REDOX REACTIONS

CHEMISTRY

Single Correct Answer Type

1.	Which among the following shows maximum oxidat	ion state?	
	a) V b) Fe	c) Mn	d) Cr
2.	A substance, that by its sharp colour change indicate	es the completion of reactio	on is known as :
	a) Acid b) Base	c) Indicator	d) None of these
3.	In the reaction, $CH_3OH \rightarrow HCOOH$, the number of e	lectrons that must be adde	d to the right is:
	a) 4 b) 3	c) 2	d) 1
4.	A solution of KMnO ₄ is reduced to MnO ₂ . The normal	ality of solution is 0.6. The n	nolarity is:
	a) 1.8 <i>M</i> b) 0.6 <i>M</i>	c) 0.1 <i>M</i>	d) 0.2 <i>M</i>
5.	In the reaction of O_3 and H_2O_2 , the later acts as:		0 7
	a) Oxidising agent		
	b) Reducing agent	4/4	
	c) Bleaching agent		
	d) Both oxidising and bleaching agent		
6.	Of the following reactions, only one is a redox reacti	on. Identify this reaction.	
	a) $Ca(OH)_2 + 2HCI \rightarrow CaCl_2 + 2H_2O$	b) $2S_2O_7^{2-} + 2H_2O \rightarrow 2S_7$	$0_4^{2-} + 4H^+$
	c) $BaCl_2 + MgSO_4 \rightarrow BaSO_4 + MgCl_2$	d) $Cu_2S + 2FeO \rightarrow 2Cu +$	- 2Fe + SO ₂
7.	Reductants are substances which:		
	a) Show an increase in their oxidation number during	ng a change	
	b) Lose electrons during a change		
	c) Reduce others and oxidise themselves		
	d) All of the above		
8.	In the equation, $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + S$	nCl ₄ . The equivalent wei	ght of stannous chloride
	(molecular weight = 190) will be:		
	a) 190 b) 95	c) 47.5	d) 154.5
9.	The oxoacid which acts both as oxidising and reduci	ng agent is :	
	a) H ₂ SO ₄ b) H ₃ PO ₄	c) HNO ₂	d) HClO ₄
10.	Oxidation state of oxygen is -1 in the compound :		
	a) NO ₂ b) MnO ₂	c) PbO ₂	d) Na_2O_2
11.	When sulphur dioxide is passed in an acidified K ₂ Cr	${\bf r}_2{\bf 0}_7$ solution, the oxidation	state of sulphur is changed
	from		
	a) 4 to 0 b) 4 to 2	c) 4 to 6	d) 6 to 4
12.	Reduction is a process which involves:		
	a) Electronation		
	b) Addition of hydrogen or removal of oxygen		
~~	c) Addition of metal or removal of non-metal		
	d) All of the above		
13.	The number of electrons lost or gained during the cl	nange Fe + $H_2O \rightarrow Fe_3O_4$ +	H ₂ is
	a) 2 b) 4	c) 6	d) 8
14.	A group of methods of quantitative chemical analy	rsis involving the measure	ment of volume of reacting
	substance is known as:		
	a) Gravimetric analysis b) Volumetric analysis	c) Both (a) and (b)	d) None of the above
15.	Which one of the following reaction is possible at an		
	a) $F_2 + 2e^- \rightarrow 2F^-$	b) $2H^+ + \frac{1}{2}O_2 + 2e^- \rightarrow I$	H ₂ O
	-, - 2	$\frac{2}{2}$	1120

	c) $2Cr^{3+} + 7H_2O \rightarrow C$	$r_2 O_7^{2-} + 14H^+ + 6e^-$	d) $Fe^{2+} \rightarrow Fe^{3+} + e^{4+}$	g ⁻
16.	· -	- '	•	ss of nitrate ion in the reaction
	would be:		•	
	a) 6.20	b) 7.75	c) 10.5	d) 21.0
17.	WI ich acts as a reduci	•	,	,
	a) HNO ₃	b) KMnO ₄	c) H ₂ SO ₄	d) (COOH) ₂
18.	, ,		into HIO_3 , $HNO_3 \rightarrow NO$?	1.) (2.0.0.1.)2
	a) 4.13 g	b) 24.8 g	c) 6.2 g	d) 10.2 g
19.	<u> </u>	, ,	, ,	ion state of S is changed from:
	a) + 4 to 0	b) +4 to +2	c) +4 to +6	d) +6 to +4
20.			•	towards metal species is :
	1. Reducing; 2. Oxidis	= =		
	a) 1, 3	b) 1, 2, 3	c) 1, 2	d) 2, 3
21.			ly reducing due to the pres	
	a) Sodium atoms	b) Solvated electrons		d) Sodium amide
22.	Oxidation numbers of		.,	
	a) +2 and +3	b) +1 and +2	c) +1 and +3	d) None of these
23.	•	•		e oxidation number of V in this
	compound is:	1		
	a) + 3	b) $+ 2$	c) + 4	d) -4
24.		ng agent in different med		,
	$MnO_4^- \rightarrow Mn^{2+}$	0 0		
	\rightarrow MnO ₄ ²⁻			
	$\rightarrow MnO_2$			
	$\rightarrow Mn_2O_3$			
	- 0	number respectively are		
	a) 1,3,4,5	b) 5,4,3,2	c) 5,1,3,4	d) 2,6,4,3
25.		of Ba in barium peroxide	,	3
	a) +2	b) -1	c) +4	d) +6
26.	Strongest reducing age	ent among the following is	S:	-
	a) K	b) Mg	c) Al	d) Ba
27.	The eq. wt. of $Na_2S_2O_3$		ion, $Na_2S_2O_3 + 5H_2O + 4C$	-
	a) (Mol. wt.)/1	b) (Mol. wt.)/2	c) (Mol. wt.)/6	d) (Mol. wt.)/8
28.	When Fe metal is ruste	ed then Fe is :		
	a) Oxidised	b) Reduced	c) Hydrolysed	d) Precipitated
29.	The value of n in MnO2	$\frac{1}{4} + 8H^+ + ne^- \rightarrow Mn^{2+} +$	4H ₂ 0 is	
	a) 5	b) 4	c) 2	d) 3
30.	In nitric oxide (NO), th	e oxidation state of nitrog	gen is :	
	a) -2	b) +1	c) -1	d) +2
31.	Reaction of acidified K	MnO ₄ with ferrous oxalat	e gives oxidation products	containing:
	a) Fe ³⁺	b) CO ₂	c) Both (a) and (b)	d) None of these
32.	How many litre a 0.5 I	V solution of an oxidising	. , , , , ,	e of 2.0 N solution of a reducing
	agent?			_
	a) 8 litre	b) 4 litre	c) 6 litre	d) 7 litre
33.	In which of the followi	ng oxygen shows –1 oxid	ation state?	-
	a) H_2O_2	b) CO ₂	c) H ₂ O	d) OF ₂
34.		, <u>-</u>	, -	\rightarrow I ₂ + H ₂ O in the balanced form
	respectively are	-	Č	
	a) 5, 1, 6	b) 1, 5, 6	c) 6, 1, 5	d) 5, 6, 1
35.		ws highest oxidation num	ber for chlorine?	

	a) HCl b) K	ClO	c) KClO ₃	d) KClO ₄
36.	The number of Fe ²⁺ ion oxidise	ed by one mole of MnO	$_4^-$ ions is :	
	a) 1/5 b) 2,	/3	c) 5	d) 3/2
37.	The oxidation number and cova	alency of sulphur in th	e sulphur molecule (S ₈) are	e respectively :
	a) 0 and 2 b) +	6 and 8	c) 0 and 8	d) +6 and 2
38.	The equivalent weight of iron in	n Fe_2O_3 would be:		
	a) 18.6 b) 28	8	c) 56	d) 11
39.	Oxidation number of carbon in	carbon suboxide is :		
	a) $+\frac{2}{3}$ b) +	$\frac{4}{3}$	c) +4	d) $-\frac{4}{3}$
40.	Volumetric estimation of CuSO	4 using hypo as interi	mediate solution along wit	h KI solution and starch as
	indicator is an example of:			
	-		c) Precipitation titration	d) None of these
41.	Oxidation state of oxygen in H ₂	-	4	
	a) -1 b) +		c) $+\frac{1}{2}$	d) -2
42.	Which reaction indicates the ox		2SO ₄ ?	
	a) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 +$		10	
	b) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4$	-		
	c) NaCl + $H_2SO_4 \rightarrow NaHSO_4 +$			
	d) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 +$			
43.	HCO_3^- contains carbon in the ox			15
	a) +5 b) +		c) +4	d) zero
44.	Oxidation state of oxygen atom	-	, = ,	1) 0
4.5	a) -1/2 b) Ze		c) +1/2	d) -2
45.	Which of the following reaction	involves oxidation an		LINO
	a) $NaBr + HCl \rightarrow NaCl + HBr$		b) HBr +AgNO ₃ \rightarrow AgBr -	
1.0	c) $H_2 + Br_2 \rightarrow 2HBr$:	d) $Na_2O + H_2SO_4 \rightarrow Na_2S$	$100_4 + H_2 U$
46.	The number of mole of oxalate		-	4) T
17	a) 1/5 b) 2,		c) 5/2	d) 5
4/.	The number of mole of KMnO ₄	that will be needed to	react completely with one	e mole of ferrous oxalate in
	acidic solution is: a) 3/5 b) 2,	/5	c) 4/5	d) 1
1 .Ω	Equivalent mass of IO_4^- when it		, ·	u) I
40.	a) $M/6$ b) M		c) <i>M</i> /5	d) M/4
49	The eq. wt. of Fe_3O_4 in , Fe_3O_4	$+$ KMnO. \rightarrow Fe.O.		u) m/ +
1).	a) <i>M</i> /6 b) <i>M</i>		c) 2 <i>M</i>	d) <i>M</i> /3
50	What volume of 3 molar HNO_3		,	, ,
50.		6 mL	c) 32 mL	d) 64 mL
51.	Which ordering of compounds		•	•
J1.	a) HNO ₃ , NO, NH ₄ Cl, N ₂ b) H			
52.	The oxidation states of iodine in			wj 110, 11103, 1114 o., 112
				d) +7,+5,+3
	In which reaction H_2O_2 acts as			-, ,,
	a) $Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O_2$			
	b) $2KI + H_2O_2 \rightarrow 2KOH + I_2$	2		
	c) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4$	H ₂ 0		
	d) $H_2O_2 + SO_2 \rightarrow H_2SO_4$	<u> </u>		
54.	In the reaction; $2Ag + 2H_2SO_4$	\rightarrow Ag ₂ SO ₄ + 2H ₂ O +	- SO ₂ , H ₂ SO ₄ act as :	
			c) Dehydrating agent	d) None of these
	,			=
55.	Oxidants are substances which	:		

	a) Show a decrease in their oxidation number during	g a change	
	b) Gain electrons during a change		
	c) Oxidise others and reduce themselves		
5 6	d) All of the above One gas bleaches the colour of the flowers by reduct	ion while the other by evid	ation The gases are
30.	a) CO, Cl ₂ b) H ₂ S, Br ₂	c) SO_2 , Cl_2	d) NH ₃ , SO ₃
57.	5 g of a sample of bleaching powder is treated with		, ,
37.	required 50 mL of $N/10$ hypo. The percentage of ava		
	a) 3.55 b) 7.0		d) 28.2% Cl ₂
۲o	The oxidation number of iodine in IF ₅ is:	c) 35.5	uj 20.2% Cl ₂
36.	a) $+5$ b) -5	c) -1	d) +1
50	The eq. wt. of FeC_2O_4 in , $FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2$ is		u) +1
39.			d) None of these
60		c) mol. wt./4	a) None of these
60.	Moles of H_2O_2 required for decolorizing 1 mole of ac		d) 7/2
<i>(</i> 1	a) 1/2 b) 3/2	c) 5/2	u) //2
01.	Oxidation number of sulphur in Caro's acid is	a) 10	d) 1.7
(2	a) +6 b) +4 The agriculant visibit of a reduction on an evident is	c) +8	a)+/
62.	1 0	s given by :	/
	a) Eq. wt. = $\frac{\text{mol. weight of reductatn or oxidant}}{\text{no. of electrons lost or gained by}}$		
	1 molecule of reductant or oxidant		
	b) Eq. wt. = $\frac{\text{mol. wt.}}{\text{valence}}$		
	mol wt		
	c) Eq. wt. = $\frac{\text{mor. wt.}}{\text{total charge on cation or anion}}$		
	d) All of the above		
63.	In presence of dil. H ₂ SO ₄ . The equivalent weight of k	KMnO ₄ is :	
	a) 1/5 of its molecular weight		
	b) 1/6 of its molecular weight		
	c) 1/10 of its molecular weight		
	d) 1/2 of its molecular weight		
64.	Respiration is:		
	a) Oxidation b) Reduction	c) Both (a) and (b)	d) None of these
65.	$a\text{K}_2\text{Cr}_2\text{O}_7 + b\text{KCl} + c\text{H}_2\text{SO}_4 \rightarrow x\text{CrO}_2\text{Cl}_2 + y\text{KHSO}_4$	$+zH_2O.$	
	The above equation balances when		
	a) $a = 2$, $b = 4$, $c = 6$ and $x = 2$, $y = 6$, $z = 3$		
	b) $a = 4, b = 2, c = 6$ and $x = 6, y = 2, z = 3$		
	c) $a = 6, b = 4, c = 2$ and $x = 6, y = 3, z = 2$		
	d) $a = 1, b = 4, c = 6$ and $x = 2, y = 6, z = 3$		
66.	Which of the following shows highest ox, no. in com	bined state?	
	a) Os b) Ru	c) Both (a) and (b)	d) None of these
67.	The oxidation number of sulphur in $H_2S_2O_8$ is :		
	a) +2 b) +6	c) +7	d) +14
68.	In the following reaction		
	$\mathbf{W}^{r+} + \mathbf{W} = \mathbf{W}^{r+} + \mathbf{W}^{r+}$		
	$M^{x+} + \text{MnO}_4 \qquad M\text{O}_3 + \text{Mn}^{2+} + \frac{1}{2}\text{O}_2,$		
	If one mole of MnO_4 oxidises 2.5 moles of M^{x+} then	the value of x is	
	a) 5 b) 3	c) 4	d) 2
69.	What volume of $N K_2 Cr_2 O_7$ solution is required to	oxidise (in acid solution) a	solution containing 10 g of
	$FeSO_4$? (mol.wt.of $FeSO_4 = 152$)		
	a) 65.78 mL b) 134 mL	c) 35 mL	d) 33.5 mL

70.	Bleaching action of chlori	ne in presence of moisture	is:	
	a) Reduction	b) Oxidation	c) Hydrolysis	d) substitution
71.	A mixture of potassium of	chlorate, oxalic acid and si	alphuric acid and sulphuri	c acid is heated. During the
	reaction which element u	ndergoes maximum chang	e in the oxidation number?	
	a) Cl			
	b) C			
	c) S			
	d) H			
72.	Stannous chloride gives a	white precipitate with a s	solution of mercuric chlori	de. In this process mercurio
	chloride is:			\sim
	a) Oxidized			
	b) Reduced			
	c) Converted into a comp	lex compound containing S	Sn and Hg	
	d) Converted into a chlore	o complex of Hg		
73.	In the titration of CuSO ₄ v	s. Hypo in presence of KI,	which statement is wrong?	
	a) It is iodometric titratio	n		V
	b) I ₂ with starch gives blu	ie colour		
	c) CuSO ₄ is reduced to wh	hite Cu ₂ I ₂ during redox cha	ange	
	d) The solution before tita	ration, on addition of KI ap	pears blue	
74.	Manganese acts as strong	est oxidising agent in the o	xidation state	
	a) +7	b) +2	c) +4	d) +5
75.	The value of $'n'$ in the res	action		
	$Cr_2O_7^{2-} + 14H^+ + nFe^{2+}$	$\rightarrow 2Cr^{3+} + nFe^{3+} + 7H^2C$		
	will be		$G_{i}X_{i}Y_{i}$	
	a) 2	b) 3	c) 6	d) 7
76.	In a reaction 4 mole of 6	electrons are transferred t	to one mole of HNO ₃ whe	n it acts as an oxidant. The
	possible reduction produc	ct is :	<i>y</i>	
	a) (1/2) mole N ₂	b) (1/2) mole N ₂ 0	c) 1 mole of NO ₂	d) 1 mole NH ₃
77.	The oxidation number of	phosphorus in PO_4^{3-} , P_4O_{10}	and $P_2O_7^{4-}$ is:	
	a) +3	b) +2	c) -3	d) +5
78.	In the equation,			
	$CrO_4^2 + SO_3^2$ $Cr(OH)$	$(1)_4 + SO_4^2$		
	the oxidation number of (Cr changes from		
	a) 6 to 4	b) 6 to 3	c) 8 to 4	d) 4 to 3
79.	Oxidation numbers of P in	10^{3-} of S in SO_4^{2-} and tha	at of Cr in $Cr_2O_7^{2-}$ are respending	ctively :
	a) -3 , $+6$ and $+6$	b) +5, +6 and +6	c) +3, +6 and +5	d) +5, +3 and +6
80.	In alkaline condition KMn	10_4 reacts as follows,		
	$2KMnO_4 + 2KOH \rightarrow 2K_2$	$_{2}MnO_{4} + H_{2}O + O$		
	Therefore, its equivalent	weight will be :		
	a) 31.6	b) 52.7	c) 79.0	d) 158.0
81.	Oxidation number of S in	SO_4^{2-}		
	a) +6	b) +3	c) +2	d) -2
82.	Which of the following is:	redox reaction?		
	a) $N_2O_5 + H_2O \rightarrow 2HNO_3$	3		
	b) $AgNO_3 + KI \rightarrow AgI + KI$	KNO_3		
	c) $BaO_2 + H_2SO_4 \rightarrow BaSO_4$	$O_4 + H_2O_2$		
	d) $SnCl_2 + HgCl_2 \rightarrow SnC$	$l_4 + Hg$		
83.	In which of the following	compounds, the oxidation	number of iodine is fractio	nal?
	a) IF ₃	b) IF ₅	c) I ₃	d) IF ₇
84.	The oxidation number of	Cl in KClO ₃ is :		

