CHEMISTRY

		Single Correct	Answer Type	
1.	Schottky defect generally	appears in		
	a) NaCl	b) KCl	c) CsCl	d) All of these
2.	Which arrangement of el	ectrons leads ferromagnetis	sm?	
	a) ↑ ↑ ↑ ↑	b) ↑↓↑↓		d) None of these
3.	The crystal are bounded	by plane faces (f) , straight	t edges (e) and interfacial	l angel (c) . The relationship
	between these is :	51 07 0	5 ()	
	a) $f + c = e + 2$	b) $f + e = c + 2$	c) $c + e = f + 2$	d) None of these
4.	The melting point of RbE	Br is 682°C, while that of Na	aF is 988°C. The principle	reason that melting point of
	NaF is much higher than	that of RbBr is that :		
	a) The two crystals are n	ot isomorphous		X
	b) The molar mass of Nal	F is smaller than that of RbB	3r	
	c) The internuclear dista	nce $r_{c} + r_{a}$ is greater for Rb	Br than for NaF	
	d) The bond is RbBr has	nore covalent character tha	an the bond in NaF.	
5.	If a crystal lattice of a cor	npound, each corner of a cu	be is enjoyed by sodium, ea	ach edge of a cube has
	oxygen and centre of a cu	ibe is enjoyed by tungsten (W), then give its formula	
	a) Na ₂ WO ₄	b) NaWO ₃	c) Na ₃ WO ₃	d) Na ₂ WO ₃
6.	In antifluorite structure,	the negative ions:		
	a) Occupy tetrahedral vo	ids		
	b) Occupy octahedral voi	ds	Y	
	c) Are arranged in ccp	C		
	d) Are arranged in hcp			
7.	An insulator oxide is :			
	a) CuO	b) C ₀ 0	c) Fe_2O_3	d) All of these
8.	A solid with high electric	al and thermal conductivity	from the following is :	
	a) Si	b) Li	c) NaCl	d) ice
9.	The radius ratio $\left(\frac{r_+}{r}\right)$ of a	n ionic solid (A^+B^-) is 0.69	. What is the coordination	number of <i>B</i> ⁻ ?
	a) 6	b) 8	c) 2	d) 10
10.	The axial angles in triclin	ic crystal system are		·
	a) $\alpha = \beta = \gamma = 90^{\circ}$	b) $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	c) $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	d) $\alpha = \beta = \gamma \neq 90^{\circ}$
11.	In NaCl crystal each Cl ⁻ i	on is surrounded by		
	a) 4 Na ⁺ ions	b) 6 Na ⁺ ions	c) 1 Na ⁺ ion	d) 2 Na ⁺ ions
12.	For an ionic crystal of the	e general formula A^+B^- and	l co-ordination number 6, t	he radius ration will be :
	a) Greater than 0.73			
	b) Between 0.73 and 0.41	l		
C	c) Between 0.41 and 0.22	2		
	d) Less than 0.22			
13.	The ratio of cations to an	ion in a octahedral close pa	cking is :	
	a) 0.414	b) 0.225	c) 0.02	d) None of these
14.	Electrons in a paramagne	etic compound are		
	a) Shared	b) Unpaired	c) Donated	d) Paired
15.	Crystals which are good	conductor of electricity and	heat are known as :	
	a) Ionic crystals	b) Covalent crystals	c) Metallic crystals	d) Molecular crystal
16.	An element has bcc struc	ture having unit cells 12.08	10^{23} . The number of at	oms in these cells is :

	a) 12.08 \times 10 ²³	b) 24.16 \times 10 ²³	c) 48.38×10^{23}	d) 12.08 \times 10 ²²
17.	Among the following type	es of voids, which one is the	largest void?	-
	a) Triangular	b) Cubic	c) Tetrahedral	d) Octahedral
18.	The crystalline structure	of NaCl is		
	a) Hexagonal close packing	ıg	b) Face centred cubic	
	c) Square planar		d) Body centred cubic	
19.	Metals have conductivity	of the order of (ohm ⁻¹ cm	-1):	
	a) 10 ¹²	b) 10 ⁸	c) 10 ²	d) 10 ⁻⁶
20.	Of the elements Sr, Zr, Mo	, Cd and Sb, all of which are	e in V period, the paramagn	etics are:
	a) Se, Cd and Sb	b) Zr, Mo and Cd	c) Sr, Zr and Cd	d) Zr, Mo and Sb
21.	The radius ratio of CsCl is	0.93. The expected lattice	structure is	
	a) Tetrahedral	b) Square planar	c) Octahedral	d) Body centred cubic
22.	Which one of the followin	g defects in the crystals low	wers its density?	
	a) Frenkel defect	b) Schottky defect	c) F-centres	d) Interstitial defect
23.	The yellow colour of ZnO	and conducting nature pro	duced in heating is due to:	
	a) Metal excess defects du	ue to interstitial cation		X
	b) Extra positive ions pre	sent in an interstitial site		Y
	c) Trapped electrons			7
	d) All of the above			
24.	A metal has bcc structure	and the edge length of its u	init cell is 3.04 Å. The volui	ne of the unit cell in cm ³
	will be			
	a) $1.6 \times 10^{-21} \text{ cm}^3$	b) $2.81 \times 10^{-23} \text{ cm}^3$	c) $6.02 \times 10^{-23} \text{ cm}^3$	d) $6.6 \times 10^{-24} \text{ cm}^3$
25.	The edge length of a face	centred cubic cell of an ioni	ic substance is 508 pm. If th	ne radius of the cation is
	110 pm, the radius of the	anions is		
	a) 288 pm	b) 398 pm	c) 618 pm	d) 144 pm
26.	An ionic compound is exp	ected to have tetrahedral s	structure if r_+/r lies in the	range of
0.7	a) 0.414 to 0.732	b) 0.225 to 0.414	c) 0.155 to 0.225	d) 0.732 to 1
27.	The interparticle forces in	n solid hydrogen are :		
20	a) Hydrogen bonds	b) Covalent bonds	c) Co-ordinate bonds	d) Van der Waals forces
28.	If Z is the number of atom	ns in the unit cell that repr	esents the closest packing	sequence – ABC ABC –, the
	number of tetraneural vo	ius în the unit cell is equal (10 : 7	7
	a) Z	b) 2Z	c) $\frac{2}{2}$	d) $\frac{L}{4}$
29.	Ouartz is an example of :	\mathbf{A}	L	T
	a) Chain silicate	b) Infinite sheet silicate	c) Framework silicate	d) Cyclic silicate
30.	For AX ionic crystal to ex	rist in hcc structure the rat	io of radii $\left(\frac{r_{\text{cation}}}{r_{\text{cation}}}\right)$ should	he
			(r_{anions}) should	
	a) Between 0.41 and 0.73		b) Greater then 0.73	
21	CJ Less than 0.41	t. h	d) Equal to 1.0	
31.	which crystal is expected	to be soft and have low me	eiting point?	
22	a) covalent	DJ Metallic	cj molecular	
52.	c) C and Si	b) Co and In	s ale	d) Si and Ca
22	af Callu Si Silvor (atomic woight – 1	0.0 g mol^{-1} has a donsity	c_{J} F allu AS of 10 5 g cm ⁻³ The number	of silver atoms on a
55.	Silver (atomic weight = 1 surface of area $10^{-12}m^2$	coog more finas a density (Signatorian as $y \times 10^{x}$ Th	a value of r is
	a) ?	h) 5	c) 7	
34	The first order reflection	(n - 1) from a crystal of th	ری ، A X-ray from a conner ano	$\lambda = 1.54 \text{ Å}$
51.	at an angle of 4^{E0} Whether	(n - 1) if utilia crystal UI up	sot of plana cousing the diff	$\frac{1}{1000} (n - 1.54 \text{ A}) = 1.54 \text{ A}$
	at all alight 0145° . What is	b) 0 1080 m		$d = 1.000 \times 10^{-9} m$
25	aj U.1007 IIII	UJ U.1UO7 III rahadral waida nar atam in	CJ 0.905 A	uj 1.003 × 10 ~111
35.	what is the number of tet	Laneurai voius per atom in	a crystal:	4) 0
	aji	0] 4	CJ U	ujo

36.	Iodine is a			
	a) Electrovalent solid	b) Atomic solid	c) Molecular solid	d) Covalent solid
37.	In CsCl type structure the	coordination number of C	s ⁺ and Cl ⁻ are	
	a) 6, 6	b) 6, 8	c) 8, 8	d) 8, 6
38.	Structure of a mixed oxid	le is cubic close-packed (c.	c.p). The cubic unit cell of	mixed oxide is composed of
	oxide ions. One fourth of	the tetrahedral voids are o	occupied by divalent metal	A and the octahedral voids
	are occupied by a monova	alent metal <i>B</i> . The formula	of the oxide is :	
	a) <i>AB O</i> ₂	b) <i>A</i> ₂ <i>BO</i> ₂	c) $A_2 B_3 O_4$	d) <i>AB</i> ₂ <i>O</i> ₂
39.	The example of orthosilic	ate is :		
	a) MgCaSi ₂ O ₆	b) Mg ₂ SiO ₄	c) $Fe_2O_3SiO_2$	d) Ba ₃ Al ₂ Si ₆ O ₈
40.	A compound CuCl has fac	e centred cubic structure. I	ts density is 3.4 g cm^{-3} . Th	e length of unit cell is :
	a) 5.783Å	b) 6.783Å	c) 7.783Å	d) 8.783Å
41.	The orthorhombic, the va	lue of <i>a</i> , <i>b</i> and <i>c</i> are respect	ively 4.2 Å, 6.8 <i>A</i> Å and 8.3	Å. Given the molecular
	mass of the solute is 155	g mol ⁻¹ and that of density	v is 3.3g/cc, the number of f	formula units per unit cell is
	a) 2	b) 3	c) 4	d) 6
42.	Which one of the followin	g is a covalent crystal?		Y i
	a) Rock salt	b) Ice	c) Quartz	d) Dry ice
43.	LiF is a/an :	-		
	a) Ionic crystal	b) Metallic crystal	c) Covalent crystal	d) Molecular crystals
44.	A binary solid (A^+B^-) ha	s a rock salt structure. If th	ne edge length is 400 pm a	nd radius of cation is 75 pm
	the radius of anion is :			
	a) 100 pm	b) 125 pm	c) 250 pm	d) 325 pm
45.	The limiting radius ratio	for tetrahedral shape is		
	a) 0 to 0.155	b) 0.255 to 0.414	c) 0.155 to 0.225	d) 0.414 to 0.732
46.	A metallic element has a d	cubic lattice. Each edge of t	he unit of cell is 2Å. The de	nsity of the metal is 2.5 g
	cm^{-3} . The unit cells in 20	0 g of metal are		
	a) 1×10^{24}	b) 1×10^{20}	c) 1×10^{22}	d) 1×10^{25}
47.	Potassium has a bcc strue	cture with nearest neighbo	our distance 4.52 Å. Its ato	mic weight is 39. Its density
	will be :			
	a) 454 kg m ⁻³	b) 804 kg m ^{-3}	c) 852 kg m ^{-3}	d) 910 kg m ⁻³
48.	Lithium forms body centr	red cube structure. The len	igth of the side of its unit c	ell is 351 pm. Atomic radius
	of the lithium will be :	\mathbf{N}		
	a) 300 pm	b) 240 pm	c) 152 pm	d) 75 pm
49.	Bragg's equation is :			
	a) $n\lambda = 2\theta \sin \theta$	b) $n\lambda = 2d\sin\theta$	c) $2n\lambda = d\sin\theta$	d) $\lambda = (2d/n) \sin \theta$
50.	The intermetallic compo	und LiAg has a cubic cryst	talline structure in which	each Li atom has 8 nearest
	neighbor silver atoms and	d <i>vice – versa</i> . What is the	e type of unit cell?	
	a) Body centred cubic			
	b) Face centred cubic			
	c) Simple cubic for either	Li atoms alone or Ag atom	s alone	
	d) None of the above			
51.	In the face centred cubic	attice, atom A occupies the	e corner positions and aton	n <i>B</i> occupies the face centre
\checkmark	positions. If one atom of A	Bis missing from one of the	e face centred points, the fo	rmula of the compound is
	a) <i>A</i> ₂ <i>B</i>	b) <i>AB</i> ₂	c) $A_2 B_2$	d) $A_2 B_5$
52.	Which compound has hig	hest lattice energy?		
	a) LiBr	b) LiCl	c) LiI	d) LiF
53.	In a face centred cubic cel	ll, an atom at the face centr	e is shared by :	.
_	a) 4 unit cells	b) 2 unit cells	c) 1 unit cell	d) 6 unit cells
54.	Extremely pure samples	of Ge and Si are non-con	ductors, but their conduct	ivity increases suddenly on
	introducingin their cry	stal lattice.		

