed is:	
	a) 10 mL	b) 30 mL	c) 40 mL	d) 20 mL
16.	A, E, M and n are the ator	nic weight, equivalent weig	ht, molecular weight and v	alence of an element. The
	correct relation is:			
	a) $A = E \times n$	b) $A = M/E$	c) $A = M/n$	d) $M = A \times n$

17.	Which one of the following set of units represents	s the smallest and largest am	ount of energy respectively?
	a) J and erg b) erg and cal	c) Cal and eV	d) eV and L-atm
18.	The number of atoms present in a $0.635\mathrm{g}$ of $\mathrm{Cu}\mathrm{p}$	iece will be	
	a) 6.023×10^{-23} b) 6.023×10^{23}	c) 6.023×10^{22}	d) 6.023×10^{21}
19.	What volume of hydrogen gas, at 273 K and 1 atn	n pressure will be consumed	in obtaining 21.6 g of
	elemental boron (atomic mass = 10.8) from the r	eduction of boron trichloride	e by hydrogen?
	a) 89.6 L b) 67.2 L	c) 44.8 L	d) 22.4 L
20.	The numerical value of N/n (where N is number	of molecules is n moles of ga	s) is:
	a) 8.314 b) 6.02×10^{23}	c) 1.602×10^{-24}	d) 1.66×10^{-19}
21.	In the relationship molecular formula = empirica	ıl formula \times n . The $'n'$ may ha	ve:
	a) Any value		
	b) Zero value		
	c) Only positive integer value		
	d) None of the above		
22.	10 g CaCO ₃ on heating gives 5.6 g CaO and g CO		
	a) 4.4 b) 5.6	c) 6.5	d) 4.2
23.	Which of the following changes with increase in t	emperature?	
	a) Molality		<i>y</i>
	b) Weight fraction of solute		
	c) Fraction of solute present in water		
24	d) Mole fraction	l : - l:l	h
Z4.	On combustion of 4 g of the methane, 10.46 kJ of	c) 41.84 kJ	
25	a) 83.68 kJ b) 10.46 kJ		d) 20.93 kJ
25.	A gas is found to have the formula $(CO)_x$. Its VD is	S 70. The value of x must be:	
26.	a) 7 b) 4 Choose the wrong statement.	C) 3	d) 6
20.	a) 1 mole means 6.023×10^{23} particles		
	b) Molar mass is mass of one molecule		
	c) Molar mass is mass of one mole of a substance		
	d) Molar mass is molecular mass expressed in gra		
27	The term standard solution is used for the solution		
_,.	a) Normality is known b) Molarity is known	c) Strength is known	d) All of these
28.	The ratio of mole fraction of a solute and a solver	, ,	a) Im or those
	a) Ratio of their wt. b) One	c) Ratio of their mole	d) Zero
29.	If in a reaction HNO ₃ is reduced to NO, the mass of	_	•
	a) 21.0 g b) 36.5 g	c) 18.0 g	d) 31.5 g
30.	At STP 5.6 litre of a gas weighs 60 g. The vapour of	, 0	, 0
	a) 60 b) 120	c) 30	d) 240
31.	The number of atoms present in 16 g of oxygen g	•	,
	a) $6.02 \times 10^{11.5}$ b) 3.01×10^{23}	c) $3.01 \times 10^{11.5}$	d) 6.02×10^{23}
32.	On analysis a certain compound was found to cor	_	e ratio of 254 g of iodine (at
	mass 127) and 80 g oxygen (at. mass 16). What is	s the formula of the compoun	d?
	a) IO b) I ₂ O	c) I_2O_3	d) I_2O_5
33.	The vapour density of a volatile chloride of a met	al is 95 and the specific heat	of the metal is 0.13 cal/g.
	The equivalent weight of the metal will be:		
	a) 6.0 b) 12.3	c) 18.6	d) 24.5
34.	The equivalent weight of a certain trivalent element	ent is 20. Molecular weight of	fits oxide is
	a) 152 b) 56	c) 168	d) 68
35.	Gram molecular volume of oxygen at STP is		
	a) 3200 cm ³ b) 5600 cm ³	c) 22400 cm ³	d) 11200 cm ³

36.	Two elements <i>X</i> (at. Wt. 75)		ne to give a compound hav	ing 75.8% of <i>X</i> . The
	formula of compound will b		a) VV	a) v v
27		o) X ₂ Y	c) XY_3	d) X_2Y_3
3/.	The amount of oxalic acid (=	
20	, ,	o) 6.3 g	c) 3.15 g	d) 63.0 g
38.	The equivalent weight of KI	-	a) 1F0	J) 21 (
20	•	o) 52.16	c) 158	d) 31.6
39.	<u>-</u>			
	diphenylamine as indicator		• •	
40	•	o) 4	c) 5	d) 6
40.	A mixture of CH_4 , N_2 and O_2			
	pressures of gases is 1 : 4 : 2		seous mixture is 2660 mm	. the number of molecules
	of oxygen present in the ves			J) 1000
	a) $\frac{6.02 \times 10^{23}}{22.4}$	o) 6.02×10^{23}	c) 22.4×10^{22}	d) 1000
11	$x ext{ g of } Ag ext{ was dissolved in } F$	INO and the colution was	s treated with excess of Na	Claybon 2.87 g of AgClayas
41.	precipitated. The value of <i>x</i>		s treated with excess of Na	ci wileli 2.07 g ol Aycı was
	= =	o) 2.16 g	c) 2.70 g	d) 1.62 g
1.2	One mole electron means:	0) 2.10 g	C) 2.70 g	u) 1.02 g
42.	a) N electrons			
	b) 6.023×10^{23} electrons			
	c) 0.55 mg electrons			
	d) All of these			
43	A signature, written in carb	on nencil weights 1 mg M	That is the number of carbo	on atoms present in the
10.	signature?	on penen weights I mg.	That is the number of carbo	on atoms present in the
		(5.02×10^{20})	c) 6.02×10^{20}	d) 0.502×10^{20}
44.	The minimum quantity of H	•	, ,	
		o) 31.75 g	c) 34 g	d) 20 g
45.	An unknown element forms		, ,	, ,
	content is 20% by weight?		9 11	70
	a) 16	0) 32	c) 8	d) 64
46.			•	
	cortisone is 360.4. what is t		•	o .
		o) 75%	c) 69.98%	d) None of these
47.	Which mode of expressing	concentration is independ	lent of temperature?	•
	a) Molality	o) Per cent by weight	c) Mole fraction	d) All of these
48.	An ion is reduced to the ele	ment when it absorbs 6 $ imes$	10 ²⁰ electrons. The number	er of equivalent of ion is:
	a) 0.1	o) 0.01	c) 0.001	d) 0.0001
49.	The volume of $0.1 M H_2 SO_2$	4 required to neutralise 30	0 mL of 2.0 <i>M</i> NaOH is:	
		o) 300 mL	c) 400 mL	d) 200 mL
50.	The law of definite proports	ions is not applicable to ni	itrogen oxide because	
	a) Nitrogen atomic weight i	is not constant	b) Nitrogen molecular we	ight is variable
	c) Nitrogen equivalent weig	ght is variable	d) Oxygen atomic weight i	s variable
51.	1.520 g of hydroxide of a m	etal on ignition gave 0.995	5 g of oxide. The equivalent	t weight of metal is
	a) 1.52	o) 0.995	c) 190	d) 9
52.	A hydrocarbon contains 10	.5 g carbon and 1 g hydrog	gen. Its 2.81 g has 1L volun	ne at 1 atm and 127^{0} C,
	hydrocarbon is			
	a) C ₆ H ₇	o) C ₇ H ₈	c) C ₅ H ₆	d) None of the above
53.	1 mole of methyl amine on	reaction with nitrous acid	gives at NTP	
	a) 1.0 L of nitrogen	o) 22.4 L of nitrogen	c) 11.2 L of nitrogen	d) 5.6 L of nitrogen
54.	The weight of sulphuric acid	d needed for dissolving 3	g magnesium carbonate is:	

	a) 3.5 g	b) 7.0 g	c) 1.7 g	d) 17.0 g
55.	When a metal is burnt, its	weight is increased by 24	per cent. The equivalent we	eight of the metal will be:
	a) 25	b) 24	c) 33.3	d) 76
56.	A metal oxide is reduced b			fter complete reduction,
	3.15 g of oxide yielded 1.0!	=	ve data we can say that	
	a) The atomic weight of m		b) The atomic weight of m	
	c) The equivalent weight of		d) The equivalent weight	
57.	_	S needed to precipitate al	ll the metal ions from 100 n	nL of 1 M AgNO ₃ and
	100mL of CuSO ₄ , will be			
	•	b) 1:2	c) 2:1	d) None of these
58.	The mole fraction of NaCl i			
		b) 0.001	c) 0.5	d) 0.244
59.	Which is correct for Na ₂ HI			
	a) It is not an acid salt	b) Eq. wt. = $\frac{M}{2}$	c) Ox. no. of P is $+3$	d) All of these
60.	How many g of NaOH will	be needed to prepare 250	mL of 0.1 <i>M</i> solution?	
	a) 1 g	b) 10 g	c) 4 g	d) 6 g
61.	If the specific heat of a met	tallic element is 0.214 cal/	g, the atomic weight will be	closest to:
		b) 12	c) 30	d) 65
62.	An ore contains 1.34% of t	the mineral argentite, Ag_2	S, by mass. How many gram	of this ore would have to
	be processed in order to ol	btain 1.00 g of pure solid s	silver, Ag?	
	a) 74.6 g	b) 85.7 g	c) 107.9 g	d) 134.0 g
63.	In which of the following n	umbers all zeros are signi	ficant?	
	-	b) 30.000	c) 0.00030	d) 0.0050
64.	Weight of an atom of an ele	ement is 6.644×10^{-23} g.	What will be the number of	g atom of that element in
	40 kg?		Y	
	a) 10^3	b) 10 ⁶	c) 1.5×10^3	d) None of these
65.	In a compound $A_x B_y$:	Ω		
	a) Mole of $A = \text{mole of } B =$	mole of $A_x B_y$		
	b) Eq. of $A = \text{Eq. of } B = \text{Eq}$	$A_x B_y$		
	c) $Y \times X$ mole of $A = Y \times X$	X mole of B = (X + Y) X r	nole of $A_{\chi}B_{\gamma}$	
	d) $Y \times X$ mole of $A = Y \times X$		·	
66.	One gram of hydrogen is fo		g of bromine. One gram of ca	alcium (Valency =2)
	combines with 4 g of brom			, , ,
		b) 20	c) 40	d) 80
67.	A bivalent metal has an eq	uivalent mass of 32. The m	nolecular mass of the metal	nitrate is
	A 7	b) 168	c) 192	d) 188
68.	12 g of Mg (at. wt. = 24) w	vill react completely with a	an acid to give:	
	a) One mole of H ₂	b) Half mole of H ₂	c) One mole of O ₂	d) None of these
69.	The atomic weight of a me	tal (M) is 27 and its equiv	alent weight is 9, the formu	la of its chloride will be:
	a) MCl	b) <i>M</i> Cl ₉	c) M_3Cl_4	d) MCl ₃
70.	1.60 g of a metal were diss	olved in HNO ₃ to prepare	its nitrate. The nitrate on s	trong heating gives 2 g
	oxide. The equivalent weig	ght of metal is:		
	•	b) 32	c) 48	d) 12
71.	5.85 g of NaCl dissolved in		upto 500 mL. The molarity	is:
	•	b) 0.2	c) 1.0	d) 0.117
72.	Which property of an elem			
	_	b) At. wt.	c) Eq. wt.	d) None of these
73.	The oxide of an element po		3. If the equivalent weight o	t the metal is 9, then the
	atomic weight of the metal			N = 4
	a) 9	b) 18	c) 27	d) 54

74.	. 0.7 g of $Na_2CO_3 \cdot xH_2O$ were dissolved in water and the volume was made to 100 mL, 20 mL of this solution required 19.8 mL of $N/10$ HCl for complete neutralisation. The value of x is:			
	a) 7	b) 3	c) 2	d) 5
75	•	ement of atomic weight 32 i	•	u) 3
73.	-	-	=	d) 0.15 cal /a
7.0	a) 0.25 cal/g	b) 0.24 cal/g	c) 0.20 cal/g	d) 0.15 cal/g
76.	-	g of Fe (atomic mass 56 g m	•	D.M. C.1
	a) Twice that of 70 g N	b) Half that of 20 g H	c) Both are correct	d) None of these
77.	= =	ntains 100 mg of ferrous fu	marate, $(CHCOO)_2$ Fe. the p	percentage of iron present
	in it is approximately			
	a) 33%	b) 25%	c) 14%	d) 8%
78.	= =	-	ther and l_2 is completely co	onverted toZnl ₂ . What
		inal Zn remains unreacted?		
	a) 0.34	b) 0.74	c) 0.84	d) Unable to predict
79.	An aqueous solution cont	aining $6.5~\mathrm{g}$ of NaCl of 90%	purity was subjected to ele	ectrolysis. After the
	complete electrolysis, the	solution was evaporated t	o get solid NaOH. The volur	ne of 1 M acetic acid
	required to neutralise Na	OH obtained above is		
	a) 1000 cm ³	b) 2000 cm ³	c) 100 cm^3	d) 200 cm ³
80.	Which of the following is	correct?	10	
	a) Mole fraction of I + mo	lefaction of II = 1		
	(if only two componen	ts are present)		
	Mole fraction of I	mole of I		
	b) Mole fraction of II $= \frac{1}{r}$	nole of II		
	(if only two componen	ts are present)		
	Mole fraction of solute	= 4		
	c) mole of so		()	
	mole of solute+mo	ole of solvent	>	
01	d) All of the above	<i>C</i> :) 	
81.		figures in Avogadro's num		1) () 1
00	a) Four	b) Two	c) Three	d) Can be any of these
82.	= -	-	ed by 1g of the gas at NTP is	
00	a) 1 L	b) 11.2 L	c) 22.4 L	d) 4 L
83.			atomic mass of metal, M is	
	a) 24	b) 54	c) 9	d) 87.62
84.			e for 8 g of oxygen. Its form	
	a) I ₂ O ₃	b) I ₂ 0	c) I_2O_5	d) I_2O_7
85.	20 g of an acid furnishes ($0.5 \text{ moles of } H_3O^+ \text{ ions in it}$	s aqueous solution. The val	ue of 1 g eq. of the acid will
	be:			
	a) 40 g	b) 20 g	c) 10 g	d) 100 g
86.	10 mL of gaseous hydroca	arbon on combustion gives	$40 \text{ mL of } CO_2(g) \text{ and } 50 \text{ m}$	L of H ₂ O (vap). The
	hydrocarbon is:			
	a) C ₄ H ₅	b) C ₈ H ₁₀	c) C_4H_8	d) C_4H_{10}
87.	10 mL of concentrated H ₂	SO_4 (18 M) is diluted to on	e litre. The approximate m	olecular of the dilute acid is
	a) 18 <i>M</i>	b) 180 <i>M</i>	c) 0.18 M	d) 1.8 <i>M</i>
88.	Which represents per cen	t by strength?		
	wt. of solute	00		
	a) $\frac{\text{wt. of solute}}{\text{volume of solution}} \times 1$	00		
	wt. of solute	00		
	b) $\frac{\text{wt. of solute}}{\text{volume of solution}} \times 1$.00		
	c) volume of solute $\times 1$			
	volume of solution	.00		
	d) All of the above			
89.	An alkaloid contains 17.2	8% of nitrogen and it's mol	lecular mass is 162. The nu	mber of nitrogen atoms

	present in one molecule o	of alkaloid is		
	a) 5	b) 4	c) 3	d) 2
90.	6.02×10^{20} molecules of	urea are present in 100 mL	of its solution. The molari	ty of urea solution is:
	a) 0.1	b) 0.01	c) 0.02	d) 0.001
91.	What volume of H ₂ at 27	3 K and 1 atm will be cons	umed in obtaining 21.6 g o	of elemental boron (at. mass
	10.8) from the reduction	of boron trichloride with H	2?	
	a) 44.8 L	b) 22.4 L	c) 89.6 L	d) 67.2 L
92.	In a metal chloride, the w	eight of metal and chlorine	are in the ratio of 1:2. The	equivalent weight of the
	metal will be:			
	a) 71	b) 35.5	c) 106.5	d) 17.75
93.	$KMnO_4$ (mol.wt.= 158) or	xidizes oxalic acid in acid m	nedium to ${ m CO_2}$ and water as	s follows
	$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^{-}$	$^{+} \rightarrow 10CO_{2} + 2Mn^{2+} + 8H_{2}$	0	
	What is the equivalent we	eight of KMnO ₄ ?		
	a) 158	b) 31.6	c) 39.5	d) 79
94.		resent in 0.046 g of ethano		
	a) 6×10^{20}	b) 1.2×10^{21}	c) 3×10^{21}	d) 3.6×10^{21}
95.	<u> </u>	same percentage of carbo	n is:	Y
	a) CH_3COOH and $C_6H_{12}O_6$	-		7
	b) CH ₃ COOH and C ₂ H ₅ OH			
	c) HCOOCH ₃ and C ₁₂ H ₂₂ C	==		
0.6	d) $C_6H_{12}O_6$ and $C_{12}H_{22}O_1$			
96.	The maximum number of	-) 0 E CH	1) 10 (0
0.7	a) 15 L of H ₂ gas at STP		c) 0.5 g of H ₂ gas	d) $10 \text{ g of } O_2 \text{gas}$
97.		H ₅ OH) completely burns to	o carbon dioxide and water	the weight of carbon
	dioxide formed is about:	b) 45 g	c) 66 g	d) 88 g
00	a) 22 g	, ,	, 0	, ,
90.	114.8, S = 32)	$_2$ S $_4$ can be made from 1 g ϵ	each of My, in and 3: (Atom	IIC IIIass : Mg — 24, , III —
	a) 6.47×10^{-4}	b) 3.0×10^{-1}	c) 9.17×10^{-2}	d) 8.7×10^{-3}
99	•		•	mplete neutralisation. One g
,,,		heated, then cooled and the		
		complete neutralization?	o residue di cutcu With IIdi	Trow many equivalent of
	*	b) <i>y</i> equivaletnt	c) 3y/4 equivalent	d) 3y/2 equivalent
100.	· · · ·	ntaining C and H has 92.3%		
	a) CH		c) CH ₂	d) CH ₄
101.		isplaced 4 g of copper (at. v	wt. = 63.8) from a solution	of copper sulphate. The
	atomic weight of the meta		,	
	a) 12	b) 24	c) 48	d) 6
102.	4 g of copper was dissolved	ed in concentrated nitric ac	id. The copper nitrate solu	tion on strong heating gave
	5 g of its oxide. The equiv	alent weight of copper is		
4	a) 23	b) 32	c) 12	d) 20
		ces w_2 g of another metal Y		
	are E_1 and E_2 respectively	, the correct expression for	r the equivalent weight of 2	Y is
	W_1	$w_2 \times E_2$	$w_1 \times w_2$	$\overline{w_1}$
	a) $E_1 = \frac{1}{w_2} \times E_2$	b) $E_1 = \frac{w_2 \times E_2}{w_1}$	c) $E_1 = \frac{E_2}{E_2}$	d) $E_1 = \frac{1}{w_2} \times E_2$
				ν -
104.	The weight of an atom of a) 4.32×10^{-22} g		c) 4.32×10^{-24} g	d) 4.32×10^{-21} g
105	,			5. The molecular formula of
100.	the compound is	o an empiricai iorillula (CII)	20, 160 vapour uclisity is 45	o. The molecular formula UI
	a) CH ₂ O	b) C ₂ H ₅ O	c) C ₂ H ₂ O	d) C ₃ H ₆ O ₃
	- ,2 -	-, -45-	-) -22-	- , -30-3

106.		of oxygen were filled in a sto	eel vessel and exploded. An	nount of water produced in
	this reaction will be:			
	a) 1 mole	b) 2moles	c) 3 moles	d) 4 moles
107.			how many moles of water a	
	a) 2	b) 1	c) 3	d) 4
108.	The mass of 112cm ³ of CH	$ m I_4$ gas at STP is		
	a) 0.16 g	b) 0.8 g	c) 0.08 g	d) 1.6 g
109.	Which term is to be correct	ctly used for expressing co	ncentration of electrolytes	in solution?
	a) Molarity	b) Normality	c) Formality	d) None of these
110.	The haemoglobin from the	e red blood corpuscles of m	ost mammals contains app	proximately 0.33% of iron
	by weight. The molecular	weight of haemoglobin as 6	67,200. The number of iron	atoms in each molecule of
	haemoglobin is (atomic w	eight of iron = 56):		
	a) 2	b) 3	c) 4	d) 5
111.	•		but different molecular for	
	a) Different percentage co		b) Different molecular we	
	c) Same viscosity	r	d) Same vapour density	
112.	,	e with empirical formula C	H_2O contains 1 g of hydrog	en What is its molecular
112.	formula?	o with omphical formata of	nzo contanto 1 g or njurog)
	a) C ₅ H ₁₀ O ₅	b) C ₆ H ₁₂ O ₆	c) C ₄ H ₈ O ₄	d) $C_3H_6O_3$
112	- 0 20 0	e in a 1.00 molal aqueous so		4) 6311603
113.	a) 1.7700	b) 0.1770	c) 0.0177	d) 0.0344
111		-		•
114.			$_4)_2$ will contain 0.25 mole (c) 1.25×10^{-2}	
445	a) 0.02	b) 3.125×10^{-2}	A' \/	d) 2.5×10^{-2}
115.			I_2O_5 produced 2.54 g of I_2	. What would be the mass
	% of CO_2 in the original m	ixture?		
	a) 60		c) 70	d) 35
116.			n iodine and oxygen in the	9
		c mass of iodine is 127 and	that of oxygen is 16. Which	n is the formula of the
	compound?	4 4 4 4		
	a) I0	b) I ₂ 0	c) I_5O_2	d) I ₂ O ₅
117.	The vapour density of gas	A is three times that of gas	sB. If the molecular weight	of A is M, the molecular
	weight of <i>B</i> is:			
	a) 3 <i>M</i>	b) $\sqrt{3} M$	c) M/3	d) $M/\sqrt{3}$
118.	A sample of pure Cu (3.18	g) heated in a stream of ox	kygen for some time gains i	n weight with the
	formation of black oxide o	of copper (CuO). The final w	veight is 3.92 g. What per c	ent of copper remains
	unoxidised?			
	a) ≈ 6.5	b) ≈ 6.9	c) ≈ 7.6	d) ≈ 7.9
119.		,	ce that of the equivalent ma	,
	$SO_2 + H_2O \rightarrow 3S + 2H_2O$			
	a) 64	b) 32	c) 16	d) 48
		,	ght and the vapour density	•
120.	weight of the metal will be	-	sile and the vapour density	of it is 50. The atomic
5	a) 29	b) 58	c) 35.5	d) 71
121	•	,	•	moles f $Ba_3(PO_4)_2$ that can
141.	be formed is	ed with 0.2 mole of Na ₃ r 0 ₂	4, the maximum number of	$1101es 1 Ba_3 (FO_4)_2 that can$
		F) 0 L	-) 0.02	4) 0 1 0
122	a) 0.7	b) 0.5	c) 0.03	d) 0.10
122.		res are there in (respective	ery)	
	(1)73.000 g (2) 0.0503 g a	* *	.) 2 5 4	1) = 2 4
400	a) 3,3,4	b) 3,4,5	c) 2,5,4	d) 5,3,4
123.	ine formula weight of Al ₂	$(5U_4)_3$ is 342. A solution co	ontaining 342 g of $Al_2(SO_4)$) ₃ in :

	a) One litre of solution is			
	b) One litre of solution is			
	c) 1000 g of water is 3 no			
	d) 2 litre of solution is 3 r			
124			O ₂ Equivalent weight of Na	
	a) $\frac{M}{2}$	b) <i>M</i>	c) <i>2M</i>	d) $\frac{M}{4}$
125	_	atain 500% and 400% metal ((M) respectively. If the form	4
123	formula of second oxide v		m) respectively. If the form	itula oli list oxide is Mo ₂ , ti
	a) MO_2	b) <i>MO</i> ₃	c) M ₂ O	d) $M_2 O_3$
126		, ,	ain 10.06% carbon, 0.84%	, , ,
120	= =	e empirical formula of the s		ny ar ogen and ob.10%
	a) CH ₂ Cl ₂	b) CHCl ₃	c) CCl ₄	d) CH ₃ Cl
127	·	,	to water, occupies an appro	, ,
	a) 18 litre	b) 1 litre	c) 1 mL	d) 18 mL
128	. Which statement is corre	•		
	a) Atomic weight of an el	ement varies with valence		
	b) Molecular weight chan		4/1	
	c) Equivalent weight char	nges with valence		
	d) None of the above			
129	. Excess of carbon dioxide	is passed through 50 mL of	f 0.5 M calcium hydroxide s	olution. After the
	completion of the reactio	n, the solution was evapora	ate was evaporated to dryn	ess. The solid calcium
	carbonate was completely	y neutralised with 0.1 N hy	drochloric acid. The volum	e of hydrochloric acid
	required is (Atomic mass			
	a) 300 cm ³	b) 200 cm ³	c) 500 cm ³	d) 400 cm ³
130	$1.9.8 \text{ g of } \text{H}_2\text{SO}_4 \text{ is present}$	in 2 litre of a solution. The		
	a) 0.1 <i>M</i>	b) 0.05 <i>M</i>	c) 0.01 <i>M</i>	d) 0.2 <i>M</i>
131	-	ent in 2 litre of 0.5 M NaOF		
	a) 2	b) 1	c) 0.1	d) 0.5
132			tance. If 100 mL of A are m	
	•		al molarity of the solution i	
400	a) 0.15 <i>M</i>	b) 0.18 <i>M</i>	c) 0.12 <i>M</i>	d) 0.30 <i>M</i>
133	. The gravimetric composi		.) 1 0	D 1 16
124	a) 1:1	b) 1:2	c) 1:8	d) 1:16
134			ed with sodium carbonates	
			bonate so obtained is heate	ed strongly to get 0.56 g of
		aCl in the mixture (atomic		1) (0 4
125	a) 75	b) 30.6	c) 25	d) 69.4
135	. In the reaction,	3+() + (Cl=() + 2H (
		$(3^{+}(aq) + 6Cl^{-}(aq) + 3H_{2}(aq) + 6Cl^{-}(aq) + 3H_{2}(aq)$		
7		ed for every $3 L H_2(g)$ produced regardless of temporature	uuceu are and pressure for every r	nolo Althat roacts
		produced for every mole Al	_	Hole Al that reacts
~	•	produced for every mole Hi produced for every mole H		
136		en present in 10.6 g of Na ₂ :	, =,	
130	a) 6.02×10^{23}	b) 12.04×10^{22}	c) 1.806×10^{23}	d) 31.80×10^{28}
137	•	•	cm ³ of air measured over w	•
107			then the molecular weight of	
	a) 222.2	b) 332.3	c) 121.1	d) 127.5
138		•	water (volume 0.0018 mL)	•
-	_			

	a) 6.023×10^{19}	b) 1.084× 10 ¹⁸	c) 4.84×10^{17}	d) 6.023×10^{23}
139.	A certain amount of a met	al whose equivalent mass i	is 28 displaces 0.7 L of H_2 a	t STP from an acid. Hence,
	mass of the element is			
	a) 1.75 g	b) 0.875 g	c) 3.50 g	d) 7.00 g
140.	Law of multiple proportio	ns is illustrated by one of t	he following pairs	
	a) H ₂ S and SO ₂	b) NH ₃ and NO ₂	c) Na ₂ S and Na ₂ O	d) N ₂ O and NO
141.	Amount of oxygen require	ed for combustion of 1 kg o	f a mixture of butane and is	sobutane is:
	a) 1.8 kg	b) 2.7 kg	c) 4.5 kg	d) 3.58 kg
142.	About a gaseous reaction, $xX + yY \longrightarrow lL + mM$			
	Which statement is wrong	g ?		
	x letre of X combines w	with y litre of Y to give L and	$d_{\mathbf{b}}$ x moles of X combines	with y moles of Y to give L
	M		and M	
	c) x number of molecules	of <i>X</i> combine with <i>y</i>	d) x g of X combines with	v = 0 of V to give M and I
	number of molecules of	f Y to form L and M	uj x g of x combines with	y g of T to give m and L
143.	The simplest formula of a	compound containing 50%	% of element X (at. wt. 10) a	and 50% of element Y (at.
	wt. 20) is:		. (4	Y
	a) <i>XY</i>	b) <i>X</i> ₂ <i>Y</i>	c) XY ₂	d) X_2Y_3
144.	The number of mole of KC	cl in 1000 mL of 3 molar so	lution is:	
	a) 1.5	b) 3.0	c) 1.0	d) 4.0
145.	A person has as many as n	otes as number of oxygen	atoms in 24.8 g $Na_2S_2O_3 \cdot 5$	$5H_2O$ (mol. wt. = 248.0). A
	note counting machine co	unts 60 million notes per d	lay. How much day would b	e taken to count these
	notes?			
	a) 10 ¹⁷	b) 10 ¹⁰	c) 10 ¹⁵	d) 10 ¹²
146.	An oxide of sulphur conta	ins 50% S. what will be its	empirical formula?	
	a) SO	b) SO ₂	c) SO ₃	d) S_2O_3
147.	$8 g of O_2$ has the same nur	nber of molecules as:		
	a) 7 g of CO	b) 11 g of CO ₂	c) 7 g of N ₂	d) All of these
148.	When 10 g of 90% pure lin	me stone is heated complet	tely, the volume (in litres) (of CO_2 is liberated at STP is
	a) 22.4	b) 2.24	c) 20.16	d) 2.016
149.	Mass of 0.1 mole of metha	ane is		
	a) 1 g	b) 16 g	c) 1.6 g	d) 0.1 g
150.	The per cent of <i>N</i> in 66%	pure $(NH_4)_2SO_4$ sample is:		
	a) 32	b) 28	c) 14	d) None of the above
151.	Equal weight of Fe_2O_3 an	d FeO has weight of oxyger	n in the ratio:	
	a) 1.35	b) 0.74	c) 0.37	d) 2.7
152.	The number of mole of so	lute per kg of solvent is call	led:	
	a) Mole fraction of solute			
	b) Normality			
	c) Molarity			
4	d) Molality			
153.	The empirical formula of a	a compound is CH ₂ O. If its '	VD is 30, its molecular form	ıula is:
	a) CH ₂ O	b) $C_2H_4O_2$	c) $C_3H_6O_3$	d) CH ₃ OH
154.	The decomposition of a ce	ertain mass of CaCO ₃ gave 1	$11.2 \mathrm{dm^3of} \mathrm{CO_2} \mathrm{gas} \mathrm{at} \mathrm{STP}.$	The mass of KOH required
	to completely neutralise t	he gas is		
	a) 56 g	b) 28 g	c) 42 g	d) 20 g
155.	19.7 kg of gold was recove	ered from a smuggler. How	many atoms of gold were i	recovered (Au = 197)?
	a) 100	b) 6.02×10^{23}	c) 6.02×10^{24}	d) 6.02×10^{25}
156.	2.79 g of silver carbonate	on being strongly heated y	ields a residue weighing:	
	a) 2.16 g	b) 2.48 g	c) 2.32 g	d) 2.64 g

157. In acidic medium, the equivalent weight of $K_2Cr_2O_7$ (Mol. wt. = M) is			
a) <i>M</i>	b) $\frac{M}{2}$	c) $\frac{M}{3}$	d) $\frac{m}{6}$
158. Which has th a) 1 g-atom o b) 1/2 mole o c) 10 mL of v	of C of CH ₄		
159. How many at a) 14×6.02 b) 10×6.02 c) $7 \times 6.02 \times$ d) None of th	coms are present in a mole of 0×10^{23} atom/mol $\times 10^{23}$ atom/mol 10^{23} atom/mol e above		
a) 1 litre	b) 2 litre	c) 3 litre	tre of 1 <i>M</i> solution of NaOH is : d) $\frac{1}{2}$ litre
a) 80 g of hyd 162. An element A 75% A by we a) A_2B	(at. wt. = 75) and B (at. wt. = ight. The formula of the comp b) A_3B	en c) 10 g of hydro = 25) combine to form a co ound will be: c) AB_3	gen d) 5 g of hydrogen mpound. The compound contains d) <i>AB</i>
	weight of KMnO ₄ is M , then its $\frac{M}{N}$	s equivalent weight in acidi $\frac{M}{a}$	M
a) <i>M</i>	b) ${2}$ eight of tribasic acid is W . Its ϵ	CJ 5	d) 3
a) W/2	b) W/3	c) W	d) 3 <i>W</i>
litre. The nor	mality of the resulting solutio		ed together and volume made one
166. If 20 g of <i>CaC</i>	O_3 is treated with 100 mL of		d) $N/40$ unt of CO_2 produced is
a) 22.4 L 167. The empirica formula is	b) 8.80 g l formula of a compound is CF	c) 4.40 g H_2 . One mole of this compo	d) 2.24 L and has a mass of 42 g. Its molecular
a) C_3H_6	b) C ₃ H ₈	c) CH ₂	d) C_2H_2
a) 9333.33 li	of air needed for complete com		
169. Mixture $X = 0$ solution. 1 L of mixture	0.02 mole of $[Co(NH_3)_5SO_4]B$ e $X + excess AgNO_3 \rightarrow Y$	c) 93.33 litre r and 0.02 mole of [Co(NH $_3$	d) 1866.67 litre) ₅ Br]SO ₄ was prepared in 2 L of
	e X + excess BaCl ₂ \rightarrow Z oles of Y and Z are		
a) 0.01, 0.01	b) 0.02, 0.01	c) 0.01, 0.02 V/10 H ₂ SO ₄ are mixed toge	d) 0.02, 0.02 ther. The resulting solution will be:
a) Acidic 171. 1.5 litre of a s	b) Neutral solution of normality <i>N</i> and 2.	c) Alkaline	d) None of these d together. The resultant solution
nad a normal	ity 5. The value of <i>N</i> is: b) 10	c) 8	d) 4
=	of water molecules in 1 L of w	_	~ <i>,</i> •
a) 18	b) 18×1000	c) <i>N_A</i>	d) 55.55 <i>N_A</i>

