SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

Single Correct Answer Type

1. Weight of oxygen in one mole each of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and FeO is in the simple ratio of:
a) $3: 2$
b) $1: 2$
c) $2: 1$
d) $3: 1$
2. Equivalent weight of a bivalent metal is 37.2 . The molecular weight of its chloride is
a) 412.2
b) 216
c) 145.4
d) 108.2
3. 0.0833 mole of carbohydrate of empirical formula $\mathrm{CH}_{2} \mathrm{O}$ contain 1 g of hydrogen. The molecular formula of the carbohydrate is
a) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
b) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$
c) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
4. The equivalent weight of $\mathrm{Zn}(\mathrm{OH})_{2}$ in the following reaction is equal to its,
$\mathrm{Zn}(\mathrm{OH})_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{Zn}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)+\mathrm{H}_{2} \mathrm{O}:$
a) $\frac{\text { Formula wt. }}{1}$
b) $\frac{\text { Formula wt. }}{2}$
c) $2 \times$ formula wt.
d) $3 \times$ formula wt.
5. 5.85 g of NaCl are dissolved in 90 g of water. The mole fraction of NaCl is:
a) 0.1
b) 0.01
c) 0.2
d) 0.0196
6. $\quad 2.76 \mathrm{~g}$ of silver carbonate on being strongly heated yield a residue weighing
a) 2.16 g
b) 2.48 g
c) 2.64 g
d) 2.32 g
7. A solution contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3} .10 \mathrm{~mL}$ of the solution required 2.5 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralization using phenolphthalein as indicator. Methyl orange is then added when a further 2.5 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ was required. The amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 1 litre of the solution is:
a) 5.3 g and 4.2 g
b) 3.3 g and 6.2 g
c) 4.2 g and 5.3 g
d) 6.2 g and 3.3 g
8. The volume occupied by one molecule of water (density $1 \mathrm{~g} \mathrm{~cm}^{-3}$) is:
a) $18 \mathrm{~cm}^{3}$
b) $22400 \mathrm{~cm}^{3}$
c) $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
d) $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
9. 510 mg of a liquid on vaporization in Victor meyer's apparatus displaces $67.2 \mathrm{~cm}^{3}$ of air at (STP). The molecular weight of the liquid is:
a) 130
b) 17
c) 170
d) 1700
10. What volume of 6 M HCL should be added to 2 M HCL to get 1 L of 3 M HCL ?
a) 0.25 L
b) 1.00 L
c) 0.75 L
d) 2.50 L
11. The normality of one molar sodium carbonate solution is:
a) 2
b) 1
c) 0.5
d) 1.5
12. If $\mathrm{H}_{2} \mathrm{SO}_{4}$ ionises as $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{2}$, then total number of ions produced by $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ will be
a) 9.03×10^{21}
b) 3.01×10^{22}
c) 6.02×10^{22}
d) 1.8×10^{23}
13. W_{1} of an element combines with oxygen forming $W_{2} g$ of its oxide. The equivalent weight of the element is:
a) $\left[W_{1} / W_{2}\right] \times 8$
b) $\left[\frac{W_{1}}{W_{2}-W_{1}}\right] \times 8$
c) $\left[\frac{W_{2}-W_{1}}{W_{1}}\right] \times 8$
d) $\left[\frac{W_{1}}{W_{1}-W_{2}}\right] \times 8$
14. A sample of ammonium phosphate $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ contains 6.36 moles of hydrogen atoms. The number of moles of oxygen atom in the sample is
(atomic mass of $\mathrm{N}=14.04, \mathrm{H}=1, \mathrm{P}=31, \mathrm{O}=16$)
a) 0.265
b) 0.795
c) 2.12
d) 4.14
15. To neutralise 20 mL of $M / 10 \mathrm{NaOH}$, the volume of $M / 20 \mathrm{HCl}$ needed is:
a) 10 mL
b) 30 mL
c) 40 mL
d) 20 mL
16. A, E, M and n are the atomic weight, equivalent weight, molecular weight and valence of an element. The correct relation is:
a) $A=E \times n$
b) $A=M / E$
c) $A=M / n$
d) $M=A \times n$
17. Which one of the following set of units represents the smallest and largest amount of energy respectively?
a) J and erg
b) erg and cal
c) Cal and eV
d) eV and L -atm
18. The number of atoms present in a 0.635 g of Cu piece will be
a) 6.023×10^{-23}
b) 6.023×10^{23}
c) 6.023×10^{22}
d) 6.023×10^{21}
19. What volume of hydrogen gas, at 273 K and 1 atm pressure will be consumed in obtaining 21.6 g of elemental boron (atomic mass $=10.8$) from the reduction of boron trichloride by hydrogen?
a) 89.6 L
b) 67.2 L
c) 44.8 L
d) 22.4 L
20. The numerical value of N / n (where N is number of molecules is n moles of gas) is:
a) 8.314
b) 6.02×10^{23}
c) 1.602×10^{-24}
d) 1.66×10^{-19}
21. In the relationship molecular formula $=$ empirical formula $\times n$. The' n^{\prime} may have:
a) Any value
b) Zero value
c) Only positive integer value
d) None of the above
22. $10 \mathrm{~g} \mathrm{CaCO}_{3}$ on heating gives 5.6 g CaO and $\ldots . . \mathrm{g} \mathrm{CO}_{2}$.
a) 4.4
b) 5.6
c) 6.5
d) 4.2
23. Which of the following changes with increase in temperature?
a) Molality
b) Weight fraction of solute
c) Fraction of solute present in water
d) Mole fraction
24. On combustion of 4 g of the methane, 10.46 kJ of heat is liberated. Heat of combustion of methane is
a) 83.68 kJ
b) 10.46 kJ
c) 41.84 kJ
d) 20.93 kJ
25. A gas is found to have the formula (CO) x_{x}. Its VD is 70 . The value of x must be:
a) 7
b) 4
c) 5
d) 6
26. Choose the wrong statement.
a) 1 mole means 6.023×10^{23} particles
b) Molar mass is mass of one molecule
c) Molar mass is mass of one mole of a substance
d) Molar mass is molecular mass expressed in grams
27. The term standard solution is used for the solutions whose:
a) Normality is known
b) Molarity is known
c) Strength is known
d) All of these
28. The ratio of mole fraction of a solute and a solvent in a binary solution is:
a) Ratio of their wt.
b) One
c) Ratio of their mole
d) Zero
29. If in a reaction HNO_{3} is reduced to NO , the mass of HNO_{3} absorbing one mole of electrons would be
a) 21.0 g
b) 36.5 g
c) 18.0 g
d) 31.5 g
30. At STP 5.6 litre of a gas weighs 60 g . The vapour density of gas is:
a) 60
b) 120
c) 30
d) 240
31. The number of atoms present in 16 g of oxygen gas is:
a) $6.02 \times 10^{11.5}$
b) 3.01×10^{23}
c) $3.01 \times 10^{11.5}$
d) 6.02×10^{23}
32. On analysis a certain compound was found to contain iodine and oxygen in the ratio of 254 g of iodine (at. mass 127) and 80 g oxygen (at. mass 16). What is the formula of the compound?
a) 10
b) $\mathrm{I}_{2} \mathrm{O}$
c) $\mathrm{I}_{2} \mathrm{O}_{3}$
d) $\mathrm{I}_{2} \mathrm{O}_{5}$
33. The vapour density of a volatile chloride of a metal is 95 and the specific heat of the metal is $0.13 \mathrm{cal} / \mathrm{g}$. The equivalent weight of the metal will be:
a) 6.0
b) 12.3
c) 18.6
d) 24.5
34. The equivalent weight of a certain trivalent element is 20 . Molecular weight of its oxide is
a) 152
b) 56
c) 168
d) 68
35. Gram molecular volume of oxygen at STP is
a) $3200 \mathrm{~cm}^{3}$
b) $5600 \mathrm{~cm}^{3}$
c) $22400 \mathrm{~cm}^{3}$
d) $11200 \mathrm{~cm}^{3}$
36. Two elements X (at. Wt. 75) and Y (at. wt. 16) combine to give a compound having 75.8% of X. The formula of compound will be
a) $X Y$
b) $X_{2} Y$
c) $X Y_{3}$
d) $X_{2} Y_{3}$
37. The amount of oxalic acid (hydrated) required to prepare 500 mL of its 0.1 N solution is:
a) 0.315 g
b) 6.3 g
c) 3.15 g
d) 63.0 g
38. The equivalent weight of KMnO_{4} for acid solution is
a) 79
b) 52.16
c) 158
d) 31.6
39. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is
a) 3
b) 4
c) 5
d) 6
40. A mixture of $\mathrm{CH}_{4}, \mathrm{~N}_{2}$ and O_{2} is enclosed in a vessel of one litre capacity at $0^{\circ} \mathrm{C}$. The ratio of particle pressures of gases is $1: 4: 2$. Total pressure of the gaseous mixture is 2660 mm . the number of molecules of oxygen present in the vessel is
a) $\frac{6.02 \times 10^{23}}{22.4}$
b) 6.02×10^{23}
c) 22.4×10^{22}
d) 1000
41. $x \mathrm{~g}$ of Ag was dissolved in HNO_{3} and the solution was treated with excess of NaCl when 2.87 g of AgCl was precipitated. The value of x is
a) 1.08 g
b) 2.16 g
c) 2.70 g
d) 1.62 g
42. One mole electron means:
a) N electrons
b) 6.023×10^{23} electrons
c) 0.55 mg electrons
d) All of these
43. A signature, written in carbon pencil weights 1 mg . What is the number of carbon atoms present in the signature?
a) 5.02×10^{23}
b) 5.02×10^{20}
c) 6.02×10^{20}
d) 0.502×10^{20}
44. The minimum quantity of $\mathrm{H}_{2} \mathrm{~S}$ needed to precipitate 63.5 g of Cu^{2+} will be nearly:
a) 63.5 g
b) 31.75 g
c) 34 g
d) 20 g
45. An unknown element forms an oxide. What will be the equivalent weight of the element if the oxygen content is 20% by weight?
a) 16
b) 32
c) 8
d) 64
46. Cortisone is a molecular substance containing 21 atoms of carbon per molecule. The molecular weight of cortisone is 360.4. what is the percentage of carbon in cortisone?
a) 59.9%
b) 75%
c) 69.98%
d) None of these
47. Which mode of expressing concentration is independent of temperature?
a) Molality
b) Per cent by weight
c) Mole fraction
d) All of these
48. An ion is reduced to the element when it absorbs 6×10^{20} electrons. The number of equivalent of ion is:
a) 0.1
b) 0.01
c) 0.001
d) 0.0001
49. The volume of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required to neutralise 30 mL of 2.0 M NaOH is:
a) 100 mL
b) 300 mL
c) 400 mL
d) 200 mL
50. The law of definite proportions is not applicable to nitrogen oxide because
a) Nitrogen atomic weight is not constant
b) Nitrogen molecular weight is variable
c) Nitrogen equivalent weight is variable
d) Oxygen atomic weight is variable
51. 1.520 g of hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is
a) 1.52
b) 0.995
c) 190
d) 9
52. A hydrocarbon contains 10.5 g carbon and 1 g hydrogen. Its 2.81 g has 1 L volume at 1 atm and $127^{0} \mathrm{C}$, hydrocarbon is
a) $\mathrm{C}_{6} \mathrm{H}_{7}$
b) $\mathrm{C}_{7} \mathrm{H}_{8}$
c) $\mathrm{C}_{5} \mathrm{H}_{6}$
d) None of the above
53. 1 mole of methyl amine on reaction with nitrous acid gives at NTP
a) 1.0 L of nitrogen
b) 22.4 L of nitrogen
c) 11.2 L of nitrogen
d) 5.6 L of nitrogen
54. The weight of sulphuric acid needed for dissolving 3 g magnesium carbonate is:
a) 3.5 g
b) 7.0 g
c) 1.7 g
d) 17.0 g
55. When a metal is burnt, its weight is increased by 24 per cent. The equivalent weight of the metal will be:
a) 25
b) 24
c) 33.3
d) 76
56. A metal oxide is reduced by heating it in a stream of hydrogen. It is found that after complete reduction, 3.15 g of oxide yielded 1.05 g of metal. From the above data we can say that
a) The atomic weight of metal is 8
b) The atomic weight of metal is 4
c) The equivalent weight of metal is 4
d) The equivalent weight of metal is 8
57. The ratio of amounts of $\mathrm{H}_{2} \mathrm{~S}$ needed to precipitate all the metal ions from 100 mL of $1 \mathrm{M} \mathrm{AgNO}_{3}$ and 100 mL of CuSO_{4}, will be
a) $1: 1$
b) $1: 2$
c) $2: 1$
d) None of these
58. The mole fraction of NaCl in a solution containing 1 mole of NaCl in 1000 g of water is :
a) 0.0177
b) 0.001
c) 0.5
d) 0.244
59. Which is correct for $\mathrm{Na}_{2} \mathrm{HPO}_{3}$?
a) It is not an acid salt
b) Eq. wt. $=\frac{M}{2}$
c) Ox. no. of P is +3
d) All of these
60. How many g of NaOH will be needed to prepare 250 mL of 0.1 M solution?
a) 1 g
b) 10 g
c) 4 g
d) 6 g
61. If the specific heat of a metallic element is $0.214 \mathrm{cal} / \mathrm{g}$, the atomic weight will be closest to:
a) 66
b) 12
c) 30
d) 65
62. An ore contains 1.34% of the mineral argentite, $A g_{2} S$, by mass. How many gram of this ore would have to be processed in order to obtain 1.00 g of pure solid silver, Ag ?
a) 74.6 g
b) 85.7 g
c) 107.9 g
d) 134.0 g
63. In which of the following numbers all zeros are significant?
a) 0.500
b) 30.000
c) 0.00030
d) 0.0050
64. Weight of an atom of an element is $6.644 \times 10^{-23} \mathrm{~g}$. What will be the number of g atom of that element in 40 kg ?
a) 10^{3}
b) 10^{6}
c) 1.5×10^{3}
d) None of these
65. In a compound $A_{x} B_{y}$:
a) Mole of $A=$ mole of $B=$ mole of $A_{x} B_{y}$
b) Eq. of $A=$ Eq. of $B=$ Eq. of $A_{x} B_{y}$
c) $Y \times X$ mole of $A=Y \times X$ mole of $B=(X+Y) X$ mole of $A_{x} B_{y}$
d) $Y \times X$ mole of $A=Y \times X$ mole of B
66. One gram of hydrogen is found to combine with 80 g of bromine. One gram of calcium (Valency $=2$) combines with 4 g of bromine. The equivalent weight of calcium is
a) 10
b) 20
c) 40
d) 80
67. A bivalent metal has an equivalent mass of 32 . The molecular mass of the metal nitrate is
a) 182
b) 168
c) 192
d) 188
68. 12 g of Mg (at. $\mathrm{wt} .=24$) will react completely with an acid to give:
a) One mole of H_{2}
b) Half mole of H_{2}
c) One mole of O_{2}
d) None of these
69. The atomic weight of a metal (M) is 27 and its equivalent weight is 9 , the formula of its chloride will be:
a) MCl
b) MCl_{9}
c) $M_{3} \mathrm{Cl}_{4}$
d) $M \mathrm{Cl}_{3}$
70. 1.60 g of a metal were dissolved in HNO_{3} to prepare its nitrate. The nitrate on strong heating gives 2 g oxide. The equivalent weight of metal is:
a) 16
b) 32
c) 48
d) 12
71. 5.85 g of NaCl dissolved in $\mathrm{H}_{2} \mathrm{O}$ and solution is made upto 500 mL . The molarity is:
a) 0.1
b) 0.2
c) 1.0
d) 0.117
72. Which property of an element is not variable?
a) Valence
b) At. wt.
c) Eq. wt.
d) None of these
73. The oxide of an element possesses the formula $M_{2} \mathrm{O}_{3}$. If the equivalent weight of the metal is 9 , then the atomic weight of the metal will be:
a) 9
b) 18
c) 27
d) 54
74. 0.7 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ were dissolved in water and the volume was made to $100 \mathrm{~mL}, 20 \mathrm{~mL}$ of this solution required 19.8 mL of $N / 10 \mathrm{HCl}$ for complete neutralisation. The value of x is:
a) 7
b) 3
c) 2
d) 5
75. The specific heat of an element of atomic weight 32 is likely to be:
a) $0.25 \mathrm{cal} / \mathrm{g}$
b) $0.24 \mathrm{cal} / \mathrm{g}$
c) $0.20 \mathrm{cal} / \mathrm{g}$
d) $0.15 \mathrm{cal} / \mathrm{g}$
76. Number of atoms in 560 g of Fe (atomic mass $56 \mathrm{~g} \mathrm{~mol}^{-1}$) is
a) Twice that of 70 g N
b) Half that of 20 g H
c) Both are correct
d) None of these
77. A 400 mg iron capsule contains 100 mg of ferrous fumarate, (CHCOO$)_{2} \mathrm{Fe}$. the percentage of iron present in it is approximately
a) 33%
b) 25%
c) 14%
d) 8%
78. Equal weights of Zn metal and iodine are mixed together and l_{2} is completely converted toZnl ${ }_{2}$. What fraction by weight of original Zn remains unreacted? $(\mathrm{Zn}=65, \mathrm{I}=127)$
a) 0.34
b) 0.74
c) 0.84
d) Unable to predict
79. An aqueous solution containing 6.5 g of NaCl of 90% purity was subjected to electrolysis. After the complete electrolysis, the solution was evaporated to get solid NaOH . The volume of 1 M acetic acid required to neutralise NaOH obtained above is
a) $1000 \mathrm{~cm}^{3}$
b) $2000 \mathrm{~cm}^{3}$
c) $100 \mathrm{~cm}^{3}$
d) $200 \mathrm{~cm}^{3}$
80. Which of the following is correct?
a) Mole fraction of $\mathrm{I}+$ mole fraction of $\mathrm{II}=1$
(if only two components are present)
b) $\frac{\text { Mole fraction of I }}{\text { Mole fraction of II }}=\frac{\text { mole of I }}{\text { mole of II }}$
(if only two components are present)
Mole fraction of solute $=$
c)