	a) As	b) B	c) Both (a) and (b)	d) None of these
55.	Iodine crystals are :			
	a) Metallic solid	b) Ionic solid	c) Molecular solid	d) Covalent solid
56.	Which of the following sta	atements about amorphous	solids is incorrect?	
	a) They melt over a range	e of temperature	b) They are anisotropic	
	c) There is no orderly arr	angement of particles	d) They are rigid and inco	mpressible
57.	The number of atoms pre	sent in a simple cubic unit	cell are :	
	a) 4	b) 3	c) 2	d) 1
58.	An AB_2 type structure is f	found in :	,	
	a) NaCl	b) CaF_2	c) Al_2O_3	d) N ₂ O
59.	A cubic crystal possesses	in allelements of symm	netry.	
	a) 9	b) 13	c) 1	d) 23
60.	A solid compound contain	x is X, Y and Z atoms in a cub	bic lattice with <i>X</i> atom occu	pying the corners. Yatoms
	in the body centred positi	ions and Zatoms at the cen	tres of faces of the unit cell	. What is the empirical
	formula of the compound	?		
	a) XY_2Z_2	b) XYZ_2	c) $X_2 Y_2 Z_2$	d) $X_{\circ}YZ_{\epsilon}$
61.	The oxide which shows tr	ansition from metal to insu	lation. <i>i.e.</i> , semiconductors	are:
	a) $V_2 O_2$	b) VO ₂	c) Ti_2O_2	d) All of these
62.	Edge length of a cube is 4	00 pm. Its body diagonal w	ould be :	
•	a) 600 pm	b) 566 pm	c) 693 pm	d) 500 pm
63.	Crystals can be classified	into Basic crystal habit	ts.	
001	a) 7	h) 4	c) 14	d) 3
64	The unit cell with crystall	ographic dimensions $a = h$	$\phi \neq c$: $\alpha = \beta = \gamma = 90^{\circ}$ is	
01.	a) Cubic	h) Tetragonal	(a) Monoclinic	d) Hexagonal
65	The number of octahedra	l void(s) per atom present	in a cubic close-nacked stru	icture is :
05.	a) 2	h) 4		
66	The hardness of metals in	creases with increase in n	umber of involved in me	etallic honding
00.	a) Atoms	h) Molecules	c) Flectrons	d) All of these
67	The substance which nos	sesses zero resistance as 0	K·	u) fill of these
07.	a) Conductor	h) Super conductor	c) Insulator	d) Semiconductor
68	Sodium motal crystallisos	b) Super conductor	body controd cubic lattice y	with a coll adda $a = 4.20$ Å
00.	The radius of sodium atom	n ic	bouy centred cubic lattice v	with a ten edge $u = 4.29 \text{ A}$.
	1110 1 1 1 1 1 1 1 1 1 1	h) 265	പ 195	d) 2 15
60	a) 1.40 The oxide which chows r	UJ 2.05	() 1.05	u) 2.15
09.	a) PoO	b) VO	a) CrO	d) All of those
70	a) ReO_3	bjv0	$C_1 C_1 C_2$	u) All of these
70.	a) 2	b) A	a) 6	4) 6
71	a) 2 Which of the following st	UJ 4	0	u) 8
/1.	a) Some complex motel of	uidea babaya aa	h) Ting guide can get as gu	nonconductor
	a) some complex metal of	xides beliave as	DJ ZIIIC OXIUE CAII ACT AS ST	iperconductor
	c) An impurity of totraval	ont cormonium in trivolon	t d) A Frankal dafact is farr	nod whon an ion is
	c) All impurity of tetraval	n doficionav	displaced from its latti	neu when an interstitial site
72	Schottly, defect defines in	in deficiency	uispiaceu iroin its iatu	te site to an interstitial site
72.	a) Solid	h) Cos	a) Liquid	d) Diagma
70	d) Juliu When electrons are trans	UJ Uds	C) Liquiu	
13.	a) Schottlay defect	b) Fronkel defect	c) Stoichiomatria defect	d) E contras
71	a) outputky defect	bj Flelikel uelect	cj storeniometric delect	uj r-centies
/4.	a) Aluminum	b) Silver	ap:	d) Diamond
75	aj Alullillulli If 'a' stands for the adapt	UJ SIIVEI	U Germannunn	uj Dialiluliu
75.	in a stands for the edge l	he and area in the cubic systems	s : simple cubic, body-centr	eu cubic and face-centered,
	men me rado of radii of t	ne spheres in these system:	s will be respectively,	

	a) $\frac{1}{2}a:\sqrt{3}a:\frac{1}{\sqrt{2}}a$	b) $\frac{1}{2}a:\frac{\sqrt{3}}{2}a:\frac{\sqrt{2}}{2}a$	c) $\frac{1}{2}a : \sqrt{3}a : \sqrt{2}a$	d) $\frac{1}{2}a:\frac{\sqrt{3}}{4}a:\frac{1}{2\sqrt{2}}a$
76.	In a face centred cubic la	ttice the number of nearest	neighbours for a given latt	ice point are :
77.	Percentage of free space	in cubic close packed struct	ture and in body centred p	acked structure are
78	a) 30% and 26%	b) 26% and 32%	c) 32% and 48%	d) 48% and 26%
70.	dimensions are $a = 6.8$ Å	A, b = 4.4 Å and c = 7.2 Å. If	f the molar mass is 21.76, th	hen the density of crystals is
	a) 0.6708 g cm ⁻³	b) 1.6708 g cm ⁻³	c) 2.6708 g cm ⁻³	d) None of these
79.	Total volume of atoms pr	resent in a face centred cubi	ic unit cell of a metal is	
	(1=atomic radius)	. 24	<u>12</u>	, 16 · 2
	a) $\frac{\pi r^3}{3}$	b) $\frac{\pi r^3}{3}$	c) $\frac{\pi r^3}{3}$	a) $-\pi r^3$
80.	Which has no rotation of	symmetry?	a) Cubia	d) Trialinia
81	The unit cell with dimension	b) Orthornombic sions $\alpha = \beta = \gamma = 90^{\circ} a =$	c) cubic $h \neq c$ is	
01.	a) Cubic	b) Triclinic	c) Hexagonal	d) Tetragonal
82.	A fcc element (atomic ma	ass = 60) has a cell edge of 4	400 pm. Its density is :	, 0
	a) 6.23 g cm ^{-3}	b) 6.43 g cm ⁻³	c) 6.53 g cm ⁻³	d) 6.63 g cm ⁻³
83.	For a crystal system $a =$	$b = c$ and $\alpha = \beta = \gamma \neq 90$	°	
0.4	a) Tetragonal	b) Hexagonal	c) Rhombohedral	d) Monoclinic
84.	The number of atoms (n)) contained within a cubic c	ell 1s :	d) (
85	a) I All the substances becom	us diamagnetic at ·		u) 4
001	a) 4 K	b) 10 K	c) 20 K	d) 25 K
86.	The co-ordination number	er of Ca ²⁺ ion in fluorite cry	vstal is :	,
	a) 2	b) 8	c) 6	d) 4
87.	What is the structure of I	NaCl?		
00	a) BCC	b) FCC	c) Interpenetrating fcc	d) None of these
88.	Which of the following st	atements is not correct?		
	b) The number of carbon	atoms in an unit cell of dia	mond is 4	
	c) The number of Bravai	s lattices in which a crystal	can be categorized is 14	
	d) The fraction of the tota	al volume occupied by the a	itoms in a primitive cell is ().48.
89.	Which is the wrong state	ment regarding a crystal co	ntaining Schottky defect?	
	a) Electrical neutrality of	f the crystal is maintained		
	b) Entropy of the crystal	increases		
	c) The density of the ove	rall crystal remains the sam	16	
90.	How many 'nearest' and	'next nearest' neighbours re	espectively potassium have	in hcc lattice?
	a) 8, 8	b) 8, 6	c) 6, 8	d) 8, 2
91.	Ferrimagnetic is convert	ed into paramagnetic at :		
	a) 300 K	b) 400 K	c) 600 K	d) 850 K
92.	A match box exhibits :			
	a) Cubic geometry			
	b) Monoclinic geometry			
	c) Orthorhombic geomet	rv		

93.	The oxide that possesses	s electrical conductivity :		
	a) V ₂ O ₅	b) CrO ₂	c) NiO	d) MnO
94.	The arrangement ABC A	BCis referred to as,		
	a) Octahedral close pack	ting		
	b) Hexagonal close pack	ing		
	c) Tetrahedral close pac	king		
	d) Cubic close packing	-		
95.	The lattice points of a cr	ystal of hydrogen iodide ar	e occupied by	
	a) HI molecules		b) H atoms and I atoms	
	c) H^+ cations and I^- ani	ons	d) H_2 molecules and I_2 mo	olecules
96.	A metal crystallises in a	bcc lattice. Its unit cell edge	e length is about 300 pm an	d its molar mass about 50 g
	mol^{-1} . What would be t	he density of the metal(in	$g cm^{-3})?$	
	a) 3.1	b) 6.2	c) 9.3	d) 12.4
97.	The radius of the Na ⁺ is	95 pm and that of Cl [–] ion i	s 181 pm. Predict the co-ore	lination number of Na ⁺ :
	a) 4	b) 6	c) 8	d) Unpredictable
98.	How many unit cells are	present in a cube shaped i	deal crystal of NaCl of mass	1.00g?
	[Atomic masses : $Na = 2$	23, Cl = 35.5]	C	
	a) 2.57 × 10 ²¹	b) 5.14 × 10 ²¹	c) 1.28 × 10 ²¹	d) 1.71×10^{21}
99.	For a covalent solid, the	units which occupy lattice	points are :	
	a) Atoms	b) Ions	c) Molecules	d) Electrons
100	. The metal surfaces are e	xcellent reflectors because	of absorption and re-emiss	ion of light by :
	a) Protons in atom	b) Electrons in atom	c) Neutrons in atom	d) None of these
101	. The fraction of total volu	me occupies by the atoms	present in a simple cube is	:
	π	h $\frac{\pi}{}$	π	d
	$3\sqrt{2}$	$4\sqrt{2}$	$0\frac{1}{4}$	$\frac{d}{6}$
102	. If we mix a pentavalent i	mpurity in a crystal lattice	of germanium, what type o	f semiconductor formation
	will occur?	5	7	
	a) <i>p</i> —type	b) <i>n</i> –type	c) Both (a) and (b)	d) None of the two
103	. A metal crystallizes with	a face-centered cubic latt	ice. The edge of the unit cel	l is 408 pm. The diameter of
	the metal atom is :			
	a) 144 pm	b) 204 pm	c) 288 pm	d) 408 pm
104	. Metallic crystalline solid	S :		
	a) Have low melting poin	nt and boiling point		
	b) Are bad conductors			
	c) Are good conductors	of heat and electricity		
	d) Only conduct heat			
105	. Most crystals show good	l cleavage because their ato	oms, ions and molecules are	:
	a) Weakly bonded toget	her		
	b) Strongly bonded toge	ther		
	c) Spherically symmetric	cal		
	d) Arranged in planes			
106	. The structure of MgO is s	similar to NaCl. The co-ord	ination number of Mg is :	
4.0	a) 2	b) 6	c) 4	d) 8
107	. It NaCl is dopped with 10	U^{-4} mole % of SrCl ₂ the con	ncentration of cation vacand	cies will be:
	a) $6.02 \times 10^{16} \text{ mol}^{-1}$	b) $6.02 \times 10^{17} \text{ mol}^{-1}$	c) $6.02 \times 10^{14} \text{ mol}^{-1}$	d) $6.02 \times 10^{15} \text{ mol}^{-1}$
108	. What type of crystal defe	ect is indicated in the diagr	am below?	

 Na^+ , Cl^- , Na^+ , Cl^- , Na^+ , $Cl^ Cl^{-} \square Cl^{-} Na^{+} \square Na^{+}$ $Na^+ Cl^- \square Cl^- Na^+ Cl^ Cl^{-}Na^{+}Cl^{-}Na^{+}\prod Na^{+}$ a) Frenkel defect b) Schottky defect d) Frenkel and Schottky defects c) Interstitial defect 109. An ion leaves its regular site occupy a position in the space between the lattice sites is called a) Frenkel defect b) Schottky defect c) Impurity defect d) Vacancy defec 110. Schottky defects occurs mainly in electrovalent compounds where a) Positive ions and negative ions are of different size b) Positive ions and negative ions are of same size c) Positive ions are small and negative ions are big d) Positive ions are big and negative ions are small 111. Sodium metal crystallizes in a body centred cubic lattice with the cell edge a = 4.29 Å. The radius of sodium atom is : b) 2.8574 Å c) 3.8574 Å d) None of these a) 1.8574 Å 112. The cation-anion bond have the largest amount of covalent character for c) CdS a) NaBr b) SrS d) BaO 113. In a cubic close packing of spheres in three dimensions, the co-ordination number of each sphere is : a) 6 b) 9 c) 3 d) 12 114. In a cubic structure of diamond which is made from X and Y, where X atoms are at the corners of the cube and Y at the face centres of the cube. The molecular formula of the compound is b) X₃Y c) XY_2 a) X_2Y d) XY_3 115. Which of the following statements is not correct? a) The units of surface tension are dynes Cm⁻¹ b) The units of viscosity coefficient of a liquid are 'poise ' c) CsCl crystallizes in body centred cubic type of lattice d) The coordination number of S^{2-} in ZnS is 6 116. The ability of a given substance to assume two or more crystalline structure is called a) Amorphism b) Isomorphism c) Polymorphism d) Isomerism 117. With which one of the following element silicon should be doped so as to give *p*-type semiconductor? a) As b) Se c) B d) Ge 118. If the radius of K⁺ and F⁻ are 133 pm and 136 pm respectively, the distance between K^+ and F^- in KF is a) 269 pm b) 134.5 pm c) 136 pm d) 3 pm 119. Copper crystallises in fcc with a unit cell length of 361 pm. What is the radius of copper atom? a) 108 pm b) 127 pm c) 157 pm d) 181 pm 120. Which species is paramagnetic? b) Fe³⁺ c) Fe²⁺ a) NO d) All are correct 121. Density of a crystal remains unchanged as a result of **a**) Ionic defect b) Schottky defect c) Frenkel defect d) Crystal defect 122. A metallic element crystallises into lattice containing a sequence of layers of ABABABAB...... Any packing of spheres leaves out void in the lattice. The empty space in percentage by volume in this lattice is : a) 26% b) 32% c) 20% d) 30% 123. For a solid with the following structure, the co-ordination number of the point *B* is :