173. Tl	he maximum number of	molecules are present in			
a)) 15 L of H ₂ gas at STP		b) 5 L of N ₂ gas at STP		
c)	$0.5 \mathrm{g} \mathrm{of} \mathrm{H}_2 \mathrm{gas}$		d) $10 \text{ g of } 0_2 \text{ gas}$		
174. Po	olyethylene can be prodi	aced from calcium carbide	according to the following	sequence of reactions;	
Ca	$aC_2 + H_2O \rightarrow CaO + HC$	≡ CH			
nI	$HC \equiv CH + nH_2 \longrightarrow CH_2 -$	-CH ₂ -) ₁₀			
	<u>-</u>	"	am 20.0 kg of CoC is.		
		which can be produced fro		d) 0.75 kg	
) 6.75 kg	b) 7.75 kg	c) 8.75 kg	d) 9.75 kg	
			e atom of an element is 6.6^{4}		
-) 10 ² g-atom	b) 10 g-atom	c) 10^3 g-atom	d) None of these	
			density 1.1 g/cm ³ is approx		
-) 1.2	b) 1.4	c) 1.8	d) 1.6	
		lution is 0.6 g/mL. It conta	ins 34% by weight of NH_4	OH. Calculate the normality	
	f the solution:	12.40.22	\ 0 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
-) 4.8 <i>N</i>	b) 10 <i>N</i>	c) 0.5 <i>N</i>	d) 5.8 <i>N</i>	
		wt. = 342) are dissolved in	$1000\mathrm{g}$ of water at $30^\circ\mathrm{C}$. If	the density of solution is	
	.1 g/mL, then:		1		
	=	b) Molarity = molality	c) Molality < molarity	d) None of these	
179. A	mount of oxygen require	ed for complete combustion	n of 27 g Al is:		
a)) 24 g	b) 12 g	c) 20 g	d) 6 g	
180. Tl	he least number of mole	cules are contained in:			
a)) 2 g hydrogen	b) 8 g oxygen	c) 4 g nitrogen	d) 16 g CO ₂	
181. W	hich of the following is o	correct for			
C($C(graphite) + O_2(gas) \rightarrow CO_2$, heat = -348 kJ?				
a)) Heat absorbed		b) Mass of product > Mass	s of reactant	
c)	Mass of product < Mass	s of reactant	d) Mass of product = Mas	s of reactant	
182. Tl	he molarity of 2 N H ₂ SO ₂	is:			
a)) 1 <i>M</i>	b) 2 M	c) 3 <i>M</i>	d) 4 <i>M</i>	
183. A	mount of oxalic acid pres	sent in a solution can be de	etermined by its titration w	ith KMnO ₄ solution in the	
pı	resence of H ₂ SO ₄ . The tit	ration given unsatisfactory	y result when carried out ir	n the presence of HCl	
	ecause HCl	4 14 1			
a)	Gets oxidised by oxalic	acid to chlorine			
b)) Furnishes H ⁺ ions in ac	ldition to those from oxalio	cacid		
c)	reduces permanganate	to Mn ²⁺			
		carbon dioxide and water			
	he mass of 112 cm^3 of C				
	0.16 g	b) 0.8 g	c) 0.08 g	d) 1.6 g	
		, ,	mbustion of 20 L of propar	, ,	
) 40 L	b) 60 L	c) 80 L	d) 100 L	
	he value of gram molar v	•	c) 00 II	u) 100 L	
) 1 litre	b) 22.4 litre	c) 11.2 litre	d) 22.4 litre at STP	
1		•	isulphide contains 15.79%	•	
. /		ulphur. This data is an agr	-	or carbon and surpilur	
				tions	
-	Law of conservation of		b) Law of definite proport		
-	Law of multiple propor		d) Law of reciprocal prop		
	-	oms are present in 9:1:3.	o by weight. Molecular wei	ight of compound is 108, its	
	nolecular formula is:	L) C II N	-) C II N	א זו או	
_	$C_2H_6N_2$	b) C ₃ H ₄ N	c) $C_6H_8N_2$	d) $C_9H_{12}N_3$	
			$CuSO_4$ and $0.1 M$ of $Al_2(SO_4)$		
a)) 0.2 <i>M</i>	b) 0.7 <i>M</i>	c) 0.8 <i>M</i>	d) 1.2 <i>M</i>	

190.	How much water is to be a	added to dilute 10 mL of 10	$0\ N$ HCl to make it decinorm	nal?
	a) 990 mL	b) 1010 mL	c) 100 mL	d) 1000 mL
191.	Density of air at NTP is 0.0	001293 g/mL. Its vapour d	ensity is:	
	a) 0.001293	b) 1.293	c) 14.48	d) Cannot be calculated
192.	The number of moles of w	rater present in 90 g of a wa	ater is:	
	a) 2	b) 3	c) 4	d) 5
193.		of O ₂ reacts to form water,	what is left at the end of rea	-
	a) 10 mL H ₂	b) 5 mL H ₂	c) 10 mL O ₂	d) 5 mL O ₂
194.	The term atom molecule v	-	2	
	a) Ostwald, Avogadro resp			\wedge V
	b) Dalton, Avogadro respe	•		
	c) Avogadro, Dalton respe	=		
	d) None of the above	,		A . Y
195.	-	he order of increasing mas	s (atomic mass; $0 = 16$, Cu	= 63, N = 14)
	I. One atom of oxygen	· ·		
	II. One atom of nitrogen			
	III. 1×10^{-10} mole of oxy	gen	Ć.	
	IV. 1×10^{-10} mole of copy	_	.40	
		b) I < II < III < IV	c) III $< II < IV < I$	d) $IV < II < III < I$
196.	=	=	f another element B. 6 parts	
	-	-	tio of their weights, will be	
	a) Law of definite proport	-	b) Law of multiple propor	= -
	c) Law of reciprocal propo	ortions	d) Law of conservation of	mass
197.	A metal oxide has the form	nula ${ m Z_2O_3}$. It can be reduce	d by hydrogen to give free	metal and water. 0.1596 g
	of the metal oxide require	d 6 mg of hydrogen for cor	nplete reduction. The atom	ic weight of the metal is:
	a) 27.90	b) 159.60	c) 79.80	d) 55.80
198.	<i>x</i> grams of calcium carbon	nate was completely burnt	in air. The weight of the sol	id residue formed is 28 g.
	What is the value of x (in x	grams)?		
	a) 44	b) 200	c) 150	d) 50
199.	In a gaseous reaction of th	he type $aA + bB \rightarrow cC + d$	D, which is wrong?	
	a) α litre of A combines w	ith b litre of B to give C and	d D	
	b) a mole of A combines w	with b mole of B to give C a	nd D	
	c) a g of A combines with	b g of B to give C and D		
	d) a molecules of A combi	nes with b molecules of B	to give C and D	
200.	Which of the following are	e correct?		
		wt. in $g = wt.$ of N molecul	es	
	b) 1 mole = N molecules =	$= 6.023 \times 10^{23}$ molecule		
	c) Mole = g molecules			
	d) All of the above			
201.			ng with conc H_2SO_4 . The cyc	clohexene obtained from
	100 g cyclohexanol will be			
	(If yield of reaction is 75%	(o)		
	a) 61.5 g	b) 75.0 g	c) 20.0 g	d) 41.0 g
202.			gen in the ratio, nitrogen 28	g and 80 g of oxygen. The
	formula of the compound			
	a) NO	b) N ₂ O ₃	c) N_2O_5	$d) N_2 O_4$
203.			$C_2H_4N_2(C_2H_2O_2Na)_4$. If eac	
		+, then the rating of pure ve	ersene expressed as mg of	CaCO ₃ bound per g of
	chelating agent is:			
	a) 100 mg	b) 163 mg	c) 200 mg	d) 263 mg

204. Whi	ch of the following is c	correct?		
a) M	$\text{fleq.} = N \times V_{\text{in mL}} = \frac{V_{\text{in mL}}}{Eq}$	$\frac{\text{vt.}}{\text{l.wt.}} \times 1000$		
b) E	$q. = N \times V_{\text{in mL}} = \frac{\text{wt}}{\text{Eq.w}}$	<u>.</u> zt		
		· · ·	eact to give same eq. or Me	g. of products
	ll of the above	•	J	1
205. 1.0 §	g of pure calcium carbo	onate was found to require	50 mL of dilute HCl for co	nplete reactions. The
stre	ngth of the HCl solutio	n is given by:		
a) 4	N	b) 2 <i>N</i>	c) 0.4 N	d) 0.2 N
		25 g of NH ₃ is approximate	-	(V)
-	$\times 10^{23}$	b) 2×10^{23}	c) 1.5×10^{23}	d) 1×10^{23}
			ons whereas they are redu	
			ning Fe ²⁺ ions required in a lution <i>Y</i> would be required	
		ions in neutral condition?		to oxitise 25 me or a
	1.4 mL	b) 12.0mL	c) 33.3 mL	d) 35.0 mL
-		100 u of He (atomic weigh	1	u) 55.0 IIIL
a) 2		b) 100	c) 50	d) $100 \times 6 \times 10^{-23}$
-		•	acose (density 0.8 g/cm^3)	_
	$.68 \times 10^{21}$	b) 6.42×10^{22}	c) 2.68×10^{22}	d) 2.68×10^{23}
,		tion of H_2SO_4 in one litre w		u) 2.00 × 10
a) 9		b) 49.0 g	c) 4.8 g	d) 0.09 g
-	•	, ,	₅₇ Fe are 5%, 90% and 5%,	, 0
	s of Fe is	3 of 130topes 541 c, 561 c and	5/1 c are 5 /0, 70 /0 and 5 /0,	respectively, the atomic
	5.85	b) 55.95	c) 55.75	d) 56.05
-		-	3PO ₄ dissolved in 500 g wa	
a) 1		b) 1 <i>M</i>	c) 1 N	d) 0.5 <i>M</i>
-	ch of the following is c		0) 11.	w, 0.0 11
	Nole = molarity $\times V_{\text{in L}}$			
		$V_{\text{in mL}} = \frac{\text{wt.}}{\text{mol. wt.}} \times 1000$		
c) M	Iole and milli mole of r	eactants react according to	o stoichiometric ratio of ba	lanced chemical equation
-	all of the above			
			yould be the weight of CO ₂	liberated after the
	pletion of the reaction			
a) 5	-	b) 11 g	c) 22 g	d) 33 g
			g of the salt every day, the	e iodide ions going into his
	y every day would be a			22
-	$.2 \times 10^{21}$	b) 7.2× 10 ¹⁹	c) 3.6×10^{21}	d) 9.5×10^{19}
	mass of 11.2 L of amm	-	2.4=	15.4.
a) 8		b) 85 g	c) 17 g	d) 1.7 g
		ired 100 mL of 0.1 N NaOH	l for complete neutralization	on. The equivalent weight of
acid		L) F2	-) 104	J) 157
a) 2		b) 52	c) 104	d) 156
			we iron by reduction with H	
-	12 tons	b) 80 tons	c) 160 tons	d) 56 tons
			with 0.1 M Solution of HCl	gave a titre value of 35 mL
	molarity of $Ba(OH)_2$ is	s: b) 0.35	c) 0.07	d) 0.14
a) 0		•	•	uj 0.14
440. VUIL	ame occupieu by one n	nolecule of water (density	- 18 cm / 12;	

	a) $6.023 \times 10^{-23} \text{cm}^3$	b) $3.0 \times 10^{-23} \text{cm}^3$	c) $5.5 \times 10^{-23} \text{cm}^3$	d) 9.0×10^{-23} cm ³
221	The mass of nitrogen per	gram hydrogen in the com	pound hydrazine is exactly	one and half times the
		ompound ammonia. The fac		
	a) Law of conservation of	=	b) Multiple valency of nit	rogen
	c) Law of multiple propor		d) Law of definite propor	· ·
222	Strength of the solution is		, , , , , ,	
	a) $S = N \times E$	0 ,		
		e		
	b) $S = \frac{\text{wt. of soluto}}{\text{volume of solution}}$	n in litre		
	c) $S = M \times \text{mol.wt.}$			
	d) All of the above			
223	0.5 mole of H_2SO_4 is mixe	ed with 0.2 mole of Ca(OH)	₂ . The maximum number o	f mole of CaSO ₄ formed is:
	a) 0.2	b) 0.5	c) 0.4	d) 1.5
224	On dissolving 1 mole each	n of the following acids in 1	litre water, the acid which	do not give a solution of 1
	N strength is:			
	a) HCl	b) HClO ₄	c) HNO ₃	d) H_3PO_4
225	The empirical formula of	a compound is CH. Its mole	ecular weight is 78. The mo	lecular formula of the
	compound will be:		1	
	a) C ₂ H ₂	b) C ₃ H ₃	c) C ₂ H ₄	d) C_2H_6
226	Of two oxides of iron, the	first contained 22% and th	ne second contained 30% or	f oxygen by weight. The
	ratio of weights of iron in	the two oxides that combi	ne with the same weight of	oxygen, is
	a) 3:2	b) 2:1	c) 1:2	d) 1:1
227	The total number of proto	ons in 10 g of calcium carbo	onate is $(N_0 = 6.023 \times 10^{23})$	3)
	a) 3.01×10^{24}	b) 4.06×10^{24}	c) 2.01×10^{24}	d) 3.02×10^{24}
228	In the following reaction,	4	X)	
	$MnO_2 + 4HCL \rightarrow MnCl_2$	$+ 2H_2O + Cl_2$	>	
	2 mol MnO ₂ reacts with 4	mol of HCl to form 11.2 L	Cl ₂ at STP. Thus, per cent yi	eld of Cl ₂ is
	a) 25%	b) 50%	c) 100%	d) 75%
229	The normality of 1% (wt.	/vol.)H ₂ SO ₄ is nearly:		
	a) 0.02	b) 0.2	c) 0.1	d) 1
230	The mass of 1 mole of ele	ctrons is		
	a) 9.1×10^{-28} g	b) 1.008 mg	c) 0.55 mg	d) 9.1×10^{-27} g
231	. 74.4 g of a metallic chlori	de contains 35.5 g of chlori	ne. The equivalent weight o	of the metal is:
	a) 19.5	b) 35.5	c) 39.0	d) 78.0
232	. Equivalent weight of an a	cid		
	a) Depends on the reaction	on involved		
	b) Depends upon the nun	nber of oxygen atoms prese	ent	
	c) Is always constant			
	d) None of the above			
233	Which of the following is	not a mixture?		
	a) Gasoline	b) Distilled alcohol	c) LPG	d) lodized table salt
234	The equivalent weight of	a divalent metal is 31.82. T	he weight of single atom is	:
	a) $32.77 \times 6.02 \times 10^{23}$	b) $63.64 \times 6.02 \times 10^{23}$	c) 63.64	d) $63.64/6.02 \times 10^{23}$
235	Number of mole of 1 m ³ g			
	a) 44.6	b) 40.6	c) 42.6	d) 48.6
236	The per cent loss in weigl	ht after heating a pure sam	ple of potassium chlorate (mol. wt. = 122.5) will be:
	a) 12.25	b) 24.50	c) 39.18	d) 49.0
237		valent contained in 0.5 litre	e of 0.2 N solution is:	
	a) 0.1	b) 100	c) 0.01	d) 1.0
238	Out of 1.0 g dioxygen, 1.0 contained in	g (atomic) oxygen and 1.0	g ozone, the maximum nur	mber of molecules are

	a) 1.0 g of atomic oxygen		b) 1.0 g of ozone		
	c) 1.0 g of oxygen gas		d) All contain same number of atoms		
239.	A sample of AIF_3 contains	3.0×10^{24} F ions. The nun	nber of formula units of this	s sample are	
	a) 9.0×10^{24}	b) 3.0×10^{24}	c) 0.75×10^{24}	d) 1.0×10^{24}	
240.	One mole of CO ₂ contains				
	a) 3 g atoms of CO ₂		b) 18.1×10^{23} molecules	of CO ₂	
	c) 6.02×10^{23} atoms of 0		d) 6.02×10^{23} atoms of C	L	
	-	\rightarrow C, 5 moles of A and 8 mo			
	a) 5 moles of <i>C</i>	b) 4 moles of <i>C</i>	c) 8 moles of <i>C</i>	d) 13 moles of C	
		e largest number of atoms?	•	u) 10 moies of 0	
	a) 1 mg of C_4H_{10}	b) 1 mg of N ₂	c) 1 mg of Na	d) 1 mL of water	
	, , , , ,		H_4 on treatment with conce	,	
	monosulphonic acid. 0.10	4 g of the acid required 10	mL of $\frac{N}{20}$ NaOH for complet	e neutralisation. The	
	molecular formula of hydr	rocarbon is		4	
)	1) 0 11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	D C V	
	a) C ₅ H ₄	b) C ₁₀ H ₈	c) C ₁₅ H ₁₂	d) C ₂₀ H ₁₆	
		C-12 and C-14 is 98% and 2	2% respectively then the nu	imber of C-14 atoms in 12	
	g of carbon is				
	a) 1.032×10^{22}	b) 3.01×10^{22}	c) 5.88×10^{23}	d) 6.023×10^{23}	
	•		water of crystallization. If the		
	proportions is true then the	he weight of zinc required t	to produce 20 g of the cryst	als will be	
	a) 45.3 g	b) 4.53 g	c) 0.453 g	d) 453 g	
246.	The number of gram mole	ecules of chlorine in $6.02 \times$	10 ²⁵ hydrogen chloride mo	olecules is	
	a) 10	b) 100	c) 50	d) 5	
247.	The net charge on ferrous	ion is:			
	a) +2	b) +3	c) +4	d) +5	
248.	H ₂ O ₂ solution used for ha	ir bleaching is sold as a sol	ution of approximately 5.0	g H ₂ O ₂ Per 100 mL of the	
			plarity of this solution is ap		
	a) 3.0	b) 1.5	c) 0.15	d) 4.0	
	,	ement weigh 13.8 g. The ato		,	
	a) 290	b) 180	c) 34.4	d) 10.4	
	-		d to react with 100 g of CaC	-	
	a) 73 g	b) 100 g	c) 146 g	d) 200 g	
		owing isotopic composition	, ,	u) 200 g	
231.	²⁰⁰ <i>X</i> : 90%	owing isotopic composition	1		
	199 <i>X</i> : 8.0%				
	²⁰² <i>X</i> : 2.0%				
		mia maga of the naturally o	agunning alamant V is alaga	od to	
			ccurring element X is close		
	a) 200 u	b) 210 u	c) 202 u	d) 199 u	
	Law of constant composit	ion is same as the law of	120 0		
\sim	a) Conservation of mass		b) Conservation of energy	,	
	c) Multiple proportion	22	d) Definite proportion		
_			mber of moles of atom in 2		
	a) 140	b) 150	c) 250	d) 500	
	-	2CO ₂ is carried out by take	ing 24 g carbon and 96 g 0_2	2. Which one is limiting	
	reagent?				
	a) C	b) 0 ₂	c) CO ₂	d) None of these	
			alcium carbonate. Concentr	ation of solution is:	
	a) 10 ppm	b) 100 ppm	c) 1000 ppm	d) 10000 ppm	
256.	The maximum amount of	BaSO ₄ precipitated on mixi	ing 20 mL of 0.5 M BaCl ₂ w	ith 20 mL of 1 M H ₂ SO ₄ is:	

207.	a) 0.25 mole The percentage of an elec	b) 0.5 mole ment <i>M</i> is 53 in its oxide of	c) 1 mole molecular formula MaQa, It	d) 0.01 mole
2	a) 45	b) 9	c) 18	d) 27
	H ₃ BO ₃ is:	2) 3	0) 10	w) = .
	a) Monobasic and weak I	ewis acid		
	b) Monobasic and weak I			
	c) Monobasic and strong			
	d) Tribasic and weak Bro			
		eighing 1.5763 g is added to	25 mL of 0.4210 <i>M</i> KOH a	fter saponification is
C	complete 8.46 mL of 0.27	$32 M H_2 SO_4$ is needed to n		
-	peanut oil is:	h) 100 0	a) 00 0	d) 218.9
	a) 209.6	b) 108.9	c) 98.9	
				as sufficient to neutralize a
	a) 272 g	$g \text{ of } HCl? [HCl = 36.5, (NH_4)]$		d) 1056 g
	, 0	b) 403 g eral contains 8% water. Th	c) 528 g	, ,
	• •	ne partially dried sample is		112% water and 45%
	a) 50%	b) 49%	c) 55%	d) 47%
	•	-	CJ 55%	u) 47 %
	a) 6.023×10^{23}	element in one atom are: b) 1.66×10^{-24}	c) 2×10^{23}	d) None of those
	•	0 N. 100 mL of 1 N HCl can		d) None of these
	a) 10 mL of conc. HCl to		be obtained by unuting:	
	b) 20 mL of conc. HCl to 1			
	c) 100 mL of conc. HCl to		^ \ \	
	d) 100 mL of conc. HCl to		V	
	=	nits of calcium fluoride, Cal	E procent in 146 A g of Cal	the molar mass of
	CaF ₂ is 78.08 g/mol) is	ints of calcium muoride, car	2 present in 140.4 g of car	2 (the motal mass of
	a) $1.129 \times 10^{24} \text{ CaF}_2$			0.4
	$d \mid 1.129 \times 10^{-1} \text{ Gar}_2$	b) 1.146×10^{24} CaF ₂	c) $7.808 \times 10^{24} \text{ CaF}_2$	d) $1.877 \times 10^{24} \text{ CaF}_2$
	,	b) $1.146 \times 10^{24} \text{ CaF}_2$ gen that is required for the	c) $7.808 \times 10^{24} \text{ CaF}_2$ complete combustion of 2.	,
265. V	What is the weight of oxy	gen that is required for the	complete combustion of 2.	,
265. V	What is the weight of oxy a) 9.6 kg	gen that is required for the b) 96.0 kg	complete combustion of 2. c) 6.4 kg	8 kg of ethylene?
265. V	What is the weight of oxy a) 9.6 kg	gen that is required for the b) 96.0 kg coms in 2 moles of sodium f	complete combustion of 2. c) 6.4 kg	8 kg of ethylene?
265. V 266. 7	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10 ²³	gen that is required for the b) 96.0 kg	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23}	8 kg of ethylene? d) 2.8 kg d) 48×10^{23}
265. V 266. 7 267. S	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10 ²³ Stoichiometric ratio of so	gen that is required for the b) 96.0 kg coms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23}	8 kg of ethylene? d) 2.8 kg d) 48×10^{23}
265. V 266. T 267. S	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10 ²³ Stoichiometric ratio of so required for synthesis of	gen that is required for the b) 96.0 kg coms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23}	8 kg of ethylene? d) 2.8 kg d) 48×10^{23}
265. V 266. 7 267. S	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10 ²³ Stoichiometric ratio of so required for synthesis of a) 1.5:3	gen that is required for the b) 96.0 kg coms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is	complete combustion of 2. c) 6.4 kg errocyanide is c) 34× 10 ²³ esphate and sodium hydrog	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3
265. V 266. T 267. S 1 268. 4	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10 ²³ Stoichiometric ratio of so required for synthesis of a) 1.5:3	gen that is required for the b) 96.0 kg coms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$	complete combustion of 2. c) 6.4 kg errocyanide is c) 34× 10 ²³ esphate and sodium hydrog	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3
265. V 266. T 267. S 1 268. 4	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$	gen that is required for the b) 96.0 kg from in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ e of H_2 at STP are mixed in a	complete combustion of 2. c) 6.4 kg errocyanide is c) 34× 10 ²³ esphate and sodium hydrog	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3
265. V 266. T 267. S 1 268. 4	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litre the container will be: a) 6.022×10^{23}	gen that is required for the b) 96.0 kg from in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ e of H_2 at STP are mixed in a	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴
265. V 266. T 267. S 1 268. 4 t 269. 0	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litre the container will be: a) 6.022×10^{23}	gen that is required for the b) 96.0 kg froms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ e of H_2 at STP are mixed in a b) 1.2044×10^{23}	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴
265. V 266. T 267. S 267. S 268. 4 t 269. G	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litre the container will be: a) 6.022×10^{23} Calculate the number of respectively.	igen that is required for the b) 96.0 kg froms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb	8 kg of ethylene? d) 2.8 kg d) 48×10^{23} een orthophosphate d) 2:3 eer of molecules present in d) 6.023×10^{24} of CO_2 .
265. V 266. T 267. S 1 268. 4 1 269. 0 270. V	What is the weight of oxy (a) 9.6 kg The number of sodium at (a) 12×10^{23} Stoichiometric ratio of so required for synthesis of (a) $1.5:3$ 4.4 g of CO_2 and 2.24 litresthe container will be: (a) 6.022×10^{23} Calculate the number of real 0.00454	gen that is required for the b) 96.0 kg foms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ e of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10×10^{23} moles left after of atoms?	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 0 ²¹ molecules from 200 mg c) 2.88×10^{-3}	8 kg of ethylene? d) 2.8 kg d) 48×10^{23} en orthophosphate d) $2:3$ er of molecules present in d) 6.023×10^{24} of CO_2 . d) None of these
265. V 266. T 267. S 268. 4 4 269. Q 270. V	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litre the container will be: a) 6.022×10^{23} Calculate the number of ray 0.00454 Which has maximum numa) 24 g of $C(12)$	igen that is required for the b) 96.0 kg froms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 0 ²¹ molecules from 200 mg c) 2.88 × 10 ⁻³ c) 27 g of Al (27)	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴ ofCO ₂ . d) None of these d) 108 g of Ag (108)
265. V 266. T 267. S 267. S 268. 4 t 269. Q 270. V	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litre the container will be: a) 6.022×10^{23} Calculate the number of ray 0.00454 Which has maximum numa) 24 g of $C(12)$	rgen that is required for the b) 96.0 kg roms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166 nber of atoms? b) 56 g of Fe (56)	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 0 ²¹ molecules from 200 mg c) 2.88 × 10 ⁻³ c) 27 g of Al (27)	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴ ofCO ₂ . d) None of these d) 108 g of Ag (108)
265. Variable 266. To a 267. S a 268. 4 a 269. C a 270. Variable 271. A t t	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litresthe container will be: a) 6.022×10^{23} Calculate the number of ray 0.00454 Which has maximum numa) 24 g of C (12)	rgen that is required for the b) 96.0 kg froms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166 mber of atoms? b) 56 g of Fe (56) ate pentahydrate contains	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 0 ²¹ molecules from 200 mg c) 2.88 × 10 ⁻³ c) 27 g of Al (27)	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴ ofCO ₂ . d) None of these d) 108 g of Ag (108)
265. V 266. T 267. S 267. S 268. 4 t 269. C 270. V 271. A	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litresthe container will be: a) 6.022×10^{23} Calculate the number of rand 0.00454 Which has maximum number of CO_2 and CO_3 and CO_3 which has maximum number of CO_3 and CO_3 and CO_3 which has maximum number of CO_3 and CO_3	rgen that is required for the b) 96.0 kg froms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166 mber of atoms? b) 56 g of Fe (56) ate pentahydrate contains	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 021 molecules from 200 mg c) 2.88 × 10 ⁻³ c) 27 g of Al (27) 8.64 g of oxygen. How many	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴ ofCO ₂ . d) None of these d) 108 g of Ag (108)
265. V 266. T 267. S 267. S 268. 4 269. C 270. V 271. A	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litrest the container will be: a) 6.022×10^{23} Calculate the number of ray 0.00454 Which has maximum number of 0.00454	rgen that is required for the b) 96.0 kg roms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166 mber of atoms? b) 56 g of Fe (56) ate pentahydrate contains 6 , $S = 32.06$, $O = 16$) b) 3.816 g	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 0 ²¹ molecules from 200 mg c) 2.88 × 10 ⁻³ c) 27 g of Al (27) 8.64 g of oxygen. How many	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴ ofCO ₂ . d) None of these d) 108 g of Ag (108) y gram of Cu is present in
265. Value 266. To a a a a a a a a a a a a a a a a a a	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and 2.24 litrest the container will be: a) 6.022×10^{23} Calculate the number of ray 0.00454 Which has maximum number of 0.00454	rgen that is required for the b) 96.0 kg roms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166 mber of atoms? b) 56 g of Fe (56) ate pentahydrate contains $6, S = 32.06, O = 16$) b) 3.816 g 20 ML of 0.1 M aqueous so	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 0 ²¹ molecules from 200 mg c) 2.88 × 10 ⁻³ c) 27 g of Al (27) 8.64 g of oxygen. How many	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴ ofCO ₂ . d) None of these d) 108 g of Ag (108) y gram of Cu is present in
265. V 266. T 267. S 267. S 268. 4 t 269. C 270. V 271. A t (272. T	What is the weight of oxy a) 9.6 kg The number of sodium at a) 12×10^{23} Stoichiometric ratio of so required for synthesis of a) $1.5:3$ 4.4 g of CO_2 and CO_2 and CO_3 litres the container will be: a) CO_3 and CO_4 and CO_3 litres a) CO_4 and CO_4 litres a) CO_4 litres a	rgen that is required for the b) 96.0 kg roms in 2 moles of sodium f b) 26×10^{23} dium dihydrogen orthopho $Na_5P_3O_{11}$ is b) $3:1.5$ of H_2 at STP are mixed in a b) 1.2044×10^{23} moles left after removing 10 b) 0.00166 mber of atoms? b) 56 g of Fe (56) ate pentahydrate contains $6, S = 32.06, O = 16$) b) 3.816 g 20 ML of 0.1 M aqueous so	complete combustion of 2. c) 6.4 kg errocyanide is c) 34×10^{23} esphate and sodium hydrog c) 1:1 a container. The total numb c) 2 mole 0 ²¹ molecules from 200 mg c) 2.88 × 10 ⁻³ c) 27 g of Al (27) 8.64 g of oxygen. How many	8 kg of ethylene? d) 2.8 kg d) 48× 10 ²³ en orthophosphate d) 2:3 er of molecules present in d) 6.023 × 10 ²⁴ ofCO ₂ . d) None of these d) 108 g of Ag (108) y gram of Cu is present in