mole of solute
 $\overline{\text { mole of solute+mole of solvent }}$

d) All of the above
81. The number of significant figures in Avogadro's number is
a) Four
b) Two
c) Three
d) Can be any of these
82. A gas has a vapour density 11.2. The volume occupied by 1 g of the gas at NTP is
a) 1 L
b) 11.2 L
c) 22.4 L
d) 4 L
83. A metal nitride, $M_{3} N_{2}$ contains 28% of nitrogen. The atomic mass of metal, M is
a) 24
b) 54
c) 9
d) 87.62
84. An oxide of iodine ($\mathrm{I}=127$) contains 25.4 g of iodine for 8 g of oxygen. Its formula could be:
a) $\mathrm{I}_{2} \mathrm{O}_{3}$
b) $\mathrm{I}_{2} \mathrm{O}$
c) $\mathrm{I}_{2} \mathrm{O}_{5}$
d) $\mathrm{I}_{2} \mathrm{O}_{7}$
85. 20 g of an acid furnishes 0.5 moles of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in its aqueous solution. The value of 1 g eq. of the acid will be:
a) 40 g
b) 20 g
c) 10 g
d) 100 g
86. 10 mL of gaseoús hydrocarbon on combustion gives $40 \mathrm{~mL} \mathrm{of} \mathrm{CO}_{2}(\mathrm{~g})$ and 50 mL of $\mathrm{H}_{2} \mathrm{O}$ (vap). The hydrocarbon is:
a) $\mathrm{C}_{4} \mathrm{H}_{5}$
b) $\mathrm{C}_{8} \mathrm{H}_{10}$
c) $\mathrm{C}_{4} \mathrm{H}_{8}$
d) $\mathrm{C}_{4} \mathrm{H}_{10}$
87. 10 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(18 \mathrm{M})$ is diluted to one litre. The approximate molecular of the dilute acid is:
a) 18 M
b) 180 M
c) 0.18 M
d) 1.8 M
88. Which represents per cent by strength?
a) $\frac{\mathrm{wt} \text {. of solute }}{\text { volume of solution }} \times 100$
b) $\frac{\text { wt. of solute }}{\text { volume of solution }} \times 100$
c) $\frac{\text { volume of solute }}{\text { volume of solution }} \times 100$
d) All of the above
89. An alkaloid contains 17.28% of nitrogen and it's molecular mass is 162 . The number of nitrogen atoms
present in one molecule of alkaloid is
a) 5
b) 4
c) 3
d) 2
90. 6.02×10^{20} molecules of urea are present in 100 mL of its solution. The molarity of urea solution is:
a) 0.1
b) 0.01
c) 0.02
d) 0.001
91. What volume of H_{2} at 273 K and 1 atm will be consumed in obtaining 21.6 g of elemental boron (at. mass 10.8) from the reduction of boron trichloride with H_{2} ?
a) 44.8 L
b) 22.4 L
c) 89.6 L
d) 67.2 L
92. In a metal chloride, the weight of metal and chlorine are in the ratio of $1: 2$. The equivalent weight of the metal will be:
a) 71
b) 35.5
c) 106.5
d) 17.75
93. KMnO_{4} (mol.wt. $=158$) oxidizes oxalic acid in acid medium to CO_{2} and water as follows
$5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
What is the equivalent weight of KMnO_{4} ?
a) 158
b) 31.6
c) 39.5
d) 79
94. How many H -atoms are present in 0.046 g of ethanol?
a) 6×10^{20}
b) 1.2×10^{21}
c) 3×10^{21}
d) 3.6×10^{21}
95. The pair of species having same percentage of carbon is:
a) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
b) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c) HCOOCH_{3} and $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
96. The maximum number of molecules is present in:
a) 15 L of H_{2} gas at STP
b) 5 L of N_{2} gas at STP
c) 0.5 g of H_{2} gas
d) 10 g of $\mathrm{O}_{2} \mathrm{gas}$
97. If one mole of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ completely burns to carbon dioxide and water, the weight of carbon dioxide formed is about:
a) 22 g
b) 45 g
c) 66 g
d) 88 g
98. How many moles of $\mathrm{MgIn}_{2} \mathrm{~S}_{4}$ can be made from $1 g$ each of $M g$, in and S ? (Atomic mass : $\mathrm{Mg}=24, \mathrm{In}=$ $114.8, \mathrm{~S}=32$)
a) 6.47×10^{-4}
b) 3.0×10^{-1}
c) 9.17×10^{-2}
d) 8.7×10^{-3}
99. One g of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} consumes y equivalent of HCl for complete neutralisation. One g of the mixture is strongly heated, then cooled and the residue treated with HCl How many equivalent of HCl would be required for complete neutralization?
a) $2 y$ equivalent
b) yequivaletnt
c) $3 y / 4$ equivalent
d) $3 y / 2$ equivalent
100. An organic compound containing C and H has 92.3% of carbon, its empirical formula is
a) CH
b) CH_{3}
c) CH_{2}
d) CH_{4}
101. 1.5 g of a divalent metal displaced 4 g of copper (at. $\mathrm{wt} .=63.8$) from a solution of copper sulphate. The atomic weight of the metal is:
a) 12
b) 24
c) 48
d) 6
102. 4 g of copper was dissolved in concentrated nitric acid. The copper nitrate solution on strong heating gave 5 g of its oxide. The equivalent weight of copper is
a) 23
b) 32
c) 12
d) 20
103. If $w_{1} \mathrm{~g}$ of a metal X displaces $w_{2} \mathrm{~g}$ of another metal Y from its salt solution and if the equivalent weights are E_{1} and E_{2} respectively, the correct expression for the equivalent weight of X is
a) $E_{1}=\frac{w_{1}}{w_{2}} \times E_{2}$
b) $E_{1}=\frac{w_{2} \times E_{2}}{w_{1}}$
c) $E_{1}=\frac{w_{1} \times w_{2}}{E_{2}}$
d) $E_{1}=\sqrt{\frac{w_{1}}{w_{2}} \times E_{2}}$
104. The weight of an atom of atomic mass 260 amu is:
a) $4.32 \times 10^{-22} g$
b) $4.32 \times 10^{-23} \mathrm{~g}$
c) $4.32 \times 10^{-24} \mathrm{~g}$
d) $4.32 \times 10^{-21} \mathrm{~g}$
105. An organic compound has an empirical formula $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ its vapour density is 45 . The molecular formula of the compound is
a) $\mathrm{CH}_{2} \mathrm{O}$
b) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
c) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
106. 10 g of hydrogen and 64 of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be:
a) 1 mole
b) 2 moles
c) 3 moles
d) 4 moles
107. If one mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with an excess of NaOH , how many moles of water are formed?
a) 2
b) 1
c) 3
d) 4
108. The mass of $112 \mathrm{~cm}^{3}$ of CH_{4} gas at STP is
a) 0.16 g
b) 0.8 g
c) 0.08 g
d) 1.6 g
109. Which term is to be correctly used for expressing concentration of electrolytes in solution?
a) Molarity
b) Normality
c) Formality
d) None of these
110. The haemoglobin from the red blood corpuscles of most mammals contains approximately 0.33% of iron by weight. The molecular weight of haemoglobin as 67,200 . The number of iron atoms in each molecule of haemoglobin is (atomic weight of iron $=56$):
a) 2
b) 3
c) 4
d) 5
111. If two compounds have the same empirical formula but different molecular formulae, they must have
a) Different percentage composition
b) Different molecular weights
c) Same viscosity
d) Same vapour density
112. 0.1 mole of a carbohydrate with empirical formula $\mathrm{CH}_{2} \mathrm{O}$ contains 1 g of hydrogen. What is its molecular formula?
a) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
c) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
d) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
113. Mole fraction of the solute in a 1.00 molal aqueous solution is:
a) 1.7700
b) 0.1770
c) 0.0177
d) 0.0344
114. How many moles of magnesium phosphate, $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will contain 0.25 mole of oxygen atoms?
a) 0.02
b) 3.125×10^{-2}
c) 1.25×10^{-2}
d) 2.5×10^{-2}
115. 2 g of mixture of CO and CO_{2} on reaction with excess $\mathrm{I}_{2} \mathrm{O}_{5}$ produced 2.54 g of I_{2}. What would be the mass $\%$ of CO_{2} in the original mixture?
a) 60
b) 30
c) 70
d) 35
116. On analysis a certain compound was found to contain iodine and oxygen in the ration 254 g of iodine and 80 g of oxygen. The atomic mass of iodine is 127 and that of oxygen is 16 . Which is the formula of the compound?
a) IO
b) $\mathrm{I}_{2} \mathrm{O}$
c) $\mathrm{I}_{5} \mathrm{O}_{2}$
d) $\mathrm{I}_{2} \mathrm{O}_{5}$
117. The vapour density of gas A is three times that of gas B. If the molecular weight of A is M, the molecular weight of B is:
a) 3 M
b) $\sqrt{3} M$
c) $M / 3$
d) $M / \sqrt{3}$
118. A sample of pure $\mathrm{Cu}(3.18 \mathrm{~g})$ heated in a stream of oxygen for some time gains in weight with the formation of black oxide of copper (CuO). The final weight is 3.92 g . What per cent of copper remains unoxidised?
a) ≈ 6.5
b) ≈ 6.9
c) ≈ 7.6
d) ≈ 7.9
119. In the following reaction, which choice has value twice that of the equivalent mass of the oxidizing agent? $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
a) 64
b) 32
c) 16
d) 48
120. The chloride of metal contains 71% chlorine by weight and the vapour density of it is 50 . The atomic weight of the metal will be:
a) 29
b) 58
c) 35.5
d) 71
121. If 0.5 mole of BaCl_{2} is mixed with 0.2 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles $f \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is
a) 0.7
b) 0.5
c) 0.03
d) 0.10
122. How many significant figures are there in (respectively)
(1) 73.000 g (2) 0.0503 g and (3) 2.001 s ?
a) $3,3,4$
b) $3,4,5$
c) $2,5,4$
d) $5,3,4$
123. The formula weight of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is 342 . A solution containing 342 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in :
a) One litre of solution is one molar
b) One litre of solution is 2 molar
c) 1000 g of water is 3 normal
d) 2 litre of solution is 3 molar
124. For the reaction, $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Equivalent weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is
a) $\frac{M}{2}$
b) M
c) $2 M$
d) $\frac{M}{4}$
125. Two oxides of a metal contain 50% and 40% metal (M) respectively. If the formula of fist oxide is MO_{2}, the formula of second oxide will be
a) MO_{2}
b) MO_{3}
c) $\mathrm{M}_{2} \mathrm{O}$
d) $\mathrm{M}_{2} \mathrm{O}_{3}$
126. An organic compound on analysis was found to contain 10.06% carbon, 0.84% hydrogen and 89.10% chlorine. What will be the empirical formula of the substance?
a) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
b) CHCl_{3}
c) CCl_{4}
d) $\mathrm{CH}_{3} \mathrm{Cl}$
127. 22.4 litre of water vapour at NTP, when condensed to water, occupies an approximate volume of:
a) 18 litre
b) 1 litre
c) 1 mL
d) 18 mL
128. Which statement is correct?
a) Atomic weight of an element varies with valence
b) Molecular weight changes with valence
c) Equivalent weight changes with valence
d) None of the above
129. Excess of carbon dioxide is passed through 50 mL of 0.5 M calcium hydroxide solution. After the completion of the reaction, the solution was evaporate was evaporated to dryness. The solid calcium carbonate was completely neutralised with 0.1 N hydrochloric acid. The volume of hydrochloric acid required is (Atomic mass of calcium $=40$)
a) $300 \mathrm{~cm}^{3}$
b) $200 \mathrm{~cm}^{3}$
C) $500 \mathrm{~cm}^{3}$
d) $400 \mathrm{~cm}^{3}$
130. $9.8 \mathrm{~g} \mathrm{of}_{2} \mathrm{SO}_{4}$ is present in 2 litre of a solution. The molarity of the solution is:
a) 0.1 M
b) 0.05 M
c) 0.01 M
d) 0.2 M
131. The number of mole present in 2 litre of 0.5 M NaOH is:
a) 2
b) 1
c) 0.1
d) 0.5
132. The solution A and B are 0.1 and 0.2 molar in a substance. If 100 mL of A are mixed with 25 mL of B and there is no change in volume on mixing, then the final molarity of the solution is:
a) 0.15 M
b) 0.18 M
c) 0.12 M
d) 0.30 M
133. The gravimetric composition of water as $\mathrm{H}: \mathrm{O}$ is:
a) $1: 1$
b) $1: 2$
c) $1: 8$
d) $1: 16$
134. A mixture of CaCl_{2} and NaCl weighing 4.44 g is treated with sodium carbonate solution to precipitate all the Ca^{2+} ions as calcium carbonate. The calcium carbonate so obtained is heated strongly to get 0.56 g of CaO . The percentage of NaCl in the mixture (atomic mass of $\mathrm{Ca}=40$) is
a) 75
b) 30.6
c) 25
d) 69.4
135. In the reaction,
$2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{Al}^{3+}(a q)+6 \mathrm{Cl}^{-}(a q)+3 \mathrm{H}_{2}(\mathrm{~g})$
a) $6 \mathrm{LHCl}(a q)$ is consumed for every $3 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ produced
b) $33.6 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ is produced regardless of temperature and pressure for every mole Al that reacts
c) $67.2 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced for every mole Al that reacts
d) $11.2 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced for every mole $\mathrm{HCl}(a q)$ consumed
136. Number of atoms of oxygen present in 10.6 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will be
a) 6.02×10^{23}
b) 12.04×10^{22}
c) 1.806×10^{23}
d) 31.80×10^{28}
137. If 0.22 of a substance when vaporized displaced $45 \mathrm{~cm}^{3}$ of air measured over water at 293 K and 755 mm pressure and if vapour pressure of $\mathrm{H}_{2} \mathrm{O}=17.4 \mathrm{~mm}$ then the molecular weight of substance will be:
a) 222.2
b) 332.3
c) 121.1
d) 127.5
138. The number of water molecules present in a drop of water (volume 0.0018 mL) at room temperature is
a) 6.023×10^{19}
b) 1.084×10^{18}
c) 4.84×10^{17}
d) 6.023×10^{23}
139. A certain amount of a metal whose equivalent mass is 28 displaces 0.7 L of H_{2} at STP from an acid. Hence, mass of the element is
a) 1.75 g
b) 0.875 g
c) 3.50 g
d) 7.00 g
140. Law of multiple proportions is illustrated by one of the following pairs
a) $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}
b) NH_{3} and NO_{2}
c) $\mathrm{Na}_{2} \mathrm{~S}$ and $\mathrm{Na}_{2} \mathrm{O}$
d) $\mathrm{N}_{2} \mathrm{O}$ and NO
141. Amount of oxygen required for combustion of 1 kg of a mixture of butane and isobutane is:
a) 1.8 kg
b) 2.7 kg
c) 4.5 kg
d) 3.58 kg
142. About a gaseous reaction, $x X+y Y \rightarrow l L+m M$
Which statement is wrong?
a) $\begin{aligned} & x \text { l } \\ & M\end{aligned}$
b) $\begin{aligned} & x \text { mole } \\ & \text { and } M\end{aligned}$
c) $\begin{aligned} & x \text { number of molecules of } X \text { combine with } y \\ & \text { number of molecules of } Y \text { to form } L \text { and } M\end{aligned}$
d) $x \operatorname{g}$ of X combines with $y \operatorname{g}$ of Y to give M and L
143. The simplest formula of a compound containing 50% of element X (at. wt. 10) and 50% of element Y (at. wt. 20) is:
a) $X Y$
b) $X_{2} Y$
c) $X Y_{2}$
d) $X_{2} Y_{3}$
144. The number of mole of KCl in 1000 mL of 3 molar solution is:
a) 1.5
b) 3.0
c) 1.0
d) 4.0
145. A person has as many as notes as number of oxygen atoms in $24.8 \mathrm{~g} \mathrm{Na} \mathrm{S}_{2} \mathrm{~S}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (mol. wt. $=248.0$). A note counting machine counts 60 million notes per day. How much day would be taken to count these notes?
a) 10^{17}
b) 10^{10}
c) 10^{15}
d) 10^{12}
146. An oxide of sulphur contains $50 \% \mathrm{~S}$. what will be its empirical formula?
a) SO
b) SO_{2}
c) SO_{3}
d) $\mathrm{S}_{2} \mathrm{O}_{3}$
147. 8 g of O_{2} has the same number of molecules as:
a) 7 g of CO
b) 11 g of CO_{2}
c) 7 g of N_{2}
d) All of these
148. When 10 g of 90% pure lime stone is heated completely, the volume (in litres) of CO_{2} is liberated at STP is
a) 22.4
b) 2.24
c) 20.16
d) 2.016
149. Mass of 0.1 mole of methane is
a) 1 g
b) 16 g
c) 1.6 g
d) 0.1 g
150. The per cent of N in 66% pure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample is:
a) 32
b) 28
c) 14
d) None of the above
151. Equal weight of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and FeO has weight of oxygen in the ratio:
a) 1.35
b) 0.74
c) 0.37
d) 2.7
152. The number of mole of solute per kg of solvent is called:
a) Mole fraction of solute
b) Normality
c) Molarity
d) Molality
153. The empirical formula of a compound is $\mathrm{CH}_{2} \mathrm{O}$. If its VD is 30 , its molecular formula is:
a) $\mathrm{CH}_{2} \mathrm{O}$
b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
c) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
d) $\mathrm{CH}_{3} \mathrm{OH}$
154. The decomposition of a certain mass of CaCO_{3} gave $11.2 \mathrm{dm}^{3}$ of CO_{2} gas at STP. The mass of KOH required to completely neutralise the gas is
a) 56 g
b) 28 g
c) 42 g
d) 20 g
155. 19.7 kg of gold was recovered from a smuggler. How many atoms of gold were recovered $(\mathrm{Au}=197)$?
a) 100
b) 6.02×10^{23}
c) 6.02×10^{24}
d) 6.02×10^{25}
156. 2.79 g of silver carbonate on being strongly heated yields a residue weighing:
a) 2.16 g
b) 2.48 g
c) 2.32 g
d) 2.64 g
157. In acidic medium, the equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{Mol} . \mathrm{wt} .=M)$ is
a) M
b) $\frac{M}{2}$
c) $\frac{M}{3}$
d) $\frac{M}{6}$
158. Which has the highest mass?
a) 1 g -atom of C
b) $1 / 2$ mole of CH_{4}
c) 10 mL of water
d) 3.011×10^{23} atoms of oxygen
159. How many atoms are present in a mole of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$?
a) $14 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
b) $10 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
c) $7 \times 6.02 \times 10^{23} \mathrm{atom} / \mathrm{mol}$
d) None of the above
160. Volume of $2 M \mathrm{HCl}$ needed to neutralize the solution containing one litre of 1 M solution of NaOH is :
a) 1 litre
b) 2 litre
c) 3 litre
d) $\frac{1}{2}$ litre
161. 80 g of oxygen contains as many atoms as in
a) 80 g of hydrogen
b) 1 g of hydrogen
c) 10 g of hydrogen
d) 5 g of hydrogen
162. An element $A(\mathrm{at} . \mathrm{wt} .=75)$ and $B(\mathrm{at} . \mathrm{wt} .=25)$ combine to form a compound. The compound contains $75 \% A$ by weight. The formula of the compound will be:
a) $A_{2} B$
b) $A_{3} B$
c) $A B_{3}$
d) $A B$
163. If molecular weight of KMnO_{4} is M, then its equivalent weight in acidic medium would be
a) M
b) $\frac{M}{2}$
c) $\frac{M}{5}$
d) $\frac{M}{3}$
164. Molecular weight of tribasic acid is W. Its equivalent weight will be:
a) $W / 2$
b) $W / 3$
c) W
d) 3 W
165. 5 mL of $N \mathrm{HCl}, 20 \mathrm{~mL}$ of $N / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 mL of $N / 3 \mathrm{HNO}_{3}$ are mixed together and volume made one litre. The normality of the resulting solution is:
a) $N / 5$
b) $N / 10$
c) $N / 20$
d) $N / 40$
166. If 20 g of CaCO_{3} is treated with 100 mL of $20 \% \mathrm{HCl}$ solution, the amount of CO_{2} produced is
a) 22.4 L
b) 8.80 g
c) 4.40 g
d) 2.24 L
167. The empirical formula of a compound is CH_{2}. One mole of this compound has a mass of 42 g . Its molecular formula is
a) $\mathrm{C}_{3} \mathrm{H}_{6}$
b) $\mathrm{C}_{3} \mathrm{H}_{8}$
c) CH_{2}
d) $\mathrm{C}_{2} \mathrm{H}_{2}$
168. The volume of air needed for complete combustion of 1 kg carbon at STP is:
a) 9333.33 litre
b) 933.33 litre
c) 93.33 litre
d) 1866.67 litre
169. Mixture $X=0.02$ mole of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mole of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.
1 L of mixture $X+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
1L of mixture $X+$ excess $\mathrm{BaCl}_{2} \rightarrow Z$
Number of moles of Y and Z are
a) $0.01,0.01$
b) $0.02,0.01$
c) $0.01,0.02$
d) $0.02,0.02$
170. 100 mL each of $0.5 \mathrm{~N} \mathrm{NaOH}, N / 5 \mathrm{HCl}$ and $N / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed together. The resulting solution will be:
a) Acidic
b) Neutral
c) Alkaline
d) None of these
171. 1.5 litre of a solution of normality N and 2.5 litres of 2 M HCl are mixed together. The resultant solution had a normality 5 . The value of N is:
a) 6
b) 10
c) 8
d) 4
172. The number of water molecules in 1 L of water is
a) 18
b) 18×1000
c) N_{A}
d) $55.55 \mathrm{~N}_{\mathrm{A}}$
173. The maximum number of molecules are present in
a) 15 L of H_{2} gas at STP
b) 5 L of N_{2} gas at STP
c) 0.5 g of H_{2} gas
d) 10 g of O_{2} gas
174. Polyethylene can be produced from calcium carbide according to the following sequence of reactions;
$\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaO}+\mathrm{HC} \equiv \mathrm{CH}$
$\left.n \mathrm{HC} \equiv \mathrm{CH}+n \mathrm{H}_{2} \longrightarrow+\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{n}$
The mass of polyethylene which can be produced from 20.0 kg of CaC_{2} is:
a) 6.75 kg
b) 7.75 kg
c) 8.75 kg
d) 9.75 kg
175. Calculate g-atom of element in 40 kg , if weight of one atom of an element is $6.644 \times 10^{-23} \mathrm{~g}$:
a) 10^{2} g-atom
b) 10 g -atom
c) 10^{3} g-atom
d) None of these
176. The molality of 15% (wt./vol.) solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of density $1.1 \mathrm{~g} / \mathrm{cm}^{3}$ is approximately:
a) 1.2
b) 1.4
c) 1.8
d) 1.6
177. The density of $\mathrm{NH}_{4} \mathrm{OH}$ solution is $0.6 \mathrm{~g} / \mathrm{mL}$. It contains 34% by weight of $\mathrm{NH}_{4} \mathrm{OH}$. Calculate the normality of the solution:
a) 4.8 N
b) 10 N
c) 0.5 N
d) 5.8 N
178. 171 g of cane sugar (mol. wt. $=342$) are dissolved in 1000 g of water at $30^{\circ} \mathrm{C}$. If the density of solution is $1.1 \mathrm{~g} / \mathrm{mL}$, then:
a) Molarity < molality
b) Molarity = molality
c) Molality < molarity
d) None of these
179. Amount of oxygen required for complete combustion of 27 g Al is:
a) 24 g
b) 12 g
c) 20 g
d) 6 g
180. The least number of molecules are contained in:
a) 2 g hydrogen
b) 8 g oxygen
c) $4 g$ nitrogen
d) $16 \mathrm{~g} \mathrm{CO}_{2}$
181. Which of the following is correct for $\mathrm{C}($ graphite $)+\mathrm{O}_{2}$ (gas) $\rightarrow \mathrm{CO}_{2}$, heat $=-348 \mathrm{~kJ}$?
a) Heat absorbed
b) Mass of product $>$ Mass of reactant
c) Mass of product < Mass of reactant
d) Mass of product $=$ Mass of reactant
182. The molarity of $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ is:
a) 1 M
b) 2 M
c) 3 M
d) $4 M$
183. Amount of oxalic acid present in a solution can be determined by its titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The titration given unsatisfactory result when carried out in the presence of HCl because HCl
a) Gets oxidised by oxalic acid to chlorine
b) Furnishes H^{+}ions in addition to those from oxalic acid
c) reduces permanganate to Mn^{2+}
d) Oxidises oxalic acid to carbon dioxide and water
184. The mass of $112 \mathrm{~cm}^{3}$ of CH_{4} gas a STP is
a) 0.16 g
b) 0.8 g
c) 0.08 g
d) 1.6 g
185. The volume of oxygen necessary for the complete combustion of 20 L of propane is
a) 40 L
b) 60 L
c) 80 L
d) 100 L
186. The value of gram molar volume of gas is:
a) 1 Iitre
b) 22.4 litre
c) 11.2 litre
d) 22.4 litre at STP
187. Carbon dioxide contains 27.27% of carbon, carbon disulphide contains 15.79% of carbon and sulphur dioxide contains 50% of sulphur. This data is an agreement with
a) Law of conservation of mass
b) Law of definite proportions
c) Law of multiple proportions
d) Law of reciprocal proportions
188. In a compound C, H, N atoms are present in $9: 1: 3.5$ by weight. Molecular weight of compound is 108 , its molecular formula is:
a) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}$
b) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
c) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
d) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3}$
189. The total molarity of all the ions containing 0.1 M of CuSO_{4} and 0.1 M of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is:
a) 0.2 M
b) 0.7 M
c) 0.8 M
d) 1.2 M
190. How much water is to be added to dilute 10 mL of 10 N HCl to make it decinormal?
a) 990 mL
b) 1010 mL
c) 100 mL
d) 1000 mL
191. Density of air at NTP is $0.001293 \mathrm{~g} / \mathrm{mL}$. Its vapour density is:
a) 0.001293
b) 1.293
c) 14.48
d) Cannot be calculated
192. The number of moles of water present in 90 g of a water is:
a) 2
b) 3
c) 4
d) 5
193. If 30 mL of H_{2} and 20 mL of O_{2} reacts to form water, what is left at the end of reaction:
a) $10 \mathrm{~mL} \mathrm{H}_{2}$
b) $5 \mathrm{~mL} \mathrm{H}_{2}$
c) 10 mL O
d) $5 \mathrm{mLO}_{2}$
194. The term atom molecule were introduced by:
a) Ostwald, Avogadro respectively
b) Dalton, Avogadro respectively
c) Avogadro, Dalton respectively
d) None of the above
195. Arrange the following in the order of increasing mass (atomic mass; $0=16, \mathrm{Cu}=63, \mathrm{~N}=14$)
I. One atom of oxygen
II. One atom of nitrogen
III. 1×10^{-10} mole of oxygen
IV. 1×10^{-10} mole of copper
a) II $<$ I $<$ III $<$ IV
b) I $<$ II $<$ III $<$ IV
c) III $<$ II $<$ IV $<$ I
d) IV $<$ II $<$ III $<$ I
196. One part of an element A combines with two parts of another element $B, 6$ parts of element C combines with 4 parts of B. If A and C combine together, the ratio of their weights, will be governed by
a) Law of definite proportions
b) Law of multiple proportions
c) Law of reciprocal proportions
d) Law of conservation of mass
197. A metal oxide has the formula $\mathrm{Z}_{2} \mathrm{O}_{3}$. It can be reduced by hydrogen to give free metal and water. 0.1596 g of the metal oxide required 6 mg of hydrogen for complete reduction. The atomic weight of the metal is:
a) 27.90
b) 159.60
c) 79.80
d) 55.80
198. x grams of calcium carbonate was completely burnt in air. The weight of the solid residue formed is 28 g . What is the value of x (in grams)?
a) 44
b) 200
c) 150
d) 50
199. In a gaseous reaction of the type $a A+b B \rightarrow c C+d D$, which is wrong?
a) a litre of A combines with b litre of B to give C and D
b) a mole of A combines with b mole of B to give C and D
c) $a \mathrm{~g}$ of A combines with $b \mathrm{~g}$ of B to give C and D
d) a molecules of A combines with b molecules of B to give C and D
200. Which of the following are correct?
a) G molecular wt. $=$ mol. wt. in $\mathrm{g}=\mathrm{wt}$. of N molecules
b) 1 mole $=N$ molecules $=6.023 \times 10^{23}$ molecule
c) Mole = g molecules
d) All of the above
201. Cyclohexanol is dehydrated to cyclohexene on heating with conc $\mathrm{H}_{2} \mathrm{SO}_{4}$. The cyclohexene obtained from 100 g cyclohexanol will be
(If yield of reaction is 75%)
a) 61.5 g
b) 75.0 g
c) 20.0 g
d) 41.0 g
202. A compound was found to contain nitrogen and oxygen in the ratio, nitrogen 28 g and 80 g of oxygen. The formula of the compound is:
a) NO
b) $\mathrm{N}_{2} \mathrm{O}_{3}$
c) $\mathrm{N}_{2} \mathrm{O}_{5}$
d) $\mathrm{N}_{2} \mathrm{O}_{4}$
203. Versene, a chelating agent having chemical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{Na}\right)_{4}$. If each mole of this compound could bind 1 mole of $\mathrm{Ca}^{2}+$, then the rating of pure versene expressed as mg of CaCO_{3} bound per g of chelating agent is:
a) 100 mg
b) 163 mg
c) 200 mg
d) 263 mg
204. Which of the following is correct?
a) Meq. $=N \times V_{\text {in } m \mathrm{~L}}=\frac{\mathrm{wt} .}{\text { Eq.wt. }} \times 1000$
b) Eq. $=N \times V_{\text {in mL }}=\frac{\text { wt. }}{\text { Eq.wt. }}$
c) Equal equivalent or milli equivalent of reactants react to give same eq. or Meq. of products
d) All of the above
205. 1.0 g of pure calcium carbonate was found to require 50 mL of dilute HCl for complete reactions. The strength of the HCl solution is given by:
a) 4 N
b) 2 N
c) 0.4 N
d) 0.2 N
206. The number of atoms in $4.25 \mathrm{~g} \mathrm{of}_{3}$ is approximately
a) 6×10^{23}
b) 2×10^{23}
c) 1.5×10^{23}
d) 1×10^{23}
207. MnO_{4}^{-}ions are reduced in acidic condition to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_{2}. The oxidation of 25 mL of a solution X containing Fe^{2+} ions required in acidic condition 20 mL of a solution Y containing MnO_{4}^{-}ions. What volume of solution Y would be required to oxidise 25 mL of a solution X containing Fe^{2+} ions in neutral condition?
a) 11.4 mL
b) 12.0 mL
c) 33.3 mL
d) 35.0 mL
208. Number of atoms of He in 100 u of He (atomic weight of He is 4) are
a) 25
b) 100
c) 50
d) $100 \times 6 \times 10^{-23}$
209. Total number of atoms present in $1.0 \mathrm{~cm}^{3}$ of solid glucose (density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$) at $25^{\circ} \mathrm{C}$ are:
a) 2.68×10^{21}
b) 6.42×10^{22}
c) 2.68×10^{22}
d) 2.68×10^{23}
210. For preparing $M / 10$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in one litre we need $\mathrm{H}_{2} \mathrm{SO}_{4}$:
a) 9.8 g
b) 49.0 g
c) 4.8 g
d) 0.09 g
211. Given, that the abundances of isotopes ${ }_{54} \mathrm{Fe},{ }_{56} \mathrm{Fe}$ and ${ }_{57} \mathrm{Fe}$ are $5 \%, 90 \%$ and 5%, respectively, the atomic mass of Fe is
a) 55.85
b) 55.95
c) 55.75
d) 56.05
212. The concentration of solution containing $0.5 \mathrm{~mole}_{3} \mathrm{PO}_{4}$ dissolved in 500 g water:
a) 1 m
b) 1 M
c) 1 N
d) 0.5 M
213. Which of the following is correct?
a) Mole $=$ molarity $\times V_{\text {in L }}=\frac{\mathrm{wt.}}{\mathrm{~mol} \text { wt. }}$
b) Milli mole $=$ molarity $\times V_{\text {in } \mathrm{mL}}=\frac{\mathrm{wt} .}{\text { mol. wt. }} \times 1000$
c) Mole and milli mole of reactants react according to stoichiometric ratio of balanced chemical equation
d) All of the above
214. 100 g of CaCO_{3} is treated with 1 L of 1 N HCI . What would be the weight of CO_{2} liberated after the completion of the reaction?
a) 55 g
b) 11 g
c) 22 g
d) 33 g
215. If an iodized salt contains $1 \% \mathrm{KI}$ and a person takes 2 g of the salt every day, the iodide ions going into his body every day would be approximately
a) 7.2×10^{21}
b) 7.2×10^{19}
c) 3.6×10^{21}
d) 9.5×10^{19}
216. The mass of 11.2 L of ammonia gas at STP is
a) 8.5 g
b) 85 g
c) 17 g
d) 1.7 g
217.0.52 g of dibasic acid required 100 mL of 0.1 N NaOH for complete neutralization. The equivalent weight of acid is:
a) 26
b) 52
c) 104
d) 156
218. 100 tons of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ containing 20% impurities will give iron by reduction with H_{2} equal to
a) 112 tons
b) 80 tons
c) 160 tons
d) 56 tons
219. 25 mL of a solution of barium hydroxide on titration with 0.1 M solution of HCl gave a titre value of 35 mL . The molarity of $\mathrm{Ba}(\mathrm{OH})_{2}$ is:
a) 0.28
b) 0.35
c) 0.07
d) 0.14
220. Volume occupied by one molecule of water (density $=1 \mathrm{~g} \mathrm{~cm}^{-3}$) is:
a) $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
b) $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
c) $5.5 \times 10^{-23} \mathrm{~cm}^{3}$
d) $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
221. The mass of nitrogen per gram hydrogen in the compound hydrazine is exactly one and half times the mass of nitrogen in the compound ammonia. The fact illustrates the
a) Law of conservation of mass
b) Multiple valency of nitrogen
c) Law of multiple proportions
d) Law of definite proportions
222. Strength of the solution is given by:
a) $S=N \times E$
b) $S=\frac{\text { wt. of solute }}{\text { volume of solution in litre }}$
c) $S=M \times$ mol. wt.
d) All of the above
223. 0.5 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 0.2 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$. The maximum number of mole of CaSO_{4} formed is:
a) 0.2
b) 0.5
c) 0.4
d) 1.5
224. On dissolving 1 mole each of the following acids in 1 litre water, the acid which do not give a solution of 1 N strength is:
a) HCl
b) HClO_{4}
c) HNO_{3}
d) $\mathrm{H}_{3} \mathrm{PO}_{4}$
225. The empirical formula of a compound is CH . Its molecular weight is 78 . The molecular formula of the compound will be:
a) $\mathrm{C}_{2} \mathrm{H}_{2}$
b) $\mathrm{C}_{3} \mathrm{H}_{3}$
c) $\mathrm{C}_{2} \mathrm{H}_{4}$
d) $\mathrm{C}_{2} \mathrm{H}_{6}$
226. Of two oxides of iron, the first contained 22% and the second contained 30% of oxygen by weight. The ratio of weights of iron in the two oxides that combine with the same weight of oxygen, is
a) $3: 2$
b) $2: 1$
c) $1: 2$
d) $1: 1$
227. The total number of protons in 10 g of calcium carbonate is $\left(N_{0}=6.023 \times 10^{23}\right)$
a) 3.01×10^{24}
b) 4.06×10^{24}
c) 2.01×10^{24}
d) 3.02×10^{24}
228. In the following reaction,
$\mathrm{MnO}_{2}+4 \mathrm{HCL} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
$2 \mathrm{~mol} \mathrm{MnO}_{2}$ reacts with 4 mol of HCl to form $11.2 \mathrm{LCl}_{2}$ at STP. Thus, per cent yield of Cl_{2} is
a) 25%
b) 50%
c) 100%
d) 75%
229. The normality of 1% (wt./vol.) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is nearly:
a) 0.02
b) 0.2
c) 0.1
d) 1
230. The mass of 1 mole of electrons is
a) $9.1 \times 10^{-28} \mathrm{~g}$
b) 1.008 mg
c) 0.55 mg
d) $9.1 \times 10^{-27} g$
231. 74.4 g of a metallic chloride contains 35.5 g of chlorine. The equivalent weight of the metal is:
a) 19.5
b) 35.5
c) 39.0
d) 78.0
232. Equivalent weight of an acid
a) Depends on the reaction involved
b) Depends upon the number of oxygen atoms present
c) Is always constant
d) None of the above
233. Which of the following is not a mixture?
a) Gasoline
b) Distilled alcohol
c) LPG
d) lodized table salt
234. The equivalent weight of a divalent metal is 31.82 . The weight of single atom is:
a) $32.77 \times 6.02 \times 10^{23}$
b) $63.64 \times 6.02 \times 10^{23}$
c) 63.64
d) $63.64 / 6.02 \times 10^{23}$
235. Number of mole of $1 \mathrm{~m}^{3}$ gas at NTP are:
a) 44.6
b) 40.6
c) 42.6
d) 48.6
236. The per cent loss in weight after heating a pure sample of potassium chlorate (mol. wt. $=122.5$) will be:
a) 12.25
b) 24.50
c) 39.18
d) 49.0
237. The number of milli equivalent contained in 0.5 litre of 0.2 N solution is:
a) 0.1
b) 100
c) 0.01
d) 1.0
238. Out of 1.0 g dioxygen, 1.0 g (atomic) oxygen and 1.0 g ozone, the maximum number of molecules are contained in
a) 1.0 g of atomic oxygen
b) 1.0 g of ozone
c) 1.0 g of oxygen gas
d) All contain same number of atoms
239. A sample of AIF_{3} contains $3.0 \times 10^{24} \mathrm{~F}$ ions. The number of formula units of this sample are
a) 9.0×10^{24}
b) 3.0×10^{24}
c) 0.75×10^{24}
d) 1.0×10^{24}
240. One mole of CO_{2} contains
a) 3 g atoms of CO_{2}
b) 18.1×10^{23} molecules of CO_{2}
c) 6.02×10^{23} atoms of 0
d) 6.02×10^{23} atoms of C
241. For the reaction, $A+2 B \rightarrow C, 5$ moles of A and 8 moles of B will produce:
a) 5 moles of C
b) 4 moles of C
c) 8 moles of C
d) 13 moles of C
242. Which sample contains the largest number of atoms?
a) 1 mg of $\mathrm{C}_{4} \mathrm{H}_{10}$
b) 1 mg of N_{2}
c) 1 mg of Na
d) 1 mL of water
243. An aromatic hydrocarbon with empirical formula $\mathrm{C}_{5} \mathrm{H}_{4}$ on treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave a monosulphonic acid. 0.104 g of the acid required 10 mL of $\frac{\mathrm{N}}{20} \mathrm{NaOH}$ for complete neutralisation. The molecular formula of hydrocarbon is
a) $\mathrm{C}_{5} \mathrm{H}_{4}$
b) $\mathrm{C}_{10} \mathrm{H}_{8}$
c) $\mathrm{C}_{15} \mathrm{H}_{12}$
d) $\mathrm{C}_{20} \mathrm{H}_{16}$
244. If isotopic distribution of $\mathrm{C}-12$ and $\mathrm{C}-14$ is 98% and 2% respectively then the number of $\mathrm{C}-14$ atoms in 12 g of carbon is
a) 1.032×10^{22}
b) 3.01×10^{22}
c) 5.88×10^{23}
d) 6.023×10^{23}
245. Zinc sulphate contains 22.65% of zinc and 43.9% of water of crystallization. If the law of constant proportions is true then the weight of zinc required to produce 20 g of the crystals will be
a) 45.3 g
b) 4.53 g
c) 0.453 g
d) 453 g
246. The number of gram molecules of chlorine in 6.02×10^{25} hydrogen chloride molecules is
a) 10
b) 100
c) 50
d) 5
247. The net charge on ferrous ion is:
a) +2
b) +3
c) +4
d) +5
248. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution used for hair bleaching is sold as a solution of approximately $5.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$ Per 100 mL of the solution. The molecular weight of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 34 . The molarity of this solution is approximately:
a) 3.0
b) 1.5
c) 0.15
d) 4.0
249. 4.6×10^{22} atoms of an element weigh 13.8 g . The atomic weight of element is
a) 290
b) 180
c) 34.4
d) 10.4
250. The weight of 50% (wt./wt.) solution of HCl required to react with 100 g of CaCO_{3} would be:
a) 73 g
b) 100 g
c) 146 g
d) 200 g
251. An element, X has the following isotopic composition
${ }^{200} X: 90 \%$
${ }^{199} X: 8.0 \%$
${ }^{202} X: 2.0 \%$
The weighted average atomic mass of the naturally occurring element X is closed to
a) 200 u
b) $210 u$
c) 202 u
d) 199 u
252. Law of constant composition is same as the law of
a) Conservation of mass
b) Conservation of energy
c) Multiple proportion
d) Definite proportion
253. One atom of an element X weight $6.643 \times 10^{-23} \mathrm{~g}$. number of moles of atom in 20 kg is
a) 140
b) 150
c) 250
d) 500
254. The reaction, $2 \mathrm{C}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$ is carried out by taking 24 g carbon and $96 \mathrm{~g} \mathrm{O}_{2}$. Which one is limiting reagent?
a) C
b) O_{2}
c) CO_{2}
d) None of these
255. 1000 g aqueous solution of CaCO_{3} contains 10 g of calcium carbonate. Concentration of solution is:
a) 10 ppm
b) 100 ppm
c) 1000 ppm
d) 10000 ppm
256. The maximum amount of BaSO_{4} precipitated on mixing 20 mL of $0.5 \mathrm{M} \mathrm{BaCl}_{2}$ with 20 mL of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is:
a) 0.25 mole
b) 0.5 mole
c) 1 mole
d) 0.01 mole
257. The percentage of an element M is 53 in its oxide of molecular formula $\mathrm{M}_{2} \mathrm{O}_{3}$. Its atomic mass is about
a) 45
b) 9
c) 18
d) 27
258. $\mathrm{H}_{3} \mathrm{BO}_{3}$ is:
a) Monobasic and weak Lewis acid
b) Monobasic and weak Bronsted acid
c) Monobasic and strong Lewis acid
d) Tribasic and weak Bronsted acid
259. A sample of peanut oil weighing 1.5763 g is added to 25 mL of 0.4210 M KOH after saponification is complete 8.46 mL of $0.2732 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to neutralise excess KOH . The saponification number of peanut oil is:
a) 209.6
b) 108.9
c) 98.9
d) 218.9
260. What quantity of ammonium sulphate is necessary for the production of NH_{3} gas sufficient to neutralize a solution containing 292 g of HCl ? $\left[\mathrm{HCl}=36.5,\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=132, \mathrm{NH}_{3}=17\right]$
a) 272 g
b) 403 g
c) 528 g
d) 1056 g
261. A partially dried clay mineral contains 8% water. The original sample contained 12% water and 45% silica. The \% of silica in the partially dried sample is nearly:
a) 50%
b) 49%
c) 55%
d) 47%
262. Number of g -atoms of an element in one atom are:
a) 6.023×10^{23}
b) 1.66×10^{-24}
c) 2×10^{23}
d) None of these
263. Concentration of HCl is 10 N .100 mL of 1 N HCl can be obtained by diluting:
a) 10 mL of conc. HCl to 100 mL
b) 20 mL of conc. HCl to 100 mL
c) 100 mL of conc. HCl to 200 mL
d) 100 mL of conc. HCl to 100 mL
264. The number of formula units of calcium fluoride, CaF_{2} present in 146.4 g of CaF_{2} (the molar mass of CaF_{2} is $78.08 \mathrm{~g} / \mathrm{mol}$) is
a) $1.129 \times 10^{24} \mathrm{CaF}_{2}$
b) $1.146 \times 10^{24} \mathrm{CaF}_{2}$
c) $7.808 \times 10^{24} \mathrm{CaF}_{2}$
d) $1.877 \times 10^{24} \mathrm{CaF}_{2}$
265. What is the weight of oxygen that is required for the complete combustion of 2.8 kg of ethylene?
a) 9.6 kg
b) 96.0 kg
c) 6.4 kg
d) 2.8 kg
266. The number of sodium atoms in 2 moles of sodium ferrocyanide is
a) 12×10^{23}
b) 26×10^{23}
c) 34×10^{23}
d) 48×10^{23}
267. Stoichiometric ratio of sodium dihydrogen orthophosphate and sodium hydrogen orthophosphate required for synthesis of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{11}$ is
a) $1.5: 3$
b) $3: 1.5$
c) $1: 1$
d) $2: 3$
268. $4.4 \mathrm{~g} \mathrm{of}_{2}$ and 2.24 litre of H_{2} at STP are mixed in a container. The total number of molecules present in the container will be:
a) 6.022×10^{23}
b) 1.2044×10^{23}
c) 2 mole
d) 6.023×10^{24}
269. Calculate the number of moles left after removing 10^{21} molecules from 200 mg ofCO ${ }_{2}$.
a) 0.00454
b) 0.00166
c) 2.88×10^{-3}
d) None of these
270. Which has maximum number of atoms?
a) 24 g of C (12)
b) 56 g of Fe (56)
c) 27 g of Al (27)
d) 108 g of Ag (108)
271. A sample of copper sulphate pentahydrate contains 8.64 g of oxygen. How many gram of Cu is present in this sample?
(Atomic mass of $\mathrm{Cu}=63.6, \mathrm{~S}=32.06, \mathrm{O}=16$)
a) 0.952 g
b) 3.816 g
c) 3.782 g
d) 8.64 g
272. To neutralise completely 20 ML of 0.1 M aqueous solution of phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$, the volume of 0.1 M aqueous KOH solution required is :
a) 60 mL
b) 20 mL
c) 40 mL
d) 10 mL
273. 2 g of O_{2} at $\mathrm{O}^{\circ} \mathrm{C}$ and 760 mm of Hg pressure has volume
a) 1.4 L
b) 2.8 L
c) 11.2 L
d) 22.4 L
274. An organic compound contains $20.0 \% \mathrm{C}, 6.66 \% \mathrm{H}, 47.33 \% \mathrm{~N}$ and the rest was oxygen. Its molar mass is 60 $\mathrm{g} \mathrm{mol}^{-1}$ the molecular formula of the compound is
a) $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}$
c) $\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{O}$
d) $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
275. One mole of solute (NaCl) is dissolved in 1 litre water. The molarity of solution is:
a) $>1 \mathrm{M}$
b) $<1 M$
c) $=1 M$
d) $=2 \mathrm{M}$
276. 100 mL of 0.1 N hypo decolourised iodine by the addition of x gram of crystalline copper sulphate to excess of KI. The value of ' x ' is (molecular wt. of $\mathrm{CuSO}_{4}, 5 \mathrm{H}_{2} \mathrm{O}$ is 250)
a) 5.0 g
b) 1.25 g
c) 2.5 g
d) 4 g
277. Which of the following contains greatest number of oxygen atoms?
a) 1 g of 0
b) 1 g of O_{2}
c) 1 g of O_{3}
d) All have the same number of atoms
278. The normality of 4% (wt./vol.) NaOH is:
a) 0.1
b) 1.0
c) 0.05
d) 0.01
279. The mass of potassium dichromate crystals required to oxidise $750 \mathrm{~cm}^{3}$ of 0.6 M Mohr's salt solution is (Given, molar mass : Potassium dichromate $=294$, Mohr's salt $=392$)
a) 0.49 g
b) 0.45 g
c) 22.05 g
d) 2.2 g
280. If 0.5 mole of BaCl_{2} is mixed with 0.2 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ the maximum number of mole of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is:
a) 0.7
b) 0.5
c) 0.30
d) 0.1
281. Which has the maximum number of atoms?
a) 6 gC
b) $1 \mathrm{~g} \mathrm{H}_{2}$
c) 12 g Mg
d) 30 g Ca
282. Mixing up of equal volumes of 0.1 M NaOH and $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ yields a solution which is:
a) Basic
b) Acidic
c) Neutral
d) None of these
283. If 6.3 g of NaHCO_{3} are added to $15.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}$ solution, the residue is found to weight 18.0 g . what is the mass of CO_{2} released in the reaction?
a) 4.5 g
b) 3.3 g
c) 2.6 g
d) 2.8 g
284. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is:
a) 0.1 M
b) 1.0 M
c) 0.2 M
d) 2.0 M
285. Molar concentration of a solution in water is:
a) Always equal to normality of solution
b) More than molality of the solution
c) Equal to molality of the solution
d) Less than the molality of the solution
286.1 kg of NaOH solution contains 4 g of NaOH . The approximate concentration of the solution is:
a) 1 molar
b) 0.1 molar
c) Decinormal
d) About 0.1 N
287. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?
a) 0.333
b) 0.011
c) 0.029
d) 0.044
288. The nature of mixture obtained mixing 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 50 mL of 0.1 M NaOH is:
a) Acidic
b) Basic
c) Neutral
d) amphoteric
289. Number of electrons in 1.8 mL of $\mathrm{H}_{2} \mathrm{O}$ is:
a) 6.02×10^{23}
b) 3.011×10^{23}
c) 0.6022×10^{23}
d) 60.22×10^{23}
290. If a compound contains two oxygen atoms, four carbon atoms and number of hydrogen atom is double of carbon atoms, the vapour density of it is:
a) 88
b) 44
c) 132
d) 72
291. Molecular weight of oxalic acid is 126 . The weight of oxalic acid required to neutralise 1000 mL of normal solution of NaOH is:
a) 126 g
b) 63 g
c) 6.3 g
d) 12.6 g
292. The number of hydrogen atoms present in 25.6 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ which has a molar mass of 342.3 g is
a) 22×10^{23}
b) 9.91×10^{23}
c) 11×10^{23}
d) $44 \times 10^{23} \mathrm{H}$ atoms
293. Molarity of liquid HCl with density equal to $1.17 \mathrm{~g} / \mathrm{mL}$ is:
a) 36.5
b) 18.25
c) 32.05
d) 4.65
294. If 20 mL of 0.4 N NaOH solution completely neutralizes 40 mL of a dibasic acid, the molarity of the acid solution is:
a) 0.1 M
b) 0.2 M
c) 0.3 M
d) 0.4 M
295. Dissolving 120 g of urea (mol.wt.60) in 1000 g of water gave a solution of density $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is:
a) 1.78 M
b) 2.00 M
c) 2.05 M
d) 2.22 M
296. Equivalent weight of NH_{3} as a base is:
a) 17
b) $17 / 3$
c) 1.7
d) $17 / 2$
297. KMnO_{4} reacts with oxalic acid according to the equation
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ Here, 20 mL of $0.1 \mathrm{M} \mathrm{KMnO}{ }_{4}$ is equivalent to
a) 20 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
b) 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
c) 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
d) 20 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
298. To prepare a standard solution of a substance, we use:
a) A pipette
b) A burette
c) Measuring flask
d) Measuring cylinder
299. There are two isotopes of an element with atomic massz. Heavier one has atomic mass $z+2$ and lighter one has $\mathrm{z}-1$, the abundance of lighter one is
a) 66.6%
b) 69.7%
c) 6.67%
d) 33.3%
300.3 g of an oxide of a metal is converted to chloride completely and it yielded 5 g of chloride. The equivalent weight of the metal is
a) 33.25
b) 3.325
c) 12
d) 20
301. The molarity of 20.0 mass $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution of density $11.14 \mathrm{~g} \mathrm{~cm}^{-3}$ is
a) $2.56 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
b) $1.56 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
c) $1.26 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
d) $2.32 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
302. How many moles of Fe^{2+} ions are formed, when excess of iron is treated with 50 mL of 4.0 M HCl under inert atmosphere? Assume no change in volume:
a) 0.4
b) 0.1
c) 0.2
d) 0.8
303. 100 mL of 0.3 N HCl solution were mixed with 200 mL of $0.6 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. The final acidic normality is:
a) 0.9 N
b) 0.6 N
c) 0.5 N
d) 0.4 N
304. 45 g of acid of mol. wt. 90 neutralized by 200 mL of 5 N caustic potash. The basicity of the acid is:
a) 1
b) 2
c) 3
d) 4
305. The equivalent weight of KIO_{3} in the reaction,
$2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{OH}^{-}+\mathrm{KIO}_{3} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$ is
a) Mol, wt.
b) Mol. wt./3
c) Mol. wt./6
d) Mol. wt./2
306. The sample with largest number of atoms is
a) 1 g of $\mathrm{O}_{2}(\mathrm{~g})$
b) 1 g of $\mathrm{Ni}(\mathrm{s})$
c) 1 g of $\mathrm{B}(\mathrm{s})$
d) 1 g of $\mathrm{N}_{2}(\mathrm{~g})$
307. The equation,
$2 \mathrm{Al}(s)(3 / 2) O_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(s)$ shows that:
a) 2 mole of Al reacts with (3/2) mole of O_{2} to produce (7/2) mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
b) 2 g of Al reacts with (3/2) g of O_{2} to produce one mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
c) 2 g of Al reacts with (3/2)litre of O_{2} to produce 1 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
d) 2 mole of Al reacts with ($3 / 2$) mole of O_{2} to produce 1 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
308. The number of atoms in 3.2 g of oxygen gas are:
a) 6.02×10^{22}
b) 6.02×10^{23}
c) 12.04×10^{22}
d) 12.04×10^{23}
309. The number of atoms in n moles of gas can be given by:
a) $n \times$ Av. no. \times atomicity
b) $\frac{n \times \text { Av. no. }}{\text { atomicity }}$
c) $\frac{\text { Av. no. } \times \text { atomicity }}{n}$
d) None of these
310. How many moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ would be in 50 g of the substance?
a) 0.083 mol
b) 0.952 mol
c) 0.481 mol
d) 0.140 mol
311. The molecular weight of air will be (the components of air given as $\mathrm{N}_{2}-78 \%, \mathrm{O}_{2}-21 \%, \mathrm{Ar}-09 \%$ and $\mathrm{CO}_{2}-0.1 \%$)
a) 18.64
b) 24.968
c) 28.964
d) 29.864
312. 1.520 g of the hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is:
a) 1.520
b) 0.995
c) 19.00
d) 9.00
313. The hydrated salt $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$, undergoes 55% loss in weight on heating and becomes anhydrous. The value of n will be:
a) 5
b) 3
c) 7
d) 10
314. When 100 g of ethylene polymerizes to polyethylene according to the equation,
$\left.n \mathrm{CH}_{2}=\mathrm{CH}_{2} \longrightarrow+\mathrm{CH}_{3}-\mathrm{CH}_{2}\right)_{n}$.
The weight of polyethylene produced will be:
a) $\frac{n}{2} g$
b) 100 g
c) $\frac{100}{n} \mathrm{~g}$
d) 100 ng
315. Vapour density of a volatile substance is $4\left(\mathrm{CH}_{4}=1\right)$. Its molecular weight would be:
a) 8
b) 2
c) 64
d) 128
316. Dulong and Petit's law is valid only for
a) Metals
b) Non-metals
c) Gaseous elements
d) Solid elements
317. The molarity of pure water is:
a) 55.6
b) 50
c) 100
d) 18
318. A molal solution is one that contains one mole of a solute in:
a) 1000 g of the solvent
b) 1000 mL of the solution
c) One litre of the solvent
d) 22.4 litre of the solution
319. The weight of a substance that displaces 22.4 litre air at NTP is:
a) Mol. wt.
b) At. wt.
c) Eq. wt.
d) All of these
320. The density (in g mL ${ }^{-1}$) of a $3.60 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution having 29% by mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (molar mass 98)will be:
a) 1.45
b) 1.64
c) 1.88
d) 1.22
321. One atom of an element weights $1.8 \times 10^{-22} \mathrm{~g}$. its atomic mass is
a) 29.9
b) 18
c) 108.36
d) 154
322. How many moles of electrons weigh one kilogram?
a) 6.023×10^{23}
b) $\frac{1}{9.108} \times 10^{31}$
c) $\frac{6.023}{9.108} \times 10^{54}$
d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$
323. The number of moles of water in $488 \mathrm{~g} \mathrm{BaCl} 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are:
a) 2
b) 3
c) 4
d) 5
324. The number of molecules in 16 g of methane is:
a) 3.0×10^{23}
b) 6.02×10^{23}
c) $\frac{16}{6.02} \times 10^{23}$
d) $\frac{16}{3.0} \times 10^{23}$
325. The percentage of $\mathrm{P}_{2} \mathrm{O}_{5}$ in diammonium hydrogen phosphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ is
a) 23.48
b) 46.96
c) 53.78
d) 71.00
326. Acidified KMnO_{4} oxidises oxalic acid to CO_{2}. What is the volume (in litres) of $10^{-4} \mathrm{M} \mathrm{KMnO}_{4}$ required to completely oxidise 0.5 L of $10^{-2} \mathrm{M}$ oxalic acid in acid medium?
a) 125
b) 1250
c) 200
d) 20
327. 0.003924 have \qquad . significant figures.
a) 6
b) 4
c) 3
d) 7
328. The formula mass of Mohr's salt is 392 . The iron present in it is oxidised by KMnO_{4} in acid medium. The equivalent mass of Mohr's salt is
a) 392
b) 31.6
c) 278
d) 156
329. Matter is anything which occupies . . . A. . . and has ... B