Page 8

a) ClO ₃	b) Cu ²⁺	c) F ⁻	d) Ni ²⁺			
138. The statement that	"All crystals of the sam	e substance possess the same	e elements of symmetry" is known			
as :	as :					
a) Hauy's law of rat	ionality of indices					
b) The law of const	ancy of interfacial angle	2S				
c) The law of const	ancy of symmetry					
d) None of the abov	re					
139. A solid AB has Na(Cl type structure with e	edge length 580.4 pm. The ra	dius of A^+ is 100 pm. What is the			
radius of B^- ?	51	0 0 1				
a) 190.2	b) 540.13	c) 525	d) 78.12			
140 In a face centred cu	hic arrangement off 4 a	and B atoms whose A atoms a	re at the corner of the unit cell and			
<i>R</i> atoms at the face	centres One of the A at	com is missing from one corne	er in unit cell. The simplest formula			
of compound is :	centres. one of the n at		in ant cen. The simplest formula			
a) A B	b) 10					
$dJ A_7 D_3$	UJ AD ₃	$C_J A_7 D_{24}$	u) A _{7/8} D ₃			
141. Which one of the fo	llowing is a covalent cry	ystal?				
a) KOCK sait	b) Ice	c) Quartz	a) Dry ice			
142. The coordination n	umber of Al in the cryst	alline state of AlCl ₃ is				
a) 2	b) 4	c) 6	d) 8			
143. In crystal structure	of rock salt (NaCl), the	arrangement of Cl ion is :				
a) Fcc	b) Bcc	c) Both (a) and (b)) d) None of these			
144. In which of the follo	owing crystals alternate	tetrahedral voids are occupie	ed?			
a) NaCl	b) Zns	c) CaF ₂	d) Na ₂ O			
145. A compound of 'A' a	and ' <i>B</i> ' crystallises in a c	ubic lattice in which 'A' atoms	s occupy the lattice points at the			
corners of the cube	The ' B ' atoms occupy i	the centre of each face of the	cube. The probable empirical			
formula of the com	pound is	\rightarrow \rightarrow				
a) <i>AB</i> ₂	b) <i>A</i> ₃ <i>B</i>	c) AB	d) <i>AB</i> ₃			
146. Amorphous solids:		5				
a) Possess sharp m	elting points					
b) Undergo clean cl	eavage when cut with k	nife				
c) Do not undergo o	clean cleavage when cut	t with knife				
d) Possess orderly a	arrangement over long	distances				
147. For which crystal a	nion-anion contact is va	lid?				
a) NaF	b) NaI	c) CsBr	d) KCl			
148. The crystal system	of a compound with u	nit cell dimensions $a = 0.387$	7, b = 0.387, and c = 0.504 nm and			
$\alpha = \beta = 90^{\circ}$ and γ	$= 120^{\circ}$ is :					
a) Cubic	b) Hexagonal	c) Orthorhombic	d) Rhombohedral			
149. Possible number of	different type of crysta	l lattice present in all types of	crystals, is			
a) 23	b) 7	c) 230	d) 14			
150. Doping of silicon (S	i) with boron (B) leads	to	-)			
a) n -type semicon	ductor	b) p -type semico	nductor			
c) Metal		d) Insulator				
151 <i>AB</i> crystallises in a	hcc lattice with edge le	ength $'a'$ equal to 387 nm. The	e distance between two oppositely			
charged ions in the	lattice is ·	ingen a equal to boy prin Th	e alstance between two oppositely			
a) 335 nm	b) 250 nm	c) 200 pm	d) 300 pm			
152 The nacking efficien	b) 200 pm new of the two dimensio	nal square unit cell shown be	low is			
		nai square unit cen snown be	10 W 13			
ЦЦ						
aj 39.27%	b) 68.02%	c) 74.05%	a) 78.54%			

153. Which is an example of fe	erroelectric compound?		
a) Quartz	b) PbCrO ₄	c) Barium titanate	d) None of these
154. An increase in the charg	ge of the positive ions that	occupy lattice positions b	rings in a /anin metallic
bonding.			
a) increase			
b) Decrease			
c) Neither increase nor d	lecrease		
d) Either increase or dec	rease		
155. In a crystal, the atoms are	e located at the position of	potential energy.	· · ·
a) Zero	b) Infinite	c) Minimum	d) Maximum 🧹 💙
156. Solids are characterised	by their properties :		
a) Incompressibility	b) Mechanical strength	c) Crystalling nature	d) All of these
157. Arrangement of sulphide	ions in zinc blende is		
a) Simple cubic	b) hcp	c) bcc	d) fcc
158. ZnS is :			
a) Ionic crystal	b) Covalent crystal	c) Metallic crystal	d) Van der Walls' crystal
159. Which substance shows a	antiferromagnetism?		
a) ZrO ₂	b) CdO	c) CrO ₂	d) Mn ₂ O ₃
160. The appearance of colour	r in solid alkali metal halide	e is generally due to:	
a) Frenkel defect	b) Interstitial position	c) F-centres	d) Schottky defect
161. In a cubic close packing o	of spheres in three dimension	ons, the co-ordination num	ber of each sphere is :
a) 6	b) 9	c) 3	d) 12
162. High thermal conductivit	y of metals is due to transfe	er of heat through :	
a) Molecule collisions	b) Electronic collisions 🖌	c) Atomic collisions	d) All of these
163. A solid having definite ge	cometrical shape with flat fa	aces and sharp edges is :	
a) Amorphous solid	b) Crystalline solid	c) Isotropic solid	d) None of these
164. If the positions of Na ⁺ an	d Cl [–] are interchanges in N	aCl, the crystal lattice with	respect to Na ⁺ and Cl ⁻ is :
a) Both fcc	b) Both bcc	c) Fcc and bcc	d) Bcc and fcc
165. Which kind of defect is sl	nown by the given crystal?		
K^+ Cl^-K^+ Cl^-K^+ Cl^-			
$Cl^- \Box Cl^-K^+\Box K^+$			
$K^+Cl^- \Box Cl^-K^+Cl^-$	ΔV		
$CI^-K^+CI^-K^+ \Box K^+$	XY		
a) Schottky defect		b) Frenkel defect	
c) Schottky and Frenkel	defects	d) Substitution disorder	
166. An alloy of copper, silver	and gold is found to have c	opper constituting the ccp	lattice. If silver atoms
occupy the edge centres	and gold is present at body	centre, the alloy has a form	nula
a) Cu Ag Au	b) $Cu_4 Ag_2 Au$	c) $Cu_4 Ag_3 Au$	d) $Cu_4 Ag_4 Au$
167. The structure of UsUl cry	stal is :		
a) Body centred cubic lat	tice		
b) Face centred cubic latt	lice		
d) Norse of the shue			
160 The pure errotalline of	ubstance on being bester	l gradually first forma a	turbid liquid at constant
tomporature and still	at higher temperature t	r gradually lifst lorins a	turbia liquia at constant
characteristic of substan	at myner temperature ti	arbituity completely disap	ppears. The behavior is a
a) Allotropic crustal	b) Liquid crystals	c) Isomoria arretala	d) Icomorphous orgatala
aj Allou opic Crystal 169 Molecular crystale oviet i	bj biquiu ti ystais	cj isomeric crystals	uj isomoi phous ci ystais
a) (rystalling state	h) Amorphous state	c) Non-crystalling state	d) All of these
170 The unit call with the stru	ucture helow refers to a	vetal evetam	uj Ali UI UICSC
170. The unit ten with the St		ystai systeiii.	

b		
		<u> </u>
a) Cubic b) Orthorhombic	c) Tetragonal	d) Trigonal
171. CsBr crystallises in a body centred cubic lattice. T	he unit cell length is 436.	6 pm. Given that the atomic
mass of $Cs = 133$ and that of $Br = 80$ amu and Avo	gadro number being 6.02	$\times 10^{23}$ mol ⁻¹ , the density of
CsBr is:		
a) 8.25 g/cm ³ b) 4.25 g/cm ³	c) 42.5 g/cm^3	d) 0.425 g/cm ³
172. 8 : 8 co-ordination of CsCl is found to change into 6	: 6 co-ordination on :	X
a) Applying pressure		
b) Increasing temperature		7
c) Both (a) and (b)		
a) None of these		
a) Service element is used for making a transistor?		
d) SII UJ SU 174 KCl awatallians in the same type of lattice on does N	C Circon that $m = lm = -$	a) Mg = 0.55 and m = 0.74
174. KCI crystallises in the same type of fattice as dose N	acl. Given that $r_{\text{Na}}^+/r_{\text{Cl}}^- =$	$r_{\rm K^+}/r_{\rm Cl^-} = 0.74.$
calculate the ratio of the side of the unit cell for KCI		
a) 1.123 b) 0.0891	CJ 1.414	d) 0.414
1/5. The number of atoms (<i>n</i>) contained within a fcc cell	- 15:	
a) I D Z		
176. For a crystal, the angle of diffraction $(2, \theta)$ is 90° and	the second order line has	a d value of 2.28 A. The
wavelength (in A) of X-rays used for Bragg's diffrac	tion is	
a) 1.612 b) 2.00	c) 2.28	d) 4.00
177. Wax is an example of :		
a) Ionic crystal b) Covalent crystal	c) Molecular crystal	d) Metallic crystal
178. A binary solid (A^+B^-) has a zinc blende structu	re with B^- ions constitut	ing the lattice and A^+ ions
occupying 25% tetrahedral holes. The formula of so	olid is :	
a) AB b) A_2B	c) AB_2	d) <i>AB</i> ₄
179. The radius of Ag ⁺ ion is 126 pm while that of I ⁻ ion	is 216 pm. The co-ordinati	on number of Ag in Agl is :
a) 2 b) 4	c) 6	d) 8
180. The statement that, "It is possible to choose alor	ig the three co-ordinate a	xes unit distance <i>a, b, c</i> not
necessarily of the same length, such that the ratio o	f there intercepts of any pl	ane in the crystal is given by
In $ma: nb: pc$ where m, n, p are either integral v	whole numbers including i	infinity or fraction of whole
number" is known as :		
a) Hauy's law of rationality of indices		
b) The law of constancy of interfacial angles		
c) I ne law of constancy of symmetry		
a) None of the above		
181. Number of atoms in the unit cell of Na(bcc type cry	vstal) and Mg(fcc type cryst	are respectively
aj 4,4 DJ 4,2	CJ 2,4	uj 1,1
aj Naul DJ Kul 192 Which one is called provide called?	CJ USUI	u) All of these
105. which one is called pseudo solla?		

a) CaF_2	b) Glass	c) NaCl	d) All of these
184. A solid having no definite	shape is called :	-))
a) Amorphous solid	b) Crystalline solid	c) Anisotropic	d) None of these
185. The phenomenon in whic	h polar crystals on heating	produce electricity is called	d :
a) Pyro-electricity	b) Piezo-electricity	c) Ferro-electricity	d) Ferri-electricity
186. CaF ₂ possesses :			
a) Face centred cubic			
b) Body centred cubic			
c) Simple cubic			× •
d) Hexagonal closed pack	ing		
187. The three states of matte	er are solid, liquid and gas	, which of the following st	atements are correct about
them?			
a) Gases and liquids have	viscosity as a common pro	operty	
b) The molecules in all the	e three states possess rand	om translational motion	
c) Gases cannot be conve	rted into solids without pas	ssing through the liquid pha	ase
d) Solids and liquids have	e vapour pressure as a com	mon property	X
a) Ni	h		d) All of those
189 Solid CO is an example of	- DJ CO f ·	c) cl 0 ₃	uj Ali ol ulese
a) Molecular crystal	h) Covalent crystal	c) Metallic crystal	d) Ionic crystal
190 A solid is made of two ele	ments X and Z. The atoms 2	Zare in con arrangement w	hile the atom X occupy all
the tetrahedral sites. What	at is the formula of the com	pound?	inte the atom A occupy an
a) XZ	b) <i>XZ</i> ₂	c) X_2Z	d) $X_2 Z_2$
191. A cubic crystal possesses	:		-) <u>Z</u> <u>S</u>
a) 9 plane of symmetry	b) 13 axis of symmetry	c) 1 centre of symmetry	d) All of these
192. A substance $A_X B_Y$ crystal	lises in a face centred cubi	c (fcc) lattice in which aton	ns 'A' occupy each corner of
the cube and atoms $'B'$ or	ccupy the centres of each fa	ace of the cube. Identify the	e correct composition of the
substance $A_X B_Y$:			
a) <i>AB</i> ₃			
b) A_4B_3			
c) A_3B			
d) Composition cannot be	e specified		
193. Which crystal has the larg	gest lattice energy?		
a) KU	b) MgU	c) LiBr	d) NaF
194. A crystal may have one of	r more planes and one or m	fore axes of symmetry but i	t possesses
b) One centre of symmetry	u y		
c) No contro of symmetry	y		
d) None of the above			
195 In an antifluorite structur	e cations occupy		
a) Octahedral voids	b) Centre of cube	c) Tetrahedral voids	d) Corners of cube
196. In a crystal some jons are	missing from normal sites	. This is an example of :	
a) F-centres	b) Interstitial defect	c) Frenkel defect	d) Schottky defect
197. The number of atoms (<i>n</i>)	contained within a body co	entred cubic cell is:	-))
a) 1	b) 2	c) 3	d) 4
198. The density of KCl is 1.98	93 g cm^{-3} and the length of	of a side unit cell is 6.29082	2 Å as determined by X-rays
diffraction. The value of A	vogadro's number calculat	ed from these data is :	
a) 6.017 \times 10 ²³	b) 6.023×10^{23}	c) 6.03×10^{23}	d) 6.017 \times 10 ¹⁹
199. Which species is diamagn	etic?		
a) Ca ²⁺	b) Hg ₂ Cl ₂	c) Sb ³⁺	d) All of these