	a) 1.4 L	b) 2.8 L	c) 11.2 L	d) 22.4 L
274	= =		7.33% N and the rest was o	xygen. Its molar mass is 60
	g mol ⁻¹ the molecular for	=		
	a) CH_4N_2O	b) $C_2H_4NO_2$	c) CH_3N_2O	d) $CH_4N_2O_2$
275	. One mole of solute (NaCl)	is dissolved in 1 litre wate	er. The molarity of solution	is:
	a) > 1 M	b) < 1 <i>M</i>	c) = $1 M$	d) = 2 M
276	. 100 mL of 0.1 N hypo dec	olourised iodine by the add	lition of x gram of crystalling	ne copper sulphate to
	excess of KI. The value of	'x' is		
	(molecular wt. of CuSO ₄ , 5	5H ₂ O is 250)		
	a) 5.0 g	b) 1.25 g	c) 2.5 g	d) 4 g
277	. Which of the following co	ntains greatest number of o	oxygen atoms?	
	a) 1 g of 0		b) 1 g of O ₂	
	c) $1 g \text{ of } 0_3$		d) All have the same num	ber of atoms
278	. The normality of 4% (wt.	/vol.) NaOH is:		
	a) 0.1	b) 1.0	c) 0.05	d) 0.01
279	. The mass of potassium di	chromate crystals required	I to oxidise 750 cm^3 of 0.6 l	M Mohr's salt solution is
		ssium dichromate = 294, N		
	a) 0.49 g	b) 0.45 g	c) 22.05 g	d) 2.2 g
280	, .	, ,	,	mole of $Ba_3(PO_4)_2$ that can
	be formed is:	3		3 172
	a) 0.7	b) 0.5	c) 0.30	d) 0.1
281	. Which has the maximum	•		,
	a) 6 g C	b) 1 g H ₂	c) 12 g Mg	d) 30 g Ca
282		es of $0.1 M$ NaOH and $0.1 M$	-	-
	a) Basic	b) Acidic	c) Neutral	d) None of these
283	-			o weight 18.0 g. what is the
	mass of CO_2 released in the		, , , , , , , , , , , , , , , , , , , ,	
	a) 4.5 g	b) 3.3 g	c) 2.6 g	d) 2.8 g
284	, ,	_		, .
	. 50 mL of an aqueous solu	LIOH OF EIGCUSE CONTAINS O.C.	IZ X 1022 molecules. The co	
	. 50 mL of an aqueous solu a) 0.1 <i>M</i>			
285.	a) 0.1 <i>M</i>	b) 1.0 <i>M</i>	c) $0.2 M$	d) 2.0 <i>M</i>
285	a) 0.1 <i>M</i> . Molar concentration of a s	b) 1.0 <i>M</i> solution in water is:		
285	a) 0.1 <i>M</i> . Molar concentration of a same) Always equal to norma	b) 1.0 <i>M</i> solution in water is: lity of solution		
285	a) 0.1 <i>M</i>. Molar concentration of a sa) Always equal to normab) More than molality of t	b) 1.0 <i>M</i> solution in water is: lity of solution he solution		
285	a) 0.1 <i>M</i>. Molar concentration of a sa) Always equal to normab) More than molality of tc) Equal to molality of the	b) 1.0 <i>M</i> solution in water is: ality of solution the solution e solution		
	 a) 0.1 M Molar concentration of a set a) Always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality 	b) 1.0 <i>M</i> solution in water is: lity of solution the solution e solution of the solution	c) 0.2 <i>M</i>	d) 2.0 <i>M</i>
	a) 0.1 <i>M</i> Molar concentration of a set a) Always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of the control of NaOH solution controls.	b) 1.0 <i>M</i> solution in water is: dity of solution the solution solution of the solution atains 4 g of NaOH. The app	c) 0.2 <i>M</i> roximate concentration of	d) 2.0 <i>M</i> the solution is:
286	a) 0.1 <i>M</i> . Molar concentration of a satisfied a) Always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of 1 kg of NaOH solution cores.	b) 1.0 <i>M</i> solution in water is: lity of solution the solution e solution of the solution atains 4 g of NaOH. The app b) 0.1 molar	c) 0.2 <i>M</i> roximate concentration of c) Decinormal	d) 2.0 <i>M</i> the solution is: d) About 0.1 <i>N</i>
286	a) 0.1 <i>M</i> Molar concentration of a say a) Always equal to normally b) More than molality of tags. C) Equal to molality of the d) Less than the molality of the d) Less than the molality of the language. How many moles of lead (1)	b) 1.0 <i>M</i> solution in water is: dity of solution the solution solution of the solution atains 4 g of NaOH. The app	c) 0.2 <i>M</i> roximate concentration of c) Decinormal	d) 2.0 <i>M</i> the solution is: d) About 0.1 <i>N</i>
286	a) 0.1 <i>M</i> . Molar concentration of a satisfication and always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of 1 kg of NaOH solution cores a) 1 molar . How many moles of lead (HCI?	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution atains 4 g of NaOH. The app b) 0.1 molar (II) chloride will be formed	roximate concentration of c) Decinormal from a reaction between 6	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of
286. 287.	a) 0.1 <i>M</i> . Molar concentration of a san and always equal to normation b) More than molality of the c) Equal to molality of the d) Less than the molality of 1 kg of NaOH solution conta) 1 molar . How many moles of lead (HCI? a) 0.333	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution ntains 4 g of NaOH. The app b) 0.1 molar (II) chloride will be formed	c) 0.2 <i>M</i> roximate concentration of c) Decinormal from a reaction between 6 c) 0.029	d) 2.0 <i>M</i> the solution is: d) About 0.1 <i>N</i> 5.5 g of PbO and 3.2 g of d) 0.044
286. 287.	a) 0.1 <i>M</i> . Molar concentration of a san a) Always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of 1 kg of NaOH solution cores. I molar how many moles of lead (HCl? a) 0.333	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution tains 4 g of NaOH. The app b) 0.1 molar (II) chloride will be formed b) 0.011 tained mixing 50 mL of 0.1	c) 0.2 <i>M</i> roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 <i>M</i> H ₂ SO ₄ and 50 mL of 0.1	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is:
286. 287. 288.	a) 0.1 <i>M</i> . Molar concentration of a san and always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of the d) Less than the molality of 1 kg of NaOH solution conta) 1 molar . How many moles of lead of HCl? a) 0.333 . The nature of mixture obta) Acidic	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution ntains 4 g of NaOH. The app b) 0.1 molar (II) chloride will be formed b) 0.011 tained mixing 50 mL of 0.1 b) Basic	c) 0.2 <i>M</i> roximate concentration of c) Decinormal from a reaction between 6 c) 0.029	d) 2.0 <i>M</i> the solution is: d) About 0.1 <i>N</i> 5.5 g of PbO and 3.2 g of d) 0.044
286. 287. 288.	a) 0.1 <i>M</i> . Molar concentration of a san an Always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of the d) 1 kg of NaOH solution core a) 1 molar of lead of HCl? a) 0.333 . The nature of mixture obtain Acidic . Number of electrons in 1.5	b) 1.0 <i>M</i> solution in water is: lity of solution he solution of the solution htains 4 g of NaOH. The app b) 0.1 molar (II) chloride will be formed b) 0.011 tained mixing 50 mL of 0.1 b) Basic 8 mL of H ₂ O is:	c) 0.2 <i>M</i> roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 M H ₂ SO ₄ and 50 mL of 0.1 c) Neutral	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is: d) amphoteric
286 287 288 289	a) 0.1 <i>M</i> . Molar concentration of a san a) Always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of the d) Less than the molality of 1 kg of NaOH solution cona) 1 molar . How many moles of lead of HCl? a) 0.333 . The nature of mixture obta a) Acidic . Number of electrons in 1.5 a) 6.02 × 10 ²³	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution tains 4 g of NaOH. The app b) 0.1 molar (II) chloride will be formed b) 0.011 tained mixing 50 mL of 0.1 b) Basic 8 mL of H ₂ O is: b) 3.011 × 10 ²³	c) 0.2 <i>M</i> roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 <i>M</i> H ₂ SO ₄ and 50 mL of 0.1 c) Neutral c) 0.6022 × 10 ²³	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is: d) amphoteric d) 60.22 × 10 ²³
286 287 288 289	a) 0.1 <i>M</i> . Molar concentration of a san and Always equal to normally b) More than molality of the c) Equal to molality of the d) Less than the molality of the d) 1 kg of NaOH solution corresponds of lead of the distribution of lead	b) 1.0 <i>M</i> solution in water is: dity of solution he solution of the solution of the solution hatains 4 g of NaOH. The app b) 0.1 molar (II) chloride will be formed b) 0.011 tained mixing 50 mL of 0.1 b) Basic 8 mL of H ₂ O is: b) 3.011 × 10 ²³ wo oxygen atoms, four carb	c) 0.2 <i>M</i> roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 <i>M</i> H ₂ SO ₄ and 50 mL of 0.1 c) Neutral c) 0.6022 × 10 ²³	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is: d) amphoteric d) 60.22 × 10 ²³
286 287 288 289	a) 0.1 <i>M</i> Molar concentration of a san and Always equal to normally b) More than molality of the c) Equal to molality of the d) Less than the molality of the d) Less than the molality of 1 kg of NaOH solution conal 1 molar How many moles of lead of HCl? a) 0.333 The nature of mixture obtal Acidic Number of electrons in 1.1 a) 6.02 × 10 ²³ If a compound contains two carbon atoms, the vapour	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution	c) 0.2 <i>M</i> roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 <i>M</i> H ₂ SO ₄ and 50 mL of 0.1 c) Neutral c) 0.6022 × 10 ²³ on atoms and number of hy	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is: d) amphoteric d) 60.22 × 10 ²³ ydrogen atom is double of
286 287 288 289 290	a) 0.1 <i>M</i> Molar concentration of a san and Always equal to normally of the concentration of the concentration of a san and and an analysis and analysis analysis and analysis and analysis and analysis analysis and analysis and analysis analysis analysis and analysis a	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution	c) $0.2 M$ roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 $M H_2SO_4$ and $50 \text{ mL of } 0.1$ c) Neutral c) 0.6022×10^{23} on atoms and number of hy	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is: d) amphoteric d) 60.22 × 10 ²³ ydrogen atom is double of d) 72
286 287 288 289 290	a) 0.1 <i>M</i> . Molar concentration of a san all Always equal to normate b) More than molality of the c) Equal to molality of the d) Less than the molality of the d) Less than the molality of 1 kg of NaOH solution corea) 1 molar . How many moles of lead of HCl? a) 0.333 . The nature of mixture obta a) Acidic . Number of electrons in 1.1 a) 6.02 × 10 ²³ . If a compound contains two carbon atoms, the vapour a) 88 . Molecular weight of oxaliance.	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution	c) $0.2 M$ roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 $M H_2SO_4$ and $50 \text{ mL of } 0.1$ c) Neutral c) 0.6022×10^{23} on atoms and number of hy	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is: d) amphoteric d) 60.22 × 10 ²³ ydrogen atom is double of
286 287 288 289 290	a) 0.1 <i>M</i> Molar concentration of a san and Always equal to normally of the concentration of the concentration of a san and and an analysis and analysis analysis and analysis and analysis and analysis analysis and analysis and analysis analysis analysis and analysis a	b) 1.0 <i>M</i> solution in water is: lity of solution the solution of the solution	c) $0.2 M$ roximate concentration of c) Decinormal from a reaction between 6 c) 0.029 $M H_2SO_4$ and $50 \text{ mL of } 0.1$ c) Neutral c) 0.6022×10^{23} on atoms and number of hy	the solution is: d) About 0.1 N 0.5 g of PbO and 3.2 g of d) 0.044 M NaOH is: d) amphoteric d) 60.22 × 10 ²³ ydrogen atom is double of d) 72

292. The number of hydrogen	atoms present in 25.6 g of s	sucrose($C_{12}H_{22}O_{11}$) which	has a molar mass of 342.3 g
is	12.2.2.	2	22
a) 22×10^{23}	b) 9.91×10^{23}		d) 44×10^{23} H atoms
293. Molarity of liquid HCl wit			
a) 36.5	b) 18.25	c) 32.05	d) 4.65
294. If 20 mL of 0.4 N NaOH s	solution completely neutra	lizes 40 mL of a dibasic ac	cid, the molarity of the acid
solution is:			
a) 0.1 <i>M</i>	b) 0.2 <i>M</i>	c) 0.3 <i>M</i>	d) 0.4 <i>M</i>
295. Dissolving 120 g of urea ((mol.wt.60) in 1000 g of wa	iter gave a solution of dens	ity 1.15 g/mL. The molarity
of the solution is:			
a) 1.78 <i>M</i>	b) 2.00 <i>M</i>	c) 2.05 <i>M</i>	d) 2.22 <i>M</i>
296. Equivalent weight of NH ₃	3 as a base is:		
a) 17	b) 17/3	c) 1.7	d) 17/2
297. KMnO ₄ reacts with oxalic			
$2MnO_4^- + 5C_2O_4^{2-} + 16H^{-1}$	$^{+} \rightarrow 2 \text{Mn}^{2} + 10 \text{CO}_2 + 8 \text{H}_2$	O Here, 20 mL of 0.1 M KM	100_4 is equivalent to
a) 20 mL of 0.5 M $H_2C_2O_4$	<u> </u>	b) 50 mL of 0.1 M H ₂ C ₂ O ₄	
c) 50 mL of 0.1 M $H_2C_2O_4$	<u> </u>	d) 20 mL of 0.1 M H ₂ C ₂ O ₄	
298. To prepare a standard so	lution of a substance, we us		
a) A pipette	b) A burette	c) Measuring flask	d) Measuring cylinder
299. There are two isotopes of	an element with atomic ma		ic mass $z + 2$ and lighter
one has z-1, the abundar			G
a) 66.6%	b) 69.7%	c) 6.67%	d) 33.3%
300. 3 g of an oxide of a metal i	s converted to chloride comp	pletely and it yielded 5 g of c	hloride. The equivalent
weight of the metal is			·
a) 33.25	b) 3.325	c) 12	d) 20
301. The molarity of 20.0 mass	-	$37.1 37.14 \text{ g cm}^{-3} \text{ is}$	w) = 0
a) 2.56 mol dm^{-3}			d) 2.32 mol dm^{-3}
302. How many moles of Fe ²⁺			
inert atmosphere? Assum		ocob of from is treated with	
a) 0.4	b) 0.1	c) 0.2	d) 0.8
303. 100 mL of 0.3 <i>N</i> HCl solu		•	=
is:	don were mixed with 200	1111 01 0.0 1V 112004 30144101	iii The illiar defale hormancy
a) 0.9 <i>N</i>	b) 0.6 N	c) 0.5 <i>N</i>	d) 0.4 <i>N</i>
304. 45 g of acid of mol. wt. 90		,	•
a) 1	b) 2	c) 3	d) 4
305. The equivalent weight of	•	c) 3	uj i
-	$\rightarrow 2 \text{Cr} \text{O}_4^{2-} + 5 \text{H}_2 \text{O} + \text{KI} \text{ is}$		
a) Mol. wt.	b) Mol. wt./3	c) Mol. wt./6	d) Mol. wt./2
a) Wioi. Wt.	b) Moi. wt./ 3	c) Moi. wt./o	u) Moi. wt./ 2
306. The sample with largest r	number of atoms is		
a) $1 g \text{ of } O_2(g)$	b) 1 g of Ni(s)	c) 1 g of B(s)	d) 1 g of $N_2(g)$
307. The equation,	, , ,	, , ,	, 6 2(6)
$2\text{Al}(s)(3/2)O_2(g) \rightarrow \text{Al}_2(g)$	$O_3(s)$ shows that:		
, , , , , , , , , , , , , , , , , , , ,	$h(3/2)$ mole of O_2 to produ	(7/2) mole of Al ₂ O ₂	
	/2) g of O_2 to produce one r		
	/2)litre of O ₂ to produce 1 r		
	h (3/2) mole of O_2 to produ		
308. The number of atoms in 3		2 - 3	
a) 6.02×10^{22}	b) 6.02×10^{23}	c) 12.04×10^{22}	d) 12.04×10^{23}
309. The number of atoms in r	•	,	· , ==··· - · · · •

	a) $n \times \text{Av. no.} \times \text{atomicity}$	b) $\frac{n \times \text{Av. no.}}{\text{atomicity}}$	c) $\frac{\text{Av. no.} \times \text{atomicity}}{n}$	d) None of these
		$(0_4)_3$ would be in 50 g of th		
	a) 0.083 mol	b) 0.952 mol	c) 0.481 mol	d) 0.140 mol
311.	The molecular weight of a	ir will be		
	(the components of air give	v en as $N_2 - 78\%$, $O_2 - 21\%$	$_{0}$, $Ar-09\%$ and $\mathcal{CO}_{2}-0.19$	%)
	a) 18.64	b) 24.968	c) 28.964	d) 29.864
312.	1.520 g of the hydroxide o	f a metal on ignition gave (0.995 g of oxide. The equiva	lent weight of metal is:
	a) 1.520	b) 0.995	c) 19.00	d) 9.00
313.	The hydrated salt Na_2SO_4 value of n will be:	\cdot $n{ m H}_2{ m O}$, undergoes 55% los	ss in weight on heating and	becomes anhydrous. The
	a) 5	b) 3	c) 7	d) 10
314.	When 100 g of ethylene po	olymerizes to polyethylene	e according to the equation	
	$nCH_2 = CH_2 \longrightarrow CH_3 - CH_3$	$H_2 \rightarrow n$.		A 1 } '
	The weight of polyethylen	e produced will be:	4	
		b) 100 g	. 100	X
	a) $\frac{n}{2}$ g	2) 100 B	c) $\frac{100}{n}$ g	d) 100n g
315.	Vapour density of a volatil	le substance is 4 ($CH_4 = 1$)	. Its molecular weight wou	ld be:
	a) 8	b) 2	c) 64	d) 128
316.	Dulong and Petit's law is v	alid only for		
	a) Metals	b) Non-metals	c) Gaseous elements	d) Solid elements
317.	The molarity of pure wate	r is:		
	a) 55.6	b) 50	c) 100	d) 18
318.	A molal solution is one that	at contains one mole of a sc	lute in:	
	a) 1000 g of the solvent			
	b) 1000 mL of the solution	1		
	c) One litre of the solvent	\sim		
	d) 22.4 litre of the solution			
319.		that displaces 22.4 litre air		
	•	b) At. wt.	, .	d) All of these
320.			having 29% by mass of H ₂ S	
	a) 1.45	b) 1.64	c) 1.88	d) 1.22
321.		reights 1.8×10^{-22} g. its atom		D 4 = 4
	·	b) 18	c) 108.36	d) 154
	How many moles of electr		6.022	1
	a) 6.023×10^{23}	b) $\frac{1}{9.108} \times 10^{31}$	c) $\frac{0.023}{0.109} \times 10^{54}$	d) $\frac{1}{9.108 \times 6.023} \times 10^8$
		rater in 488 g BaCl ₂ · $2H_2O$	71200	9.100 X 0.023
J _ J.	a) 2	b) 3	c) 4	d) 5
324.	The number of molecules	•		u, 0
			, 16	, 16
	a) 3.0×10^{23}	b) 6.02×10^{23}	0.02	d) $\frac{16}{3.0} \times 10^{23}$
325.		diammonium hydrogen ph		1) 71 00
226	a) 23.48	b) 46.96	c) 53.78	d) 71.00
326.			the volume (in litres) of 10	⁴ M KMnO ₄ required to
		f 10^{-2} M oxalic acid in acid		1) 00
225	a) 125	b) 1250	c) 200	d) 20
327.	0.003924 have sigr		a) 2	ם <i>ר</i> ג
220	a) 6 The formula mass of Mohr	b) 4	c) 3	d) 7
5 2 8.	equivalent mass of Mohr's		sent in it is oxidised by KMı	104 III acid medium. The

	a) 392	b) 31.6	c) 278	d) 156
329	9. Matter is anything which	occupies $\dots A\dots$ and has \dots	. B	
	Here A and B are			
	•	•	c) Space and mass	d) None of these
330). Which is not a molecular			
	a) $C_6H_{12}O_6$	b) Ca(NO ₃) ₂	, , , ,	d) N ₂ O
331	L. Insulin contains 3.4% sul		=	
	a) 94.117	b) 1884	c) 941.176	d) 976
332	2. Which of the following co			D coo CANA COMP
222		b) 150 cc of N ₂ at STP	c) 50 cc of SO_2 at STP	d) 200 cc of NH ₃ at STP
333	3. Weight of a single molecu		-) (02 × 10=23 -	J) Name a Calendar
22/	a) 3.0×10^{-23} g		c) 6.02×10^{-23} g	
334	1. Air contains $20\%0_2$ by vo			
225	a) 500 cc	b) 1064 cc	c) 212.8 cc	d) 1250 cc
333	5. 1.35 g of pure Ca metal wa a) 40.75	as quantitatively converted b) 50		
226	•	,	c) 60	d) 70
330	5. If 250 mL of a solution co a) 4.0	b) 0.33	c) 0.4	d) 0.1
337	7. The weights of two eleme	,		,
337	a) At. wt.	b) Mol. wt	c) Eq. wt.	d) None of these
338	_			
330	3. One litre $N_2, \frac{7}{8}$ litre O_2 and		ixture under indentical cor	iditions of P and I. The
	amount of gases present i			_
		b) $w_{N_2} = w_{CO} > w_{O_2}$	_	
339	9. Volume of 0.1 <i>M</i> NaOH ne			
	a) 10 mL	b) 15mL	c) 20 mL	d) 30 mL
34(). The mole fraction of solut			D 0 00 6
241	a) 0.009	b) 0.018	c) 0.027	d) 0.036
341	L. If we consider that $\frac{1}{6}$, in p	place of $\frac{1}{12}$, mass of carbon	atom is taken to be the rela	itive atomic mass unit, the
	mass of one mole of a sub	stance will		
	a) Be a function of the mo	lecular mass or the substar	nce	
	b) Remain unchanged			
	c) Increase two fold			
	d) Decrease twice			
342	2. A compound contains 54.	55% carbon, 9.09 % hydrog	gen, 36.36% oxygen. The er	npirical formula of this
	compound is			
	a) C ₃ H ₅ O	b) $C_4H_8O_2$	c) $C_2H_4O_2$	d) C_2H_4O
343	3. The total number of proto			
	a) 1.084×10^{25}	b) 6.022×10^{23}	c) 6.022×10^{22}	d) 18
344	4. The volume of 0.25 $M\ { m H_3}$ l			
	a) 1.32 mL	b) 13.2 mL	c) 26.4 mL	d) 2.0 mL
345	$5.100 \mathrm{mL}$ of $\mathrm{PH_3}$ when deco			
	a) 50 mL increase	b) 500 mL decrease	c) 900 mL decrease	d) None of these
346	6. Density of a 2.05 <i>M</i> soluti			
a	a) 1.14 mol kg ⁻¹	b) 3.28 mol kg ⁻¹	c) 2.28 mol kg ⁻¹	d) 0.44 mol kg ⁻¹
347	7. What weight of sodium hy	=		
0.44	a) 4.0 g	b) 0.04 g	c) 0.4 g	d) 2.0 g
348	3. The amount of anhydrous			D 4 225
2.46	a) 6.625 g	b) 6.0 g	c) 66.25 g	d) 6.225 g
349	θ . Mole fraction of A in wate	er is 0.2. The molality of A in	ı water is:	

	a) 13.8	b) 13.6	c) 14.0	d) 16.0
350	•	•	g H ₂ O to give 20% by weig	ht of solution?
	a) 15 g	b) 1.5 g	c) 11.5 g	d) 31.5 g
351	-	, ,	d 1 atm, is needed to burn o	, ,
	gas (C ₃ H ₈) measured und		,	r r r
	a) 6 L	b) 5 L	c) 10 L	d) 7 L
352		f any gas at STP represents		u) / 2
002	a) Gram molecular weigh		1651	
	b) Gram equivalent weigh			
	c) Gram atomic weight			
	d) Vapour density			
353		eight/volume) acetic acid is	ς.	
555	a) 1 N	b) 10 <i>N</i>	c) 1.7 <i>N</i>	d) 0.83 <i>N</i>
354	. The stoichiometry of the f	•	C) 1.7 IV	u) 0.05 IV
551	$K_2S_2O_8(aq) + 2KI(aq) \rightarrow$			
	a) $2:2$	b) 1:1	c) 1:2	d) 2:1
355		_	ater. The mole fraction of a	
333	a) 0.5	b) 0.75	c) 0.15	d) 0.25
256		•	nixing 20.0 mL of $0.050 M$ l	•
330		mai solution prepared by n	mixing 20.0 mil of 0.050 M i	TCI WILLI 50.0 IIIL 01 0.10 M
	$Ba(OH)_2$?	b) 0 10 M	a) 0 40 M	4) 0 0000 M
257	a) 0.12 <i>M</i>	b) 0.10 <i>M</i>	c) 0.40 M	d) 0.0050 <i>M</i>
35/	-	hich cannot exist in solutio		J) N-11CO J N-Cl
250	a) NaHCO ₃ and NaOH	b) Na ₂ CO ₃ and NaHCO ₃		d) NaHCO ₃ and NaCl
358		% oxygen, the eq. wt. of oxid		1) 52
250	a) 32	b) 40	c) 48	d) 52
359				4.77 g of <i>NaCl</i> is added to a
			= 108, N = 14 and 0 = 16	
0.60	a) 4.37 g	b) 4.87 g	c) 5.97 g	d) 3.87 g
360		olecules in 100 mL of each	of O ₂ , NH ₃ and CO ₂ at STP	are in the order
	a) $CO_2 < O_2 < NH_3$		b) $NH_3 < O_2 < CO_2$	
0.4	c) $NH_3 = CO_2 < O_2$		d) All have same number	
361			which either combines of d	
	a) 8 part oxygen	b) 1 part hydrogen	c) 35.5 part chlorine	d) All of these
362	. Which of the following is			
	a) Eq. wt. of element $=$ $-$	at. wt.		
	Eq. wt. of compound =	alence		
	b) mol	.wt.		
	total charge on o			
	mol. w	rt.		
	c) Eq. wt. of acid = $\frac{1}{\text{basicid}}$	 ty		
	d) Eq. wt. of base = $\frac{\text{mol. v}}{\text{mol. v}}$	vt.		
	$\frac{d}{acidit}$	ty		
363	Which represents per cen	t by volume?		
_	a) wt. of solute $\times 100$			
	a) $\frac{1}{\text{wt. of solution}} \times 100$			
	b) wt. of solute	100		
	volume of solution			
	c) volume of solute ×	100		
	volume of solution			
	d) All of the above			

364. In the aqueous solution of sulphuric acid the mole fraction of water is 0.85. the molality of the solution is :

	a) 8.9 m	b) 0.19 <i>m</i>	c) 9.8 m	d) 15 <i>m</i>
365.	The number of atoms in 0	0.1 mol of a triatomic gas is:		
	$(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$)		
	a) 6.026×10^{23}	b) 1.806×10^{23}	c) 3.600×10^{23}	d) 1.80×10^{23}
366.	Which contains greatest r	=		,
	a) 1 g of 0	iumo er en ong gen uteme.		
	b) 1 g of O ₂			
	c) $1 g \text{ of } O_2$			
		har of atoms		
267	d) All have the same num		lamb=1 The equivalent	ight of motal is
307.	The electrochemical equiv	valent of a metal is ' x ' g cou		
	a) <i>x</i>	b) $x \times 96500$	c) $\frac{x}{96500}$	d) $1.6 \times 10^{-19} \times x$
368.	By Victor mever's method	l, one determine the vapour	, , , , ,	A
	a) Non-volatile solid	b) All substances	c) Volatile liquid	d) Electrolyte
369	The percentage of oxygen	=	ej voiame nquia	ay Electroly to
507.	a) 40	b) 16	c) 8	d) 1
370	•	les S ₂ Cl ₂ and SCl ₂ . The equi	,	
370.		ics 52 Gi2 and 5 Gi2. The equi	valent mass of surpliur mis	Giz is 10. The equivalent
	mass of sulphur S_2Cl_2 is:	h) 16	c) 64	d) 32
271	a) 8	b) 16		,
3/1.		of a metal on ignition gave (
0.70	a) 1.520	b) 0.995	c) 19.00	d) 9.00
3/2.		ight and specific heat of a n		
	a) Dalton's law	b) Avogadro's law	c) Newton's law	d) Dulong Petit's law
373.	-	moles of hydrogen and 1 m	-	
		al volumes under the same	-	
	a) 3:1	b) 1:3	c) 2:1	d) 1:2
374.		rument is 0.01 cm. Taking a	ll precautions, the most po	ssible error in the
	measurement can be			
	a) 0.005 cm	b) 0.01 cm	c) 0.0001 cm	d) 0.1 cm
375.	A metal M forms a compo	und M_2 HPO ₄ . The formula	of the metal sulphate is:	
	a) M_2SO_4	b) <i>M</i> SO ₄	c) $M(SO_4)_2$	d) $M_2(SO_4)_3$
376.	If the molecular weight of	$fNa_2S_2O_3$ and I_2 are M_1 and	l M_2 respectively, then wha	it will be the equivalent
	weight of Na ₂ S ₂ O ₃ and I ₂	in the following reaction?		
	$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} +$	2I ⁻		
	a) M_1, M_2	b) $M_1, M_2/2$	c) $2M_1, M_2$	d) M_1 , $2M_2$
377.	In the final answer of the	(b) M_1 , $M_2/2$ expression $\frac{(29.2-20.2)(1.79\times10^{-2})}{1.37}$	0 ⁵⁾ the number of cignifica	ent figures is
	a) 1	b) 2	c) 3	d) 4
378.		33% of iron by weight. The	-	=
		on atoms (at. Wt. of $Fe = 56$		
	a) 6	b) 1	c) 4	d) 2
379.	In the equation,			
	$H_2S + 2HNO_3 \rightarrow 2H_2O +$	$2NO_2 + S$		
	The equivalent weight of	hydrogen sulphide is		
	a) 18	b) 68	c) 34	d) 17
380.	In a compound C, H and N	are present is $9:1:3.5$ by	weight. If molecular weigh	nt of the compound is 108,
	then the molecular formu	la of the compound is		
	a) $C_2H_6N_2$	b) C ₃ H ₄ N	c) $C_6H_8N_2$	d) $C_9H_{12}N_3$
381.		completely burnt in oxygen	· · · -	· · ·
	combustion (in kJ mol ⁻¹)		,	
	a) -1120	b) -968	c) -896	d) -560
	•	-	-	-

382	. How much of $0.1 M H_2 SO_2$	₄ solution is required to ne	utralize 50 mL of 0.2 <i>M</i> Na	OH solution?
	a) 0.50 mL	b) 50 mL	c) 100 mL	d) 5.0 mL
383	. One litre of CO_2 is passed	over hot coke. The volume	becomes 1.4 litre. The per	cent composition of
	products is:			
	a) 0.6 litre CO			
	b) 0.8 litre CO ₂			
	c) 0.6 litre CO ₂ and 0.8 lit	re CO		
	d) None of the above			
384	. Equivalent weight of oxyg			
	a) 32	b) 8	c) 16	d) 24
385		, one of which contains 65.2	2% and the other 75.5% of	the element. Hence,
	equivalent masses of arse			
	a) 1:2	b) 3:5	c) 13:15	d) 2:1
386				bromine in the bromide of
		f the metal is the same in bo		
	a) ≈ 87	b) ≈ 70	c) ≈ 77	d) ≈ 93
387				The volume of 0.1 N NaOH
		eutralised 10 mL of this solu		7
	a) 40 mL	b) 20 mL	c) 10 mL	d) 4 mL
388	=	on of methane at 25 ⁰ C is 89	90kJ. The heat liberated wh	ien 3.2 g of methane is
	burnt in air is			
	a) 445 kJ	b) 278 kJ	c) -890 kJ	d) 178 kJ
389		carbon pencil weighs 1 mg.	what is the number of carl	oon atoms present in the
	signature?	12.5.7.0		12 20
	a) 6.02×10^{20}	b) 0.502× 10 ²⁰	c) 5.02×10^{23}	d) 5.02×10^{20}
390		1.12 litre hydrogen at nor	mal temperature and press	sure, equivalent weight of
	metal would be:	12.04) 4.0 44.0	D 4.0 44.0
204	a) 12	b) 24	c) 1.2 × 11.2	d) 1.2 ÷ 11.2
391		e is present in 1120 mL of s		
202	a) 10 vol solution	b) 20 vol solution	c) 30 vol solution	d) 32 vol solution
392	=	$CaCl_2$ and $NaCl$ weighing 4		_
		l and quantitatively conver	ted into 0.959 g of cao . Ca	iculate the percentage of
	$CaCl_2$ in the mixture.	Q = 16, C = 12 and $Cl = 3$	פר בי	
	(Atomic mass of $Ca = 40$, a) 31.5%	0 = 16, c = 12 and $ci = 3b) 21.5%$	c) 45.04%	d) 68.48%
202			C) 45.04%	u) 00.40%
393	. 11.2 litre of NH $_3$ at STP ha a) 3.01×10^{21}	b) 3.01 × 10 ²²	c) 3.01×10^{25}	d) 3.01×10^{24}
204		irs contains equal number	-	u) 5.01 × 10
394		en and 0.015 g of nitric oxid		
		oxide and 22.4 L of nitric ox		
	c) 1 millimole of HCL and		oxide	
7	d) 1 mole of H_2O_2 and 1 m	_		
395		sent in a molecule is called:		
373	a) Atomicity	b) Molecularity	c) Poison's ratio	d) None of these
396	. Which has the highest we	•	c) i disdii s fatio	u) None of these
370	a) 1 m ³ of water	b) A normal adult man	c) 10 L of Hg	d) All have same weight
397	•	de contains 35.5 g of chlori	,	,
571	a) 19.5	b) 35.5	c) 39	d) 78.0
398	•	5% oxygen and 30.5% nitro	•	•
570	the compound is	o /o onygon and oo.o /o mult	ogen and to morecular well	5.1. 10 72. The formula of

	a) N ₂ 0	b) NO ₂	c) N ₂ O ₄	d) N ₂ O ₅
399.	The solid like conducting	state of gases with free ele	ctrons is called	
	a) Sol state	b) Gel state	c) Plasma state	d) All of these
400.	A g of a metal displaces V	mL of H_2 at NTP. Equivalent	nt weight E , of metal is:	
	a) $E = \frac{A}{\text{wt.of H}_2 \text{ displaced}} \times$	$\langle E_{ m H}$		
	b) $E = \frac{A \times 1.008 \times 2}{\text{volume of H}_2 \text{ disp}}$	placed × 2		
	$A \times$	1.008		
	c) $E = \frac{A \times \text{volume of H}_2 \text{ disp}}{\text{volume of H}_2 \text{ disp}}$	placed \times 0.0000897		
	d) All of the above	·		(Y
401.		sents the simple ratio of at	oms in a compound is calle	d:
	a) Molecular formula	b) Structure formula	c) Empirical formula	d) Rational formula
402.	How many mole of atoms	are in a mole of CH ₃ COOH		
	a) 2 moles of C atoms, 4 n	noles of H atoms, 2 moles o	f O atoms	
	b) 1 mole of C atom, 2 mo	les of H atoms, 1 mole of 0	atom	
	c) 2 moles of C atom, 3 m	oles of H atoms, 2 moles of	0 atoms	
	d) None of the above		4 (4	Y
403.	If the density of water is 1	$1~{ m g~cm^{-3}}$ then the volume o	ccupied by one molecule of	water is approximately
	a) 18 cm ³	b) 22400 cm ³	c) $6.02 \times 10^{-23} \text{cm}^3$	d) $3.0 \times 10^{-23} \text{cm}^3$
404.	What will be the normalit	y of a solution obtained by	mixing 0.45 <i>N</i> and 0.60 <i>N</i> I	NaOH in the ratio 2:1 by
	volume?			
	a) 0.4 N	b) 0.5 <i>N</i>	c) 1.05 N	d) 0.15 <i>N</i>
405.	For the reaction,		^ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	$X + 2Y \longrightarrow Z$			
	5 Moles of <i>X</i> and 9 moles	of Y will produce	Y	
	a) 5 moles of Z	b) 8 moles of Z	c) 14 moles of Z	d) 4 moles of Z
406.	A student performs a titra	ation with different burette	es and finds titre values of 2	5.2 mL, 25.25 mL, and
	25.0mL. The number of si	gnificant figures in the ave	rage titre value is	
	a) 1	b) 2	c) 3	d) 4
407.		olution and 50 mL of 9.8%	H_2SO_4	
	Solution will form $BaSO_4$ (Ba = 137, Cl = 35.5, S =			
	1			
	$BaCl_2 + H_2SO_4 \rightarrow Ba_2SO$			
	a) 23.3 g	b) 11.65 g	c) 30.6 g	d) None of these
408.			cance Y to form p gram of su	abstance R and q gram of
		can be represented as follo	OWS	
	X + Y = R + S			
			s of the reactants and the p	
	a) $n - m = p - q$			d) p = q
	_	NaOH solution to 10 mL of	f 0.1 N HCl, the resulting so	lution will:
7	a) Turn blue litmus red			
	b) Turn phenolphthalein			
	c) Turn methyl orange re			
	d) Will have no effect on i	_ 		
410.		558.5 g of Fe (at.wt. 55.85)	is:	
	a) Twice that in 60 g carb	on		
	b) 6.022×10^{22}			
	c) Half in 8 g He			
444	d) $558.5 \times 6.023 \times 10^{23}$		1 1	
411.	ii 20% nitrogen is presen	t in a compound, it's minim	ıum molecular weight will l	oe:

	a) 144	b) 28	c) 100	d) 70
412	. The dehydration yield of o	cyclohexanol to cyclohexen	e is 75%. What would be th	ne yield, if 100 g of
	cyclohexanol is dehydrate	ed?		
	a) 61.7 g	b) 16.5 g	c) 6.15 g	d) 615 g
413	. A mixture containing 100	g H ₂ and 100 g O ₂ is ignite	d so that water is formed a	ccording to the reaction,
	$2H_2 + O_2 \rightarrow 2H_2O$; How	much water will be formed	?	
	a) 113 g	b) 50 g	c) 25 g	d) 200 g
414	· The numerical value of $\frac{N}{L}$ (where, Nis the number of r	nolecules in a given sample	${f e}$ of gas and ${m n}$ is the number
	of moles of the gas) is n	,	o i	
	a) 8.314	b) 6.02×10^{23}	c) 0.0821	d) 1.66×10^{-19}
415		•	aCl and 100mL 0.1 <i>M</i> Na ₂ S0	
110	a) 0.2	b) 0.1	c) 0.3	d) 0.075
416	. Number of g-atom of S pro	•	0, 0.0	4) 01074
110	a) 0.5	b) 1	c) 0.2	d) 0.3
417	. 276 g of silver carbonate (•	,	
	a) 3.54 g	b) 3.0 g	c) 1.36 g	d) 2.16 g
418	_	, 0	rogen and 8 g of oxygen is:	
	a) 8/5	b) 0.5	c) 0.25	d) 1.0
419		•		y neutralized by 26.7 mL of
		$_{\rm ge}$ of free ${\rm SO_3}$ in the sampl		, , , , , , , , , , , , , , , , , , ,
	a) 30.6%	b) 40.6%	c) 20.6%	d) 50%
420		-	bbled through a solution of	-
	a) 81 g	b) 40.5 g	c) 20.25 g	d) 162 g
421	. An example of homogened	ous mixture is		, ,
	a) Mixture of soil and wat		b) Mixture of salt and san	d grains
	c) Sugar solution		d) None of the above	
422	. The molarity of a solution	containing 5.3 g of anhydr	rous Na ₂ CO ₃ per litre is :	
	a) 0.01 <i>M</i>	b) 0.05 <i>M</i>	c) 0.02 M	d) 1 <i>M</i>
423	. To what extent must a giv	en solution containing 40 r	mg AgNO ₃ per mL be dilute	d to yield a solution
	containing 16 mg AgNO ₃ I	per mL?		
	a) Each mL must be dilute	ed to 2.5 mL		
	b) To each mL of solution	2.5 mL of water should be	added	
	c) To 1.5 mL of solution 2	.5 mL of water should be a	dded	
	d) To 1.5 mL of solution 1	.5 mL of water should be a	ıdded	
424	. In the reaction,			
	$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_3^{2-}$) ₆ ²⁻		
	Equivalent weight of iodir	ne will be equal to		
	a) Molecular weight		b) 1/2 of molecular weigh	nt
	c) 1/4 of molecular weigh	nt	d) Twice of molecular we	ight
425	. Mol. $wt = vapour density$	7×2 , is valid for:		
7	a) metals	b) non-metals	c) Solids	d) Gases
426	. The volume of oxygen req	uired for complete oxidation	on of 2.0 litre methane at N	TP is:
~	a) 12.25 litre	b) 4 litre	c) 1 litre	d) 3 litre
427	. One mole of a mixture of (CO and CO_2 requires exactly	y 20 g of NaOH in solution i	for complete conversion of
	all the CO ₂ into Na ₂ CO ₃ . H	low much NaOH would it re	equire for conversion into l	Na_2CO_3 , if the mixture (one
	mole) is completely oxidis	-		
	a) 60 g	b) 80 g	c) 40 g	d) 20 g
428	. The equivalent weight of		ction is,	
	$H_3PO_4 + Ca(OH)_2 \rightarrow CaH$			
	a) 98	b) 49	c) 32.66	d) 40