a -	a) +5 b) -5	c) +3	d) -3		
85.	The oxidation number of oxygen in KO_3 , Na_2O_2 is		1) 0.00 4		
0.6	a) 3,2 b) 1,0	c) 0,1	d) -0.33,-1		
86.					
	a) Its molecular weight				
	b) 1/2 of its molecular weight				
	c) 1/4 of its molecular weight				
07	d) Twice the molecular weight	l			
87.	The maximum oxidation number of transition metals		d) +10		
00	a) +4 b) +6 The ratio of amounts of H. S needed to precipitate a	c) +8	d) +10		
88.	The ratio of amounts of H ₂ S needed to precipitate a	ii the metal ions irom 100	IIIL 1M Agivo ₃ and 100 iiiL		
	of 1M CuSO ₄ is: a) 1:2 b) 2:1	c) Zero	d) infinite		
89.	Oxidation state of sulphur in $Na_2S_2O_3$ and $Na_2S_4O_6$	C) Leio	u) illimite		
09.	a) 4 and 6 b) 3 and 5	c) 2 and 2.5	d) 6 and 6		
90.					
70.	Number of K ⁺ ions and mole of K ⁺ ions present in 1	litre of $\frac{1}{5}$ KMnO ₄ acidified s	solution respectively are :		
	a) 0.04 and 2.4 \times 10 ²²	4/13			
	b) 2.4×10^{22} and 0.04				
	c) 200 and 6.023×10^{23}				
	d) 6.023×10^{23} and 200				
91.	Conversion of PbSO ₄ to PbS is:				
0.0	a) Reduction of S b) Oxidation of S	c) Dissociation	d) None of these		
92.	Which change requires a reducing agent?		1) 41(011) - 41(011)-		
0.2	a) $CrO_4^{2-} \rightarrow CrO_7^{2-}$ b) $BrO_3^{-} \rightarrow BrO^{-}$		d) $Al(OH)_3 \rightarrow Al(OH)_4^-$		
93.	In the reaction, $N_2 \rightarrow NH_3$. The eq.wt. of N_2 and NH_2 and NH_3 and NH_4 and NH_4 are NH_4 and NH_5 and NH_6 are NH_6 are NH_6 and NH_6 are NH_6 and NH_6 are NH_6 and NH_6 are NH_6 and NH_6 are NH_6 and NH_6 are	3 are respectively equal to	: 28 17		
	a) $\frac{28}{3}$, $\frac{17}{3}$ b) $\frac{28}{6}$, $\frac{17}{3}$	c) $\frac{28}{2}$, $\frac{17}{2}$	d) $\frac{28}{5}$, $\frac{17}{5}$		
94.	Which acts as reducing agent as well as oxidising age		5 5		
	a) 0 ₃ b) ClO ₄	c) F ₂	d) MnO ₄		
95.	When Cl ₂ gas reacts with hot and concentrated s	, <u>-</u>	•		
	chlorine changes from :	ř			
	a) Zero to -1 and zero to $+3$				
	b) Zero to +1 and zero to -3				
	c) Zero to +1 and zero to -5				
	d) Zero to -1 and zero to $+5$				
96.	Which of the following is not a redox reaction?				
	a) $2Na + Cl_2 \rightarrow 2NaCl$	b) $C + O_2 \rightarrow CO_2$			
	c) $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$	d) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2SO_5 \rightarrow ZnSO_5 + H_2SO_5 + H_2SO_5 \rightarrow ZnSO_5 + H_2SO_5 + H$			
97.	The difference in the oxidation numbers of the two t	ypes of sulphur atoms in Na	$a_2S_4O_6$ is		
	a) 4 b) 5	c) 6	d) 7		
98.	A compound contains atoms X, Y, Z . The oxidation	number of X is $+2$, Y is $+5$	5 and Z is -2 . The possible		
	formula of the compound is:				
_	a) XY_1Z_2 b) $Y_2(XZ_3)_2$	c) $X_3(YZ_4)_2$	d) $X_3(Y_4Z)_2$		
99.	The equivalent weight of SnCl ₂ in the reaction, SnCl ₂		N =0		
100	a) 49 b) 95	c) 45	d) 59		
100.	What is the ox. no. of Mn in K_2MnO_4 ?	-> + 2	1) + 0		
101	a) +4 b) +6 The stable evidation states of Marana	c) +2	d) +8		
101.	The stable oxidation states of Mn are:	a) +2 +7	ما ری را		
102	a) +2, +3 b) +3, +7 25 mL of 0.50 M H O solution is added to 50 m	c) $+2$, $+7$	d) +3, +5		
104	. 25 mL of 0.50 $M{ m H_2O_2}$ solution is added to 50 m	L OI O.LO M ISMINO4 III de	iaic solution, while of the		

	following statements is tr			
	a) 0.010 mole of oxygen is			
	b) 0.005 mole of KMnO ₄ a			
	c) 0.030 g atom of oxygen	_		
(d) 0.0025 mole H_2O_2 does	not react with KMnO ₄		
103.	Oxidation number of carb	on in KCN is :		
ä	a) +2	b) -2	c) +1	d) +3
104.	The oxidation state of Ni i	n Ni(CO) ₄ is :		
ä	a) Zero	b) +4	c) +8	d) +2
105.	M is the molecular weight	of KMnO ₄ . The equivalent	weight of KMnO ₄ when it i	is converted into K_2MnO_4 is
:	!			
ä	a) <i>M</i>	b) <i>M</i> /3	c) M/5	d) <i>M</i> /7
106.	Oxidation number of Mn i	n K ₂ MnO ₄ and MnSO ₄ are	respectively:	
ä	a) + 7 and +2	b) +6 and +2	c) +5 and +2	d) +2 and +6
107.	Which is the best descript	ion of behaviour of bromin	e in the reaction given belo	ow?
	$H_2O + Br_2 \rightarrow HBr + HOE$	Br		V
;	a) Proton accepted only		b) Both oxidised and redu	iced
(c) Oxidised only		d) Reduced only	
108.	The oxidation number of I	P in KH_2PO_2 is:		
i	a) +1	b) +3	c) -3	d) +5
	LiAIH ₄ is used as :	•		
	a) Oxidising agent	b) Reducing agent	c) A mordant	d) Water softner
	, , ,	$Fe(H_2O)_5NO^+]SO_4$ has ox.		
	a) +1	b) +2	c) +3	d) +4
	The oxidation state of Fe i			,
	a) +3	b) 8/3	c) +6	d) +2
		· ·	$_{1}$ + NO, the element oxidize	•
	a) As only	b) S only	c) N only	d) As and S both
	•		$+ H_2O \rightarrow MnO_2 + H^+ (ur$	•
	a) 52.7	b) 158	c) 31.6	d) None of these
	-		actant. The equivalent mass	
		b) 7.75, 7.75	c) 2.25, 7.75	d) 2.25, 2.25
	Oxidation number of chlor		·, -:==, · · · ·	.,,
	a) +1	b) -1	c) -7	d) +7
	Iodine has +7 oxidation st			
	a) HIO ₄	b) H ₃ IO ₅	c) H ₅ IO ₆	d) all of these
		een sodium and water is ar		al an or enece
	a) Reduction	oon boardin and water is a	i chample of t	
	b) Oxidation			
	c) Redox reaction			
1	d) neutralisation reaction			
	Oxidation number of Fe in	K _a [Fe(CN) _c] is:		
	a) +2	b) +3	c) +4	d) +1
	=		ess KI will liberatemol	•
	a) 6	b) 1	c) 7	d) 3
		rine from HCl, MnO_2 acts as		u) 3
	a) Reducing agent	b) oxidising agent	c) Catalytic agent	d) Dehydrating agent
	, , ,			e action of 100 mL of 0.5
			i? The skeleton equation fo	
		\rightarrow KHSO ₄ + MnSO ₄ + H ₂ O	-	i the reaction is,
	11104 112004 11202	111004 1111004 1120	7 1 02 -	

a) 0.12 litre	b) 0.28 litre	c) 0.56 litre	d) 1.12 litre
122. Which quantities ar	e conserved in all oxidation-r	eduction reactions?	
a) Charge only		b) Mass only	
c) Both charge and	mass	d) Neither charge nor n	nass
123. Which substance se	rves as a reducing agent in th	e following reaction,	
$14H^{+} + Cr_{2}O_{7}^{2-} + 3$	$3Ni \rightarrow 2Cr^{3+} + 7H_2O + 3Ni^2$	+ ?	
a) H ₂ O	b) Ni	c) H ⁺	d) $Cr_2O_7^{2-}$
124. Which of the follow	ing chemical reactions depict	s the oxidising behaviour of	H ₂ SO ₄ ?
a) $2HI + H_2SO_4 \rightarrow$	=	b) $Ca(OH)_2 + H_2SO_4 -$	
c) NaCl + H_2SO_4 —		d) $2PCl_5 + H_2SO_4 \rightarrow 2$	_
125. In the aluminotherr	nic process, aluminium acts a		
a) An oxidising age		c) A reducing agent	d) A solder
	$_2 + 2H_2S \rightarrow 3S + 2H_2O$ the su	bstance that oxidizes is,	
a) H ₂ S	b) SO ₂	c) S	d) H ₂ O
127. The oxidation numb	per of sulphur in S_8 , S_2F_2 , H_2S	respectively are:	
a) $0, +1$ and -2	b) $+2$, $+1$ and -2	c) 0, +1 and +2	d) -2 , $+1$ and -2
128. Maximum oxidation	n state is present in :		*
a) CrO ₂ Cl ₂ and Mn(0_4^-		>
b) MnO ₂			
c) $[Fe(CN)_6]^{3-}$ and	$[Co(CN)_6]^{3-}$		
d) MnO			
129. With which elemen	t oxygen shows positive oxida	ntion state in its compounds	?
a) Na	b) Cl	c) N	d) F
130. What is the oxidation	on number of chlorine in ClO_3^-	?	
a) +5	b) +3	c) +4	d) +2
131. NaClO solution read	ts with H_2SO_3 as, NaClO + H_2	$SO_3 \rightarrow NaCl + H_2SO_4$	
A solution of NaClO	O used in the above reaction	contained 15 g of NaClO p	per litre. The normality of the
solution would be:		,	
a) 0.40	b) 0.20	c) 0.60	d) 0.80
132. In sodium hydride,	oxidation state of sodium is :		
a) Zero	b) +1	c) -1	d) +2
133. The oxidation number			
a) Zero	b) 2	c) 4	d) 3
134. Which is not a redo			
a) $H_2 + Br_2 \rightarrow 2H$			
b) $NH_4Cl \rightarrow NH_3 +$			
c) $NH_4NO_3 \rightarrow N_2O_3$	$0 + 2H_2O$		
d) Fe + S \rightarrow FeS	-		
135. In C + $H_2O \rightarrow CO$			
a) Oxidant	b) Reductant	c) Both (a) and (b)	d) None of these
136. Millimole of a solute	e in a solution can be given by		N = 1 (1) 1 (1)
a) $M \times V_{\text{in litre}}$	b) $M \times V_{\text{in mL}}$	c) $\frac{\text{wt.}}{\text{mol. wt.}} \times 1000$	d) Both (b) and (c)
.)	per of carbon in $H_2C_2O_4$ is :	moi. wt.	
a) +2	b) +3	c) +4	d) +1
•	on state of P in $Ba(H_2PO_2)_2$?	C) I	u) 11
a) +1	b) $+2$	c) +3	d) -1
•	1 for phosphorus is found in	•	uj I
a) H ₃ PO ₃	b) H ₃ PO ₄	c) H ₃ PO ₂	d) $H_4P_2O_7$
140. Oxidation number of		C) 1131 OZ	aj 1141 207
a) Zero	b) +1	c) +2	d) +3
u) 2010	υ _j ι τ	C) 12	u) 10

141.	In which reaction the underli	ined substance has been	reduced?	
	a) <u>Carbon monoxide</u> + coppe	er oxide → carbon dioxi	de + copper	
	b) Copper oxide + hydrochlo	oric acid \rightarrow water + copp	per chloride	
	c) Steam + iron \rightarrow hydroger	n + iron oxide		
	d) <u>Hydrogen</u> + iron oxide \rightarrow	water + iron		
142.	The decomposition of KCIO ₃	to KCl and O ₂ on heating	g is an example of :	
	a) Intermolecular redox char			
	b) Intramolecular redox char	nge		
	c) Disproportionation or aut	o redox change		
	d) None of the above	G		
143.	Mohr's salt is oxidised to	in presence of acidized	KMnO₄.	
		Fe ³⁺	c) Fe	d) None of these
144.	Fluorine is a strong oxidising	g agent because :		, Y
	a) It has several isotopes	, 0		
	b) It is very small and has 7 e	electrons in valency shell		
	c) Its valency is one	,		
	d) It is the first member of th	e halogen series		
145.	In the conversion of Br ₂ to Br	_	er of Br changes from	
		+1 to +5	c) Zero to -3	d) $+2$ to $+5$
146.	The oxidation number of Cr i		3) = 111 11	-,
		+5	c) +6	d) 0
147.	An indicator used for redox r			-,-
	a) Either an oxidant or a redu			
	b) Neither an oxidant nor a r			
	c) Acid or base		()	
	d) None of the above		>	
148.	CrO_5 reacts with H_2SO_4 to §	give $Cr_2(SO_4)_2$, H_2O and	O_2 . Moles of O_2 liberated	by 1 mole of CrO _r in this
	reaction are:	5-1-2 (-14)3,1-2		,
		1.25	c) 4.5	d) 1.75
149.	In the following reaction, 4P		,	-,
	a) P is only oxidized	7.1.2.	b) P is only reduced	
	c) P is both oxidized as well a	as reduced	d) None of the above	
150.	Oxidation number of P in P_2		-,	
		+4	c) +5	d) +6
151.	In the conversion of $K_2Cr_2O_7$		•	u) 10
101		Remains the same	c) Decreases	d) None of these
152.	In which of the following, the		•	
102.	a) $0F_2 < KO_2 < BaO_2 < O_3$	omadion namber of on	b) $BaO_2 < KO_2 < O_3 < OF$	_
	c) $BaO_2 < O_3 < OF_2 < KO_2$		d) None of these	2
153	Oxidation number of sodium	in sodium amalgam is	a) Hone of these	
100.		+1	c) -2	d) zero
154	The apparatus in which stand		•	u) 2010
	= =	Round bottom flask	c) Burette	d) None of these
155	K_3 Fe(CN) ₆ is used as Inc		•	uj None of these
155.		External	c) Internal	d) Not an
156	The oxidation number of N in		ej iliterilai	uj Nocum
100.		+3	c) +2	d) -3
157	Which can act as oxidant?	, 10	C) 14	u, u
13/.		H ₂ S	c) NH ₃	d) None of these
158	What weight of HNO_3 is new	_	•	•
		00 00, 01.0 0 01 .		