- 200. Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite :
 - a) Is a non-crystalline substance
 - b) Is an allotropic form of diamond
 - c) Has molecules of variable molecular masses like polymers
 - d) Has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interpolate bonds
- 201. Ionic solids with Schottky defects contain in their structure :
 - a) Equal number of cations and anion vacancies
 - b) Interstitial anions and anion vacancies
 - c) Cation vacancies only
 - d) Cation vacancies and interstitial cations
- 202. Na₂SeO₄ and Na₂SO₄ show :
 - a) Isomorphism c) Allotropism b) Polymorphism d) Ferromagnetism
- 203. The number of molecules of NaCl in an unit cell of its crystal is :

b) MX_2

c) 6 d) 8

d) $M_5 X_{14}$

a) 2 b) 4 204. A compound MpXq has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown in figure. The empirical formula of the compound is :

 $M_{2}X$

205. Which one is correct about ferrites?

- a) These possess formula AB_2O_4 (where A is divalent and B is trivalent cation)
- b) These possess spinel structure
- c) $MgAl_2O_4$ is a ferrite
- d) All of the above
- 206. If the distance between Na⁺ and Cl⁻ ions in sodium chloride crystal is *X* pm, the length of the edge of the unit cell is
- a) 4 Xpm b) X/4 pm c) *X*/2 pm d) 2 Xpm 207. The ratio of cations to anion in a closed pack tetrahedral is : a) 0.414 b) 0.225 c) 0.02 d) None of these 208. The pyknometric density of sodium chloride crystal is 2.165×10^3 kg m⁻³ while is X-ray density is 2.178×10^3 kg m⁻³. The fraction of the unoccupied sites in sodium chloride crystal is : a) 5.96 b) 5.96 \times 10⁻² c) 5.96×10^{-1} d) 5.96 \times 10⁻³ 209. A compound alloy of gold and Cu crystallises in a cubic lattice in which the gold atoms occupy the lattice points at the corners of a cube and the copper atoms occupy the centres of each of the cube faces. What is the empirical formula of this compound? a) AuCu₃ b) Au₃Cu c) Au_2Cu_3 d) AuCu 210. In a solid lattice, the cation has left a lattice site and is located at an interstitial position, the lattice defect is a) Frenkel defect b) Schottky defect c) F-centre defect d) Valency defect

211. The unit cell cube length for LiCl (just like NaCl structure) is 5.14 Å, Assuming anion-anion contact, the ionic radius for chloride ion is:

a) 1.815 A	b) 2.8 A	c) 3.8 A	d) 4.815 A
212. Which arrangemen	nt of electrons leads to ant	i-ferromagnetism?	
a) ↑↑↑↑	b) ↑↓↑↓	c) Both (a) and (b)	d) None of these

213. Which of the following	g will show anisotropy?		
a) Glass	b) BaCl ₂	c) Wood	d) Paper
214. Silicon dioxide is an ex	xample of :		
a) Metallic crystal	b) Ionic crystal	c) Covalent crystal	d) None of these
215. The number of atoms	contained in a fcc unit cell o	of a monoatomic substance	is
a) 1	b) 2	c) 4	d) 6
216. Ionic solids are charac	cterised by :		
a) Good conductivity	in solid state		
b) High vapour pressu	ire		· · · ·
c) Low melting point			$\langle \mathbf{v} \rangle$
d) Solubility in polar s	olvents		
217. The mass of a unit cell	of CsCl corresponds to :		
a) $8Cs^+$ and Cl^-	b) 1Cs ⁺ and 6Cl ⁻	c) $1Cs^+$ and $1Cl^-$	d) 4Cs ⁺ and Cl ⁻
218. Coordination number	of Zn in ZnS (zinc blende) i	S	
a) 6	b) 4	c) 8	d) 12
219. At room temperature	, sodium crystallizes in a bo	dy centered cubic lattice v	with $a = 4.24$ Å. the theoretical
density of sodium (At	wt. of $Na = 23$) is :	C	
a) 1.002 g cm^{-3}	b) 2.002 g cm^{-3}	c) 3.002 g cm^{-3}	d) None of these
220. Copper crystallises in	fcc lattice with a unit cell ec	lge of 361 pm. The radius o	f copper atom is
a) 181 pm	b) 108 pm	c) 128 pm	d) 157 pm
221. How many number of	atoms are there in a cube b	ased unit cell having one at	com on each corner and two
atoms on each body d	iagonal of cube		
a) 8	b) 6	c) 4	d) 9
222. When light strikes a p	hotographic (AgBr) paper, s	silver atoms move in throu	gh these defects to :
a) Form –ve images	4		
b) Form tiny clumps o	f silver atoms	\mathbf{V}'	
c) Form a colour imag	je		
d) None of the above			
223. Graphite is a			
a) Molecular solid	b) Covalent solid	c) Ionic solid	d) Metallic solid
224. Which is covalent soli	d?		
a) Fe_2O_3	b) Diamond	c) Graphite	d) All of these
225. The co-ordination nur	nber of Na in Na ₂ O is :		
a) 6	b) 4	c) 8	d) 2
226. The coordination num	iber of Na ⁺ inNaCl is		
a) 6	b) 8	c) 4	d) 1
227. Number of atoms per	unit cell of bcc is		
a) 1	b) 2	c) 8	d) 4
228. What is the coordinat	ion number of body centred	l cube?	
a) 8	b) 6	c) 4	d) 12
229. Which of the following	g statements are true?		
a) Piezo-electricity is	due to net dipole moment		
b) Ferro-electricity is	due to alignment of dipoles	in same direction	
c) Pyro-electricity is c	lue to heating polar crystals	;	
d) All of the above			
230. A solid has a bcc stru	cture. If the distance of clos	sest approach between the	two atoms is 1.73Å. The edge
length of the cell is :		11	
a) 200 pm	b) $\sqrt{3}/\sqrt{2} PM$	c) 142.2 pm	d) $\sqrt{2}$ nm
231. The number of octabe	dral sites in a cubical close	nack array of N snhere is	, , m b
a) $N/2$	h) 2 N	() 4 N	d) N
~,·/ -	~,	~, · · ·	~,

232. A solid A^+B^- has the B^- ions arranged as below. If the A^+ ions occupy half of the tetrahedral sites in the structure. The formula of solid is :

م		
	8	
¢-		
	Ÿ	
	•	
لم ا		
\mathbf{k}		

a) *AB* b) *AB*₂ c) A₂B d) A_3B_4 233. Crystalline solids have : a) Short range order b) Long range order c) Anisotropic distribution d) No order 234. The statement that, "The crystals of same substance can have different shapes depending upon the number and size of faces but the angle between the corresponding faces remains constant" is known as : a) Hauy's law of rationality of indices b) The law of constancy of interfacial angles c) The law of constancy of symmetry d) None of the above 235. Frenkel defect is noticed in : a) AgBr b) ZnS d) All of these c) Agl 236. A fcc unit cell of aluminium contains the equivalent of how may atoms? d) 4 a) 1 b) 2 c) 3 237. The maximum proportion of available volume that can be filled by hard spheres in diamond is a) 0.52 b) 0.34 c) 0.32 d) 0.68 238. The resistance of mercury becomes almost zero at : b) 10 K c) 20 K a) 4 K d) 25 K 239. The cubic unit cell of Al (molar mass 27 g mol⁻¹)has an edge length of 405 pm. Its density is 2.7 g cm⁻³. The cubic unit cell is b) Body centred a) Face centred c) Primitive d) Edge centred 240. Maximum ferromagnetism is found in : d) None of these a) Fe b) Ni c) Co 241. How many tetrahedral holes are occupied in diamond? b) 50% d) 100% a) 25% c) 75% 242. The flame colours of metal ions are due to a) Frenkel defect b) Schottky defect c) Metal deficiency defect d) Metal excess defect 243. Which of the following statements is correct? a) Silicon doped with boron is an n –type semiconductor b) Silicon doped with arsenic is a p –type semiconductor c) Metals are good conductors of electricity d) Electrical conductivity of semiconductors decreases with increasing temperature 244. A compound is formed by elements *A* and *B*. This crystallises in the cubic structure where the *A* atoms are v at the corners of the cube and *B* atoms are at the body centres. The simplest formula of the compound is a) AB b) *A*₆*B* c) A_8B_4 d) AB_6 245. Which pairs shows isomorphism a) KNO_3 , $NaNO_3$ b) Cr_2O_3 , FeO c) Both (a) and (b) d) None of these 246. The elements of symmetry in a crystal are : c) Centre of symmetry a) Plane of symmetry b) Axis of symmetry d) All of these 247. How many octahedral and tetrahedral holes are present per unit cell in a face centred cubic arrangement of atoms?

a) 0 4	h) 1 2	a 1.9	d) 2 1
$a_{\rm J}$ 0, 4	U_{J} 1, 2 which (M'_{J}) atoms are located	cj 4, o	(0) (0)
248. A solid has structure in w	lice w atoms are located	at the corners of a cubic la	the of atoms at the centre
of edge and Na atoms at t	the centre of cube. The form	iula for the compound is	
a) Na_2WO_3	b) Na_2WO_2	c) NaWO ₂	d) NaWO ₃
249. Which do not form amalg	gam with Hg?		
a) Pt	b) Fe	c) Both (a) and (b)	d) None of these
250. A crystal of Fe_3O_4 is :			
a) Paramagnetic	b) Diamagnetic	c) Ferromagnetic	d) Ferromagnetic
251. A solid XY has NaCl struc	ture. If radius of X^+ is 100	pm. What is the radius of Y	- ion?
a) 120 pm	b) 136.6 to 241.6 pm	c) 136.6 pm	d) 241.6 pm
252. An element (atomic mas	s = 100 g/mol) having bco	structure has unit cell ed	ge 400 pm. Then density of
the element is :			
a) 10 376 g/cm ³	b) 5 188 σ/cm^3	c) $7289 \mathrm{g/cm^3}$	d) 2 144 g/cm^3
253 The ratio of closed packs	d atoms to tatrahedral hole	s in cubic close packing is:	
233. The facto of closed packe	h 1.2	a) 1 · 2	d) 2 , 1
		c) 1:5	uj 2 . 1
254. 110_2 is well known exam	ple of :		
a) Triclinic system	b) Tetragonal system	c) Monoclinic system	d) None of these
255. In a simple cubic cell, eac	h atom on a corner is share	ed by :	7
a) 2 unit cells	b) 1 unit cell	c) 8 unit cells	d) 4 unit cells
256. The vacant space in body	centred cubic (bcc) lattice	unit cell is about:	
a) 32%	b) 10%	c) 23%	d) 46%
257. Percentage of free space	in a body-centred cubic uni	t cell is :	
a) 32%	b) 34%	c) 28%	d) 30%
258. In a compound, atoms of	element Y form ccp lattice	and those of element X occu	upy 2/3rd of tetrahedral
voids. The formula of the	compound will be 🛛 🗼	V	
a) $X_4 Y_3$	b) $X_2 Y_3$	c) X_2Y	d) $X_{3}Y_{4}$
259. In NaCl unit cell, all the i	ons lying along the axis as	shown in the figure are rer	noved. Then the number of
Na^+ and Cl^- ions remaining	ing in the unit cell are	0	
	0		
<u></u>	$\mathbf{A}^{\mathbf{Y}}$		
a) 4 and 4	b) 3 and 3	c) 1 and 1	d) 4 and 3
		-)	.,
C			
-2			
$\mathbf{\mathcal{I}}$			