429. 1.0 g of hydrogen contain atoms in 1 g of He is:	ns 6×10^{23} atoms. The atom	nic weight of helium is 4. If	follows that the number of
a) $1/4 \times 6 \times 10^{23}$	b) 4 × 6 × 10 ²³	c) 6×10^{23}	d) 12×10^{23}
		C) 6 X 10	u) 12 × 10
430. The hardness of water is		a) Mal/litus	d) Name of the con-
a) ppm	b) g/litre	c) Mol/litre	d) None of these
431. An element forms an oxi		0% of the oxide by weight,	, the equivalent weight of
the given element will be		-) (0	J) 120
a) 32	b) 40	c) 60	d) 128
432. The ratio of amounts of I	1 ₂ S needed to precipitate al	if the metals ions from 100	mL of 1 M AgNO ₃ and 100
mL of 1 M CuSO ₄ is:	1.) 2 4	.) 7	Discourse
a) 1:2	b) 2 : 1	c) Zero	d) Infinite
433. 5.6 litre of oxygen at NTl	=	a) 1 /4 ala	1) 1 /051-
a) 1 mole	b) 1/2 mole	c) 1/4 mole	d) 1/8 mole
434. A solution of HCl contain	ning 0.03659 g/mL and and	other solution of acetic aci	a containing 0.04509 g/mL,
then:	1.) M ia mana	Dull be seen M	d) None of these
a) N_{HCl} is more	b) $N_{\rm CH_3COOH}$ is more		d) None of these
435. The equivalent weight of			DAY Col
a) Acidity	b) Basicity	c) pH	d) None of these
436. For the reaction, Fe_2O_3	$+300 \rightarrow 2 \text{ Fe} + 300_2 \text{ the vol}$	olume of carbon monoxide	required to reduce one
mole of ferric oxide is	12.44.2.1.2	3	2
a) 22.4 dm ³	b) 44.8 dm ³	c) 67.2 dm ³	d) 11.2 dm ³
437. 224 mL of a triatomic ga			
a) 8.30×10^{-23} g	,	c) 5.53×10^{-23} g	d) 6.24×10^{-23} g
438. The empirical formula of	a compound isCH ₂ . One mo	ole of this compound has a	mass of 56 g. its molecular
formula is		Y	
a) C ₃ H ₆	b) C ₄ H ₈	c) CH ₂	d) C_2H_2
439. Which has maximum nu			
a) 2.0 mol of S_8	b) 6.0 mol of S	c) $5.5 \text{ mol of } SO_2$	d) 4.48 L of CO ₂ at 5TP
440. Which represents per ce	nt by weight?		
a) $\frac{\text{wt. of solute}}{\text{wt. of solute}} \times 100$	A		
wt. of solution			
b) wt. of solute	100		
volume of solution volume of solute	X		
c) $\frac{\text{volume of solution}}{\text{volume of solution}} \times$	100		
d) None of the above	7		
441. How many g are present	in one mole of MgSO ₄ ?		
a) 120.4	b) 130.2	c) 12.04	d) 360
442. A solution contains one i	•	•	
alcohol?			
a) 1/4, 4/1	b) 4/1, 1/4	c) 4/5, 1/5	d) 1/5, 4/5
443. Approximate atomic wei			
of element would be:	0		
a) 26.89	b) 8.9	c) 17.8	d) 26.7
444. 0.75 moles of a solid A_4 a		•	•
	only one compound. It is for		
		_	
	ts of the vessel exhibit a pre	2 cyuai to – oi tile oi ig	mai pressure. The formula
of the product will be	13.4.0) 4 0	1) 40
a) A_2O_3	b) $A_3 O_8$	c) $A_3 O_4$	d) AO_2
445. 25.3 g solution carbonate	e, Na ₂ CO ₃ was dissolved in _'	enough water to make 250	mL of solution. If sodium

	carbonate dissociates complet	tely, molar concentratio	on of Na ⁺ and carbonate io	ns are respectively.
	(mol. mass of $Na_2CO_3 = 106$ §	g mol ⁻¹)		
	a) 0.9555 <i>M</i> and 1.910 <i>M</i>			
	b) 1.910 <i>M</i> and 0.955 <i>M</i>			
	c) 1.90 <i>M</i> and 1.1910 <i>M</i>			
	d) 0.477 <i>M</i> and 0.477 <i>M</i>			
446.	NO reacts with O_2 to form No_2 .	. When $10 \text{ g of } NO_2$ is for	ormed during the reaction,	the mass of O_2 consumed
	is			
	a) 1.90 g b) 5	5.0 g	c) 3.48 g	d) 13.9 g
447.	Two solutions of a substance	(non-electrolyte) are n	mixed in the following ma	nner. 480 mL of 1.5 <i>M</i> of I
	solution with 520 mL of 1.2 M	of II solution. The mola	arity of final solution is:	
	a) 1.20 <i>M</i> b) 1	1.50 <i>M</i>	c) 1.344 <i>M</i>	d) 2.70 <i>M</i>
448.	A vogadro's number is the num	nber of molecules prese	ent in:	
	a) 22.4 litre of a gas of NTP			A 1 }
	b) 1 mole of a substance			
	c) G mol. wt. of a substance			
	d) All of the above		. C 4	Y
449.	Camphor is often used in mole	ecular mass determinati	ion because	
	a) It is readily available		b) It has a very high cryos	copic constant
	c) It is volatile		d) It is solvent for organic	substances
450.	The molality of $1M$ solution of	f NaCl (specific gravity	1.0585) g/mL) is:	
	a) 1.0585 b) 1	1.0	c) 0.10	d) 0.0585
451.	An organic compound contain	s 49.3% carbon, 6.84%	hydrogen and its vapour of	lensity is 73. Molecular
	formula of the compound is			
			c) $C_6H_{10}O_4$	d) $C_3H_{10}O_2$
452.	How many g of glucose be diss	solved to make one litre	e solution of 10% (wt./vol.)) glucose?
			c) 100 g	d) 1.8 g
453.	How many atoms are contained		?	
	a) $30 \times 6.02 \times 10^{23}$ atom/mol	l AAA		
	b) $5 \times 6.02 \times 10^{23}$ atom/mol			
	c) $3 \times 6.02 \times 10^{23}$ atom/mol			
	d) None of the above			
454.	The normality of 0.3 <i>M</i> phosph			
	a) 0.1 b) 0		c) 0.3	d) 0.6
455.	0.84 g of a metal carbonate rea			
	,	•	c) 42 g	d) 38 g
456.	If 1/6 in place of 1/12 mass of	of carbon atom is taken	to be the relative atomic	mass unit, the mass of one
	mole of a substance will:			
	a) Decrease twice			
	b) Increases two folds			
1	c) Remains unchanged			
455	d) Be a function of the molecul			
457.	A gas is found to have formula			D 6 5
450	a) 3.0 b) 3		c) 5.0	d) 6.5
458.	2 g of metal carbonate is neutr	ralised completely by 10	00mL of 0.1 (N) HCl. The e	quivalent weight of metal
	carbonate is	100	-) 150	1) 200
450	a) 50 b) 1		c) 150	d) 200
459.	The smallest matter particle the			D.M C.1
460			c) Both (a) and (b)	d) None of these
46U.	The equivalent weight of a soli	iu eiement is found to b	ie 9. ii the specific heat of t	nis eiement is

	$1.05 \text{ Jg}^{-1}\text{K}^{-1}$, then its ato	mic weight is		
	a) 17	b) 21	c) 25	d) 27
461.	The largest number of mo	lecules are in:		
	a) 36 g H ₂ 0	b) 28 g CO	c) 46 g C ₂ H ₅ OH	d) $54 \text{ g N}_2 \text{O}_5$
462.	Vapour density of a metal	chloride is 66. Its oxide cor	ntains 53% metal. The atom	mic weight of the metal is:
	a) 21	b) 54	c) 27.06	d) 2.706
463.	The number of Cl ⁻ and Ca	1^{2+} ions in 222 g CaCl ₂ are :		
	a) 4 N, 2 N	b) 2 N, 4 N	c) 1 N, 2 N	d) 2 N, 1 N
464.	How many gram of KCL w	ould have to be dissolved in	$160 \mathrm{g}\mathrm{H}_2\mathrm{O}$ to give 40% by	weight of solution?
	a) 40 g	b) 20 g	c) 15 g	d) 10 g
465.	The units J Pa^{-1} is equiva	lent to		
	a) m^3	b) <i>cm</i> ³	c) dm^3	d) None of these
466.	If 250 mL of a solution co	ntains $24.5 \text{ g H}_2\text{SO}_4$, the mo	larity and normality respe	ctively are:
	a) 1 <i>M</i> , 2 <i>N</i>	b) 1 <i>M</i> , 0.5 <i>N</i>	c) 0.5 <i>M</i> , 1 <i>N</i>	d) 2 <i>M</i> , 1 <i>N</i>
467.	Equivalent weight of biva	lent metal is 32.7. Molecula	r weight of its chloride is :	
	a) 68.2	b) 103.7	c) 136.4	d) 166.3
468.	Insulin contains 3.4% Sul	phur. The minimum mol. we		Y
	a) 941.176	b) 944	c) 945.27	d) None of these
469.		esium phosphate, $Mg_3(PO_4)$		
	a) 0.02	b) 3.125×10^{-2}	c) 1.25×10^{-2}	d) 2.5×10^{-2}
470.	The gram molecular weig	ht of hydrogen peroxide is 3		
	a) g	b) mole	c) g mol ⁻¹	d) mol g
471.		g has maximum number of	- V Y	
	a) 2 g of carbon monoxide	e	b) 2 g of carbon dioxide	
	c) 2 g of sulphur dioxide		d) 2 g of water	
472.		gNO_3 and 0.2 M NaCl are mi	ixed. The concentration of	NO_3^- ions in the mixture
	will be:	1200511	2001	D 0 4 7 14
450	a) 0.1 <i>M</i>	b) 0.05 <i>M</i>	c) 0.2 <i>M</i>	d) 0,15 <i>M</i>
4/3.	=	lorine is 35.5 and the atom	= =	ne equivalent mass of
	= =	ence, formula of copper chlo		D.M Cil
171	a) CuCl	b) Cu ₂ Cl	c) CuCl ₂	d) None of these
4/4.		rium metal, Y and dilute hyd	irochioric acid produces <i>H</i>	$_{2}(g)$ and Y° icons. The
		ed to hydrogen produces is b) 1:3	a) 2 . 1	d) 2 . 2
475	a) 1:2	,	c) 2:1	d) 2 : 3 to give a compound having
4/3.	75.8% of X . The formula of	, ,	iic weight –10) combine	to give a compound naving
	a) <i>XY</i>	b) <i>X</i> ₂ <i>Y</i>	c) X_2Y_2	d) X_2Y_3
476		s the smallest number of mo		u) 1213
470.	a) 0.1 mole of CO_2 gas	s the smallest humber of mo	b) 11.2 L of CO ₂ gas at STI	D
	c) 22 g of CO ₂ gas		d) 22.4×10^3 mL of CO_2 g	
477		on with Zn in presence of N		
17/	absorbing 1 mole of electronic	-	don solution produces ivi	13. Mass of Soutain include
	a) 7.750	b) 10.625	c) 8.000	d) 9.875
478.	The percentage of nitroge	-	c) 0.000	u) 7107 0
	a) 38.4	b) 46.6	c) 59.1	d) 61.3
479.	•	ution contains 0.1 milli mol		,
/ •	a) 100 mL	b) 125 mL	c) 500 mL	d) 0.125 mL
480.	•	an element can be calculate		,
-	a) 6.4 divided by specific			
	b) Atomic weight divided			
	_	-		

	, ,	ed by atomicity, all divided	by the valence	
	d) None of the above			
481.	4 g-atom of Ag contains:			
	a) 108 g	b) 4 g	c) 432 g	d) None of these
482.	The correctly reported an	swer of the addition of 4.52	23, 2.3 and 6.24 will have si	gnificant figures
	a) Two	b) Three	c) Four	d) Five
483.	Weight of H_2O in 1000 kg	$CuSO_4 \cdot 5H_2O$ is:		
	a) 360.5 kg	b) 36.05 kg	c) 3605 kg	d) 3.605 g
1 84.	3.0 molal NaOH solution h	nas a density of 1.110 g/mL	. The molarity of the solution	on is:
	a) 2.9732	b) 3.05	c) 3.64	d) 3.0504
485.	An oxide of a metal (M) co	ontains 40% by mass of oxy	gen. Metal (M) has atomic	mass of 24. The empirical
	formula of the oxide is:			
	a) M_2 0	b) <i>M</i> 0	c) M_2O_3	d) M_3O_4
1 86.	The vapour density of a ga	as is given by:		
	a) $VD = \text{mol. wt./2}$			
	b) VD = $\frac{\text{wt. of } N \text{ molecules of } N}{\text{wt. of } N \text{ molecules of } N}$	gas		V ·
		fH ₂	CA	
	c) VD = $\frac{\text{wt. of 1 mole of gas}}{\text{wt. of 1 mole of H}_2}$		10	
	d) All of the above			
1 87.	_	reaction $3HClO_3 \rightarrow HClO_4$	$+ Cl_2 + 2O_2 + H_2O_1$ the equ	ivalent mass of the
	oxidising agent is (molar			
	a) 16.89	b) 32.22	c) 84.45	d) 28.15
488.	=	tained in a mole of acetic ac	rid?	,
	a) $8 \times 6.02 \times 10^{23}$ atom/s			
	b) $4 \times 6.02 \times 10^{23}$ atom/s	`	C)'	
	c) $6 \times 6.02 \times 10^{23}$ atom/s		>	
	d) None of the above			
489.	Specific gravity of solution	ı is given by:		
	a) Weight of 1 mL solution	3		
	b) Mole present in 1 mL s			
	c) Volume of 1 g solution			
	d) None of the above	(X)		
490.		nent is always a whole num	ber?	
		b) Atomic weight	c) Atomic number	d) Equivalent weight
491.	,	ea containing 18 g urea in 1	_	
.,		rea is 60, then the molality		action of 1100 2 g/ cm . m
	a) 0.2	b) 0.192	c) 0.064	d) 1.2
192.	-	f two isotopes of atomic we	•	•
	average atomic weight of	-		2 0 / 0 1 cope cervery 1 1 inc
	a) 75.5	b) 85.5	c) 40.0	d) 86.0
		nts a solution of molarity eq		u) 00.0
	a) 1	b) 2	c) 3	d) None of these
	7	-	-	aj ivone of these
		tion $\frac{2.568 \times 5.8}{4.168}$ in significant f		
	a) 3.579	b) 3.570	c) 3.57	d) 3.6
495.		e with 16 g of oxygen. On th	ne basis of this information	, which of the followings is
	a correct statement?			
		ave an atomic weight of 7 ar		
	=	ave an atomic weight of 14	=	0
	<u>-</u>	ave an atomic weight of 7 ar	=	
	d) The element X could ha	ave an atomic weight of 14 a	and its oxide is XO_2	

496. Consider the following data:

Element	Atomic
	weight
A	12
В	35.5

A and B combine to form a new substance X. If four moles of B combine with one mole of A to give one mole of X, then the weight of ne mole of X is:

- a) 47.5 g
- b) 83 g

- c) 154 g
- d) 166 g

497. One mole of P₄ molecules contain:

- a) 1 molecule
- b) 4 molecules
- c) $\frac{1}{4} \times 6.022 \times 10^{23}$ atoms
- d) 24.088×10^{23} atoms

498. Molecular weight of NaCl is 58.5. A solution of NaCl containing 5.85 g NaCl per litre is:

- a) 1 molar
- b) 0.1 molar
- c) 2 molar
- d) 0.585 molar

499. The solution having lowest molar concentration is:

- a) 1.0 N HCl
- b) 0.4 N H₂SO₄
- c) 0.1 N Na₂CO₂
- d) None of these

500. The value of amu is which of the following?

- a) 1.57×10^{-24} kg
- b) 1.66×10^{-24} kg
- c) 1.99×10^{-23} kg
- d) 1.66×10^{-27} kg

501. How many g are present in one mole of Ag?

- a) 107.9
- b) 108.6
- c) 10.29
- d) None of these

502. One mole of chlorine combines with certain weight of metal giving 111 g of its chloride. The same amount of metal can displace 2 g of hydrogen from an acid. The atomic weight of the metal is:

a) 40

b) 20

c) 80

d) None of these

503. Equivalent weight of anhydrous oxalic acid is:

a) 45

b) 63

c) 126

d) 90

504. Molarity is expressed as:

- a) Litre mol^{-1}
- b) Mol litre⁻¹
- c) Mol kg⁻¹
- d) G litre⁻¹

505. H₃PO₄ is a tribasic acid and one of its salts is NaH₂PO₄. What volume of 1 *M* NaOH should be added to 12 g NaH₂PO₄ (mol. wt. 120) to exactly convert it into Na₃PO₄ ?

- a) 100 mL
- b) 300 mL
- c) 200 mL
- d) 80 mL

506. How many atoms are contained in one mole of sucrose $(C_{12}H_{22}O_{11})$?

- a) $45 \times 6.02 \times 10^{23}$ atom/mol
- b) $20 \times 6.02 \times 10^{23}$ atom/mol
- c) $5 \times 6.02 \times 10^{23}$ atom/mol
- d) None of the above

507. What is the volume (in litres) of oxygen required at STP to completely convert 1.5 moles of sulphur into sulphur dioxide?

- a) 11.2
- b) 22.4

c) 33.6

d) 44.8

508. What is the number of moles of $Fe(OH)_3(s)$ that can be produced by allowing 1 mole of Fe_2S_3 , 2 moles of H_2O and 3 moles of O_2 to react as

 $2\text{Fe}_2\text{S}_3 + 6\text{H}_2\text{O} + 3\text{O}_2 \rightarrow 4\text{Fe}(\text{OH})_3 + 6\text{S}?$

- a) 1 mol
- b) 1.84 mol
- c) 1.34 mol
- d) 1.29 mol

509. The number of molecules of CO_2 present in 44 g of CO_2 is

- a) 6.0×10^{23}
- $h) 2 \times 10^{23}$
- c) 12×10^{23}
- d) 3×10^{10}

510. 1 L oxygen gas at STP will weigh

- a) 1.43_g
- b) 2.24
- c) 11.2 g
- d) 22.4 g

511. Which has maximum number of atoms?

- a) 24 g of C
- b) 56 g of Fe
- c) 26 g of Al
- d) 108 g of Ag

	multiplication and divis	-	of answer must be same as	that in the quantity with .
a)	Maximum	b) 3	c) 2	d) Minimum
-			s. Which of the following ch	
	Equivalent of solute	•	o de la companya de	
_	Moles of solute			
-	Volume of 1 g solution			
_	None of the above			
-		xvgen in one litre of air con	itaining 21% oxygen by vol	ume, in standard
	nditions, is	70	0 11 10 1	
	0.186 mol	b) 0.21 mol	c) 2.10 mol	d) 0.0093 mol
_		NTP occupies 22.4 L. This		
	Law of gaseous volume	-	b) Avogadro's hypothesis	A Y
_	Berzelius hypothesis		d) Dalton's atomic theory	
-	· ·	ight of SnCl ₂ in the following		
	$Cl_2 + Cl_2 \rightarrow SnCl_4$?	-8Z		
a)		b) 45	c) 60	d) 30
-		,	ic weight of elements is bas	•
a)	-	b) C ¹²	c) 0^{16}	d) S ³²
•		,	2 g of phenol into 2, 4, 6-tr	,
	20.44 g	b) 6.00 g	c) 4.00 g	d) 10.22 g
-	uivalent weight of an ac	, ,		.,
_	Depends on the reactio			
-	-	r of oxygen atoms present		
	Is always constant			
=	None of the above		> Y	
-		onds to which of the follow	ring?	
	1 molecule of O_2		0.	
_	1×10^{-23} g mole of 0_2			
-	An 0^{2-} ion	1		
_	1 mole of O_2			
-	<u>-</u>	in 4.25 g of ammonia is app	proximately:	
	3.5×10^{23}	b) 1.5×10^{23}	c) 0.5×10^{23}	d) 2.5×10^{23}
_		substance at NTP weight W	,	u, 210 / 10
		Y		$W \times 1$
a)	$(W/V) \times 22400$	b) $V/W = 22400$	c) $(W - V) \times 22400$	d) $\frac{W \times 1}{V \times 22400}$
523. Soc	dium bicarbonate on he	eating decomposes to form	sodium carbonate, CO ₂ and	l water. If 0.2 moles of
SOC	dium bicarbonate is con	npletely decomposed, how	many moles of sodium car	bonate is formed?
a)	0.1	b) 0.2	c) 0.05	d) 0.025
524. Th	e reaction of calcium w	ith water is represented by	the equation,	
Ca	$+2H_2O \rightarrow Ca(OH)_2 +$	H_2		
Wł	hat volume of H_2 , at STF	would be liberated when	8 g of calcium completely r	eacts with water?
	$4480 \ cm^3$	b) 2240 <i>cm</i> ³	c) 1120 <i>cm</i> ³	d) $0.4 cm^3$
525. Th	e isotopic abundance of	f C-12 and C-14 is 98% and	2% respectively. What wo	uld be the number of C-14
iso	otope in 12 g carbon san	nple?		
a)	1.032×10^{22}	b) 3.01×10^{23}	c) 5.88×10^{23}	d) 6.02×10^{23}

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

						: ANSV	V	ER K	ŒΥ	·					
1)	d	2)	С	3)	d	4)	a	177)	d	178)	a	179)	a	180)	С
5)	d	6)	a	7)	a	=	d	181)	d	182)	a	183)	c	184)	c
9)	c	10)	a	11)	a	12)	d	185)	d	186)	d	187)	d	188)	c
13)	b	14)	c	15)	c	16)	a	189)	b	190)	a	191)	c	192)	d
17)	d	18)	d	19)	b	20)	b	193)	d	194)	b	195)	a	196)	c
21)	c	22)	a	23)	c	24)	C	197)	d	198)	d	199)	c	200)	d
25)	c	26)	b	27)	d	28)	C	201)	a	202)	c	203)	d	204)	d
29)	a	30)	b	31)	d	32)	d	205)	c	206)	a	207)	C	208)	a
33)		34)	C	35)	b	,	d	,	b	210)	a		b	212)	a
37)		38)	d	39)	d	,	a	213)	d	214)	C		b	216)	a
41)		42)	d	43)	d	,	C	217)	b	218)	d		C	220)	b
45)		46)	C	47)	d	,	C	221)	С	222)	d	,	a	224)	d
49)		50)	С	51)	d	,	b	225)	d	226)	a	•	a	228)	b
53)		54)	a	55) 5 0)	c	,	C	229)	b	230)	c	,	С	232)	a
57)		58)	a	59)	d	,	a	233)	b	234)	d	-	a	236)	C
61)		62)	b	63)	b	,	a		b	238)	a	•	d	240)	d
65)		66)	b h	67)	d h	•	b ե		b	,	d	,	C	244)	a
69)		70)	b	71)	b	•	b	245)	b	246)	b	,	a	248)	b
73)		74)	C h	75) 70)	c		C	249)	b	250) 254)	c	,	a	252) 256)	d
77) 81)		78) 82)	b	79) 83)	c		d c	253) 257)	d d	254) 258)	a	255) 259)	d	256) 260)	d
85)		86)	a d	87)	a		c	261)	d	262)	a b		a a	264)	c a
89)		90)	b	91)	c d		d	265)	a	266)	d	267)	a b	268)	a b
93)		94)	d	95)	a	2.53	a	0.00	c	270)	a	271)	b	272)	c
97)		98)	c	99)	b	400	a	273)	a	274)	a	271) 275)	b	276)	c
101		102)	b	103)	a	40.4	a	277)	d	278)	b	0=0	c	280)	d
105	-	106)	d	107)	a	400	c	281)	d	282)	a	-	b	284)	d
109	•	110)	c	111)	b		a		b	286)	b	287)	c	288)	a
113	•	114)	b	115)	b	-		289)	a	290)	b	-	b	292)	b
117	-	118)	c	119)	b	-		293)	С	294)	a		c	296)	a
121	-	122)	d	123)	a	-		297)	b	298)	С	-	a	300)	a
125	5) b 4	126)	b	127)	d	128)	c	301)	d	302)	b	303)	c	304)	b
129	9) c	130)	b	131)	b	132)	c	305)	c	306)	c	307)	d	308)	c
133	3) c	134)	a	135)	d	136)	c	309)	a	310)	d	311)	c	312)	d
137	7) c	138)	a	139)	a	140)	d	313)	d	314)	b	315)	c	316)	d
141	l) d	142)	d	143)	b	144)	b	317)	a	318)	a	319)	a	320)	d
145	5) c	146)	b	147)	d	148)	d	321)	c	322)	d	323)	C	324)	b
149	9) c	150)	c	151)	a	152)	d	325)	c	326)	d	327)	b	328)	a
15 3	-	154)	b	155)	d	-		329)	c	330)	b	331)	c	332)	d
157	-	158)	a	159)	a	-		333)	a	334)	d	,	a	336)	b
161	-	162)	d	163)	c	-		337)	c	338)	c	,	C	340)	b
165	-	166)	b	167)	a	-		341)	b	342)	d	,	a	344)	d
169	-	170)	c	171)	b	-		345)	a	346)	C	,	C	348)	a
17 3	3) a	174)	С	175)	С	176)	d	349)	a	350)	a	351)	b	352)	d

353)	c	354)	c	355) d	356)	b
357)	a	358)	b	359) b	360)	d
361)	d	362)	f	363) b	364)	c
365)	b	366)	d	367) b	368)	c
369)	a	370)	d	371) d	372)	d
373)	С	374)	b	375) a	376)	b
377)	b	378)	c	379) d	380)	c
381)	c	382)	b	383) c	384)	b
385)	b	386)			388)	d
_		=	a	=		
389)	b a	390)	a	391) a	392)	C
393)	d	394)	a	395) a	396)	a
397)	C	398)	С	399) c	400)	d
401)	C	402)	a	403) d	404)	b
405)	d	406)	c	407) b	408)	b
409)	b	410)	a	411) d	412)	a
413)	a	414)	b	415) d	416)	a
417)	d	418)	b	419) c	420)	b
421)	С	422)	b	423) a	424)	b
425)	d	426)	b	427) b	428)	b
-		-		=	-	
429)	a	430)	a	431) a	432)	a
433)	С	434)	a	435) b	436)	C
437)	C	438)	b	439) c	440)	a
441)	a	442)	c	443) d	444)	c
445)	b	446)	c	447) c	448)	d
449)	c	450)	b	451) c	452)	C
453)	b	454)	d	455) c	456)	c
457)	c	458)	d	459) a	460)	
461)		462)	c	-	464)	- 11
_	a	-		-		
465)	a	466)	a	467) c	468)	a
469)	b	470)	c	471) d	472)	b
473)	a	474)	d	475) d	-	a
477)	b	478)	b	479) d	480)	a
481)	c	482)	b	483) a	484)	a
485)	b	486)	d	487) a	488)	a
489)	a	490)	С	-	492)	b
493)	a	494)	d		496)	c
497)	d	498)	b	, , , , ,	500)	d
_				-	=	
501)	a	502)	a	503) a	504)	b
505)	C	506)	a	507) c	508)	c
509)	a	510)	a	511) a	512)	d
513)	d	514)	d	515) b	516)	a
517)	b	518)	d	519) a	520)	d
521)	b	522)	a	523) a	524)	a
525)	a	-		-		
,						

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(d)**

Wt. of 0 in Fe_2O_3 and FeO is 48:16

2 **(c**

Equivalent weight of bivalent metal=37.2

 \therefore Atomic weight of metal=37.2 \times 2 = 74.4

∴ Formula of chloride=*M*Cl₂

Hence, molecular weight of chloride

$$MCl_2 = 74.4 + 2 \times 35.5$$

= 145.4

3 **(d)**

: 0.0833 mole of carbohydrate has hydrogen=1 g

∴ 1 mole of carbohydrate has hydrogen

$$=\frac{1}{0.0833}=12 \text{ g}$$

Given, empirical formula of carbohydrate (CH_2O) has 2 g of hydrogen.

$$\therefore \qquad \qquad n = \frac{12}{2} = 6$$

: Molecular formula of carbohydrate is

$$(CH_2O)_n = (CH_2O)_6 = C_6H_{12}O_6$$

4 (a)

Eq. wt. $\operatorname{Zn}(OH)_2 = \frac{\text{mol.wt.}}{\text{acidity}} = \frac{M}{1}$;

Acidity of $Zn(OH)_2 = 1$; only one OH is replaced.

5 (d

$$M. f. = \frac{5.85/58.5}{\frac{5.85}{58.5} + \frac{90}{18}} = 0.0196$$

6 **(a**)

$$2Ag_2CO_3 \xrightarrow{\Delta} 4Ag + 2CO_2 + O_2$$

$$2 \times 276 g \qquad 4 \times 108 g (s)$$

 \therefore 2 × 276 g of Ag₂CO₃ gives=4 × 108 g Ag

$$\therefore 1 \text{ g of Ag}_2\text{CO}_3 \text{ gives} = \frac{4 \times 108}{2 \times 276}$$

∴ 276 g of Ag₂CO₃ gives=
$$\frac{4 \times 108 \times 2.76}{2 \times 276}$$

=2.16 g

7 (a)

For phenolphthalein:

$$\frac{1}{2}$$
 Meq. of Na₂CO₃ = 2.5 × 0.1 × 2 = 0.5

For methyl orange:

$$\frac{1}{2}$$
 Meq. of Na₂CO₃ + Meq. of NaHCO₃

$$= 2.5 \times 0.2 \times 2 = 1.0$$

 \div Meq. of NaHCO $_3=0.5$ and Meq. of Na $_2$ CO $_3$

$$= 1.0$$

$$\therefore \frac{w}{84} \times 1000 = 0.5$$

$$\frac{w}{106/2} \times 1000 =$$

1

 $\therefore w = 0.042 \text{ g in } 10 \text{ mL}$

 $\therefore w = 0.053 \text{ g in } 10$

mL

∴w = 4.2 g in 1 litre

= 5.3 g in 1

litre

8 **(d)**

∵ 18 g water has *N* molecules

∴1 g water has $\frac{N}{18}$ molecules

or $\frac{N}{18}$ molecules occupy volume = $1 \text{cm}^3 \left(d = \frac{m}{V} \right)$

∴ 1molecule occupies volume

$$=\frac{18}{N}=\frac{18}{6.023\times10^{23}}\approx 3\times10^{-23} \text{ cm}^3$$

9 **(c)**

$$m = \frac{wRT}{PV} = \frac{510 \times 10^{-3} \times 0.0821 \times 273}{1 \times 67.2/1000} = 170$$

10 **(a)**

Suppose the volume of 6 M HCL required to obtain 1 L of 3 M

HCl = x L

 \therefore volume of 2 N HCl required = (1 - x) L

Applying the molarity equation

$$M_1V_1 + M_2V_2 = M_3V_3$$

6M HCl + 2 MHCl 3M HCl

$$6x + 2(1-x) = 3 \times 1$$

4x = 1

$$x = 0.25 L$$

Hence, volume of 6M HCl required = 0.25 L and volume of 2M HCl required = 0.75 L

11 (a)

 $N = M \times \text{acidity} = 1 \times 2 = 2 \text{ (Na}_2\text{CO}_3 \text{ is diacidic base)}$

12 **(d)**

1 mole of H_2SO_4 gives = 3 moles of ions or $3 \times 6.023 \times 10^{23}$ ions

 \therefore 0.1 mole of H₂SO₄ will give = 0.1 × 3 × 6.023 × 10²³ ions

$$= 1.8 \times 10^{23} ions$$

13 **(b)**

Eq. of element = Eq. of oxygen or $\frac{W_1}{E_1} = \frac{W_2 - W_1}{8}$

14 **(c)**

1 mole of $(NH_4)_3PO_4$ contains 12 moles of hydrogen atoms.