Here A and B are
a) Density and mass
b) Volume and mass
c) Space and mass
d) None of these
330. Which is not a molecular formula?
a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
b) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
d) $\mathrm{N}_{2} \mathrm{O}$
331. Insulin contains 3.4% sulphur. What will be the minimum molecular weight of insulin?
a) 94.117
b) 1884
c) 941.176
d) 976
332. Which of the following contains maximum number of molecules?
a) 100 cc of CO_{2} at STP
b) 150 cc of N_{2} at STP
c) 50 cc of SO_{2} at STP
d) 200 cc of NH_{3} at STP
333. Weight of a single molecule of water is:
a) $3.0 \times 10^{-23} \mathrm{~g}$
b) $6.02 \times 10^{23} \mathrm{~g}$
c) $6.02 \times 10^{-23} \mathrm{~g}$
d) None of these
334. Air contains $20 \% \mathrm{O}_{2}$ by volume. How much volume of air will be required for 100 cc of acetylene?
a) 500 cc
b) 1064 cc
c) 212.8 cc
d) 1250 cc
335. 1.35 g of pure Ca metal was quantitatively converted into 1.88 g of pure CaO , what is atomic weight of Ca ?
a) 40.75
b) 50
c) 60
d) 70
336. If 250 mL of a solution contains 2.7 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$, the normality of the solution is:
a) 4.0
b) 0.33
c) 0.4
d) 0.1
337. The weights of two elements which combine with one another are in the ratio of their:
a) At. wt.
b) Mol. wt
c) Eq. wt.
d) None of these
338. One litre $\mathrm{N}_{2}, \frac{7}{8}$ litre O_{2} and 1 litre CO are taken in a mixture under indentical conditions of P and T. The amount of gases present in mixture is given by:
a) $w_{\mathrm{N}_{2}}=w_{\mathrm{O}_{2}}>w_{\mathrm{CO}}$
b) $w_{\mathrm{N}_{2}}=w_{\mathrm{CO}}>w_{\mathrm{O}_{2}}$
c) $w_{\mathrm{N}_{2}}=w_{\mathrm{O}_{2}}=w_{\mathrm{CO}}$
d) $w_{\mathrm{CO}}>w_{\mathrm{N}_{2}}>w_{\mathrm{O}_{2}}$
339. Volume of 0.1 M NaOH needed for the neutralisation of 20 mL of 0.05 M oxalic acid is:
a) 10 mL
b) 15 mL
c) 20 mL
d) 30 mL
340. The mole fraction of solute in one molal aqueous solution is:
a) 0.009
b) 0.018
c) 0.027
d) 0.036
341. If we consider that $\frac{1}{6}$, in place of $\frac{1}{12}$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will
a) Be a function of the molecular mass or the substance
b) Remain unchanged
c) Increase two fold
d) Decrease twice
342. A compound contains 54.55\% carbon, 9.09 \% hydrogen, 36.36\% oxygen. The empirical formula of this compound is
a) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$
b) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
343. The total number of protons, electrons and neutrons in 12 g of ${ }_{6}^{12} \mathrm{C}$ is:
a) 1.084×10^{25}
b) 6.022×10^{23}
c) 6.022×10^{22}
d) 18
344. The volume of $0.25 \mathrm{M}_{3} \mathrm{PO}_{4}$ required to neutralise 25 mL of $0.03 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is:
a) 1.32 mL
b) 13.2 mL
c) 26.4 mL
d) 2.0 mL
345. 100 mL of PH_{3} when decomposed produces phosphorus and hydrogen. The change in volume is:
a) 50 mL increase
b) 500 mL decrease
c) 900 mL decrease
d) None of these
346. Density of a 2.05 M solution of acetic acid in water is $1.02 \mathrm{~g} / \mathrm{mL}$. The molality of the solution is:
a) $1.14 \mathrm{~mol} \mathrm{~kg}^{-1}$
b) $3.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
c) $2.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
d) $0.44 \mathrm{~mol} \mathrm{~kg}^{-1}$
347. What weight of sodium hydroxide is required to neutralize 100 mL of 0.1 N HCl ?
a) 4.0 g
b) 0.04 g
c) 0.4 g
d) 2.0 g
348. The amount of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in 250 mL of 0.25 M solution is :
a) 6.625 g
b) 6.0 g
c) 66.25 g
d) 6.225 g
349. Mole fraction of A in water is 0.2 . The molality of A in water is:
a) 13.8
b) 13.6
c) 14.0
d) 16.0
350. How many g of KCl would have to be dissolved in $60 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ to give 20% by weight of solution?
a) 15 g
b) 1.5 g
c) 11.5 g
d) 31.5 g
351. What volume of oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at $0^{\circ} \mathrm{C}$ and 1 atm , is needed to burn completely 1 L of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ measured under the same conditions?
a) 6 L
b) 5 L
c) 10 L
d) 7 L
352. The weight of 11.2 litre of any gas at STP represents its:
a) Gram molecular weight
b) Gram equivalent weight
c) Gram atomic weight
d) Vapour density
353. The normality of 10% (weight/volume) acetic acid is:
a) 1 N
b) 10 N
c) 1.7 N
d) 0.83 N
354. The stoichiometry of the following reaction is $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(a q)+2 \mathrm{KI}(a q) \rightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}(a q)+\mathrm{I}_{2}(a q)$
a) $2: 2$
b) $1: 1$
c) $1: 2$
d) $2: 1$
355. 2 mole of ethyl alcohol are present with 6 mole of water. The mole fraction of alcohol is:
a) 0.5
b) 0.75
c) 0.15
d) 0.25
356. What is the $\left[\mathrm{OH}^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10 M $\mathrm{Ba}(\mathrm{OH})_{2}$?
a) 0.12 M
b) 0.10 M
c) 0.40 M
d) 0.0050 M
357. The pair of compounds which cannot exist in solution is:
a) NaHCO_{3} and NaOH
b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH
d) NaHCO_{3} and NaCl
358. An oxide of metal has 20% oxygen, the eq. wt. of oxide is:
a) 32
b) 40
c) 48
d) 52
359. What weight of silver chloride will be precipitated when a solution containing 4.77 g of NaCl is added to a solution of 5.77 g of $\mathrm{AgNO}_{3} ?(\mathrm{Na}=23, \mathrm{Cl}=35.5, \mathrm{Ag}=108, N=14$ and $O=16)$
a) 4.37 g
b) 4.87 g
c) 5.97 g
d) 3.87 g
360. Number of molecules in 100 mL of each of $\mathrm{O}_{2}, \mathrm{NH}_{3}$ and CO_{2} at STP are in the order
a) $\mathrm{CO}_{2}<\mathrm{O}_{2}<\mathrm{NH}_{3}$
b) $\mathrm{NH}_{3}<\mathrm{O}_{2}<\mathrm{CO}_{2}$
c) $\mathrm{NH}_{3}=\mathrm{CO}_{2}<\mathrm{O}_{2}$
d) All have same number of molecules
361. The equivalent weight of a substances is the weight which either combines of displaces:
a) 8 part oxygen
b) 1 part hydrogen
c) 35.5 part chlorine
d) All of these
362. Which of the following is correct?
a) Eq.wt. of element $=\frac{\text { at. wt. }}{\text { valence }}$

Eq. wt. of compound $=$
b)
mol.wt.
total charge on cation or anion
c) Eq. wt. of acid $=\frac{\text { mol. wt. }}{\text { basicity }}$
d) Eq. wt. of base $=\frac{\text { mol. wt. }}{\text { acidity }}$
363. Which represents per cent by volume?
a) $\frac{\text { wt. of solute }}{\text { wt. of solution }} \times 100$
b) $\frac{\text { wt. of solute }}{\text { volume of solution }} \times 100$
c) $\frac{\text { volume of solute }}{\text { volume of solution }} \times 100$
d) All of the above
364. In the aqueous solution of sulphuric acid the mole fraction of water is 0.85 . the molality of the solution is :
a) 8.9 m
b) 0.19 m
c) 9.8 m
d) 15 m
365. The number of atoms in 0.1 mol of a triatomic gas is:
$\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
a) 6.026×10^{23}
b) 1.806×10^{23}
c) 3.600×10^{23}
d) 1.80×10^{23}
366. Which contains greatest number of oxygen atoms?
a) 1 g of O
b) 1 g of O_{2}
c) 1 g of O_{3}
d) All have the same number of atoms
367. The electrochemical equivalent of a metal is ' x ' $\mathrm{g} \mathrm{coulomb}^{-1}$. The equivalent weight of metal is
a) x
b) $x \times 96500$
c) $\frac{x}{96500}$
d) $1.6 \times 10^{-19} \times x$
368. By Victor meyer's method, one determine the vapour density if:
a) Non-volatile solid
b) All substances
c) Volatile liquid
d) Electrolyte
369. The percentage of oxygen in NaOH is:
a) 40
b) 16
c) 8
d) 1
370. Sulphur forms the chlorides $\mathrm{S}_{2} \mathrm{Cl}_{2}$ and SCl_{2}. The equivalent mass of sulphur in SCl_{2} is 16 . The equivalent mass of sulphur $\mathrm{S}_{2} \mathrm{Cl}_{2}$ is:
a) 8
b) 16
c) 64
d) 32
371. 1.520 g of the hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is
a) 1.520
b) 0.995
c) 19.00
d) 9.00
372. The product of atomic weight and specific heat of a metal is approximately 6.4 . This was given by:
a) Dalton's law
b) Avogadro's law
c) Newton's law
d) Dulong Petit's law
373. If a mixture containing 3 moles of hydrogen and 1 mole of nitrogen is converted completely into ammonia, the ratio of initial and final volumes under the same temperature and pressure would be:
a) $3: 1$
b) $1: 3$
c) $2: 1$
d) $1: 2$
374. The least count of an instrument is 0.01 cm . Taking all precautions, the most possible error in the measurement can be
a) 0.005 cm
b) 0.01 cm
c) 0.0001 cm
d) 0.1 cm
375. A metal M forms a compound $M_{2} \mathrm{HPO}_{4}$. The formula of the metal sulphate is:
a) $M_{2} \mathrm{SO}_{4}$
b) MSO_{4}
c) $M\left(\mathrm{SO}_{4}\right)_{2}$
d) $M_{2}\left(\mathrm{SO}_{4}\right)_{3}$
376. If the molecular weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and I_{2} are M_{1} and M_{2} respectively, then what will be the equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and I_{2} in the following reaction?
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$
a) M_{1}, M_{2}
b) $M_{1}, M_{2} / 2$
c) $2 M_{1}, M_{2}$
d) $M_{1}, 2 M_{2}$
377. In the final answer of the expression $\frac{(29.2-20.2)\left(1.79 \times 10^{5}\right)}{1.37}$, the number of significant figures is
a) 1
b) 2
c) 3
d) 4
378. Haemoglobin contains 0.33% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (at. Wt. of $F e=56$) present in one molecule of haemoglobin is
a) 6
b) 1
c) 4
d) 2
379. In the equation,
$\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+\mathrm{S}$
The equivalent weight of hydrogen sulphide is
a) 18
b) 68
c) 34
d) 17
380. In a compound C, H and N are present is $9: 1: 3.5$ by weight. If molecular weight of the compound is 108 , then the molecular formula of the compound is
a) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}$
b) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
c) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
d) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3}$
381. When 10 g of methane is completely burnt in oxygen, the heat evolved is 560 kJ . What is the heat of combustion (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of methane?
a) -1120
b) -968
c) -896
d) -560
382. How much of $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}$ solution is required to neutralize 50 mL of 0.2 M NaOH solution?
a) 0.50 mL
b) 50 mL
c) 100 mL
d) 5.0 mL
383. One litre of CO_{2} is passed over hot coke. The volume becomes 1.4 litre. The per cent composition of products is:
a) 0.6 litre CO
b) 0.8 litre CO_{2}
c) 0.6 litre CO_{2} and 0.8 litre CO
d) None of the above
384. Equivalent weight of oxygen is:
a) 32
b) 8
c) 16
d) 24
385. Arsenic forms two oxides, one of which contains 65.2% and the other 75.5% of the element. Hence, equivalent masses of arsenic are in the ratio
a) $1: 2$
b) $3: 5$
c) $13: 15$
d) $2: 1$
386. The oxide of a metal contains 60% of the metal. What will be the percentage of bromine in the bromide of the metal, if the valency of the metal is the same in both the oxide and the bromide?
a) ≈ 87
b) ≈ 70
c) ≈ 77
d) ≈ 93
387. An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 N NaOH required to completely neutralised 10 mL of this solution is:
a) 40 mL
b) 20 mL
c) 10 mL
d) 4 mL
388. The enthalpy of combustion of methane at $25^{\circ} \mathrm{C}$ is 890 kJ . The heat liberated when 3.2 g of methane is burnt in air is
a) 445 kJ
b) 278 kJ
c) -890 kJ
d) 178 kJ
389. A signature written with carbon pencil weighs 1 mg . what is the number of carbon atoms present in the signature?
a) 6.02×10^{20}
b) 0.502×10^{20}
c) 5.02×10^{23}
d) 5.02×10^{20}
390. If 1.2 g of a metal displace 1.12 litre hydrogen at normal temperature and pressure, equivalent weight of metal would be:
a) 12
b) 24
c) 1.2×11.2
d) $1.2 \div 11.2$
391. 34 g of hydrogen peroxide is present in 1120 mL of solution. This solution is called:
a) 10 vol solution
b) 20 vol solution
c) 30 vol solution
d) 32 vol solution
392. A sample of a mixture of CaCl_{2} and NaCl weighing 4.22 g was treated to precipitate all the $\mathrm{Ca}^{2} \mathrm{CaCO}_{3}$. This CaCO_{3} is then heated and quantitatively converted into 0.959 g of CaO . Calculate the percentage of CaCl_{2} in the mixture.
(Atomic mass of $\mathrm{Ca}=40, O=16, C=12$ and $\mathrm{Cl}=35.5$)
a) 31.5%
b) 21.5%
c) 45.04%
d) 68.48%
393. 11.2 litre of NH_{3} at STP has electrons:
a) 3.01×10^{21}
b) 3.01×10^{22}
c) 3.01×10^{25}
d) 3.01×10^{24}
394. Which of the following pairs contains equal number of atoms?
a) 11.2 cc (STP) of nitrogen and 0.015 g of nitric oxide
b) 22.4 L (STP) of nitrous oxide and 22.4 L of nitric oxide
c) 1 millimole of HCL and 0.5 millimole of $\mathrm{H}_{2} \mathrm{~S}$
d) 1 mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ and 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$
395. The number of atoms present in a molecule is called:
a) Atomicity
b) Molecularity
c) Poison's ratio
d) None of these
396. Which has the highest weight?
a) $1 \mathrm{~m}^{3}$ of water
b) A normal adult man
c) 10 L of Hg
d) All have same weight
397. 74.5 g of a metallic chloride contains 35.5 g of chlorine, the equivalent weight of the metal is
a) 19.5
b) 35.5
c) 39
d) 78.0
398. A compound contains 69.5% oxygen and 30.5% nitrogen and its molecular weight is 92 . The formula of the compound is
a) $\mathrm{N}_{2} \mathrm{O}$
b) NO_{2}
c) $\mathrm{N}_{2} \mathrm{O}_{4}$
d) $\mathrm{N}_{2} \mathrm{O}_{5}$
399. The solid like conducting state of gases with free electrons is called
a) Sol state
b) Gel state
c) Plasma state
d) All of these
400. A g of a metal displaces $V \mathrm{~mL}$ of H_{2} at NTP. Equivalent weight E, of metal is:
a) $E=\frac{A}{\text { wt.of } \mathrm{H}_{2} \text { displaced }} \times E_{\mathrm{H}}$
b) $E=\frac{A \times 1.008 \times 22400}{\text { volume of } \mathrm{H}_{2} \text { displaced } \times 2}$
c) $E=\frac{A \times 1.008}{\text { volume of } \mathrm{H}_{2} \text { displaced } \times 0.0000897}$
d) All of the above
401. The formula which represents the simple ratio of atoms in a compound is called:
a) Molecular formula
b) Structure formula
c) Empirical formula
d) Rational formula
402. How many mole of atoms are in a mole of $\mathrm{CH}_{3} \mathrm{COOH}$ molecule?
a) 2 moles of C atoms, 4 moles of H atoms, 2 moles of O atoms
b) 1 mole of C atom, 2 moles of H atoms, 1 mole of O atom
c) 2 moles of C atom, 3 moles of H atoms, 2 moles of O atoms
d) None of the above
403. If the density of water is $1 \mathrm{~g} \mathrm{~cm}^{-3}$ then the volume occupied by one molecule of water is approximately
a) $18 \mathrm{~cm}^{3}$
b) $22400 \mathrm{~cm}^{3}$
c) $6.02 \times 10^{-23} \mathrm{~cm}^{3}$
d) $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
404. What will be the normality of a solution obtained by mixing 0.45 N and 0.60 N NaOH in the ratio $2: 1$ by volume?
a) 0.4 N
b) 0.5 N
c) 1.05 N
d) 0.15 N
405. For the reaction,
$X+2 Y \rightarrow Z$
5 Moles of X and 9 moles of Y will produce
a) 5 moles of Z
b) 8 moles of Z
c) 14 moles of Z
d) 4 moles of Z
406. A student performs a titration with different burettes and finds titre values of $25.2 \mathrm{~mL}, 25.25 \mathrm{~mL}$, and 25.0 mL . The number of significant figures in the average titre value is
a) 1
b) 2
c) 3
d) 4
407. 100 mL of $20.8 \% \mathrm{BaCl}_{2}$ solution and 50 mL of $9.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$

Solution will form BaSO_{4}
$(\mathrm{Ba}=137, \mathrm{Cl}=35.5, \mathrm{~S}=32, \mathrm{H}=1,0=16)$
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Ba}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
a) 23.3 g
b) 11.65 g
c) 30.6 g
d) None of these
408. n gram of a substance X reacts with m gram of substance Y to form p gram of substance R and q gram of substance S. This reaction can be represented as follows
$X+Y=R+S$
The relation which can be established in the amounts of the reactants and the products will be
a) $n-m=p-q$
b) $n+m=p+q$
c) $n=m$
d) $p=q$
409. On adding 20 mL of 0.1 N NaOH solution to 10 mL of 0.1 N HCl , the resulting solution will:
a) Turn blue litmus red
b) Turn phenolphthalein solution pink
c) Turn methyl orange red
d) Will have no effect on red or blue litmus paper
410. The number of atoms in 558.5 g of Fe (at.wt. 55.85) is:
a) Twice that in 60 g carbon
b) 6.022×10^{22}
c) Half in 8 g He
d) $558.5 \times 6.023 \times 10^{23}$
411. If 20% nitrogen is present in a compound, it's minimum molecular weight will be:
a) 144
b) 28
c) 100
d) 70
412. The dehydration yield of cyclohexanol to cyclohexene is 75%. What would be the yield, if 100 g of cyclohexanol is dehydrated?
a) 61.7 g
b) 16.5 g
c) 6.15 g
d) 615 g
413. A mixture containing $100 \mathrm{~g} \mathrm{H}_{2}$ and $100 \mathrm{~g} \mathrm{O}_{2}$ is ignited so that water is formed according to the reaction, $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$; How much water will be formed?
a) 113 g
b) 50 g
c) 25 g
d) 200 g
414. The numerical value of $\frac{N}{n}$ (where, N is the number of molecules in a given sample of gas and n is the number of moles of the gas) is
a) 8.314
b) 6.02×10^{23}
c) 0.0821
d) 1.66×10^{-19}
415. The ionic strength of Na^{+}on mixing 100 mL 0.1 M NaCl and $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is:
a) 0.2
b) 0.1
c) 0.3
d) 0.075
416. Number of g-atom of S present in $49 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ are:
a) 0.5
b) 1
c) 0.2
d) 0.3
417. 276 g of silver carbonate on being strongly heated yields a residue weighing
a) 3.54 g
b) 3.0 g
c) 1.36 g
d) 2.16 g
418. The mole fraction of oxygen in a mixture of 7 g of nitrogen and 8 g of oxygen is:
a) $8 / 5$
b) 0.5
c) 0.25
d) 1.0
419. 0.5 g of fuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ (oleum) is diluted with water. This solution is completely neutralized by 26.7 mL of 0.4 N NaOH . The percentage of free SO_{3} in the sample is:
a) 30.6%
b) 40.6%
c) 20.6%
d) 50%
420. The mass of BaCO_{3} produced when excess CO_{2} is bubbled through a solution of $0.205 \mathrm{~mole} \mathrm{Ba}(\mathrm{OH})_{2}$ is,
a) 81 g
b) 40.5 g
c) 20.25 g
d) 162 g
421. An example of homogeneous mixture is
a) Mixture of soil and water
b) Mixture of salt and sand grains
c) Sugar solution
d) None of the above
422. The molarity of a solution containing 5.3 g of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ per litre is :
a) 0.01 M
b) 0.05 M
c) 0.02 M
d) 1 M
423. To what extent must a given solution containing 40 mg AgNO 3 per mL be diluted to yield a solution containing $16 \mathrm{mg} \mathrm{AgNO}_{3}$ per mL?
a) Each mL must be diluted to 2.5 mL
b) To each mL of solution 2.5 mL of water should be added
c) To 1.5 mL of solution 2.5 mL of water should be added
d) To 1.5 mL of solution 1.5 mL of water should be added
424. In the reaction,
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
Equivalent weight of iodine will be equal to
a) Molecular weight
b) $1 / 2$ of molecular weight
c) $1 / 4$ of molecular weight
d) Twice of molecular weight
425. Mol. wt. $=$ vapour density $\times 2$, is valid for:
a) metals
b) non-metals
c) Solids
d) Gases
426. The volume of oxygen required for complete oxidation of 2.0 litre methane at NTP is:
a) 12.25 litre
b) 4 litre
c) 1 litre
d) 3 litre
427. One mole of a mixture of CO and CO_{2} requires exactly 20 g of NaOH in solution for complete conversion of all the CO_{2} into $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How much NaOH would it require for conversion into $\mathrm{Na}_{2} \mathrm{CO}_{3}$, if the mixture (one mole) is completely oxidised to CO_{2} ?
a) 60 g
b) 80 g
c) 40 g
d) 20 g
428. The equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the following reaction is, $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}:$
a) 98
b) 49
c) 32.66
d) 40
429. 1.0 g of hydrogen contains 6×10^{23} atoms. The atomic weight of helium is 4 . If follows that the number of atoms in 1 g of He is:
a) $1 / 4 \times 6 \times 10^{23}$
b) $4 \times 6 \times 10^{23}$
c) 6×10^{23}
d) 12×10^{23}
430. The hardness of water is usually expressed in:
a) ppm
b) $g /$ litre
c) $\mathrm{Mol} /$ litre
d) None of these
431. An element forms an oxide, in which the oxygen is 20% of the oxide by weight , the equivalent weight of the given element will be:
a) 32
b) 40
c) 60
d) 128
432. The ratio of amounts of $\mathrm{H}_{2} \mathrm{~S}$ needed to precipitate all the metals ions from 100 mL of $1 \mathrm{M} \mathrm{AgNO} \mathrm{O}_{3}$ and 100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}$ is:
a) $1: 2$
b) $2: 1$
c) Zero
d) Infinite
433. 5.6 litre of oxygen at NTP is equivalent to:
a) 1 mole
b) $1 / 2$ mole
c) $1 / 4$ mole
d) $1 / 8$ mole
434. A solution of HCl containing $0.03659 \mathrm{~g} / \mathrm{mL}$ and another solution of acetic acid containing $0.04509 \mathrm{~g} / \mathrm{mL}$, then:
a) N_{HCl} is more
b) $N_{\mathrm{CH}_{3} \mathrm{COOH}}$ is more
c) Both have same N
d) None of these
435. The equivalent weight of an acid is obtained by dividing its mol. wt. by its:
a) Acidity
b) Basicity
c) pH
d) None of these
436. For the reaction, $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ the volume of carbon monoxide required to reduce one mole of ferric oxide is
a) $22.4 \mathrm{dm}^{3}$
b) $44.8 \mathrm{dm}^{3}$
c) $67.2 \mathrm{dm}^{3}$
d) $11.2 \mathrm{dm}^{3}$
437. 224 mL of a triatomic gas weights 1 g at 273 K and 1 atm . The mass of one atom of this gas is:
a) $8.30 \times 10^{-23} \mathrm{~g}$
b) $2.08 \times 10^{-23} \mathrm{~g}$
c) $5.53 \times 10^{-23} \mathrm{~g}$
d) $6.24 \times 10^{-23} \mathrm{~g}$
438. The empirical formula of a compound isCH2. One mole of this compound has a mass of 56 g . its molecular formula is
a) $\mathrm{C}_{3} \mathrm{H}_{6}$
b) $\mathrm{C}_{4} \mathrm{H}_{8}$
c) CH_{2}
d) $\mathrm{C}_{2} \mathrm{H}_{2}$
439. Which has maximum number of atoms?
a) 2.0 mol of S_{8}
b) 6.0 mol of S
c) 5.5 mol of SO_{2}
d) $4.48 \mathrm{~L}^{\text {of } \mathrm{CO}_{2}}$ at 5 TP
440. Which represents per cent by weight?
a) $\frac{w t \text {. of solute }}{w t \text { of solution }} \times 100$
b) $\frac{\text { wt. of solute }}{\text { volume of solution }} \times 100$
c) $\frac{\text { volume of solute }}{\text { volume of solution }} \times 100$
d) None of the above
441. How many g are present in one mole of MgSO_{4} ?
a) 120.4
b) 130.2
c) 12.04
d) 360
442. A solution contains one mole of alcohol and four moles of water. What are the mole fractions of water and alcohol?
a) $1 / 4,4 / 1$
b) $4 / 1,1 / 4$
c) $4 / 5,1 / 5$
d) $1 / 5,4 / 5$
443. Approximate atomic weight of an element is 26.89 . If its equivalent weight is 8.9 the exact atomic weight of element would be:
a) 26.89
b) 8.9
c) 17.8
d) 26.7
444. 0.75 moles of a solid A_{4} and 2 moles of $\mathrm{O}_{2}(g)$ are heated in a sealed vessel, completely using up the reactants and produces only one compound. It is found that when the temperature is used to initial temperature, the contents of the vessel exhibit a pressure equal to $\frac{1}{2}$ of the original pressure. The formula of the product will be
a) $\mathrm{A}_{2} \mathrm{O}_{3}$
b) $\mathrm{A}_{3} \mathrm{O}_{8}$
c) $\mathrm{A}_{3} \mathrm{O}_{4}$
d) $A O_{2}$
445. 25.3 g solution carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was dissolved in enough water to make 250 mL of solution. If sodium
carbonate dissociates completely, molar concentration of Na^{+}and carbonate ions are respectively.
(mol. mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} \mathrm{~mol}^{-1}$)
a) 0.9555 M and 1.910 M
b) 1.910 M and 0.955 M
c) 1.90 M and 1.1910 M
d) 0.477 M and 0.477 M
446. NO reacts with O_{2} to form No_{2}. When 10 g of NO_{2} is formed during the reaction, the mass of O_{2} consumed is
a) 1.90 g
b) 5.0 g
c) 3.48 g
d) 13.9 g
447. Two solutions of a substance (non-electrolyte) are mixed in the following manner. 480 mL of 1.5 M of I solution with 520 mL of 1.2 M of II solution. The molarity of final solution is:
a) 1.20 M
b) 1.50 M
c) 1.344 M
d) 2.70 M
448. A vogadro's number is the number of molecules present in:
a) 22.4 litre of a gas of NTP
b) 1 mole of a substance
c) G mol. wt. of a substance
d) All of the above
449. Camphor is often used in molecular mass determination because
a) It is readily available
b) It has a very high cryoscopic constant
c) It is volatile
d) It is solvent for organic substances
450. The molality of 1 M solution of NaCl (specific gravity 1.0585) g / mL) is:
a) 1.0585
b) 1.0
c) 0.10
d) 0.0585
451. An organic compound contains 49.3% carbon, 6.84% hydrogen and its vapour density is 73 . Molecular formula of the compound is
a) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
b) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
c) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$
d) $\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{O}_{2}$
452. How many g of glucose be dissolved to make one litre solution of 10% (wt ./vol.) glucose?
a) 10 g
b) 180 g
c) 100 g
d) 1.8 g
453. How many atoms are contained in a mole of $\mathrm{Ca}(\mathrm{OH})_{2}$?
a) $30 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
b) $5 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
c) $3 \times 6.02 \times 10^{23} \mathrm{atom} / \mathrm{mol}$
d) None of the above
454. The normality of 0.3 M phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is :
a) 0.1
b) 0.9
c) 0.3
d) 0.6
455. 0.84 g of a metal carbonate reacts with 40 mL of $/ 2 \mathrm{H}_{2} \mathrm{SO}_{4}$. The equivalent weight of metal carbonate is:
a) 84 g
b) 64 g
c) 42 g
d) 38 g
456. If $1 / 6$ in place of $1 / 12$ mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will:
a) Decrease twice
b) Increases two folds
c) Remains unchanged
d) Be a function of the molecular mass of element
457. A gas is found to have formula[CO] $]_{x}$. Its vapour density is 70 , the x is
a) 3.0
b) 3.5
c) 5.0
d) 6.5
458. 2 g of metal carbonate is neutralised completely by 100 mL of $0.1(\mathrm{~N}) \mathrm{HCl}$. The equivalent weight of metal carbonate is
a) 50
b) 100
c) 150
d) 200
459. The smallest matter particle that can take part in chemical reaction is
a) Atom
b) Molecule
c) Both (a) and (b)
d) None of these
460. The equivalent weight of a solid element is found to be 9 . If the specific heat of this element is
$1.05 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$, then its atomic weight is
a) 17
b) 21
c) 25
d) 27
461. The largest number of molecules are in:
a) $36 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
b) 28 g CO
c) $46 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
d) $54 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{5}$
462. Vapour density of a metal chloride is 66 . Its oxide contains 53% metal. The atomic weight of the metal is:
a) 21
b) 54
c) 27.06
d) 2.706
463. The number of Cl^{-}and Ca^{2+} ions in $222 \mathrm{~g} \mathrm{CaCl}_{2}$ are :
a) $4 \mathrm{~N}, 2 \mathrm{~N}$
b) $2 \mathrm{~N}, 4 \mathrm{~N}$
c) $1 \mathrm{~N}, 2 \mathrm{~N}$
d) $2 \mathrm{~N}, 1 \mathrm{~N}$
464. How many gram of KCL would have to be dissolved in $60 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ to give 40% by weight of solution?
a) 40 g
b) 20 g
c) 15 g
d) 10 g
465. The units J $P a^{-1}$ is equivalent to
a) m^{3}
b) cm^{3}
c) dm^{3}
d) None of these
466. If 250 mL of a solution contains $24.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$, the molarity and normality respectively are:
a) $1 \mathrm{M}, 2 \mathrm{~N}$
b) $1 \mathrm{M}, 0.5 \mathrm{~N}$
c) $0.5 \mathrm{M}, 1 \mathrm{~N}$
d) $2 \mathrm{M}, 1 \mathrm{~N}$
467. Equivalent weight of bivalent metal is 32.7 . Molecular weight of its chloride is
a) 68.2
b) 103.7
c) 136.4
d) 166.3
468. Insulin contains 3.4% Sulphur. The minimum mol. weight of insulin is:
a) 941.176
b) 944
c) 945.27
d) None of these
469. How many moles of magnesium phosphate, $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will contain 0.25 mole of oxygen atoms?
a) 0.02
b) 3.125×10^{-2}
c) 1.25×10^{-2}
d) 2.5×10^{-2}
470. The gram molecular weight of hydrogen peroxide is 34 . What is the unit of gram molecular weight?
a) g
b) mole
c) $\mathrm{g} \mathrm{mol}^{-1}$
d) mol g
471. Which one of the following has maximum number of atoms of oxygen?
a) 2 g of carbon monoxide
b) 2 gof carbon dioxide
c) 2 g of sulphur dioxide
d) 2 g of water
 will be:
a) 0.1 M
b) 0.05 M
c) 0.2 M
d) $0,15 \mathrm{M}$
473. The equivalent mass of chlorine is 35.5 and the atomic mass of copper is 63.5 . the equivalent mass of copper chloride is 99.0. hence, formula of copper chloride is
a) CuCl
b) $\mathrm{Cu}_{2} \mathrm{Cl}$
c) CuCl_{2}
d) None of these
474. The reaction between yttrium metal, Y and dilute hydrochloric acid produces $H_{2}(g)$ and Y^{3+} icons. The molar ratio of yttrium used to hydrogen produces is
a) $1: 2$
b) $1: 3$
c) $2: 1$
d) $2: 3$
475. Two elements X (atomic weight $=75$) and Y (atomic weight $=16$) combine to give a compound having 75.8% of X. The formula of the compound is:
a) $X Y$
b) $X_{2} Y$
c) $X_{2} Y_{2}$
d) $X_{2} Y_{3}$
476. Which of the following has the smallest number of molecules?
a) 0.1 mole of CO_{2} gas
b) $11.2{\mathrm{~L} \mathrm{of} \mathrm{CO}_{2} \text { gas at STP }}^{\text {d }}$
c) 22 g of CO 2 gas
d) $22.4 \times 10^{3} \mathrm{~mL}$ of CO_{2} gas at STP
477. Sodium nitrate on reduction with Zn in presence of NaOH solution produces NH_{3}. Mass of sodium nitrate absorbing 1 mole of electron will be
a) 7.750
b) 10.625
c) 8.000
d) 9.875
478. The percentage of nitrogen in urea is about:
a) 38.4
b) 46.6
c) 59.1
d) 61.3
479. What volume of 0.8 M solution contains 0.1 milli mole of solute?
a) 100 mL
b) 125 mL
c) 500 mL
d) 0.125 mL
480. The equivalent weight of an element can be calculated from:
a) 6.4 divided by specific heat and valence
b) Atomic weight divided by atomicity
c) Molecular weight divided by atomicity, all divided by the valence
d) None of the above
481.4 g -atom of Ag contains:
a) 108 g
b) 4 g
c) 432 g
d) None of these
482. The correctly reported answer of the addition of $4.523,2.3$ and 6.24 will have significant figures
a) Two
b) Three
c) Four
d) Five
483. Weight of $\mathrm{H}_{2} \mathrm{O}$ in $1000 \mathrm{~kg} \mathrm{CuSO}{ }_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is:
a) 360.5 kg
b) 36.05 kg
c) 3605 kg
d) 3.605 g
484. 3.0 molal NaOH solution has a density of $1.110 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is:
a) 2.9732
b) 3.05
c) 3.64
d) 3.0504
485. An oxide of a metal (M) contains 40% by mass of oxygen. Metal (M) has atomic mass of 24 . The empirical formula of the oxide is:
a) $\mathrm{M}_{2} \mathrm{O}$
b) $M O$
c) $\mathrm{M}_{2} \mathrm{O}_{3}$
d) $\mathrm{M}_{3} \mathrm{O}_{4}$
486. The vapour density of a gas is given by:
a) $\mathrm{VD}=\mathrm{mol}$. wt. $/ 2$
b) VD $=\frac{w t . \text { of } N \text { molecules of gas }}{w t . \text { of } N \text { molecules of } \mathrm{H}_{2}}$
c) $\mathrm{VD}=\frac{w t . \text { of } 1 \text { mole of gas }}{w t . \text { of } 1 \text { mole of } \mathrm{H}_{2}}$
d) All of the above
487. In the disproportionation reaction $3 \mathrm{HClO}_{3} \rightarrow \mathrm{HClO}_{4}+\mathrm{Cl}_{2}+2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$, the equivalent mass of the oxidising agent is (molar mass of $\mathrm{HClO}_{3}=84.45$)
a) 16.89
b) 32.22
c) 84.45
d) 28.15
488. How many atoms are contained in a mole of acetic acid?
a) $8 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
b) $4 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
c) $6 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
d) None of the above
489. Specific gravity of solution is given by:
a) Weight of 1 mL solution
b) Mole present in 1 mL solution
c) Volume of 1 g solution
d) None of the above
490. Which property of an element is always a whole number?
a) Atomic volume
b) Atomic weight
c) Atomic number
d) Equivalent weight
491. An aqueous solution of urea containing 18 g urea in $1500 \mathrm{~cm}^{3}$ of solution has a density of $1.052 \mathrm{~g} / \mathrm{cm}^{3}$. If the molecular weight of urea is 60 , then the molality of solution is:
a) 0.2
b) 0.192
c) 0.064
d) 1.2
492. The relative abundance of two isotopes of atomic weight 85 and 87 is 75% and 25% respectively. The average atomic weight of element is
a) 75.5
b) 85.5
c) 40.0
d) 86.0
493. A molar solution represents a solution of molarity equal to:
a) 1
b) 2
c) 3
d) None of these
494. The answer of the calculation $\frac{2.568 \times 5.8}{4.168}$ in significant figures will be
a) 3.579
b) 3.570
c) 3.57
d) 3.6
495. 14 g of element X combine with 16 g of oxygen. On the basis of this information, which of the followings is a correct statement?
a) The element X could have an atomic weight of 7 and its oxide is $X 0$
b) The element X could have an atomic weight of 14 and its oxide formula is $\mathrm{X}_{2} \mathrm{O}$
c) The element X could have an atomic weight of 7 and its oxide is $X_{2} \mathrm{O}$
d) The element X could have an atomic weight of 14 and its oxide is XO_{2}
496. Consider the following data:

Element	Atomic weight
A	12
B	35.5

A and B combine to form a new substance X. If four moles of B combine with one mole of A to give one mole of X, then the weight of ne mole of X is:
a) 47.5 g
b) 83 g
c) 154 g
d) 166 g
497. One mole of P_{4} molecules contain:
a) 1 molecule
b) 4 molecules
c) $\frac{1}{4} \times 6.022 \times 10^{23}$ atoms
d) 24.088×10^{23} atoms
498. Molecular weight of NaCl is 58.5 . A solution of NaCl containing 5.85 g NaCl per litre is:
a) 1 molar
b) 0.1 molar
c) 2 molar
d) 0.585 molar
499. The solution having lowest molar concentration is:
a) 1.0 N HCl
b) $0.4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
c) $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$
d) None of these
500. The value of amu is which of the following?
a) $1.57 \times 10^{-24} \mathrm{~kg}$
b) $1.66 \times 10^{-24} \mathrm{~kg}$
c) $1.99 \times 10^{-23} \mathrm{~kg}$
d) $1.66 \times 10^{-27} \mathrm{~kg}$
501. How many g are present in one mole of Ag ?
a) 107.9
b) 108.6
c) 10.29
d) None of these
502. One mole of chlorine combines with certain weight of metal giving 111 g of its chloride. The same amount of metal can displace 2 g of hydrogen from an acid. The atomic weight of the metal is:
a) 40
b) 20
c) 80
d) None of these
503. Equivalent weight of anhydrous oxalic acid is:
a) 45
b) 63
c) 126
d) 90
504. Molarity is expressed as:
a) Litre mol^{-1}
b) Mol litre ${ }^{-1}$
c) $\mathrm{Mol} \mathrm{kg}^{-1}$
d) G litre $^{-1}$
505. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a tribasic acid and one of its salts is $\mathrm{NaH}_{2} \mathrm{PO}_{4}$. What volume of 1 M NaOH should be added to 12 g $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ (mol. wt. 120) to exactly convert it into $\mathrm{Na}_{3} \mathrm{PO}_{4}$?
a) 100 mL
b) 300 mL
c) 200 mL
d) 80 mL
506. How many atoms are contained in one mole of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$?
a) $45 \times 6.02 \times 10^{23} \mathrm{atom} / \mathrm{mol}$
b) $20 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
c) $5 \times 6.02 \times 10^{23}$ atom $/ \mathrm{mol}$
d) None of the above
507. What is the volume (in litres) of oxygen required at STP to completely convert 1.5 moles of sulphur into sulphur dioxide?
a) 11.2
b) 22.4
c) 33.6
d) 44.8
508. What is the number of moles of $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$ that can be produced by allowing 1 mole of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$, 2 moles of $\mathrm{H}_{2} \mathrm{O}$ and 3 moles of O_{2} to react as
$2 \mathrm{Fe}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}+6 \mathrm{~S}$?
a) 1 mol
b) 1.84 mol
c) 1.34 mol
d) 1.29 mol
509. The number of molecules of CO_{2} present in $44 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$ is
a) 6.0×10^{23}
b) 3×10^{23}
c) 12×10^{23}
d) 3×10^{10}
510. 1 L oxygen gas at STP will weigh
a) 1.43 g
b) 2.24 g
c) 11.2 g
d) 22.4 g
511. Which has maximum number of atoms?
a) 24 g of C
b) 56 g of Fe
c) 26 g of Al
d) 108 g of Ag
512. In multiplication and division, the significant figures of answer must be same as that in the quantity with Number of significant figures.
a) Maximum
b) 3
c) 2
d) Minimum
513. A solution of known normality is diluted to two times. Which of the following changes during dilution?
a) Equivalent of solute
b) Moles of solute
c) Volume of 1 g solution
d) None of the above
514. The number of moles of oxygen in one litre of air containing 21% oxygen by volume, in standard conditions, is
a) 0.186 mol
b) 0.21 mol
c) 2.10 mol
d) 0.0093 mol
515. One gram mole of a gas at NTP occupies 22.4 L . This fact was derived from
a) Law of gaseous volumes
b) Avogadro's hypothesis
c) Berzelius hypothesis
d) Dalton's atomic theory
516. What is the equivalent weight of SnCl_{2} in the following reaction, $\mathrm{SnCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{4}$?
a) 95
b) 45
c) 60
d) 30
517. The standard adopted for the determination of atomic weight of elements is based on
a) H^{1}
b) C^{12}
c) O^{16}
d) S^{32}
518. What amount of bromine will be required to convert 2 g of phenol into 2,4,6-tribromo phenol?
a) 20.44 g
b) 6.00 g
c) 4.00 g
d) 10.22 g
519. Equivalent weight of an acid:
a) Depends on the reaction involved with a base
b) Depends on the number of oxygen atoms present
c) Is always constant
d) None of the above
520. The highest mass corresponds to which of the following?
a) 1 molecule of O_{2}
b) $1 \times 10^{-23} \mathrm{~g}$ mole of O_{2}
c) AnO^{2-} ion
d) 1 mole of O_{2}
521. The number of molecules in 4.25 g of ammonia is approximately:
a) 3.5×10^{23}
b) $1,5 \times 10^{23}$
c) 0.5×10^{23}
d) 2.5×10^{23}
522. If $V \mathrm{~mL}$ of the vapours of substance at NTP weight $W \mathrm{~g}$. Mol. wt. of substance is:
a) $(W / V) \times 22400$
b) $V / W=22400$
c) $(W-V) \times 22400$
d) $\frac{W \times 1}{V \times 22400}$
523. Sodium bicarbonate on heating decomposes to form sodium carbonate, CO_{2} and water. If 0.2 moles of sodium bicarbonate is completely decomposed, how many moles of sodium carbonate is formed?
a) 0.1
b) 0.2
c) 0.05
d) 0.025
524. The reaction of calcium with water is represented by the equation,
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
What volume of H_{2}, at STP would be liberated when 8 g of calcium completely reacts with water?
a) $4480 \mathrm{~cm}^{3}$
b) $2240 \mathrm{~cm}^{3}$
c) $1120 \mathrm{~cm}^{3}$
d) $0.4 \mathrm{~cm}^{3}$
525. The isotopic abundance of $\mathrm{C}-12$ and $\mathrm{C}-14$ is 98% and 2% respectively. What would be the number of C-14 isotope in 12 g carbon sample?
a) 1.032×10^{22}
b) 3.01×10^{23}
c) 5.88×10^{23}
d) 6.02×10^{23}

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

353)	C	354)	c	355)	d	356)	b
357)	a	358)	b	359)	b	360)	d
361)	d	362)	f	363)	b	364)	c
365)	b	366)	d	367)	b	368)	c
369)	a	370)	d	371)	d	372)	d
373)	c	374)	b	375)	a	376)	b
377)	b	378)	C	379)	d	380)	c
381)	c	382)	b	383)	c	384)	b
385)	b	386)	a	387)	a	388)	d
389)	b	390)	a	391)	a	392)	c
393)	d	394)	a	395)	a	396)	a
397)	c	398)	c	399)	c	400)	d
401)	c	402)	a	403)	d	404)	b
405)	d	406)	c	407)	b	408)	b
409)	b	410)	a	411)	d	412)	a
413)	a	414)	b	415)	d	416)	a
417)	d	418)	b	419)	c	420)	b
421)	c	422)	b	423)	a	424)	b
425)	d	426)	b	427)	b	428)	b
429)	a	430)	a	431)	a	432)	a
433)	c	434)	a	435)	b	436)	c
437)	c	438)	b	439)	c	440)	a
441)	a	442)	c	443)	d	444)	c
445)	b	446)	C	447)	c	448)	d
449)	c	450)	b	451)	c	452)	c
453)	b	454)	d	455)	c	456)	c
457)	c	458)	d	459)	a	460)	d
461)	a	462)	c	463)	a	464	a
465)	a	466)	a	467)		468)	a
469)	b	470)	c	471)		472)	b
473)	a	474)	d	475)	d	476)	a
477)	b	478)	b	479)	d	480)	a
481)	c	482)	b	483)	a	484)	a
485)	b	486)	d	487)	a	488)	a
489)	a	490)		491)	b	492)	b
493)	a	494)		495)	c	496)	c
497)	d	498)	b	499)	c	500)	d
501)	a	502)	a	503)	a	504)	b
505)		506)	a	507)	C	508)	c
509)		510)	a	511)	a	512)	d
513)	d	514)	d	515)	b	516)	a
517)		518)	d	519)	a	520)	d
521)	b	522)	a	523)	a	524)	a
525)	a						

: HINTS AND SOLUTIONS :

1 (d)
Wt. of 0 in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and FeO is $48: 16$
2 (c)
Equivalent weight of bivalent metal $=37.2$
\therefore Atomic weight of metal $=37.2 \times 2=74.4$
\therefore Formula of chloride $=M \mathrm{Cl}_{2}$
Hence, molecular weight of chloride
$M \mathrm{Cl}_{2}=74.4+2 \times 35.5$

$$
=145.4
$$

3 (d)
$\because 0.0833$ mole of carbohydrate has hydrogen $=1 \mathrm{~g}$
$\therefore 1$ mole of carbohydrate has hydrogen
$=\frac{1}{0.0833}=12 \mathrm{~g}$
Given, empirical formula of carbohydrate $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ has 2 g of hydrogen.

$$
\therefore \quad n=\frac{12}{2}=6
$$

\therefore Molecular formula of carbohydrate is
$\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
4 (a)
Eq. wt. $\mathrm{Zn}(\mathrm{OH})_{2}=\frac{\text { mol.wt. }}{\text { acidity }}=\frac{M}{1}$;
Acidity of $\mathrm{Zn}(\mathrm{OH})_{2}=1$; only one OH is replaced.
(d)
M. f. $=\frac{5.85 / 58.5}{\frac{5.85}{58.5}+\frac{90}{18}}=0.0196$

6 (a)

$$
\begin{array}{rl}
2 \mathrm{Ag}_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} & 4 \mathrm{Ag}+2 \mathrm{CO}_{2}+\mathrm{O}_{2} \\
2 \times 276 \mathrm{~g} & 4 \times 108 \mathrm{~g}(\mathrm{~s})
\end{array}
$$

$\therefore 1 \mathrm{~g}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ gives $=\frac{4 \times 108}{2 \times 276}$

$$
=2.16 \mathrm{~g}
$$

(a)

For phenolphthalein:
$\frac{1}{2}$ Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=2.5 \times 0.1 \times 2=0.5$
For methyl orange:
$\frac{1}{2}$ Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}+$ Meq. of NaHCO_{3}

$$
=2.5 \times 0.2 \times 2=1.0
$$

\therefore Meq. of $\mathrm{NaHCO}_{3}=0.5$ and Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
=1.0
$$

$\therefore \quad \frac{w}{84} \times 1000=0.5$

1
$\therefore \mathrm{w}=0.042 \mathrm{~g}$ in 10 mL
$\therefore w=0.053 \mathrm{~g}$ in 10
mL
$\therefore w=4.2 \mathrm{~g}$ in 1 litre $\quad=5.3 \mathrm{~g}$ in 1
litre
8 (d)
$\because 18 \mathrm{~g}$ water has N molecules
$\therefore 1 \mathrm{~g}$ water has $\frac{N}{18}$ molecules
or $\frac{N}{18}$ molecules occupy volume $=1 \mathrm{~cm}^{3}\left(d=\frac{m}{V}\right)$
\therefore 1molecule occupies volume

$$
=\frac{18}{N}=\frac{18}{6.023 \times 10^{23}} \approx 3 \times 10^{-23} \mathrm{~cm}^{3}
$$

$9 \quad$ (c)
$m=\frac{w R T}{P V}=\frac{510 \times 10^{-3} \times 0.0821 \times 273}{1 \times 67.2 / 1000}=170$
10 (a)
Suppose the volume of 6 M HCL required to obtain 1 L of 3 M
$\mathrm{HCl}=x \mathrm{~L}$
\therefore volume of 2 N HCl required $=(1-x) \mathrm{L}$
Applying the molarity equation
$M_{1} V_{1}+M_{2} V_{2}=M_{3} V_{3}$
$6 \mathrm{M} \mathrm{HCl}+2 \mathrm{MHCl} 3 \mathrm{M} \mathrm{HCl}$
$6 x+2(1-x)=3 \times 1$
$4 x=1$
$x=0.25 \mathrm{~L}$
Hence, volume of 6 M HCl required $=0.25 \mathrm{~L}$ and volume of 2 M HCl required $=0.75 \mathrm{~L}$
11 (a)
$N=M \times$ acidity $=1 \times 2=2\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right.$ is diacidic base)
12 (d)
1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives $=3$ moles of ions or $3 \times$ 6.023×10^{23} ions
$\therefore 0.1$ mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will give $=0.1 \times 3 \times 6.023 \times$ 10^{23} ions
$=1.8 \times 10^{23}$ ions
13 (b)
Eq. of element $=$ Eq. of oxygen or $\frac{W_{1}}{E_{1}}=\frac{W_{2}-W_{1}}{8}$
14 (c)
1 mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ contains 12 moles of hydrogen atoms.
$\therefore 12$ moles of hydrogen atoms $\equiv 1$ mole of
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$\therefore 1$ moles of hydrogen atom $=\frac{1}{12}$ mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
$\therefore 6.36$ moles of hydrogen atom $=\frac{1}{12} \times 6.36$
$=\frac{6.36}{12}$ mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
1 mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=4$ moles of oxygen
So, $\frac{6.36}{12}$ mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=\frac{4 \times 6.36}{12}=2.12 \mathrm{~mol}$
15 (c)
Meq. of $\mathrm{HCl}=$ Meq. of NaOH ;
Thus, $\frac{1}{20} \times V=20 \times \frac{1}{10}$

$$
V=40 \mathrm{~mL}
$$

16 (a)
Molecular weight $=$ Eq. wt. \times valence factor
17 (d)
Smallest and largest amount of energy
respectively eV and L-atm.
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{~L}-\mathrm{atm}=101.325 \mathrm{~J}$
18 (d)
$\because 63.8 \mathrm{~g}$ of Cu has atoms $=6.023 \times 10^{23}$
$\therefore 1 \mathrm{~g}$ of Cu has $=\frac{6.023 \times 10^{23}}{63.5 \mathrm{~g}}$
$\therefore 0.635 \mathrm{~g}$ of Cu has $=\frac{6.023 \times 10^{23}}{63.5} \times 0.635$
$=6.023 \times 10^{21}$ atoms
19 (b)
$2 \mathrm{BCl}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{~B}+6 \mathrm{HCl}$
$2 \mathrm{~mol} 3 \mathrm{~mol} \quad 2 \mathrm{~mol}$

$$
21.6 \mathrm{~g}=2 \mathrm{~mol}
$$

$21.6 \mathrm{~g} \mathrm{~B}=2 \mathrm{~mol} \mathrm{~B} \equiv 3 \mathrm{~mol} \mathrm{H}_{2}$
$p V=n R T$
$\therefore V=\frac{n R T}{P}=\frac{3 \times 0.0821 \times 273}{1}=67.2 \mathrm{~L}$
20 (b)
$\frac{N}{n}=\frac{N_{A V} \times n}{n}=N_{A V}$.
21 (c)
n is an integer.
22 (a)
Conservation of mass should be noticed.
23 (c)
The volume of water changes with temperature.
24 (c)
\because Amount of heat evolved on combustion of 4 g of methane $=10.46 \mathrm{~kJ}$
\therefore The amount of heat evolved on combustion of one mole of methane (ie, 16 g of CH_{4})
$=\frac{10.46}{4} \times 16=41.84 \mathrm{~kJ}$
25 (c)
Mol. wt. $=70 \times 2=140$;
(CO) $x, \therefore(12+16) . x=140 \quad \therefore x=5$
28 (c)
Mole fraction of solute $=\frac{n}{n+N} ;$
Mole fraction of solvent $=\frac{N}{n+N} ;$
29 (a)
We have $\mathrm{HNO}_{3}^{+5} \rightarrow \begin{gathered}+2 \\ \mathrm{NO}\end{gathered}$
Change in oxidation number $=3$
Equivalent mass of $\mathrm{HNO}_{3}=\frac{63 \mathrm{~g} \mathrm{~mol}^{-1}}{3 \mathrm{eq} \mathrm{mol}^{-1}}=21 \mathrm{~g} \mathrm{eq}^{-1}$
30 (b)
5.6 litre $=60 \mathrm{~g}$
$\therefore \quad 22.4$ litre $=240 \mathrm{~g}=$ mol. wt.
$\therefore \quad$ Vapour density $=M / 2=120$
31 (d)
$32 \mathrm{~g} \mathrm{O}_{2}$ contains $2 N$ atoms.
33 (b)
Mol. wt. of metal chloride $=95 \times 2=190$
At. wt. of metal $=\frac{6.4}{0.13}=49.23$
Let the metal chloride be MCl_{n}
Then $49.23+n \times 35.5=190$

$$
n=3.9 \approx 4
$$

\therefore Eq. wt. of metal $=\frac{49.23}{4}=12.3$
34 (c)
Atomic weight of element,
$M=$ equivalent weight \times valency
$=20 \times 3$
$=60$
Molecular formula of its oxide $=\mathrm{M}_{2} \mathrm{O}_{3}$
Hence, molecular weight of oxide
$=2 \times 60+3 \times 16$
$=120+48=168$
35 (b)
Gram molecular volume of oxygen at STP is 5.6L or $5600 \mathrm{~cm}^{3}$.
36 (d)

Element	Percentage	At. Wt.	Moles	Simple st Ratio
X	75.8	75	$\frac{75.8}{15}$	2
Y	24.2	16	$\frac{14.2}{16}$	3

\therefore The formula of the compound is $X_{2} Y_{3}$.
37 (c)
Meq. of oxalic acid $=500 \times 0.1=50$
$\therefore \quad \frac{w}{E} \times 1000=50$
$\because \quad w=\frac{126}{2} \times \frac{50}{1000} \quad\left(\because E=\frac{126}{2}\right)$

$$
=3.15 \mathrm{~g}
$$

38 (d)
In acidic medium following reaction takes place.
$8 \mathrm{H}^{+}+5 e^{-}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
\therefore Equivalent weight of KMnO_{4} in acidic medium
$=\frac{\text { molecular weight of } \mathrm{KMnO}_{4}}{5}$
$=\frac{158}{5}=31.6$
39 (d)
$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}$
$\rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\stackrel{+6}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}} \rightarrow \mathrm{Cr}^{3+}$
x-factor $=6$
Mohr's salt, $\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
oxidation; $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}$
x-factor $=1$
Mole ratio is reverse of x-factor ratio. Therefore, one mole of dichromate required $=6$ moles of Mohr's salt.
40 (a)
Particle pressure of oxygen $=\frac{2}{1+4+2} \times 2660$ $=760 \mathrm{~mm}$
Thus, 1 L oxygen gas is present at $0^{\circ} \mathrm{C}$ and 760 mm pressure.
\therefore Number of oxygen molecules $=\frac{6.023 \times 10^{23}}{22.4}$
41 (b)
$2 \mathrm{Ag}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{AgNO}_{3}+\mathrm{H}_{2}$
$2 \mathrm{AgNO}_{3}+2 \mathrm{NaCl} \rightarrow 2 \mathrm{AgCl}+\mathrm{NaNO}_{3}$
$\mathrm{AgCl} \equiv \mathrm{AgNO}_{3} \equiv \mathrm{Ag}$
$143.5 \mathrm{~g} \quad 170 \mathrm{~g} \quad 108 \mathrm{~g}$
$\because 143.5 \mathrm{~g} \mathrm{AgCl}$ is obtained from $\mathrm{Ag}=108 \mathrm{~g}$
$\therefore 2.87 \mathrm{~g} \mathrm{AgCl}$ is obtained from $\mathrm{Ag}=\frac{108 \times 2.87}{143.5}$
$=2.16 \mathrm{~g}$
42 (d)
1 mole is defined as the amount of matter that contains as many as objects (atoms, molecule, electron, proton or whatever, objects we are considering) as the number of atoms in exactly 12 g of C^{12}, i.e., Avogadro's number.
43 (d)
\because Number of atoms present in 12 g carbon
$=6.023 \times 10^{23}$
\therefore No. of atoms present in 1 mg carbon
$=\frac{6.023 \times 10^{23} \times 1}{12 \times 1000}$
$=0.502 \times 10^{20}$

Meq. of $\mathrm{H}_{2} \mathrm{~S}=$ Meq. of Cu^{2+}
$\frac{w}{34 / 2} \times 1000=\frac{63.5}{63.5 / 2} \times 1000$
(b)

Given that, oxygen contents in element oxide is 20\% by weight.
Hence, element contents in element oxide is 80% by weight.
Then, equivalent weight of unknown element $=$
$\frac{80}{20} \times 8$
\therefore Equivalent weight of unknown element $=32$
46 (c)
Molecular weight of cortisone $=360.4$
Molecular weight of 21 carbon atom $=21 \times 12=$ 252
$\%$ of carbon in cortisone $=\frac{252 \times 100}{360.4}$
$=69.9 \%$
(d)

The terms which involves only weights in their formula
$\left[\right.$ e. g. molality $\left.=\frac{w t . \text { of solute } \times 1000}{\text { mol. wt. of solute } \times w t . \text { of solvent }}\right]$ are independent of temperature. On the other hand, since, volume change with temperature, the terms having volume in their formula
[e.g. molality
$\left.=\frac{\mathrm{wt} \text {. of solute } \times 1000}{\mathrm{~mol} . \mathrm{wt} \text {. of solute } \times \text { volume of solvent }}\right]$ are dependent on temperature.
48 (c)
6×10^{23} electron $\equiv 1$ equivalent.
49 (b)
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ Meq. of NaOH

$$
V \times 0.1 \times 2=30 \times 2.0 \times 1
$$

$\therefore \quad V=300 \mathrm{~mL}$
$50 \quad$ (c)
Nitrogen shows variable valency and thus, have variable equivalent weight.
51 (d)
$\frac{E_{\text {hydroxide }}}{E_{\text {metal }}+E_{\mathrm{OH}^{-}}}>\frac{E_{\text {oxide }}}{E_{\text {metal }}+E_{\mathrm{O}}}$
$\frac{1.520}{E+17}=\frac{0.995}{E+8}$
or $E=9$
52 (b)
Given, mass of $\mathrm{C}=10.5 \mathrm{~g}$
$\mathrm{H}=1.0 \mathrm{~g}$
$p=1 \mathrm{~atm}$
$V=1 \mathrm{~L}$
$T=127^{\circ} \mathrm{C}=127+273=400 \mathrm{~K}$
Mass of gas $=2.81 \mathrm{~g}$
Weight of $\mathrm{C}+$ weight of
hydrogen $=10.5+1.0=11.5 \mathrm{~g}$
$\therefore \%$ of carbon $=\frac{10.5}{11.5} \times 100=91.3 \%$
$\therefore \%$ of hydrogen $=\frac{1.0}{11.5} \times 100=8.7 \%$

Ele men t	$\%$	At. weigh t	Ratio of atoms	Simplest ratio		
C	91. 3	12	$91.3 / 12=$ H	8.61		$7.61 / 7.61=$
:---						
1						
8.7						

From gas equation, $\quad p V=n R T$
or $n=\frac{p V}{R T}$
$\frac{\text { mass }}{\text { mole mass }}=\frac{p V}{R T}$
or $2.81 /$ mole mass $=\frac{1 \times 1}{0.082 \times 400}$
$=92$
Empirical formula wt. $=\mathrm{C}_{7} \mathrm{H}_{8}$
\therefore Empirical formula $=7 \times 12+8 \times 1$
$=92$
$n=\frac{\text { molecular } \mathrm{wt} .}{\text { empirical formula } \mathrm{wt} .}=\frac{92}{92}=1$
Molecular formula=n (empirical formula)
$=1\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$
$=\mathrm{C}_{7} \mathrm{H}_{8}$
53 (b)
$\mathrm{CH}_{3}-\mathrm{NH}_{2}+\mathrm{HNO}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
1 mole of methyl amine gives 1 mole N_{2}
i.e., 22.4 L of nitrogen at NTP.

54 (a)
Meq. of $\mathrm{MgCO}_{3}=$ Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\therefore \frac{3}{84 / 2} \times 1000=\frac{w}{49} \times 1000$;
$\therefore \quad w=3.5 \mathrm{~g}$
55 (c)
Eq. of metal = Eq. of oxide

$$
\frac{100}{E}=\frac{24}{8}
$$

$\therefore \quad E=33.3$
57 (b)
100 mL of $1 \mathrm{M} \mathrm{AgNO}_{3} \equiv 0.1 \mathrm{~mol} \mathrm{AgNO}_{3}$
100 mL of $1 \mathrm{M} \mathrm{CuSO}_{4}=0.1 \mathrm{~mol} \mathrm{CuSO}_{4}$
$2 \mathrm{AgNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3}$
$2 \mathrm{~mol} \quad 1 \mathrm{~mol}$
$0.1 \mathrm{~mol} \quad 0.05 \mathrm{~mol}$
$\mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{CuS}+\mathrm{H}_{2} \mathrm{SO}_{4}$
$1 \mathrm{~mol} \quad 1 \mathrm{~mol}$
$0.1 \mathrm{~mol} \quad 0.1 \mathrm{~mol}$
\therefore Ratio of the amounts of $\mathrm{H}_{2} \mathrm{~S}$
needed=0.05:0.1=1:2
58 (a)
Mole fraction $=\frac{1}{1+\frac{1000}{18}}=0.0177$
59 (d)
$\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic acid; thus, $\mathrm{Na}_{2} \mathrm{HPO}_{3}$ is normal sal $=M / 2$
60 (a)
Meq. of $\mathrm{NaOH}=250 \times 0.1=25$
$\therefore \quad \frac{w}{40} \times 1000=25$
$\therefore \quad \mathrm{w}=1 \mathrm{~g}$
61 (c)
At. wt. \times specific heat ≈ 6.4
62 (b)
$\mathrm{Ag}_{2} \mathrm{~S} \equiv 2 \mathrm{Ag}$
$248 \mathrm{~g} \quad 2 \times 108 \mathrm{~g}$
$2 \times 108 \mathrm{~g} \mathrm{Ag}$ is obtained from $\mathrm{Ag}_{2} \mathrm{~S}=248 \mathrm{~g}$
1 g Ag will be obtained from $\mathrm{Ag}_{2} \mathrm{~S}=\frac{248 \times 1}{2 \times 108}$
$=\frac{248}{216} \mathrm{~g}$
But, the ore contains only $1.34 \% \mathrm{Ag}_{2} \mathrm{~S}$.
Thus, 1 g Ag is obtained from ore $=\frac{248}{216} \times \frac{100}{1.34} \mathrm{~g}$
$=85.68 \mathrm{~g}$
64 (a)
Number of atoms in $40 \mathrm{~kg}=\frac{40 \times 10^{3} \mathrm{~g}}{6.644 \times 10^{-23} \mathrm{~g}}$
$\left(\because\right.$ Weight of an atom $\left.=6.644 \times 10^{-23} \mathrm{~g}\right)$

$$
=6.02 \times 10^{26}
$$

\therefore Number of gram atoms of element in 40 kg

$$
=\frac{6.02 \times 10^{26}}{6.02 \times 10^{23}}=10^{3}
$$

66 (b)
Since, 1 g hydrogen combines with 80 g bromine, the eq. wt. of bromine $=80$
$\because 4 \mathrm{~g}$ bromine combines with $\mathrm{Ca}=1 \mathrm{~g}$
$\therefore 80 \mathrm{~g}$ bromine will combine with $\mathrm{Ca}=\frac{1 \times 80}{4}=$ 20 g
\therefore Eq. wt. of Ca is 20 g .
67 (d)
Atomic mass of the metal $=32 \times 2=64$
Formula of metal nitrate $=M\left(\mathrm{NO}_{3}\right)_{2}$
\therefore Molecular mass $=64+28+96=188$
68 (b)
$\mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
24 g Mg gives one mole H_{2}
69 (d)
Valence of $M=\frac{27}{9}=3$,
Thus, formula of chloride is MCl_{3}.