CHEMISTRY

															_
						: ANS	N	ER K	EY						
1)	d	2)	а	3)	а	4)	С	133)	С	134) l)	135)	С	136)	С
5)	b	6)	С	7)	d	8)	b	137)	С	138) o	2	139)	a	140)	С
9)	а	10)	С	11)	b	12)	b	141)	b	142) o	2	143)	a	144)	b
13)	а	14)	b	15)	С	16)	b	145)	d	146) o	2	147)	a	148)	b
17)	d	18)	b	19)	b	20)	d	149)	d	150) l)	151)	a	152)	d
21)	d	22)	b	23)	d	24)	b	153)	С	154) a	a	155)	С	156)	d
25)	d	26)	b	27)	d	28)	b	157)	d	158) a	a	159)	d	160)	С
29)	С	30)	b	31)	С	32)	d	161)	d	162) l)	163)	b	164)	С
33)	С	34)	С	35)	b	36)	С	165)	а	166) o	2	167)	a	168)	b
37)	С	38)	d	39)	b	40)	a	169)	d	170) l	0	171)	b	172)	b
41)	С	42)	С	43)	а	44)	b	173)	С	174) a	a -	175)	d	176)	а
45)	b	46)	d	47)	d	48)	С	177)	С	178) (2	179)	С	180)	а
49)	b	50)	а	51)	d	52)	d	181)	С	182) (đ	183)	b	184)	а
53)	b	54)	С	55)	С	56)	b	185)	a	186) a	a	187)	a	188)	d
57)	d	58)	b	59)	d	60)	b	189)	a	190) (2	191)	d	192)	а
61)	d	62)	С	63)	а	64)	b	193)	b	194) l)	195)	С	196)	d
65)	С	66)	С	67)	b	68)	С	197)	b	198) a	a	199)	d	200)	d
69)	d	70)	d	71)	d	72)	a	201)	а	202) a	a	203)	b	204)	b
73)	d	74)	d	75)	d	76)	С	205)	d	206) (d	207)	b	208)	d
77)	b	78)	а	79)	d	80)	d	209)	a	210) a	A	211)	a	212)	b
81)	d	82)	a	83)	C	84)	a	213)	b	214) (2	215)	С	216)	d
85)	а	86)	b	87)	b	88)	b	217)	С	218) I)	219)	a	220)	С
89)	С	90)	b	91)	d	92)	С	221)	d	222) I)	223)	b	224)	d
93)	b	94)	d	95)	a	96)	b	225)	b	226) a	3	227)	b	228)	а
97)	b	98)	a	99)	а	100)	b	229)	d	230) a	a	231)	d	232)	a
101)	d	102)	b	103)	C	104)	C	233)	С	234) I)	235)	d	236)	d
105)	d	106)	b	107)	b	108)	b	237)	b	238) a	a	239)	a	240)	а
109)	a	110)	b	111)	a	112)	С	241)	b	242) (ł	243)	С	244)	a
113)	d	114)	d	115)	d	116)	C	245)	С	246) (d	247)	C	248)	d
117)	С	118)	a	119)	b	120)	d	249)	C	250) (1	251)	b	252)	b
121)	С	122)	b	123)	d	124)	b	253)	b	254) I)	255)	С	256)	а
125)	C	126)	b	127)	C	128)	а	257)	а	258) a	a	259)	a		
129)	d	130)	b	131)	d	132)	С								
5								I							

CHEMISTRY

			HINTS AND	SO	LUTIONS :
1	(d) Schottky defect a cations and anio This defect is gen like NaCL KCL Cs	arises when equans are missing fr nerally found in a Cl. etc.	al number of a rom their sites. ionic compounds		In NaCl crystal, Cl ⁻ ions adopt cubic close packed arrangement and Na ⁺ ions occupy all the octahedral sites. Therefore, Na and Cl have 1 : 1 stoichiometry. In other words, each Na ⁺ ion is surrounded by six Cl ⁻ ions which are disposed
2	(a) Ferromagnetism	is due to sponta	aneous alignment		towards the corners of a regular octahedron. Similarly, each Cl ⁻ ion is surrounded by six Na ⁺
3	(a) f + sc = e + 2; v interfacial angle	where f is plane and e is straight	faces, <i>c</i> is	12	(b) The radius ratio for co-ordination and has 4, 6, and 8 lies in between the ranges [0.225 –
4	(c) This leads to stro attractions in Na	onger coulombic F.	forces of	13	0.414], $[0.414 - 0.732]$ and $[0.732 - 1]respectively.$
5	(b) No. of Na atoms	present at each o	corner = $8 \times \frac{1}{8} =$	^	$\frac{r^+}{r^-}$ for octahedral void = 0.414; $\frac{r^+}{r^-}$ for cubic = 0.732 - 1
	No. of 0 atoms p $12 \times \frac{1}{4} = 3$ No. of W atoms p	resent at the cen present at the ce	ntre of edges =	15 16	 (c) Metallic crystals are good conductor of heat and current due to free electrons on them. (b)
6	Formula of the c (c) In antifluorite cr arranged in cubi	ompound = Nav ystal (Na ₂ O) the c close packing v	WO ₃ anions are while the cations		One unit cell of bcc has atoms = 2. Hence 12.08×10^{23} unit cells will have atoms = $2 \times 12.08 \times 10^{23}$ = 24.16×10^{23}
7	occupy all the ter (d)	trahedral voids.		17	(d)
0	All are insulator	(\mathbf{X})			packed structures is called void. The voids are of
8	In the given choi electrical conduc	ces lithium has l ctance.	nigh thermal and		two types, tetrahedral voids and octahedral voids. Also, radius of tetrahedral voids and octahedral
9	(a) Relation between	n radius ratio an	d coordination		voids are $r_{void} = 0.225 \times r_{sphere}$ and $r_{void} = 0.414 \times r_{sphere}$ respectively. Thus, octahedral void is larger than tetragonal void.
Ŝ	number $\frac{\frac{r_c}{r_a}}{0.155 - 0.225}$ 0.225 - 0.414	Coordination number 3 4		18	(b) Sodium chloride (NaCl) has face centred cubic structure. It contains 4 Na ⁺ and 4 Cl ⁻ in the unit cell. Each Na ⁺ is surrounded by 6 Cl ⁻ ions and
	0.414 - 0.732 0.732 - 1	6		19	vice – versa. (b)
10	(c) The axial angles	in triclinic crysta	l al system are		The conductance order of metals is 10 ⁶ to 10 ⁸ ohm ⁻¹ cm ⁻¹
	different and nor	ne is perpendicu	lar to any of the	20	(d)
11	otners <i>i</i> . <i>e</i> ., $\alpha \neq \mu$ (b)	$5 \neq \gamma \neq 90^{\circ}$.		21	tach possess unpaired electrons. (d)

The radius ratio of CsCl is 0.93 hence, its structure is body centred cubic.

22 **(b)**

Schottky defects - This defect is due to vacancy at a cation site accompanied by vacancy at an anion site so that the electrical neutrality of the system is maintained. Due to this defect, density decreases.

23 (d)

These are characteristics of metal excess defects due to interstitial cation.

24 **(b)**

Edge length $\alpha = 3.04 \text{ Å}$ $= 3.04 \times 10^{-8}$ cm Volume of bcc (cubic) cell = a^3 $= (3.04 \times 10^{-8})^3$ $= 2.81 \times 10^{-23} \text{ cm}^3$

25 (d)

For fcc arrangement $2(r^+ + r^-) = \text{edge length}$ $2(110 + r^{-}) = 508$ $r^{-} = 114 \text{ pm}$ So,

26 **(b)**

Radius	Structure	
$ratio(r_+/r)$		
< 0.155	linear	
0.155 - 0.225	planar	
	triangular	
0.225 - 0.414	tetrahedral	4
0.414 - 0732	octahedral	
0.732 - 1	bcc	7

27 (d)

Solid hydrogen involves van der Waals' forces.

28 **(b)**

In ccp or fcc and hcp, number of tetrahedral voids is double the number of atoms forming the main lattice.

29 (c)

Quartz is a covalent crystal having a framework of 39 silicates, i.e., a three dimensional network when all the four oxygen atoms of each of SiO_4 40 tetrahedron are shared.

30 **(b)**

For body centred cubic (bcc) structure, the ratio of radii (r_+/r_-) lies in between 0.732–1.00.

 \therefore The ratio of radii for bcc is greater than 0.73.

31 (c)

Follow characteristics of molecular solids.

Si and Ge are used for making transistors.

33 (c)

Volume of one mole of silver atoms = $\frac{108}{10.5}$ cm³/mol Volume of one silver atom $=\frac{108}{10.5} \times \frac{1}{6.022 \times 10^{23}} \text{ cm}^3$ So, $\frac{4}{3}\pi r^3 = \frac{108}{10.5} \times \frac{1}{6.022 \times 10^{23}} = 1.708 \times 10^{-23}$ $r^3 = 0.407 \times 10^{-23} \text{ cm}^3 = 0.407 \times 10^{-29} \text{ m}^3$ Area of each silver atom, $\pi r^2 = \pi (0.407 \times 10^{-29} \,\mathrm{m}^3)^{2/3}$ So, number of silver atoms in given area 10^{-12} $=\frac{1}{(0.407\times10^{-29}\,\mathrm{m}^3)^{2/3}}=$ $= 1.6 \times 10^7 = y \times 10^x$ So, x = 734 (c) $n\lambda = 2d \sin \theta$ $1 \times 1.54 = 2d \sin 45^\circ$ $1 \times 1.54 = 2d \times 0.850$ $2d = \frac{1.54}{0.850} = 0.905 \text{ Å}$ (b) In the close packing of 'n' atoms, the number of tetrahedral voids are '2n'. Hence, their number per atom is 2. 37 (c) The coordination number is 8 : 8 in Cs⁺ : Cl⁻ The coordination number is 6:6 in Na⁺ : Cl⁻ (d) In a cubic close packing, the number of octahedral voids is equal to number of atoms and number of tetrahedral voids is equal to the twice the number of atoms Number of atoms is a ccp array = 1:.

35

38

In orthosilicate SiO_4^{2-} ion exist as discrete unit. (a)

Molecular mass of CuCl = 99

$$n = 4$$
 for face centred cubic cell

$$\therefore Density = \frac{n \times \text{mol.wt.}}{V \times \text{av.no.}}$$
$$= \frac{4 \times 99}{a^3 \times 6.023 \times 10^{23}}$$
Or
$$3.4 = \frac{4 \times 99}{a^3 \times 6.023 \times 10^{23}}$$
$$\therefore a = 5.783 \times 10^{-8} \text{ cm}$$
$$= 5.783 \text{ Å}$$

41 (c)

$$Z = \frac{V \times N \times d}{m}$$

$$= \frac{4.2 \times 8.6 \times 8.3 \times 10^{-21} \times 6.023 \times 10^{23} \times 3.3}{155}$$

$$= 3.14$$

$$\approx 4$$
42 (c)
Quartz (SiO₂) is a covalent crystal.
43 (a)
LiF is an ionic crystal. An ionic solid has ions as
constituent units at lattice points held by
oppositely charged ions.
44 (b)
Edge = 2r⁺ + 2r⁻

$$\therefore 400 = 2 \times 75 + 2r^{-}$$

$$\therefore r^{-} = 125 \text{ pm}$$
45 (b)
For tetrahedral shape, limiting radius ratio is
0.225 - 0.414.
46 (d)
Number of unit cells = $\frac{\text{mass of metal}}{\text{mass of one unit cell}}$
Given, edge length of unit cell = 2Å = 2 ×
 10^{-8} cm
Mass of metal = 200 g
Density of metal = 2.5 g cm⁻³
Volume of unit cell = volume \times density
 $= 8 \times 10^{-24} \text{ cm}^3$
Mass of one unit cell = volume \times density
 $= 8 \times 10^{-24} \text{ cm}^3$
Mass of one unit cell = $\frac{200}{20 \times 10^{-24}}$
 \therefore No. of unit cells in 200 g metal =
 $\frac{\text{mass of metal}}{\text{mass of one unit cell}}$
 55
 $= 20 \times 10^{-24}$
 \therefore No. of unit cells $= 100 \times 10^{25}$
47 (d)
For bcc, $r = \frac{\sqrt{3}}{2} = a$
 $0ra = \frac{2r}{\sqrt{3}} = \frac{2 \times 452}{1.732}$
 $= 5.219 \text{ Å} = 522 \text{ pm}.$
Density $= \frac{n \times M}{a^3 \times N_A \times 10^{-20}}$
 $= 0.91 \text{ g/cm}^3 = 910 \text{ kg m}^{-3}$
48 (c)
For bcc structure
49 (b)

Bragg's equation is $n\lambda = 2d \sin \theta$

- 0 **(a)**
- The bcc structure has co-ordination no. of eight. 1 (d)

Number of atoms (*A*) per unit cell = $8 \times \frac{1}{8} = 1$ Number of atoms (*B*) per unit cell = $(6 - 1) \times \frac{1}{2} = \frac{5}{2}$

Thus, formula is $A_1B_{5/2} = A_2B_5$

52 **(d)**

Due to small anion, it possess maximum ionic nature.

3 **(b)**

The fcc unit cell has 8 atoms at the eight corners and one atom at each of six faces. The atom at the face is shared by two unit cells.

4 **(c)**

Doping of elements of group 14 (Ge and Si) with group 15 (As) elements produces excess of electrons and shows *n* -type conduction, the symbol *n* indicating flow of negative charge in them. Doping of elements of group 14 (Ge and Si) with group 13 (B) elements products hole (electron deficiency) in the crystal and shows *p*type conduction, the symbol *p* indicating flow of positive charge.

5 **(c)**

Molecular solids are the substances having molecules as constituent units having interparticle forces such as van der waal's forces or hydrogen bonds.

57 **(d)**

The number of atoms present in sc, fcc and bcc unit cell are 1, 4, 2 respectively.

58 **(b)**

 N_2O is gas; CaF₂ is AB_2 type crystalline solid.

9 **(d)**

These are characteristic elements of symmetry of a cubic crystal.