∴ 12 moles of hydrogen atoms ≡ 1 mole of

 $(NH_4)_3PO_4$

- ∴ 1 moles of hydrogen atom = $\frac{1}{12}$ mole of $(NH_4)_3PO_4$
- ∴ 6.36 moles of hydrogen atom = $\frac{1}{12}$ × 6.36 = $\frac{6.36}{12}$ mole of (NH₄)₃PO₄

1 mole of $(NH_4)_3PO_4 = 4$ moles of oxygen So, $\frac{6.36}{12}$ mole of $(NH_4)_3PO_4 = \frac{4 \times 6.36}{12} = 2.12$ mol

15 **(c)**

Meq. of HCl = Meq. of NaOH;
Thus,
$$\frac{1}{20} \times V = 20 \times \frac{1}{10}$$

 $V = 40 \text{ mJ}$

16 **(a)**

Molecular weight = Eq. wt. \times valence factor

17 **(d)**

Smallest and largest amount of energy respectively eV and L-atm.

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$$

 $1 \text{ L} - \text{atm} = 101.325 \text{ J}$

18 **(d)**

: 63.8 g of Cu has atoms =
$$6.023 \times 10^{23}$$

:
$$1g ext{ of Cu has} = \frac{6.023 \times 10^{23}}{63.5g}$$

∴ 0.635
$$g$$
 of Cu has = $\frac{6.023 \times 10^{23}}{63.5} \times 0.635$
= 6.023×10^{21} atoms

19 **(b)**

$$\begin{array}{c} 2BCl_3 + 3H_2 \rightarrow 2B + 6HCl \\ 2 \text{ mol} \quad 3 \text{ mol} \quad 2 \text{ mol} \\ \quad 21.6 \text{ g=2 mol} \end{array}$$

 $21.6 \text{ g B} = 2 \text{ mol B} \equiv 3 \text{ mol H}_2$

$$pV = nRT$$

$$\therefore V = \frac{nRT}{P} = \frac{3 \times 0.0821 \times 273}{1} = 67.2 \text{ L}$$

20 **(b**

$$\frac{N}{n} = \frac{N_{AV} \times n}{n} = N_{AV}$$

21 **(c**)

n is an integer.

22 **(a**)

Conservation of mass should be noticed.

23 **(c)**

The volume of water changes with temperature.

24 (c

- \because Amount of heat evolved on combustion of 4 g of methane=10.46 kJ
- \therefore The amount of heat evolved on combustion of one mole of methane (*ie*, 16 g of CH₄)

$$=\frac{10.46}{4}\times 16=41.84$$
kJ

25 **(c**)

Mol. wt. =
$$70 \times 2 = 140$$
:

$$(CO)x$$
, $\therefore (12 + 16)$. $x = 140$

$$x = 5$$

28 **(c)**

Mole fraction of solute $=\frac{n}{n+N}$;

Mole fraction of solvent $=\frac{N}{n+N}$;

29 **(a**)

We have
$$HNO_3^{+5} \rightarrow \frac{+2}{NO}$$

Change in oxidation number = 3

Equivalent mass of HNO₃ = $\frac{63g \ mol^{-1}}{3 \ eq \ mol^{-1}} = 21 \ g \ eq^{-1}$

30 **(b)**

$$5.6 \text{ litre} = 60 \text{ g}$$

$$:$$
 22.4 litre = 240 g = mol. wt.

$$\therefore$$
 Vapour density = $M/2 = 120$

31 **(d)**

 $32 g O_2$ contains 2N atoms.

33 **(b)**

Mol. wt. of metal chloride = $95 \times 2 = 190$

At. wt. of metal
$$=$$
 $\frac{6.4}{0.13}$ $=$ 49.23

Let the metal chloride be MCl_n

Then
$$49.23 + n \times 35.5 = 190$$

$$\therefore \qquad n = 3.9 \approx 4;$$

: Eq. wt. of metal =
$$\frac{49.23}{4}$$
 = 12.3

34 **(c)**

Atomic weight of element,

 $M = \text{equivalent weight} \times \text{valency}$

$$=20\times3$$

$$= 60$$

Molecular formula of its oxide= M_2O_3

Hence, molecular weight of oxide

$$= 2 \times 60 + 3 \times 16$$

$$= 120 + 48 = 168$$

35 **(b)**

Gram molecular volume of oxygen at STP is 5.6L or 5600 cm³.

36 **(d)**

Element	Percentage	At.	Moles	Simple
		Wt.		st
				Ratio
X	75.8	75	75.8	2
			15 = 1	
Y	24.2	16	= 1	3
			24.2	
			16	
			= 1.5	

 \therefore The formula of the compound is X_2Y_3 .

37 **(c)**

Meq. of oxalic acid =
$$500 \times 0.1 = 50$$

$$\therefore \frac{w}{F} \times 1000 = 50$$

$$w = \frac{126}{2} \times \frac{50}{1000} \qquad \left(\because E = \frac{126}{2} \right)$$

= 3.15 g

38 **(d)**

In acidic medium following reaction takes place. $8 H^+ + 5 e^- + MnO_4^- \rightarrow Mn^{2+} + 4 H_2 O$

 \therefore Equivalent weight of KMnO₄ in acidic medium molecular weight of KMnO₄

$$=\frac{158}{5}=31.6$$

39 **(d)**

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+$$

 $\rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O^{3+}$

$$+6 \\ Cr_2O_7^{2-} \to Cr^{3+}$$

x-factor=6

Mohr's salt, $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$ oxidation; $Fe^{2+} \rightarrow Fe^{3+}$

x-factor=1

Mole ratio is reverse of *x*-factor ratio. Therefore, one mole of dichromate required=6 moles of Mohr's salt.

40 **(a)**

Particle pressure of oxygen = $\frac{2}{1+4+2} \times 2660$ = 760 mm

Thus, 1 L oxygen gas is present at 0°C and 760 mm pressure.

∴ Number of oxygen molecules = $\frac{6.023 \times 10^{23}}{22.4}$

41 **(b)**

2Ag + 2HNO₃ → 2AgNO₃ + H₂
2AgNO₃ + 2NaCl → 2AgCl + NaNO₃
AgCl ≡ AgNO₃ ≡ Ag
143.5g 170 g 108g
∴ 143.5 g AgCl is obtained from Ag =
$$\frac{108 \times 2.87}{143.5}$$

= 2.16g

42 **(d)**

1 mole is defined as the amount of matter that contains as many as objects (atoms, molecule, electron, proton or whatever, objects we are considering) as the number of atoms in exactly 12g of C¹², *i.e.*, Avogadro's number.

43 (d

- ∴ Number of atoms present in 12 g carbon = 6.023×10^{23}
- \therefore No. of atoms present in 1 mg carbon

$$= \frac{6.023 \times 10^{23} \times 1}{12 \times 1000}$$
$$= 0.502 \times 10^{20}$$

44 (c)

Meq. of H₂S = Meq. of Cu²⁺

$$\frac{w}{34/2} \times 1000 = \frac{63.5}{63.5/2} \times 1000$$

45 **(b)**

Given that, oxygen contents in element oxide is 20% by weight.

Hence, element contents in element oxide is 80% by weight.

Then, equivalent weight of unknown element= $\frac{80}{20} \times 8$

∴ Equivalent weight of unknown element=32

46 **(c)**

Molecular weight of cortisone = 360.4Molecular weight of 21 carbon atom = $21 \times 12 = 252$

% of carbon in cortisone = $\frac{252 \times 100}{360.4}$ = 69.9%

47 **(d)**

The terms which involves only weights in their formula

 $\begin{bmatrix} e.\,g.\,molality = \frac{\text{wt. of solute}\times 1000}{\text{mol. wt. of solute}\times \text{wt. of solvent}} \end{bmatrix}$ are independent of temperature. On the other hand, since, volume change with temperature, the terms having volume in their formula

e.g. molality

 $= \frac{\text{wt. of solute} \times 1000}{\text{mol. wt. of solute} \times \text{volume of solvent}}$ are dependent on temperature.

48 **(c)** 6×10^{23} electron $\equiv 1$ equivalent.

49 **(b)**

Meq. of
$$H_2SO_4 = Meq.$$
 of NaOH
 $V \times 0.1 \times 2 = 30 \times 2.0 \times 1$
 $\therefore V = 300 \text{ mL}$

50 **(c)**

Nitrogen shows variable valency and thus, have variable equivalent weight.

51 **(d)**

$$\frac{E_{\text{hydroxide}}}{E_{\text{metal}} + E_{\text{OH}^-}} > \frac{E_{\text{oxide}}}{E_{\text{metal}} + E_{\text{O}}}$$

$$\frac{1.520}{E + 17} = \frac{0.995}{E + 8}$$
or $E = 9$

52 **(b)**

Given, mass of C=10.5 g H=1.0 g p=1atm

V=1 L

 $T = 127^{\circ}C = 127 + 273 = 400 \text{ K}$

Mass of gas=2.81 g

Weight of C + weight of

hydrogen=10.5+1.0=11.5 g

$$\therefore$$
 % of carbon= $\frac{10.5}{11.5} \times 100 = 91.3\%$

∴ % of hydrogen=
$$\frac{1.0}{11.5} \times 100 = 8.7\%$$

		11.5		
Ele	%	At.	Ratio of	Simplest
men		weigh	atoms	ratio
t		t		
С	91.	12	91.3/12=	7.61/7.61=
	3		7.61	1
Н		1		8.7/7.61
	8.7		8.7/1=8.	$=1.14 \times 7 =$
			7	8

From gas equation, pV = nRT

or
$$n = \frac{pV}{RT}$$

$$\frac{\text{mass}}{\text{mole mass}} = \frac{pV}{RT}$$

or 2.81/mole mass=
$$\frac{1\times1}{0.082\times400}$$

$$=92$$

Empirical formula wt.=C₇H₈

 \therefore Empirical formula=7 \times 12 + 8 \times 1

$$= 92$$

$$n = \frac{\text{molecular wt.}}{\text{empirical formula wt.}} = \frac{92}{92} = 1$$

Molecular formula=n (empirical formula

$$= 1 (C_7 H_8)$$

$$= C_7 H_8$$

53 **(b)**

 $CH_3 - NH_2 + HNO_2 \rightarrow CH_3OH + N_2 + H_2O$

1 mole of methyl amine gives 1 mole N₂ i.e., 22.4 L of nitrogen at NTP.

54 **(a)**

 $Meq. of MgCO_3 = Meq. of H_2SO_4$

$$\therefore \ \frac{3}{84/2} \times 1000 = \frac{w}{49} \times 1000 \ ;$$

$$w = 3.5 \, g$$

55 (c)

Eq. of metal = Eq. of oxide

$$\frac{100}{E} = \frac{24}{9}$$

$$E = 33.3$$

57 (b)

 $100 \text{ mL of } 1 \text{ M AgNO}_3 \equiv 0.1 \text{ mol AgNO}_3$

 $100 \text{ mL of } 1 \text{ M CuSO}_4 = 0.1 \text{ mol CuSO}_4$

 $2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3$

2 mol 1 mol

 $0.1 \, \text{mol}$ 0.05 mol

 $CuSO_4 + H_2S \rightarrow CuS + H_2SO_4$

1 mol 1 mol 0.1 mol 0.1 mol

∴ Ratio of the amounts of H₂S

needed=0.05:0.1=1:2

58 (a)

Mole fraction = $\frac{1}{1+\frac{1000}{1}} = 0.0177$

59 **(d)**

H₃PO₃ is dibasic acid; thus, Na₂HPO₃ is normal salt

60 (a)

Meq. of NaOH =
$$250 \times 0.1 = 25$$

$$\frac{w}{40} \times 1000 = 25$$

$$\therefore$$
 w = 1 g

61

At. wt. \times specific heat ≈ 6.4

62 **(b)**

$$Ag_2S \equiv 2Ag$$

248g
$$2 \times 108g$$

 2×108 g Ag is obtained from Ag₂S = 248 g

1 g Ag will be obtained from $Ag_2S = \frac{248 \times 1}{2 \times 108}$

$$=\frac{248}{216}$$
g

But, the ore contains only 1.34% Ag₂S.

Thus, 1 g Ag is obtained from ore $=\frac{248}{216} \times \frac{100}{124}$ g $= 85.68 \, \mathrm{g}$

64 (a)

Number of atoms in 40 kg = $\frac{40 \times 10^3 \text{g}}{6.644 \times 10^{-23} \text{ g}}$

(: Weight of an atom= 6.644×10^{-23} g)

$$=6.02\times10^{26}$$

: Number of gram atoms of element in 40 kg

$$=\frac{6.02\times10^{26}}{6.02\times10^{23}}=10^3$$

66 (b)

Since, 1 g hydrogen combines with 80 g bromine, the eq. wt. of bromine = 80

: 4 g bromine combines with Ca = 1g

∴ 80 g bromine will combine with Ca = $\frac{1 \times 80}{4}$ =

∴ Eq. wt. of Ca is 20 g.

67 **(d)**

Atomic mass of the metal= $32 \times 2 = 64$ Formula of metal nitrate= $M(NO_3)_2$

: Molecular mass=64+28+96=188

68

 $Mg + 2HCl \rightarrow MgCl_2 + H_2$

24 g Mg gives one mole H₂

69

Valence of
$$M = \frac{27}{9} = 3$$
,

Thus, formula of chloride is MCl_3 .

70 **(b)**

Eq. of metal = Eq. of oxide

$$\frac{1.6}{E} = \frac{2}{E+8}$$
; $E = 32$

$$M = \frac{5.85 \times 1000}{58.5 \times 500} = 0.2$$

Valence of an element is variable say it is 2 and 3 in $FeCl_2$ and $FeCl_3$ respectively. Also equivalent weight = $\frac{\text{at. weight}}{\text{valence}}$ and thus, it is also variable.

73 **(c)**

At. wt. = Eq. wt.
$$\times$$
 3 (valence = 3)

74 **(c)**

Meq. of Na₂CO₃ ·
$$x$$
H₂O in 20 mL = 19.8 × $\frac{1}{10}$

 \therefore Meq. of Na₂CO₃ \cdot xH₂O in 100 mL = 19.8 $\times \frac{1}{10}$ \times

$$\frac{w}{E} \times 1000 = 19.8 \times \frac{1}{10} \times 5$$
or
$$\frac{0.7}{M/2} \times 1000 = \frac{19.8}{2}$$

or
$$\frac{0.7}{M/2} \times 1000 = \frac{19.8}{2}$$

$$M = 141.41$$

$$\therefore 23 \times 2 + 12 + 3 \times 16 + 18x = 141.41$$

$$x = 1$$

75 (c)

At. wt. \times specific heat = 6.4

76 **(c)**

Moles of Fe=
$$\frac{560}{56}$$
 = 10
Moles of N= $\frac{70}{14}$ = 5

Moles of
$$N = \frac{70}{14} = 5$$

Moles of
$$H = \frac{20}{1} = 20$$

Equal number of moles have equal number of atoms.

Hence, number of atoms in 560 g of Fe is twice that of 70 g N and is half that of 20 g of H.

77 **(d)**

Molecular mass of $(CHCOO)_2Fe=170$

∴ In 100 g (*CHCOO*)₂*Fe*, iron present =
$$\frac{56}{170}$$
 × 100

$$= 32.9 \, \text{mg}$$

Since, this quantity of Fe is present in 400 mg of

 \therefore % of Fe in capsule = $\frac{32.9}{400} \times 100 = 8.2\%$

78 (b)

By the equation

$$Zn + I_2 \rightarrow ZnI_2$$

Of Zn and I2 each initially)

No. of moles at the end
$$\left(\frac{x}{65} - \frac{x}{254}\right)$$
 0

Of reaction

So, fraction of Zn unreacted =
$$\frac{\frac{x}{65} - \frac{x}{254}}{\frac{x}{65}} = 0.74$$

79

Weight of pure NaCl= $6.5 \times 0.9 = 5.85$ g

No. of equivalent of NaCl=
$$\frac{5.85}{58.5} = 0.1$$

No. of equivalent of NaOH obtained=0.1

Volume of 1 M acetic acid required for the neutralisation of

$$NaOH = \frac{0.1 \times 1000}{1}$$

= 100 cm³

82 (a)

Molecular weight= $2 \times 11.2 = 22.4$

∴22.4 g of gas occupies=22.4 L at STP

∴ 1 g of gas occupies=
$$\frac{22.4}{22.4}$$
 × 1 = 1 L at STP

83 (a)

> In the given metal nitride, nitrogen present is 28% that means, the nitride contains 28 g nitrogen and 72 g metal.

Moles of metal =
$$\frac{72}{x}$$

Moles of nitrogen =
$$\frac{28}{14}$$
 = 2

$$\Rightarrow$$
 Molar ratio, $M: N = \frac{72}{x}: 2 = 3: 2$

$$\frac{72}{x} = 3$$

$$\therefore x = 24$$

84 (c)

g atom of
$$I = \frac{25.4}{127} = 0.2$$

g atom of oxygen =
$$\frac{8}{16}$$
 = 0.5

$$\therefore$$
Ratio of g atoms I: 0::2:5

85

0.5 mole of $H_3O^+=20$ g; Also H_3O^+ is monovalent, thus

Mol.
$$wt. = Eq. wt.$$

$$\therefore$$
1 mole of H₃O⁺= 40 g

86 (d)

$$C_aH_b + \left(a + \frac{b}{4}\right)O_2 \longrightarrow aCO_2 + (b/2)H_2O$$

$$10 \quad \text{Excess} \quad - \quad -$$

$$0 \quad 10a \quad 5b$$

$$\therefore 10a = 40 \qquad \therefore a = 4$$

$$5b = 50 \qquad \therefore b = 10$$

87 (c)

Milli mole of
$$H_2SO_4$$
 = Milli mole of H_2SO_4 (Dil.)

$$10 \times 18 = M \times 1000$$

$$M = 0.18$$

100 g alkaloid contains nitrogen=17.28 g

∴ 162 g alkaloid will contain nitrogen

$$= \frac{17.28 \times 162}{100} g$$
$$= 27.9 g \approx 28 g$$

Atomic weight of nitrogen=14

So, number of atoms of nitrogen present in one molecular of alkaloid= $\frac{28}{14}$ = 2

90 **(b)**

$$M = \frac{\text{moles of urea}}{\text{volume in litre}} = \frac{6.02 \times 10^{20}}{6.02 \times 10^{23} \times \frac{100}{1000}}$$
$$= 0.01 M$$

91 **(d)**

$$2BCl_{3} + 3H_{2} \rightarrow 2B + 3HCl$$

$$2 \times 10.8g B \equiv 3 \times 22.4 L H_{2}$$

$$\therefore 21.6g B \equiv \frac{3 \times 22.4 \times 21.6}{2 \times 10.8}$$

$$= 67.2L H_{2}$$

92 (d)

Eq. of metal = Eq. of chlorine

$$\frac{w}{E} = \frac{2w}{35.5}$$

$$\therefore E = \frac{35.5}{2} =$$

17.75

93 **(b)**

$$5C_2O_4^{2-} + {+7 \atop 2MnO_4^-} + 16H^+$$

 $\rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O_4^-$

 $\begin{array}{c} \rightarrow 10\text{CO}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O} \\ \text{Equivalent weight} = & \frac{\text{molecular weight}}{\text{change in oxidation number}} \end{array}$

$$=\frac{158}{5}=31.6$$

94 **(d)**

Mol. wt. of C₂H₅OH

$$= 12 \times 2 + 1 \times 5 + 16 + 1 = 46 g$$

∴ 46 g of C₂H₅OH has hydrogen atoms

 $= 6 \times Avogadro number$

∴ 0.046 g of C₂H₅OH has hydrogen atoms

$$= \frac{6 \times 6.023 \times 10^{23} \times 0.046}{46}$$

 $= 3.6 \times 10^{21}$ atoms of hydrogen.

95

Both have same empirical formula CH₂O.

Moles of
$$H_2 = \frac{15}{22.4} = 0.67$$

Moles of
$$N_2 = \frac{5}{22.4} = 0.22$$

Moles of $H_2 = \frac{0.5}{2} = 0.25$

Moles of
$$H_2 = \frac{0.5}{2} = 0.25$$

Moles of
$$O_2 = \frac{10}{32} = 0.31$$

Larger is number of mole, more is number of molecule.

97 **(d)**

 $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ 2 mole CO_2 is formed.

99 (b)

$$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$$

$$Na_2CO_3 \xrightarrow{\Delta} Na_2CO_3$$

The no. of equivalent of $NaHCO_3 = No.$ of equivalent of Na2CO3 formed. Thus, same equivalent of HCl will be used.

100 (a)

Element	%ntage atomic wt.	Simplest ratio
С	$\frac{92.3}{12} = 7.69$	$\frac{7.69}{7.69} = 1$
		1
Н	$\frac{7.7}{1} = 7.70$	$\frac{7.70}{7.69} = 1$

∴ Empirical formula=CH

101 **(b)**

Eq. of
$$metal = Eq.$$
 of Cu

$$\frac{1.5}{E} = \frac{4}{64/2}$$

$$E=1$$

: At. wt. =
$$24$$

102 (b)

Weight of copper oxide=5 g

Weight of copper taken=4 g

- ∴ Weight of oxygen in copper oxide=5-4=1 g
- : Weight of copper, reacted with 1 g

$$0_2 = 4 g$$

: Weight of copper, which would react with 8 g

$$O_2 = \frac{4 \times 8}{1} = 32 \text{ g}$$

Hence, equivalent weight of copper=32

103 (a)

wt. of metal X Eq. wt. of metal X $\frac{1}{\text{wt. of metal Y}} = \frac{1}{\text{Eq. wt. of metal Y}}$

104 (a)

1 atom =
$$260 \text{ amu} = 260 \times 1.66 \times 10^{-24} \text{g}$$

105 **(d)**

Mol. wt.= $2 \times$ vapour density

$$= 2 \times 45 = 90$$

Empirical formula weight=12+2+16=30

$$\therefore n = \frac{\text{mol. wt}}{\text{empirical formula wt.}}$$
$$= \frac{90}{30} = 3$$

: Molecular formula of the compound

$$= (CH_2O)_3$$

$$= C_3 H_6 O_3$$

106 (d)

Mole ratio of $H_2: O_2: H_2O :: 2: 1: 2$

107 (a)

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

108 (c)

 \therefore Mass of 22400 cm³ of CH₄ at STP = 16 g

 $\therefore \quad \text{Mass of 1 cm}^3 \text{ of CH}_4 \text{ at STP} = \frac{16}{22400} \text{ g}$

∴ Mass of 112 cm³ of CH₄ at STP = $\frac{16}{22400}$ × 112 = 0.08 g

109 (c)

For electrolytic concentration term formality is used in place of molarity. Formality is g formula weight of electrolyte in one litre solution.

Remember it is not possible to determine exact mol. weight of electrolytes. We simply assume the formula say for sodium chloride it is NaCl and formula weight is 58.5. This value can never be obtained experimentally.

110 **(c)**

 $100 \text{ g sample} \equiv 0.33 \text{ g iron}$

 \therefore 67200 g \equiv 221.8 g iron

∴ Number of iron atoms per molecule of haemoglobin

$$=\frac{221.8}{56}\approx 4.$$

111 **(b)**

Since, the molecular formula is n times the empirical formula, therefore, different compounds having the same empirical formula must have different molecular weights.

112 (a)

 \because 0.1 mole of carbohydrate contains = 1 g of hydrogen.

 \therefore 1 mole of carbohydrate contains = $\frac{1}{0.1}$

$$= 10 \, g$$

hydrogen

Hence, its molecular formula = $C_5H_{10}O_5$.

113 (c)

Mole fraction of solute = $\frac{n}{n+\lambda}$ = $\frac{1}{1+\frac{1000}{100}}$ = 0.0177

114 **(b)**

8 mole $0 \equiv 1$ mole $Mg_3(PO_4)_2$

∴ 0.25 mole 0 =
$$\frac{1 \times 0.25}{8}$$

= 3.125 × 10² mole Mg₃(PO₄)₂

115 **(b)**

$$5CO + I_2O_5 \rightarrow 5CO_2 + I_2$$

1 mole of $I_2 \equiv 1$ moles of $I_2O_5 \equiv 5$ moles of CO

Hence, mole of CO=5 $\times \frac{2.54}{2.54} = 0.05$

Mass of $CO = 0.05 \times 28 = 1.4g$

Mass of $CO_2 = 2 - 1.4 = 0.6$ g

Mass % of
$$CO_2 = \frac{0.6 \times 100}{2} = 30$$

116 (d)

g-atom of
$$I_2 = \frac{254}{127} = 2$$
;

g-atom of oxygen = $\frac{80}{16}$ = 5

 \therefore compound is I_2O_5 .

117 (c)

Vapour density of $A = 3 \times \text{Vapour density of B}$

 \therefore mol. wt. of $A = 3 \times$ mol. wt. of B

118 **(c)**

Let a g of Cu be oxidised to give CuO,

$$i.e., \frac{(63.6+16)a}{63.6}$$

Thus, final weight

$$= (3.18 - a) + \frac{(63.6 + 16)a}{63.6} = 3.92$$

 $\therefore \qquad a = 2.94 \text{ g}$

Thus, % of Cu left unoxidised

$$\frac{(3.18 - 2.94)}{3.18} \times 100 = 7.55\%$$

119 **(b)**

Eq. wt. of
$$SO_2 = \frac{\text{molar mass}}{\text{O.N.of S}} = \frac{64}{4} = 16$$

 \therefore Twice of this value = 32

120 (a)

Mol. wt. of metal chloride = $50 \times 2 = 100$;

Let metal chloride be MCl_n then

Eq. of metal = Eq. of chloride, or $\frac{29}{E} = \frac{71}{35.5}$

$$E = \frac{29}{3};$$

Now a + 35.5n = 100

or
$$n.E + 35.5n = 100$$
;

 \therefore n=2

Therefor, $a = 2 \times E = 2 \times (29/2) = 29$.

121 (d)

 $3 \text{BaCl}_2 + 2 \text{Na}_3 \text{PO}_4 \rightarrow \frac{\text{Ba}_3 (\text{PO}_4)_2}{1 \text{ mol}} + 6 \text{NaCl}$ 3 mol + 2 mol + 1 molHere, $N a_3 P O_4$ is the limiting reactant. $2 \text{ moles of } N a_3 P O_4$ gives $1 \text{ mole of } B a_3 (P O_4)_2$

So, 0.2 mole of Na_3PO_4 will give 0.1 mole of $Ba_3(PO_4)_2$.

123 (a)

$$M_{\text{Al}_2(\text{SO}_4)_3} = \frac{342}{342 \times 1} = 1$$

124 **(a**)

 $Na_2CO_3 + 2HCl \rightarrow NaCl + H_2O + CO_2$ In the above reaction equivalent weight of Na_2CO_3 is $\frac{M}{2}$ because 2 moles of Na^+ being transferred per mole of Na₂CO₃.

125 **(b)**

	Oxide I	Oxide II
Metal, M	50%	40%
Oxygen, O	50%	60%

As first oxide is MO_2

Let atomic mass of M = x

$$\therefore \%0 = \frac{32}{x+32} \times 100$$

Or
$$\frac{50}{100} = \frac{32}{x+32}$$

Or
$$0.5 = \frac{32}{x+32}$$

Or
$$0.5 \times x + 16 = 32$$

Or
$$0.5x = 16$$

$$x = 32$$

∴At. Mass of metal M = 32

Let formula of second oxide is M_2O_n

$$\%M = \frac{2x}{2x+16n} \times 100 = \frac{64}{64+16n} \times 100$$

$$\frac{40}{64} = \frac{64}{64}$$

$$\overline{100} = \overline{64 + 16n}$$

$$0r \ \frac{100}{40} = \frac{64 + 16n}{64}$$

$$2.5 = 1 + 0.25 \, n$$

$$n = \frac{1.5}{0.25} = 6$$

Therefore, formula of second oxide = M_2O_6

$$0r = MO_3$$

126 **(b)**

Elemen	% age	Atomic	Molar	Simple
t		mass	ratio	r
				molar
				ratio
С	10.06	12	10.06	0.84
	%	4	12	0.84
			= 0.84	= 1
Н		1		
	0.84		0.84	0.84
	%	\	1	0.84
Cl		35.5	= 0.84	= 1
		,		
	89.10		89.10	2.5
	%		35.5	0.84
			= 2.5	= 3

Thus, the empirical formula of the substance of $CHCl_3$.

127 **(d)**

22.4 litre water vapour = 1 mole $H_2O = 18 \text{ g } H_2O$ liquid =18 mL H_2O .

128 **(c)**

Eq. wt. of $FeCl_2 = Mol.$ wt. 2/; Eq. wt. of $FeCl_3 = mol.$ wt./3

129 (c)

No. of Millimoles of $Ca(OH)_2 = 50 \times 0.5 = 25$

No. of Millimoles of $CaCO_3 = 25$

No. of milliequivalents of $CaCO_3 = 50$

∴ Volume of 0.1 N HCl= $\frac{50}{0.1}$ = 500 cm³

130 **(b)**

$$M = \frac{9.8}{98 \times 2} = \frac{1}{20} = 0.05$$

131 **(b**

1 mole =
$$M \times V_{\text{in }l}$$

$$mM \text{ of } A = 100 \times 0.1 = 10$$

$$mM \text{ of } B = 25 \times 0.2 = 5;$$

: Total
$$mM = 10 + 5 = 15$$

$$M = \frac{15}{100 + 35} = \frac{15}{135}$$

133 **(c)**

Wt. of H: 0 in H_2 0 is 2: 16

134 (a)

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

1 mol 1 mol

$$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2Na_2$$

mol 1 mo

$$1 \text{ mol CaO} \cong 1 \text{ mol CaCl}_2$$

$$\frac{0.56}{56}$$
 mol CaO \cong 0.01 mol CaCl₂

$$= 0.01 \times 111 \text{ gCaCl}_2$$

$$= 1.11 \,\mathrm{g}\,\mathrm{CaCl}_2$$

Thus, in the mixture, weight of

$$\therefore$$
 Percentage of NaCl= $\frac{3.33}{4.44} \times 100 = 75\%$

135 (d)

$$2Al(s) + 6HCl(aq)$$

$$\rightarrow$$
 2Al³⁺(aq) + 6Cl[−](aq)
+ 3H₂(g)

 $3 \times 22.4 \text{ L H}_2(g)$ at STP is produced by 6 moles of HCl (aa)

Hence, 11.2 L H_2 (g) at STP is produced by 1 mole HCl(aq).

136 **(c)**

Molecular mass of Na₂CO₃

$$= 2 \times 23 + 12 + 3 \times 16 = 106$$

$$= 3 \times 6.023 \times 10^{23}$$
 oxygen atoms

$$=\frac{3\times6.023\times10^{23}}{106}\times10.6$$

$$= 18.069 \times 10^{22}$$

$$= 1.806 \times 10^{23}$$
 oxygen atoms

137 **(c)**

$$m = \frac{wRT}{PV} = \frac{0.22 \times 0.0821 \times 293}{[(755 - 17.7)/760] \times [45/1000]}$$
$$= 121.1$$

138 (a)

Number of moles = $\frac{weight}{olecular wt.} = \frac{0.0018}{18} \times 1 \times 10^{-4}$

 $[\because 0.0018 \ mL = 0.0018 \ g]$

 \therefore Number of water molecules = $1 \times 10^{-4} \times$ 6.02×10^{23} $= 6.023 \times 10^{19}$

139 (a)

Mass of hydrogen = $\frac{0.7}{22.4} \times 2 = \frac{14}{224}g = 0.0625g$

 $\because 0.0625$ g of hydrogen is displaced by x g metal.

∴ 1g of hydrogen is displaced by = $\frac{x}{0.0625}$ g of

$$\Rightarrow \frac{x}{0.0625} = 28$$

Eq. mass of metal, $x = 28 \times 0.0625 = 1.75g$

140 **(d)**

N₂O and NO verify the law of multiple proportions.

141 **(d)**

Butane and isobutance have same molecular

Thus,
$$C_4H_{10} + \left(\frac{13}{2}\right)O_2 \rightarrow 4CO_2 + 5H_2O$$

: 58 g C₄H₁₀ requires
$$O_2 = \frac{12}{2} \times 32$$
 g

$$: 1000 \text{ g C}_4\text{H}_{10} \text{ requires O}_2$$

$$= \frac{13}{2} \times \frac{32 \times 1000}{58} = 3586.2 \text{ g} = 3.586 \text{ kg}$$

143 **(b)**

g atom of $X = \frac{50}{10} = 5$; g atom of $Y = \frac{50}{20} = 2.5$;

Ration of g atom of X and Y = 2:1

144 **(b)**

Molarity means mole of solute in one litre solution.

145 (c)

Number of notes =
$$\frac{6.023. \times 10^{23} \times 24.8}{248}$$

= 6.023×10^{22}
Days for counting = $\frac{6.023 \times 10^{22}}{60 \times 10^6}$ = 10^{15}

146 **(b)**

 \therefore g atom of $S = \frac{50}{32}$

g atom of oxygen = $\frac{50}{16}$;

∴Ratio of g atoms of S and 0 = 1 : 2.