	$HNO_3 \rightarrow HIO_3 + NO_2 + 1$			
	a) 12.4 g	b) 24.8 g	c) 0.248 g	d) 49.6 g
159.	In which SO ₂ acts as oxida	-		
	•	b) Acidified K ₂ Cr ₂ O ₇	c) H ₂ S	d) Acidified C ₂ H ₅ OH
160.		, HCl can reduce KMnO ₄ an		
	a) H_2SO_4	b) $K_2Cr_2O_7$	c) KMnO ₄	d) None of these
161.	= =	O_3 in its reaction with I_2 is	-	
	a) Molar mass	b) Molar mass / 2	c) Molar mass / 3	d) Molar mass / 4
162.		ange represents a dispropo	ortionation reaction(s)?	
	a) $Cl_2 + 2OH^- \rightarrow ClO^-$			
	b) $Cu_2O + 2H^+ \rightarrow Cu + O$			
	c) 2HCuCl ₂ Dilution with water	$-Cu + Cu^{2+} + 4Cl^{-} + 2H^{+}$		
	d) All of the above			
163.	Oxidation number of 'N' in	n NaH(hydrazoic acid) is		
100.	1		c) 0	
	a) $-\frac{1}{3}$	b) +3	, ·	d)-3
164.	Cerric ammonium sulpha	te and potassium permanga	anate are used as oxidising	agents in acidic medium
	for oxidation of ferrous ar	nmonium sulphate to ferri	c sulpahte. The ratio of num	iber of moles of cerric
	ammonium sulphate requ	ired per mole of ferrous an	nmonium sulphate to the n	umber of moles of KMnO ₄
	required per mole of ferro	ous ammonium sulphate, is		
	a) 5.0	b) 0.2	c) 0.6	d) 2.0
165.	Eq.wt. of NH_3 in, $NH_3 + 0$	$_2 \rightarrow N0 + H_20$ is:		
	a) 3.4	b) 17	c) 8.5	d) None of these
166.	Carbon is in the lowest ox	idation state in :		
	a) CH ₄	b) CCl ₄	c) CO ₂	d) CF ₄
167.	When the ion $Cr_2O_7^{2-}$ acts	s as an oxidant in acidic aqu	ueous solution the ion Cr ³⁺	is formed. How many mole
	of Sn ²⁺ would be oxidised	I to $\mathrm{Sn^{4+}}$ by one of $\mathrm{Cr_2O_7^{2-}}$ i	ons?	
	a) 2/3	b) 3/2	c) 2	d) 3
168.	100 mL of 0.1 M solution	of a reductant is diluted to	1 litre, which of the following	ng changes?
	a) Molarity	b) Millimole	c) Milliequivalent	d) None of these
169.	If H ₂ S is passed through a	n acidified $K_2Cr_2O_7$ solution	on, the colour of the solution	1:
	a) Will remain unchanged	Y		
	b) Will change to deep red	i		
	c) Will change to dark gre	en		
	d) Will change to dark bro	own		
170.	Ozone tails mercury. The	reaction isof Hg.		
	a) Reduction	b) Oxidation	c) Substitution	d) None of these
171.	The oxidation number of	Cr in $[Cr(NH_3)_4Cl_2]^+$ is:		
	a) +3	b) +2	c) +1	d) zero
		$O_3 \rightarrow FeO + V_2O_5$. The eq.	wt. of V_2O_5 is equal to its :	
	a) mol. wt.	b) mol. wt./8	c) mol. wt./6	d) None of these
173.		n oxidising agent in acid m	edium is :	
	- '	b) $(2 \times \text{mol. wt.})/3$	c) (mol. wt.)/3	d) (mol. wt.)/6
174.		either oxidation nor reduc		
	a) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$		c) Na \rightarrow Na ⁺	d) $2S_2O_3^{2-} \rightarrow S_4O_6^{2-}$
175.	The number of equivalent	per mole of H ₂ S used in its	s oxidation to SO_2 is :	
	a) 3	b) 6	c) 4	d) 2
176.	Oxidation number of sulp			
	a) +2	b) +4	c) +6	d) -2
177.	Which can have both +ve	and -ve oxidation states?		

	a) F	b) I	c) Na	d) He
178.	Milliequivalent of a solute	in a solution can be given	by:	
	a) $Mz_{eq.} = M \times V_{in mL}$			
	b) M_{eq} . = $N \times V_{\text{in mL}}$			
	c) $Mz_{eq} = \frac{\text{wt}}{\text{Eq.wt.}} \times 1000$			
	d) Both (b) and (c)			
179.	H ₂ S is passed through an	acidified solution of copp	oer sulphate and a black p	recipitate is formed. This is
	due to:			
	a) Oxidation of Cu ²⁺			
	b) Reduction of Cu ²⁺			
	c) Double decomposition			
	d) Reduction and oxidatio	n		A . Y
180.	Iodine has highest oxidation	on number in the compour	nd:	
	a) KIO ₄	b) IF ₅	c) KI ₂	d) KI
181.	Oxidation number of S in S	$S_2O_3^{2-}$ is:		
	a) +2	b) -2	c) 4	d) zero
182.			$3H_2O + 3I_2$, The eq.wt. of C	
	a) $\frac{\text{mol. wt.}}{3}$	b) $\frac{\text{at. wt.}}{6}$	at. wt.	d) $\frac{\text{mol. wt.}}{}$
	3	U	3	6
183.			I ₂ 0 the substance undergoi	
	a) H_2O_2	b) Na ₂ CO ₃	c) Na ₂ O ₂	d) None of these
184.	The least count of burette			D 0 00 Y
105	a) 0.1 mL	b) 0.01 mL	c) 0.2 mL	d) 0.02 mL
185.		and Mg_3N_2 ; the number of	molecules having nitrogen	in negative oxidation state
	is	13.0		15.4
106	a) 1	b) 2	c) 3	d) 4
186.	In which iron has the lower	est oxidation state?		
	a) Fe(CO) ₅			
	b) Fe ₂ 0			
	c) $K_4Fe(CN)_6$			
107	d) FeSO ₄ . (NH ₄)2SO ₄ . 6H ₂		havatawy gan yyaigh unta a l	loagt gount of .
10/.	a) 0.0001 g	b) 0.001 g	boratory can weigh upto a	
100	When NaCl is dissolved in		c) 0.0002 g	d) 0.002 g
100.	a) Oxidized	b) Reduced	c) Hydrolysed	d) hydrated
189	Which is not a redox react	_	c) Hydrolysed	u) nyurateu
10).	a) $BaO_2 + H_2SO_4 \rightarrow BaSO_4$			
	b) $2BaO + O_2 \rightarrow 2BaO_2$	74 11202		
	c) $4KCIO_3 \rightarrow 4KCIO_2 + 2$	20.		
	d) $SO_2 + 2H_2S \rightarrow 2H_2O -$			
190			n Br ₂ is liberated. The equiv	valent weight of KBrO ₂ is:
	a) <i>M</i> /8	b) <i>M</i> /3	c) <i>M</i> /5	d) <i>M</i> /6
191	Corrosion of iron is:	5) 11/5		u) 11/0
1,1,	a) Redox process			
	b) Neutralization process			
	c) Precipitation process			
	d) None of these			
192.		nvolving a solution contain	ning Fe ²⁺ ions against MnO	in the presence of excess
		electrons that gets transfe		
	a) 6	b) 5	c) 4	d) 2

193. In which of the following	oxidation number of chlor	ine is +5?	
a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₄
194. In the reaction, $Zn + 2H^{+}$	$+2Cl^- \rightarrow Zn^{2+}2Cl^- + 1$	H ₂ , the spectator ion is :	
a) Cl ⁻	b) Zn ²⁺	c) H ⁺	d) All of these
195. Turn bull's blue is :			
a) $Fe_3[Fe(CN)_6]_2$	b) K_4 Fe(CN) ₆	c) K_3 Fe(CN) ₆	d) Na ₄ Fe(CN) ₆
196. The oxidation state show	n by silicon when it combi	nes with strongly electropo	sitive metals is
a) -2	b) -4	c) +4	d) +2
197. The compound that can v	work both as an oxidising a	nd reducing agent is:	
a) KMnO ₄	b) H ₂ O ₂	c) $Fe_2(SO_4)_3$	d) K ₂ Cr ₂ O ₇
198. An element <i>A</i> in a compo	ound ABD has oxidation nu	mber A^{n-} . It is oxidized by	$Cr_2O_7^{2-}$ in acidic medium. In
			e of <i>ABD</i> . The new oxidation
number of A after oxidat			A . Y
a) 3	b) $3 - n$	c) $n - 3$	d) +n
199. The burning of hydrogen	,	,	
a) Hydrogenation	b) Hydration	c) Oxidation	d) reduction
200. Oxidation number of chlo	, ,		
a) +1	b) +4	c) +6	d) +7
201. The correct order of redu	,		,
a) $Cl^- > Br^- > I^- > F^-$	= =		
b) $Cl^- > I^- > Br^- > F^-$			
c) $Br^- > Cl^- > I^- > F^-$			
d) $I^- > Br^- > Cl^- > F^-$			
202. The reaction, $3ClO^{-}(aq)$		s an example of :	
a) Oxidation reaction	4		
b) Reduction reaction		>	
c) Disproportionation re	action	Y	
d) Decomposition reaction			
203. The ox.no. of S in Na_2S_4O			
a) + 2.5			
	e +2 and other two have +	.3)	
-	ive +2 and one S has +3)	-)	
	+5 and the other two S have	/e 0)	
204. Oxidation is a process wh			
a) de-electronation		c) Addition of hydrogen	d) Addition of metal
205. A student states that hea	•		=
	iting. Which one is correct?	-	6
a) The statement and rea	-		
b) The statement and rea			
c) The statement is true	•		
d) None of the above			
206. A sulphur containing spe	cies that cannot be an oxid	ising agent is :	
a) H_2SO_4	b) H ₂ S	c) SO ₂	d) H_2SO_3
207. KMnO ₄ acts as indica	· -	0) 002	u) 112003
a) Self	b) External	c) Internal	d) Not an
208. In a reaction between zir	•	,	•
a) Zinc ions	b) Iodide ions	c) Zinc atom	d) Iodine
209. The best oxidising agent	•	o, zmo acom	a, 1001110
a) Tellurium	b) Selenium	c) Sulphur	d) Oxygen
210. The oxidation state of iro	•	•	~, ~,, ₆ ~,,
= 20. The omidation state of HO	ooaram ma opi assiac	·	

a) +2	b) +1	c) Zero	d) +3
211. A compound of Xe and F	is found to have 53.3% Xe. (Oxidation number of Xe in t	this compound is :
a) -4	b) Zero	c) +4	d) +6
212. Which combination is od	d with respect to oxidation	numbers of S, Cr, N and H r	espectively:
a) H ₂ SO ₅ , H ₂ S ₂ O ₈ , H ₂ SO ₄	, SF ₆		
b) K ₂ Cr ₂ O ₇ , K ₂ CrO ₄ , CrO ₅			
c) NH ₃ , NH ₄ , N ₃ H, NO ₂	, <u> </u>		
d) CaH ₂ , NaH, LiH, MgH ₂			
213. 0.2 g of a sample of H_2 C	required 10 mL of N KM	InO _{4} in a titration in the p	resence of H ₂ SO ₄ . Purity of
H_2O_2 is:	2 1	1	
a) 25%	b) 85%	c) 65%	d) 95%
214. When KMnO ₄ as oxidisir	•	•	
	MmO_4 each case respective		,
a) 4, 3, 1, 5	b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 1, 3, 8, 5
215. Titration of KI with H_2O_2		0) 2, 0, 1, 0	3) 2, 3, 3, 3
a) Clock reaction	b) Redox reaction	c) Intermolecular redox	d) All of these
216. Oxidation state of nitroge		ej meermoreediar redox	d) Thi of these
Compound	Oxidation state	4 4	
a) [Co(NH ₃) ₅ Cl]Cl ₂	-3		
b) NH ₂ OH	-1		
c) $(N_2H_5)_2SO_4$	+2		
d) Mg_3N_2	-3		
217. Fluorine exhibits only -3	_	no ovhibite ovidation etato	s of _1 ±1 ±3 ±5 and ±7
This is due to:	i oxidation state, wille loui	ne exhibits oxidation state	5 01 -1, +1, +3, +3 and +7.
a) Fluorine being a gas		V	
b) Available <i>d</i> -orbitals in	iodina	Y	
c) Non-availability of <i>d</i> -o			
d) None of the above	I bitais ili loulile		
218. Elements which generally	y avhibit multiple avidation	states and whose ions are	coloured are known as
a) Metalloid			
	b) Non-metals	c) Metals	d) Transition metals
219. The oxidation state of sul			4) 2 F
a) 2	b) 0	c) 2.5	d) 3.5
220. Which is strongest oxidis		.) Cl	l) E
a) 0_3	b) 0 ₂	c) Cl ₂	d) F ₂
221. Sulphur has the highest of) II CO	D.H. C
a) SO ₂	b) SO ₃	c) H_2SO_3	d) H ₂ S
222. Nitrogen has fractional of		> ****	D. W. 77
a) N_2H_4	b) NH ₄	c) HN ₃	d) N_2F_2
223. As the oxidation state for			
a) Decreases	b) Increases	c) Remains same	d) None of these
224. In acid medium Zn reduc		ccording to the reaction	
	$NH_4^+ + H_2O$ (unbalanced)		
	are required to teduce half a	a mole of NaNO ₃ completel	y? Assume the availability
of sufficient Zn.			
a) 5	b) 4	c) 3	d) 2
225. Weight of FeSO ₄ (mol. wt	L=152) oxidized by 200 m	L of 1 N KMnO ₄ solution is	S:
a) 30.4 g	b) 15.2 g	c) 60.8 g	d) 158 g
226. In the ionic equation,			
$BiO_3^- + 6H^+ + xe^- \longrightarrow I$	$3i^{3+} + 3H_2O$		
The values of x is			

a) 6 b) 2	c) 4	d) 3
227. The reaction, $5H_2O_2 + XClO_2 + 2OH^- \rightarrow XCl^- +$	$YO_2 + 6H_2O$ is balanced if:	
a) $X = 5, Y = 2$ b) $X = 2, Y = 5$		d) $X = 5, Y = 5$
228. What volume of $0.40 M \text{ Na}_2\text{S}_2\text{O}_3$ would be require		-
50 mL of 0.20 M CuSO ₄ solution?	2	, ,
a) 12.5 mL b) 25 mL	c) 50 mL	d) 2.5 mL
229. For the reaction, $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$	-	
prepared by dissolving 47.5 g in acid solution and		
a) 0.222 <i>N</i> b) 0.111 <i>N</i>	c) 0.333 <i>N</i>	d) 0.444 N
230. The eq.wt. of $Fe_2(SO_4)_3$, the salt to be used as an or	•	· A
a) (Mol. wt.)/1 b) (Mol. wt.)/2	c) (Mol. wt.)/3	d) (Mol. wt.)/5
231. Oxalic acid on reacting with acidified KMnO ₄ is oxi	, , , , , , , , , , , , , , , , , , , ,	
a) CO and H ₂ b) CO ₂ and H ₂	c) CO ₂ and H ₂ O	d) CO and H ₂ O
232. The oxidation number of N and Cl in NOClO ₄ respe	,	2
a) +2 and +7 b) +3 and +7	c) -3 and +5	d) +2 and -7
233. Sulphur in +3 oxidation state is present in	· · · · · · · · · · · · · · · · · · ·	
a) Sulphurous acid b) Pyrosulphuric acid	c) Dithionous acid	d) Thiosulphuric acid
234. Among the properties (a) reducing, (b) oxidising		-
ion towards metal species is :	and (o) comproming the color	or proportion one win by an
a) a, b, c b) b, c	c) c, a	d) a, b
235. Magnesium reacts with acids producing hydrogen		
magnesium undergoes :	una corresponding magne	orani bartor in baon reactions
a) Oxidation		
b) Reduction		
c) Neither oxidation nor reduction		
d) Simple dissolution	Y	
236. What volume of 0.1 <i>N</i> oxalic acid solution can be	e reduced by 250 g of an 8	per cent by weight KMnO ₄
solution?	o roundour by 200 g or unro	per come by weighte in me 4
a) 6.3 litre b) 12.6 litre	c) 25.2 litre	d) 0.63 litre
237. The oxidation state of +3 for phosphorus is in:	•, ======	.,
a) Hypophosphorous acid		
b) Meta-phosphoric acid		
c) Ortho-phosphoric acid		
d) Phosphorous acid		
238. When SO ₂ is passed through acidified solution	of notassium dichromate.	then chromium sulphate is
formed. The change in oxidation number of chromi	=	
a) +4 to +2 b) +5 to +3	c) +6 to +3	d) +7 to +2
239. Oxidation no. of P in $H_4P_2O_5$, $H_4P_2O_6$, $H_4P_2O_7$ are re	,	a,
a) +3, +5, +4 b) +4, +3, +5		d) +5, +3, +4
240. Oxidation of thiosulphate $(S_2O_3^{2-})$ ions by iodine g	-	۵, ۱۵, ۱۵, ۱۱
a) SO_3^- b) SO_4^{2-}	c) $S_4O_6^{2-}$	d) $S_2 O_8^{2-}$
241. 0.3 g of an oxalate salt was dissolved in 100 mL so	, , ,	, 2 0
complete oxidation. The % of oxalate ion in salt is:	iution. The solution require	20 MIL 01 W/20 KMII04 101
a) 33% b) 66%	c) 70%	d) 40%
242. How many litre of Cl_2 at STP will be liberated by th	•	•
a) 3.54 litre b) 7.08 litre	c) 1.77 litre	d) None of these
243. What is the normality of a $KMnO_4$ solution to be w	•	-
of the compound in 100 mL of solution? Mol. wt. of		carain, winch contain 15.0 g
a) 2 <i>N</i> b) 3 <i>N</i>	c) 4 N	d) 5 <i>N</i>
244. KMnO ₄ in acid medium is always reduced to :	C) 11V	aj 5 11
= 1 1. 11.11104 III acia ilicalalii is always icaacca to.		