70 (b)
Eq. of metal = Eq. of oxide

$$
\frac{1.6}{E}=\frac{2}{E+8} ; E=32
$$

71 (b)
$M=\frac{5.85 \times 1000}{58.5 \times 500}=0.2$
72 (b)
Valence of an element is variable say it is 2 and 3 in FeCl_{2} and FeCl_{3} respectively. Also equivalent weight $=\frac{\text { at. weight }}{\text { valence }}$ and thus, it is also variable.
73 (c)
At. wt. $=$ Eq. wt. $\times 3$ (valence $=3$)
74 (c)
Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ in $20 \mathrm{~mL}=19.8 \times \frac{1}{10}$
\therefore Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ in $100 \mathrm{~mL}=19.8 \times \frac{1}{10} \times$ 5
$\therefore \quad \frac{w}{E} \times 1000=19.8 \times \frac{1}{10} \times 5$
or $\quad \frac{0.7}{M / 2} \times 1000=\frac{19.8}{2}$
$\therefore \quad M=141.41$
$\therefore \quad 23 \times 2+12+3 \times 16+18 x=141.41$
$\therefore \quad x=2$
75 (c)
At. wt. \times specific heat $=6.4$
76 (c)
Moles of $\mathrm{Fe}=\frac{560}{56}=10$
Moles of $\mathrm{N}=\frac{70}{14}=5$
Moles of $\mathrm{H}=\frac{20}{1}=20$
Equal number of moles have equal number of atoms.
Hence, number of atoms in 560 g of Fe is twice that of 70 g N and is half that of 20 g of H .
77 (d)
Molecular mass of $(\mathrm{CHCOO})_{2} \mathrm{Fe}=170$
\therefore In $100 \mathrm{~g}(\mathrm{CHCOO})_{2} \mathrm{Fe}$, iron present $=\frac{56}{170} \times 100$ mg
$=32.9 \mathrm{mg}$
Since, this quantity of Fe is present in 400 mg of capsule,
$\therefore \%$ of Fe in capsule $=\frac{32.9}{400} \times 100=8.2 \%$
78 (b)
By the equation

$$
\mathrm{Zn}+\mathrm{I}_{2} \rightarrow \mathrm{Znl}_{2}
$$

Initial moles (if x be the wt. $\frac{\mathrm{x}}{65} \quad \frac{\mathrm{x}}{254} \quad 0$ Of Zn and I_{2} each initially)
No. of moles at the end $\left(\frac{x}{65}-\frac{x}{254}\right) \quad 0 \quad \frac{x}{254}$

Of reaction
So, fraction of Zn unreacted $=\frac{\frac{x}{65}-\frac{\mathrm{x}}{\frac{x}{54}}}{\frac{\mathrm{x}}{65}}=0.74$

79 (c)
Weight of pure $\mathrm{NaCl}=6.5 \times 0.9=5.85 \mathrm{~g}$
No. of equivalent of $\mathrm{NaCl}=\frac{5.85}{58.5}=0.1$
No. of equivalent of NaOH obtained $=0.1$
Volume of 1 M acetic acid required for the
neutralisation of
$\mathrm{NaOH}=\frac{0.1 \times 1000}{1}$
$=100 \mathrm{~cm}^{3}$
82 (a)
Given vapour density $=11.2$
Molecular weight $=2 \times 11.2=22.4$
$\therefore 22.4 \mathrm{~g}$ of gas occupies $=22.4 \mathrm{~L}$ at STP
$\therefore 1 \mathrm{~g}$ of gas occupies $=\frac{22.4}{22.4} \times 1=1 \mathrm{~L}$ at STP
83 (a)
In the given metal nitride, nitrogen present is
28% that means, the nitride contains 28 g
nitrogen and 72 g metal.
Moles of metal $=\frac{72}{x}$
Moles of nitrogen $=\frac{28}{14}=2$
\Rightarrow Molar ratio, $M: N=\frac{72}{x}: 2=3: 2$
$\frac{72}{x}=3$
$\therefore x=24$
84 (c)
g atom of $\mathrm{I}=\frac{25.4}{127}=0.2$
g atom of oxygen $=\frac{8}{16}=0.5$
\therefore Ratio of g atoms $\mathrm{I}: 0:: 2: 5$
85 (a)
0.5 mole of $\mathrm{H}_{3} \mathrm{O}^{+}=20 \mathrm{~g}$; Also $\mathrm{H}_{3} \mathrm{O}^{+}$is
monovalent, thus Mol. wt. $=$ Eq. wt.
$\therefore 1$ mole of $\mathrm{H}_{3} \mathrm{O}^{+}=40 \mathrm{~g}$
86 (d)
$\mathrm{C}_{a} \mathrm{H}_{b}+\left(a+\frac{b}{4}\right) \mathrm{O}_{2} \rightarrow a \mathrm{CO}_{2}+(b / 2) \mathrm{H}_{2} \mathrm{O}$

10	Excess	$-\quad-$
0		$10 a \quad 5 b$
\therefore	$10 a=40$	$\therefore a=4$
	$5 b=50$	$\therefore b=10$

87 (c)
Milli mole of $\underset{\text { (Conc.) }}{\mathrm{H}_{2} \mathrm{SO}_{4}}=$ Milli mole of $\mathrm{H}_{2} \mathrm{SO}_{\text {(Dil.) }}$

\therefore
(d)
(d)

$$
10 \times 18=M \times 1000
$$

89 (d)

100 g alkaloid contains nitrogen $=17.28 \mathrm{~g}$
$\therefore 162 \mathrm{~g}$ alkaloid will contain nitrogen
$=\frac{17.28 \times 162}{100} \mathrm{~g}$
$=27.9 \mathrm{~g} \approx 28 \mathrm{~g}$
Atomic weight of nitrogen=14
So, number of atoms of nitrogen present in one molecular of alkaloid $=\frac{28}{14}=2$
(b)

$$
\begin{aligned}
M & =\frac{\text { moles of urea }}{\text { volume in litre }}=\frac{6.02 \times 10^{20}}{6.02 \times 10^{23} \times \frac{100}{1000}} \\
& =0.01 \mathrm{M}
\end{aligned}
$$

91 (d)
$2 \mathrm{BCl}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{~B}+3 \mathrm{HCl}$
$2 \times 10.8 \mathrm{~g} B \equiv 3 \times 22.4 \mathrm{~L} \mathrm{H}_{2}$

$$
\begin{aligned}
\therefore \quad 21.6 \mathrm{~g} \mathrm{~B} & \equiv \frac{3 \times 22.4 \times 21.6}{2 \times 10.8} \\
& =67.2 \mathrm{~L} \mathrm{H}_{2}
\end{aligned}
$$

92 (d)
Eq. of metal $=$ Eq. of chlorine

$$
\frac{w}{E}=\frac{2 w}{35.5}
$$

$$
\therefore E=\frac{35.5}{2}=
$$

17.75

93

$$
\begin{aligned}
& 5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\underset{2 \mathrm{MnO}_{4}^{-}}{+7}+16 \mathrm{H}^{+} \\
& \quad \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Equivalent weight $=\frac{\text { molecular weight }}{\text { change in oxidation number }}$

$$
=\frac{158}{5}=31.6
$$

94 (d)
Mol. wt. of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$=12 \times 2+1 \times 5+16+1=46 g$
$\because 46 \mathrm{~g} \mathrm{of}_{2} \mathrm{H}_{5} \mathrm{OH}$ has hydrogen atoms
$=6 \times$ Avogadro number
$\therefore 0.046 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ has hydrogen atoms
$=\frac{6 \times 6.023 \times 10^{23} \times 0.046}{46}$
$=3.6 \times 10^{21}$ atoms of hydrogen.
95 (a)
Both have same empirical formula $\mathrm{CH}_{2} \mathrm{O}$.

(a)

Moles of $\mathrm{H}_{2}=\frac{15}{22.4}=0.67$
Moles of $\mathrm{N}_{2}=\frac{5}{22.4}=0.22$
Moles of $\mathrm{H}_{2}=\frac{0.5}{2}=0.25$
Moles of $\mathrm{O}_{2}=\frac{10}{32}=0.31$
Larger is number of mole, more is number of molecule.
(d)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
2 mole CO_{2} is formed.
99 (b)
$2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}$
The no. of equivalent of $\mathrm{NaHCO}_{3}=$ No. of equivalent of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ formed. Thus , same equivalent of HCl will be used.
100 (a)

Element	\%ntage atomic wt.	Simplest ratio
C	$\frac{92.3}{12}=7.69$	$\frac{7.69}{7.69}=1$
H	$\frac{7.7}{1}=7.70$	$\frac{7.70}{7.69}=1$

\therefore Empirical formula $=\mathrm{CH}$
101 (b)
Eq. of metal $=$ Eq. of Cu

$$
\frac{1.5}{E}=\frac{4}{64 / 2}
$$

$$
E=12
$$

At. wt. $=24$
102 (b)
Weight of copper oxide $=5 \mathrm{~g}$
Weight of copper taken $=4 \mathrm{~g}$
\therefore Weight of oxygen in copper oxide $=5-4=1 \mathrm{~g}$
\therefore Weight of copper, reacted with 1 g
$\mathrm{O}_{2}=4 \mathrm{~g}$
\therefore Weight of copper, which would react with 8 g
$\mathrm{O}_{2}=\frac{4 \times 8}{1}=32 \mathrm{~g}$
Hence, equivalent weight of copper $=32$
103 (a)
$\frac{w t . \text { of metal } X}{\text { wt. of metal } Y}=\frac{\text { Eq. wt. of metal X }}{\text { Eq. wt. of metal Y }}$
104 (a)
1 atom $=260 \mathrm{amu}=260 \times 1.66 \times 10^{-24} \mathrm{~g}$
105 (d)
Mol. wt. $=2 \times$ vapour density

$$
=2 \times 45=90
$$

Empirical formula weight $=12+2+16=30$
mol.wt
$\therefore n=\overline{\text { empirical formula wt. }}$

$$
=\frac{90}{30}=3
$$

\therefore Molecular formula of the compound
$=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3}$
$=\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$

106 (d)
Mole ratio of $\mathrm{H}_{2}: \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}:: 2: 1: 2$
107 (a)
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
108 (c)
\because Mass of $22400 \mathrm{~cm}^{3}$ of CH_{4} at STP $=16 \mathrm{~g}$
$\therefore \quad$ Mass of $1 \mathrm{~cm}^{3}$ of CH_{4} at $\mathrm{STP}=\frac{16}{22400} \mathrm{~g}$
\therefore Mass of $112 \mathrm{~cm}^{3}$ of CH_{4} at $\mathrm{STP}=\frac{16}{22400} \times 112$

$$
=0.08 \mathrm{~g}
$$

109 (c)
For electrolytic concentration term formality is used in place of molarity. Formality is g formula weight of electrolyte in one litre solution.
Remember it is not possible to determine exact mol. weight of electrolytes. We simply assume the formula say for sodium chloride it is NaCl and formula weight is 58.5 . This value can never be obtained experimentally.
110 (c)
100 g sample $\equiv 0.33 \mathrm{~g}$ iron
$\therefore 67200 \mathrm{~g} \equiv 221.8 \mathrm{~g}$ iron
\therefore Number of iron atoms per molecule of
haemoglobin

$$
=\frac{221.8}{56} \approx 4
$$

111 (b)
Since, the molecular formula is n times the empirical formula, therefore, different compounds having the same empirical formula must have different molecular weights.
112 (a)
$\because 0.1$ mole of carbohydrate contains $=$
1 g of hydrogen.
$\therefore 1$ mole of carbohydrate contains $=\frac{1}{0.1}$

$$
=10 \mathrm{~g}
$$

hydrogen

$$
\text { Hence, its molecular formula }=\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5} \text {. }
$$

113 (c)
Mole fraction of solute $=\frac{n}{n+\lambda}$

$$
=\frac{1}{1+\frac{1000}{18}}=0.0177
$$

114 (b)
8 mole $\mathrm{O} \equiv 1$ mole $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
\begin{aligned}
\therefore 0.25 \text { mole } \mathrm{O} & =\frac{1 \times 0.25}{8} \\
& =3.125 \times 10^{2} \mathrm{~mole} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}
$$

115
(b)
$5 \mathrm{CO}+\mathrm{I}_{2} \mathrm{O}_{5} \rightarrow 5 \mathrm{CO}_{2}+\mathrm{I}_{2}$

1 mole of $\mathrm{I}_{2} \equiv 1$ moles of $\mathrm{I}_{2} \mathrm{O}_{5} \equiv 5$ moles of CO
Hence, mole of $\mathrm{CO}=5 \times \frac{2.54}{254}=0.05$
Mass of $\mathrm{CO}=0.05 \times 28=1.4 \mathrm{~g}$
Mass of $\mathrm{CO}_{2}=2-1.4=0.6 \mathrm{~g}$
Mass $\%$ of $\mathrm{CO}_{2}=\frac{0.6 \times 100}{2}=30$
116 (d)
g-atom of $\mathrm{I}_{2}=\frac{254}{127}=2$;
g -atom of oxygen $=\frac{80}{16}=5$
\therefore compound is $\mathrm{I}_{2} \mathrm{O}_{5}$.
117 (c)
Vapour density of $A=3 \times$ Vapour density of B
\therefore mol. wt. of $A=3 \times$ mol. wt. of B
118 (c)
Let $a \mathrm{~g}$ of Cu be oxidised to give CuO ,
i.e., $\frac{(63.6+16) a}{63.6} \mathrm{~g}$

Thus, final weight

$$
=(3.18-a)+\frac{(63.6+16) a}{63.6}=3.92
$$

$\therefore \quad a=2.94 \mathrm{~g}$
Thus, \% of Cu left unoxidised

$$
\frac{(3.18-2.94)}{3.18} \times 100=7.55 \%
$$

119 (b)
Eq. wt. of $S O_{2}=\frac{\text { molar mass }}{\text { O.N.of S }}=\frac{64}{4}=16$
\therefore Twice of this value $=32$
120 (a)
Mol. wt. of metal chloride $=50 \times 2=100$;
Let metal chloride be $M \mathrm{Cl}_{n}$ then
Eq. of metal $=$ Eq. of chloride, or $\frac{29}{E}=\frac{71}{35.5}$
$\therefore \quad E=\frac{29}{2}$;
Now $\quad a+35.5 n=100$
or $\quad n . E+35.5 n=100$;
$\therefore \quad n=2$
Therefor, $\quad a=2 \times E=2 \times(29 / 2)=29$.
121 (d)
$3 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}$ $3 \mathrm{~mol}+2 \mathrm{~mol} \rightarrow 1 \mathrm{~mol}$
Here, $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is the limiting reactant.
2 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ gives 1 mole of $\mathrm{Ba}\left(\mathrm{PO}_{4}\right)_{2}$
So, 0.2 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ will give 0.1 mole of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
123 (a)
$M_{\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}=\frac{342}{342 \times 1}=1$
124 (a)
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
In the above reaction equivalent weight of
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ is $\frac{M}{2}$ because 2 moles of Na^{+}being
transferred per mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
125 (b)

	Oxide I	Oxide II
Metal, M	50%	40%
Oxygen, O	50%	60%

As first oxide is MO_{2}
Let atomic mass of $M=x$
$\therefore \% O=\frac{32}{x+32} \times 100$
Or $\frac{50}{100}=\frac{32}{x+32}$
Or $0.5=\frac{32}{x+32}$
Or $0.5 \times x+16=32$
Or $0.5 x=16$
$x=32$
\therefore At. Mass of metal $M=32$
Let formula of second oxide is $M_{2} O_{n}$
$\% M=\frac{2 x}{2 x+16 n} \times 100=\frac{64}{64+16 n} \times 100$
$\frac{40}{100}=\frac{64}{64+16 n}$
Or $\frac{100}{40}=\frac{64+16 n}{64}$
$2.5=1+0.25 n$
$n=\frac{1.5}{0.25}=6$
Therefore, formula of second oxide $=M_{2} O_{6}$
Or $\quad=\mathrm{MO}_{3}$
126 (b)

Elemen t	\% age	Atomic mass	Molar ratio	Simple r molar ratio
C	$\begin{aligned} & \hline 10.06 \\ & \% \end{aligned}$	12	10.06	0.84
			$=0.8$	$\begin{aligned} & \overline{0.84} \\ & =1 \end{aligned}$
H	$\begin{aligned} & 0.84 \\ & \% \end{aligned}$		0.84	0.84
				$\overline{0.84}$
Cl			$=0.84$	$=1$
			89.10	2.5
	\%		$\begin{gathered} \overline{35.5} \\ =2.5 \end{gathered}$	$\begin{aligned} & \overline{0.84} \\ & =3 \end{aligned}$

Thus, the empirical formula of the substance of CHCl_{3}.
127 (d)
22.4 litre water vapour $=1$ mole $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ liquid $=18 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$.
128 (c)
Eq. wt. of $\mathrm{FeCl}_{2}=$ Mol. wt. 2/; Eq. wt. of $\mathrm{FeCl}_{3}=$ mol.wt./3
129 (c)
No. of Millimoles of $\mathrm{Ca}(\mathrm{OH})_{2}=50 \times 0.5=25$

No. of Millimoles of $\mathrm{CaCO}_{3}=25$
No. of milliequivalents of $\mathrm{CaCO}_{3}=50$
\therefore Volume of $0.1 \mathrm{~N} \mathrm{HCl}=\frac{50}{0.1}=500 \mathrm{~cm}^{3}$
130 (b)
$M=\frac{9.8}{98 \times 2}=\frac{1}{20}=0.05$
131 (b)
1 mole $=M \times V_{\text {in } l}$
132 (c)
$m M$ of $A=100 \times 0.1=10$

$$
m M \text { of } B=25 \times 0.2=5 ;
$$

\therefore Total $m M=10+5=15$
$\therefore \quad M=\frac{15}{100+25}=\frac{15}{125}$
133 (c)
Wt. of $\mathrm{H}: \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$ is $2: 16$
134 (a)
$\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$
1 mol 1 mol
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{Na}_{2}$
$1 \mathrm{~mol} \quad 1 \mathrm{~mol}$
$1 \mathrm{~mol} \mathrm{CaO} \cong 1 \mathrm{~mol} \mathrm{CaCl}_{2}$
$\frac{0.56}{56} \mathrm{~mol} \mathrm{CaO} \cong 0.01 \mathrm{~mol} \mathrm{CaCl}_{2}$
$=0.01 \times 111 \mathrm{gCaCl}_{2}$
$=1.11 \mathrm{~g} \mathrm{CaCl}_{2}$
Thus, in the mixture, weight of
$\mathrm{NaCl}=4.44-1.11=3.33 \mathrm{~g}$
\therefore Percentage of $\mathrm{NaCl}=\frac{3.33}{4.44} \times 100=75 \%$
135 (d)
$2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q)$

$$
\begin{aligned}
& \rightarrow 2 \mathrm{Al}^{3+}(a q)+6 \mathrm{Cl}^{-}(a q) \\
& +3 \mathrm{H}_{2}(g)
\end{aligned}
$$

$3 \times 22.4 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced by 6 moles of $\mathrm{HCl}(a q)$
Hence, $11.2 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ at STP is produced by 1 mole
$\mathrm{HCl}(a q)$.
136 (c)
Molecular mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$=2 \times 23+12+3 \times 16=106$
$\therefore 106 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ contains
$=3 \times 6.023 \times 10^{23}$ oxygen atoms
$\therefore 10.6 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will contain
$=\frac{3 \times 6.023 \times 10^{23}}{106} \times 10.6$
$=18.069 \times 10^{22}$
$=1.806 \times 10^{23}$ oxygen atoms
137 (c)
$m=\frac{w R T}{P V}=\frac{0.22 \times 0.0821 \times 293}{[(755-17.7) / 760] \times[45 / 1000]}$

$$
=121.1
$$

138 (a)
Number of moles $=\frac{\text { weight }}{\text { olecular wt. }}=\frac{0.0018}{18} \times 1 \times 10^{-4}$ $[\because 0.0018 \mathrm{~mL}=0.0018 \mathrm{~g}]$
\therefore Number of water molecules $=1 \times 10^{-4} \times$
6.02×10^{23}
$=6.023 \times 10^{19}$
139 (a)
Mass of hydrogen $=\frac{0.7}{22.4} \times 2=\frac{14}{224} g=0.0625 g$
$\because 0.0625 \mathrm{~g}$ of hydrogen is displaced by x g metal.
$\therefore 1 \mathrm{~g}$ of hydrogen is displaced by $=\frac{x}{0.0625} \mathrm{~g}$ of metal
$\Rightarrow \frac{x}{0.0625}=28$
Eq. mass of metal, $x=28 \times 0.0625=1.75 g$
140 (d)
$\mathrm{N}_{2} \mathrm{O}$ and NO verify the law of multiple proportions.
141 (d)
Butane and isobutance have same molecular formula.

Thus,

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\left(\frac{13}{2}\right) \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

$\because 58 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$ requires $\mathrm{O}_{2}=\frac{12}{2} \times 32 \mathrm{~g}$
$\because 1000 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$ requires O_{2}

$$
=\frac{13}{2} \times \frac{32 \times 1000}{58}=3586.2 \mathrm{~g}=3.586 \mathrm{~kg}
$$

143 (b)
g atom of $X=\frac{50}{10}=5$;
g atom of $Y=\frac{50}{20}=2.5$;
Ration of g atom of X and $Y=2 ; 1$.
144 (b)
Molarity means mole of solute in one litre solution.
145 (c)
Number of notes $=\frac{6.023 . \times 10^{23} \times 24.8}{248}$

$$
=6.023 \times 10^{22}
$$

Days for counting $=\frac{6.023 \times 10^{22}}{60 \times 10^{6}}=10^{15}$
146 (b)
\because g atom of $S=\frac{50}{32}$;
g atom of oxygen $=\frac{50}{16}$;
\therefore Ratio of g atoms of S and $0=1: 2$.
148 (d)
Amount of pure lime stone
$\left(\mathrm{CaCO}_{3}\right)$ is 10 g of 90% sample
$=\frac{90}{100} \times 10=9 \mathrm{~g}$

100 g of lime stone gives $22.4 \mathrm{~L}^{2}$ of CO_{2} at STP
$\therefore 9 \mathrm{~g}$ of lime stone will give
$=\frac{22.4}{100} \times 9=2.016 \mathrm{~L} \mathrm{CO}_{2}$
149 (c)
Mass of 1 mole of methane $\left(\mathrm{CH}_{4}\right)=16 \mathrm{~g}$
Mass of 0.1 mole of methane $=16 \times 0.1 \mathrm{~g}=1.6 \mathrm{~g}$
150 (c)
$\therefore 132 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ has $N=28 \mathrm{~g}$
$\therefore 66 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ has $N=\frac{28 \times 66}{132}=14 \mathrm{~g}$
151 (a)
$w \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}=\frac{\mathrm{w}}{160}$ mole $\mathrm{Fe}_{2} \mathrm{O}_{3}=\frac{w}{160} \times 3$ mole O
$\mathrm{wg} \mathrm{FeO}=\frac{\mathrm{w}}{72}$ mole $\mathrm{FeO}=\frac{w}{72} \times 1$ mole 0
\therefore mole ration O in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{FeO}=\frac{3}{160} \times \frac{72}{1}=$
$\frac{216}{160}=1.35$
153 (b)
Mol. wt. of $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}=30 \times 2=60$
$\therefore \quad n=\frac{60}{30}=2$
Empirical formula wt. $\left(\mathrm{CH}_{2} \mathrm{O}\right)=30$
154 (b)
Weight of $11.2 \mathrm{dm}^{3}$ of CO_{2} gas at $\mathrm{STP}=44 / 2$
$=22 \mathrm{~g}$
$\mathrm{KOH}+\mathrm{CO}_{2} \rightarrow \mathrm{KHCO}_{3}$
$56 \mathrm{~g} \quad 44 \mathrm{~g}$
Mass of KOH required for complete neutralisation of 22 g
CO_{2} is $=\frac{56}{44} \times 22=28 \mathrm{~g}$
156 (a)
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{CO}_{2}+(1 / 2) \mathrm{O}_{2}$
157 (d)
Equivalent weight
$=\frac{\text { Molecular mass }}{\text { Change in oxidation number per atom }}$ or $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$=\frac{\text { molecular weight of } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{2 \times \text { change in oxidation number }}$
$=\frac{M}{2 \times 3} \quad[\because$ Two Cr atoms are involved. $]$
\therefore Equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}=\frac{M}{6}$
158 (a)
Calculate weight of each.
159 (a)
One molecule of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ contains 14 atoms.
160 (d)
Meq. of $\mathrm{HCl}=$ Meq. of NaOH
$2 \times V=1000$
$\therefore V=500 \mathrm{~mL}=\frac{1}{2}$ litre
161 (d)

Number of moles of oxygen $=\frac{80}{16}$
Number of atoms of oxygen $=\frac{80}{16} \times N_{0} \times 2$

$$
=5 \times N_{0} \times 2
$$

Number of moles in 5 g of hydrogen $=\frac{5}{1}$
Number of atoms in 5 g of hydrogen $=5 \times N_{0} \times 2$
Hence, the number of atoms in 80 g of oxygen is equal to the number of atoms in 5 g of hydrogen.

162
(d)
g atom of $A=\frac{75}{75}=1$;
g atom of $B=\frac{25}{25}=1$;
\therefore Ratio of g atom of A and $B=1: 1$
163 (c)
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Gain electrons=5
Molecular weight $=M$
Equivalent weight $=\frac{\text { molecular weight }}{\text { gain electron }}=\frac{M}{5}$
164 (b)
Eq. wt. $=\frac{\text { mol. wt. }}{\text { basicity }}$
165 (d)
Meq. of $\mathrm{HCl}=5 \times 1=5$;
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=20 \times(1 / 2)=10$;
Meq. of $\mathrm{HNO}_{3}=30 \times(1 / 3) 10$;
Thus, total Meq. of acid $=5+10+10=25$
Total volume $=1000 \mathrm{~mL}$.
Also Meq. $=N \times V$.
$\therefore \quad N=\frac{25}{1000}=\frac{1}{40}$
166 (b)
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$100 \mathrm{~g} \quad 73 \mathrm{~g}>44 \mathrm{~g}$
100 mL of $20 \% \mathrm{HCl}=20 \mathrm{~g}=\mathrm{HCl}$
In this case, CaCO_{3} is the limiting reactant.
$\because 100 \mathrm{~g}$ of CaCO_{3} gives $\mathrm{CO}_{2}=44 \mathrm{~g}$
$\therefore 20 \mathrm{~g} \mathrm{CaSO}_{3}$ will give $\mathrm{CO}_{2}=\frac{44 \times 20}{100}=8.80 \mathrm{~g}$
167 (a)
Weight of empirical formula
$\mathrm{CH}_{2}=12+(1 \times 2)$
$=12+2$
$=14$
Mass of one mole of the compound=its molecular weight
$=42$
$n=\frac{\text { mol. } \mathrm{wt} .}{\text { empirical formula } \mathrm{wt} .}=\frac{42}{14}=3$
\therefore Mol. formula $=($ Empirical formula $\times n)$

$$
=\left(\mathrm{CH}_{2}\right) \times 3=\mathrm{C}_{3} \mathrm{H}_{6}
$$

168 (a)
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$;
12 g C needs 22.4 litre O_{2} or 5×22.4 litre air.
169 (a)
Mixture X contains 0.02 moles
of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02
moles of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution. So, the concentration of
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2}\right] \mathrm{SO}_{4}$ in
solution are $0.01 \mathrm{~mol} / \mathrm{L}$ and $0.01 \mathrm{~mol} / \mathrm{L}$
respectively. During the reaction
with AgNO_{3} (excess), AgBr is precipitated as
follows
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}+\mathrm{AgNO}_{3}$

$$
\underset{\text { (excess) }}{\rightarrow .01 \mathrm{~mol} / \mathrm{L}} \underset{\text { soluble }(Y)}{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{NO}_{3}+\mathrm{AgBr} \downarrow}
$$

$.01 \mathrm{~mol} / \mathrm{L}$
Hence, number of moles of $y=0.01$
On addition of excess $\mathrm{BaCl}_{2}, \mathrm{BaSO}_{4}$ is precipitated as follows
$\left.\begin{array}{cc}{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}} \\ \downarrow+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2}\right] \mathrm{Cl}_{2}\end{array}\right] \quad$ (exess) $0.01 \mathrm{~mol} / \mathrm{L} \quad$ soluble 'Z'
Hence, number of moles of $Z=0.01$
Thus, the number of moles of Y and Z are 0.01 and 0.01 respectively.