148 (d)

Amount of pure lime stone (CaCO₃)is 10 g of 90% sample

$$=\frac{90}{100}\times 10=9 \text{ g}$$

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
100 g 22.4 l

100 g of lime stone gives 22.4 L of CO₂ at STP

 \therefore 9 g of lime stone will give

$$= \frac{22.4}{100} \times 9 = 2.016 \text{ L CO}_2$$

149 (c)

Mass of 1 mole of methane $(CH_4) = 16 g$ Mass of 0.1 mole of methane = 16×0.1 g = 1.6 g

150 **(c)**

:
$$132 \text{ g (NH}_4)_2 \text{SO}_4 \text{ has } N = 28 \text{ g}$$

∴ 66 g (NH₄)₂SO₄ has
$$N = \frac{28 \times 66}{132} = 14$$
 g

151 (a)

$$wg \operatorname{Fe}_2 O_3 = \frac{w}{160} \operatorname{mole} \operatorname{Fe}_2 O_3 = \frac{w}{160} \times 3 \operatorname{mole} O$$

 $wg \operatorname{Fe}O = \frac{w}{72} \operatorname{mole} \operatorname{Fe}O = \frac{w}{72} \times 1 \operatorname{mole} O$

∴ mole ration 0 in Fe₂O₃ and FeO =
$$\frac{3}{160} \times \frac{72}{1}$$
 =

$$\frac{216}{160} = 1.35$$

153 **(b)**

(b) Mol. wt. of
$$(CH_2O)_n = 30 \times 2 = 60$$

$$n = \frac{60}{30} = 2$$

Empirical formula wt. $(CH_2O) = 30$

Weight of 11.2 dm 3 of CO $_2$ gas at STP=44/2

$$KOH + CO_2 \rightarrow KHCO_3$$

Mass of KOH required for complete neutralisation

$$CO_2$$
 is $=\frac{56}{44} \times 22 = 28g$

156 (a)

$$Ag_2CO_3 \rightarrow 2Ag + CO_2 + (1/2)O_2$$

157 (d)

Equivalent weight

 $=\frac{1}{1}$ Change in oxidation number per atom

or
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

Equivalent weight of K₂Cr₂O₇

$$= \frac{\text{molecular weight of } K_2Cr_2O_7}{2 \times \text{change in oxidation number}}$$

$$= \frac{M}{2\times 2}$$
 [: Two Cr atoms are involved.]

∴ Equivalent weight of
$$K_2Cr_2O = \frac{M}{C}$$

158 (a)

Calculate weight of each.

159 (a)

One molecule of CH₃COOC₂H₅ contains 14 atoms.

Meq. of HCl = Meq. of NaOH

$$2 \times V = 1000$$

$$\therefore V = 500 \text{ mL} = \frac{1}{2} \text{litre}$$

Number of moles of oxygen = $\frac{80}{16}$

Number of atoms of oxygen = $\frac{80}{16} \times N_0 \times 2$

$$= 5 \times N_0 \times 2$$

Number of moles in 5 g of hydrogen = $\frac{5}{1}$

Number of atoms in 5 g of hydrogen = $5 \times N_0 \times 2$

Hence, the number of atoms in 80 g of oxygen is equal to the number of atoms in 5 g of hydrogen.

162 (d)

g atom of $A = \frac{75}{75} = 1$;

g atom of
$$B = \frac{25}{25} = 1$$
;

∴Ratio of g atom of A and B = 1:1

163 **(c)**

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Gain electrons=5

Molecular weight=*M*

Equivalent weight= $\frac{\text{molecular weight}}{\text{gain electron}} = \frac{M}{5}$

164 **(b)**

Eq. wt. =
$$\frac{\text{mol. wt.}}{\text{basicity}}$$

165 (d)

Meq. of HCl = $5 \times 1 = 5$;

Meq. of $H_2SO_4 = 20 \times (1/2) = 10$;

Meq. of $HNO_3 = 30 \times (1/3) 10$;

Thus, total Meq. of acid = 5 + 10 + 10 = 25

Total volume = 1000 mL.

Also Meq. = $N \times V$.

$$N = \frac{25}{1000} = \frac{1}{40}$$

166 **(b)**

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$

100 g 73 g

100 mL of 20% HCl = 20 g = HCl

In this case, CaCO₃ is the limiting reactant.

 \approx 100 g of CaCO₃ gives CO₂ = 44 g

∴ 20 g CaSO₃ will give $CO_2 = \frac{44 \times 20}{100} = 8.80 \text{ g}$

167 (a)

Weight of empirical formula

$$CH_2 = 12 + (1 \times 2)$$

= 12 + 2

= 14

Mass of one mole of the compound=its molecular weight

$$=42$$

$$n = \frac{\text{mol. wt.}}{\text{empirical formula wt.}} = \frac{42}{14} = 3$$

 \therefore Mol. formula=(Empirical formula× n)

$$= (CH_2) \times 3 = C_3H_6$$

168 (a)

 $C + O_2 \rightarrow CO_2$;

12 g C needs 22.4 litre O_2 or 5×22.4 litre air.

169 (a)

Mixture *X* contains 0.02 moles

of $[Co(NH_3)_5SO_4]Br$ and 0.02

moles of [Co(NH₃)₅Br]SO₄ was prepared in 2L of

solution. So, the concentration of

 $[Co(NH_3)_5SO_4]Br$ and $[Co(NH_3)_5Br]SO_4$ in solution are 0.01 mol/L and 0.01 mol/L

respectively. During the reaction

with AgNO₃ (excess), AgBr is precipitated as follows

 $[Co(NH_3)_5 SO_4]Br + AgNO_3$

$$\rightarrow [\text{Co(NH}_3)_5\text{SO}_4]\text{NO}_3 + \text{AgBr} \downarrow$$

0.01 mol/L soluble (Y)

0.01 mol/L

Hence, number of moles of y=0.01

On addition of excess BaCl2, BaSO4 is precipitated as follows

 $[Co(NH_3)_5Br]SO_4 + BaCl_2 \rightarrow BaSO_4$

$$\downarrow + [Co(NH_3)_5Br]Cl_2$$

0.01 mol/L (excess) 0.01 mol/L soluble

Hence, number of moles of Z = 0.01

Thus, the number of moles of *Y* and *Z* are 0.01 and 0.01 respectively.

170 (c)

Meq. of NaOH = $100 \times 0.5 = 50$

Meq. of HCl = $(1/5) \times 100 = 20$;

Meq. of $H_2SO_4 = (1/10) \times 100 = 10$;

Total Meq. of acid = 20 + 10 = 30

Total Meq. of NaOH = 50;

 \therefore Meq. of NaOH left = 50 - 30 = 20

Thus, resulting solution will be alkaline.

171 **(b)**

Eq. of
$$X = 1.5 \times a$$

Eq. of HCl =
$$2.5 \times 2 = 5.0$$
;

$$\therefore N_{\text{resultant}} = \frac{\text{total eq.}}{\text{total volume}}$$
or
$$N = \frac{1.5 \times a + 5.0}{4}$$

$$1.5 \times a + 5.0$$

$$\therefore a = 10$$

172 **(d)**

For water, 1 g = 1 mL (: d for water = 1)

$$\therefore 18 g = 18 \,\mathrm{mL}$$

18 mL water = 6.02×10^{23} molecules = N_A molecules

:N=5

∴ in 100 mL number of water molecules = $\frac{N_A \times 1000}{18}$ = 55.55 N_A

173 (a)

In 15 L of H₂ gas at STP, the number of molecules $= \frac{6.023 \times 10^{23}}{22.4} \times 15$

$$=4.033\times10^{23}$$

In 5 L of N₂ gas at STP, the number of molecules

$$=\frac{6.023\times10^{23}\times5}{22.4}=1.344\times10^{23}$$

In 0.5 g of H₂ gas, the number of molecules

$$=\frac{6.023\times10^{23}\times0.5}{2}$$

$$= 1.505 \times 10^{23}$$

In 10 g of O₂ gas, the number of molecules

$$=\frac{6.023\times10^{23}\times10}{32}$$

$$= 1.882 \times 10^{23}$$

Hence, maximum molecules are present in 15L of $\mbox{\it I}$

174 **(c)**

 $: 64 n \text{ kg CaC}_2$ will give 28 n kg polyethylene

$$\therefore$$
 20 kg CaC₂ will give $\frac{28n \times 20}{64n} = 8.75$ kg

175 (c)

Wt. of *N* atom = $6.644 \times 10^{-23} \times 6.023 \times 10^{23} = 10^{23}$

40 g

or
$$40 \text{ g} = 1 \text{ g-atom};$$

$$40 \times 10^3 \text{ g} = 10^3 \text{ g-atom}$$

176 (d)

$$m = \frac{15}{98 \times \frac{(100 \times 1.1 - 15)}{1000}} = 1.6$$

177 (d)

$$N = \frac{34}{35 \times \frac{100}{0.6 \times 1000}} = 5.82$$

178 (a)

$$M = \frac{171}{342 \times \frac{(1000 + 171)}{1000 \times d}} = 0.429 \times 1.1 = 0.47$$
$$m = \frac{171}{342 \times 1} = 0.5$$

179 (a)

$$2Al + \frac{3}{2}O_2 \longrightarrow Al_2O_3$$

54 g Al requires $\frac{3}{2} \times 32$ g O_2

180 (c)

Mole of N₂ is $=\frac{4}{28}=\frac{1}{7}$ (the lowest value)

181 **(d)**

Cgraphite+
$$O_2(g) \to CO_2$$
; $\Delta H = -348 \text{ kJ}$

In the above reaction, heat is evolved and mass of product is equal to mass of reactant.

182 **(a)**

Molarity \times valence = normality Valence or basicity of $H_2SO_4 = 2$

183 **(c)**

Titration of oxalic acid by $KMnO_4$ in the presence of HCl gives unsatisfactory result because HCl is a better reducing agent than oxalic acid and HCl reduces preferably MnO_4^- to Mn^{2+} .

184 (c)

: Mass of 22400 cm³ $CH_4 = 16g$

: Mass of 112 cm³CH₄ =
$$\frac{16 \times 112}{22400}$$
 = 0.08g

185 **(d)**

Combustion of propane takes place as follows $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

propane oxygen

• 1 L of propane required 5 L oxygen for combustion.

 \therefore 20 L propane required oxygen = $5 \times 20 = 100$ L

186 **(d)**

1 mole = 1 g molar volume = 22.4 litre at S.T.P.

187 (d)

In CS_2

C : S mass ratio is 15.79 : 84.21

15.79 parts of carbon combine with sulphur = 84.21

∴ 27.27 parts of carbon will combine with

$$S = \frac{84.21}{15.79} \times 27.27 = 145.434$$

Hence, ratio of *S*: *O* is 145.434:72.73 *ie*, 2 : 1

In SO_2 , the ratio of S: O is 1:1

Since, the ratio of S: O is a simple whole number ratio,

Therefore law of reciprocal proportions is proved.

188 **(c)**

$$9+1+3.5=13.5$$

: 13.5 g contains $\frac{9}{12}$ mole carbon

 \therefore Formula is $C_6H_8N_2$

189 **(b)**

Mole of $Cu^{2+} = 0.1 \times 1 = 0.1$

Mole of $SO_4^{2-} = 0.1 \times 1 = 0.1$

Mole of $Al^{3+} = 0.1 \times 2 = 0.2$

Mole of $SO_4^{2-} = 0.1 \times 3 = 0.3$

∴Total moles of ions present in 1 litre = 0.7

Molarity of all ions = 0.7 M

190 (a)

Meq. of conc. HCl = Meq. of dil. HCl;

$$10 \times 10 = V \times \frac{1}{10}$$

 $V = 1000 \, \text{mL}$

Thus, 990 mL of water should be added to 10 mL of conc. HCl to get decinormal solution.

191 **(c)**

Calculate $m = \frac{dRT}{R}$ and then Vapour density = M/2

192 (d)

1 mole of water=18 g

193 (d)

$$\mathrm{H_2} + \frac{1}{2}\mathrm{O_2} \longrightarrow \mathrm{H_2O}$$

20

5 15 0

194 **(b)**

Dalton, Avogadro coined the term atom and molecule respectively.

195 (a)

Mass of one atom of oxygen 1.

$$\frac{16}{6.022\times10^{23}}$$
 = 2.66 × 10⁻²³ g

2. Mass of one atom of nitrogen

$$= \frac{14}{6.022 \times 10^{23}} = 2.32 \times 10^{-23} g$$

Mass of 1×10^{-10} mole of oxygen 3.

$$r = 16 \times 10^{-10} \text{ g}$$

Mass of 1×10^{-10} mole of copper

$$= 63 \times 10^{-10}$$

Hence, masses of atoms in increasing order

197 (d)

Meq. of oxide = Meq. of H;

$$\frac{0.1596}{E+8} = \frac{6 \times 10^{-3}}{1}$$

 $\therefore E = 18.6$

 \therefore atomic wt. = $18.6 \times 3 = 55.8$ (: valence =3)

198 (d)

$$CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$$

100 g 56 g

∴ 56 g CaO is obtained from=100g CaCO₃

∴ 28 g CaO is obtained from=
$$\frac{100 \times 28}{56}$$

=50 g CaCO₃

199 (c)

Stoichiometry represents mole ratio or volume ratio of reactants and products.

202 **(c)**

g atom of
$$N = \frac{28}{14} = 2$$

g atom of oxygen = $\frac{80}{16}$ = 5

203 (d)

1 mole $Ca^{2+} = 1$ mole $CaCO_3 = 100$ g

Rating = mg of CaCO₃ needed per g chelating agent (mol. wt. = 380)

$$=\frac{100\times10^3}{380}=263$$
 mg

205 (c)

Meq. of HCl = Meq. of $CaCO_3$;

$$\therefore N \times 50 = \frac{1}{50} \times 1000 \text{ or } N = 0.4$$

206 (a)

Weight of $NH_3 = 4.25g$

We know that number of atoms in 1 mole or 17 g

$$NH_3 = 4 \times 6.023 \times 10^{23}$$

∴ Number of atom in 4.25 g of

$$NH_3 = \frac{4 \times 6.023 \times 10^{23}}{17} \times 4.25$$
$$= 6.023 \times 10^{23}$$

207 (c)

In acidic medium, MnO₄ is reduced to Mn²⁺

$$In O^- \setminus Mn$$

 $Mn O_4^- \rightarrow Mn^{2+}$

Change in oxidation number=7-2=5

Solution *X* Solution *Y*

$$N_1V_1 = N_2V_2$$

For Fe²⁺ For MnO₄⁻

 $N \times 25 = 5M \times V$ [: For MnO₄, N = 5M in acidic

medium]

$$25N = 5M \times 20$$

...(i)

In neutral medium, MnO₄ is reduced to MnO₂

$$Mn O_4^- \rightarrow MnO_4^-$$

Change in oxidation number=7-4=3

Solution *X* Solution *Y*

$$N_1V_1=N_2V_2$$

For Fe²⁺ For MnO₄-

$$25 \times N = 3M \times V$$

[: For MnO_4^- , N = 3M in neutral medium]

 $25N = 3M \times V$

...(ii)

From Eqs (i) and (ii)

 $100M=3M\times V$

$$V = \frac{100}{3} = 33.3 \text{ mL}$$

208 (a)

: 4 u = 1 He atom

$$\therefore 1 \text{ u} = \frac{1}{4} \text{He atom}$$

Hence, $100 \text{ u} = \frac{1 \times 100}{4} = 25 \text{ atoms}$

209 **(b)**

$$Mass = 0.8 \times 1 = 0.8 g$$

$$\therefore$$
 180 g C₆H₁₂O₆ has 24 atom

$$0.8 \text{ g C}_6 \text{H}_{12} \text{O}_6 \text{ has } \frac{24 \times 0.8 \times N}{180} = 6.42 \times 10^{22}$$

210 (a)

Mill mole of
$$H_2SO_4 = \frac{1}{10} \times 1000 = 100$$

$$\therefore \frac{w}{98} \times 1000 = 100$$

$$\therefore$$
 $w = 9.8 g$

211 **(b)**

Average atomic weight

$$=\frac{54 \times 5 + 56 \times 90 + 57 \times 5}{100} = 55.95$$

212 (a)

$$m = \frac{0.5 \times 1000}{500} = 1$$

214 (c)

$$CaCO_3 + 2HCl \xrightarrow{\Delta} CaCl_2 + H_2O + CO_2$$

 $100 \,\mathrm{g}$ $2 \times 36.5 \,\mathrm{g}$

44 g

1 L of 1 N HCl means=36.5 g HCl

Here, HCl is limiting reagent. Therefore, it reacts with 50 g

CaCO₃ and produces 22 g CO₂.

215 **(b)**

The mass of KI in 2g salt = $\frac{2\times1}{100}$ = 0.02g

$$=\frac{0.02}{39+127}$$
 mol

$$=\frac{0.02}{166} \times 6.02 \times 10^{23}$$
 ions

 $= 7.2 \times 19^{19} ions$

216 (a)

$$11.2 L = \frac{17}{22.4} \times 11.2 = 8.5g$$

217 **(b)**

Meg. of acid. Meg. of NaOH

$$\frac{0.52}{E} \times 1000 = 100 \times 0.1$$

$$E = 52$$

218 (d)

In 100 tons of Fe_2O_3 , pure Fe_2O_3

$$= 100 - \frac{100 \times 20}{100}$$

= 80 tons

$$Fe_2O_3 + 3H_2 \rightarrow 2Fe_2 + 3H_2O$$

$$2 \times 56 + 48$$

$$2 \times 56$$

$$2 \times 56$$

 $: 160 \text{ g Fe}_2\text{O}_3 \text{ gives Fe} = 2 \times 56 \text{ g}$

∴ 80 tons
$$Fe_2O_3$$
 will give $Fe = \frac{2 \times 56 \times 80}{160}$

= 56 tons

219 (c)

Meq. Of $Ba(OH)_2 = Meq.$ of HCl

$$N \times 25 = 0.1 \times 35$$

$$N_{\rm Ba(OH)_2} = \frac{3.5}{25}$$

$$M_{\text{Ba(OH)}_2} = \frac{3.5}{25 \times 2} = 0.07$$

220 **(b)**

$$1000 \,\mathrm{g}\,\mathrm{H}_2\mathrm{O} = 1000 \,\mathrm{cm}^3 \,\mathrm{H}_2\mathrm{O}$$

$$\frac{1000}{18}$$
 mole H₂O = 1000 cm³ H₂O

$$\frac{18}{1000} \times 6.023 \times 10^{23}$$
 molecule of H₂O =

$$\frac{1}{18}$$
 × 6.023 × 10²³ molecule of H₂O = 1000 cm³ H₂O

 \therefore 1 molecule of H₂O = 3 × 10⁻²³ cm³

221 (c)

As ratio of masses of nitrogen per gram of hydrogen in hydrazine and NH_3

$$=1\frac{1}{2}:1$$

$$=\frac{3}{2}$$
: 1 or 3:2

ie, the law of multiple proportions.

223 (a)

Eq. of
$$H_2SO_4 = 0.5 \times 2 = 1.0$$
;

Eq. of
$$Ca(OH)_2 = 0.2 \times 2 = 0.4$$
;

Equal Eq. reacts and thus, Eq. of $CaSO_4$ formed = 0.4

$$\therefore$$
 Mole of CaSO₄ formed $\frac{0.4}{2} = 0.2$

224 (d)

 H_3PO_4 is tribasic acid and thus,

$$N = M \times \text{basicity}$$

225 (d)

Empirical formula wt. =13

$$\therefore n = \frac{\text{mol.wt.}}{\text{empirical formula wt.}} = \frac{78}{13} = 6$$

 \therefore Formula is $(CH)_6$, i.e., C_6H_6

226 **(a)**

For first oxide,

Moles of oxygen= $\frac{22}{16}$ = 1.375,

Moles of Fe= $\frac{78}{56}$ = 1.392

Simpler molar ratio, $\frac{1.375}{1.375} = 1$, $\frac{1.392}{1.375} = 1$

 \therefore The formula of first oxide is FeO.

Similarly for second oxide,

Moles of oxygen= $\frac{30}{16}$ = 1.875,

Moles of Fe= $\frac{70}{56}$ = 1.25

Simple molar ratio= $\frac{1.875}{1.25} = 1.5, \frac{1.25}{1.25} = 1$

 \therefore The formula of second oxide is Fe₂O₃. Suppose in both the oxides, iron reacts with xg of

Suppose in both the oxides, iron reacts with xg of oxygen.

 \div Equivalent weight of Fe in FeO

$$\frac{\text{weight of Fe}_{II}}{\text{weight of oxygen}} \times 8$$

$$\frac{56}{2} = \frac{\text{weight of Fe}_{II}}{x} \times 8 \qquad \dots (i)$$

 \therefore Equivalent weight of Fe in Fe₂O₃

$$= \frac{\text{weight of Fe}_{\text{III}}}{\text{weight of oxygen}} \times 8$$

$$\frac{56}{3} = \frac{\text{weight of Fe}_{\text{III}}}{x} \times 8 \qquad \dots \text{(ii)}$$

From Eq. (i) and (ii),

$$\frac{\text{weight of Fe}_{II}}{\text{weight of Fe}_{III}} = \frac{3}{2}$$

227 (a)

We know that protons in 1 mole CaCO₃ = atomic number of calcium + atomic number of carbon + 3 (atomic number of oxygen)

$$= 20 + 6 + 3(8) = 50 \text{ mol}$$

∴ Proton in 10 g CaCO₃ =
$$\frac{10 \times 50}{100} \times 6.02 \times 10^{23}$$

= 3.01 × 10²⁴

228 **(b)**

$$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + cl_2$$

2 mol 4 mol 1 mol 22.4 L

But the yield is 11.2.

$$\therefore$$
 % yield = $\frac{11.2}{22.4} \times 100 = 50\%$

229 **(b)**

$$N = \frac{1}{49 \times (100/1000)} = 0.2$$

230 (c)

One mole of electrons= 6.023×10^{23} electrons Mass of one electron= 9.1×10^{-28} g Mass of one mole of electrons

$$= 6.023 \times 10^{23} \times 9.1 \times 10^{-28} g$$

$$= 5.48 \times 10^{-4} \text{g} = 0.548 \text{ mg}$$

 $\approx 0.55 \text{ mg}$

231 **(c)**

Eq. of metal = Eq. of Cl

$$\therefore \frac{74.4 - 35.5}{E} = \frac{35.5}{35.5}$$

$$E = 38.9$$

232 (a)

Equivalent wt of acid

molecular weight of acid

no. of H atoms replaced during reaction

∴ Equivalent weight of acid depends on the reaction involved because different number of acids are replaced during different reactions.

234 (d)

At. wt. = 2 × 31.82
∴Wt. of one atom =
$$\frac{2 \times 31.82}{N} = \frac{63.64}{N}$$

235 (a)

22.4 litre = 1 mole;

$$\therefore 1 \text{m}^3 = 10^3 \text{ litre} = \frac{10^3}{22.4} = 44.6$$

236 (c

$$2KClO_3 \rightarrow 2KCl + 3O_2 \uparrow$$
;

245 g KClO₃ on heating shows a wt. loss = 96 g (of O_2)

 $\rm ..100~g~KClO_3$ on heating shows a wt. loss

$$=\frac{96\times100}{245}$$
g = 39.18%

237 **(b)**

Meq. = Normality
$$\times V$$
 in mL
= $500 \times 0.2 = 100$

238 (a)

Number of molecules = $\frac{mass \times N_A}{molar\ mass}$

239 (d)

$$3F^- \equiv 1$$
 Formula unit (AlF₃)

$$3.0 \times 10^{24} F^- = 1 \times 10^{24}$$
 Formula units (AlF₃)

240 (d)

One mole of CO_2 contains 6.02×10^{23} atoms of carbon and 6.023×10^{23} molecules of oxygen.

241 **(b)**

See mole ratio A : B : C :: 1 : 2 : 1

242 (d)

1 mg C₄H₁₀ =
$$\frac{14N}{58} \times 10^{-3}$$
 atoms,

1 mg N₂ =
$$\frac{2N \times 10^{-3}}{28}$$
 atoms,

$$1 \text{ mg Na} = \frac{N \times 10^{-3}}{23} \text{ atoms,}$$

$$1 \text{ mL} = 1 \text{ g H}_2 0 = \frac{3N}{18} \text{ atoms,}$$

(: M g of a substance = N molecules = $a \times N$ atoms; where a is number of atoms in one molecule).

243 (c)

An aromatic hydrocarbon (empirical formula C_5H_4)

 $+H_2SO_4 \rightarrow$ monosulphonic acid

: 0.104 g of monosulphonic acid required 10 mL of $\frac{N}{20}$ NaOH for complete neutralisation

$$\therefore \frac{0.104}{n(5 \times 12 + 4 \times 1)} = \frac{1}{20} \times 10 \times 10^{-3}$$
$$n = \frac{104}{32} = 3.25 \approx 3$$

The molecular formula of hydrocarbon will be $C_{15}H_{12}$.

244 (a)

In 12 g carbon, mass of C-14 isotope = $12 \times \frac{2}{100} = 0.24g$

∴ Number of C-14 atoms in 12 g of $C = \frac{0.24}{14} \times 6.02 \times 10^{23}$ = 1.032×10^{22}

245 **(b)**

To prepare 20 g zinc sulphate crystals, zinc required

$$= \frac{22.65}{100} \times 20$$
$$= 4.53 g$$

246 **(b)**

Number of gram molecules = $\frac{6.02 \times 10^{25}}{6.02 \times 10^{23}} = 100$

247 (a)

Ferrous is Fe²⁺

248 **(b)**

$$M = \frac{5}{34 \times 100/1000} = 1.47$$

249 **(b)**

4.6 × 10²² atoms weight =13.8 g Hence, 6.02×10^{23} atoms will weigh = $\frac{13.8 \times 6.02 \times 10^{23}}{4.6 \times 10^{22}}$ = 108.6 g (molar mass)

250 **(c)**

Eq. of HCl = Eq. of CaCO₃ Thus, $\frac{w}{36.5} = \frac{100}{50}$; w = 73 g HCl;

50 g HCl is present in 100 g HCl solution and thus, volume of solution required for,

73 g HCl =
$$\frac{73 \times 100}{50}$$
 = 146g.

252 (d)

The law of constant composition—According to this law, "A chemical compound is always found to be made up of the same elements combined together in the same proportions by weights".

This law is same as law of definite proportions.

253 **(d)**

Atomic weight of the element $X = 6.643 \times 10^{-23} \times N_A = 40$ No. of moles of $X = \frac{20 \times 1000}{40} = 500$

254 (a)

Limiting reagent is one which is completely consumed in reaction.

255 (d)

 $\begin{array}{l} ppm = wt. \ of \ solute \ in \ 10^6 \ g \ H_2O \\ 10^3 \ g \ H_2O \ contains \ 10 \ g \ CaCO_3 \end{array}$

∴ 10^6 g H₂O contains $=\frac{10 \times 10^6}{10^3} = 10,000$ ppm CaCO₃

256 **(d)**

Milli mole of $BaSO_4 = 10$ Mole of $BaSO_4 = 10^{-2}$

257 (d)

Percentage of element M in $M_2O_3 = 53$

Let the atomic mass of M = x

Mass of Min $M_2O_3 = 2x$

Total atomic mass of $M_2O_3 = 2x + 16 \times 3$ = 2x + 48

Percentage of an element

 $= \frac{\text{Mass of an element in a compound}}{\text{Total mass of compound}} \times 100$ $53 = \frac{2x}{2x + 48} \times 100$

$$53 = \frac{}{2x + 48} \times 100$$
$$53(2x + 48) = 200x$$
$$x = 27$$

258 (a)

 H_3BO_3 accepts OH^- ions to act as weak monobasic Lewis acid.

 $H_3BO_3 + H_2O \rightarrow B(OH)_4^- + H^+; K_a = 10^{-9}$

259 (a)

Meq. of KOH added = $25 \times 0.4210 = 10.525$ Meq. of KOH left = $8.46 \times 0.2732 \times 2 = 4.623$

 \therefore Meq. of KOH used by oil = 10.525 – 4.623 = 5.902

or
$$\frac{w}{56} \times 1000 = 5.902$$

or $w \text{KOH} = 0.3305 \text{ g}$

∴Saponification no.

= wt. of KOH used in mg per g of

oil $= \frac{0.3305}{1.5763} \times 1000$

$$= 209.6$$

$$(NH_4)_2SO_4 \rightarrow 2NH_3 + H_2O + SO_3$$

 $3NH_3 + 2HCl \rightarrow 2NH_4Cl$
 $(NH_4)_2SO_4 \equiv 2NH_3 \equiv 2HCl$
 $132 g$ $73g$
 $73gHCl \equiv 132g(NH_4)_2SO_4$
 $292 g HCl \equiv \frac{132 \times 292}{73}g(NH_4)_2SO_4$
 $= 528 g(NH_4)_2SO_4$

261 **(d)**

The % ratio of silica and clay remains constant on heating

i.e.,
$$\frac{45}{43} = \frac{a}{92 - a}$$

∴ $a = 47\%$

262 **(b)**

N atom = 1 g atom

263 (a)

Meq. of conc. HCl = Meq. of dil. HCl
$$10 \times V_1 = 100 \times 1$$

$$V_1 = 10 \text{mL}$$

Thus, 10 mL of conc. HCl should be added 90 mL to make at 100 mL of desired normality.

264 (a)

$$CaF_2 = 146.4 g$$

Molecular weight of $CaF_2 = 78.08g/mol$

Moles of
$$CaF_2 = \frac{weight}{molecular weight}$$

$$= \frac{146.4}{78.08} = 1.875 \text{ mol}$$

Number of formula units of

CaF₂ in 146.4 g of CaF₂

= No. of moles
$$\times 6.022 \times 10^{23}$$

$$= 1.875 \times 6.022 \times 10^{23}$$

$$= 11.29 \times 10^{23}$$

$$= 1.129 \times 10^{24} \text{ CaF}_2$$

265 (a)

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O_2$$

: The weight of oxygen required for complete combustion of 28 g ethylene=96 g.

∴ Weight of oxygen required for combustion of 2.8 kg ethylene

$$=\frac{96\times2.8\times1000}{28\times1000}$$
 kg=9.6 kg

$$2Na_2HPO_4 + NaH_2PO_4 + 2(NH_2)_2CO$$

 $\rightarrow Na_5P_3O_{10} + 4NH_3 + 2CO_2$

Hence, the stoichoimetric ratio of sodium dihydrogen orthophosphate and sodium hydrogen orthophosphate is 2:1 or 3:1.5

268 **(b)**

44 g CO₂ = N molecules,
∴4.4 g CO₂ = N/10 molecules,
22.4 litre H₂at STP = N molecules,
∴ 2.24 litre H₂at STP = N/10 molecules,
Thus, total molecules =
$$\frac{N}{10} + \frac{N}{10} = \frac{N}{5}$$
.

269 **(c)**

Molecular mass of
$$CO_2 = 12 + 32 = 44$$

 $44g$ of CO_2 has = 6.023×10^{23} molecule
 $0.2g$ of CO_2 has = $\frac{6.023 \times 10^{23}}{44} \times 0.2$
= 0.0273×10^{23}

If 10^{21} molecules are removed then number of molecules

$$= 1.73 \times 10^{21}$$

$$: 6.023 \times 10^{23} \text{ molecules} = 1 \text{ mol}$$

$$1.73 \times 10^{21} \text{ molecules} = \frac{1}{6.023 \times 10^{23}} \times 1.73 \times 10^{21}$$

$$= 0.0028 \, \text{mol}$$

270 (a)

24 g carbon has 2N atoms. Rest all have I mole atoms.

271 **(b)**

 CuSO_4 5H₂O has 1 mole of copper and 9 moles of oxygen atoms,

63.5 g Cu = 9 × 16 g of oxygen
8.64 g of oxygen =
$$\frac{63.5 \times 8.64}{9 \times 16}$$

= 3.81 g

272 **(c)**

Meq. of
$$H_3PO_3 = Meq.$$
 of KOH
 $20 \times 0.1 \times 2 = 0.1 \times 1 \times V$

(H₃PO₃ is dibasic, KOH is monobasic)

$$V = 40 \text{ mL}$$

273 (a)

Given mass of $O_2 = 2$ g at $O^{\circ}C$ and 760 mm Hg 32 g of $O_2 = 22.4$ L at STP \therefore 2 g of $O_2 = \frac{22.4}{32} \times 2 = 1.4$ L

274 (a)

Ratio of atoms

$$C: H: N: O :: \frac{20.0}{12} : \frac{6.66}{1} : \frac{47.33}{14} : \frac{26.01}{16}$$

= 1.67: 6.66: 3.38: 1.63
= 1: 4: 2: 1

Empirical formula = CH_4N_2O Molar empirical formula mass = 60gMolecular formula = CH_4N_2O

275 **(b)**

 $Molarity = \frac{\text{moles of solute}}{\text{volume of solution}}; V_{\text{solution}} >$ 1 litre water.

277 (d)

Number of atoms = moles $\times N_A \times$ atomicity Here, N_A = Avogadro's number

(a) Number of oxygen atoms in 1 g of 0

$$= \frac{1}{16} \times N_A \times 1$$
$$= \stackrel{N_A}{\longrightarrow}$$

(b) Number of oxygen atoms in 1 g of 0_2

$$= \frac{1}{32} \times N_A \times 2$$
$$= \frac{N_A}{16}$$

(c) Number of oxygen atoms in 1 g of 0_3

$$=\frac{1}{48}N_A \times 3 = \frac{N_A}{16}$$

Hence, all have the same number of oxygen atoms.

278 **(b)**

$$N = \frac{4 \times 1000}{40 \times 100} = 1.0$$

279 (c)

Mohr's salt is $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$ Only oxidizable part is Fe²⁺.

$$[Fe^{2+} \to Fe^{3+} + e^{-}] \times 6$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

 $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+$

$$\rightarrow$$
 6Fe³ + 2Cr³ + 7H₂0

 $\rightarrow 6 F e^{3+} + 2 C r^{3+} + 7 H_2 O$ Millimoles of Fe²⁺ = 750 × 0.6 = 450

Moles of Fe²⁺ =
$$\frac{450}{1000}$$
 = 0.450 mol

6 mol $Fe^{2+}=1$ mol $Cr_2O_7^{2-}$

$$0.450 \text{ mol Fe}^{2+} = \frac{0.450}{6}$$

 $= 0.075 \text{ mol } \text{Cr}_2\text{O}_7^{2-}$

 $= 0.075 \times 294 g$

= 22.05 g

280 (d)

 $3BaCl_2 + 2Na_3PO_4 \rightarrow Ba_3(PO_4)_2 + 6NaCl$ See mole ratio from stoichiometry.