	a) Mn ⁴⁺	b) Mn ²⁺	c) Mn ⁶⁺	d) Mn
245	. In balancing the half react	tion, $S_2O_3^{2-} \rightarrow S(s)$, the nur	mber of electrons that must	t be added is :
	a) 2 on the right	b) 2 on the left	c) 3 on the right	d) 4 on the left
246	. What volume of 0.1 <i>M</i> KM		00 mg of FeC_2O_4 in acidic se	olution?
	a) 4.1 mL	b) 8.2 mL	c) 10.2 mL	d) 4.6 mL
247	. Which one is not a redox t	itration?		
	a) FeSO ₄ vs. K ₂ Cr ₂ O ₇	b) CuSO ₄ vs. hypo	c) I ₂ vs. hypo	d) AgNO ₃ vs. KCl
248	. A 0.518 g sample of lime	stone is dissolved in HCl	and then the calcium is pr	ecipitated as CaC ₂ O ₄ . After
	filtering and washing the	precipitate, it requires 40.0	0 mL of $0.250 N \text{ KMnO}_4$, so	lution acidified with H ₂ SO ₂
	to titrate is as, $MnO_4^- + H^+$	$^{+} + C_{2}O_{4}^{2-} \rightarrow Mn^{2+} + CO_{2}^{2-}$	$_2 + 2H_2O$. The percentage	of CaO in the sample is:
	a) 54.0 %	b) 27.1 %	c) 42%	d) 84%
249	. The missing term in follow	ving equation is: $2Fe^{3+}(aq)$	$(q) + \operatorname{Sn}^{2+}(aq) \to 2\operatorname{Fe}^{2+}(aq)$	1)+?
	a) Sn ⁴⁺	b) Sn ²⁺	c) Sn	d) None of these
250	. Reaction of Br ₂ with Na ₂ C	30_3 in aqueous solution giv	es sodium bromide and soc	lium bromate with
	evolution of CO ₂ gas. The	number of sodium bromide	e molecules involved in the	balanced chemical
	equation is			V ·
	a) 1	b) 3	c) 5	d) 7
251	. Oxidation number of carb	on in C_3O_2 , Mg_2C_3 are resp	ectively :	
	a) $-4/3$, $+4/3$	b) $+ 4/3, -4/3$	c) $-2/3$, $+2/3$	d) $-2/3$, $+4/3$
252	. The reaction; $KI + I_2 \rightarrow I$	KI ₃ shows :		
	a) Oxidation	b) Reduction	c) Complex formation	d) All of these
253	. The oxidation state of Cr i	n chromium trioxide is		
	a) +3	b) +4	c) +5	d) +6
254	. Oxidation number of S in S	S_2Cl_2 is:		
	a) +1	b) +6	c) Zero	d) -1
255	. In which of the following I	N has lowest oxidation num	nber?	
	a) NO	b) NO ₂	c) N ₂ 0	d) N_2O_5
256	. 2 mole of FeSO ₄ are oxidi	zed by $'X'$ mole of KMnO ₄	whereas 2 mole of FeC ₂ O ₄	$_{\rm L}$ are oxidized by 'Y'mole o
	$KMnO_4$. The ration f 'X' and	nd 'Y' is:		
	a) 1:3	b) 1:2	c) 1:4	d) 1:5
257	. H_2S reacts with halogens,	the halogens :		
	a) Are oxidised	b) Are reduced	c) Form sulphur halides	d) None of these
258	. In an experiment 50 mL o	f $0.1M$ solution of a salt re	acted with 25 mL of $0.1 M_{\odot}$	solution of sodium sulphite
	-	oxidation of sulphite ion is	:	
	$SO_3^{2-}(aq) + H_2O(l) \rightarrow SO_3^{2-}(aq)$	$0_4^{2-}(aq) + 2H^+(aq) + 2e^-$		
	If the oxidation number of	f metal in the salt was 3, wh	nat would be the new oxida	tion number of metal?
	a) Zero	b) 1	c) 2	d) 4
259	. The most stable oxidation	state of copper is:		
	a) +2	b) +1	c) +3	d) +4
260	. White phosphorus reacts	with caustic soda, the prod	ucts are PH ₃ and NaH ₂ PO ₂	. This reaction is an
1	example of			
	a) Oxidation	b) Reduction	c) Disproportionation	d) Neutralisation
261	When a sulphur atom become	omes a sulphide ion :		
	a) It gains two electrons			
	b) The mass number chan	=		
	c) There is no change in the	ne composition of atom		
	d) None of the above			
262	. Titre value is the volume o		-	
	a) Equivalence point	b) End point	c) Neutralization point	d) All of these
263	. Oxidation states of X , Y , Z	are $+2$, $+5$ and -2 respect	rively. Formula of the comp	ound formed by these wii

be			
a) $X_2 Y Z_6$	b) XY_2Z_6	c) <i>XY</i> ₅	d) X_3YZ_4
264. In which compound,	oxygen has an oxidation state of	of +2?	
a) H_2O_2	b) H ₂ O	c) OF ₂	d) CO
265. If equal volumes of	$1M \text{ KMnO}_4$ and $1M \text{ K}_2\text{Cr}_2\text{O}_7$	solutions are allowed to d	oxidise F^{2+} to F^{3+} in acidic
medium volume of o	xidant required for one mole of	f F ²⁺ will be :	
a) $V_{KMnO_4} > V_{K_2Cr_2O_4}$	7		
b) $V_{KMnO_4} < V_{K_2Cr_2O_4}$	•		
c) $V_{KMnO_4} = V_{K_2Cr_2O_4}$	•		
d) Nothing can be pr			
	KMnO ₄ should be taken to make	e un 250 mL of a solution o	of such strength that 1 mL is
equivalent to 5.0 mg		o up 200 m2 or a solution o	7. 5 u 5 u 5 u 5 u 5 u 5 u 5 u 5 u 5 u 5
a) 1.414 g	b) 0.70 g	c) 3.16 g	d) 1.58 g
267. The oxidation number	, ,	0) 0.10 g	u) 100 g
a) +3	b) -6	c) +6	d) -3
,	$S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$,	1
a) Decreased	b) Increased		d) None of these
•	ht of KMn O_4 (acidic medium) is	,	
a) 158	b) 15.8	c) 31.6	d) 3.16
•	er of chromium in potassium d		u, 5.15
a) +2	b) +4	c) +6	d) +8
	ht of MnSO ₄ is half of its molecu	1	•
a) Mn_2O_3	b) MnO ₂	c) MnO ₄	d) Mn ₄ ²⁻
,	SO_2 reacts with H_2S to precipit		
a) Catalyst	b) Reducing agent	c) Oxidizing agent	d) Acid
273. Saline hydrides are :	b) Headening agent	v)/ e.manzing agent	, 1.22.2.
a) Strong oxidants			
b) Strong reductants			
c) Strong dehydratin			
d) Strong bleaching a			
	umber of carbonyl carbon in m	ethanal and methanoic acid	l respectively
a) 0 and 0	b) 0 and +2	c) +1 and +2	d) +1 and +3
275. The eq. wt. of I_2 in th	-	.,	.,
a) 12.7	b) 63.5	c) 25.4	d) 2.54
-	xidizing agent in the reaction is	•	- ,
$SO_2 + 2H_2S \rightarrow 3S +$			
a) 32	b) 64	c) 16	d) 8
	f reductant and oxidant, the red		,
a) Lower ox.no.	b) Higher ox.no.	c) Same ox.no.	d) Either of these
	wing reactions, hydrogen is acti		,
a) With Li to form Li		c) With S to give H ₂ S	d) None of the above
A 14'	s of Mohr's salt required per mo	· · · · ·	.,
a) 3	b) 4	c) 5	d) 6
	ole of Fe ²⁺ ion to Fe, the number	•	-
a) 2	b) 1	c) 1.5	d) 4
-	\rightarrow Co ²⁺ (aq) + Cu(s). This react	•	,
a) Oxidation reaction		c) Redox reaction	d) None of these
282. The oxidation state of		,	•
a) +7	b) -1	c) +5	d) +1
283. The oxidation number	•	•	•
	<u>~</u>		

	a) -3	b) +3	c) Zero	d) 5
284.		nto Mn ⁷⁺ by reacting with		
	a) SO ₂	b) Cl ₂	c) PbO ₂	d) SnCl ₂
285.	The oxidation number of			
	a) +1	b) +2	c) -1	d) 0
286.	Which change occur who	en lead monoxide is convert	ed into lead nitrate?	
	a) Oxidation			
	b) Reduction			
	c) Neither oxidation nor	reduction		
	d) Both oxidation and re	duction		(V)
287.	How many mole of elect	ron are involved in the red	uction of one mole of MnO	$\frac{1}{4}$ ion in alkaline medium to
	MnO_3^- ?			
	a) 2	b) 1	c) 3	d) 4
288.	The oxidation number of	$Fein K_4Fe(CN)_6$ is:		
	a) +2	b) +3	c) +4	d) +6
289.	For the reaction, $NH_3 + 0$	$\mathrm{Cl}^- \rightarrow \mathrm{N_2H_4} + \mathrm{Cl}^-$		V
	occurring in basic mediu	ım, the coefficient of $\mathrm{N_2H_4}$ in	n the balanced equation wil	l be
	a) 1	b) 2	c) 3	d) 4
290.	In the reaction $H_2O + H_2$	$_2O_2 \rightarrow S + 2H_2O$		
	a) H ₂ S is an acid and H ₂ O	O ₂ is a base		
	b) H ₂ S is a base and H ₂ O	₂ is an acid		
	c) H ₂ S is an oxidising ag	ent and H_2O_2 is a reducing a	agent	
	d) H ₂ S is a reducing ager	nt and H_2O_2 is an oxidising a	agent	
291.	When H ₂ SO ₃ is converte	d into H ₂ SO ₄ the change in	the oxidation state of sulph	ur is from:
	a) 0 to +2	b) +2 to +4	c) $+4$ to $+2$	d) +4 to +6
292.	The oxidation number of	f nitrogen in NH ₂ OH is :)	
	a) +1	b) -1	c) -3	d) -2
293.	In the reaction, 2CuSO ₂	$_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4$	+ I ₂ The ratio of equivale	ent weight of CuSO ₄ to its
	molecular weight is:			
	a) 1/8	b) 1/4	c) 1/2	d) 1
294.		acidified K ₂ Cr ₂ O ₇ and iron		tion: $Cr_2O_7^{2-}(aq) +$
	$6 \text{Fe}^{2+}(aq) + 14 \text{H}^{+}(aq)$	$\rightarrow 2Cr^{3+}(aq) + 7H_2O(l) +$	$-6Fe^{3+}(aq)$	
	a) The colour of the solu	tion changes from green to	blue	
	b) The iron (II) ions are	reduced		
	c) The dichromate ions a	are reduced		
	d) Hydrogen ions are red	duced		
295.	Which is the reducing ag	gent in the reaction, $8H^+ + 4$	$4NO_3^- + 6Cl^- + Sn(s) \rightarrow Sr$	$101_6^{2-} + 4NO_2 + 4H_2O$?
	a) Sn(s)	b) Cl ⁻	c) NO_3^-	d) $NO_2(g)$
296.	Which is a redox reaction	n?		
	a) $H_2SO_4 + 2NaOH \rightarrow I$			
	b) $BaCl_2 + H_2SO_4 \rightarrow Ba$	$1SO_4 + 2HCl$		
	c) $CH_3COOH + C_2H_5OH$	$\rightarrow CH_3COOC_2H_5 + H_2O$		
	d) $2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{I}_3$	$SO_4 + 2HCl$ $\rightarrow CH_3COOC_2H_5 + H_2O$ $FeCl_2 + SnCl_4$		
297.	Which one of the followi	ng reactions involves dispro	oportionation?	
	a) $2H_2SO_4 + Cu$	$\mathrm{CuSO_4} + 2\mathrm{H_2O} + \mathrm{SO_2}$	b) $As_2O_3 + 3H_2S$	$As_2S_3 + 3H_2O$
		$KCl + KOCl + H_2O$		
298.	The oxidation state of ch	romium in the final produc	t formed by the reaction be	tween KI and acidified
	potassium dichromate se	olution is		
	a) +3	b) +2	c) +6	d) +4
299.	Which of the following a	cts as an oxidising as well as	s reducing agent?	

200	a) Na ₂ 0	b) Na ₂ O ₂	c) NaNO ₃	d) NaNO ₂
300.	Oxidation state of carbon	= =	a) 14	4) + 2
201	a) Zero	b) +1	c) +4	d) +2
301.	-	dation number of carbon eq		ч) с п о
202	a) C_6H_6	b) CH ₃	c) C_2H_4	d) $C_6H_{12}O_6$
302.		+ 16HCl \rightarrow 2KCl + 2MnCl ₂ b) MnCl ₂	c) KCl	
202	a) Cl ₂	phosphorus in Mg ₂ P ₂ O ₇ is :	C) KG	d) H ₂ O
303.	a) $+ 5$	b) – 5	c) +6	d)-7
204	•	•	•	of its chloride. The atomic
304.		ning its valency to be 2) is:		of its chiloride. The atomic
	a) 40	b) 20	c) 80	d) None of these
305	Oxidation state of chromis	•	C) 00	u) None of these
303.		uIII		
	Ĭ\/Ĭ			A Y
	Cr Cr			
	o II O		4/1	
	a) +10	b) +6	c) +3	d) +2
306.	Oxidation states of the me	etal in the minerals haemati	te and magnetite, respectiv	vely, are
	a) II, III in haematite and I		b) II, III in haematite and I	=
	c) II in haematite and II, I		d) III in haematite and II, I	_
307.		anges from red-orange to le		
	a) Reduction of Cr(VI) to	=	A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	, , ,
	b) Formation of chromium	, ,	X y y	
	c) Conversion of dichrom	-	Y	
		hydroxide to potassium pe	eroxide	
308.		nvolved in oxidation of KM		
	a) 1	b) 2	c) 5	d) 3
309.	The oxidation state of nitr	rogen in NH ₄ NO ₃ is:		•
	a) -3 and $+5$	b) +3 and +5	c) +5	d) +3
310.	When Sn(IV) chloride is	treated with excess HCl, the	e complex [SnCl ₆] ²⁻ is form	ned. The oxidation state of
	Sn in this complex is:			
	a) +6	b) -2	c) +4	d) -5
311.	Oxidation number of chlor	rine in HOCl is :		
	a) Zero	b) -1	c) +1	d) +2
312.	In the reaction, $C + 4HNO$	$_3 \rightarrow CO_2 + 2H_2O + 4NO_2$	HNO ₃ acts as:	
	a) An oxidising agent			
	b) An acid			
	c) An acid as well as oxidi	sing agent		
	d) A reducing agent			
313.	Change of hydrogen into p	proton is :		
5	a) Oxidation of hydrogen			
	b) Acid-base reaction			
	c) Reduction of hydrogen			
	d) Displacement reaction			
314.		to form SO ₂ which is oxid	ised by Cl ₂ water. The sol	ution is treated with BaCl ₂
	solution. The amount of B			_
	a) 1.0 mole	b) 0.5 mole	c) 0.24 mole	d) 0.25 mole
315.	The number of mole of fer	rous oxalate oxidised by or	ne mole of KMnO ₄ is:	
	a) 1/5	b) 3/5	c) 2/3	d) 5/3