50 **(b)**

Since atom *X* is present at corner and one corner is shared by eight unit cells,

Number of *X* atoms per unit cell $=\frac{1}{8} \times 8 = 1$

Atom *Y* is present at body centred position and used by only one unit cell. So, number of Yatoms per unit cell = 1Atom Z is present at the center of each face, so shared by two unit cells, Truncated octahedron Thus, number of Z atoms per unit cell = $\frac{1}{2} \times 6 = 3$ **Truncated Octachedron** Hence, the formula of compound = XYZ_3 61 (d) The transition of metal to insulation occurs at a certain temperature due to imperfection. 62 (c) Body diagonal in bcc = $\sqrt{3} a = \sqrt{3} \times 400 =$ 692.8 pm Truncated octahedron unfolded in 63 **(a)** two dimensions The seven basic crystal lattice are cubic, 71 (d) tetragonal, orthorhombic, monoclinic, hexagonal, Frenkel defect is formed by displacement of ion rhombohedral and triclinic. from its lattice to interstitial state. 64 **(b)** 72 (a) The conditions for tetragonal systems. Inperfections are notice in solids. 65 (c) 73 (d) The number of octahedral voids in cubic close Trapping of electrons in anion vacancies develop packed = 4F-centres. The number of atoms per unit cell in ccp = 474 (d) The number of octahedral voids per atom = 1Diamond has the highest value of energy gap as it 66 **(c)** is a insulator. An increase in charge of +ve ions also brings in an 75 (d) increase in number of electrons involved in sc: $r = \frac{a}{2}$ fcc : $r = \frac{a}{2\sqrt{2}}$; bcc : $r = \frac{\sqrt{3}}{4}$ a metallic crystals, and thereby metallic bonding becomes stronger. \therefore sc; bcc and fcc are $\frac{a}{2}, \frac{\sqrt{3}}{4}a, \frac{a}{2\sqrt{2}}$ 67 **(b)** Electrical resistance of metals decreases with decrease in temperature and becomes zero at 76 (c) zero kelvin. Materials in this state are called super Number of sodium ions are 12 at edge centres in conductors and the phenomenon as super fcc structure which are nearest neighbours for a conductivity. given lattice point. 77 68 (c) **(b)** For a body centred cubic lattice radius, (r)Packing fraction of ccp = $\frac{\pi}{3\sqrt{2}} = 0.74 \Rightarrow 74\%$ $=\frac{\sqrt{3}}{4}a=0.433a$ % free space in ccp = 26%Packing fraction of bcc = $\frac{\pi\sqrt{3}}{8} = 0.68 \Rightarrow 68\%$ Therefore, radius of $Na^+ = 0.433 \times 4.29 = 1.8575$ 69 (d) % free space in bcc = 32%All are conductors however shows insulation at a 78 (a) Density $\frac{n \times \text{mol.wt.}}{V \times \text{av.no.}}$ certain temperature. 70 (d) M = 21.76, av. no. = 6.023×10^{23} and n = 4. The truncated octahedron is the 14-faced $V = a \times b \times c$ And Archimedean solid, with 14 total faces : 6 squares $V = 6.8 \times 10^{-8} \times 4.4 \times 10^{-8} \times 7.2$:. and 8 regular hexagons. $\times 10^{-8}$ The truncated octahedron is formed by removing $= 2.154 \times 10^{-22} \times 6.023 \times 10^{23}$ $= \frac{4 \times 21.76}{2.154 \times 10^{-22} \times 6.023 \times 10^{23}}$ the six right square pyramids one from each point

Density

of a regular octahedron as :

Page | 21

79 **(d)**

$= 0.6708 \,\mathrm{g}\,\mathrm{cm}^{-3}$

Volume of an atom = $\frac{4}{3}\pi r^3$ In fcc, number of atoms per unit cell = 4 \therefore Volume of total atoms = $4 \times \frac{4}{3}\pi r^3$ $= \frac{16}{3}\pi r^2$

80 **(d)**

In triclinic lattice, the eight lattice points are located, one each at the corners of triclinic lattice. Also $a \neq b \neq c$ and $\alpha \neq \beta \neq \gamma$. There is no planes and no axes. Thus, triclinic lattice has no rotation of symmetry.

81 (d)

The unit cell with dimensions $a = b \neq c$, $\alpha = \beta = \gamma = 90$ is tetragonal.

82 (a)

Density $= \frac{n \times \text{at.wt.}}{v \times \text{av.no.}} = \frac{n \times \text{at.wt.}}{a^3 \times \text{av.no.}}$ Given, at.wt. = 60 $a = 4 \times 10^2 \text{ pm}$ $= 4 \times 10^2 \times 10^{-12} \text{ m}$ $= 4 \times 10^{-10} \times 10^2 \text{ cm}$ $= 4 \times 10^8 \text{ cm}$ (:: 1 pm

:. Density =
$$\frac{4 \times 60}{(4 \times 10^{-8}) \times 6.023 \times 10^{23}}$$

= 6.23 g cm⁻³

 $= 10^{-12}$

83 (c)

·)		
Crystal system	Axial distances	Axial angle
Tetragonal	$\begin{array}{c} a = b \\ \neq c \end{array}$	$\begin{array}{l} \alpha = \beta = \gamma \\ = 90^{\circ} \end{array}$
Hexagonal	$\begin{array}{l} a = b \\ \neq c \end{array}$	$\alpha \neq \beta$ = 90°, γ = 120°
Rhombohedral	a = b = c	$\begin{array}{l} \alpha = \beta = \gamma \\ \neq 90^{\circ} \end{array}$
Monoclinic	a ≠ b ≠ c	$\alpha = \gamma$ = 90, β \neq 90°

84 (a)

The cubic unit cell has 8 atmos at eight corners. Each atom is shared by 8 unit cells.

$$n = 8 \times \frac{1}{8} = 1$$

85 (a)

Most of the metals have their transition temperature (i.e., the temperature at which a substance starts to behave as super conductor) in the range of 2-5 K.

86 **(b)**

 \mbox{CaF}_2 has fcc structure with 8:4 co-ordination and

has 4 units of CaF₂ per unit cell.

87 **(b)**

NaCl has fcc arrangement of ions. The coordination number of Cl⁻ as well as Na⁺ ion is six. Therefore, it is termed 6 : 6 coordination crystal.

88 **(b)**

No. of carbon atoms in unit cell of diamond is 8. Also fraction of volume occupied by the atoms in primitive cell is 52%.

89 **(c)**

When equal number of cations and anions are missing from their position in a crystal lattice so that electrical neutrality is maintained, the defect is called Schottky defect. Due to missing of ions, the overall density of the crystal decreases. Moreover, defect leads to randomness, thus entropy also increases.

90 **(b)**

It is a fact for crystal structure (bcc) potassium.

91 (d)

At high temperature randomization of spins changes.

92 **(c)**

Orthorhombic geometry has $a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$. The shape of match box obey this geometry.

93 **(b)**

 CrO_2 is metallic conductor, V_2O_5, NiO and MnO are insulators.

94 **(d)**

It represents ccp arrangement.

96 **(b)**

Given,

Molar mass, M = 50g/mol $N_{\rm r} = 6.02 \times 10^{23}$

$$N_A = 0.02 \times 10$$

Z = 2 (for bcc crystal)

Edge length a = 300 pm

=
$$3 \times 10^{-8}$$
 cm
 $d = \frac{Z \times M}{N_A \times a^3}$
= $\frac{2 \times 50}{6.02 \times 10^{23} \times (3 \times 10^{-8})^3}$
= 6.15

97 **(b)**

$$\frac{r_{\text{Na}^+}}{r_{\text{Cl}^-}} = \frac{95}{181} = 0.524$$
, i.e., in between 0.414 to 0.732
and thus, co-ordination no.=6

98 **(a)**

Mass of one unit-cell (*m*)

= volume × density
=
$$a^3 \times d = a^3 \times \frac{MZ}{N_0 a^3} = \frac{MZ}{N_0}$$

 $m = \frac{58.5 \times 4}{6.02 \times 10^{23}} \text{ g}$
∴ Number of unit cells in 1 g = $\frac{1}{m}$
= $\frac{6.02 \times 10^{23}}{58.5 \times 4}$
= 2.57 × 10²¹

99 (a)

In covalent molecules atoms occupy the lattice points.

100 **(b)**

The presence of free electrons in metals, they are opaque, strongly reflecting and possess metallic lustre.

101 **(d)**

Volume of cube = a^3 Volume of unit cell = $1 \times \frac{4}{3} \pi r^3$ = $\frac{4}{3} \pi \left(\frac{a}{2}\right)^3 = \frac{\pi a^3}{6}$ \therefore packing density = $\frac{\pi a^3}{6 \times a^3} = \frac{\pi}{6}$

102 **(b)**

On adding a pentavalent impurity with germanium, we get n –type of semiconductors because excess of electrons is responsible for conduction.

103 **(c)**

For fcc structure $r = \frac{a}{2\sqrt{2}}$

: diameter = $2r = \frac{a}{\sqrt{2}} = \frac{408}{1.414} = 288.5 \text{ pm}$

104 **(c)**

- It is a fact.
- 105 **(d)**

Due to different plane arrangement, cleavage becomes easier at these points.

106 **(b)**

108 (b)

Na has 6 co-ordination number (fcc structure). 107 **(b)**

Dopping of $SrCl_2$ to NaCl brings in replacement of two Na⁺ by each Sr^{2+} ion, but Sr^{2+} occupies one lattice point. This produces one cation vacancy.

No. of cation vacancies = 10^{-4}

100 mole of NaCl will have cationic vacancy = 10^{-4}

 \therefore 1 mole of NaCl will have cationic vacancy = $10^{-4}/100 = 10^{-6}$

: No. of cationic vacancies =
$$10^{-6} \times 6.02 \times 10^{23} = 6.02 \times 10^{17}$$

When equal number of cations and anions (such, that charges are equal) are missing $(1 \text{ Na}^+, 1 \text{ Cl}^-/1 \text{ Fe}^{2+}, 2 \text{ Cl}^-)$.

It is a case of Schottky defect.

109 **(a)**

Frenkel defects arises when an ion is missing from its normal position and occupies an interstitial site between the lattice points.

110 **(b)**

When equal number of cations or anions are missing from their lattice sites (to maintain electrical neutrality), then the defect is called Schottky defect. The defect is observed in highly ionic compounds which have cations and anions of similar size *e. g.*, NaCl, KCl etc.

111 **(a)**

Radius of Na(if bcc lattice) = $\frac{\sqrt{3}}{4} a$

$$=\frac{\sqrt{3} \times 4.29}{4}$$

- 1 8574 Å

112 (c)

More is deformation in anion more is covalent character.

113 **(d)**

In hexagonal close packing and cubic close packing, the co-ordination number is 12.

114 **(d)**

Number of atoms at corner = $8 \times \frac{1}{8} = 1$

Number of atoms at face centres = $6 \times \frac{1}{2} = 3$

 \therefore The formula of the compound is *XY*₃.

115 **(d)**

Zinc blende (ZnS) has ccp arrangement of S^{2-} and Zn^{2+} in alternative tetrahedral sites. The coordination number of $Zn^{2+} = 4$ and $S^{2-} = 4$ in ZnS

116 **(c)**

The phenomenon by which a certain crystalline compound exists in two or more different crystalline forms, is called polymorphism *e.g.,* $CaCO_3$ occurs in two polymorphic forms, *i. e.,* calcite (rhombohedral) and aragonite (orthorhombic).

117 **(c)**

Ge and Si are doped with gp 13(boron) element to give *p*-type conductor.

118 **(a)**

Distance between K^+ and F^- in KF

 $= r_{\rm K^+} + r_{\rm F^-} = 133 + 136 = 269 \ {\rm pm}$

In fcc unit cell

$$\sqrt{2a} = 4r \quad \Rightarrow r = \frac{\sqrt{2} a}{4}$$
$$= \frac{\sqrt{2} \times 361}{4} = 127 \text{ pm}$$

120 **(d)**

Each possess unpaired electrons.

121 **(c)**

Due to Frenkel defect, density of a crystal remains unchanged.

122 **(b)**

ABABABpacking has empty space of 28% in sc, 32% in bcc, 26% in hcp and ccp.

123 **(d)**

It is evident from figure that *B* occupies tetrahedral voids and thus, co-ordination number is six.

124 **(b)**

It is the definition of piezo-electric effect or piezo-electricity.

125 **(c)**

Ferrimagnetism involves magnetic dipoles oriented in parallel and antiparallel direction in unequal number to give some net dipole moment.

126 **(b)**

The 8:8 type of packing is present in caesium chloride (CsCl). In this structure each Cs^+ ion is surrounded by 8 Cl⁻ ions and each Cl⁻ ion is also surrounded by 8 Cs⁺ ions.

127 **(c)**

When coordination number is eight, the radius ratio $\frac{r^+}{r^-}$ lies between 0.732 to 1.000.

128 **(a)**

ZnS has zinc blende type structure (*i. e.*, ccp structure). The S^{2-} ions are present at the corners of the cube and at the centre of each face. Zinc ions occupy half of the tetrahedral sites. Each zinc ion is surrounded by four sulphide ions which are disposed towards the corner of regular tetrahedron. Similarly, S^{2-} ion is surrounded by

four Zn²⁺ ions.

129 **(d)**

 \sim NaCl has Na⁺ and Cl⁻ ions in solid state.

130 **(b)**

In case of ccp or fcc structure

$$4r = \sqrt{2}a \quad \Rightarrow \quad a = \frac{4r}{\sqrt{2}}$$
$$a = 2\sqrt{2}r$$

131 **(d)**

:.

Molecular solids just melt above 273 and are poor 138 (c)

conductor of heat and electricity.

132 **(c)**

In vacuum, there is no friction.

133 **(c)**

In bcc
$$r = \frac{\sqrt{3}}{4}a = \frac{\sqrt{3}}{4} \times 351 = 151.98 \text{ pm}$$

134 **(b)**

The maximum packing or the maximum proportion of volume filled by hard spheres in various arrangements are :

1. Simple cubic $=\frac{\pi}{6}=0.52$

2.
$$bcc = \frac{\pi\sqrt{3}}{8} = 0.68$$

3.
$$fcc = \frac{\pi\sqrt{2}}{6} = 0.74$$

4. hcp
$$=\frac{\pi\sqrt{2}}{6}=0$$

5. Diamond
$$=\frac{\pi\sqrt{3}}{6}=0.34$$

135 **(c)**

NaCl has fcc structure. In fcc lattice

$$r^{+} + r^{-} = \frac{a}{2}$$

Where, a = edge length

 $r^+ = 95 \text{ pm}, r^- = 181 \text{ pm}$

Edge length =
$$2r^+ + 2r^-$$

$$= (2 \times 95 + 2 \times 181) \text{ pm}$$

= 190 + 362 = 552 pm

136 **(c)**

Radius ratio	Coord	Examp
	inatio	le
	n no	
0.155 - 0.225	3	$B_{2}O_{3}$
0.225 - 0.414	4	ZnS
0.414 - 0.732	6	NaCl
0.732 - 1	8	CsCl

In ionic solids the shape of crystal depends upon relative size of ions.