 $BaCl_2 : Na_3PO_4 : Ba_3(PO_3)_2 : NaCl :: 3 : 2 : 1 : 6$

281 **(d)**

Mole of Ca = $\frac{30}{40}$ (the largest value)

282 (a)

Meq. of NaOH = 0.1 V

Meq. of $CH_3COOH = 0.1 V$

: Meq. of CH₃COONa formed = 0.1 V

The solution will be alkaline due to hydrolysis of CH₃COONa.

283 **(b)**

According to law of conservation of mass,

Mass of reactants = mass of products

$$6.3+15.0=18.0+x$$

Or
$$x = 21.3 - 18.0 = 3.3 g$$

284 (d)

Mole of glucose =
$$\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} = 0.1$$

 $\therefore M_{\text{glucose}} = \frac{0.1 \times 1000}{50} = 2$

$$M_{\rm glucose} = \frac{0.1 \times 1000}{50} = 2$$

285 **(b)**

M > m provided d solvent ≤ 1

286 **(b)**

$$m = \frac{4}{40 \times 0.996} = 0.1$$

287 **(c)**

Eq. at
$$t = 0$$
 $\frac{6.5 \times 2}{224}$ $\frac{3.2}{36.2}$ 0 0 0 0 Eq. after 0 0.030 0.058 0.058

reaction

$$\therefore$$
 Mole of PbCl₂ formed = $\frac{0.058}{2}$ = 0.029

288 (a)

Meq. of
$$H_2SO_4 = 50 \times 0.1 \times 2 = 10$$
;

Meq. of NaOH =
$$50 \times 0.1 = 5$$

 \therefore Meq. of H₂SO₄ left = 10-5;

Solution is acidic.

289 (a)

 $18 \text{ mL H}_2\text{O}$ or $18 \text{ g H}_2\text{O}$ has 10 N electrons.

290 **(b)**

The compound is $C_4H_8O_2$;

$$Mol. wt. = 88$$

∴ Vapour density = 44

291 **(b)**

Meq. of oxalic acid = Meq. of NaOH:

$$\therefore \frac{w}{126/2} \times 1000 = 1000 \times 1;$$

$$\therefore$$
 $w = 63 \text{ g}$

292 **(b)**

Mole of sucrose =
$$\frac{\text{mass of sucrose (in gram)}}{\text{molecular weight of sucrose}}$$

= $\frac{25.6}{3423}$ =0.0747882

Formula of sucrose $=C_{12}H_{22}O_{11}$

Number of H atoms in 1 mole of sucrose

$$= 22 \times 6.023 \times 10^{23}$$

Number of H atoms in 0.0747882 mole of sucrose

$$= 22 \times 6.023 \times 10^{23} \times 0.074788$$

$$=9.9 \times 10^{23}$$

293 (c)

Liquid HCl is 100% pure

$$\therefore M = \frac{100 \times 1.17 \times 1000}{36.5 \times 100} = 32.05$$

294 (a)

Meq. of NaOH=Meq. of acid;

$$20 \times 0.4 = 40 \times N;$$

$$N = 0.2$$
 or $M = 0.1$

295 (c)

Mass of solute = 120 g

Mass of water = 1000 g

Mass of solution = 1120 g

$$\therefore$$
 Volume of solution $\left(\frac{m}{d}\right) = \frac{1120}{1.15}$ mL

Milli mole =
$$M \times V_{\text{in mL}}$$

$$\frac{120}{60} \times 1000 = M \times \frac{1120}{1.15}$$

$$M = 2.05$$

296 (a)

Eq. wt. =
$$\frac{\text{mol. wt.}}{\text{acidity}}$$

NH₃ is monoacidic base.

297 **(b)**

$$2\text{MnO}_4^- + 5\text{C}_2\text{O}_4^{2-} + 16\text{H}^+$$

$$\rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

 $20 \text{ mL of } 0.1 \text{ M KMnO}_4 = 20 \times 0.1 = 2 \text{m mol}$

 \therefore 2 mmol of KMnO₄ ≡ 5 mmol of C₂O₄²⁻

50 mL of 0.1 M $H_2C_2O_4 = 50 \times 0.1 = 5$ mmol

Hence, 20 mL of 0.1 M KMnO₄

$$\equiv$$
 50 mL of 0.1 M H₂C₂O₄

298 **(c)**_●

Solutions of known strength are prepared by dissolving solute in solvent in a measuring flask.

Let the percent abundance of lighter isotope is x.

: Atomic mass,
$$z = \frac{x(z-1) + (100-x)(z+2)}{z+100-x}$$

$$3x = 200 \text{ or } x = 66.6\%$$

300 (a)

Wt. of metal oxide

Wt. of metal chloride

$$= \frac{\text{Eq. wt. of metal} + \text{Eq. wt. of oxide}}{\text{Eq. wt. of metal} + \text{Eq. wt. of chloride}}$$

$$\frac{3}{5} = \frac{E+8}{E+35.5}$$

301 (d)

Volume of 100 g solution, $V = \frac{m}{\rho}$

$$= \frac{100g}{1.14g \,\mathrm{cm}^{-3}} = 87.72 \,\mathrm{cm}^3$$

Amount of sulphuric acid in 100 g solution,

$$n = \frac{m}{M} = \frac{20.0g}{98 \ g \ mol^{-1}} = 0.207 \ mol$$

Molarity of sulphuric acid,

$$M = \frac{n}{V} = \frac{0.207 \text{ mol}}{87.72 \times 10^{-3} \text{dm}^3} = 2.32 \text{ mol dm}^{-3}$$

302 **(b)**

Meq. of Fe^{2+} = Meq. of $FeCl_2$

$$= Meq. ofHCl = 50 \times 4 = 200;$$

$$\therefore$$
 Mole of Fe²⁺ = $\frac{200}{2} \times 10^{-3} = 0.1$

303 **(c)**

Meq. of HCl =
$$100 \times 0.3 = 30$$

Meq. of
$$H_2SO_4 = 200 \times 0.6 = 120$$

Meq. of
$$H_2SO_4 = 200 \times 0.6 = 120$$

$$\therefore N_{\text{mixture}} = \frac{30+120}{300} = \frac{1}{2}$$

304 **(b)**

Meq. of acid = Meq. of caustic potash

$$\frac{45}{90/n} \times 1000 = 200 \times 5$$

$$n=2$$

305 (c)

 $2Cr(OH)_3 + 4OH^- + KIO_3 \rightarrow 2CrO_4^{2-} + 5H_2O + KI$ Change in oxidation number of effective element

$$KIO_3 = (+5) - (-1) = 6$$

Equivalent weight of oxidation= $\frac{\text{mol. wt.}}{6}$

306 (c)

No. of atoms in 1g of $O_2(g) = 2 \times \frac{1}{32} \times 6.023 \times 10^{-2}$

$$= 0.38 \times 10^{23}$$

No. of atoms in 1g of $Ni(s) = \frac{1}{58.2} \times 6.023 \times 10^{23}$

$$= 0.10 \times 10^{23}$$

No. of atoms in 1g of $B(s) = \frac{1}{10.8} \times 6.023 \times 10^{23}$

$$= 0.58 \times 10^{23}$$

No. of atoms in 1g of $N_2(g) = 2 \times \frac{1}{28} \times 6.023 \times 10^{-2}$ 10^{23}

$$= 0.43 \times 10^{23}$$

Alternative: Smaller the atomic mass, larger will be the no. of atoms in sample.

307 (d)

Follow stoichiometry of reaction.

308 (c)

Mole of
$$O_2 = \frac{3.2}{32} = \frac{1}{10}$$

∴atoms of $O = 2N \times \frac{1}{10} = 12.04 \times 10^{22}$

309 (a)

No. of molecules in n mole = $n \times$ Av. no; Also no. of atom in 1 molecule = atomicity.

310 (d)

Moles =
$$\frac{\text{mass}}{\text{molecular mass}}$$

Given, mass of Al₂(SO₄)₃ = 50g
Molecular mass of Al₂(SO₄)₃ = 342 g
∴ Moles of Al₂(SO₄)₃ = $\frac{50}{342}$ = 0.14 mol

311 (c)

In air

Molecular weight of
$$N_2 = \frac{28 \times 78}{100} = 21.84$$

Molecular weight of $O_2 = \frac{32 \times 21}{100} = 6.72$
Molecular weight of $Ar = \frac{18 \times 0.9}{100} = 0.162$
Molecular weight of $CO_2 = \frac{44 \times 0.1}{100} = 0.044$
So, molecular weight of air = $21.84 + 6.72 + 0.162 + 0.044$
= 28.766

312 (d)

Meq. of oxide = Meq. of hydroxide;
Thus,
$$\frac{0.995}{E+8} = \frac{1.520}{E+17}$$
 $\therefore E = 9$

313 (d)

Per cent loss of H₂O in one mole of Na₂SO₄ · nH₂O = $\frac{18n \times 100}{(142+18n)}$ = 55

 \therefore n=10

315 (c)

VD of substance = 4 (when VD of $CH_4 = 1$) ∴VD of substance = 8×4 (when VD of $CH_4 = 8$) ∴mol. wt. of substance = $32 \times 2 = 64$

316 (d)

According to Dulong and Petit's law
At. mass of element× specific heat (in cal/g)=6.4(app.)
This law is applicable only to solid elements excepts Be, B, C and Si.

317 (a)

$$M_{\text{H}_2\text{O}} = \frac{\frac{1000 \times d}{18}}{1} = 55.6 \times d$$

$$\therefore \quad d = 1 \quad \therefore M = 55.6$$

318 (a)

Follow definition of molality.

319 (a)

1 mole (g mol. wt.) of a substance displaces 22.4 litre air at NTP.

320 (d)

$$M = \frac{\text{wt.} \times \text{density} \times 1000}{\text{m. wt.} \times \text{wt. of solution}}$$
$$3.6 = \frac{^{29 \times d \times 1000}}{^{98 \times 100}}$$
$$d = 1.22 \text{g/mL}$$

321 **(c)**

Mass of 1 atom =
$$1.8 \times 10^{-22}$$
g
Mass of 6.02×10^{23} atoms
= $6.02 \times 10^{23} \times 1.8 \times 10^{-22}$ g
= $6.02 \times 1.8 \times 10$ g
= 108.36 g

∴ Atomic mass of element = 108.36

322 **(d)**

$$\begin{array}{l} 9.108 \times 10^{-31} kg = 1 electron \\ \therefore \qquad 1 kg = \frac{1}{9.108 \times 10^{-31}} electron \\ = \frac{1}{9.108 \times 10^{-31}} \times \frac{1}{6.023 \times 10^{23}} \text{ mole electron} \end{array}$$

323 **(c)**

244 g BaCl₂ · 2H₂O contains 2 moles of water.

324 **(b)**

 $16 \text{ g CH}_4 = 1 \text{ mole CH}_4 = N \text{ molecules of CH}_4$

325 **(c)**

 $2MnO_4^- + 5C_2O_4^{2-} + 16H^+$

326 **(d)**

 $KMnO_4$ reacts with oxalic acid according to the following equation.

328 (a)

Mohr's salt is $(NH_4)_2SO_4$. FeSO₄. $6H_2O$ The equation is $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ Total change in oxidation number of iron = (+3) - (+2) = +1So, equivalent wt. of Mohr's salt

$$= \frac{\text{Mol. wt. of Mohr's salt}}{1}$$
$$= \frac{392}{1}$$
$$= 392$$

331 **(c)**

For minimum molecular mass, there must be one S atom per insulin molecule.

If 3.4 g S is present, the molecular mass = 100 \therefore If 32 g S is present, the molecular mass = $\frac{100 \times 32}{3.4}$ = 941.176

332 (d)

 $200\ cc\ of\ NH_3$ at STP contains maximum number of molecules because NH_3 compound has lowest molecular weight and highest volume than other compounds.

333 (a)

N molecule of $H_2O = 18$ g

$$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$$

2 cc 5 cc
 100 cc 250 cc

Hence, air will be needed = $\frac{100}{20} \times 250$ = 1250 cc

335 (a)

Eq. of ca = Eq. of O;

$$\frac{1.35}{E} = \frac{0.53}{8}$$

$$E = 20.37$$

336 **(b)**

$$N = \frac{2.7 \times 1000}{(98/3) \times 250} = 0.33$$

337 (c)

Elements react in same number of equivalent and give same number of equivalents of products.

Also equivalent = weight equivalent weight

338 (c)

$$W_{N_2} = \frac{1 \times P \times 28}{RT}; W_{CO} = \frac{1 \times P \times 28}{RT}; W_{O_2}$$
$$= \frac{7}{8} \times \frac{P \times 32}{RT}$$

339 (c)

Meq. of NaOH = Meq. oxalic acid; $0.1 \times 1 \times V = 20 \times 0.05 \times 2$;

V = 20 mL

340 **(b)**

M. f. =
$$\frac{\text{moles of solute}}{\text{moles of solute} + \text{moles of water}}$$
$$= \frac{1}{1 + \frac{1000}{18}} = 0.018$$

It remains unchanged.

342 **(d)**

Elem	%	At.	Ratio of	Simplest
ent		no.	atoms	ration
С	54.5	12	54.55/12=	4.54/2.2
	5		4.54	7=2
Н		1		
	9.09		9.09/1=9.0	9.09/2.2
0		16	9	7=4
	36.0			
	6		36.16/16=	2.27/2.2
			2.27	7=1

 \therefore Empirical formula is C_2H_4O .

343 (a)

 $_6\mathrm{C}^{12}$ contains 6 N protons, 6 N electrons and 6 N neutrons.

344 **(d)**

Meq. of
$$H_3PO_4 = Meq.$$
 of $Ca(OH)_2$;
 $0.25 \times 3 \times V = 25 \times 0.03 \times 2$
 $\therefore V = 2 \text{ mL}$

345 (a)

$$2PH_3(g) \longrightarrow 2P(s) + 3H_2(g)$$

 $100 \quad 0 \quad \text{Before dissociation}$
 $0 \quad - \quad 150 \quad \text{After dissociation}$

346 (c)

$$m = \frac{\text{moles of CH}_3\text{COOH}}{\text{wt. of solvent in kg}} = \frac{2.05 \times 1000}{897} = 2.285$$
wt. of solvent = wt. of solution-wt. of solute
$$= [1000 \times 1.02 - 2.05 \times 60] =$$

897 g

347 **(c)**

Meq. of NaOH = Meq. of HCl

$$100 \times 0.1 = 10$$

 $\therefore \frac{wt}{40} \times 1000 = 10$; $\therefore w_{\text{NaOH}} = 0.4\text{g}$

348 (a)

Meq. of Na₂CO₃ = 250 × 0.25 × 2 = 125

$$\frac{w}{53} \times 1000 = 125$$

$$w = 6.625$$

349 (a)

$$\frac{n}{n+N} = 0.2;$$

$$\frac{N}{n+N} = 0.8$$
Thus,
$$\frac{n}{N} = \frac{1}{4}$$
or
$$\frac{n \times 18 \times 1000}{W \times 1000} = \frac{1}{4}$$
or
$$\frac{\text{molality } \times 18}{1000} = \frac{1}{4}$$

350 (a)

%by weight =
$$\frac{\text{weight of solute}}{\text{weight of solution}} \times 100$$

or $20 = \frac{w}{(w+60)} \times 100$

351 **(b)**

or

$$C_3H_8 + 5 O_2 \rightarrow 3CO_2 + 4H_2O$$

1 mol or 22.4 L C_3H_8 at STP requires 5 mole or $5 \times 22.4 O_2$ at STP.

352 (d)

22.4 litre refers for mol. wt.

w = 15g

∴ 11.2 litre refers for $\frac{\text{mol.wt.}}{2}$ = vapour density.

353 (c)

$$N = \frac{10 \times 1000}{60 \times 100} = 1.66$$

354 (c)

 $K_2S_2O_8$ (aq) + 2KI $(aq) \rightarrow 2K_2SO_4(aq) + I_2(aq)$ In this reaction one mole of $K_2S_2O_8$ reacts with 2 moles of KI,

Hence the stoichiometry of this reaction is 1:2.

355 (d)

Mole fraction =
$$\frac{\text{moles of alcohol}}{\text{total moles}} = \frac{2}{2+6} = \frac{2}{8}$$

= 0.25

356 **(b)**

$$Ba(HO)_2 + 2HCl → BaCl_2 + 2H_2O$$
meq. $30 \times 0.1 \times 2 \quad 20 \times 0.05 \quad 0 \quad 0$

$$=6 \quad =1$$

$$5 \quad 0 \quad 1 \quad 1$$
∴ $[OH^-] = \frac{5}{50} = 0.1 \text{ M}$

357 **(a)**

NaHCO₃ being an acid salt will react with NaOH as,

 $NaOH + NaHCO_3 \rightarrow Na_2CO_3 + H_2O$

358 **(b)**

Eq. of metal oxide = Eq. of oxygen $\frac{100}{100} = \frac{20}{100} \implies E = \frac{100}{100}$

359 **(b)**

According to the equation,

$$NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$$

No. of moles of NaCl =
$$\frac{4.77}{58.5}$$
 = 0.08154

No. of moles of AgNO₃ = $\frac{5.77}{170}$ = 0.03394

Thus, $AgNO_3$ is the limiting reagent in the reaction.

Now, applying POAC for Ag (as Ag atoms are conserved in the reaction)

Moles of Ag in AgNO₃ = moles of Ag in AgCl Or $1 \times \text{moles of AgNO}_3 = 1 \times \text{moles of AgCl}$ Or $0.03394 \times 143.4 \text{(for AgCl)} = 4.87g$ 360 (d)

100 ML
$$O_2$$
, NH_3 and $CO_2 = \frac{0.1}{22.4} = \frac{1}{224}$ mol
For O_2 no. of molecules $= \frac{1}{224} \times 6.023 \times 10^{23}$
For NH_3 no. of molecules $= \frac{1}{224} \times 6.023 \times 10^{23}$
For CO_2 no. of molecules $= \frac{1}{224} \times 6.023 \times 10^{23}$

361 **(d)**

It is the basic definition of equivalent weight.

364 (c)

Mole fraction of $H_2O = 0.85$; Mole fraction of $H_2SO_4 = 0.15$;

$$\therefore \frac{\text{M. f. of H}_2\text{SO}_4}{\text{M. f. of H}_2\text{O}} = \frac{\text{mole of H}_2\text{SO}_4}{\text{mole of H}_2\text{O}} = \frac{0.15}{0.85};$$

$$m = \frac{\text{mole of H}_2\text{SO}_4}{\text{wt. of H}_2\text{O in kg}} = \frac{\text{mole of H}_2\text{SO}_4 \times 1000}{18 \times (\text{wt. of H}_2\text{O}/18)}$$
or
$$m = \frac{\text{mole of H}_2\text{SO}_4}{\text{mole of H}_2\text{SO}_4} \times \frac{1000}{18}$$

$$= \frac{0.15 \times 1000}{0.85 \times 18} = 9.8$$

365 **(b)**

0.1 mole has atoms =
$$0.1 \times 6.02 \times 10^{23} \times 3$$

= 1.806×10^{23}

366 (d)

 $16 ext{ g O contains } N ext{ atoms of O}$ $32 ext{ g O}_2 ext{ contains } 2N ext{ atoms of O}$ $48 ext{ g O}_3 ext{ contains } 3N ext{ atoms of O}$

367 **(b)**

We know that,
$$E = F \cdot z$$

$$E = 96500 \times x$$

368 (c)

Victor meyer's method is used for volatile substances.

369 (a)

Per cent of oxygen in NaOH $=\frac{16 \times 100}{40} = 40$.

370 (d)

71 g Cl₂ reacts with 64 g S, \therefore 35.5 g Cl₂ reacts with 32 g S.

371 **(d)**

Wt. of metal hydroxide

Wt. of metal oxide
$$= \frac{\text{Eq. wt. of metal} + \text{Eq. wt. of OH}^-}{\text{Eq. wt. of metal} + \text{Eq. wt. of O}_2^{--}}$$

$$\Rightarrow \frac{1.520}{0.995} = \frac{E + 17}{E + 8}$$
On solving, $E = 9.0$

372 (d)

Dulong Petit's law: at. wt. \times sp. heat ≈ 6.4

373 (c) $3H_2 + N_2 \rightarrow 2NH_3$; Initial volume or mole = 4 Final volume or mole = 2

374 **(b)**

As, we know that least count of the instrument is equal to the most possible error of the instrument 381 (c) hence, least count of the instrument will be 0.01 cm.

375 (a)

M₂HPO₄ means valence of metal is one and thus, sulphate of metal is M_2SO_4 .

376 **(b)**

Change in oxidation number $0.5 \times 2 = 1$

Change in oxidation number = $1 \times 2 = 2$

Equivalent mass of $Na_2S_2O_3 = \frac{M_1}{1} = M_1$ Equivalent mass of $I_2 = \frac{M_2}{2}$

377 **(b)**

$$\frac{(29.2 - 20.2)(1.79 \times 10^5)}{1.37} = \frac{9.0 \times 1.79 \times 10^5}{1.37}$$

Since, there are two SF in 9.0, the answer must also have two significant figures.

378 (c)

In 100 g haemoglobin, mass of iron = 0.33 g ∴ in 67200 g haemoglobin, mass of iron = 67200×0.33 100

∴ the number of Fe atoms in one Hb molecule

379 (d)

Increases in oxidation state = 2 $H_2S + 2HNO_3 -$

Hence, the equivalent weight of

$$H_2S = \frac{\text{molecular weight}}{\text{change in oxidation number}} = \frac{34}{2} = 17.$$

C	Н	N
9	1	3.5
9/12=0.75	1/1=1	3.5/14=0.25
$\frac{0.75}{0.25} = 3$	$\frac{1}{0.25} = 4$	$\frac{0.25}{0.25} = 1$

So, empirical formula=C₃H₄N

$$n = \frac{108}{54} = 2$$

Molecular formula= $(C_3H_4N)_2 = C_6H_8N_2$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

The heat of combustion of 10 g CH₄

$$= -560 \text{ kJ}$$

So, the heat of combustion of 16 g CH₄

$$= \frac{-560}{10} \times 16$$

= -896 kJ/mol

Meq. of
$$H_2SO_4 = Meq.$$
 of NaOH
 $0.1 \times 2 \times V = 50 \times 0.2 \times 1$

$$V = 50 \text{ mL}$$

$$\begin{array}{cc} CO_2 & + C \longrightarrow 2CO \\ 1 & 1 \longrightarrow 2x \end{array}$$

$$1 - x + 2x = 1.4 \text{ find } x$$

384 **(b)**

Follow definition of equivalent weight.

385 **(b)**

In first oxide.

Mass of arsenic = 65.2

Mass f oxygen = 34.8

 \therefore Eq. mass of arsenic = $\frac{65.2}{34.8} \times 8 = 14.99$

In second oxide.

Mass of arsenic = 75.7 g

Mass of oxygen = 24.3 g

 \therefore Eq. mass of arsenic = $\frac{75.7}{24.3} \times 8 = 24.92$

Eq. mass of arsenic: Eq. mass of arsenic (oxide I) (oxide II)

386 (a)

Meq. of metal = Meq. of oxygen

$$\frac{60}{E} = \frac{40}{8}$$

$$E = 12$$

$$E = 12$$

Now, Meq. of metal = Meq. of bromide

$$\frac{100 - a}{12} = \frac{a}{80}$$

$$a \approx 87\%$$

387 (a)

Meq. of oxalic acid = Meq. of NaOH

$$\frac{6.3}{63} \times \frac{1000}{250} \times 10 = 0.1 \times V$$
$$V = 40 \text{ mL}$$

The combustion of methane can be represented by the following equation

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 890 \text{ kJ}$$

16 g

∴ 16 g CH₄ burns in air to liberate=890 kJ of heat

∴ 3.2 g CH₄ will liberate=
$$\frac{890 \times 3.2}{16}$$

=178 kJ of heat

390 (a)

1.12 litre $H_2 \equiv 1.2 \text{ g}$

 \therefore 11.2 litre H₂ = 12 g

391 (a)

Amount of H_2O_2 in 1 mL. = $\frac{34}{1120}$ g

Also, 34 g $\rm H_2O_2$ gives 16 g $\rm O_2$ of 11.2 litre $\rm O_2$ at STP

$$\therefore \frac{34}{1120} \text{g H}_2 \text{O}_2 = \frac{11.2 \times 34}{1120 \times 34} \text{ litre O}_2$$
$$= \frac{1}{100} \text{ litre}_{\text{O}_2} = 10 \text{ mL O}_2$$

392 (c)

$$CaCl_2 + CO_3^{2-} \rightarrow CaCO_3 + 2Cl^{-}$$

1008

 $CaCO_3 \rightarrow CaO + CO_2$

100 g 56g

 \because 56 g CaO is obtained by decomposition of

 $CaCO_3 = 100g$

 \div 0.959 g CaO will be obtained by the

decomposition of

$$CaCO_3 = \frac{100 \times 0.959}{56}$$

= 1.71g

Further,

 $100 \text{ g CaCO}_3 \equiv 111 \text{gCaCl}_2$

$$1.71g \, \text{CaCO}_3 = \frac{111 \times 1.71}{100}$$

 $=1.89 \text{ g CaCl}_{2}$

% of CaCl₂ in the mixture = $\frac{1.89}{4.22} \times 100$

= 44.78

= 45%

393 (d)

1 mole NH_3 ≡ 10 N electron

$$\frac{11.2}{22.4}$$
 mole NH₃ = $10 \times N \times \frac{1}{2} = 3.01 \times 10^{24}$ electron

394 (a)

Number of atoms in $N_2 = \frac{11.2 \times 10^{-3} \times 6.023 \times 10^{23} \times 2}{22.4}$

 $= 6.023 \times 10^{20}$

Number of atoms in NO = $\frac{0.015 \times 2 \times 6.023 \times 10^{23}}{30}$

 $= 6.023 \times 10^{20}$

395 **(a)**

For poly atomic molecules, mol. wt. = at. wt. \times atomicity .

396 **(a)**

(a) Density of water = $1g \text{ cm}^{-3}$

Mass of water= $1 \text{ m}^3 = 10^6 \text{ cm}^{-3}$

 $Mass = volume \times density$

$$= 10^6 \text{ cm}^{-3} \times 1 \text{ g cm}^{-3}$$

 $=10^{6}$

$$=\frac{10^6}{10^3}$$
kg

= 1000 kg

(b) Mass of normal adult man = 65 kg

(c) Density of Hg = 13.6 g cm^{-3}

Volume of Hg = $10L = 10 \times 1000 \text{ cm}^{-3}$

$$\therefore$$
 Mass of Hg = $13.6 \times 10 \times 1000$

 $= 136000 \,\mathrm{g}$

= 13.6 kg

∴ Mass of 1m³ water is highest.

397 (c)

Equivalent weight of metal

$$= \frac{\text{wt. of metal}}{\text{wt. of chlorine}} \times 35.5$$
$$= \frac{(74.5 - 35.5) \times 35.5}{35.5} = 39$$

398 (c)

Element	%	% At. wt.	Ratio
N	30.5	30.5/14=2.18	1
0	69.5	69.5/16=4.34	2

Empirical formula=NO₂

Empirical formula weight=46

$$n = \frac{92}{46} = 2$$

 \therefore Molecular formula= $(NO_2)_2 = N_2O_4$

401 (c)

Empirical formula of glucose = CH_2O ; Molecular formula of glucose = $(CH_2O)_6$.

402 (a)

1 mole of CH_3COOH has 24 carbon = 2 g atom of carbon or 2 mole of carbon atoms, 4 mole of H atom and two mole of oxygen atoms.

403 (d)

Mass of one molecule of water

$$= \frac{\text{mol. mass}}{N_0} = \frac{18}{6.02 \times 10^{23}} g$$

 \therefore Volume of 1 molecule of water = $\frac{mass}{density}$

$$= \frac{18 \times 10^{-23}}{6.02 \times 1}$$
$$= 3 \times 10^{-23} \text{ mL}$$

404 **(b)**

Meq. of NaOH = $0.45 \times 2V + 0.6 \times V$ Total volums = 3V $N \times 3V = 0.45 \times 2V + 0.6V$:

$$N \times 3V = 0.45 \times 2V + 0.6V$$

$$N = 0.5$$

405 (d)

In a chemical reaction, coefficient represents mole 413 (a) of that substance.

$$X + 2Y \longrightarrow Z$$

This indicates 1 mole of *X* reacts with 2 moles of *Y* to form 1 mole of *Z*.

So, 5 moles of *X* will require 10 moles of *Y*. But we have taken only 9 moles of *Y*.

Hence, *Y* is in limiting quantity. Hence, we determine product from *Y*.

Thus, 5 moles of X react with 9 moles of Y to form $\begin{vmatrix} 414 \end{vmatrix}$ **(b)** 4 moles of Z.

406 (c)

Average value =
$$\frac{25.2+25.25+25.0}{1} = \frac{75.45}{3}$$

= 25.15 = 25.2 mL

Number of significant figure is 3.

407 **(b)**

$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O$$

208 g 98 g 233 g

100 mL of 20.8% $BaCl_2$ solution contains = 20.8 g BaCl₂

 $50 \text{ mL of } 9.8\% \text{ H}_2\text{SO}_4 \text{ solution contains} =$ $4.9 \text{ g H}_2\text{SO}_4$

Here, H₂SO₄ is the limiting reactant.

 $: 98g H_2SO_4$ gives $BaSO_4 = 233 g$

∴ 4.9 g H₂SO₄ will give BaSO₄ = $\frac{233 \times 4.9}{98}$

409 **(b)**

Meq. of NaOH left

$$= 20 \times 0.1 - 10 \times 0.1 = 1;$$

Thus, solution is alkaline and phenolphthalein gives pink colour in alkaline medium.

410 (a)

558.5 g Fe
$$\frac{558.5}{55.85}$$
 mole Fe = 10 mole Fe
= 2 × 5mole C = 2 × 60 g C

411 (d)

20 g *N*, then mol. wt. =
$$\frac{100}{20}$$
 = 70;

At least one *N* atom must present in one molecule.

412 (a)

$$\begin{array}{cccc} C_6 & H_{13} & OH & \stackrel{-H_2O}{\longrightarrow} & C_6H_{12} \\ \mathrm{mol.} & \mathrm{wt.} & ^{102} & \stackrel{-}{\longrightarrow} & \mathrm{mol.} & \mathrm{wt.} & 84 \end{array}$$

 $: 102 \text{ g cyclohexanol gives } 84 \text{ g C}_6 \text{H}_{12}$

: 102 g cyclohexanol will give = $\frac{84 \times 100}{102}$ g C₆H₁₂

Also % yield is 75%

 $\because 100 \text{ g cyclohexanol will give} = \frac{84 \times 100}{102} \times$ $\frac{75}{100}$ g C₆H₁₂

 $= 61.769 \text{ g C}_6 \text{H}_{12}$

$$\begin{array}{cccc} H_2 & + & \frac{1}{2} & O_2 & \longrightarrow & H_2 O \\ & \frac{100}{2} & & \frac{100}{32} & 0 & \text{Mole before reaction} \\ & & & \\ \hline \frac{100}{2} & -\frac{100 \times 2}{32} & & : & 0 & : & \frac{100 \times 2}{32} & \text{Mole ratio aftre} \\ & & & & \\ \hline \end{array}$$

[Now mole ratio for $H_2: O_2: H_2O: 1: 1/2: 1$; Also, O_2 is limiting reagent thus

∴ wt. of H₂O formed =
$$\frac{100 \times 2}{32} \times 18 = 112.5 \text{ g}$$

Number of molecules in *n* moles of substance=

$$= n \times 6.023 \times 10^{23}$$

$$\frac{N \text{ (no. of molecules)}}{n \text{ (no. of moles)}} = ?$$

$$n \times 6.023 \times 10^{23}$$

$$\frac{n \times 6.023 \times 10^{23}}{n} = 6.023 \times 10^{23}$$

415 **(d)**

Conc. Of Na⁺ =
$$\frac{100 \times 0.1}{200} + \frac{100 \times 0.1 \times 2}{200} = 0.15M$$

 \therefore Ionic strength of Na⁺ = $\frac{1}{2} \sum C Z^2 = \frac{1}{2} \times [0.15 \times 1^2] = 0.075$

416 (a)

98 g H₂SO₄ contains 32 g S or 1 mole of S

417 (d)

$$Ag_2CO_3 \rightarrow 2Ag + CO_2 + \frac{1}{2}O_2$$
As 276 g of Ag_2CO_3 will give = 216g of Ag
So, 2.76 g of Ag_2CO_3 will give = $\frac{2.76 \times 216}{276} = 2.16g$

Mole fraction of
$$O_2 = \frac{8/32}{7/28 + 8/32} = 0.5$$

419 (c)

Meq. of
$$H_2SO_4 + Meq.$$
 of $SO_3 = Meq.$ of NaOH
$$\frac{(0.5 - a)}{49} \times 1000 + \frac{a}{80/2} \times 1000 = 26.7 \times 0.4$$

$$\therefore \qquad a = 0.103$$

$$\therefore \qquad \% \text{ of } SO_3 = \frac{0.103}{0.5} \times 100 = 20.6\%$$

420 **(b)**

Given, moles of Ba(OH)₂=0.205
Ba(OH)₂ + CO₂
$$\rightarrow$$
 BaCO₃ + H₂O
 \therefore 0.205 moles of Ba(OH)₂ \equiv 0.205 moles of BaCO₃

 \therefore Mass of BaCO₃=moles of BaCO₃ × molecules 435 **(b)** mass of BaCO₃

 $= 0.205 \times 197.3$

 $= 40.5 \, \mathrm{g}$

422 **(b)**

$$M = \frac{5.3}{106 \times 1} = \frac{1}{20}$$

423 **(a)**

Meq. of conc. $AgNO_3 = Meq.$ of dil. $AgNO_3$

i.e.,
$$\frac{40 \times 10^{-3}}{170} \times 1 = \frac{16 \times 10^{-3}}{170} \times V,$$

426 **(b)**

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Mole ratio of $CH_4: O_2:: 1: 2$

427 **(b)**

Meq. of CO_2 in mixture $=\frac{20}{40} \times 1000 = 500$

∴Mole of CO₂ in mixture

$$= \frac{500}{2 \times 1000} = \frac{1}{4} \text{ (Eq. wt. of CO}_2 = M/2)$$

∴ Mole of CO in mixture = $\frac{3}{4}$

If this CO is completely oxidised to CO₂ then mole of CO_2 formed = $\frac{3}{4}$

 \therefore Total mole of $CO_2 = \frac{1}{4} + \frac{3}{4} = 1$

∴ Mole of NaOH required

= 2
$$\times$$
 mole of $CO_2 = 2 \times 1 = 2$

:Wt. of NaOH required = $2 \times 40 = 80$ g

428 **(b)**

Eq. wt. =
$$\frac{\text{mol. wt.}}{\text{basicity}} = \frac{M}{2} = \frac{98}{2} = 49;$$

Basicity = 2; Only two H are replaced.