	. Reactants react in the equ	al number of to give p	roducts.	
	a) Mole	b) Weights	c) Equivalent	d) All of these
317.	. Mole and millimole of read	ctants react in theas	represented by balanced s	toichiometric equation.
	a) Molar ratio	b) Equal amount	c) Both (a) and (b)	d) None of these
318.	. The reaction of white ph	osphorus with aqueous Na	aOH gives phosphine alon	g with another phosphorus
	=	= = = = = = = = = = = = = = = = = = =		in phosphine and the other
	product are respectively:	VI.	r	r
	a) Redox reaction; -3 and	1-5		
	b) Redox reaction; +3 and			
	c) Disproportionation rea			
	d) Disproportionation rea			Y
210				
317.	. Which can act only as oxid		a) Iadina	A) II O
220	a) Oxygen	b) Fluorine	c) Iodine	d) H ₂ O ₂
320.		$L_2 \rightarrow 2NH_3$; if E_1 and E_2 a	re equivalent masses of Ni	${ m H_3}$ and ${ m N_2}$ respectively, then
	$E_1 - E_2$ is:	13.0		
	a) 1	b) 2	c) 3	d) 4
321.	Bleaching action of SO ₂ is			
	a) Reduction	b) Oxidation	c) Hydrolysis	d) Acidic nature
322.	$. In N2 + 2H2O \rightarrow NH4+ + 1$			
	a) Oxidised	b) Reduced	c) Both (a) and (b)	d) None of these
323.	. If three electrons are lost	by a metal ion M^{3+} , its fina	l oxidation number will be	:
	a) Zero	b) +6	c) +2	d) +4
324.	. In the reaction, NaH + H_2	$0 \rightarrow NaOH + H_2$:		
	a) H ⁻ is oxidised			
	b) Na ⁺ is reduced	4		
	c) Both NaH and H ₂ O are	reduced	>	
	d) None of the above	~ S		
225				
325.	=	s as an oxidizing agent?		
325.	. Which of the following act		c) FeCl ₃	d) All of these
	. Which of the following act a) HNO_3	b) Cl ₂	c) FeCl ₃ ch requires 40 mL, of 0.11	d) All of these N Na ₂ S ₂ O ₃ to react with it,
	. Which of the following act a) HNO_3 . How many gram of I_2 are	b) Cl ₂ present in a solution which	-	d) All of these $N \text{ Na}_2\text{S}_2\text{O}_3$ to react with it,
	. Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$	b) Cl ₂ present in a solution whic [⁻ ?	ch requires 40 mL, of 0.11	$N \text{ Na}_2\text{S}_2\text{O}_3$ to react with it,
326.	. Which of the following act a) HNO ₃ . How many gram of I ₂ are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$ a) 12.7 g	b) Cl ₂ present in a solution whice (-? b) 0.558 g	ch requires 40 mL, of 0.11	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g
326.	. Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_2$ a) 12.7 g . The number of mole of KN	b) Cl ₂ present in a solution whice (-? b) 0.558 g	ch requires 40 mL, of 0.11	$N \text{ Na}_2\text{S}_2\text{O}_3$ to react with it,
326.	. Which of the following act a) HNO ₃ . How many gram of I ₂ are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$ a) 12.7 g . The number of mole of KN is:	b) Cl ₂ present in a solution which (-? b) 0.558 g MnO ₄ that will be needed to	ch requires 40 mL, of 0.11 c) 25.4 g o react with one mole of su	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution
326.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_2$ a) 12.7 g . The number of mole of KN is: a) 2/5	b) Cl ₂ present in a solution which (-? b) 0.558 g MnO ₄ that will be needed to	ch requires 40 mL, of 0.11 c) 25.4 g c) react with one mole of su c) 4/5	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1
326.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_2$ a) 12.7 g . The number of mole of KN is: a) 2/5 . What weight of HNO_3 is r	b) Cl ₂ present in a solution which (7? b) 0.558 g MnO ₄ that will be needed to b) 3/5 required to make 1 litre of	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution
326.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_2$ a) 12.7 g . The number of mole of KN is: a) 2/5 . What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - I_2$	b) Cl_2 present in a solution which [-? b) 0.558 g MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the
326. 327. 328.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) 2/5. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$ 63 g	b) Cl_2 present in a solution which 17? b) 0.558 g MnO_4 that will be needed to b) 3/5 required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) 21 g	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1
326. 327. 328.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + 2I_3$ a) 12.7 g The number of mole of KN is: a) 2/5 What weight of HNO_3 is r reaction? $3Cu + 8HNO_3 - I_3$ a) 63 g	b) Cl_2 present in a solution which (7) b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ e sulphur atoms in $H_2S_2O_8$	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as 0 c) 42 g	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g
326. 327. 328.	Which of the following act a) HNO ₃ . How many gram of I_2 are $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) 2/5. What weight of HNO ₃ is reaction? $3Cu + 8HNO_3 - a$ a) 63 g. The oxidation state of two a) -6	b) Cl_2 present in a solution which (7? b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ sulphur atoms in $H_2S_2O_8$ b) -2	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the
326. 327. 328. 329. 330.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$. The number of mole of KN is: a) $2/5$. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - I_3$. The oxidation state of two a) -6 . In a conjugate pair of redu	b) Cl_2 present in a solution which (7) b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $\Rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ $\Rightarrow sulphur atoms in H_2S_2O_8 b) -2 actant and oxidant, the oxide$	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6 lant has:	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4
326. 327. 328. 329. 330.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + 2I_3$. The number of mole of KN is: a) $2/5$. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - I_3$. The oxidation state of two a) -6 . In a conjugate pair of reduction a) Higher ox.no.	b) Cl_2 present in a solution which C_1 b) 0.558 g MnO_4 that will be needed to b) $3/5$ required to make 1 litre of C_2 C_3 C_4 C_4 C_5 C_4 C_5 C_4 C_5 C_6 C_6 C_7 C_7 C_8 C_7 C_8 C_7 C_8 C_8 C_8 C_8 C_9 C	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as 0 c) 42 g c) +6 lant has: c) Same ox.no.	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4
326. 327. 328. 329. 330.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$. The number of mole of KN is: a) $2/5$. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$. The oxidation state of two a) -6 . In a conjugate pair of redual Higher ox.no.	b) Cl_2 present in a solution which (7) b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ sulphur atoms in $H_2S_2O_8$ b) -2 actant and oxidant, the oxidation $H_2S_2O_8$ b) Lower ox.no. $NO_3 \rightarrow 2H_2O + 2NO_2 + S_1$	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6 lant has: c) Same ox.no. The equivalent weight of	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4 d) Either of these hydrogen sulphide is:
326. 327. 328. 329. 330.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) $2/5$. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$) 63 g. The oxidation state of two a) -6 . In a conjugate pair of reduce a) Higher ox.no. In the equation, $H_2S + 2H_3$ 17	b) Cl_2 present in a solution which (7? b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ sulphur atoms in $H_2S_2O_8$ b) -2 actant and oxidant, the oxide b) Lower ox.no. $NO_3 \rightarrow 2H_2O + 2NO_2 + S$ b) 34	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as 0 c) 42 g c) +6 lant has: c) Same ox.no.	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4
326. 327. 328. 329. 330.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) $2/5$. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$ a) 63 g. The oxidation state of two a) -6 . In a conjugate pair of reduce a) Higher ox.no. In the equation, $H_2S + 2H_3$ a) 17. In which transfer of five elements of I_2 and I_3 are I_3 and I_4 are I_5 and I_5 are I_5 and I_5 are	b) Cl_2 present in a solution which C_1 ? b) 0.558 g MnO_4 that will be needed to C_1 b) $3/5$ required to make 1 litre of C_2 C_3 C_4 C_4 C_5 C_4 C_5 C_4 C_5 C_6 C_6 C_7	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6 lant has: c) Same ox.no. The equivalent weight of c) 68	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4 d) Either of these hydrogen sulphide is: d) 18
326. 327. 328. 329. 330. 331.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) 2/5. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$ a) 63 g. The oxidation state of two a) -6 . In a conjugate pair of reduce a) Higher ox.no. In the equation, $H_2S + 2H_3$ a) 17. In which transfer of five elaptons and $MnO_4^- \longrightarrow Mn^{2+}$	b) Cl_2 present in a solution which (7) b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ sulphur atoms in $H_2S_2O_8$ b) -2 actant and oxidant, the oxid b) Lower ox.no. $NO_3 \rightarrow 2H_2O + 2NO_2 + S$ b) 34 lectrons takes place? b) $CrO_4^{2-} \rightarrow Cr^{3+}$	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6 lant has: c) Same ox.no. The equivalent weight of	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4 d) Either of these hydrogen sulphide is: d) 18
326. 327. 328. 329. 330. 331.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) $2/5$. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$ a) 63 g. The oxidation state of two a) -6 . In a conjugate pair of reduce a) Higher ox.no. In the equation, $H_2S + 2H_3$ a) 17. In which transfer of five elements of I_2 and I_3 are I_3 and I_4 are I_5 and I_5 are I_5 and I_5 are	b) Cl_2 present in a solution which (7) b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ sulphur atoms in $H_2S_2O_8$ b) -2 actant and oxidant, the oxid b) Lower ox.no. $NO_3 \rightarrow 2H_2O + 2NO_2 + S$ b) 34 lectrons takes place? b) $CrO_4^{2-} \rightarrow Cr^{3+}$	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6 lant has: c) Same ox.no. The equivalent weight of c) 68 c) MNO ₄ → MnO ₂	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4 d) Either of these hydrogen sulphide is: d) 18
326. 327. 328. 329. 330. 331.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) 2/5. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$ a) 63 g. The oxidation state of two a) -6 . In a conjugate pair of reduce a) Higher ox.no. In the equation, $H_2S + 2H_3$ a) 17. In which transfer of five elaptons and $MnO_4^- \longrightarrow Mn^{2+}$	b) Cl_2 present in a solution which (7) b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ sulphur atoms in $H_2S_2O_8$ b) -2 actant and oxidant, the oxid b) Lower ox.no. $NO_3 \rightarrow 2H_2O + 2NO_2 + S$ b) 34 lectrons takes place? b) $CrO_4^{2-} \rightarrow Cr^{3+}$	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6 lant has: c) Same ox.no. The equivalent weight of c) 68	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4 d) Either of these hydrogen sulphide is: d) 18
326. 327. 328. 329. 330. 331. 332.	Which of the following act a) HNO_3 . How many gram of I_2 are $S_2O_3^{2^-} + I_2 \longrightarrow S_4O_6^{2^-} + 2I_3$ a) 12.7 g. The number of mole of KN is: a) $2/5$. What weight of HNO_3 is reaction? $3Cu + 8HNO_3 - a$ a) 63 g. The oxidation state of two a) -6 . In a conjugate pair of reduce a) $Higher ox.no$. In the equation, $H_2S + 2H_3$ a) 17. In which transfer of five elae I_3 I_3 I_4 I_5 I_5 I_5 I_5 I_6 I_7	b) Cl_2 present in a solution which (7? b) $0.558 g$ MnO_4 that will be needed to b) $3/5$ required to make 1 litre of $\Rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2$ b) $21 g$ $\Rightarrow sulphur atoms in H_2S_2O_8 b) -2 \Rightarrow sulphur atoms in H_2S_2O_8 b) Lower ox.no. NO_3 \rightarrow 2H_2O + 2NO_2 + S b) 34 \Rightarrow 2H_2O + 2NO_2 + S b) 34 \Rightarrow 44 $	ch requires 40 mL, of 0.11 c) 25.4 g c react with one mole of su c) 4/5 2 N solution to be used as c) 42 g c) +6 lant has: c) Same ox.no. The equivalent weight of c) 68 c) MNO ₄ → MnO ₂	N Na ₂ S ₂ O ₃ to react with it, d) 11.4 g alphite ion in acidic solution d) 1 s an oxidising agent in the d) 84 g d) -4 d) Either of these hydrogen sulphide is: d) 18 d) $\operatorname{Cr}_2\operatorname{O}_7^{2-} \to 2\operatorname{Cr}^{3+}$

	mole of potassium salt, i.e, K	HC_2O_4 . $H_2C_2O_4$.2 H_2O oxidised by	by one mole of permanganate
ion is :			
a) 2/5	b) 4/5	c) 1	d) 5/4
	ied solution of ferrous ammor	nium sulphate is treated with KM	100_4 solution, the ion which is
oxidised is :	2		
a) Fe ²⁺	b) SO ₄ ²⁻	c) NH ₄ ⁺	d) MnO ₄
337. Oxidation num	•		
a) -3	b) +3	c) Zero	d) -1/3
	=	mposes on warming to give oxyg	
		itions where one mole of gas occ	cupies 24 dm 3 , 100 cm 3 of XM
	θ_2 produces 3 dm ³ of θ_2 . Thus		
a) 2.5	b) 1	c) 0.5	d) 0.25
339. CuSO ₄ and KI o			
a) $CuI_2 + K_2SC$. ,		d) $CuI_2 + K_2SO_4 + I_2$
340. Which metal ex	khibits more than one oxidatio		01
a) Na	b) Mg	c) Al	d) Fe
	llowing oxidation state is the	most common among the lantha	
a) 4	b) 2	c) 5	d) 3
	ım changes to Al ³⁺ in solution	by losing:	
a) $18 \times 10^{23} e^{-1}$			
b) 6.023×10^{-1}			
c) 3.01×10^{23}			
d) 9×10^{23} el			
343. In CH_2Cl_2 , the c	oxidation number of C is :	*	
a) -4	b) +2	c) Zero	d) +4
344. In the compour	nds KMn O_4 and $K_2Cr_2O_7$, the I	nighest oxidation state is of the e	lement
a) Mn	b) K	c) 0	d) Cr
345. The oxidation s	state of nitrogen varies from :		
a) -3 to $+5$	b) 0 to +5	c) -3 to 1	d) $+3$ to $+5$
	state of hydrogen in CaH ₂ is :		
a) +1	b) -1	c) Zero	d) +2
	non oxidation state of an elen	nent is -2 . The number of elect	rons present in its outermost
shell is :			
a) 2	b) 4	c) 6	d) 8
	or must possess the following	characteristics :	
	hange should be sharp		
-	hange should be clear		
	ensitive to the equivalent poin	t	
d) All of the ab			
	number of Xe in Xe F_4 and XeO	₂ is	
a) +6	b) +4	c) +1	d) +3
	number of arsenic in arsenate		
a) +5	b) +4	c) +6	d) +2
351. The reaction,			
	$g(s) \rightleftharpoons 2Ag^{+}(aq)$		
is an example o			
a) Reduction	b) Oxidation	c) Disproportionation	d) None of these
352. During the pre	sence of SO_3^{2-} and S^{2-} in a mix	xture, on addition of dil. H ₂ SO ₄ , c	one notice that:
	are not formed		
b) SO ₂ and H ₂ S	formed during change under	goes a redox change forming coll	oidal sulphur and thus, no

smell			
c) A smell of burning su	Inhur		
d) A smell of rotten egg	.p.rur		
353. Which is not an oxidising	g agent?		
a) KClO ₃	b) 0 ₂	c) C ₆ H ₁₂ O ₆	d) $K_2Cr_2O_7$
354. The charge on cobalt in	, -	c) d ₆ 11 ₁₂ 0 ₆	d) H2dr207
a) -6	b) +3	c) -3	d) +6
355. The most stable oxidation			a) 10
a) + 5	b) + 3	c) + 2	d) + 4
356. Arrange the following as	•		
(i)Mn ²⁺ (ii) MnO			
(iii) $KMnO_4$ (iv) K_2M	_		
	b) (i)<(ii)<(iv)<(iii)	c) (ii)<(iii)<(i)<(iv)	d) (iii)>(i)>(iv)>(ii)
357. What mass of MnO_2 is re			
$MnO_2 + H^+ + H_2C_2O_4$			
a) 8.7 g	b) 0.24 g	c) 0.84 g	d) 43.5 g
358. Stronger is oxidising age	, 0		
a) Standard reduction p			
b) The tendency to get it	=		
_	electrons by that species		
d) Standard oxidation po			
359. How many g of KMnO ₄	_	.75 litre of 0.850 N soluti	on if KMnO ₄ is reduced as,
$MnO_4^- + 8H^+ + 5e \rightarrow I$			-
a) 101 g	b) 202 g	c) 50.5 g	d) 303.0 g KMnO ₄
360. When KMnO ₄ is reduced	l with oxalic acid in acid me	dium, the oxidation numbe	er of Mn changes from:
a) +7 to +4	b) +6 to +4	c) +7 to +2	d) $+4$ to $+2$
361. Addition of zinc powder	to CuSO ₄ solution precipita	ates copper due to :	
a) Reduction of Cu ²⁺	b) Reduction of SO_4^{2-}	c) Reduction of Zn	d) Hydrolysis of CuSO ₄
362. Titrations in which lib	erated I_2 is estimated to	carry out the volumetric	estimations are known as
titrations.			
a) Iodometric	b) Iodimetric	c) Acidimetric	d) Alkalimetric
363. In the course of chemica	l reaction, an oxidant :		
a) Loses electron	b) Gains electron	c) Either of these	d) None of these
364. In alkaline condition KM			
$2KMnO_4 + 2KOH \rightarrow 2F$	$M_2 MnO_4 + H_2 O + O$. The eq.	wt. of KMnO ₄ is:	
a) 52.7	b) 158	c) 31.6	d) 79
365. Oxidation number of nit			
a) +5	b) -3	c) +3	d) -2
366. Total number of AlF ₃ mo			
a) 9×10^{24}	b) 3×10^{24}	c) 7×10^{23}	d) 10^{23}
367. Oxidation number of N i			
a) +3	b) +2	c) +1	d) +4
368. The oxidation state of ch	-	=	
a) Cl ₂	b) HCl	c) Cl ₂ 0	d) Cl ₂ O ₇
369. How many gram of KM oxidant in acidic mediur		re of 0.05 <i>N</i> solution? The	KMnO ₄ is to be used as an
a) 1.58 g	b) 15.8 g	c) 6.32 g	d) 31.6 g
370. The reaction; $H_2S + H_2C$			
a) Acidic nature of H ₂ O ₂			
b) Alkaline nature of H ₂	O_2		

	c) Oxidising ac	ction of H	$^{1}_{2}0_{2}$						
	d) Reducing ac								
371.	For redox read	ction,							
	$MnO_4^- + C_2O_4^{2-}$	- + H+ -	\rightarrow Mn ²⁺ + CO ₂	$+ H_2 O$					
	coefficient of r								
	$MnO_4^ C_2O_4$								
	a) 2 5		1		b) 16	5	2		
	,	.6 2			d) 2	16	5		
	Chlorine has +		ion state in :		, _				
	a) HCl		b) HClO ₃		c) Cl ₂ 0			d) ICl ₃	~V
	Which stateme	ent is inco			, ,			, ,	
				d by reduction	of another				\) '
	=			ed by oxidation					Y
	•			lementary react					
	=		=	ion and reducti		ke place	in the	same reaction	1
374.	=	-		ng K ₂ Cr ₂ O ₇ by		=	-		
	a) (molecular			0 2 2 7 3	3 /	•	CA	2	2 ,
	b) (molecular					1			
	c) (molecular	· , ,				1	7		
	d) Same as mo				-				
375.	=		_	otassium iodate	e, the oxidati	on state	of iodi	ne changes fro	om :
	a) +5 to 0		b) +5 to –		c) $-5 \text{ to } 0$			d) $-7 \text{ to } -1$	
376.	The halogen th	nat shows	s same oxidation	on state in all it	s compound:	s with ot	her ele	ements is:	
	a) I ₂		b) F ₂		c) Cl ₂			d) Br ₂	
377.	The reaction,			4					
	$P_4 + 3NaOH +$	$3H_{2}O -$	\rightarrow 3NaH ₂ PO ₂ +	PH ₃)				
	is an example								
	a) Disproporti	onation i	reaction		b) Neutralis	sation re	action		
	c) Double-dec	ompositi	on reaction		d) Pyrolytic	reaction	n		
378.	Titrations in w	hich I ₂ s	olution is used	l as intermediat	te are known	astit	rations	5.	
	a) Iodometric			ric	-			d) alkalimetr	ric
379.	In the reaction	$_{1}$, $Cr_{2}O_{7}^{2-}$	$+ 14H^{+} + 6I^{-}$	\rightarrow 2Cr ³⁺ + 7I	$H_2O + 3I_2, w$	hich elei	nent is	reduced?	
	a) I	.4	b) 0		c) H			d) Cr	
380.	Carbon reacts	with oxy	gen to form tw	o oxides, CO ar	100_2 . This i	is becaus	se:		
	a) Carbon has	two crys	talline forms						
	b) Carbon has	two oxid	ation states						
	c) Oxygen don		-						
	d) Oxygen has		=						
		lliliter of		lution will redu		f 0.1 <i>N</i> H	lgCl ₂ t		
	a) 120 mL		b) 60 mL		c) 30 mL			d) 240 mL	
		of FeSO ₄	(mol. wt. $=15$	52) will be oxid	dised by 200	mL of	norma	l KMnO ₄ solu	ition in acidic
	solution?								
	a) 30.4 g		b) 60.8 g		c) 121.6 g			d) 15.8 g	
		lligram of		re equal to 1 m		$I K_2 Cr_2 C$) ₇ equi		
	a) 5.9 mg		b) 0.59 mg		c) 59 mg			d) $59 \times 10^{-}$	J
		oles of M	$n0_4^-$ required	to oxidise one	mole of ferr	ous oxa	late co	mpletely in a	cidic medium
	will be :								
	a) 0.4 mole		b) 7.5 mole		c) 0.2 mole			d) 0.6 mole	
				ming a part of	f compound	in oxid	ation	states of +2	+5 and -2
	respectively. V	Vhat coul	d be the comp	ound?					