Given,
$$r_{c^{+}}(Rb^{+}) = 1.46 \text{ Å}$$

 $r_{a^{-}}(I^{-}) = 2.16 \text{ Å}$
 $\therefore \qquad \frac{r_{c^{+}}}{r_{a^{-}}} = \frac{1.46}{2.16} = 0.676$

∴ It will have coordination number 6 and structure will be same as of NaCl.

137 **(c)**

F⁻ has no unpaired electron and thus,diamagnetic. A diamagnetic does not contain anyunpaired electron.

This is the law of constancy of symmetry.

139 **(a)**

NaCl has fcc structure and thus,

$$r_{c} + r_{a} = \frac{a}{2}$$

$$100 + r_{a} = \frac{580.4}{2}$$

$$= 290.2$$

$$100 + r_{a} = 290.2$$

$$r_{a} = 290.2 - 100$$

$$= 190.2$$

140 **(c)**

No. of atoms of *A* from corners of unit cell = $7 \times \frac{1}{8} = 7/8$

No. of atoms of *B* from faces of unit cell = $6 \times \frac{1}{2} = 3$

Thus, A : B :: 7/8 : 3 or 7 : 24 Thus, formula is A_7B_{24}

142 **(c)**

Coordination number of Al in $AlCl_3$ in (solid) crystalline state is 6.

143 **(a)**

Rock salt has fcc structure.

144 **(b)**

In ZnS structure, sulphide ions occupy all (fcc) lattice points while Zn²⁺ ions are present in alternate tetrahedral sites.

Therefore, there is one Zn^{2+} ion for every S^{2-} ion.

145 **(d)**

A occupies corners, thus number of A atoms per unit cell

 $= 8 \times \frac{1}{8} = 1$

B occupies face centres, thus number of *B* atoms per unit cell

 $= 6 \times \frac{1}{2} = 3$

: The empirical formula of the compound is AB_3 . 146 (c)

Amorphous solids neither have ordered arrangement (i.e., no definite shape) nor have sharp melting point like crystals, but when heated they become pliable until they assume the properties usually related to liquids. If is therefore, they are regarded as super cooled liquids.

147 **(a)**

Due to smaller size of F.

148 **(b)**

For hexagonal $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$.

150 **(b)** Doping of silicon with boron leads to p –type semiconductor. 151 **(a)** For a bcc lattice, $2(r^+ + r^-) = \sqrt{3} a$

$$\therefore r^+ + r^- = \frac{\sqrt{3} \times 387}{2} = 335 \text{ pm}$$

152 **(d)**

$$a = (\sqrt[2]{2r})$$
 Packing fraction

$$= \frac{2 \times \pi r^2}{\left(\sqrt[2]{2r}\right)^2} = \frac{2\pi r^2}{8r^2}$$
$$= \frac{\pi}{4} = \frac{3.14}{4} = 0.7854$$
$$= 78.54\%$$

153 **(c)**

The dipoles in certain solids are spontaneously aligned in a particular direction, even in the absence of electric field. Such substances are called ferroelectric.

154 **(a)**

An increase in charge of +ve ions also brings in an increase in number of electrons involved in metallic crystals, and thereby metallic bonding becomes stronger.

155 **(c)**

Lowest potential energy level provides stable arrangement.

156 **(d)**

These are characteristics of solids.

157 **(d)**

Arrangement of sulphide ions (S^{2-}) in zinc blende (ZnS) is fcc while Zn²⁺ ions occupy alternate tetrahedral voids.

158 **(a)**

ZnS has fcc structure and is an ionic crystal having 4 : 4 co-ordination number.

159 **(d)**

Substances which are expected to be paramagnetic or ferromagnetic on the basis of unpaired electron but actually they possess zero net magnetic moment are called antiferoomagnetic.

160 **(c)**

Presence of excess Na in NaCl and there by causing anion vacancy defect makes it yellow, presence of excess Li in LiCl makes it pink and presence of excess K in KCl makes it violet. Greater the number of F-centres, greater is intensity of colour. 161 (d)

In simple cubic close packing of sphere, coordination number is 12.

162 **(b)**

Electronic collisions are responsible for metallic conduction and heat conduction in metals.

163 **(b)**

A crystalline solid is one in which atoms are arranged in an orderly manner in a three dimensional region to provide a definite shape and sharp melting point. These have flat faces, sharp edges bounded by well defined plane faces.

164 **(c)**

Each Na⁺ (in bcc) in NaCl is surrounded by six Cl⁻ (in fcc) and each Cl⁻ in NaCl is surrounded by six Na⁺ and thus, on interchanging Na⁺ and Cl⁻ the fcc structure of NaCl will not change but with respect to Na⁺ it will be fcc and with respect to Cl⁻ it will be bcc.

165 **(a)**

In the given crystal equal number of cations and anions are missing (two K⁺ and two Cl⁻) from their normal lattice sites and the crystal maintains electrical neutrality. Hence, this is Schottky defect.

166 **(c)**

Number of Cu atoms at corners = $8 \times \frac{1}{8} = 1$

Number of Ag atoms at edge centres = $12 \times \frac{1}{4}$ =

Number of Au atoms at body centre = $1 \times 1 = 1$

 \therefore Formula is Cu₄Ag₃Au.

167 **(a)**

The co-ordination number of sc, fcc and bcc structure are 6,12 and 8 respectively. CsCl has body centred cubic structure having 8 : 8 coordination number.

168 **(b)**

It is a characteristic of liquid crystal.

169 **(d)**

A molecular crystal may have crystalline state (I_2) , amorphous state (S_8) , i.e., a non-crystalline state.

170 **(b)**

Note that $a \neq b \neq c$ and $\alpha = \beta = \gamma = 90^\circ$, the conditions for orthorhombic system.

171 **(b)**

Density = $\frac{Z \times M}{a^3 \times N_0}$ (: Z = 1, for $M_{CsBr} = 213$) $a = 436.6 \times 10^{-12} \text{ m} = 4.366 \times 10^{-10} \text{ m}$ $= 4.366 \times 10^{-8} \text{ cm}$ Density = $\frac{1 \times 213}{(4.366 \times 10^{-8})^3 \times 6.02 \times 10^{-23}} = 4.25 \text{ g/cm}^3$ No doubt for bcc Z = 2, but in CsBr it is 8 : 8 coordination and here one Cs⁺ ion is present in body centre and a net contribution of 1 Br⁻ per unit cell is calculated due to its presence at the corners.

172 **(b)**

High temperature changes 8 : 8 co-ordination to 6 : 6 whereas high pressure changes 6:6 co-ordination to 8 : 8.

173 **(c)**

Silicon is used for making a transistor.

Given,
$$r_{Na^+}/r_{Cl^-} = 0.55$$

 $r_{K^+}/r_{Cl^-} = 0.74$
 $\frac{r_{KCl}}{r_{NaCl}} = ?$
 $\frac{r_{Na^+}}{r_{Cl^-}} = 0.55$
 $\frac{r_{Na^+}}{r_{Cl^-}} + 1 = 0.55 + 1$
 $\frac{r_{Na^+} + r_{Cl^-}}{r_{Cl^-}} = 1.55$... (i)
 $\frac{r_{K^+}}{r_{Cl^-}} = 0.74$
 $\frac{r_{K^+}}{r_{Cl^-}} = 0.74 + 1$

$$\frac{r_{\rm K^+}}{r_{\rm Cl^-}} + 1 = 0.74 + 1$$

$$\frac{1}{100} = 1.74$$
 ... (ii)

Eq (ii) devide by Eq (i)

$$\frac{r_{\text{K}^+} + r_{\text{Cl}^-}}{r_{\text{Na}^+} + r_{\text{Cl}^-}} = \frac{1.74}{1.55} = 1.1226$$

175 **(d)**

The face centred cubic unit cell consists of 8 atoms at the eight corners and one atom at each of the six faces. This atom at the face is shared by two unit cells.

$$n = 8 \times \frac{1}{8} + \left(6 \times \frac{1}{2}\right) = 4$$

176 **(a)**

:.

Given, angle of diffraction $(2\theta) = 90^{\circ}$ $\theta = 45^{\circ}$

Distance between two planes, d = 2.28 Å n = 2 [:: Second order diffraction]

Bragg's equation is

$$n\lambda = 2d\sin\theta$$
$$2 \times \lambda = 2 \times 2.28 \times \sin 45^{\circ}$$

$$\lambda = 1.612$$

177 **(c)**

Molecular solids are the substances having molecules as constituent units having interparticle forces such as van der waal's forces or hydrogen bonds.

178 **(c)**

	No. of B^- ions in unit cell = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$	
	Now A^+ ions occupies 25% of tetrahedral holes =	
	$\frac{8 \times 25}{100} = 2$	
	Thus, ratio of B^- and A^+ is 2 : 1 or formula is AB_2 .	
179	(c)	1(
	Padius ratio $r^{+} - \frac{126}{2} = 0.59$. Thus, for structure	1:
	Radius fatio $\frac{1}{r^{-}} = \frac{1}{216} = 0.36$; filus, icc su ucture	
100	and co-ordination no. is six.	10
180		•
101	This is Hauy's law of rationality of indices.	
181	(C) Number of stome in unit cell of No are 2 (hes)	
	Number of atoms in unit cell of Ma (fee) are 4	
102	(d)	
102	All these show Schottly defect	
183	(h)	10
105	Substances which look like solids but are actually	-
	not solid are called pseudo solids. Glass is super	
	cooled liquid and thus, called pseudo solid.	19
184	(a)	
	Amorphous solids neither have ordered	19
	arrangement (i.e., no definite shape) nor have	
	sharp melting point like crystals, but when heated	
	they become pliable until they assume the	\leq
	properties usually related to liquids. It is	
	therefore, they are regarded as super cooled	19
	liquids.	
185	(a)	
	It is the definition of pyro-electricity.	
186	(a)	
	CaF_2 has fcc structure with 8 : 4 co-ordination and	
	has 4 units of CaF_2 per unit cell.	10
187	(a)	1.
100	The facts reported in b, c, d are wrong.	
188	(a)	
	strongly attracted in magnetic field and retain	
	magnetism in absence of magnetic field	19
189	(a)	
107	Molecular solids are the substances having	
	molecules as constituent units having	
	interparticle forces such as van der waal's forces	
	or hydrogen bonds.	
190	(c)	
	Given, A solid has two elements $= X$ and Z	
	Zare in ccp arrangement and X occupy all	
	tetrahedral sites.	19
	Let the number of atoms of Z in ccp arrangement	~
	= 100	20
	\therefore Number of atoms of tetrahedral sites = 200	2

: Number of atoms of X = 200 (: They occupy all tetrahedral sites) \therefore Ratio of X : Z = 200 : 100= 2 : 1: The formula of compound is X_2Z . 91 (d) These are characteristic elements of symmetry of a cubic crystal. 92 (a) Effective number of corner atom (A) $= 8 \times \frac{1}{8} = 1 = X$ Effective number of face centred atom (B) $=\frac{1}{2} \times 6 = 3 = Y$ Thus, composition of substance = AB_3 . 93 **(b)** Smaller cation and smaller anion leads to higher lattice energy. 94 **(b)** A crystal possesses only one centre of symmetry. 95 (c) In antifluorite structure, the anions are oxide ions. The oxide ions form a face centred cubic array and the metal ion (cation) fill half of the tetrahedral voids. e.g., -Na₂O. 96 (d) Schottky defects are arised when one positive ion and one negative ion are missing from their respective positions leaving behind a pair of holes. These are more common in ionic compounds with high co-ordination number and having almost similar size of cations and anions. 97 (b) The body centred cubic cell consists of 8 atoms at the corners and one atom at centre. $n = \left(8 \times \frac{1}{8}\right) + 1 = 2$:. 98 (a) KCl has face centred cubic structure $\therefore n = 4$ Given, Density = 1.9893 g cm^{-3} , $a = 6.29082 \times$ 10^{-8} cm

$$\therefore \text{ Density} = \frac{n \times \text{mol.wt.}}{V \times \text{av.no.}} = \frac{n \times \text{mol.wt.}}{a^3 \times \text{av.no.}}$$

$$\therefore 1.9893 = \frac{4 \times 74.5}{(6.29083 \times 10^{-8})^3 \times N}$$
$$N = 6.017 \times 10^{23}$$

199 **(d)**

There is no unpaired electron in either of them. 200 **(d)**

```
It is a fact.
```

```
201 (a)
```

Schottky defects are arised when one positive ion and one negative ion are missing from their respective positions leaving behind a pair of holes. These are more common in ionic compounds with high co-ordination number and having almost similar size of cations and anions.

202 (a)

Both are isomorphs to each other because of same molecular formula and same molecular geometry or same crystalline form.

203 (b)

In NaCl : No. of Na⁺ ions = 12 (at edge centre) $\times \frac{1}{4} \Big| 211$ (a) +1

 $(at body centre) \times 1 = 4$

No. of Cl⁻ ions = 8 (at corners) $\times \frac{1}{8}$ + 6 (at face

centre) $\times \frac{1}{2} = 4$

Thus, 4 units of NaCl.