429 (a)

4 g He = N atoms.

430 (a)

ppm a unit to express hardness is amount of CaCO: present in 10^6 g H_2O of a given sample.

431 (a)

Eq. of metal = Eq. of oxygen

$$\therefore \frac{80}{E} = \frac{20}{8}$$

$$E = 32$$

432 (a)

Meq. of $AgNO_3 = 100 \times 1 = 100$;

Meq. of $CuSO_4 = 100 \times 1 \times 2 = 200$;

Thus, H₂S is also needed in the same ratio.

433 **(c)**

22.4 litre O_2 at STP = 1 mole.

434 (a)

$$N_{\text{HCl}} = \frac{0.03659 \times 1000}{36.5} = 1.002 \, N$$

$$N_{\text{CH}_3\text{COOOH}} = \frac{0.04509 \times 1000}{60} = 0.7515 \, N$$

Eq. wt. =
$$\frac{\text{mol.wt.}}{\text{basicity}}$$

436 (c)

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

1 mol 3 mol

Volume of 1 mole carbon monoxide

=22.4 L (at STP)

1 mole of ferric oxide is reduced by=3 moles of CO

$$= 3 \times 22.4 \text{ L of CO}$$

= 67.2 dm³ of CO

437 (c)

$$PV = \frac{w}{m}RT$$

$$\therefore 1 \times \frac{224}{1000} = \frac{1}{m} \times 0.0821 \times 273$$

∴Mol. wt. of gas = 100

Now 3 N atoms (triatomic gas) weighs 100 g

∴ 1 atom of gas weights

$$= \frac{100}{3N} = \frac{100}{3 \times 6.023 \times 10^{23}} g$$
$$= 5.53 \times 10^{-23} g$$

438 **(b)**

Weight of empirical formula CH₂=14 Mass of 1 mole=molecular weight=56

$$n = \frac{\text{molecular weight}}{\text{empirical formula weight}} = \frac{56}{14} = 4$$
Melecular formula (CLL)

Molecular formula=(CH₂)₄

$$= C_4 H_8$$

439 (c)

5. Atoms in 2.0 mol of

$$S_8 = 2 \times 8 \times 6.02 \times 10^{23}$$

$$= 9.632 \times 10^{24}$$

2. Atoms in 6.0 mol of $S=6 \times 6.02 \times 10^{23}$

$$= 3.612 \times 10^{24}$$

Atoms in 5.5 mol of 6.

$$SO_2 = 3 \times 5.5 \times 6.02 \times 10^{23} = 9.93 \times 10^{24}$$

Atoms in 4.48 L of CO₂ at

$$STP = \frac{3 \times 4.48 \times 6.02 \times 10^{23}}{22.4}$$

$$= 3.612 \times 10^{23}$$

440 (a)

The definition of % by weight.

441 (a)

1 mole of $MgSO_4 = Mg \approx 120 g$

442 **(c)**

Mole fraction of alcohol = $\frac{1}{1+4} = \frac{1}{5}$;

M. f. of water = 4/5

443 (d)

$$Valence = \frac{26.89}{8.9} \approx 3$$

 \therefore Exact at. wt. = 8.9 \times 3 = 26.7

444 (c)

As both the reactants are consumed completely, thus the ratio of stoichiometric coefficients would be 0.75: 2 or 3:8

So,

$$3A_4 + 8O_2 \rightarrow Product$$

Now as final pressure is half of oxygen initially, thus the molecular formula will be A_3O_4 to balance the equation correctly, ie,

$$3A_4 + 8O_2 \longrightarrow 4A_3O_4$$

445 **(b)**

$$M_{\text{Na}_2\text{CO}_3} = M_{\text{Na}^+} \times 2 = M_{\text{CO}_3^{2^-}}$$

and $M_{\text{Na}_2\text{CO}_3} = \frac{25.3 \times 1000}{106 \times 250} = 0.955$

Thus (b) is correct.

446 (c)

$$2NO + O_2 \rightarrow 2NO_2$$

$$32g \quad 2 \times 46g$$

$$: 92 \text{ g NO}_2 \text{ uses O}_2 = 32 \text{ g}$$

$$\therefore 10 \text{ g NO}_2 \text{ uses O}_2 = \frac{32}{92} \times 10 = 3.48 \text{ g}$$

447 (c)

Milli mole, in of $I = 480 \times 1.5 = 720$ Milli mole, in of II = $520 \times 1.2 = 624$

Total mm =
$$720 + 624 = 1344$$

Total $V = 480 + 520$
= 1000 ML

$$M \times 1000 = 1344$$
 or $M = 1.344$

449 (c)

Camphor is used in molecular mass determination due to volatile nature. The method is called Rast's camphor method. Camphor acts as a solid solvent which is volatile, hence can be removed easily.

Weight of solvent = weight of solution - weight of NaCl

$$= 1.0585 \times 1000 - 58.5$$

= $1058.5 - 58.5 = 1000 \text{ g} = 1$

$$kg$$

$$m = \frac{\text{mole of N}}{\text{mole of N}}$$

$$m = \frac{\text{mole of NaCl}}{\text{weight of solvent in kg}} = \frac{1}{1} = 1$$

451 (c)

Elemen	%	Relative	Simplest ratio
t		no. of atom	
С	49.3	49.3	4.1
Н	6.84	$\begin{vmatrix} \frac{1}{12} = 4.1 \\ \frac{6.84}{1} \\ = 6.84 \end{vmatrix}$	$ \begin{array}{r} \hline 2.74 \\ = 1.5 \times 2 = 3 \\ \hline 6.84 \\ \hline $
0	43.86	43.86	2.74 = $2.5 \times 2 = 5$
		16 = 2.74	$\frac{2.74}{2.74} = 1 \times 2 \\ = 2$

The empirical formula is $C_3H_5O_2$

Empirical formula weight

$$= (3 \times 12) + (5 \times 1) + (2 \times 16)$$

$$= 36 + 5 + 32$$

$$= 73$$

Molecular wt. of the compound

$$= 2 \times VD$$

$$=2\times73$$

$$=146$$

$$n = \frac{\text{mol. wt.}}{\text{empirical formula wt.}}$$

$$=\frac{146}{73}$$

Molecular formula=empirical formula × 2

$$= (C_3H_5O_2) \times 2$$

$$= C_6 H_{10} O_4$$

452 (c)

10 % glucose means 10 g glucose is present in 100 mL solution.

453 **(b)**

1 molecules of $Ca(OH)_2$ contains 5 atoms;

 \therefore 1 mole contains 5*N* atoms

454 (d)

 H_3PO_3 is diabasic acid, thus.

$$N = 2 \times M = 2 \times 0.3 = 0.6$$

455 (c)

Meq. of carbonate = Meq. of acid;

$$\therefore \frac{0.84}{E} \times 1000 = 40 \times \frac{1}{2}$$

$$E = 42$$

456 (c)

Avogadro's number depends upon the basis of atomic weight scale

$$12g C \equiv 6.023 \times 10^{23} \text{ atoms}$$

$$6g\ C \equiv \frac{6.023 \times 10^{23} \times 6}{12} = \frac{1}{2} \times 6.023 \times 10^{23} atoms$$
 or $1\ amu = \frac{1}{N} = \frac{2}{6.023 \times 10^{23}} = 3.3 \times 10^{-24} g$

or
$$1 \text{ amu} = \frac{1}{N} = \frac{2}{6.023 \times 10^{23}} = 3.3 \times 10^{-24} \text{g}$$

Let mol. mass of an element be M amu

Then
$$M \text{ amu} = M \times 3.3 \times 10^{-24} \text{g}$$

Mass of 1 mole = $M \times 3.3 \times 10^{-24} \times Av.$ no.

 10^{23} g

= M g

457 (c)

Given, vapour density=70

∴ Molecular weight=2 × vapour density

$$= 2 \times 70 = 140$$

$$[CO]_x = (12 + 16)_x = (28)_x$$

$$(28)_x = 140$$

$$x = \frac{140}{28} = 5$$

 \therefore Formula is (CO)₅.

458 (d)

Number of gram equivalents of

$$HCl = \frac{100 \times 0.1}{1000} = 0.01$$

Number of gram equivalents of HCl=Number of gram equivalents of metal carbonate

$$0.01 = 0.01$$

Therefore, mass of 1 g equivalents of carbonate salt

$$=\frac{2}{0.01}=200g$$

Equivalent mass of metal carbonate=200

460 **(d)**

By using

Valency of an element $=\frac{\text{approximate weight}}{\text{equivalent weight}}$

$$= \frac{26.8/\text{specific heat}}{\text{equivalent weight}}$$

$$=\frac{26.8/1.05}{9}=2.835\cong3$$

Now, by using

Atomic weight=equivalent weight× valency weight $9 \times 3 = 27$

$$9 \times 3 = 27$$

461 (a)

2 mole of $H_2O = 36 \text{ g } H_2O = 2N \text{ molecules}$.

462 (c)

Mol. wt. of chloride = $66 \times 2 = 132$

Let metal chloride be MCl_n

Eq. of metal
$$=$$
 Eq. of 0

$$\frac{53}{E} = \frac{47}{9}$$

$$E = 9$$
$$9 \times n + 35.5n = 132$$

$$n \approx$$

At. wt. of metal = 27

463 (a)

111 g CaCl₂ contains Nions of Ca²⁺ and 2N ions of

464 (a)

% by weight =
$$\frac{\text{weight of solute}}{\text{weight of soultion}} \times 100$$

Or
$$40 = \frac{w}{(w+60)} \times 100$$

465 (a)

$$JPa^{-1} = \frac{J}{Pa}$$

$$= \frac{work}{pressure} = \frac{N - m}{N/m^2}$$

$$= m^3$$

466 (a)

$$N = \frac{(24.5 \times 1000)}{(98/2) \times 250} = 2;$$

$$M = \frac{(24.5 \times 1000)}{98 \times 250} = 1$$

467 **(c)**

mol. wt. of $MCl_2 = 2 \times 32.7 + 71 = 136.4$

468 (a)

3.4 g S = 100 g insulin

$$\therefore 32 \text{ g S} = \frac{100 \times 32}{3.4} = 941.176$$

Insulin must contain at least one atom of S in its one molecule.

469 **(b)**

 $Mg_3(PO_4)_2$; mole

8 mole of 0-atom are contained by 1 mole $Mg_3(PO_4)_2$.

Hence, 0.25 moles of 0-atom = $\frac{1}{8}$ × $0.25 \text{ mole Mg}_{3}(PO_{4})_{2}$

$$= 3.125 \times 10^{-2}$$

470 (c)

Gram molecular weight is expressed in g mol^{-1} , *i. e.*, weight of one mole of substance.

471 (d)

Number of oxygen atom in 2 g of CO $=\frac{2}{39}\times 6.022\times 10^{23}\times 1$

Number of oxygen atom in 2 g of CO₂

$$=\frac{2}{44} \times 6.022 \times 10^{23} \times 2$$

Number of oxygen atom in 2 g of SO₂

$$= \frac{2}{64} \times 6.022 \times 10^{23} \times 2$$

Number of oxygen atom in 2 g of H₂O

$$=\frac{2}{18}\times 6.022\times 10^{23}\times 1$$

Hence, 2 g of H₂O has maximum number of atoms of oxygen.

472 **(b)**

 $mM \text{ of AgNO}_3 = 0.1 \times V$ mM of NaCl = $0.2 \times V$

 $\therefore mM \text{ of } NO_3^- = 0.1 \times V \text{ and total } V = 2V$

 $[NO_3^-] = \frac{0.1 \times V}{2V} = 0.05$

473 (a)

Eq. mass of copper chloride = 99

Eq. mass of chlorine = 35.5

∴ Eq. mass of copper = 99 - 35.5 = 63.5

∴ Valency of copper = $\frac{\text{at mass of copper}}{\text{eq.mass of copper}} = 1$

: Formula of copper chloride is CuCl.

475 (d)

g-atom of $X = \frac{75.8}{75}$ g-atom of $Y = \frac{24.2}{16}$; find simple ratio.

476 (a)

(a) 0.1 mole of CO_2

(b) $\frac{11.2}{22.4}$ = 0.5 mole of CO₂

(c) $\frac{22}{44}$ = 0.5 mole of CO₂

(d) $\frac{22.4 \times 10^3}{22400}$ = 1 mole of CO₂

Equal numbers of moles have equal number of 4 molecules.

Hence, the smallest number of molecules of CO_2 is in 0.1 mole of CO_2 .

477 **(b)**

Required equation is given below,

 $Zn + 2OH^- \rightarrow ZnO_2^{2-} + 2H^+ + 2e^-$

 $NO_3^- + 8H^+ + 8e^- \rightarrow OH^- + 2H_2O + NH_3$

From the above equation

: 8 moles of electron absorbed by 85 g of NaNO₃

 \therefore 1 mole of electron absorbed by $\frac{85}{8}$ g of NaNO₃ =

10.625 g

478 **(b)**

60 g NH₂CONH₂ has 28 g N

: 100 g urea has $N = \frac{28 \times 100}{60}$

479 (d)

 $m \text{ mole} = M \times V$

$$V = \frac{0.1}{0.8} = 0.125 \text{ mL}$$

480 (a)

At. wt. × specific heat $\simeq 6.4$ and $E = \frac{\text{mol. wt.}}{\text{valency}}$

481 (c)

1 g-atom Ag = 108 g

482 **(b)**

4.523 + 2.3 + 6.24 = 13.063. As 2.3 has least number of decimal places i.e., one, therefore sum should be reported to one decimal place only. After rounding off, reported sum=13.1 which has three significant figures.

483 (a)

 $249.6 \text{ g CuSO}_4 \cdot 5\text{H}_2\text{O}$ contains $90 \text{ g H}_2\text{O}$.

484 (a)

Mole = 3;

Wt. of solvent = 1000 g;

Wt. of solution = $1000 + 3 \times 40 = 1120$

Volume of solution = $\frac{1120}{1.110}$ mL $M = \frac{3}{\frac{1120}{1.110 \times 1000}} = 2.9732$ *:*.

485 **(b)**

g-atom of metal = $\frac{60}{24}$;

g-atom of oxygen = $\frac{40}{16}$; find simple ratio.

487 (a)

$$^{+5}_{3\text{HClO}_3}$$
 $^{+7}_{H\text{ClO}_4}$ $^{+}_{Cl_2}$ $^{+}_{2O_2}$ $^{+}_{4}$ $^{+}_{2O_2}$

Equivalent mass of $HClO_3 = \frac{molar\ mass}{change\ in\ oxidation\ no.}$ $=\frac{84.45}{5}=16.89$

(When it acts as an oxidising agent)

488 (a)

1 molecule of CH₃COOH contains 8 atoms;

∴ 1 mole contains 8 N atoms

489 (a)

specific gravity =
$$\frac{\text{wt. of solution}}{\text{volume of solution}}$$

491 (b)

$$m = \frac{18 \times 1000}{60 \times (1500 \times 1.052 - 18)} = 0.19$$

492 **(b)**

Average atomic weight

$$= \frac{\text{at. wt.} \times \text{ relative abundance} + \text{at. wt.} \times \text{ relative al}}{100}$$

$$= \frac{85 \times 75 + 87 \times 25}{100}$$

= 85.5

493 (a)

A molar solution has molarity =1; A centimolar solution has molarity = M/100. A decimolar solution has molarity M/10; A decamolar solution has molarity = 10M.

494 (d)

$$\frac{2.568 \times 5.8}{4.168} = \frac{15}{4.168} = 3.6057$$

Answer in significant figures = 3.6

495 (c)

 X_2 0 has X:0::14:16 \therefore At. wt. of X = 7

496 (c)

X is AB_4 .

497 (d)

1 mole $P_4 = N$ molecules of $P_4 = 4 N$ atoms of P_4 .

$$M_{\text{NaCl}} = \frac{5.85}{58.5 \times 1} = 0.1$$

499 (c)

$$M_{\rm HCl} = 1$$
;

$$M_{\rm H_2SO_4} = \frac{0.4}{2} = 0.2$$

$$M_{\text{Na}_2\text{CO}_3} = \frac{0.1}{2} = 0.05$$

500 (d)

The amu represents atomic mass unit. It is used in $\begin{vmatrix} 510 \end{vmatrix}$ (a) place of unified mass unit.

1 u = 1 Avogram = 1 Aston = 1 Dalton

$$1 u = \frac{1}{12} \times \text{mass of C} - 12 \text{ atom}$$

$$= \frac{1}{12} \times 1.9924 \times 10^{-23} \,\mathrm{g}$$

$$= 1.66 \times 10^{-24} \text{ g} = 1.66 \times 10^{-27} \text{ kg}$$

501 (a)

1 mole of Ag $\approx 108 \text{ g} = M \text{ g}$

502 (a)

wt. of
$$Cl_2 = 1$$
 mole = 71 g

wt. of chloride = 111 g

: wt. of metal = 111 - 71 = 40 g

Now Eq. of Cl = Eq. of metal

$$\therefore \frac{71}{35.5} = \frac{40}{E} \text{ or } E_{\text{metal}} = 20;$$

Now E g metal will displace 1 g H₂ and since 2 g H₂ is displaced by same amount, Thus 2 E g of metal are used. Therefore, 2E is at. wt. of metal.

503 (a)

Oxalic acid is H₂C₂O₄ and it is dibasic and thus, E = M/2

504 **(b)**

Molarity is mole of solute present in one litre solution.

505 (c)

 $Meq. of NaH_2PO_4 = Meq. of NaOH;$

Thus,
$$\frac{12}{120/2} \times 1000 = 1 \times V$$

$$\therefore$$
 $V = 200 \text{ mL}$

506 (a)

Atoms in 1 molecule of $C_{12}H_{22}O_{11} = 45$;

atom in N molecule = 45 N

507 (c)

$$S + O_2 \rightarrow SO_2$$

1 mole 22.4 L

1 mole of S required volume of

$$O_2 = 22.4 L$$

So, 1.5 mole of S required volume of

$$O_2 = 22.4 \times 1.5 = 33.60 \text{ L}$$

508 (c)

H₂O is the limiting reagent for the above equation.

509 (a)

1 mole=molecular mass in gram= 6.02×10^{23} molecules

Given mass of $CO_2 = 44 \text{ g}$

Molecular mass of $CO_2 = 12 + 16 \times 2 = 44$

No. of molecules in 44 g of CO₂

$$=6.02\times10^{23}$$

Given, volume of $0_2 = 1$ L

$$\therefore$$
 22.4 L of O₂ at STP = 32 g

$$\therefore 1 \text{ L of } O_2 \text{ at STP} = \frac{32}{22.4} g$$

$$= 1.43 g$$

511 (a)

Number of atoms in 24 g of C = $\frac{24}{12} \times 6.02 \times 10^{23}$

$$=2 \times 6.02 \times 10^{23}$$

Number of atoms in

$$56 \text{ g of Fe} = \frac{56}{56} \times 6.02 \times 10^{23}$$

Number of atoms in

$$26 \text{ g of Al} = \frac{26}{27} \times 6.02 \times 10^{23}$$

$$\approx 6.02 \times 10^{23}$$

Number of atoms in 108 g of Ag = $\frac{108}{108}$ × 6.02 ×

$$=6.02 \times 10^{23}$$

513 **(d)**

On dilution since volume of solution changes and this normality, molarity molality changes. The

$$\left(\frac{\text{wt.}}{\text{eq.wt.}}\right)$$
, mole $\left(\frac{\text{wt.}}{\text{mol.wt}}\right)$ do not change.

514 (d)

In 1 L air, volume of
$$O_2 = 210 cc$$

 $\therefore 22400 \text{ cm}^3 = 1 \text{ mol}$

$$\therefore 210 \text{ cm}^3 = \frac{210}{22400} = 0.0093 \text{ mol}$$

515 **(b)**

According to Avogadro's hypothesis one gram mole of a gas at NTP occupies 22.4 L.

516 (a)

$$SnCl2 + Cl2 \rightarrow SnCl4$$

$$190 71$$

$$\frac{190}{E_1} = \frac{71}{35.5}$$

$$E_1 = 95$$

517 **(b)**

The standard adopted for the determination of atomic weight of elements is based on C^{12} .

518 **(d)**

Molecular weight of $C_6H_5OH = 94$

Atomic weight of Br=80

Amount of Br utilized=480 g

: 94 g of C₆H₅OH reacts with 480 g of bromine.

∴ 2g of
$$C_6H_5OH$$
 will react with= $\frac{480\times2}{94}$
=10.2 g

519 **(a)**

$$NaOH + H_2SO_4 \rightarrow NaHSO_4 + H_2O;$$

Eq. wt. of $H_2SO_4 = Mol.$ wt./1
 $2NaOH + H_2SO_4 \rightarrow NaHSO_4 + H_2O;$

Eq. wt. of $H_2SO_4 = Mol. wt./2$

520 **(d)**

1 mole of O_2 has 32 g; the highest value in all the given data.

521 **(b)**

17 g $NH_3 = N$ molecules.

522 **(a)**

wt. of
$$V$$
 mL = w g.

∴ wt. of 22400 mL =
$$\frac{W \times 22400}{V}$$
 = Mol. wt. (since I mole occupies 22400 mL at STP)

523 (a)

$$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$$
2 mol 1 mol

∴ 2 mole NaHCO₃ on decomposition gives = 1 moles Na₂CO₃

 \div 0.2 mole NaHCO $_{\!3}$ on decomposition will give

$$= \frac{1}{2} \times 0.2$$
$$= 0.1 \text{ mol Na}_2 \text{CO}_3$$

524 (a)

$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$$

$$22400cm^{3}$$

8 g of calcium will produce = $\frac{22400 \times 8}{40}$ = 4480 cm³

525 (a)

Weight of C-14 isotope in 12 g sample = $\frac{2 \times 12}{100}$

$$\therefore \text{ No. of C-14 isotopes} = \frac{2 \times 12 \times N}{100 \times 4} = 1.032 \times 10^{22} \text{ atoms}$$

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** 10,000 molecules of CO_2 have the same volume at STP as 10,000 molecules of CO at STP.
- **Statement 2:** Both CO and CO_2 are formed by combustion of carbon in presence of oxygen.

2

- **Statement 1:** Molality and mole fraction are not affected by temperature.
- **Statement 2:** Molality $(m) = \frac{W}{GMM} \times \frac{1}{b}$ (where, b = mass of solven).

3

- **Statement 1:** The percentage of nitrogen in urea is 46.6%
- **Statement 2:** Urea is an ionic compound.

4

- **Statement 1:** Equal moles of different substances contain same number of constituent particles.
- **Statement 2:** Equal weights of different substances contain the same number of constituent particles. The correct answer is

5

- **Statement 1:** Equivalent of K₂ Cr₂O₇ has 1 equivalent of K and Cr and O each.
- **Statement 2:** A species contains same number of equivalents of its components.

6

- **Statement 1:** The molality of the solution does not change with change in temperature.
- **Statement 2:** The molality of the solution is expressed in units of moles per 1000 g of solvent.

- **Statement 1:** Equivalent weight of ozone in the change $O_3 \rightarrow O_2$ is 8.
- **Statement 2:** 1 mole O_3 of on decomposition gives $\frac{3}{2}$ moles of O_2 .

8

- **Statement 1:** A solution which contains one gram equivalent of solute per litre of solutions is known as
 - molar solution
- **Statement 2:** Normality=normality $\times \frac{mol.wt.of\ solute}{eq.wt.of\ solute}$

9

- **Statement 1:** Weight of 1 molecule of $O_2 = 32 \text{ u}$
- **Statement 2:** 1 g molecule = 6.023×10^{23} molecules.

10

- **Statement 1:** Normally and molarity can be calculated from each other.
- **Statement 2:** Normally is equal to the product of molarity and n.

11

- **Statement 1:** Strength of a solution is 10,000 x g in one litre.
- **Statement 2:** 10 x of solute is dissolved in 1 mL solution.

CHEMISTRY

						WER I						
ACHIEVERS LEARNING PAINT. P.	a	11)	a	10)	D							1) 5)
ART ACHIER SIERS												
RI ACHIENERS LEARNING	,	5/1	<									
Religible of the second of the		,	10	1								
RI ACHILINIE SIN												
					> '		Ċ					
							P					
								_<				
									ć			
								٠,		^		
										5	<	
										**		

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(b)**

Equal molecules have same volume at STP because 22400 cc of any gas at STP has Avogadro's number of molecules.

2 **(a)**

Molality, % by weight, mole fraction are independent of temperature since all these involve weight which does not depend upon temperature.

3 **(c**)

The percentage of N in $NH_2CONH_2(urea)$

% of N =
$$\frac{28}{60} \times 100$$

Urea is a covalent compound.

4 **(c)**

Equal moles of different substances contain same number of constituent particles but equal weights of different substances do not contain the same number of constituent particles.

6 **(a)**

Molality does not depend upon volume of the solution as molarity or normality. So, it does not depend upon temperature.

7 **(b)**

$$20_3 \rightarrow 30_2$$

 $2 \bmod O_3 \equiv 3 \bmod O_2 = 3 \times 2 \operatorname{eq} O_2$

 $E_O = \frac{M}{6}$

$$=\frac{48}{6}=8$$

8 **(d)**

A solution; which contains one gram mole of solute per litre of solution is known as molar solution (M).

9 **(b)**

Gram molecular weight is the weight of N_A molecules in gram.

10 **(a)**

Normality = molarity $\times n$

(n =mol wt. of solute /eq. wt. of solute)

l1 (a)

Strength of solution refers to the amount of solute in 100 mL solution.

Thus, if 10,000x of solute are present in 1000 mL,

10x g of solute are present in 1 mL solution.

CHEMISTRY

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

1. Match the following List I and List II.

Column-I

(A)
$$10 \text{ g CaCO}_3 \xrightarrow{\Delta \text{ decomposition}}$$

(B)
$$1.06 \text{ g Na}_2\text{CO}_3 \stackrel{\text{Excess HC}}{\longrightarrow}$$

(C)
$$2.4 \text{ g C} \frac{\text{Excess O}_2}{\text{Combustion}}$$

(D)
$$0.56 \text{ g CO} \xrightarrow{\text{Excess O}_2}$$

Column- II

(1)
$$0.224 L CO_2$$

$$(2)$$
 4.48 L CO_2

$$(3) 0.448 L CO_2$$

$$(5)$$
 22.4 L CO₂

CODES:

	A	В	C	D
a)	4	1	2	3
b)	5	1	2	3
c)	4	1	3	2
d)	1	4	2	3

2. Match the reactions given in column I with neutralization reactions given in column II

Column-I

 $0.1 \text{ mol Na}_2\text{CO}_3 + 0.2 \text{ mol NaHCO}_3 + 0.3 \text{ mol NaCl}$

- (B) 200 mL of 0.1 M HCl + 100 of 0.1 M H_2SO_4 + 200 ML of 0.1 M $H_2C_2O_4$
- (C) 1 g NaOH and 2.25 g of oxalic acid
- **(D)** $0.01 \text{ mol H}_3\text{PO}_4 \text{ and } 0.0025 \text{ mol of Ca(OH)}_2$

- Column- II
- (p) 320 mL of 0.25 N KOH solution
- (q) $400 \text{ mL of } 0.5 \text{ M H}_2\text{SO}_4$
- (r) $125 \text{ mL of N/5 Mg}(OH)_2$
- (s) $125 \text{ mL of N/5 H}_2\text{SO}_4$

CODES:

(A)

A B C D

- a) R S q p b) S p q c) S p q r

SWART ACHIEVERS LEARNING RIVER. LITED

CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (a)

1. CaCO
$$\xrightarrow{\Delta}$$
 CaO + CO₂
100 g 22.4 L

 $\because 100~{\rm g~CaCO_3}$ on decomposition gives=22.4 L ${\rm CO_2}$

 \therefore 10g CaCO₃ on decomposition will give

$$=\frac{22.4\times10}{100}$$
 L CO₂

 $=2.24 L CO_2$

$$2.\,\text{Na}_2\text{CO}_3 \xrightarrow{\text{Excess HCl}} 2\text{NaCl} + \text{H}_2\text{O} + \text{CO}_2$$

106 g

22.4 L

$$106 \text{ g Na}_2\text{CO}_3 \text{ gives} = 22.4 \text{ L CO}_2$$

1.06 g Na₂CO₃ will give

$$= \frac{22.4 \times 1.06}{106} L CO_2$$

 $= 0.224 L CO_2$

3. C
$$\xrightarrow{\text{Excess O}_2}$$
 CO₂ combustion

12 g

22.4 I

12 g carbon on combustion gives

 $=22.4 L CO_2$

 $2.4\ g$ carbon on combustion will give

$$=\frac{22.4\times2.4}{12}$$
L CO₂

$$= 2 \times 2.24 L CO_2$$

 $= 4.48 L CO_2$

$$4.2CO \xrightarrow{\text{Excess O}_2} 2CO_2$$

2(12+16

 $2 \times 22.4 L$

56 g

56 g carbon monoxide on combustion gives=2 \times 22.4 L CO₂

0.56 g carbon monoxide on combustion will give

$$= \frac{2 \times 22.4 \times 0.56}{56} \text{ L CO}_2$$

 $=0.448 L CO_2$

Hence, A-4, B-1, C-2 and D-3.

(d)

(d)

	a.	Equivalent	p.	mEq of
		of base		H_2SO_4
		$= 0.1 \times 2 +$		= 400 ×
		0.2×1		0.5×2
		= 0.4 = 400		= 400 mEq
		mEq		γ 400 mEq if
		ן,NaCl is not taken		H ₂ SO ₄ neutralises
		since it neither		400 mEq of
		reacts with acid		base in (a)
Į		L nor with base J		

b.	mEq of acid	q.	mEq of
	$= 200 \times 0.1$		$KOH = 320 \times 0.25$
	+100		= 80 mEq
	\times 0.1 \times 2 +		[80 mEq of]
	$200 \times 0.1 \times 2$		KOH neutralises
	= 20 + 20		with 80 mEq of
	+40 = 80		acid in (b)

c.	1 g NaOH	r.	mEq of
	1		$Mg(OH)_2$
	$= \frac{1}{40} \mod \times 10^3$		$= 125 \times \frac{1}{5} =$
	= 25 mEq		25 mEq
	2.25 g oxalic		Γ 25 mEq of
	acid		acid in (c)and
	$-\frac{2.25}{}$ \times 100		(d)neutralises with
	$=\frac{2.23}{90/2}\times100$		25 mEq of
	= 50 mEq		$L Mg (OH)_2$
	mEq of		

oxalic acid	
left	
= 50 - 25	
= 25 mEq	

mEq of $H_2SO_4 =$ $125 \times \frac{1}{5} =$ 25 mEq $\begin{bmatrix} H_2SO_4 \text{ is acid and} \\ H_3PO_4 \text{ in (d) is also} \\ \text{acid. No reaction} \end{bmatrix}$						
(b)						
$(a \rightarrow p, s)$						
$\mathbf{p.} \ \left[M = \frac{9.8 \times 10 \times 1.8}{98} = 1.8 \right]$						
$N = 1.8 \times 2 = 3.6$						
$d = M \left(\frac{Mw_2}{1000} + \frac{1}{m} \right)$						
s. $1.8 = 1.8 \left(\frac{98}{1000} + \frac{1}{m} \right) \Rightarrow m = 1.10$						
$(b \rightarrow p, q, s)$						
$\mathbf{q.} \ M = \frac{9.8 \times 10 \times 1.2}{98} = 1.2$						
$p. N = 1.2 \times 3 = 3.6$						
~P~						
$\Rightarrow m = 1.10$						
$(c \rightarrow p, r)$						
	$125 \times \frac{1}{5} =$ 25 mEq $\begin{bmatrix} H_2SO_4 \text{ is acid and} \\ H_3PO_4 \text{ in (d) is also} \\ \text{acid. No reaction} \end{bmatrix}$ 3 $\frac{2}{0} + \frac{1}{m}$ $\Rightarrow m = 1.10$					

$$(a \rightarrow p, s)$$

p.
$$\begin{bmatrix} M = \frac{9.8 \times 10 \times 1.8}{98} = 1.8 \\ N = 1.8 \times 2 = 3.6 \\ d = M \left(\frac{Mw_2}{1000} + \frac{1}{m}\right) \\ 1.8 = 1.8 \left(\frac{98}{1000} + \frac{1}{m}\right) \Rightarrow m = 1.10 \end{bmatrix}$$

$$(b \rightarrow p, q, s)$$

(b
$$\rightarrow$$
 p, q, s)
q. $M = \frac{9.8 \times 10 \times 1.2}{98} = 1.2$

p.
$$N = 1.2 \times 3 = 3.6$$

$$\mathbf{s.} \ d = M \ \left(\frac{Mw_2}{1000} + \frac{1}{m} \right)$$

$$1.8 = 1.8 \left(\frac{98}{1000} + \frac{1}{m} \right) \Rightarrow m = 1.10$$

$$(c \rightarrow p, r)$$

 $1.8 N_A$ molecules = 1.8 mol of HCl 500 mL = 1.8

$$M = \frac{1.8 \times 1000}{500} = 3.6 \text{ M} = 3.6 \text{ N} (n \text{ factor} = 1)$$

$$(d \rightarrow r)$$

mEq of base = $250 \times 4 + 250 \times 1.6 \times 2$

$$= 1000 + 800$$

- = 1800 mEq
- = 1.8 Eq