	a) $A_2(BC)_2$	b) $A_2(BC_4)_3$	c) $A_3(BC_4)_2$	d) ABC
386	5. In an oxidation process	for a cell $M_1 \longrightarrow M_1^{n+} +$	ne, the other metal (M_2)) being univalent showing
	reduction takes up the	electrons to complete redo	ox reaction.	
	a) $(n-1)$	b) 1	c) n	d) 2
387	'. In which of the following 1		an oxidising agent?	
		$CCl_3CHO + HCl$		
	$(iii)CH_4 + Cl_2$	$CH_3Cl + HCl$		
	The correct answer is			
	a) (i) only			\wedge
	b) (ii) only			
	c) (i) and (iii)			
200	d) (i),(ii) and (iii)		1 1.	
388	B. During a redox change, the			D 0.24
200	a) Cr ⁵⁺	b) Cr ⁴⁺	c) Cr ³⁺	a) Cr ² '
389	-	= =	terrous ammonium sulpha	te, the equivalent weight of
	potassium permanganate		2 Malas 1	D.M.L. L
200		b) Molecular weight/5	c) Molecular weight/2	d) Molecular weight
390	Which conversion is an ox $\frac{1}{2}$		a) II+ . II	d) $H^- \rightarrow H$
201	a) $SO_4^{2-} \rightarrow SO_3^{2-}$		c) $H^+ \rightarrow H$	$a) H \rightarrow H$
391	. In which case +1 oxidatio		a) mi	מ וג
202	a) Ga	b) Al	c) Tl	d) B
392	. In the reduction of dichro			
202	a) 3	b) 1	c) 2	d) 4
393	3. When $K_2Cr_2O_7$ is converted		e in oxidation number of cn	
204	a) 0	b) 5	c) /	d) 9
394	. Which of the following act	b) HNO ₂	c) HI	4) П сU
205	a) HNO ₃ 5. In which of the following o		•	d) H ₂ SO ₄
373	a) N_3H	b) NH ₂ OH		d) NH ₃
306	5. 1 mole of MnO ₄ ²⁻ in neutra		c) N ₂ H ₄	u) NII3
370			portionates to .	
	a) $\frac{2}{3}$ mole of MnO ₄ and $\frac{1}{3}$ m			
	b) $\frac{1}{3}$ mole of MnO ₄ and $\frac{2}{3}$ m	ole of MnO ₂		
	c) $\frac{3}{3}$ mole of Mn ₂ O ₇ and $\frac{1}{3}$ n			
	d) $\frac{2}{3}$ mole of Mn ₂ O ₇ and $\frac{1}{3}$ n			
397	. Which one of the compour		n acidified solution of KMr	104?
	a) SO ₂	b) FeCl ₃	c) H_2O_2	d) FeSO ₄
398	8. When one mole of $KMnO_4$			
4	a) 11.2 litre	b) 22.4 litre	c) 44.8 litre	d) 56.0 litre
	. What would happen when	n a small quantity of $ m H_2O_2$ i	is added to a solution of Fe	SO ₄ ?
	a) Colour disappears b) H ₂ is evolved			
		2.1		
	c) An electron is added to			
	d) An electron is lost by Fe			
400	The oxidation state of I in			
	a) +1	b) +3	c) +5	d) +7
401	. The number of moles of K			
400	a) 1	b) 5	c) ½	d) 1/5
407	'AUSUW SOUTION OF KI re	Pacts with excess of HaS().	and Kills solutions accord	ling to the equation, $6H^+$ +

	$5I^- + IO_3^- \rightarrow 3I_2 + 3H_2O_3$	O. Which of the following st	tatements is true?	
	a) 200 mL of the KI soluti	on reacts with 0.10 mole K	IO ₃ .	
	b) 100 mL of the KI soluti	on reacts with 0.060 M of 1	H_2SO_4 .	
	c) 0.5 litre of the KI soluti	on produces 0.15 mole of I	2	
	d) None of the above			
403	. Oxidation number of chro	omium in K ₂ Cr ₂ O ₇ is:		
	a) +2	b) +3	c) +6	d) —4
404	. A standard solution is one	e whose :		_
	a) Concentration is 1 M			
	b) Concentration is unknown	own		
	c) Concentration is know			
	d) None of the above			
405	=	$_2S \rightarrow 3S + 2H_2O$, the subst	ance oxidised is	× , Y
	a) H ₂ S	b) SO ₂	c) S	d) H ₂ O
406	. Oxidation number of P in	· -	,	
	a) +5	b) +6	c) +7	d) +3
407	•	at iron does not exhibit in it		
	a) Zero	b) +1	c) +2	d) +3
408	. Oxidation number of Cl in			
100	a) +7	b) -7	c) +5	d) -5
409	•	ogen acting as an oxidising		, ·
100	a) With iodine to give hyd			
	b) With lithium to give lit	_		
	c) With nitrogen to give a	-		
	d) With sulphur to give hy		()	
410	. In presence of moisture S)	
110	a) Gain electrons	o ₂ cuii .		
	b) Lose electrons	$\mathcal{O}_{\mathcal{O}}$		
	c) Act as oxidising agent			
	d) Does not act as reducir	ng agent		
411	. The oxidation number of			
111	a) +4	b) +6	c) +2	d) -4
412	. Which is not correct in ca		C) 12	uj i
112	a) It decolourises KMnO ₄			
	b) It is primary standard			
	c) It is a double salt			
	d) Oxidation state of Fe is	+3 in the salt		
413		mate by Fe (II), the number	r of alactrons involved ner	chromium atom is:
713	a) 3	b) 1	c) 2	d) 4
1.1 /1.	. Which of the following is		C) 2	u) +
414			b) $CaC_2O_4 + 2HCl \rightarrow CaC_4$	1)
7	a) NaCl + KNO ₃ \rightarrow NaNC c) Ca(OH) ₂ + 2NH ₄ Cl \rightarrow			
115			d) $2K[Ag(CN)_2] + Zn \rightarrow$	
415		20_7 solution is required to 0_7		
110	a) 47.8 mL	b) 23.8 mL	c) 40 mL	d) 72 mL
416	Oxidation number of As a		-2 1.4	D 2
117	a) +5	b) +6	c) +4	d) -3
41/			- 4n ₂ . II the atomic weig	ght of iron is 56, then its
	equivalent weight will be		a) (2	J) 04
410	a) 42	b) 21	c) 63	d) 84
418		(H_2SO_5) , the oxidation number (A_2SO_5)		J) 1 (
	a) +8	b) +4	c) +5	d) +6

419. The reaction,

$$Ag^{2+}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$$

is an example of

- a) Reduction
- b) Oxidation
- c) Comproportionation
- d) Disproportionation
- 420. Amount of oxalic acid present in a solution can be determined by its titration with $KMnO_4$ solution in the presence of H_2SO_4 . The titration gives unsatisfactory result when carried out in the presence of HCl, because HCl:
 - a) Oxidises oxalic acid to carbon dioxide and water
 - b) Gets oxidized by oxalic acid to chlorine
 - c) Furnishes H⁺ ions in addition to those from oxalic acid
 - d) Reduces permanganate to Mn²⁺
- 421. Which is not a redox change?

a)
$$CaCO_3 \rightarrow CaO + CO_2$$

b)
$$2H_2 + O_2 \rightarrow 2H_2O$$

c) Na + H₂O
$$\rightarrow$$
 NaOH + $\frac{1}{2}$ H₂

d)
$$MnCl_3 \rightarrow MnCl_2 + \frac{1}{2}Cl_2$$

- 422. Sulphurous acid can be used as:
 - a) Oxidising agent
- b) Reducing agent
- c) Bleaching agent
- d) All of these

REDOX REACTIONS

CHEMISTRY

	: ANSWER KEY:														
1)	С	2)	С	3)	a	4)	d	177)	b	178)	d	179)	С	180)	a
5)	a	6)	d	7)	d	8)	b	181)	a	182)	c	183)	d	184)	a
9)	c	10)	d	11)	c	12)	d	185)	С	186)	a	187)	c	188)	d
13)	d	14)	b	15)	d	16)	b	189)	a	190)	c	191)	a	192)	b
17)	d	18)	a	19)	c	20)	a	193)	c	194)	a	195)	a	196)	b
21)	b	22)	a	23)	b	24)	c	197)	b	198)	b	199)	c	200)	d
25)	a	26)	a	27)	d	28)	a	201)	d	202)	c	203)	d 🛊	204)	a
29)	a	30)	d	31)	c	32)	a	205)	b	206)	b	207)	a	208)	c
33)	a	34)	a	35)	d	36)	c	209)	d	210)	a	211)	d	212)	c
37)	a	38)	a	39)	b	40)	a	213)	b	214)	C	215)	d	216)	c
41)	a	42)	d	43)	c	44)	a	217)	b	218)	d <	219)	c	220)	d
45)	c	46)	c	47)	a	48)	b	221)	b	222)	c	223)	a	224)	a
49)	b	50)	b	51)	b	52)	c	225)	a	226)	b	227)	b	228)	b
53)	a	54)	a	55)	d	56)	c	229)	a	230)	b	231)	c	232)	b
57)	a	58)	a	59)	b	60)	c	233)	c	234)	c	235)	a	236)	a
61)	a	62)	a	63)	a	64)	c	237)	d	238)	c	239)	c	240)	c
65)	d	66)	C	67)	b	68)	b	241)	b	242)	a	243)	d	244)	b
69)	a	70)	b	71)	a	72)	b	245)	d	246)	a	247)	d	248)	a
73)	d	74)	a	75)	c	76)	b	249)	a	250)	c	251)	b	252)	d
77)	d	78)	b	79)	b	80)	d	253)	a	254)	a	255)	C	256)	a
81)	a	82)	d	83)	c	84)	a	257)	b	258)	C	259)	a	260)	c
85)	d	86)	b	87)	c	88)	a	261)	a	262)	d	263)	b	264)	c
89)	C	90)	b	91)	a	92)	b	265)	a	266)	b	267)	C	268)	b
93)	b	94)	a	95)	d	96)	C	269)	C	270)	С	271)	b	272)	C
97)	b	98)	C		b	100)	b	273)	b	274)	b	275)	c	276)	c
101)	С	102)	b	103)	a	104)	a	277)	a	278)	a	279)	d	280)	a
105)	a	106)	b	107)	b	108)	a	281)	c	282)	a	283)	a	284)	С
109)	b	110)	a	111)	b	112)	d	285)	d	286)	c	287)	a	288)	a
113)	a	114)	a	115)	d	116)		289)	a	290)	d	-	d	292)	b
117)	C	118)	b	119)	d	120)		293)	d	294)	C	-	a	296)	d
121)		122)	á	123)	b	124)		297)	C	298)	a L	299)	d	300)	a
125)	C	126)	a	127)	a	128)		301)	d h	302)	b a	303)	a	304)	c
129) 133)	d	130) 134)	a b	131) 135)	a	132) 136)		305) 309)	b	306) 310)	d	307) 211)	c	308)	a
137)	c b	134)		139)	a	140)		313)	a	314)	c d	311) 315)	c d	312) 316)	a
141)		142)	a b	143)	c b	144)		317)	a	314)		319)	u b	320)	c
145)	a	146)	C	143)	a	144)		321)	a a	310) 322)	c c	323)	b	324)	a a
149)	C	150)	c	151)	b	152)		325)	d	326)	b	323) 327)	a	324)	c
153)	d	154)	a	151) 155)	b	156)		329)	c	330)	a	331)	a	332)	a
157)	a	158)	a	159)	c	160)		333)	b	334)	b	335)	d	336)	a
161)	a	162)	d	163)	a	164)		337)	d	338)	a	339)	u C	340)	d
165)	a	166)	a	167)	d	168)		341)	d	342)	d	343)	c	344)	a
169)	C	170)	b	171)	a	172)		345)	a	346)	b		c	348)	d
173)	c	174)	a	175)	b	176)		349)	b	350)	a	-	d	352)	b
2.0,	•	-· · · · · ·	•	o,		<u> </u>	•		-	550)		551	-	30 2 j	-

357) 361) 365) 369) 373) 377) 381) 385) 389)	c 354) b 358) a 362) a 366) c 370) d 374) a 378) a 382) c 386) b 390) a 394)	 a 359 a 363 d 363 c 371 b 379 a 383 c 383 	b) a B) a B) a C) a C) a C) d C) d C) d C) d C) d C) c	356) 360) 364) 368) 372) 376) 380) 384) 388) 392) 396)	b c b d c b d c a a		
401) 405) 409) 413) 417)	b 398) a 402) a 406) b 410) a 414) b 418) a 422)	d 399 c 403 b 407 d 419 d 419 d	3) c 7) b 1) a 5) b	400) 404) 408) 412) 416) 420)	b c a d a d	GRI	
				C			
SN							
~							

REDOX REACTIONS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (c)

MN can exhibit + 7 oxidation no.

2 **(c**)

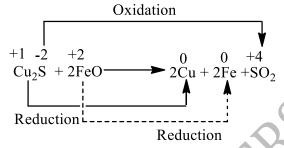
Indicators are the substances which indicates the completion of a reaction.

3 **(a)**

$$CH_3OH \rightarrow HCOOH$$

 $0r C^2 \rightarrow C^{2+} + 4e$

4 (d)


$$3e + Mn^{7+} \rightarrow Mn^{4+}$$

 $\therefore M = N/\text{Valence factor} = 0.6/3 = 0.2$

5 (a

 $0_3 + H_2O_2 \rightarrow H_2O + 2O_2$; H_2O_2 is reduced.

6 **(d**)

In this reaction Cu and Fe undergo reduction while sulphur undergoes oxidation. Hence, this is a redox reaction.

- 7 **(d)**
- ---do----
- 8 **(b)**

$$\operatorname{Sn}^{2+} \to \operatorname{Sn}^{4+} + 2e$$

$$\therefore E = M/2 = \frac{190}{2} = 95$$

9 (c

N has +3 ox.no. which may increase (upto +5) or decrease (upto -3)

10 (d)

 Na_2O_2 is sodium peroxide.

11 (c

Acidified $K_2Cr_2O_7$ solution oxidises SO_2 into $Cr_2(SO_4)_3$.

$$^{+4}$$
 $3SO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$

Hence, oxidation state of sulphur changes from +4 to +6.

12 **(d)**

Electronation is gain of electrons i.e., $A + e \rightarrow A^-$

13 **(d)**

 $3\text{Fe} \rightarrow \text{Fe}_3\text{O}_4 + 8e^- \text{ oxidation}$

$$4H_2O + 8e^- \rightarrow 4H_2$$

Thus, there are lose of 8 electrons in the reaction

14 **(b**)

It is definition of volumetric analysis.

15 **(d)**

Oxidation takes place at anode (c) is not feasible, *i.e.*, Cr^{3+} is not oxidised to $Cr_2O_7^{2-}$ under given conditions. Hence, option (d) is correct.

16 **(b**)

$$NO_3^- \rightarrow NH_4^+ \text{ or } N^{5+} + 8e \rightarrow N^{3-}$$

Thus, Eq. wt. of $NO_3^- = \frac{62}{8}$

17 **(d)**

Carbon in oxalic acid has +3 oxidation state which may be increases to +4 (in CO_2) and thus, can act as reductant. Rest all have highest oxidation number. Ox.no. of N, Mn and S in HNO_3 (+5), $KMnO_4$ (+7) and H_2SO_4 (+6).

18 (a)

 $Meq. of HNO_3 = Meq. of I_2$

$$\frac{w}{63/3} \times 1000 = \frac{5}{254/10} \times 1000$$

- $w_{HNO_3} = 4.13 \, g$
- 19 **(c)**

$$6e + Cr_2^{6+} \longrightarrow 2Cr^{3+}$$

$$S^{4+} \rightarrow S^{6+} + 2e$$

20 (a)

CN⁻ is reducing and complexing agent.

21 **(b)**

 $Na \xrightarrow{NH_3} Na^+ + (NH_3)x^e$ Ammonia solvated electrons are strongly reducing, impart blue colour to solution and are good conductor of current.

22 **(a)**

 Fe_3O_4 is a mixture of FeO and Fe_2O_3 .

23 **(b)**

 VSO_4 is isomorphous to, $FeSO_4$. $(NH_4)_2$ SO_4 . $6H_2O$.

24 (c)

$$MnO_4^- = Mn = +7$$

$$MnO_4^{2-} = Mn = +6$$

 $MnO_2 = Mn = +4$

 $Mn_2O_3 = Mn = +3$

Hence, changes in oxidation number are 5,1,3,4.

25 **(a)**

Alkaline earth metals have only +2 ox.no. in combined state.

26 **(a)**

Alkali metals are strongest reducing agents.

27 **(d)**

$$S_2^{2+} \rightarrow 2S^{6+} + 8e$$

$$2\text{Fe}^0 \rightarrow \text{Fe}_2^{3+} + 6e$$
.