170 (c)
Meq. of $\mathrm{NaOH}=100 \times 0.5=50$
Meq. of $\mathrm{HCl}=(1 / 5) \times 100=20$;
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=(1 / 10) \times 100=10$;
Total Meq. of acid $=20+10=30$
Total Meq. of $\mathrm{NaOH}=50$;
\therefore Meq. of NaOH left $=50-30=20$
Thus, resulting solution will be alkaline.
171 (b)
Eq. of $X=1.5 \times a$
Eq. of $\mathrm{HCl}=2.5 \times 2=5.0$;
$\therefore N_{\text {resultant }}=\frac{\text { total eq. }}{\text { total volume }}$
or $N=\frac{1.5 \times a+5.0}{4} \quad \because N=5$
$\therefore \quad a=10$
172 (d)
For water, $1 \mathrm{~g}=1 \mathrm{~mL}(\because d$ for water $=1)$
$\therefore 18 g=18 \mathrm{~mL}$
18 mL water $=6.02 \times 10^{23}$ molecules $=N_{A}$
molecules
\because in 100 mL number of water molecules $=$
$\frac{N_{A} \times 1000}{18}$
$=55.55 N_{A}$
173 (a)
In 15 L of H_{2} gas at STP, the number of molecules

$$
\begin{aligned}
& =\frac{6.023 \times 10^{23}}{22.4} \times 15 \\
& =4.033 \times 10^{23}
\end{aligned}
$$

In 5 L of N_{2} gas at STP, the number of molecules

$$
=\frac{6.023 \times 10^{23} \times 5}{22.4}=1.344 \times 10^{23}
$$

In 0.5 g of H_{2} gas, the number of molecules

$$
\begin{aligned}
& =\frac{6.023 \times 10^{23} \times 0.5}{2} \\
& =1.505 \times 10^{23}
\end{aligned}
$$

In 10 g of O_{2} gas, the number of molecules

$$
\begin{aligned}
& =\frac{6.023 \times 10^{23} \times 10}{32} \\
& =1.882 \times 10^{23}
\end{aligned}
$$

Hence, maximum molecules are present in 15L of F

174 (c)

$\because 64 n \mathrm{~kg} \mathrm{CaC} 2$ will give 28 nkg polyethylene
$\therefore 20 \mathrm{~kg} \mathrm{CaC}_{2}$ will give $\frac{28 n \times 20}{64 n}=8.75 \mathrm{~kg}$
175 (c)
Wt. of N atom $=6.644 \times 10^{-23} \times 6.023 \times 10^{23}=$ 40 g
or $\quad 40 \mathrm{~g}=1 \mathrm{~g}$-atom;
$\therefore \quad 40 \times 10^{3} \mathrm{~g}=10^{3}$ g-atom
176 (d)

$$
m=\frac{15}{98 \times \frac{(100 \times 1.1-15)}{1000}}=1.6
$$

177
(d)
$N=\frac{34}{35 \times \frac{100}{0.6 \times 1000}}=5.82$
178 (a)
$M=\frac{171}{342 \times \frac{(1000+171)}{1000 \times d}}=0.429 \times 1.1=0.47$
$m=\frac{171}{342 \times 1}=0.5$
179 (a)
$2 \mathrm{Al}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$

54 g Al requires $\frac{3}{2} \times 32 \mathrm{~g} \mathrm{O}_{2}$
180 (c)
Mole of N_{2} is $=\frac{4}{28}=\frac{1}{7}$ (the lowest value)
181 (d)
Cgraphite $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2} ; \Delta H=-348 \mathrm{~kJ}$
$12 \mathrm{~g} \quad 32 \mathrm{~g} \quad 44 \mathrm{~g}$
In the above reaction, heat is evolved and mass of product is equal to mass of reactant.
182 (a)
Molarity \times valence $=$ normality
Valence or basicity of $\mathrm{H}_{2} \mathrm{SO}_{4}=2$
183 (c)
Titration of oxalic acid by KMnO_{4} in the presence of HCl gives unsatisfactory result because HCl is a better reducing agent than oxalic acid and HCl reduces preferably MnO_{4}^{-}to Mn^{2+}.
184 (c)
\because Mass of $22400 \mathrm{~cm}^{3} \mathrm{CH}_{4}=16 \mathrm{~g}$
\therefore Mass of $112 \mathrm{~cm}^{3} \mathrm{CH}_{4}=\frac{16 \times 112}{22400}=0.08 \mathrm{~g}$
185 (d)
Combustion of propane takes place as follows

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

propane oxygen
$\because 1 \mathrm{~L}$ of propane required 5 L oxygen for
combustion.
$\therefore 20$ L propane required oxygen $=5 \times 20=100$
L
186 (d)
1 mole $=1 \mathrm{~g}$ molar volume $=22.4$ litre at S.T.P.
187 (d)
In $C S_{2}$
C : S mass ratio is 15.79 : 84.21
15.79 parts of carbon combine with sulphur $=$
84.21
$\therefore 27.27$ parts of carbon will combine with
$S=\frac{84.21}{15.79} \times 27.27=145.434$

Hence, ratio of $S: O$ is $145.434: 72.73$ ie, $2: 1$
In SO_{2}, the ratio of $S: O$ is $1: 1$
Since, the ratio of $S: O$ is a simple whole number ratio,
Therefore law of reciprocal proportions is proved.
188 (c)
$9+1+3.5=13.5$
$\because 13.5$ g contains $\frac{9}{12}$ mole carbon
\therefore Formula is $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
189 (b)
Mole of $\mathrm{Cu}^{2+}=0.1 \times 1=0.1$
Mole of $\mathrm{SO}_{4}^{2-}=0.1 \times 1=0.1$
Mole of $\mathrm{Al}^{3+}=0.1 \times 2=0.2$
Mole of $\mathrm{SO}_{4}^{2-}=0.1 \times 3=0.3$
\therefore Total moles of ions present in 1 litre $=0.7$
$\therefore \quad$ Molarity of all ions $=0.7 \mathrm{M}$
190 (a)
Meq. of conc. $\mathrm{HCl}=$ Meq. of dil. HCl ;

$$
\begin{aligned}
& & 10 \times 10 & =V \times \frac{1}{10} \\
\therefore & & V & =1000 \mathrm{~mL}
\end{aligned}
$$

Thus, 990 mL of water should be added to 10 mL of conc. HCl to get decinormal solution.
191 (c)
Calculate $m=\frac{d R T}{P}$ and then Vapour density $=M / 2$ 192 (d)

1 mole of water $=18 \mathrm{~g}$
193 (d)
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$30 \quad 20 \quad 0$
$0 \quad 5 \quad 15$
194 (b)
Dalton, Avogadro coined the term atom and molecule respectively.
195 (a)

1. Mass of one atom of oxygen $=$

$$
\frac{16}{6.022 \times 10^{23}}=2.66 \times 10^{-23} \mathrm{~g}
$$

2. Mass of one atom of nitrogen

$$
=\frac{14}{6.022 \times 10^{23}}=2.32 \times 10^{-23} \mathrm{~g}
$$

3. Mass of 1×10^{-10} mole of oxygen

$$
=16 \times 10^{-10} \mathrm{~g}
$$

4. Mass of 1×10^{-10} mole of copper

$$
=63 \times 10^{-10}
$$

Hence, masses of atoms in increasing order

$$
\mathrm{II}<\mathrm{I}<\mathrm{III}<\mathrm{IV}
$$

197 (d)
Meq. of oxide $=$ Meq. of H;

$$
\frac{0.1596}{E+8}=\frac{6 \times 10^{-3}}{1}
$$

$$
\therefore E=18.6
$$

\therefore atomic wt. $=18.6 \times 3=55.8$
$(\because$ valence $=$
3)

198 (d)
$\underset{100 \mathrm{~g}}{\mathrm{CaCO}_{3}(s) \xrightarrow{\Delta} \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})}$
$\therefore 56 \mathrm{~g} \mathrm{CaO}$ is obtained from $=100 \mathrm{~g} \mathrm{CaCO}_{3}$
$\therefore 28 \mathrm{~g} \mathrm{CaO}$ is obtained from $=\frac{100 \times 28}{56}$

$$
=50 \mathrm{~g} \mathrm{CaCO}_{3}
$$

199 (c)
Stoichiometry represents mole ratio or volume ratio of reactants and products.
202 (c)
g atom of $N=\frac{28}{14}=2$
g atom of oxygen $=\frac{80}{16}=5$
203 (d)
1 mole $\mathrm{Ca}^{2+}=1$ mole $\mathrm{CaCO}_{3}=100 \mathrm{~g}$
Rating $=\mathrm{mg}$ of CaCO_{3} needed per g chelating
agent (mol. wt. $=380$)

$$
=\frac{100 \times 10^{3}}{380}=263 \mathrm{mg}
$$

205 (c)
Meq. of $\mathrm{HCl}=$ Meq. of CaCO_{3};

$$
N \times 50=\frac{1}{50} \times 1000 \text { or } N=0.4
$$

206 (a)

Weight of $\mathrm{NH}_{3}=4.25 \mathrm{~g}$
We know that number of atoms in 1 mole or 17 g of
$\mathrm{NH}_{3}=4 \times 6.023 \times 10^{23}$
\therefore Number of atom in 4.25 g of
$\mathrm{NH}_{3}=\frac{4 \times 6.023 \times 10^{23}}{17} \times 4.25$

$$
=6.023 \times 10^{23}
$$

207 (c)
In acidic medium, MnO_{4}^{-}is reduced to Mn^{2+} +7
$\mathrm{Mn} \mathrm{O}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
Change in oxidation number $=7-2=5$
Solution X Solution Y
$N_{1} V_{1}=N_{2} V_{2}$
For $\mathrm{Fe}^{2+} \quad$ For MnO_{4}^{-}
$N \times 25=5 \mathrm{M} \times V\left[\because\right.$ For $\mathrm{MnO}_{4}^{-}, N=5 \mathrm{M}$ in acidic medium]
$25 N=5 \mathrm{M} \times 20$
$25 \mathrm{~N}=100 \mathrm{M}$
...(i)
In neutral medium, MnO_{4}^{-}is reduced to MnO_{2}
$+7 \quad+4$
$\mathrm{Mn} \mathrm{O}_{4}^{-} \rightarrow \mathrm{MnO}_{4}^{-}$
Change in oxidation number $=7-4=3$
Solution $X \quad$ Solution Y
$N_{1} V_{1}=N_{2} V_{2}$
For $\mathrm{Fe}^{2+} \quad$ For MnO_{4}^{-}
$25 \times N=3 \mathrm{M} \times V$
$\left[\because\right.$ For $\mathrm{MnO}_{4}^{-}, N=3 \mathrm{M}$ in neutral medium]
$25 \mathrm{~N}=3 \mathrm{M} \times V$
...(ii)
From Eqs (i) and (ii)
$100 \mathrm{M}=3 \mathrm{M} \times V$
$V=\frac{100}{3}=33.3 \mathrm{~mL}$
208 (a)
$\because 4 \mathrm{u}=1 \mathrm{He}$ atom
$\therefore 1 \mathrm{u}=\frac{1}{4} \mathrm{He}$ atom
Hence, $100 \mathrm{u}=\frac{1 \times 100}{4}=25$ atoms
209 (b)
Mass $=0.8 \times 1=0.8 \mathrm{~g}$
$\therefore \quad 180 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has 24 atom
$\therefore \quad 0.8 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has $\frac{24 \times 0.8 \times N}{180}=6.42 \times 10^{22}$
210 (a)
Mill mole of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{1}{10} \times 1000=100$
$\therefore \quad \frac{w}{98} \times 1000=100$
$\therefore \quad \mathrm{w}=9.8 \mathrm{~g}$
211 (b)
Average atomic weight
$=\frac{54 \times 5+56 \times 90+57 \times 5}{100}=55.95$
212 (a)
$m=\frac{0.5 \times 1000}{500}=1$
214 (c)
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \xrightarrow{\Delta} \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$100 \mathrm{~g} 2 \times 36.5 \mathrm{~g}>44 \mathrm{~g}$
1 L of 1 N HCl means $=36.5 \mathrm{~g} \mathrm{HCl}$
Here, HCl is limiting reagent. Therefore, it reacts with 50 g
CaCO_{3} and produces $22 \mathrm{~g} \mathrm{CO}_{2}$.
215 (b)
The mass of KI in 2 g salt $=\frac{2 \times 1}{100}=0.02 \mathrm{~g}$
$=\frac{0.02}{39+127} \mathrm{~mol}$
$=\frac{0.02}{166} \times 6.02 \times 10^{23} \mathrm{ions}$
$=7.2 \times 19^{19}$ ions
216 (a)
$22.4 \mathrm{~L}=17 \mathrm{~g}$
11.2 $\mathrm{L}=\frac{17}{22.4} \times 11.2=8.5 \mathrm{~g}$

217 (b)
Meq. of acid. Meq. of NaOH
$\frac{0.52}{E} \times 1000=100 \times 0.1$
$\therefore \quad E=52$
218 (d)
In 100 tons of $\mathrm{Fe}_{2} \mathrm{O}_{3}$, pure $\mathrm{Fe}_{2} \mathrm{O}_{3}$
$=100-\frac{100 \times 20}{100}$
$=80$ tons

$$
\begin{array}{cl}
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightarrow & 2 \mathrm{Fe}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
2 \times 56+48 & 2 \times 56 \\
160 & 2 \times 56
\end{array}
$$

$\because 160 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ gives $\mathrm{Fe}=2 \times 56 \mathrm{~g}$
$\therefore 80$ tons $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will give $\mathrm{Fe}=\frac{2 \times 56 \times 80}{160}$
$=56$ tons
219 (c)
Meq. Of $\mathrm{Ba}(\mathrm{OH})_{2}=$ Meq. of HCl

$$
\begin{aligned}
N \times 25 & =0.1 \times 35 \\
N_{\mathrm{Ba}(\mathrm{OH})_{2}} & =\frac{3.5}{25} \\
\therefore \quad M_{\mathrm{Ba}(\mathrm{OH})_{2}} & =\frac{3.5}{25 \times 2}=0.07
\end{aligned}
$$

220 (b)
$1000 \mathrm{gH}_{2} \mathrm{O}=1000 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$
$\frac{1000}{18}$ mole $\mathrm{H}_{2} \mathrm{O}=1000 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$
$\frac{1000}{18} \times 6.023 \times 10^{23}$ molecule of $\mathrm{H}_{2} \mathrm{O}=$
$1000 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$
$\therefore 1$ molecule of $\mathrm{H}_{2} \mathrm{O}=3 \times 10^{-23} \mathrm{~cm}^{3}$
221 (c)
As ratio of masses of nitrogen per gram of
hydrogen in hydrazine and NH_{3}
$=1 \frac{1}{2}: 1$
$=\frac{3}{2}: 1$ or $3: 2$
$i e$, the law of multiple proportions.
223 (a)
Eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.5 \times 2=1.0$;
Eq. of $\mathrm{Ca}(\mathrm{OH})_{2}=0.2 \times 2=0.4$;
Equal Eq. reacts and thus, Eq. of CaSO_{4} formed $=$ 0.4
\therefore Mole of CaSO_{4} formed $\frac{0.4}{2}=0.2$

224 (d)

$\mathrm{H}_{3} \mathrm{PO}_{4}$ is tribasic acid and thus,
$N=M \times$ basicity
(d)

Empirical formula wt. $=13$
$\therefore \quad n=\frac{\text { mol.wt. }}{\text { empirical formula wt. }}=\frac{78}{13}=6$
\therefore Formula is $(\mathrm{CH})_{6}$, i.e. , $\mathrm{C}_{6} \mathrm{H}_{6}$
226 (a)
For first oxide,

Moles of oxygen $=\frac{22}{16}=1.375$,
Moles of $\mathrm{Fe}=\frac{78}{56}=1.392$
Simpler molar ratio, $\frac{1.375}{1.375}=1, \frac{1.392}{1.375}=1$
\therefore The formula of first oxide is FeO.
Similarly for second oxide,
Moles of oxygen $=\frac{30}{16}=1.875$,
Moles of $\mathrm{Fe}=\frac{70}{56}=1.25$
Simple molar ratio $=\frac{1.875}{1.25}=1.5, \frac{1.25}{1.25}=1$
\therefore The formula of second oxide is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Suppose in both the oxides, iron reacts with $x \mathrm{~g}$ of oxygen.
\therefore Equivalent weight of Fe in FeO
$\frac{\text { weight of } \mathrm{Fe}_{\text {II }}}{} \times 8$
weight of oxygen
$\frac{56}{2}=\frac{\text { weight of } \mathrm{Fe}_{\text {II }}}{x} \times 8$
\therefore Equivalent weight of Fe in $\mathrm{Fe}_{2} \mathrm{O}_{3}$
$=\frac{\text { weight of } \mathrm{Fe}_{\text {III }}}{\text { weight of oxygen }} \times 8$
$\frac{56}{3}=\frac{\text { weight of } \mathrm{Fe}_{\mathrm{III}}}{x} \times 8$
From Eq. (i) and (ii),
$\frac{\text { weight of } \mathrm{Fe}_{\mathrm{II}}}{\text { weight of } \mathrm{Fe}_{\mathrm{III}}}=\frac{3}{2}$
227 (a)
We know that protons in 1 mole CaCO_{3}
$=$ atomic number of calcium + atomic number of carbon +3 (atomic number of oxygen)
$=20+6+3(8)=50 \mathrm{~mol}$
\therefore Proton in $10 \mathrm{~g} \mathrm{CaCO}_{3}=\frac{10 \times 50}{100} \times 6.02 \times 10^{23}$
$=3.01 \times 10^{24}$
228 (b)
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{cl}_{2}$
2 mol 4 mol 1 mol 22.4 L

But the yield is 11.2.
$\therefore \quad \%$ yield $=\frac{11.2}{22.4} \times 100=50 \%$
229 (b)
$N=\frac{1}{49 \times(100 / 1000)}=0.2$
230 (c)
One mole of electrons $=6.023 \times 10^{23}$ electrons
Mass of one electron $=9.1 \times 10^{-28} \mathrm{~g}$
Mass of one mole of electrons
$=6.023 \times 10^{23} \times 9.1 \times 10^{-28} \mathrm{~g}$
$=5.48 \times 10^{-4} \mathrm{~g}=0.548 \mathrm{mg}$
$\approx 0.55 \mathrm{mg}$

231 (c)
Eq. of metal $=$ Eq. of Cl

$$
\therefore \quad \frac{74.4-35.5}{E}=\frac{35.5}{35.5}
$$

$$
\therefore \quad E=38.9
$$

232 (a)
Equivalent wt of acid

- molecular weight of acid
no. of H atoms replaced during reaction
\therefore Equivalent weight of acid depends on the reaction involved because different number of acids are replaced during different reactions.
234 (d)
At. wt. $=2 \times 31.82$
$\therefore \mathrm{Wt}$. of one atom $=\frac{2 \times 31.82}{N}=\frac{63.64}{N}$
235 (a)
22.4 litre $=1$ mole;
$\therefore 1 \mathrm{~m}^{3}=10^{3}$ litre $=\frac{10^{3}}{22.4}=44.6$
236 (c)
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \uparrow$;
$245 \mathrm{~g} \mathrm{KClO}_{3}$ on heating shows a wt. loss $=96 \mathrm{~g}$ (of O_{2})
$\therefore 100 \mathrm{~g} \mathrm{KClO}_{3}$ on heating shows a wt. loss

$$
=\frac{96 \times 100}{245} \mathrm{~g}=39.18 \%
$$

237 (b)
Meq. $=$ Normality $\times V$ in mL $=500 \times 0.2=100$
238 (a)
Number of molecules $=\frac{\operatorname{mass} \times N_{A}}{\text { molar mass }}$
239 (d)
$3 F^{-} \equiv 1$ Formula unit $\left(\mathrm{AlF}_{3}\right)$
$3.0 \times 10^{24} F^{-}=1 \times 10^{24}$ Formula units $\left(\mathrm{AlF}_{3}\right)$
240 (d)
One mole of CO_{2} contains 6.02×10^{23} atoms of carbon and 6.023×10^{23} molecules of oxygen.

See mole ratio $A: B: C: 1: 2: 1$
242 (d)
$1 \mathrm{mg} \mathrm{C}_{4} \mathrm{H}_{10}=\frac{14 N}{58} \times 10^{-3}$ atoms,
$1 \mathrm{mg} \mathrm{N}_{2}=\frac{2 N \times 10^{-3}}{28}$ atoms,
$1 \mathrm{mg} \mathrm{Na}=\frac{N \times 10^{-3}}{23}$ atoms,
$1 \mathrm{~mL}=1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\frac{3 \mathrm{~N}}{18}$ atoms,
$(\because \mathrm{Mg}$ of a substance $=N$ molecules $=a \times$
N atoms; where a is number of atoms in one molecule).
243 (c)

An aromatic hydrocarbon (empirical formula
$\mathrm{C}_{5} \mathrm{H}_{4}$)
$+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ monosulphonic acid
$\because 0.104 \mathrm{~g}$ of monosulphonic acid required 10 mL
of $\frac{\mathrm{N}}{20} \mathrm{NaOH}$ for complete neutralisation
$\therefore \frac{0.104}{n(5 \times 12+4 \times 1)}=\frac{1}{20} \times 10 \times 10^{-3}$
$n=\frac{104}{32}=3.25 \approx 3$
The molecular formula of hydrocarbon will be $\mathrm{C}_{15} \mathrm{H}_{12}$.
244 (a)
In 12 g carbon, mass of $\mathrm{C}-14$ isotope $=12 \times \frac{2}{100}=$ $0.24 g$
\therefore Number of C-14 atoms in 12 g of $C=\frac{0.24}{14} \times$
6.02×10^{23}
$=1.032 \times 10^{22}$
245 (b)
To prepare 20 g zinc sulphate crystals, zinc required
$=\frac{22.65}{100} \times 20$
$=4.53 \mathrm{~g}$
246 (b)
Number of gram molecules $=\underset{6.02 \times 10^{23}}{6.02 \times 10^{25}}=100$
247 (a)
Ferrous is Fe^{2+}
248 (b)
$M=\frac{5}{34 \times 100 / 1000}=1.47$
249 (b)
4.6×10^{22} atoms weight $=13.8 \mathrm{~g}$
Hence, 6.02×10^{23} atoms will weigh
$=\frac{13.8 \times 6.02 \times 10^{23}}{4.6 \times 10^{22}}=108.6 \mathrm{~g}$ (molar mass)
250 (c)
Eq. of $\mathrm{HCl}=\mathrm{Eq}$. of CaCO_{3}
Thus, $\quad \frac{w}{36.5}=\frac{100}{50}$;
$w=73 \mathrm{~g} \mathrm{HCl}$;
50 g HCl is present in 100 g HCl solution and thus, volume of solution required for,
$73 \mathrm{~g} \mathrm{HCl}=\frac{73 \times 100}{50}=146 \mathrm{~g}$.
252 (d)
The law of constant composition-According to this law, "A chemical compound is always found to be made up of the same elements combined together in the same proportions by weights".

This law is same as law of definite proportions.
253 (d)
Atomic weight of the element
$X=6.643 \times 10^{-23} \times N_{A}=40$
No. of moles of $X=\frac{20 \times 1000}{40}=500$
254 (a)
Limiting reagent is one which is completely consumed in reaction.
255 (d)
ppm $=w t$. of solute in $10^{6} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$10^{3} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ contains $10 \mathrm{~g} \mathrm{CaCO}_{3}$
$\therefore \quad 10^{6} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ contains $=\frac{10 \times 10^{6}}{10^{3}}=10,000 \mathrm{ppm}$
CaCO_{3}
256 (d)

$$
\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}
$$

$\mathrm{mm} 20 \times 0.5 \quad 20 \times 1$
$\begin{array}{lrrcc}\text { taken } & 10 & 20 & 0 & 0 \\ \mathrm{~mm} & 0 & 10 & 10 & 20\end{array}$
formed

> Milli mole of $\mathrm{BaSO}_{4}=10$
> or \quad Mole of $\mathrm{BaSO}_{4}=10^{-2}$

257 (d)
Percentage of element M in $M_{2} O_{3}=53$
Let the atomic mass of $M=x$
Mass of $\mathrm{Min} \mathrm{M}_{2} \mathrm{O}_{3}=2 x$
Total atomic mass of $M_{2} O_{3}=2 x+16 \times 3$
$=2 x+48$
Percentage of an element
$=\frac{\text { Mass of an element in a compound }}{\text { Total mass of compound }} \times 100$
$53=\frac{2 x}{2 x+48} \times 100$
$53(2 x+48)=200 x$
$x=27$
258 (a)
$\mathrm{H}_{3} \mathrm{BO}_{3}$ accepts OH^{-}ions to act as weak monobasic Lewis acid.
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+} ; \quad K_{a}=10^{-9}$
259 (a)
Meq. of KOH added $=25 \times 0.4210=10.525$
Meq. of KOH left $=8.46 \times 0.2732 \times 2=4.623$
\therefore Meq. of KOH used by oil $=10.525-4.623$
$=5.902$
or $\quad \frac{w}{56} \times 1000=5.902$
or $\quad{ }^{w} \mathrm{KOH}=0.3305 \mathrm{~g}$
\therefore Saponification no.
$=\mathrm{wt}$. of KOH used in mg per g of
oil

$$
=\frac{0.3305}{1.5763} \times 1000
$$

$$
=209.6
$$

260 (c)
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}$
$3 \mathrm{NH}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \equiv 2 \mathrm{NH}_{3} \equiv 2 \mathrm{HCl}$
$132 \mathrm{~g} \quad 73 \mathrm{~g}$
$73 \mathrm{gHCl} \equiv 132 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$292 \mathrm{~g} \mathrm{HCl} \equiv \frac{132 \times 292}{73} \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$=528 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
261 (d)

Silica	Water	Clay	Mineral
45	12	43	Initial \%
a	8	$(92-a)$	$\%$ after heating

The \% ratio of silica and clay remains constant on heating
i.e.,

$$
\frac{45}{43}=\frac{a}{92-a}
$$

$\therefore \quad a=47 \%$
262 (b)
N atom $=1 \mathrm{~g}$ atom
263 (a)
Meq. of conc. $\mathrm{HCl}=$ Meq. of dil. HCl
$10 \times V_{1}=100 \times 1$
$\therefore \quad V_{1}=10 \mathrm{~mL}$
Thus, 10 mL of conc. HCl should be added 90 mL
to make at 100 mL of desired normality.
264 (a)
$\mathrm{CaF}_{2}=146.4 \mathrm{~g}$
Molecular weight of $\mathrm{CaF}_{2}=78.08 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
\text { Moles of } \mathrm{CaF}_{2} & =\frac{\text { weight }}{\text { molecular weight }} \\
& =\frac{146.4}{78.08}=1.875 \mathrm{~mol}
\end{aligned}
$$

Number of formula units of
CaF_{2} in 146.4 g of CaF_{2}
$=$ No. of moles $\times 6.022 \times 10^{23}$
$=1.875 \times 6.022 \times 10^{23}$
$=11.29 \times 10^{23}$
$=1.129 \times 10^{24} \mathrm{CaF}_{2}$
265 (a)
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$28 \mathrm{~g} \quad 96 \mathrm{~g}$
\because The weight of oxygen required for complete combustion of 28 g ethylene $=96 \mathrm{~g}$.
\therefore Weight of oxygen required for combustion of
2.8 kg ethylene
$=\frac{96 \times 2.8 \times 1000}{28 \times 1000} \mathrm{~kg}=9.6 \mathrm{~kg}$

267 (b)

$$
\begin{aligned}
2 \mathrm{Na}_{2} \mathrm{HPO}_{4}+ & \mathrm{NaH}_{2} \mathrm{PO}_{4}+2\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO} \\
& \rightarrow \mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}+4 \mathrm{NH}_{3}+2 \mathrm{CO}_{2}
\end{aligned}
$$

Hence, the stoichoimetric ratio of sodium dihydrogen orthophosphate and sodium hydrogen orthophosphate is $2: 1$ or $3: 1.5$
$44 \mathrm{~g} \mathrm{CO}_{2}=N$ molecules,
$\therefore 4.4 \mathrm{~g} \mathrm{CO}_{2}=N / 10$ molecules,
22.4 litre H_{2} at $\mathrm{STP}=N$ molecules,
$\therefore 2.24$ litre H_{2} at $\mathrm{STP}=N / 10$ molecules,
Thus, total molecules $=\frac{N}{10}+\frac{N}{10}=\frac{N}{5}$.
269 (c)
Molecular mass of $\mathrm{CO}_{2}=12+32=44$
44 g of CO_{2} has $=6.023 \times 10^{23}$ molecule
0.2 g of CO_{2} has $=\frac{6.023 \times 10^{23}}{44} \times 0.2$
$=0.0273 \times 10^{23}$
If 10^{21} molecules are removed then number of molecules
$=1.73 \times 10^{21}$
$\because 6.023 \times 10^{23}$ molecules $=1 \mathrm{~mol}$
$\therefore 1.73 \times 10^{21}$ molecules $=\frac{1}{6.023 \times 10^{23}} \times 1.73 \times$
10^{21}
$=0.0028 \mathrm{~mol}$
270 (a)
24 g carbon has $2 N$ atoms. Rest all have I mole atoms.
271 (b)
$\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$ has 1 mole of copper and 9 moles of oxygen atoms,
$63.5 \mathrm{~g} \mathrm{Cu}=9 \times 16 \mathrm{~g}$ of oxygen
8.64 g of oxygen $=\frac{63.5 \times 8.64}{9 \times 16}$
$=3.81 \mathrm{~g}$
272 (c)
Meq. of $\mathrm{H}_{3} \mathrm{PO}_{3}=$ Meq. of KOH
$20 \times 0.1 \times 2=0.1 \times 1 \times V$
$\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right.$ is dibasic, KOH is monobasic)

$$
\therefore \quad V=40 \mathrm{~mL}
$$

273 (a)
Given mass of $\mathrm{O}_{2}=2 \mathrm{~g}$ at $0^{\circ} \mathrm{C}$ and 760 mm Hg 32 g of $\mathrm{O}_{2}=22.4 \mathrm{~L}$ at STP

$$
\therefore \quad 2 \mathrm{~g} \mathrm{of}_{2}=\frac{22.4}{32} \times 2=1.4 \mathrm{~L}
$$

274 (a)
Ratio of atoms
$C: H: N: O:: \frac{20.0}{12}: \frac{6.66}{1}: \frac{47.33}{14}: \frac{26.01}{16}$
= 1.67: 6.66: 3.38: 1.63
$=1: 4: 2: 1$

Empirical formula $=\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
Molar empirical formula mass $=60 \mathrm{~g}$
Molecular formula $=\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
275 (b)
Molarity $=\frac{\text { moles of solute }}{\text { volume of solution }} ; V_{\text {solution }}>$ 1 litre water.
277 (d)
Number of atoms $=$ moles $\times N_{A} \times$ atomicity
Here, $N_{A}=$ Avogadro's number
(a) Number of oxygen atoms in 1 g of 0

$$
\begin{aligned}
& =\frac{1}{16} \times N_{A} \times 1 \\
& =\underset{16}{N_{A}}
\end{aligned}
$$

(b)Number of oxygen atoms in 1 g of O_{2}

$$
\begin{aligned}
& =\frac{1}{32} \times N_{A} \times 2 \\
& =\frac{N_{A}}{16}
\end{aligned}
$$

(c) Number of oxygen atoms in 1 g of O_{3}

$$
=\frac{1}{48} N_{A} \times 3=\frac{N_{A}}{16}
$$

Hence, all have the same number of oxygen atoms.

278 (b)
$N=\frac{4 \times 1000}{40 \times 100}=1.0$
279 (c)
Mohr's salt is $\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
Only oxidizable part is Fe^{2+}.
$\left[\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+e^{-}\right] \times 6$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}$

$$
\rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

Millimoles of $\mathrm{Fe}^{2+}=750 \times 0.6=450$
Moles of $\mathrm{Fe}^{2+}=\frac{450}{1000}=0.450 \mathrm{~mol}$
$6 \mathrm{molFe}{ }^{2+}=1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
$\therefore 0.450 \mathrm{~mol} \mathrm{Fe}^{2+}=\frac{0.450}{6}$
$=0.075 \mathrm{~mol} \mathrm{Cr} 2 \mathrm{O}_{7}^{2-}$
$=0.075 \times 294 \mathrm{~g}$
$=22.05 \mathrm{~g}$
280 (d)
$3 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}$
See mole ratio from stoichiometry.
$\mathrm{BaCl}_{2}: \mathrm{Na}_{3} \mathrm{PO}_{4}: \mathrm{Ba}_{3}\left(\mathrm{PO}_{3}\right)_{2}: \mathrm{NaCl}:: 3: 2: 1: 6$
281

Mole of $\mathrm{Ca}=\frac{30}{40} \quad$ (the largest value)
282 (a)
Meq. of $\mathrm{NaOH}=0.1 \mathrm{~V}$
Meq. of $\mathrm{CH}_{3} \mathrm{COOH}=0.1 \mathrm{~V}$
\therefore Meq. of $\mathrm{CH}_{3} \mathrm{COONa}$ formed $=0.1 \mathrm{~V}$
The solution will be alkaline due to hydrolysis of
$\mathrm{CH}_{3} \mathrm{COONa}$.
283 (b)
According to law of conservation of mass,
Mass of reactants $=$ mass of products
$\therefore 6.3+15.0=18.0+x$
Or $\quad x=21.3-18.0=3.3 g$
284
(d)

Mole of glucose $=\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}}=0.1$
$\therefore \quad M_{\text {glucose }}=\frac{0.1 \times 1000}{50}=2$
285 (b)
$M>m$ provided d solvent <1
286 (b)
$m=\frac{4}{40 \times 0.996}=0.1$
287 (c)
$\begin{array}{lllcc} & \mathrm{PbO} & + & 2 \mathrm{HCl}\end{array} \mathrm{PbCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ reaction
\therefore Mole of PbCl_{2} formed $=\frac{0.058}{2}=0.029$
288 (a)
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=50 \times 0.1 \times 2=10$;
Meq. of $\mathrm{NaOH}=50 \times 0.1=5$
\therefore Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ left $=10-5$;
Solution is acidic.
289 (a)
$18 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ or $18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ has 10 N electrons.
290 (b)
The compound is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$;
Mol. wt. $=88$
\therefore Vapour density $=44$
291 (b)
Meq. of oxalic acid $=$ Meq. of NaOH :
$\therefore \frac{w}{126 / 2} \times 1000=1000 \times 1$;
$\therefore \quad w=63 \mathrm{~g}$
292 (b)
Mole of sucrose $=\frac{\text { mass of sucrose (in gram) }}{\text { molecular weight of sucrose }}$

$$
=\frac{25.6}{342.3}=0.0747882
$$

Formula of sucrose $=\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
Number of H atoms in 1 mole of sucrose
$=22 \times 6.023 \times 10^{23}$

Number of H atoms in 0.0747882 mole of sucrose
$=22 \times 6.023 \times 10^{23} \times 0.074788$
$=9.9 \times 10^{23}$

293 (c)

Liquid HCl is 100% pure
$\therefore M=\frac{100 \times 1.17 \times 1000}{36.5 \times 100}=32.05$
294 (a)
Meq. of $\mathrm{NaOH}=$ Meq. of acid;

$$
20 \times 0.4=40 \times N
$$

$\therefore \quad N=0.2 \quad$ or $\quad M=0.1$
295 (c)
Mass of solute $=120 \mathrm{~g}$
Mass of water $=1000 \mathrm{~g}$
Mass of solution $=1120 \mathrm{~g}$
\therefore Volume of solution $\left(\frac{m}{d}\right)=\frac{1120}{1.15} \mathrm{~mL}$

$$
\text { Milli mole }=M \times \mathrm{V}_{\text {in } \mathrm{mL}}
$$

$$
\frac{120}{60} \times 1000=M \times \frac{1120}{1.15}
$$

$\therefore \quad M=2.05$
296 (a)
Eq. wt. $=\frac{\text { mol. wt. }}{\text { acidity }}$
NH_{3} is monoacidic base.
297 (b)
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+}$

$$
\rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

20 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}=20 \times 0.1=2 \mathrm{~m} \mathrm{~mol}$
$\because 2 \mathrm{mmol}$ of $\mathrm{KMnO}_{4} \equiv 5 \mathrm{mmol}$ of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=50 \times 0.1=5 \mathrm{mmol}$
Hence, 20 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$

$$
\equiv 50 \mathrm{~mL} \text { of } 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}
$$

298 (c)
Solutions of known strength are prepared by dissolving solute in solvent in a measuring flask.

299 (a)

Let the percent abundance of lighter isotope is x.
\therefore Atomic mass, $z=\frac{x(z-1)+(100-x)(z+2)}{z+100-x}$
$3 x=200$ or $x=66.6 \%$
300 (a)
Wt. of metal oxide
Wt. of metal chloride
$=\frac{\text { Eq. wt. of metal }+ \text { Eq. wt. of oxide }}{\text { Eq. wt. of metal }+ \text { Eq. wt. of chloride }}$
$\frac{3}{5}=\frac{E+8}{E+35.5}$
$E=33.25$
301 (d)
Volume of 100 g solution, $V=\frac{m}{\rho}$
$=\frac{100 \mathrm{~g}}{1.14 \mathrm{~g} \mathrm{~cm}^{-3}}=87.72 \mathrm{~cm}^{3}$
Amount of sulphuric acid in 100 g solution,
$n=\frac{m}{M}=\frac{20.0 \mathrm{~g}}{98 \mathrm{~g} \mathrm{~mol}^{-1}}=0.207 \mathrm{~mol}$
Molarity of sulphuric acid,
$\mathrm{M}=\frac{\mathrm{n}}{\mathrm{V}}=\frac{0.207 \mathrm{~mol}}{87.72 \times 10^{-3} \mathrm{dm}^{3}}=2.32 \mathrm{~mol} \mathrm{dm}^{-3}$
302 (b)
Meq. of $\mathrm{Fe}^{2+}=$ Meq. of FeCl_{2}

$$
=\text { Meq. ofHCl }=50 \times 4=200 ;
$$

$\therefore \quad$ Mole of $\mathrm{Fe}^{2+}=\frac{200}{2} \times 10^{-3}=0.1$
303 (c)
Meq. of $\mathrm{HCl}=100 \times 0.3=30$
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=200 \times 0.6=120$
$\therefore \quad N_{\text {mixture }}=\frac{30+120}{300}=\frac{1}{2}$
304 (b)
Meq. of acid $=$ Meq. of caustic potash
$\therefore \frac{45}{90 / n} \times 1000=200 \times 5$,
$\therefore \quad n=2$
305 (c)
$2 \mathrm{Cr}(\mathrm{OH})_{3}+4 \mathrm{OH}^{-}+\mathrm{KIO}_{3} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$
Change in oxidation number of effective element
(I) in
$\mathrm{KIO}_{3}=(+5)-(-1)=6$
Equivalent weight of oxidation $=\frac{\text { mol. wt. }}{6}$
306 (c)
No. of atoms in 1 g of $O_{2}(g)=2 \times \frac{1}{32} \times 6.023 \times$
10^{23}
$=0.38 \times 10^{23}$
No. of atoms in 1 g of $N i(s)=\frac{1}{58.2} \times 6.023 \times 10^{23}$ $=0.10 \times 10^{23}$
No. of atoms in 1 g of $B(s)=\frac{1}{10.8} \times 6.023 \times 10^{23}$ $=0.58 \times 10^{23}$
No. of atoms in 1 g of $N_{2}(g)=2 \times \frac{1}{28} \times 6.023 \times$ 10^{23}
$=0.43 \times 10^{23}$
Alternative: Smaller the atomic mass, larger will be the no. of atoms in sample.
307 (d)
Follow stoichiometry of reaction.