204 **(b)**

 $M_p X_q$ has ccp structure, therefore,

$$X = 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$$
$$M = 4 \times \frac{1}{4} + 1 = 2$$

So, unit cell formula of the compound is M_2X_4 and the empirical formula of the compound is MX_2 .

205 (d)

All these are characteristics of ferrites. 206 (d)

In NaCl, the length of the edge of the unit cell is $= 2 \times$ distance between Na⁺ and Cl⁻ ions hence,

a = 2X pm.

 $\frac{r^+}{r^-}$ for tetrahedral void = 0.225 - 0.414; $\frac{r^+}{r^-}$ for triangular = 0.155 - 0.225

208 (d)

Molar volume from pyknometric density $\frac{M}{d} = \frac{M}{2.165 \times 10^3} \text{ m}^3 \quad (M \text{ in kg})$ Molar volume from X-ray density = $\frac{M}{d}$

$$= \frac{M}{2.178 \times 10^{3}} \text{ m}^{3}$$

$$\therefore \text{ volume unoccupied} = \frac{M}{10^{3}} \left(\frac{1}{2.65} - \frac{1}{2.178}\right) \text{ m}^{3}$$

$$\therefore \text{ Fraction unoccupied} = \left(\frac{0.013 M \times 10^{-3}}{2.165 \times 2.178}\right) / \left(\frac{M \times 10^{-3}}{2.165}\right)$$

$$= 5.96 \times 10^{-3}$$

209 (a)

Au atoms are at eight corners of the cube. Thus,

no. of Au atoms in the unit cell $=\frac{8}{8}=1$. Cu atoms are at the face centre of six faces. Therefore, its share in the unit cell = $\frac{6}{2}$ = 3. Thus, formula is AuCu₃. 210 (a) When an ion (generally cation due to its small size) is missing from its normal position and occupy an interstitial site between the lattice points, the lattice defect obtained is known as Frenkel defect. The distance between Li⁺ and Cl⁻ ion can be derived as half of the edge length of cube. $d_{\text{Li}^+-\text{Cl}^-} = \frac{5.14}{2} = 2.57\text{\AA}$ $d_{\text{Cl}^--\text{Cl}^-} = \sqrt{(2.57)^2 + (2.57)^2} = 3.63 \text{ Å}$ $r_{\text{Cl}^-} = \frac{d_{\text{Cl}^--\text{Cl}^-}}{2} = \frac{3.63}{2} = 1.815 \text{\AA}$ *.*.. ÷ 212 (b) Antiferromagnetic possess complementary dipoles alignment giving net dipole moment equal to zero 213 **(b)** Crystalline solids are anisotropic since, they exhibit different properties in all directions. 214 (c) SiO₂ is covalent crystal like diamond and graphite. 215 (c) In fcc \rightarrow contribution of each atom present at the corner = $\frac{1}{8}$ Contribution of each atom at the face centre $=\frac{1}{2}$ Hence, the total number of atoms in fcc $=\left(8\times\frac{1}{8}\right)+\left(6\times\frac{1}{2}\right)=1+3=4$

216 (d)

Ionic compounds are soluble in polar solvents due to dipole ion attraction.

217 (c)

An unit cell of CsCl having bcc structure consists of 8 atoms at the corner and one atom at centre.

Thus, no. of $Cl^{-} = 8 \times \frac{1}{8} = 1$

and no. of $Cs^+ = 1 \times 1 = 1$ Thus, no. of CsCl unit per unit cell = 1

218 (b)

In ZnS each sulphide ion is tetrahedrally surrounded by four zinc ions and each zinc ion is surrounded by four sulphide ions. Thus, zinc sulphide possesses 4 : 4 coordination.

219 (a)

A body centred cubic unit cell contains 8 atoms at the 8 corners and one in the centre.

 \div Total number of atoms per unit cell

$$= 8 \times \frac{1}{8} + 1 = 2$$

$$\Rightarrow \text{ Density} = \frac{n \times \text{ at. wt.}}{\text{av. no.} \times a^3}$$

$$= \frac{2 \times 23}{6.023 \times 10^{23} \times (4.24 \times 10^{-8})^3}$$

 $= 1.002 \text{ g cm}^{-3}$

220 **(c)**

Copper crystallises in fcc lattice.

If, r = radius a = edge lengthThen $r = \frac{a}{a\sqrt{2}} = \frac{361}{a\sqrt{2}}$ pm

$$^{2\sqrt{2}} = 127.633 \text{ pm} \approx 128 \text{ pm}$$

221 **(d)**

There are four body diagonals. Atoms on the body diagonals are not shared by any other unit cell.

Contribution by atoms on corners

 $= 8 \times \frac{1}{8} = 1$ and

Contribution by atoms on body diagonal = $2 \times 4 = 8$

Hence, total number of atoms = 9

222 **(b)**

The ions leave its correct lattice site and occupies an interstitial site.

223 **(b)**

Graphite is an example of covalent solid.

224 **(d)**

All are covalent molecules. A covalent solid has atoms as constituent units at lattice points held together by covalent bonds.

225 **(b)**

In Na_20 , 0^{2-} ion possesses fcc lattice having Na^+ ions at all tetrahedral sites.

226 **(a)**

In sodium chloride, each Na^+ ion is surrounded by six Cl^- ions and Cl^- ion is surrounded by six Na^+ ions. Thus, both the ions have coordination number six.

227 **(b)**

For bcc unit cell, number of atoms at corners (per unite cell)= $\frac{1}{8} \times 8 = 1$

Number of atoms at body centre =1

Total number of atoms = 1 + 1 = 2

228 **(a)**

The unit cell of body centred cube has one atom at

each of the eight corners and one atom at the centre of the body. Thus, the atom at centre remains in contact with 8 corner atoms. Hence, the coordination number of bcc is 8.

229 (d)

All these are characteristic facts.

230 **(a)**

$$r_{\text{atom}} = \frac{\sqrt{3}}{4}a$$
; Also closest approach in bcc
Lattice is $\frac{1}{2}$ of body diagonal, *i.e.*, $\frac{\sqrt{3}}{4}a = 1.73A$
or $a = \frac{1.73 \times 2}{\sqrt{3}} = 1.996$ Å = 199.6 pm

231 (d)

Each sphere has one octahedral hole and two tetrahedral holes.

232 **(a)**

In a closed packed structure, the number of tetrahedral voids per atom of the crystal is two. Since, half of the tetrahedral voids are occupied by A^+ , the number of A^+ is same as that of B^- in the crystal. Thus, formula is AB. Or

- No. of B^- ions in unit cell = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$
- A^+ ions occupies 50 of tetrahedral voids $=\frac{8 \times 50}{100} =$

The ratio of B^- and A^+ is 1 : 1

233 (c)

Crystalline solids are anisotropic in nature.

234 **(b)**

This is the law of constancy of interfacial angles. 235 **(d)**

Frenkel defect is arised when the cations are missing from their lattice sites and occupy interstitial sites. As a result of Frenkel defect, density remains unchanged but dielectric constant increases.

236 **(d)**

In fcc atoms are present at faces and corners. Number of atoms in fcc = atoms at corners

+ atoms at faces of unit cell.

= (no. of corners × contribution by one atom) + (no. of faces × contribution by one atom)

$$=\left(8 \times \frac{1}{8}\right) + \left(6 \times \frac{1}{2}\right) = 1 + 3 = 4$$

237 **(b)**

In diamond,

the maximum proportion of available volume that can be filled by hard spheres $=\frac{\pi\sqrt{3}}{16}=0.34$

238 **(a)**

Most of the metals have their transition temperature (i.e., the temperature at which a

substance starts to behave as super conductor) in the range of 2-5 K.

239 (a)

Density (
$$\rho$$
) = $\frac{Z \times M}{a^3 \times N_0}$
2.7 = $\frac{Z \times 27}{(405 \times 10^{-10})^3 \times 6.023 \times 10^{23}}$
 $Z = \frac{2.7 \times (405)^3 \times 10^{-30} \times 6.023 \times 10^{23}}{27} = 4$

For face centred cubic unit cell, number of atoms are 4.

240 (a)

More is the number of unpaired electron, more is magnetic nature.

241 **(b)**

It is a fact. Four out of 8 tetrahedral voids are occupied by carbon.

242 (d)

Flame colours are due to metal excess defect. What happens that in some ionic crystals, there becomes an excess of metal atom, which by loosing e^- , change into ions. These electrons can absorb energy and go into excited states from ground state. Thus, the absorption of certain wavelength of light takes place and crystal becomes coloured according to complementary colour. The spaces occupied by extra e^- are called F-centres.

244 (a)

Since *A* atoms are present at the corners of the cube,

Number of A atoms per unit cell = $8 \times \frac{1}{8} = 1$ Number of *B* atoms per unit cell = 1(: Present at the body centre of the cube)

Hence, the formula of the compound = AB

245 (c)

NaNO₃ and KNO₃ are not isomorphs because they have same molecular formula but different crystal structure.

246 (d)

A crystal has these three types of symmetry. 247 (c)

In fcc octahedral voids : at the centre = 1at the edges = $12 \times$ = 3Total = 4

.

In fcc tetrahedral voids : 8

248 (d)

In a unit cell, W atoms at the corner

$$=\frac{1}{8} \times 8 =$$

1

O-atoms at the centre of edge

$$=\frac{1}{4} \times 12 = 3$$

W: 0: Na = 1:3:1Hence, formula = $NaWO_3$

249 (c)

Both Pt and Fe does not form amalgam with Hg. 250 (d)

 Fe_3O_4 is ferrimagnetic because it is strongly attracted in magnetic field.

251 **(b)**

:.

The $\frac{r^+}{r^-}$ for NaCl = 0.414 to 0.732 (due to fcc structure)

$$r^- = 241.54$$
 to 136.6 pm

Density =
$$\frac{n \times M}{a^3 \times N_A \times 10^{-30}}$$

= $\frac{2 \times 100}{(400)^3 \times 6.02 \times 10^{23} \times 10^{-30}}$
= 5.188 g/cm³

253 (b) Every constituent has two tetrahedral voids . In ccp lattice atoms = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$

$$\therefore$$
 tetrahedral void = 4 \times 2 = 8;

Thus, ratio =
$$4:8:1:2$$

254 (b)

 TiO_2 has tetragonal system with five plane of symmetry and five axes of symmetry.

255 (c)

The cubic unit cell has 8 atoms at eight corners. Thus, each atom is shared by 8 unit cells.

256 (a)

In bcc structure 68% of the available volume is occupied by spheres. Thus, vacant space is 32%.

257 (a)

Packing fraction in bcc is 68% and thus, empty space is 32%.

258 **(a)**

Suppose atoms of element *Y* in ccp = 100Number of tetrahedral voids = 2×100

Number of atoms of element
$$X = \frac{2}{2} \times 200$$

$$=\frac{400}{3}$$

 $\frac{X}{V}=\frac{400}{200}$

Formula =
$$X_4 Y_3$$

259 (a)

Since, in a unit cell of NaCl crystal, the ions are arranged in the following manner.

When all the ions lying along the shown axis, the remaining unit cell contains 4 Na^+ and 4 Cl^- ions.

Shiha

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

Statement 1: Space or crystal lattice have symmetry of the arrangement of points.

Statement 2: $n\lambda = 2dSin \theta$; is known as Bragg's equation.

2

- **Statement 1:** Glasses can be moulded and blows into various shapes.
- Statement 2: Glasses have a low melting point.

3

- **Statement 1:** Frenkel defects are found in silver halides.
- **Statement 2:** Frenkel defects are commonly found in ionic solids.
- 4
- **Statement 1:** Graphite is an example of tetragonal crystal system.

Statement 2: For a tetragonal system $a=b \neq c$, $\alpha = \beta = 90^{\circ}$, $y = 120^{\circ}$

- 5
- **Statement 1:** Diamond and graphite are polymorphic forms.
- **Statement 2:** Carbon adopts different structural arrangements under different conditions to give there two forms.
- **Statement 1:** In NaCl crystal each Na⁺ ion is touching 6Cl⁻ ions but these Cl⁻ ions do not touch each other.
- Statement 2: The radius ratio r Na /r Cl- is greater than 0.414 required for exact fitting.

CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(b)**

Space or crystal lattice is a regular repeating arrangement of point in space and from the basis forms the basis of classification of all structures.

2 **(a)**

Glasses are Morphours solid which change their shape on change the melting point. So they do not 6 have the sharp melting point.

3 **(b)**

Frenkel defect are commonly found in silver halide Agx. Because Ag⁺ion is small in size due to this reason, it changes its position to crystal lattice to interstitial position.

4 **(d)**

Liken quartz and ice, graphite is an example of hexagonal system.

For this $\alpha = \beta = 90^{\circ}$ and $\gamma = 120^{\circ}$ and $a = b \neq c$

For a tetragonal system $\alpha = \beta = \gamma = 90^{\circ}$ and $a = b \neq c$

5 **(a)**

SMARTA

Same substance adopt different structural arrangements under different conditions, such arrangements are called polymorphic froms. So, diamond and graphite have same molecular formula but different structure. Diamond is tetrahedral and graphite is hexagonal.

(a)

Nacl has fcc structure in which each Na⁺ is surrounded by six ions and *vic versa*.In this octahedral arrangement, coordination, number of bothNa⁺ and Cl⁻ is six for which radius ratio lies between 0.414 and 0.732. The radius ratio does not allow Cl⁻ ions to touch each other.