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

30 **(d)**

$$a + (-2) = 0$$

- $\therefore a = +2$
- 31 **(c)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2 + 3e$$

32 **(a)**

Meq. of oxidant = Meq. of reductant

- $0.5 \times V = 2 \times 2000$
- $\therefore V = 8 \text{ litre}$
- 33 **(a)**

Oxygen shows -1 oxidation state in H_2O_2 .

2(+1) + 2x = 0

$$2x = -2$$

- x = -1

$$I^{-} + (IO_3)^{-1} + H^{+} \longrightarrow I_2 + H_2O_3$$

$$2I^{-} \longrightarrow I_2 + 2e^{-}$$

... (i)
$$\times 5$$

$$10e^{-} + 2(IO_3)^{-1} \longrightarrow I_2$$

On adding Eq. (i) and (ii), we get

$$10I^- + 2IO_3^- \rightarrow 6I_2$$

To balance O atom, add 6H₂O molecules on RHS

and 12H+ on LHS, then

$$10I^- + 2IO_3^- + 12H^+ \rightarrow 6I_2 + 6H_2O$$

or
$$51^- + 10_3^- + 6H^+ \rightarrow 3I_2 + 3H_2O$$

Cl has +7 ox.no. in KClO₄.

36 **(c)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+};$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

37 **(a)**

Oxidation number in elemental form is zero. Covalency is two because of S-S-S-S-chain.

38 **(a)**

 Fe_2O_3

 \therefore Total charge on cation or anion = +6

$$Fe_2^{3+} O_3^{2-}$$

$$\therefore E = \frac{112}{6} \text{ or } \frac{56}{3}$$

39

 C_3O_2 is carbon sub-oxide.

Thus,
$$3a - (2 \times 2) = 0$$

$$a = +\frac{4}{3}$$

40 **(a)**

$$Cu^{2+} + 2I^{-} \rightarrow CuI_{2} \rightarrow Cu_{2}I_{2} + I_{2}$$

 $I_2 + Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$ (Redox change)

41 **(a)**

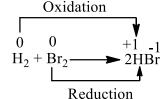
Oxidation state of oxygen in H_2O_2 is -1. -1 is the intermediate oxidation state of oxygen.

42 **(d)**

$$2e + S^{6+} \rightarrow S^{4+}$$

S of H₂SO₄ is reduced.

$$1 + a + 3 \times (-2) = -1$$


- 44 (a)

$$1 + a \times 2 = 0$$

$$\therefore a = -\frac{1}{2}$$

Ox.no. of alkali metals is always + 1.

45

Only this reaction involves oxidation and reduction.

46 **(c)**

$$[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 2$$

$$[C_2^{3+} \rightarrow 2C^{4+} + 2e] \times 5$$

47 **(a)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$C_2^{3+} \rightarrow 2C^{4+} + 2e$$

 \therefore 3 mole of KMnO₄ = 5 mole of FeC₂O₄

48 **(b)**

$$2I^{7+} + 14e \rightarrow (I^0)_2$$

$$E_{IO_4^-} = \frac{M}{7}$$

$$2e + 2Fe_3^{(8/3)+} \rightarrow 3Fe_2^{3+}$$

$$: E_{Fe_3O_4}$$

= $\frac{1}{\text{No. of electrons lost or gained by one molecule}}$

50 **(b)**

 $Meq. of HNO_3 = Meq. of Fe^{2+}$

(Eq. wt. of $HNO_3 = M/3$)

 $0r 3 \times 3 \times V = \frac{8}{56} \times 1000$

 $V = 15.87 \, \text{mL}$

51 **(b)**

The oxidation state of N are +5, +2, 0 and -3 in HNO₃, NO, N₂ and NH₄Cl respectively.

52 **(c)**

The oxidation state of iodine in HIO_4 is + 7 as

$$1 + x + 4(-2) = 0$$

$$x = +7$$

The oxidation state of iodine in H_3IO_5 is +7 as

$$3+x+5(-2)=0$$

$$x = +7$$

The oxidation state of iodine in H_5IO_6 is +7 as

$$5+x+6(-2)=0$$

$$x = +7$$

53 **(a)**

Ag⁺is reduced to Ag.

54 **(a)**

$$2e + S^{6+} \rightarrow S^{4+}$$

S of H₂SO₄ is reduced.

55 **(d)**

The characteristics of oxidant. Note these.

$$SO_2 + H_2O \rightarrow SO_3 + 2H;$$

$$Cl_2 + H_2O \rightarrow 2HCl + O$$

57 **(a)**

Meq. of bleaching powder = Meq. of Cl_2 = Meq. of

 $\frac{w}{35.5} \times 1000 = 50 \times \frac{1}{10}$

 \therefore Per cent Cl₂ = $\frac{0.1775}{5} \times 100 = 3.55 \%$

$$a + 5 \times (-1) = 0$$

$$\therefore a = +5$$

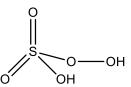
59 (b)

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$(C^{3+})_2 \rightarrow 2C^{4+} + 2\epsilon$$

$$\frac{(C^{3+})_2 \to 2C^{4+} + 2e}{Fe^{2+} + C_2O_2^{4-} \to CO_2 + Fe^{3+} + 3e}$$

$$\therefore E = M/3$$


$$(0^{-1})_2 \rightarrow 0^0_2 + 2e$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

5 mole $H_2O_2 \equiv 2$ mole $KMnO_4$

61 **(a)**

Caro's acid is H₂SO₅. It has a peroxide linkage so, oxidation state of S is

Let the oxidation state of S is x.

H₂SO₅ (one peroxide bond)

$$+2 + x + 3(-2) + 1(-2) = 0$$

$$2 + x - 6 - 2 = 0$$

$$x - 6 = 0$$

$$x = 6$$

62 **(a)**

The formula for Eq. wt. of reductant or oxidant.

$$Mn^{7+} + 5e \rightarrow Mn^{2-}$$

$$\therefore E = M/5$$

No doubt oxygen is taken in respiration, but oxidant-reduction occur simultaneously.

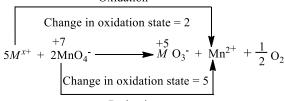
65 **(d)**

$$a\mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7 + b\mathrm{KCl} + c\mathrm{H}_2\mathrm{SO}_4$$

$$\rightarrow x \text{CrO}_2 \text{Cl}_2 + y \text{KHSO}_4 + z \text{H}_2 \text{O}_4$$

66 **(c)**

Both Os and Ru show + 8 ox.no.


67 (b)

> Two oxygen atom have peroxide linkage, (i.e., -1)oxidation number) and six have -2 ox.no.

Thus,
$$2 \times 1 + 2 \times a + 6 \times (-2) + 2 \times (-1) = 0$$

$$\therefore a = +6$$

Oxidation

Reduction

$$x + 2 = 5$$

$$x = 5 - 2 = +3$$

69 (a)

 $Meq. of K_2Cr_2O_7 = Meq. of FeSO_4$

$$1 \times V = \frac{10}{152/1} \times 1000$$

: V = 65.78 mL

70 **(b)**

 $Cl_2 + H_2O \rightarrow 2HCl + O$; thus, matter is oxidised by liberated oxygen.

72 **(b)**

$$SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 + SnCl_4$$

73 **(d**)

Addition of KI to CuSO₄ makes it dark brown.

74 (a)

Mn is stronger oxidising agent in +7 oxidation state. e. g., $KMnO_4$.

75 **(c)**

$$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + n\text{Fe}^{2+}$$

 $\rightarrow 2\text{Cr}^{3+} + n\text{Fe}^{3+} + 7\text{H}_2\text{O}$
 $\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6e^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$

(reduction)...(i)

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

(oxidation)...(ii)

Eq.(ii)is multiplied by 6

$$6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-}$$

Thus, balanced equation is

$$Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+}$$

$$\rightarrow$$
 2Cr³⁺ + 6Fe³⁺ + 7H₂O

Hence, the value of 'n' is 6.

76 **(b)**

$$4e + N^{5+} \rightarrow N^{+}$$

 \therefore Possible product is N₂0.

77 (d)

Find oxidation number of P in each

78 **(b)**

$$CrO_4^{2-} + SO_3^{2-} \longrightarrow Cr(OH)_4^- + SO_4^{2-}$$

Let the oxidation number of Cr is x in CrO_4^{2-}

$$x + 4(-2) = -2$$

$$x = 6$$

and in $Cr(OH)_4^-$ the oxidation number of Cr is y

$$y + 4(-2) + 4(1) = -1$$

$$y - 8 + 4 = -1$$

$$y = 3$$

Hence, oxidation number of Cr changes from +6 to +3.

79 **(b)**

Find oxidation no.in each.

80 **(d)**

$$\mathrm{Mn^{7+}} + e \longrightarrow \mathrm{Mn^{6+}}$$

$$\therefore E = M/1$$

81 (a)

The sum of oxidation states of all elements in an ion is equal to charge on it.

Let the oxidation state of S in $SO_4^{2-} = x$

90 **(b)**

$$\therefore x + (-2 \times 4) = -2$$

$$0r x = +6$$

82 **(d)**

$$\mathrm{Sn^{2+}} \rightarrow \mathrm{Sn^{4+}} + \mathrm{2e}$$
; $\mathrm{2e} + \mathrm{Hg^{2+}} \rightarrow \mathrm{Hg^0}$

83 **(c)**

Oxidation number of iodine in given species is as follows

O.N. of iodine in $IF_3 = +3$

0.N. of iodine in
$$I_3^- = -\frac{1}{3}$$

O.N. of iodine in $IF_5 = +5$

O.N. of iodine in $IF_7 = +7$

84 **(a)**

$$1 + a + 3 \times (-2) = 0$$

 $\therefore a = +5$

 KO_3

 Na_2O_2

Suppose 0.N. of
$$0 = x$$
 suppose

0.N. of
$$0 = x$$

$$+1 + 3x = 0$$

$$2 \times 1 + 2x = 0$$
$$2 + 2x = 0$$

$$\gamma = \frac{1}{2}$$

$$2x = -2$$

$$x = -0.3$$

$$x = -\frac{2}{3}$$

$$x = -1$$

86 **(b)**

$$I_2^0 \rightarrow 2I^- + 2e$$

87 **(c**

Os and Ru show +8 oxidation number.

88 **(a)**

$$\mathrm{Meq.\,of\,AgNO_3} = 100\,\times\,1 - 100$$

Meq. of
$$CuSO_4 = 100 \times 1 \times 2 = 200$$

Thus, H₂S is needed in the same Meq. ratio.

89 **(c)**

$$Na_2S_2O_3$$

$$2(+1) + 2x + 3(-2) = 0$$

$$2 + 2x - 6 = 0$$

$$x = +2$$

$$Na_2S_4O_6$$

$$2(+1) + 4(x) + 6(-2) = 0$$

$$2 + 4x - 12 = 0$$

$$4x = +10$$

$$x = +2.5$$

 $Meq. of K^+ = Meq. of KMnO_4$

$$=\frac{1}{5}\times 1000=200$$

$$\therefore$$
 Eq. of K⁺ = $\frac{200}{1000}$ = 0.2

Also, mole of
$$K^+ = \frac{0.2}{5} \left[\frac{\text{Valence factor} = 5}{\text{Mn}^{7+} + 5e \longrightarrow \text{Mn}^{2+}} \right] = 0.04$$

: No. of K⁺ =
$$\frac{0.2}{5}$$
 × 6.023 × 10²³ = 2.4 × 10²²

92 **(b)**

 $4e + \mathrm{Br^{5+}} \longrightarrow \mathrm{Br^{1+}}$; Thus, $\mathrm{BrO_3^-}$ is to be reduced by a reducing agent.

93 **(b)**

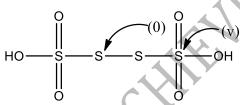
$$6e + (N^0)_2 \longrightarrow 2N^{-3}$$

$$\therefore E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$$

94 (a)

 F_2 is oxidant; ClO_4^- and MnO_4^- are also oxidant.

96 (c)


None of elements in reaction (c) undergoes a change in oxidation number, therefore reaction (c) is not a redox reaction

$$+1+5-2$$
 $+1-1$ $+1-1$ $+1+5-2$
Ag NO₃ + NaCl \longrightarrow Ag Cl + Na NO₃

It is a double decomposition reaction

97 **(b)**

 $Na_2S_4O_6$ is salt of $H_2S_4O_6$ which has the following structure

 \Rightarrow Difference in oxidation number of two types of sulphur = 5

98 **(c)**

Sum of oxidation no. of atoms in it is zero.

99 **(b**)

$$\operatorname{Sn}^{2+} \to \operatorname{Sn}^{4+} + 2e$$

$$\therefore E = M/2 = \frac{119 + 71}{2} = 95$$

100 (b)

$$2 \times 1 + a + 4 \times (-2) = 0$$

 $\therefore a = +6$

101 (c)

Electronic configuration of

Mn:
$$1s^2$$
, $2s^22p^6$, $3s^23p^63d^5$, $4s^2$ More stable due to

$$Mn^{2+}: 1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5$$
 half filled d

$$Mn^{7+}$$
: $1s^2$, $2s^22p^6$, $3s^23p^6$

102 **(b)**

Meq. of
$$H_2O_2 = 25 \times 0.5 \times 2 = 25$$
;
Meq. of $KMnO_4 = 50 \times 0.2 \times 5 = 50$;
 $\therefore 25$ Meq. or 5 milli mole of $KMnO_4$ are left.

103 (a)

$$K - C \equiv N$$

N is more electronegative and thus, has -3 oxidation number as it involves three covalent bonds.

Thus,
$$1 + a + (-3) = 0$$

 $\therefore a = +2$

104 (a)

Ox.no.of Ni is equal to zero.

105 (a)

$$Mn^{7+} + le \rightarrow Mn^{6+}$$

 $\therefore E = M/1$

106 **(b)**

Mn has +6 ox.no. in K_2MnO_4 and +2 ox.no. in $MnSO_4$.

107 **(b)**

$$\mathrm{H_2O} + \mathrm{Br_2} \longrightarrow \mathrm{HOBr} + \mathrm{HBr}$$

The oxidation number of bromine increases from 0 to +1 and decreases from 0 to -1, so due to this reason bromine is both oxidised as well as reduced in the above reaction.

108 (a)

$$1 + 2 \times (+1) + a + 2 \times (-2) = 0$$

 $\therefore a = +1$

109 **(b)**

H in $LiAIH_4$ has -1 ox.no. and thus, easily oxidized.

110 (a)

NO in iron complex has +1 ox.no.
Thus,
$$a + 5 \times (0) + 1 + 1 \times (-2) = 0$$

 $\therefore a = +1$

111 **(b)**

Let the oxidation state of Fe in $Fe_3O_4 = x$

$$\therefore 3x + 4 \times (-2) = 0$$

$$3x - 8 = 0$$

$$\therefore \quad x = \frac{8}{3}$$

112 (d)

$$As^{3+} \rightarrow As^{5+} + 2e$$
$$S^{2-} \rightarrow S^{6+} + 8e$$

113 (a)

$$3e + Mn^{7+} \rightarrow Mn^{4+}; E = \frac{158}{3} = 52.66$$

114 (a)

$$8e + N^{5+} \rightarrow N^{3-}$$

$$E_{\text{NO}_3^-} = \frac{M}{8} = \frac{62}{8}$$

$$E_{\text{NH}_4^+} = \frac{M}{8} = \frac{18}{8}$$

115 (d)

$$1 + a + 4 \times (-2) = 0$$

$$\therefore a = +7$$

116 (d)

Find oxidation number of iodine in each.

117 (c)

$$Na + H_2O \rightarrow NaOH + (1/2)H_2$$
.

118 **(b)**

$$3 \times 1 + a + 6 \times (-1) = 0$$

$$\therefore a = +3$$

119 (d)

$$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6e^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

$$(2I^- \rightarrow I_2 + 2e^-) \times 3$$

$$Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$$

Hence, number of moles of I_2 produced = 3

120 **(b)**

$$Mn^{4+} + 2e \rightarrow Mn^{2+}$$

MnO₂ is itself reduced.

121 **(b)**

Meq. of $O_2 = Meq.$ of $KMnO_4 = 100 \times 0.5$

$$\frac{w}{8} \times 1000 = 50$$

$$\therefore w_0 = 0.4 \sigma$$

∴
$$w_{0_2} = 0.4 \text{ g}$$

∴ $V_{0_2} = \frac{224 \times 0.4}{32} = 0.28 \text{ litre}$

Oxidation involves loss of electrons and reduction involves gain of electrons, hence in case of oxidation-reduction reactions(redox reactions) charge remains conserved

123 **(b)**

 $Ni \rightarrow Ni^{2+} + 2e$; Ni is oxidized and thus, 138 (a) reductant.

124 (a)

 $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O_3$

 H_2SO_4 – Reduced to $\rightarrow SO_2$

agent

125 (c)

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr.$$

126 (a)

$$H_2S \longrightarrow S$$

The oxidation number of S increases from -2 to 0 in elemental sulphur and hence, H₂S gets oxidized

127 (a)

S₈has zero oxidation state of S.

In
$$S_2F_2$$
: $2 \times a + 2 \times (-1) = 0$; $\therefore a = +1$
In H_2S : $2 \times 1 + a = 0$; $\therefore a = -2$

In
$$H_2S: 2 \times 1 + a = 0$$
;

128 (a)

Cr in CrO_2Cl_2 has +6 and Mn in MNO_4^- has +7 oxidation number respectively, the highest value for them.

129 (d)

F is more electronegative than oxygen.