Mole of $\mathrm{O}_{2}=\frac{3.2}{32}=\frac{1}{10}$
\therefore atoms of $\mathrm{O}=2 \mathrm{~N} \times \frac{1}{10}=12.04 \times 10^{22}$
309 (a)
No. of molecules in n mole $=n \times$
Av. no; Also no. of atom in 1 molecule $=$ atomicity.
310 (d)
Moles $=\frac{\text { mass }}{\text { molecular mass }}$
Given, \quad mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=50 \mathrm{~g}$
Molecular mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=342 \mathrm{~g}$
$\therefore \quad$ Moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\frac{50}{342}=0.14 \mathrm{~mol}$
311 (c)
In air
Molecular weight of $N_{2}=\frac{28 \times 78}{100}=21.84$
Molecular weight of $O_{2}=\frac{32 \times 21}{100}=6.72$
Molecular weight of $A r=\frac{18 \times 0.9}{100}=0.162$
Molecular weight of $\mathrm{CO}_{2}=\frac{44 \times 0.1}{100}=0.044$
So, molecular weight of air $=21.84+6.72+$
$0.162+0.044$
$=28.766$
312 (d)
Meq. of oxide $=$ Meq. of hydroxide;
Thus, $\quad \frac{0.995}{E+8}=\frac{1.520}{E+17} \quad \therefore E=9$
313 (d)
Per cent loss of $\mathrm{H}_{2} \mathrm{O}$ in one mole of

$$
\begin{aligned}
& & \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O} & =\frac{18 n \times 100}{(142+18 n)}=55 \\
\therefore & & n & =10
\end{aligned}
$$

315 (c)
VD of substance $=4\left(\right.$ when VD of $\left.\mathrm{CH}_{4}=1\right)$
\therefore VD of substance $=8 \times 4$ (when VD of $\left.\mathrm{CH}_{4}=8\right)$
\therefore mol. wt. of substance $=32 \times 2=64$
316 (d)
According to Dulong and Petit's law
At. mass of element \times specific heat (in
$\mathrm{cal} / \mathrm{g})=6.4$ (app.)
This law is applicable only to solid elements excepts Be, B, C and Si.
317 (a)
$M_{\mathrm{H}_{2} \mathrm{O}}=\frac{\frac{1000 \times d}{18}}{1}=55.6 \times d$
$\therefore \quad d=1 \quad \therefore M=55.6$
318 (a)
Follow definition of molality.
319 (a)
1 mole (g mol. wt.) of a substance displaces 22.4
litre air at NTP.
320 (d)
$M=\frac{\mathrm{wt} . \times \text { density } \times 1000}{\mathrm{~m} . \mathrm{wt} . \times \mathrm{wt} . \text { of solution }}$

$$
\begin{aligned}
3.6 & =\frac{29 \times d \times 1000}{98 \times 100} \\
d & =1.22 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

321 (c)
Mass of 1 atom $=1.8 \times 10^{-22} \mathrm{~g}$
Mass of 6.02×10^{23} atoms
$=6.02 \times 10^{23} \times 1.8 \times 10^{-22} \mathrm{~g}$
$=6.02 \times 1.8 \times 10 \mathrm{~g}$
$=108.36 \mathrm{~g}$
\therefore Atomic mass of element $=108.36$
322 (d)
$9.108 \times 10^{-31} \mathrm{~kg}=1$ electron
$\therefore \quad 1 \mathrm{~kg}=\frac{1}{9.108 \times 10^{-31}}$ electron

$$
=\frac{1}{9.108 \times 10^{-31}} \times \frac{1}{6.023 \times 10^{23}} \text { mole electron }
$$

323 (c)
$244 \mathrm{~g} \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ contains 2 moles of water.
(b)
$16 \mathrm{~g} \mathrm{CH}_{4}=1$ mole $\mathrm{CH}_{4}=N$ molecules of CH_{4}
325 (c)
$2\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4} \equiv \mathrm{P}_{2} \mathrm{O}_{5}$

$$
264 \mathrm{~g} \quad 142 \mathrm{~g}
$$

$\%$ of $\mathrm{P}_{2} \mathrm{O}_{2}=\frac{\text { wt.of } \mathrm{P}_{2} \mathrm{O}_{5}}{\text { wt.of salt }} \times 100$
$=\frac{142}{264} \times 100$
$=53.78 \%$
326 (d)
KMnO_{4} reacts with oxalic acid according to the following equation.
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+}$

$$
\rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Eq. mass of $\mathrm{KMnO}_{4}=\frac{\text { mol.mass }}{7-2}$
$N_{\mathrm{KMnO}_{4}}=5 \times$ molarity $=5 \times 10^{-4}$
Eq. mass of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}=\frac{\text { mol. mass }}{2(4-3)}=\frac{\text { mol. mass }}{2}$
$N_{\mathrm{C}_{2} \mathrm{O}_{4}^{2-}}=2 \times$ molarity $=2 \times 10^{-2}$
$N_{1} V_{1}=N_{2} V_{2}$
$5 \times 10^{-4} \times V_{1}=2 \times 10^{-2} \times 0.5$
$V_{1}=\frac{2 \times 10^{-2} \times 0.5}{5 \times 10^{-4}}=20 \mathrm{~L}$
328 (a)
Mohr's salt is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} . \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
The equation is
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Total change in oxidation number of iron
$=(+3)-(+2)$
$=+1$
So, equivalent wt. of Mohr's salt
$=\frac{\text { Mol. wt. of Mohr's salt }}{1}$
$=\frac{392}{1}$
$=392$
331 (c)
For minimum molecular mass, there must be one S atom per insulin molecule.
If 3.4 g S is present, the molecular mass $=100$
\therefore If 32 g S is present, the molecular mass $=\frac{100 \times 32}{3.4}$ $=941.176$
332 (d)
200 cc of NH_{3} at STP contains maximum number of molecules because NH_{3} compound has lowest molecular weight and highest volume than other compounds.
333 (a)
N molecule of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$
334 (d)
$2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2 cc 5 cc
100 cc 250 cc
Hence, air will be needed $=\frac{100}{20} \times 250$
$=1250$ cc
335 (a)

$$
\begin{array}{rlrl}
& \text { Eq. of ca } & =\text { Eq. of } \mathrm{O} ; \\
\frac{1.35}{E} & =\frac{0.53}{8} \\
\therefore \quad & E & =20.37
\end{array}
$$

336 (b)
$N=\frac{2.7 \times 1000}{(98 / 3) \times 250}=0.33$
337 (c)
Elements react in same number of equivalent and give same number of equivalents of products.
Also equivalent $=\frac{\text { weight }}{\text { equivalent weight }}$
338 (c)
$W_{\mathrm{N}_{2}}=\frac{1 \times P \times 28}{R T} ; W_{\mathrm{CO}}=\frac{1 \times P \times 28}{R T} ; W_{\mathrm{O}_{2}}$

$$
=\frac{7}{8} \times \frac{P \times 32}{R T}
$$

339 (c)

Meq. of $\mathrm{NaOH}=$ Meq. oxalic acid;

$$
0.1 \times 1 \times V=20 \times 0.05 \times 2
$$

$\therefore \quad V=20 \mathrm{~mL}$
340 (b)
M. f. $=\frac{\text { moles of solute }}{\text { moles of solute }+ \text { moles of water }}$

$$
=\frac{1}{1+\frac{1000}{18}}=0.018
$$

(b)

It remains unchanged.
342 (d)
Given, \% of $\mathrm{C}=54.55 \%$
\% of $\mathrm{H}=9.09 \%$
$\%$ of $0=36.36 \%$

Elem ent	$\%$	At. no.	Ratio of atoms	Simplest ration
C	54.5	12	$54.55 / 12=$	$4.54 / 2.2$
H	5	1	4.54	$7=2$
0	9.09	16	$9.09 / 1=9.0$ 9	36.0

\therefore Empirical formula is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$.
343 (a)
${ }_{6} \mathrm{C}^{12}$ contains 6 N protons, 6 N electrons and
6 N neutrons.
344 (d)
Meq. of $\mathrm{H}_{3} \mathrm{PO}_{4}=$ Meq. of $\mathrm{Ca}(\mathrm{OH})_{2}$;
$0.25 \times 3 \times V=25 \times 0.03 \times 2$

$$
V=2 \mathrm{~mL}
$$

345 (a)
$2 \mathrm{PH}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{P}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g})$
$100 \quad 0 \quad 0 \quad$ Before dissociation
0 - 150 After dissociation
346 (c)
$m=\frac{\text { moles of } \mathrm{CH}_{3} \mathrm{COOH}}{w \mathrm{t} \text {. of solvent in } \mathrm{kg}}=\frac{2.05 \times 1000}{897}=2.285$
$w t$. of solvent $=w t$. of solution-wt. of solute

$$
=[1000 \times 1.02-2.05 \times 60]=
$$

897 g
347 (c)
Meq. of $\mathrm{NaOH}=$ Meq. of HCl
$100 \times 0.1=10$
$\therefore \frac{w t .}{40} \times 1000=10 ; \quad \therefore w_{\mathrm{NaOH}}=0.4 \mathrm{~g}$
348 (a)
Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=250 \times 0.25 \times 2=125$
$\therefore \quad \frac{w}{53} \times 1000=125$
$\therefore \quad w=6.625$
349 (a)

$$
\begin{array}{rlrl}
& \frac{n}{n+N} & =0.2 ; \\
\therefore & & \frac{N}{n+N} & =0.8
\end{array}
$$

Thus, $\quad \frac{n}{N}=\frac{1}{4}$
or $\quad \frac{n \times 18 \times 1000}{W \times 1000}=\frac{1}{4}$
or $\quad \frac{\text { molality } \times 18}{1000}=\frac{1}{4}$

350 (a)
\%by weight $=\frac{\text { weight of solute }}{\text { weight of solution }} \times 100$
or $\quad 20=\frac{w}{(w+60)} \times 100$
or $\quad w=15 \mathrm{~g}$
351 (b)
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
1 mol or $22.4 \mathrm{LC}_{3} \mathrm{H}_{8}$ at STP requires 5 mole or $5 \times 22.4 \mathrm{O}_{2}$ at STP.
352 (d)
22.4 litre refers for mol. wt.
$\therefore 11.2$ litre refers for $\frac{\text { mol.wt. }}{2}=$ vapour density.
353 (c)
$N=\frac{10 \times 1000}{60 \times 100}=1.66$
354 (c)
$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(a q)+2 \mathrm{KI}(a q) \rightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}(a q)+\mathrm{I}_{2}(a q)$
In this reaction one mole of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ reacts with 2
moles of KI,
Hence the stoichiometry of this reaction is $1: 2$.
Mole fraction $=\frac{\text { moles of alcohol }}{\text { total moles }}=\frac{2}{2+6}=\frac{2}{8}$

$$
=0.25
$$

356 (b)
$\mathrm{Ba}(\mathrm{HO})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
meq. $30 \times 0.1 \times 2 \quad 20 \times 0.05 \quad 0 \quad 0$

$$
=6 \quad=1
$$

$$
5 \quad 0
$$

$\therefore \quad\left[\mathrm{OH}^{-}\right]=\frac{5}{50}=0.1 \mathrm{M}$
357 (a)
NaHCO_{3} being an acid salt will react with NaOH as,
$\mathrm{NaOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
358 (b)
Eq. of metal oxide = Eq. of oxygen

$$
\frac{100}{E}=\frac{20}{8} \quad \therefore E=40
$$

359 (b)
According to the equation,
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$
No. of moles of $\mathrm{NaCl}=\frac{4.77}{58.5}=0.08154$
No. of moles of $\mathrm{AgNO}_{3}=\frac{5.77}{170}=0.03394$
Thus, AgNO_{3} is the limiting reagent in the reaction.
Now, applying POAC for Ag (as Ag atoms are conserved in the reaction)
Moles of Ag in $\mathrm{AgNO}_{3}=$ moles of Ag in AgCl
Or $1 \times$ moles of $\mathrm{AgNO}_{3}=1 \times$ moles of AgCl
Or $0.03394 \times 143.4($ for AgCl$)=4.87 \mathrm{~g}$

360 (d)
$100 \mathrm{ML}_{2}, \mathrm{NH}_{3}$ and $\mathrm{CO}_{2}=\frac{0.1}{22.4}=\frac{1}{224} \mathrm{~mol}$
For O_{2} no. of molecules $=\frac{1}{224} \times 6.023 \times 10^{23}$
For NH_{3} no. of molecules $=\frac{1}{224} \times 6.023 \times 10^{23}$
For CO_{2} no. of molecules $=\frac{1}{224} \times 6.023 \times 10^{23}$
361 (d)
It is the basic definition of equivalent weight.
364 (c)
Mole fraction of $\mathrm{H}_{2} \mathrm{O}=0.85$;
Mole fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.15$;
$\therefore \frac{\text { M. f. of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { M. f. of } \mathrm{H}_{2} \mathrm{O}}=\frac{\text { mole of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { mole of } \mathrm{H}_{2} \mathrm{O}}$

$$
=\frac{0.15}{0.85} ;
$$

$m=\frac{\text { mole of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { wt. of } \mathrm{H}_{2} \mathrm{O} \text { in } \mathrm{kg}}=\frac{\text { mole of } \mathrm{H}_{2} \mathrm{SO}_{4} \times 1000}{18 \times\left(\text { wt. of } \mathrm{H}_{2} \mathrm{O} / 18\right)}$
or

$$
m=\frac{\text { mole of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { mole of } \mathrm{H}_{2} \mathrm{O}} \times \frac{1000}{18}
$$

$$
=\frac{0.15 \times 1000}{0.85 \times 18}=9.8
$$

365 (b)
0.1 mole has atoms $=0.1 \times 6.02 \times 10^{23} \times 3$

$$
=1.806 \times 10^{23}
$$

366 (d)
16 g 0 contains N atoms of 0
$32 \mathrm{~g} \mathrm{O}_{2}$ contains 2 N atoms of O
$48 \mathrm{~g} \mathrm{O}_{3}$ contains 3 N atoms of O
367 (b)
We know that, $E=F . z$
$\therefore \quad E=96500 \times x$
368 (c)
Victor meyer's method is used for volatile substances.
369 (a)
Per cent of oxygen in $\mathrm{NaOH}=\frac{16 \times 100}{40}=40$.
370 (d)
$71 \mathrm{~g} \mathrm{Cl}_{2}$ reacts with 64 g S ,
$\therefore 35.5 \mathrm{~g} \mathrm{Cl}_{2}$ reacts with 32 g S .
371 (d)
Wt. of metal hydroxide
Wt. of metal oxide
$=\frac{\text { Eq. wt. of metal }+ \text { Eq. wt. of } \mathrm{OH}^{-}}{\text {Eq. wt. of metal }+ \text { Eq. wt. of } \mathrm{O}_{2}^{2-}}$
$\Rightarrow \frac{1.520}{0.995}=\frac{E+17}{E+8}$
On solving, $E=9.0$
372 (d)
Dulong Petit's law: at. wt. \times sp. heat ≈ 6.4
373 (c)
$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3} ;$
Initial volume or mole $=4$

Final volume or mole $=2$
374 (b)
As, we know that least count of the instrument is equal to the most possible error of the instrument hence, least count of the instrument will be 0.01 cm.

375 (a)
$M_{2} \mathrm{HPO}_{4}$ means valence of metal is one and thus, sulphate of metal is $M_{2} \mathrm{SO}_{4}$.
376 (b)
Change in oxidation number $0.5 \times 2=1$

Change in oxidation number $=1 \times 2=2$
Equivalent mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=\frac{M_{1}}{1}=M_{1}$
Equivalent mass of $\mathrm{I}_{2}=\frac{M_{2}}{2}$
377 (b)
$\frac{(29.2-20.2)\left(1.79 \times 10^{5}\right)}{1.37}=\frac{9.0 \times 1.79 \times 10^{5}}{1.37}$
Since, there are two SF in 9. 0, the answer must also have two significant figures.
378 (c)
In 100 g haemoglobin, mass of iron $=0.33 \mathrm{~g}$
\therefore in 67200 g haemoglobin, mass of iron $=$
$\frac{67200 \times 0.33}{100}$
\therefore the number of Fe atoms in one Hb molecule
$=\frac{672 \times 0.33}{56}$
$=4$
379 (d)
Increases in oxidation state $=2$

Hence, the equivalent weight of

$$
\mathrm{H}_{2} \mathrm{~S}=\frac{\text { molecular weight }}{\text { change in oxidation number }}=\frac{34}{2}=17 .
$$

380 (c)

C	H	N
9	1	3.5
$9 / 12=0.75$	$1 / 1=1$	$3.5 / 14=0.25$
$\frac{0.75}{0.25}=3$	$\frac{1}{0.25}=4$	$\frac{0.25}{0.25}=1$

So, empirical formula $=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
$n=\frac{108}{54}=2$
Molecular formula $=\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}\right)_{2}=\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
The heat of combustion of $10 \mathrm{~g} \mathrm{CH}_{4}$

$$
=-560 \mathrm{~kJ}
$$

So, the heat of combustion of $16 \mathrm{~g} \mathrm{CH}_{4}$

$$
\begin{aligned}
& =\frac{-560}{10} \times 16 \\
& =-896 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

382 (b)
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ Meq. of NaOH

$$
0.1 \times 2 \times V=50 \times 0.2 \times 1
$$

$\therefore \quad V=50 \mathrm{~mL}$
383 (c)
$\underset{\substack{1 \\(1-\mathrm{x})}}{\mathrm{CO}_{2}}+\underset{0}{C} \rightarrow \underset{2 x}{2 \mathrm{CO}}$
(1-x)
$\therefore 1-x+2 x=1.4$ find x.
384 (b)
Follow definition of equivalent weight.
385 (b)
In first oxide,
Mass of arsenic $=65.2$
Mass foxygen $=34.8$
\therefore Eq. mass of arsenic $=\frac{65.2}{34.8} \times 8=14.99$
In second oxide,
Mass of arsenic $=75.7 \mathrm{~g}$
Mass of oxygen $=24.3 \mathrm{~g}$
\therefore Eq. mass of arsenic $=\frac{75.7}{24.3} \times 8=24.92$
Eq. mass of arsenic : Eq. mass of arsenic (oxide I)
(oxide II)
14.99 : 24.92

Or

$$
3: 5
$$

386 (a)
Meq. of metal $=$ Meq. of oxygen

$$
\begin{array}{lll}
& \frac{60}{E} & =\frac{40}{8} \\
\therefore & E & =12
\end{array}
$$

Now, Meq. of metal $=$ Meq. of bromide

$$
\begin{aligned}
& & \frac{100-a}{12} & =\frac{a}{80} \\
\therefore & & a & \approx 87 \%
\end{aligned}
$$

387 (a)
Meq. of oxalic acid $=$ Meq. of NaOH

$$
\begin{array}{rlrl}
& & \frac{6.3}{63} \times \frac{1000}{250} \times 10 & =0.1 \times V \\
\therefore & V & =40 \mathrm{~mL}
\end{array}
$$

388 (d)
The combustion of methane can be represented by the following equation
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+890 \mathrm{~kJ}$

16 g
$\therefore 16 \mathrm{~g} \mathrm{CH}_{4}$ burns in air to liberate $=890 \mathrm{~kJ}$ of heat
$\therefore 3.2 \mathrm{~g} \mathrm{CH}_{4}$ will liberate $=\frac{890 \times 3.2}{16}$
$=178 \mathrm{~kJ}$ of heat
390 (a)
1.12 litre $\mathrm{H}_{2} \equiv 1.2 \mathrm{~g}$
$\therefore 11.2$ litre $\mathrm{H}_{2}=12 \mathrm{~g}$
391 (a)
Amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ in 1 mL . $=\frac{34}{1120} \mathrm{~g}$
Also, $34 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$ gives $16 \mathrm{~g} \mathrm{O}_{2}$ of 11.2 litre O_{2} at STP
$\therefore \quad \frac{34}{1120} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}=\frac{11.2 \times 34}{1120 \times 34}$ litre O_{2} $=\frac{1}{100}$ litre $_{\mathrm{O}_{2}}=10 \mathrm{~mL} \mathrm{O}_{2}$
392 (c)
$\mathrm{CaCl}_{2}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{Cl}^{-}$
$111 \mathrm{~g} \quad 100 \mathrm{~g}$
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$100 \mathrm{~g} \quad 56 \mathrm{~g}$
$\because 56 \mathrm{~g} \mathrm{CaO}$ is obtained by decomposition of
$\mathrm{CaCO}_{3}=100 \mathrm{~g}$
$\therefore 0.959 \mathrm{~g} \mathrm{CaO}$ will be obtained by the
decomposition of
$\mathrm{CaCO}_{3}=\frac{100 \times 0.959}{56}$
$=1.71 \mathrm{~g}$
Further,
$100 \mathrm{~g} \mathrm{CaCO}_{3} \equiv 111 \mathrm{gCaCl}_{2}$
$1.71 \mathrm{~g} \mathrm{CaCO}_{3}=\frac{111 \times 1.71}{100}$
$=1.89 \mathrm{~g} \mathrm{CaCl}_{2}$
$\%$ of CaCl_{2} in the mixture $=\frac{1.89}{4.22} \times 100$
$=44.78$
$=45 \%$
393 (d)
1 mole $\mathrm{NH}_{3} \equiv 10 \mathrm{~N}$ electron
$\frac{11.2}{22.4}$ mole $\mathrm{NH}_{3} \equiv 10 \times N \times \frac{1}{2}=3.01 \times$ 10^{24} electron
394 (a)
Number of atoms in $N_{2}=\frac{11.2 \times 10^{-3} \times 6.023 \times 10^{23} \times 2}{22.4}$
$=6.023 \times 10^{20}$
Number of atoms in $\mathrm{NO}=\frac{0.015 \times 2 \times 6.023 \times 10^{23}}{30}$
$=6.023 \times 10^{20}$
395 (a)
For poly atomic molecules, mol. wt. $=$ at. wt. \times atomicity.
396 (a)
(a) Density of water $=1 \mathrm{~g} \mathrm{~cm}^{-3}$

Mass of water $=1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{-3}$
Mass $=$ volume \times density
$=10^{6} \mathrm{~cm}^{-3} \times 1 \mathrm{~g} \mathrm{~cm}^{-3}$
$=10^{6}$
$=\frac{10^{6}}{10^{3}} \mathrm{~kg}$
$=1000 \mathrm{~kg}$
(b) Mass of normal adult man $=65 \mathrm{~kg}$
(c) Density of $\mathrm{Hg}=13.6 \mathrm{~g} \mathrm{~cm}^{-3}$

Volume of $\mathrm{Hg}=10 \mathrm{~L}=10 \times 1000 \mathrm{~cm}^{-3}$
\therefore Mass of $\mathrm{Hg}=13.6 \times 10 \times 1000$
$=136000 \mathrm{~g}$
$=13.6 \mathrm{~kg}$
\therefore Mass of $1 \mathrm{~m}^{3}$ water is highest.

397 (c)

Equivalent weight of metal
$=\frac{\mathrm{wt} \text {. of metal }}{\mathrm{wt} \text {. of chlorine }} \times 35.5$
$=\frac{(74.5-35.5) \times 35.5}{35.5}=39$
398 (c)

Element	\%	\% At. wt.	Ratio
N	30.5	$30.5 / 14=2.18$	1
0	69.5	$69.5 / 16=4.34$	2

Empirical formula $=\mathrm{NO}_{2}$
Empirical formula weight $=46$
$n=\frac{92}{46}=2$
$\therefore \quad$ Molecular formula $=\left(\mathrm{NO}_{2}\right)_{2}=\mathrm{N}_{2} \mathrm{O}_{4}$
401 (c)
Empirical formula of glucose $=\mathrm{CH}_{2} \mathrm{O}$;
Molecular formula of glucose $=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}$.
402 (a)
1 mole of $\mathrm{CH}_{3} \mathrm{COOH}$ has 24 carbon $=2 \mathrm{~g}$ atom of carbon or 2 mole of carbon atoms, 4 mole of H atom and two mole of oxygen atoms.
403 (d)
Mass of one molecule of water
$=\frac{\mathrm{mol} . \mathrm{mass}}{\mathrm{N}_{0}}=\frac{18}{6.02 \times 10^{23}} \mathrm{~g}$
\therefore Volume of 1 molecule of water $=\frac{\text { mass }}{\text { density }}$
$=\frac{18 \times 10^{-23}}{6.02 \times 1}$
$=3 \times 10^{-23} \mathrm{~mL}$

(b)

$$
\begin{aligned}
& \text { Meq. of } \mathrm{NaOH} & =0.45 \times 2 V+0.6 \times V \\
& \text { Total volums } & =3 V \\
\therefore & N \times 3 V & =0.45 \times 2 V+0.6 V ; \\
\therefore & N & =0.5
\end{aligned}
$$

405 (d)
In a chemical reaction, coefficient represents mole of that substance.
$X+2 Y \rightarrow Z$
This indicates 1 mole of X reacts with 2 moles of Y to form 1 mole of Z.
So, 5 moles of X will require 10 moles of Y. But we have taken only 9 moles of Y.
Hence, Y is in limiting quantity. Hence, we
determine product from Y.
Thus, 5 moles of X react with 9 moles of Y to form 4 moles of Z.
406 (c)
Average value $=\frac{25.2+25.25+25.0}{1}=\frac{75.45}{3}$
$=25.15=25.2 \mathrm{~mL}$
Number of significant figure is 3.
407 (b)
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$208 \mathrm{~g} \quad 98 \mathrm{~g} \quad 233 \mathrm{~g}$
100 mL of $20.8 \% \mathrm{BaCl}_{2}$ solution contains $=$
$20.8 \mathrm{~g} \mathrm{BaCl}_{2}$
50 mL of $9.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution contains $=$
$4.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
Here, $\mathrm{H}_{2} \mathrm{SO}_{4}$ is the limiting reactant.
$\because 98 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ gives $\mathrm{BaSO}_{4}=233 \mathrm{~g}$
$\therefore 4.9 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ will give $\mathrm{BaSO}_{4}=\frac{233 \times 4.9}{98}$
409 (b)
Meq. of NaOH left

$$
=20 \times 0.1-10 \times 0.1=1
$$

Thus, solution is alkaline and phenolphthalein gives pink colour in alkaline medium.
410 (a)
$558.5 \mathrm{~g} \mathrm{Fe} \frac{558.5}{55.85}$ mole $\mathrm{Fe}=10$ mole Fe

$$
=2 \times 5 \text { mole } \mathrm{C}=2 \times 60 \mathrm{~g} \mathrm{C}
$$

411 (d)
$20 \mathrm{~g} N$, then mol. wt. $=100$
$14 \mathrm{~g} N$, then mol. $\mathrm{wt} .=\frac{100 \times 14}{20}=70$;
At least one N atom must present in one molecule.
$\underset{\substack{\mathrm{C}_{6} \\ \text { mol. } \\ \mathrm{C}_{13}}}{\mathrm{H}_{13}} \quad \underset{102}{\mathrm{OH}} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}} \underset{\text { mol. wt. } 84}{\mathrm{C}_{6} \mathrm{H}_{12}}$
$\because 102 \mathrm{~g}$ cyclohexanol gives $84 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12}$
$\because 102 \mathrm{~g}$ cyclohexanol will give $=\frac{84 \times 100}{102} \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12}$
Also \% yield is 75\%
$\because 100 \mathrm{~g}$ cyclohexanol will give $=\frac{84 \times 100}{102} \times$
$\frac{75}{100} \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12}$

$$
=61.769 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12}
$$

413 (a)
$\begin{array}{cccl}\mathrm{H}_{2}+ & \frac{1}{2} \mathrm{O}_{2} & \rightarrow & \mathrm{H}_{2} \mathrm{O} \\ \frac{100}{2} & \frac{100}{32} & 0 & \text { Mole before reaction; } \\ \left\lfloor\frac{100}{2}-\frac{100 \times 2}{32}\right\rceil & : & 0 & : \\ \frac{100 \times 2}{32} & \begin{array}{l}\text { Mole ratio aftre } \\ \text { reaction, }\end{array}\end{array}$
[Now mole ratio for $\mathrm{H}_{2}: \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}: 1: 1 / 2: 1$;
Also, O_{2} is limiting reagent thus]
\therefore wt. of $\mathrm{H}_{2} \mathrm{O}$ formed $=\frac{100 \times 2}{32} \times 18=112.5 \mathrm{~g}$
414 (b)
Number of molecules in n moles of substance $=$
$n \times N_{0}$
$=n \times 6.023 \times 10^{23}$
$\frac{N(\text { no. of molecules })}{n(\text { no. of moles })}=$?
$=\frac{n \times 6.023 \times 10^{23}}{n}=6.023 \times 10^{23}$
415 (d)
Conc. $\mathrm{Of} \mathrm{Na}^{+}=\frac{100 \times 0.1}{200}+\frac{100 \times 0.1 \times 2}{200}=0.15 \mathrm{M}$
\therefore Ionic strength of $\mathrm{Na}^{+}=\frac{1}{2} \sum C Z^{2}=\frac{1}{2} \times$
$\left[0.15 \times 1^{2}\right]=0.075$
416 (a)
$98 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ contains 32 g S or 1 mole of S
417 (d)
$\underset{276 \mathrm{~g}}{\mathrm{Ag}_{2} \mathrm{CO}_{3}} \rightarrow \underset{216 \mathrm{~g}}{2 \mathrm{Ag}}+\mathrm{CO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
As 276 g of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will give $=216 \mathrm{~g}$ of Ag
So, 2.76 g of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will give $=\frac{2.76 \times 216}{276}=2.16 \mathrm{~g}$
418 (b)
Mole fraction of $\mathrm{O}_{2}=\frac{8 / 32}{7 / 28+8 / 32}=0.5$
419 (c)
Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}+$ Meq. of $\mathrm{SO}_{3}=$ Meq. of NaOH
$\frac{(0.5-a)}{49} \times 1000+\frac{a}{80 / 2} \times 1000=26.7 \times 0.4$
$\therefore \quad a=0.103$
$\therefore \quad \%$ of $\mathrm{SO}_{3}=\frac{0.103}{0.5} \times 100=20.6 \%$
420 (b)
Given, moles of $\mathrm{Ba}(\mathrm{OH})_{2}=0.205$
$\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\therefore 0.205$ moles of $\mathrm{Ba}(\mathrm{OH})_{2} \equiv 0.205$ moles of BaCO_{3}
\therefore Mass of $\mathrm{BaCO}_{3}=$ moles of $\mathrm{BaCO}_{3} \times$ molecules mass of BaCO_{3}
$=0.205 \times 197.3$
$=40.5 \mathrm{~g}$
422
(b)
$M=\frac{5.3}{106 \times 1}=\frac{1}{20}$
423 (a)
Meq. of conc. $\mathrm{AgNO}_{3}=$ Meq. of dil. AgNO_{3}
i.e., $\quad \frac{40 \times 10^{-3}}{170} \times 1=\frac{16 \times 10^{-3}}{170} \times V$,
$\therefore \quad V=2.5 \mathrm{~mL}$
426 (b)
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Mole ratio of $\mathrm{CH}_{4}: \mathrm{O}_{2}:: 1: 2$
427 (b)
Meq. of CO_{2} in mixture $=\frac{20}{40} \times 1000=500$
\therefore Mole of CO_{2} in mixture

$$
=\frac{500}{2 \times 1000}=\frac{1}{4}\left(\text { Eq. wt. of } \mathrm{CO}_{2}=M / 2\right)
$$

\therefore Mole of CO in mixture $=\frac{3}{4}$
If this CO is completely oxidised to CO_{2} then mole
of CO_{2} formed $=\frac{3}{4}$
\therefore Total mole of $\mathrm{CO}_{2}=\frac{1}{4}+\frac{3}{4}=1$
\therefore Mole of NaOH required

$$
=2 \times \text { mole of } \mathrm{CO}_{2}=2 \times 1=2
$$

\therefore Wt. of NaOH required $=2 \times 40=80 \mathrm{~g}$
428 (b)
Eq. wt. $=\frac{\text { mol. } \text { wt. }}{\text { basicity }}=\frac{\mathrm{M}}{2}=\frac{98}{2}=49$;
Basicity $=2$; Only two H are replaced.
429 (a)
$4 \mathrm{~g} \mathrm{He}=N$ atoms.
430 (a)
ppm a unit to express hardness is amount of CaCO present in $10^{6} \mathrm{gH}_{2} \mathrm{O}$ of a given sample.
431 (a)
Eq. of metal $=$ Eq. of oxygen
$\therefore \quad \frac{80}{E}=\frac{20}{8}$
4 $\quad-E=32$
432 (a)
Meq. of $\mathrm{AgNO}_{3}=100 \times 1=100$;
Meq. of $\mathrm{CuSO}_{4}=100 \times 1 \times 2=200$;
Thus, $\mathrm{H}_{2} \mathrm{~S}$ is also needed in the same ratio.
433 (c)
22.4 litre O_{2} at $\mathrm{STP}=1$ mole.

434 (a)
$N_{\mathrm{HCl}}=\frac{0.03659 \times 1000}{36.5}=1.002 \mathrm{~N}$
$N_{\mathrm{CH}_{3} \mathrm{COOOH}}=\frac{0.04509 \times 1000}{60}=0.7515 \mathrm{~N}$

435 (b)
Eq. wt. $=\frac{\text { mol.wt. }}{\text { basicity }}$
436 (c)
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
1 mol 3 mol
Volume of 1 mole carbon monoxide
$=22.4 \mathrm{~L}$ (at STP)
1 mole of ferric oxide is reduced by=3 moles of
CO
$=3 \times 22.4 \mathrm{~L}$ of CO

$$
=67.2 \mathrm{dm}^{3} \text { of CO }
$$

437 (c)
$P V=\frac{w}{m} R T$
$\therefore \quad 1 \times \frac{224}{1000}=\frac{1}{m} \times 0.0821 \times 273$
\therefore Mol. wt. of gas $=100$
Now 3 N atoms (triatomic gas) weighs 100 g
$\therefore 1$ atom of gas weights

$$
\begin{aligned}
& =\frac{100}{3 N}=\frac{100}{3 \times 6.023 \times 10^{23}} \mathrm{~g} \\
& =5.53 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

438 (b)
Weight of empirical formula $\mathrm{CH}_{2}=14$
Mass of 1 mole $=$ molecular weight $=56$
$n=\frac{\text { molecular weight }}{\text { empirical formula weight }}=\frac{56}{14}=4$
Molecular formula $=\left(\mathrm{CH}_{2}\right)_{4}$

$$
=\mathrm{C}_{4} \mathrm{H}_{8}
$$

439 (c)
5. Atoms in 2.0 mol of

$$
\begin{aligned}
\mathrm{S}_{8}=2 \times 8 & \times 6.02 \times 10^{23} \\
= & 9.632 \times 10^{24}
\end{aligned}
$$

2. Atoms in 6.0 mol of $\mathrm{S}=6 \times 6.02 \times 10^{23}$

$$
=3.612 \times 10^{24}
$$

6. Atoms in 5.5 mol of
$\mathrm{SO}_{2}=3 \times 5.5 \times 6.02 \times 10^{23}=9.93 \times 10^{24}$
7. Atoms in $4.48 \mathrm{~L} \mathrm{of} \mathrm{CO}_{2}$ at

$$
\begin{aligned}
\mathrm{STP}=\frac{3 \times 4.48 \times 6.02 \times 10^{23}}{22.4} & \\
& =3.612 \times 10^{23}
\end{aligned}
$$

440 (a)
The definition of $\%$ by weight.
441 (a)
1 mole of $\mathrm{MgSO}_{4}=M \mathrm{~g} \approx 120 \mathrm{~g}$

Mole fraction of alcohol $=\frac{1}{1+4}=\frac{1}{5}$;
$\therefore \quad$ M. f. of water $=4 / 5$
443 (d)
Valence $=\frac{26.89}{8.9} \approx 3$
\therefore Exact at. wt. $=8.9 \times 3=26.7$
444 (c)
As both the reactants are consumed completely, thus the ratio of stoichiometric coefficients would be 0.75 : 2 or $3: 8$

So,
$3 \mathrm{~A}_{4}+8 \mathrm{O}_{2} \rightarrow$ Product
Now as final pressure is half of oxygen initially, thus the molecular formula will be $A_{3} O_{4}$ to balance the equation correctly, ie,
$3 A_{4}+8 O_{2} \rightarrow 4 A_{3} O_{4}$
445 (b)
$M_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=M_{\mathrm{Na}^{+}} \times 2=M_{\mathrm{CO}_{3}^{2-}}$
and $\quad M_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\frac{25.3 \times 1000}{106 \times 250}=0.955$
Thus (b) is correct.
446 (c)
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

$$
32 \mathrm{~g} \quad 2 \times 46 \mathrm{~g}
$$

$\because 92 \mathrm{~g} \mathrm{NO}_{2}$ uses $\mathrm{O}_{2}=32 \mathrm{~g}$
$\therefore 10 \mathrm{~g} \mathrm{NO}_{2}$ uses $\mathrm{O}_{2}=\frac{32}{92} \times 10=3.48 \mathrm{~g}$
447 (c)
Milli mole, in of $\mathrm{I}=480 \times 1.5=720$
Milli mole, in of $\mathrm{II}=520 \times 1.2=624$
$\therefore \quad$ Total $\mathrm{mm}=720+624=1344$

$$
\text { Total } V=480+520
$$

$$
=1000 \mathrm{ML}
$$

$\therefore \quad M \times 1000=1344$
or $\quad M=1.344$
449 (c)
Camphor is used in molecular mass determination due to volatile nature. The method is called Rast's camphor method. Camphor acts as a solid solvent which is volatile, hence can be removed easily.
450 (b)
Weight of solvent $=$ weight of solution - weight of NaCl

$$
\begin{aligned}
& =1.0585 \times 1000-58.5 \\
& =1058.5-58.5=1000 \mathrm{~g}=1
\end{aligned}
$$

kg
$m=\frac{\text { mole of } \mathrm{NaCl}}{\text { weight of solvent in } \mathrm{kg}}=\frac{1}{1}=1$

Elemen t	\%	Relative no. of atom	Simplest ratio
C	49.3	$\underline{49.3}=4$	4.1
		12 6.84	2.74 $=1.5 \times 2=3$
H	6.84	1	6.84
		$=6.84$	$\overline{2.74}$
0	43.86	43.8	$=2.5 \times 2=5$
		$\begin{aligned} & \frac{43.86}{16} \\ & =2.74 \end{aligned}$	$\frac{2.74}{2.74}=$

The empirical formula is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
Empirical formula weight
$=(3 \times 12)+(5 \times 1)+(2 \times 16)$
$=36+5+32$
$=73$
Molecular wt. of the compound
$=2 \times V D$
$=2 \times 73$
$=146$
mol. wt.
$n=\frac{\text { empirical formula wt. }}{\text { emt }}$
$=\frac{146}{73}$
$=2$
Molecular formula=empirical formula $\times 2$
$=\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right) \times 2$
$=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$
452 (c)
10 \% glucose means 10 g glucose is present in 100 mL solution.
453 (b)
1 molecules of $\mathrm{Ca}(\mathrm{OH})_{2}$ contains 5 atoms;
$\therefore 1$ mole contains 5 N atoms
454 (d)
$\mathrm{H}_{3} \mathrm{PO}_{3}$ is diabasic acid, thus.
$N=2 \times M=2 \times 0.3=0.6$
455 (c)
Meq. of carbonate $=$ Meq. of acid;

$$
\begin{aligned}
& \therefore & \frac{0.84}{E} \times 1000 & =40 \times \frac{1}{2} \\
& \therefore & E & =42
\end{aligned}
$$

456 (c)
Avogadro's number depends upon the basis of atomic weight scale

$$
\begin{aligned}
12 \mathrm{~g} \mathrm{C} & \equiv 6.023 \times 10^{23} \text { atoms } \\
6 \mathrm{~g} \mathrm{C} & \equiv \frac{6.023 \times 10^{23} \times 6}{12}=\frac{1}{2} \times 6.023 \times 10^{23} \text { atoms }
\end{aligned}
$$

or $1 \mathrm{amu}=\frac{1}{\mathrm{~N}}=\frac{2}{6.023 \times 10^{23}}=3.3 \times 10^{-24} \mathrm{~g}$
Let mol. mass of an element be M amu
Then $\quad M \mathrm{amu}=\mathrm{M} \times 3.3 \times 10^{-24} \mathrm{~g}$
Mass of 1 mole $=M \times 3.3 \times 10^{-24} \times$ Av. no.

$$
=\quad M \times 3.3 \times 10^{-24} \times \frac{1}{2} \times 6.023 \times
$$

$10^{23} \mathrm{~g}$

$$
=M \mathrm{~g}
$$

457 (c)
Given, vapour density $=70$
\therefore Molecular weight $=2 \times$ vapour density

$$
=2 \times 70=140
$$

$[\mathrm{CO}]_{x}=(12+16)_{x}=(28)_{x}$
$\because(28)_{x}=140$
$x=\frac{140}{28}=5$
\therefore Formula is $(\mathrm{CO})_{5}$.
458 (d)
Number of gram equivalents of
$\mathrm{HCl}=\frac{100 \times 0.1}{1000}=0.01$
Number of gram equivalents of $\mathrm{HCl}=$ Number of gram equivalents of metal carbonate

$$
0.01=0.01
$$

Therefore, mass of 1 g equivalents of carbonate salt

$$
=\frac{2}{0.01}=200 \mathrm{~g}
$$

Equivalent mass of metal carbonate $=200$
460 (d)
By using
Valency of an element $=\frac{\text { approximate weight }}{\text { equivalent weight }}$
$=\frac{26.8 / \text { specific heat }}{\text { equivalent weight }}$
$=\frac{26.8 / 1.05}{9}=2.835 \cong 3$
Now, by using
Atomic weight $=$ equivalent weight \times valency

$$
9 \times 3=27
$$

461 (a)
2 mole of $\mathrm{H}_{2} \mathrm{O}=36 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=2 \mathrm{~N}$ molecules .
462 (c)
Mol. wt. of chloride $=66 \times 2=132$
Let metal chloride be $M \mathrm{Cl}_{n}$

$$
\text { Eq. of metal }=\text { Eq. of } 0
$$

$$
\begin{array}{rlrl}
\therefore & \frac{53}{E} & =\frac{47}{8} \\
E & =9 \\
\therefore & & 9 \times n+35.5 n & =132 \\
\therefore & n & \approx 3 \\
\therefore & & \text { At. wt. of metal } & =27
\end{array}
$$

463 (a)
$111 \mathrm{~g} \mathrm{CaCl}_{2}$ contains N ions of Ca^{2+} and 2 N ions of Cl^{-}.
464 (a)
$\%$ by weight $=\frac{\text { weight of solute }}{\text { weight of soultion }} \times 100$

Or $\quad 40=\frac{w}{(w+60)} \times 100$
$w=40 \mathrm{~g}$
465 (a)
$\mathrm{JPa}^{-1}=\frac{\mathrm{J}}{\mathrm{Pa}}$
$=\frac{\text { work }}{\text { pressure }}=\frac{\mathrm{N}-\mathrm{m}}{\mathrm{N} / \mathrm{m}^{2}}$
$=\mathrm{m}^{3}$
466 (a)
$N=\frac{(24.5 \times 1000)}{(98 / 2) \times 250}=2 ;$
$M=\frac{(24.5 \times 1000)}{98 \times 250}=1$
467 (c)
mol. wt. of $M \mathrm{Cl}_{2}=2 \times 32.7+71=136.4$
468 (a)
$3.4 \mathrm{~g} \mathrm{~S}=100 \mathrm{~g}$ insulin
$\therefore 32 \mathrm{~g} \mathrm{~S}=\frac{100 \times 32}{3.4}=941.176$
Insulin must contain at least one atom of S in its one molecule.
469 (b)
$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$; mole
8 mole of O -atom are contained by 1 mole
$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
Hence, 0.25 moles of O -atom $=\frac{1}{8} \times$
0.25 mole $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$=3.125 \times 10^{-2}$

470 (c)
Gram molecular weight is expressed in g mol^{-1}, i.e., weight of one mole of substance.
471 (d)
Number of oxygen atom in 2 g of CO
$=\frac{2}{28} \times 6.022 \times 10^{23} \times 1$

Number of oxygen atom in 2 g of CO_{2}
$=\frac{2}{44} \times 6.022 \times 10^{23} \times 2$
Number of oxygen atom in 2 g of SO_{2}
$=\frac{2}{64} \times 6.022 \times 10^{23} \times 2$
Number of oxygen atom in 2 g of $\mathrm{H}_{2} \mathrm{O}$
$=\frac{2}{18} \times 6.022 \times 10^{23} \times 1$
Hence, 2 g of $\mathrm{H}_{2} \mathrm{O}$ has maximum number of atoms of oxygen.

472 (b)

$$
\begin{aligned}
& m M \text { of } \mathrm{AgNO}_{3}=0.1 \times V \\
& \\
& \quad m M \text { of } \mathrm{NaCl}=0.2 \times V \\
& \therefore \quad m M \text { of } \mathrm{NO}_{3}^{-}=0.1 \times V \text { and total } V=2 V \\
& \therefore \quad
\end{aligned} \quad\left[\mathrm{NO}_{3}^{-}\right]=\frac{0.1 \times V}{2 V}=0.05
$$

473 (a)
Eq. mass of copper chloride $=99$
Eq. mass of chlorine $=35.5$
\therefore Eq. mass of copper $=99-35.5=63.5$
\therefore Valency of copper $=\frac{\text { at mass of copper }}{\text { eq.mass of copper }}=1$
\therefore Formula of copper chloride is CuCl .
475 (d)
g-atom of $X=\frac{75.8}{75}$
g-atom of $Y=\frac{24.2}{16}$; find simple ratio.
476 (a)
(a) 0.1 mole of CO_{2}
(b) $\frac{11.2}{22.4}=0.5$ mole of CO_{2}
(c) $\frac{22}{44}=0.5$ mole of CO_{2}
(d) $\frac{22.4 \times 10^{3}}{22400}=1$ mole of CO_{2}

Equal numbers of moles have equal number of molecules.

Hence, the smallest number of molecules of CO_{2} is in 0.1 mole of CO_{2}.

477 (b)

Required equation is given below,
$\mathrm{Zn}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ZnO}_{2}^{2-}+2 \mathrm{H}^{+}+2 e^{-}$
$\mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+}+8 e^{-} \rightarrow \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}$
From the above equation
$\because 8$ moles of electron absorbed by 85 g of NaNO_{3}
$\therefore 1$ mole of electron absorbed by $\frac{85}{8} \mathrm{~g}$ of $\mathrm{NaNO}_{3}=$ 10.625 g

478 (b)
$60 \mathrm{~g} \mathrm{NH}_{2} \mathrm{CONH}_{2}$ has 28 g N
100 g urea has $N=\frac{28 \times 100}{60}$
479 (d)
m mole $=M \times V$
$\therefore \quad \mathrm{V}=\frac{0.1}{0.8}=0.125 \mathrm{~mL}$
480 (a)
At. wt. $\times \underset{(\text { in cal } / \mathrm{g})}{\mathrm{specific}} \mathrm{C}$. $\simeq 6.4$ and $E=\frac{\text { mol. wt. }}{\text { valency }}$
481 (c)
1 g -atom $\mathrm{Ag}=108 \mathrm{~g}$
482
(b)
$4.523+2.3+6.24=13.063$. As 2.3 has least number of decimal places i.e., one, therefore sum should be reported to one decimal place only.
After rounding off, reported sum=13.1 which has three significant figures.
483 (a)
$249.6 \mathrm{~g} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ contains $90 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
484 (a)
Mole = 3;
Wt . of solvent $=1000 \mathrm{~g}$;
$\therefore \quad$ Wt. of solution $=1000+3 \times 40=1120$
g:
$\therefore \quad$ Volume of solution $=\frac{1120}{1.110} \mathrm{~mL}$
$\therefore \quad M=\frac{3}{\frac{1120}{1.110 \times 1000}}=2.9732$
485 (b)
g-atom of metal $=\frac{60}{24}$;
g-atom of oxygen $=\frac{40}{16}$; find simple ratio.
487 (a)

Equivalent mass of $\mathrm{HClO}_{3}=\frac{\text { molar mass }}{\text { change in oxidation no. }}$

$$
=\frac{84.45}{5}=16.89
$$

(When it acts as an oxidising agent)
488 (a)
1 molecule of $\mathrm{CH}_{3} \mathrm{COOH}$ contains 8 atoms;
$\therefore 1$ mole contains 8 N atoms
489 (a)
specific gravity $=\frac{\text { wt. of solution }}{\text { volume of solution }}$
491 (b)
$m=\frac{18 \times 1000}{60 \times(1500 \times 1.052-18)}=0.19$
492 (b)
Average atomic weight
$=\frac{\text { at. } \mathrm{wt} . \times \text { relative abundance }+ \text { at. } \mathrm{wt} . \times \text { relative al }}{100}$
$=\frac{85 \times 75+87 \times 25}{100}$
$=85.5$
493 (a)
A molar solution has molarity $=1$; A centimolar solution has molarity $=M / 100$. A decimolar solution has molarity $M / 10$; A decamolar solution has molarity $=10 \mathrm{M}$.
494 (d)
$\frac{2.568 \times 5.8}{4.168}=\frac{15}{4.168}=3.6057$
Answer in significant figures $=3.6$
$X_{2} 0$ has $X: 0:: 14: 16$
\therefore At. wt. of $X=7$
496 (c)
X is $A B_{4}$.
497 (d)
1 mole $\mathrm{P}_{4}=N$ molecules of $\mathrm{P}_{4}=4 N$ atoms of P_{4}.
498 (b)
$M_{\mathrm{NaCl}}=\frac{5.85}{58.5 \times 1}=0.1$
499 (c)
$M_{\mathrm{HCl}}=1$;
$M_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{0.4}{2}=0.2$
$M_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\frac{0.1}{2}=0.05$
500 (d)
The amu represents atomic mass unit. It is used in place of unified mass unit.
$1 \mathrm{u}=1$ Avogram $=1$ Aston $=1$ Dalton
$1 u=\frac{1}{12} \times$ mass of $\mathrm{C}-12$ atom
$=\frac{1}{12} \times 1.9924 \times 10^{-23} \mathrm{~g}$
$=1.66 \times 10^{-24} \mathrm{~g}=1.66 \times 10^{-27} \mathrm{~kg}$
501 (a)
1 mole of $\mathrm{Ag} \approx 108 \mathrm{~g}=M \mathrm{~g}$
502 (a)

$$
\text { wt. of } \mathrm{Cl}_{2}=1 \mathrm{~mole}=71 \mathrm{~g}
$$

$w t$. of chloride $=111 \mathrm{~g}$
$\therefore \mathrm{wt}$. of metal $=111-71=40 \mathrm{~g}$
Now Eq. of $\mathrm{Cl}=$ Eq. of metal
$\therefore \frac{71}{35.5}=\frac{40}{E}$ or $E_{\text {metal }}=20$;
Now E g metal will displace $1 \mathrm{~g} \mathrm{H}_{2}$ and since 2 g
H_{2} is displaced by same amount, Thus $2 E \mathrm{~g}$ of metal are used. Therefore, $2 E$ is at. wt. of metal.
503 (a)
Oxalic acid is $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and it is dibasic and thus, $E=M / 2$
504 (b)
Molarity is mole of solute present in one litre solution.
505 (c)
Meq. of $\mathrm{NaH}_{2} \mathrm{PO}_{4}=$ Meq. of NaOH ;
Thus, $\frac{12}{120 / 2} \times 1000=1 \times V$
$\therefore \quad V=200 \mathrm{~mL}$
506 (a)
Atoms in 1 molecule of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=45$;
$\therefore \quad$ atom in N molecule $=45 \mathrm{~N}$
507 (c)
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
32 g 32 g
1 mole 22.4 L
1 mole of S required volume of
$\mathrm{O}_{2}=22.4 \mathrm{~L}$
So, 1.5 mole of S required volume of
$\mathrm{O}_{2}=22.4 \times 1.5=33.60 \mathrm{~L}$
508 (c)
$\mathrm{H}_{2} \mathrm{O}$ is the limiting reagent for the above equation.
509 (a)
1 mole $=$ molecular mass in gram $=6.02 \times 10^{23}$
molecules
Given mass of $\mathrm{CO}_{2}=44 \mathrm{~g}$
Molecular mass of $\mathrm{CO}_{2}=12+16 \times 2=44$
$\therefore \quad$ No. of molecules in 44 g of CO_{2}

$$
=6.02 \times 10^{23}
$$

510 (a)
Given, volume of $\mathrm{O}_{2}=1 \mathrm{~L}$

$$
\begin{aligned}
& \because 22.4 \mathrm{~L} \text { of } \mathrm{O}_{2} \text { at } \mathrm{STP}=32 \mathrm{~g} \\
& \begin{aligned}
\therefore \quad 1 \mathrm{~L} \text { of } \mathrm{O}_{2} \text { at } \mathrm{STP} & =\frac{32}{22.4} \mathrm{~g} \\
& =1.43 \mathrm{~g}
\end{aligned}
\end{aligned}
$$

511 (a)
Number of atoms in 24 g of $\mathrm{C}=\frac{24}{12} \times 6.02 \times 10^{23}$
$=2 \times 6.02 \times 10^{23}$
Number of atoms in
56 g of $\mathrm{Fe}=\frac{56}{56} \times 6.02 \times 10^{23}$
Number of atoms in
26 g of $\mathrm{Al}=\frac{26}{27} \times 6.02 \times 10^{23}$
$\approx 6.02 \times 10^{23}$
Number of atoms in 108 g of $\mathrm{Ag}=\frac{108}{108} \times 6.02 \times$ 10^{23}
$=6.02 \times 10^{23}$
513 (d)
On dilution since volume of solution changes and this normality, molarity molality changes. The equivalent
$\left(\frac{\mathrm{wt.}}{\text { eq.wt. }}\right)$, mole $\left(\frac{\mathrm{wt.}}{\mathrm{~mol} . . \mathrm{wt} .}\right)$ do not change .
514 (d)
In 1 L air, volume of $O_{2}=210 c c$
$\because 22400 \mathrm{~cm}^{3}=1 \mathrm{~mol}$
$\therefore 210 \mathrm{~cm}^{3}=\frac{210}{22400}=0.0093 \mathrm{~mol}$
515 (b)
According to Avogadro's hypothesis one gram mole of a gas at NTP occupies 22.4 L .
516 (a)
$\mathrm{SnCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{4}$
19071

$$
\begin{aligned}
\frac{190}{E_{1}} & =\frac{71}{35.5} \\
E_{1} & =95
\end{aligned}
$$

517 (b)
The standard adopted for the determination of atomic weight of elements is based on C^{12}.
518 (d)

Molecular weight of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}=94$
Atomic weight of $\mathrm{Br}=80$
Amount of Br utilized $=480 \mathrm{~g}$
$\because 94 \mathrm{~g}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ reacts with 480 g of bromine.
$\therefore 2 \mathrm{~g}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ will react with $=\frac{480 \times 2}{94}$ $=10.2 \mathrm{~g}$
519 (a)
$\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O}$;
Eq. wt. of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ Mol. wt. $/ 1$
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{H}_{2} \mathrm{O}$;

Eq. wt. of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ Mol. wt./2
520 (d)
1 mole of O_{2} has 32 g ; the highest value in all the given data.
521 (b)
$17 \mathrm{~g} \mathrm{NH}_{3}=N$ molecules.
522 (a)
wt. of $V \mathrm{~mL}=w \mathrm{~g}$.
\therefore wt. of $22400 \mathrm{~mL}=\frac{W \times 22400}{V}=$ Mol. wt.
(since I mole occupies 22400 mL at STP)
523 (a)
$2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$2 \mathrm{~mol} \quad 1 \mathrm{~mol}$
$\because 2$ mole NaHCO_{3} on decomposition gives $=1$ moles $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\therefore 0.2$ mole NaHCO_{3} on decomposition will give

$$
\begin{aligned}
& =\frac{1}{2} \times 0.2 \\
& =0.1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

524 (a)
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$

$$
22400 \mathrm{~cm}^{3}
$$

8 g of calcium will produce $=\frac{22400 \times 8}{40}$
$=4480 \mathrm{~cm}^{3}$
525 (a)
Weight of C-14 isotope in 12 g sample $=\frac{2 \times 12}{100}$
$\therefore \quad$ No. of C-14 isotopes $=\frac{2 \times 12 \times N}{100 \times 4}=1.032 \times$ 10^{22} atoms

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0 . Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
c) Statement 1 is True, Statement 2 is False
d) Statement 1 is False, Statement 2 is True

Statement 1: $\quad 10,000$ molecules of CO_{2} have the same volume at STP as 10,000 molecules of CO at STP.
Statement 2: Both CO and CO_{2} are formed by combustion of carbon in presence of oxygen.

Statement 1: Molality and mole fraction are not affected by temperature.
Statement 2: \quad Molality $(m)=\frac{W}{G M M} \times \frac{1}{b}($ where,$b=$ mass of solven $)$.

Statement 1: The percentage of nitrogen in urea is 46.6%
Statement 2: Urea is an ionic compound.

Statement 1: Equal moles of different substances contain same number of constituent particles.
Statement 2: Equal weights of different substances contain the same number of constituent particles. The correct answer is

Statement 1: Equivalent of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ has 1 equivalent of K and Cr and O each.
Statement 2: A species contains same number of equivalents of its components.

Statement 1: The molality of the solution does not change with change in temperature.
Statement 2: The molality of the solution is expressed in units of moles per 1000 g of solvent.

Statement 1: Equivalent weight of ozone in the change $\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}$ is 8 .
Statement 2: 1 mole $^{0} \mathrm{O}_{3}$ of on decomposition gives $\frac{3}{2}$ moles of O_{2}.

Statement 1: A solution which contains one gram equivalent of solute per litre of solutions is known as molar solution
Statement 2: \quad Normality $=$ normality $\times \frac{\text { mol.wt.of solute }}{\text { eq.wt.of solute }}$

Statement 1: Weight of 1 molecule of $O_{2}=32 \mathrm{u}$
Statement 2: 1 g molecule $=6.023 \times 10^{23}$ molecules.

Statement 1: Normally and molarity can be calculated from each other.
Statement 2: Normally is equal to the product of molarity and \mathfrak{n}.
11
Statement 1: Strength of a solution is $10,000 x \mathrm{~g}$ in one litre.
Statement 2: $10 x$ of solute is dissolved in 1 mL solution.

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

: ANSWER KEY :

1) $\begin{array}{llllllll} & \text { b } & \text { a } & \text { 3) } & \text { c }\end{array}$
2) a
3) a
4) b
5) d

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (b)
Equal molecules have same volume at STP because 22400 cc of any gas at STP has Avogadro's number of molecules.

2 (a)
Molality, \% by weight, mole fraction are independent of temperature since all these involve weight which does not depend upon temperature.

3 (c)
The percentage of N in $\mathrm{NH}_{2} \mathrm{CONH}_{2}$ (urea)
$\%$ of $N=\frac{28}{60} \times 100$
$=46.6 \%$
Urea is a covalent compound.

4 (c)

Equal moles of different substances contain same number of constituent particles but equal weights of different substances do not contain the same number of constituent particles.

6 (a)
Molality does not depend upon volume of the solution as molarity or normality. So, it does not depend upon temperature.

7

(b)

$$
20_{3} \rightarrow 30_{2}
$$

$2 \mathrm{molO}_{3} \equiv 3 \mathrm{~mol} \mathrm{O}_{2}=3 \times 2$ eq O_{2}

$$
\begin{aligned}
E_{O} & =\frac{M}{6} \\
& =\frac{48}{6}=8
\end{aligned}
$$

8 (d)
A solution; which contains one gram mole of solute per litre of solution is known as molar solution (M).

9 (b)
Gram molecular weight is the weight of N_{A} molecules in gram.

10 (a)
Normality $=$ molarity $\times n$
($n=$ mol wt. of solute /eq. wt. of solute)
11 (a)
Strength of solution refers to the amount of solute in 100 mL solution.

Thus, if $10,000 x$ of solute are present in 1000 mL , $10 x \mathrm{~g}$ of solute are present in 1 mL solution.

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.

1. Match the following List I and List II.

Column-I

Column- II
(A) $10 \mathrm{~g} \mathrm{CaCO}_{3} \xrightarrow[\text { decomposition }]{\Delta}$
(1) $0.224 \mathrm{~L} \mathrm{CO}_{2}$
(B) $1.06 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\text { Excess } \mathrm{HCl}}$
(2) $4.48 \mathrm{~L} \mathrm{CO}_{2}$
(C) $2.4 \mathrm{~g} \mathrm{C} \xrightarrow[\text { Combustion }]{\text { Excess } \mathrm{O}_{2}}$
(3) $0.448 \mathrm{LCO}_{2}$
(D) $0.56 \mathrm{~g} \mathrm{CO} \xrightarrow[\text { Combustion }]{\text { Excess } \mathrm{O}_{2}}$
(4) $2.24 \mathrm{~L} \mathrm{CO}_{2}$
(5) $22.4 \mathrm{~L} \mathrm{CO}_{2}$

CODES :

A
B
C
D
a) $\begin{array}{llll}4 & 1 & 2 & 3\end{array}$
b) 5
1
2
3
c) 4
3
2
d) 1
$4 \quad 2$
3
2. Match the reactions given in column I with neutralization reactions given in column II

Column-I

Column- II

(A) $0.1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}+0.2 \mathrm{~mol} \mathrm{NaHCO} 3+0.3 \mathrm{~mol}$
NaCl
(p) 320 mL of 0.25 N
KOH solution
(B) 200 mL of $0.1 \mathrm{M} \mathrm{HCl}+100$ of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+$ 200 ML of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(q) 400 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(C) 1 g NaOH and 2.25 g of oxalic acid
(r) 125 mL of $\mathrm{N} / 5 \mathrm{Mg}(\mathrm{OH})_{2}$
(D) $0.01 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$ and 0.0025 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$
(s) 125 mL of $\mathrm{N} / 5 \mathrm{H}_{2} \mathrm{SO}_{4}$

CODES :
A
B
C
D

a)	R	s	q	p
b)	s	r	p	q
c)	p	q	s	r
d)	q	p	r	s

SOME BASIC CONCEPTS OF CHEMISTRY

CHEMISTRY

: ANSWER KEY:

1) a 2) d

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (a)

100 g
22.4 L
$\because 100 \mathrm{~g} \mathrm{CaCO}_{3}$ on decomposition gives $=22.4 \mathrm{~L}$
CO_{2}
$\therefore 10 \mathrm{~g} \mathrm{CaCO}_{3}$ on decomposition will give
$=\frac{22.4 \times 10}{100} \mathrm{~L} \mathrm{CO}_{2}$
$=2.24 \mathrm{~L} \mathrm{CO}_{2}$
2. $\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\text { Excess } \mathrm{HCl}} 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

106 g
22.4 L
$106 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ gives $=22.4 \mathrm{~L} \mathrm{CO}_{2}$
$1.06 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ will give
$=\frac{22.4 \times 1.06}{106} \mathrm{~L} \mathrm{CO}_{2}$

$$
=0.224 \mathrm{~L} \mathrm{CO}_{2}
$$

3.C $\underset{\text { combustion }}{\text { Excess } \mathrm{O}_{2}} \mathrm{CO}_{2}$
$12 \mathrm{~g} \quad 22.4 \mathrm{~L}$
12 g carbon on combustion gives

$$
=22.4 \mathrm{~L} \mathrm{CO}_{2}
$$

2.4 g carbon on combustion will give

$$
\begin{aligned}
& =\frac{22.4 \times 2.4}{12} \mathrm{~L} \mathrm{CO}_{2} \\
& =2 \times 2.24 \mathrm{~L} \mathrm{CO}_{2} \\
& =4.48 \mathrm{~L} \mathrm{CO}_{2} \\
4.2 \mathrm{CO} & \xrightarrow[\text { combustion }]{\text { Excess } \mathrm{O}_{2}} 2 \mathrm{CO}_{2}
\end{aligned}
$$

2(12+16)
$2 \times 22.4 \mathrm{~L}$
56 g
56 g carbon monoxide on combustion gives $=2 \times$ $22.4 \mathrm{~L} \mathrm{CO}_{2}$
0.56 g carbon monoxide on combustion will give
$=\frac{2 \times 22.4 \times 0.56}{56} \mathrm{~L} \mathrm{CO}_{2}$
$=0.448 \mathrm{~L} \mathrm{CO}_{2}$
Hence, $\mathrm{A}-4, \mathrm{~B}-1, \mathrm{C}-2$ and $\mathrm{D}-3$.
(d)
(d)

a.	$\begin{aligned} & \begin{array}{l} \text { Equivalent } \\ \text { of base } \end{array} \\ & =0.1 \times 2+ \\ & 0.2 \times 1 \\ & =0.4=400 \\ & \mathrm{mEq} \\ & {\left[\begin{array}{c} \mathrm{NaCl} \text { is not taken, } \\ \text { since it neither } \\ \text { reacts with acid } \\ \text { nor with base } \end{array}\right]} \end{aligned}$	p.	$\begin{aligned} & \text { mEq of } \\ & \mathrm{H}_{2} \mathrm{SO}_{4} \\ & =400 \times \\ & 0.5 \times 2 \\ & =400 \mathrm{mEq} \\ & {\left[\begin{array}{c} 400 \mathrm{mEq} \text { if } \\ \mathrm{H}_{2} \mathrm{SO}_{4} \text { neutralises } \\ 400 \mathrm{mEq} \text { of } \\ \text { base in }(\mathrm{a}) \end{array}\right.} \end{aligned}$

b.	$\begin{aligned} & \text { mEq of acid } \\ & =200 \times 0.1 \\ & +100 \\ & \quad \times 0.1 \times 2+ \\ & 200 \times 0.1 \times 2 \\ & =20+20 \\ & +40=80 \\ & \hline \end{aligned}$	q.	$\begin{aligned} & \text { mEq of } \\ & \mathrm{KOH}=320 \times 0.25 \\ & =80 \mathrm{mEq} \\ & {\left[\begin{array}{c} 80 \mathrm{mEq} \text { of } \\ \mathrm{KOH} \text { neutralises } \\ \text { with } 80 \mathrm{mEq} \text { of } \\ \text { acid in (b) } \end{array}\right]} \end{aligned}$

C.	$\begin{aligned} & 1 \mathrm{~g} \mathrm{NaOH} \\ & =\frac{1}{40} \mathrm{~mol} \times \\ & 10^{3} \\ & =25 \mathrm{mEq} \\ & 2.25 \mathrm{~g} \text { oxalic } \\ & \text { acid } \\ & =\frac{2.25}{90 / 2} \times 100 \\ & =50 \mathrm{mEq} \\ & \mathrm{mEq} \mathrm{of} \end{aligned}$	r.	$\begin{aligned} & \text { mEq of } \\ & \mathrm{Mg}(\mathrm{OH})_{2} \\ & =125 \times \frac{1}{5}= \\ & 25 \mathrm{mEq} \\ & {\left[\begin{array}{c} 25 \mathrm{mEq} \text { of } \\ \text { acid in (c) and } \\ \text { (d) neutralises with } \\ 25 \mathrm{mEq} \text { of } \\ \mathrm{Mg}(\mathrm{OH})_{2} \end{array}\right.} \end{aligned}$

	oxalic acid left $=50-25$ $=25 \mathrm{mEq}$	

d.	$\begin{aligned} & 0.01 \mathrm{~mol} \\ & \mathrm{H}_{3} \mathrm{PO}_{4} \\ & =0.01 \times 3 \\ & =0.03 \mathrm{eq} \\ & 0.0025 \mathrm{~mol} \\ & \mathrm{Ca}(\mathrm{OH})_{2} \\ & =0.0025 \\ & \times 2 \\ & \mathrm{Eq} \text { of } \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \mathrm{Left}=0.03- \\ & 0.005 \\ & =0.025 \mathrm{Eq} \\ & =0.025 \mathrm{mEq} \end{aligned}$	S.	$\begin{aligned} & \mathrm{mEq} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4}= \\ & 125 \times \frac{1}{5}= \\ & 25 \mathrm{mEq} \\ & {\left[\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { is acid and } \\ \mathrm{H}_{3} \mathrm{PO}_{4} \text { in (d)is also } \\ \text { acid. No reaction } \end{array}\right]} \end{aligned}$

(b)
($\mathrm{a} \rightarrow \mathrm{p}, \mathrm{s}$)
p. $\left[\begin{array}{c}M=\frac{9.8 \times 10 \times 1.8}{98}=1.8 \\ N=1.8 \times 2=3.6\end{array}\right.$
s. $\left[\begin{array}{c}d=M\left(\frac{M w_{2}}{1000}+\frac{1}{m}\right) \\ 1.8=1.8\left(\frac{98}{1000}+\frac{1}{m}\right) \Rightarrow m=1.10\end{array}\right.$
($b \rightarrow p, q, s$)
q. $M=\frac{9.8 \times 10 \times 1.2}{98}=1.2$
p. $N=1.2 \times 3=3.6$
s. $d=M\left(\frac{M w_{2}}{1000}+\frac{1}{m}\right)$
$1.8=1.8\left(\frac{98}{1000}+\frac{1}{m}\right) \Rightarrow m=1.10$
$(c \rightarrow p, r)$
$1.8 N_{A}$ molecules $=1.8 \mathrm{~mol}$ of $\mathrm{HCl} 500 \mathrm{~mL}=1.8$
Eq
$M=\frac{1.8 \times 1000}{500}=3.6 \mathrm{M}=3.6 \mathrm{~N}(n$ factor $=1)$
$(\mathrm{d} \rightarrow \mathrm{r})$
mEq of base $=250 \times 4+250 \times 1.6 \times 2$
$=1000+800$
$=1800 \mathrm{mEq}$
$=1.8 \mathrm{Eq}$