Oxidation number of Cl in ClO_3^- .

$$ClO_3 = -1$$

$$x + 3(-2) = -1$$

$$x = +6 - 1$$

$$x = +5$$

131 (a)

$$2e + Cl^+ \rightarrow Cl^-$$

$$N = \frac{15}{74.5/2 \times 1} = 0.40$$

132 **(b)**

In ionic hydrides, H has -1 ox.no.

133 (c)

Let the oxidation number of Xe is x in XeOF₂.

$$x + (-2) + 2(-1) = 0$$

$$x - 2 - 2 = 0$$

$$x = +4$$

134 **(b)**

No change in ox.no. of any species.

135 (a)

$$H_2^{1+} + 2e \rightarrow H_2^0$$

136 **(d)**

Both are same.

$$2 \times 1 + 2 \times 1 + 4 \times (-2) = 0$$

$$\therefore a = +3$$

Let oxidation state of P in Ba $(H_2PO_2)_2$ is x, then 2(+1) + 2[2(+1) + x + 2(-2)] = 0

$$2 + 2(2 + x - 4) = 0$$

$$2 + 4 + 2x - 8 = 0$$

$$2 + 2x - 4 = 0$$

$$2x = 2$$

$$x = +1$$

139 **(c)**

$$3 \times 1 + a + 2 \times (-2) = 0$$

 $\therefore a = +1$

140 (a)

Calculate ox.no. of S by assuming
$$(CH_3)^+$$
 and SO^{2-}

141 **(c)**

$$H_2^{1+}0 \rightarrow H_2^0$$
; Steam is reduced.

142 **(b)**

$$2\text{KClO}_3 \longrightarrow 2\text{KCl} + 3\text{O}_2$$
. An intramolecular redox change is one in which one element of a compound is oxidized $(0^{2-}\text{to }0^0_2)$ and one element is reduced $(\text{Cl}^{5+}\text{to }\text{Cl}^{1-})$

143 **(b)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

144 **(b)**

Due to smallest halogen, it possesses maximum tendency for accepting electron in aqueous medium.

$$(1/2) F_2 + e + aq \rightarrow F^-, \Delta H = -ve(max. for F_2)$$

145 (a)

Bromine has zero oxidation state because it is in free state.

0 **D**v

$$Br_2 \rightarrow BrO_3^-$$

Let the oxidation number of Br in BrO_3^- is x.

$$x + (-2 \times 3) = -1$$

$$x + (-6) = -1$$

$$x = +6 - 1$$

$$x = +5$$

So, oxidation number changes from 0 to +5.

146 (c)

ie, it has four peroxide bonds each

having an oxidation number of -1 and one double bond in which oxidation number of 0 is -2Therefore, $x + 4 \times (-1) + 1 \times (-2) = 0$

$$\therefore x = \times 6$$

147 (a)

Indicator then only can show redox change with either of the titre species to indicate end point.

148 (d)

$$4CrO_5 + 6H_2SO_4 \rightarrow 2Cr_2(SO_4)_3 + 6H_2O + 7O_2$$

149 (c)

+1 unit increases

$$\begin{array}{c}
0 \\
4P + 3KOH + 3H_2O \longrightarrow 3KH_2PO_2 + PH_2O
\end{array}$$
-3 unit decreases

Hence, P is both oxidized as well as reduced

150 (c)

$$2 \times a + 7 \times (-2) = -4$$

$$\therefore a = +5$$

151 **(b)**

$$6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$$
.

152 **(b)**

Let the oxidation number of oxygen in following compounds is x.

In OF₂

$$x + (-1)2 = 0$$

$$x = +2$$

In KO₂

$$+1 + (x \times 2) = 0$$

$$2x = -1$$

$$x = -\frac{1}{2}$$

In BaO₂

$$+2 + (x \times 2) = 0$$

$$2x = -2$$

$$x = -1$$

In

 O_3 , oxidation number of oxygen is zero because ox free state or in any of its allotropic form is always zero.

Thus, the increasing order of oxidation number is $BaO_2 < KO_2 < O_3 < OF_2$

$$-1$$
 $-\frac{1}{2}$ 0 +2

153 (d)

Na-Hg is uncombined state of sodium.

154 (a)

A measuring flask has a definite volume.

155 **(b)**

Since, $K_3Fe(CN)_6$ reacts with $FeSO_4$ (if added internally) to give blue colour of iron complex.

156 (a)

$$2 \times a + 5 \times 1 = +1$$
$$\therefore a = -2$$

157 (a)

Oxygen of H_2O_2 gets reduced from -1 to -2.

158 (a)

$$Meq. of HNO_3 = Meq. of I_2$$

$$\frac{w}{63/1} \times 1000 = \frac{5}{254/10} \times 1000$$

$$\therefore w = 12.4 \text{ g}$$

159 (c)

$$SO_2 + 2H_2S \rightarrow 2H_2O + 3S$$

160 (d)

F⁻ can be oxidized to F₂ only by electrolysis.

$$2S_2^{2+} \rightarrow S_4^{(5/2)+} + 2e : Eq. \text{ wt. of Na}_2S_2O_3 = \frac{M}{1}$$

 $I_2^0 + 2e \rightarrow 2I^-$

162 (d)

The same species in each reaction is oxidized and reduced as well to give disproportionation reaction.

163 (a)

$$N_3$$
H (hydrazoic acid)
+3(x) + 1 = 0
 $3x + 1 = 0$

$$x = -\frac{1}{3}$$

164 (a)

$$\begin{split} & Fe^{2+} + Ce^{4+} \longrightarrow Fe^{3+} + Ce^{3+} \\ & 5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O \\ & \therefore \frac{Moles\ of\ cerric\ ammonium\ sulphate}{Moles\ of\ potassium\ permanganate} = \frac{1}{1/5} \end{split}$$

165 (a)

$$N^{3-} \rightarrow N^{2+} + 5e$$

$$\therefore E_{NH_3} = \frac{17}{5}$$

166 (a)

C has -4 ox.no. in CH_4 , In rest all it has +4 ox.no.

$$[\operatorname{Cr}_{2}^{6+} + 6e \longrightarrow 2\operatorname{Cr}^{3+}] \times 1; [\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e] \times 3$$

168 (a)

 $[(W/\text{Eq.wt.}) \times 1000]$ Milliequivalent $\left[\left(\frac{W}{M}\right) \times 1000\right]$ do not change on dilution.

169 (c)

$$\operatorname{Cr}^{3+}$$
 ion is green; $\operatorname{Cr}_{2}^{6+} + 6e \rightarrow 2\operatorname{Cr}^{3+}$.

170 **(b)**

$$Hg + O_3 \rightarrow HgO + O_2$$

171 (a)

$$a + (4 \times 0) + 2 \times (-1) = 1$$

 $\therefore a = +3$

172 **(c)**

$$2V^{2+} \rightarrow V_2^{5+} + 6e$$

$$Cr^{6+} + 3e \rightarrow Cr^{3+}$$

$$\therefore E = M/3$$

174 (a)

Ox.no. of Cr on both side is +6

175 **(b)**

$$S^{2-} \rightarrow S^{4+} + 6e$$

 \therefore Eq. = mole \times 6

176 (c)

$$2 \times 1 + a + 4 \times (-2) = 0$$

$$\therefore a = +6$$

Iodine has -1 (minimum ox.no.) and +7(maximum ox.no.).

178 **(d)**

These are formulae of Meg.

179 (c)

$$CuSO_4 + H_2S \rightarrow CuS + H_2SO_4$$

I in KIO_4 has +7 ox.no.

181 (a)

$$2 \times a + 3 \times (-2) = -2$$

182 (c)

$$6e + Cr_2^{6+} \rightarrow 2Cr^{3+};$$
Eq. wt. of Cr = $\frac{\text{at. wt.}}{3}$

Eq. wt. of
$$Cr = \frac{ac. wc}{3}$$

183 **(d)**

$$H_2O_2 + Na_2 C O_3 \longrightarrow Na_2O_2 + CO_2 + H_2O_2$$

None of the elements changes its oxidation number

184 (a)

Usually burettes have least count of 0.1 mL.

The oxidation state of N in NH₃ is

$$x + 3(+1) = 0$$

$$x = -3$$

The oxidation state of N in HNO_3 is

$$1 + x + 3(-2) = 0$$

$$r =$$

The oxidation state in N in NaN₃ is

$$+1 + 3x = 0$$

$$x = -1/3$$

The oxidation state of N in Mg_3N_2 is

$$3(2) + 2x = 0$$

$$6 + 2x = 0$$

$$x = -3$$

Hence, three molecules

(i. e., NH₃, NaN₃, Mg₃N₂) have negative oxidation state.

186 (a)

Fe in Fe $(CO)_5$ has zero oxidation no., i.e., the lowest for metals.

187 (c)

The weight of rider used is 0.0002 g.

188 (d)

Ions are hydrated on dissolution of salt in water.

189 (a)

Ox.no. of each element on two sides is same.

190 (c)

$$10e + 2Br^{5+} \rightarrow Br_2^0$$
 : Eq. wt. of KBrO₃ = $\frac{M}{5}$
 $2Br^- \rightarrow Br_2 + 2e$

191 (a)

Corrosion involves oxidation of species.

192 **(b)**

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

 $[Fe^{2+} \rightarrow Fe^{3+} + e^-]^5$

$$[Fe^{2+} \rightarrow Fe^{3+} + e^{-}]^{5}$$

$$MnO_{4}^{-} + 8H^{+} + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O$$

$$\therefore Five electrons gets transferred.$$

193 (c)

$$1 + a + 3 \times (-2) = 0$$

$$\therefore a = +5$$

194 (a)

The species present in solution but does not take part in the reaction and are also omitted while 209 (d) writing the potential redox change are called spectator ion.

195 (a)

It is the formula of turns bull's blue.

196 **(b)**

Si has 4 electrons in its valence shell. When it reacts with strongly electropositive metal like Na, Mg, K etc., it gives 4 electrons and its oxidation state in this case is -4.

197 **(b)**

Oxygen in H_2O_2 has ox.no. -1 which can increase 212 (c) or decrease.

198 **(b)**

$$A^{n-} \rightarrow A^{a+} + (a+n)e$$

 $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$
Also, Meq of $A = \text{Meq. of } K_2Cr_2O_7$
 $3.26 \times 10^{-3}(a+n) = 1.68 \times 10^{-3} \times 6$
Or $a+n=3$
 $\therefore a=3-n$

199 (c)

$$H_2^0 \rightarrow H_2^+ + 2e (H_2O \text{ is formed})$$

$$2 \times a + 7 \times (-2) = 0$$

$$\therefore a = +7$$

201 (d)

Due to higher E_{OP}^0 order.

202 (c)

Cl atom is oxidised (Cl¹⁺ \rightarrow Cl⁵⁺ + 4e) as well as Cl atom is reduced ($Cl^{1+} + 2e \rightarrow Cl^{-}$). Such reactions are called auto redox or disproportionation reactions.

203 (d)

Ox.no. of S in $Na_2S_4O_6$ is no doubt 2.5 but it is average of two values, i.e.,

$$\frac{2 \times (+5) + 2 \times 0}{4} = +5/2$$

204 (a)

De-electronation is loss of electrons, i.e. M - $M^{4+} + 4e$

205 **(b)**

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
; This is simple decomposition and not a redox change.

206 **(b)**

S²-has minimum ox.no. and thus, can act only as reducing agent.

207 (a)

It imparts its colour at end point.

208 (c)

$$Zn^0 \rightarrow Zn^{2+} + 2e$$

Oxygen has highest electron affinity in its family.

210 (a)

 $Na_2[Fe(CN)_5NO]$

211 **(d)**

The formula is obtained by taking an account of g

$$Xe = \frac{53.3}{131} = 0.4, F = \frac{46.5}{20} = 2.325,$$

 $i.e., 1:6 or XeF_6$

N in NH₃, NH₄, N₃H and NO₂ has -3, -3, -1/3and +3 oxidation number respectively.

213 **(b)**

Meq. of
$$H_2O_2 = \text{Meq. of KMnO}_4$$

 $\frac{w}{34/2} \times 1000 = 10 \times 1$
 $\therefore w_{H_2O_2} = 0.17$

$$\therefore$$
 Per cent purity = $\frac{0.17}{0.2} \times 100 = 85\%$

214 (c)

$$Mn^{7+} + e \rightarrow Mn^{6+} \quad (MnO_4^{2-})$$

 $Mn^{7+} + 3e \rightarrow Mn^{4+} \quad (MnO_2)$
 $2Mn^{7+} + 8e \rightarrow (Mn^{3+})_2 \quad (Mn_2O_3)$
 $Mn^{7+} + 5e \rightarrow Mn^{2+} \quad (MnO_2)$

215 (d)

The reaction involves:

$$H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O(l)$$

 $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$

The reaction gives blue colour only after all the

 $Na_2S_2O_3$ is used. The reaction is carried out with adjusted amount of Na₂S₂O₃ so that only a fraction of H₂O₂ and KI reaction occurs before the blue colour of starch— I_2 appears, however the 226 **(b)** slow redox reaction of H₂O₂—I₂ continues. The appearance of blue colour is like clock alarm and in such reactions time for the appearance of blue colour is noticed. The phenomenon is used in studying rate of reaction. If time taken for blue colour appearance is longer, the reaction is slow and vice - versa.

216 (c)

N in $(N_2H_5)_2SO_4$ has -2 ox.no.

217 **(b)**

The 5p —electrons of outermost shell in iodine are unpaired during their excitation to 5d —subshell.

218 (d)

A characteristic property of transition elements.

219 (c)

Let the oxidation state of sulphur in $Na_2S_4O_6$ is x. $Na_2S_4O_6$

$$1 \times 2 + 4 \times x + (-2) \times 6 = 0$$

$$2 + 4x - 12 = 0$$

$$4x - 10 = 0$$

$$4x = 10$$

$$x = \frac{10}{4} = 2.5$$

220 (d)

F₂ is strongest oxidant among all the species.

S has +6 ox. no. in SO_3

222 (c)

$$3 \times a + 1 \times 1 = 0$$

$$\therefore a = -1/3$$

223 (a)

Tendency to lose more electron for cation decreases.

224 (a)

$$4Zn + NO_3^- + 10H^+ \longrightarrow 4Zn^{2+} + NH_4^+ +$$

3H₂O(Net equation)

$$4Zn + NO_3^- + 10HCl \rightarrow 4Zn^{2+} + NH_4^+ + 5Cl_2 + 3H_2O$$

- \therefore 1 mole of NO₃ (0r NaNO₃) is reduced by
- =10 moles of HCl
- $\therefore \frac{1}{2}$ mole of No₃ will be reduced by
- $= 10 \times \frac{1}{2}$ moles of HCl
- = 5 moles of HCl
- 225 (a)

 $Meq. of FeSO_4 = Meq. of KMnO_4$

$$\frac{w}{152/1} \times 1000 = 200 \times 1$$

 $\therefore w = 30.4 \text{ g}$

$$BiO_3^- + 6H^+ + 2e^- \rightarrow Bi^{3+} + 3H_2O$$

227 **(b)**

$$5H_2O_2 + 2ClO_2 + 2OH^- \rightarrow 2Cl^- + 5O_2 + 6H_2O$$

228 **(b)**

Meq. of
$$Na_2S_2O_3 = Meq.$$
 of $CuSO_4$
 $\therefore V \times 0.4 \times 1 = 50 \times 0.2 \times 1$

$$\therefore V = 25 \text{ mL}$$

229 (a)

$$N = \frac{47.5}{189.7/2 \times 2.25} = 0.222 \, N$$

230 **(b)**

$$2e + Fe_2^{3+} \rightarrow 2Fe^{2+}$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$C_2^{3+} \rightarrow 2C^{4+} + 2\epsilon$$

Oxidation no. of N in NO+ is

$$(1 \times x) + 1 \times (-2) = +1$$

$$\therefore x = +3$$

Oxidation no. of Cl in ClO₄ is

$$(1 \times x) + 4 \times (-2) = -1$$

 $x = +7$

- 233 **(c)**
 - 1. Sulphurous acid H₂SO₃

$$2 + x + (-2 \times 3) = 0$$

$$x - 4 = 0$$

$$\therefore x = 4$$

2. Pyrosulphuric acid (H₂S₂O₇)

$$2 + 2x + (-2 \times 7) = 0$$

or
$$2x = 12$$

$$\dot{=}6$$

3. Thiosulphuric acid $(H_2S_2O_3)$

$$2 + 2x + (-2 \times 3) = 0$$

or
$$2x = 4$$

$$x = 2$$

4. Dithionous acid $(H_2S_2O_4)$

$$2 + 2x + (-2 \times 4) = 0$$

$$2x = 6$$

$$\therefore x = 3$$

$$\begin{aligned} \text{KCN} + \text{AgCN} &\longrightarrow \text{KAg(CN)}_2 \\ &\qquad \qquad \text{(Complex formation)} \end{aligned}$$

CN⁻ also acts as reducing agent.

235 (a)

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$
.

236 (a)

Meq. of oxalic acid = Meq. of KMnO₄

$$V \times 0.1 \frac{250 \times 8}{100 \times 31.6} \times 1000 = 6.3$$
 litre

237 (d)

H₃PO₃ is phosphorous acid.

238 **(c)**

$$\mathrm{Cr_2^{6+}} + 6e \rightarrow 2\mathrm{Cr^{3+}}$$

239 (c)

$$H_4P_2O_5: 4 \times 1 + 2 \times a - 5 \times 2 = 0$$

 $a = +3$
 $H_4P_2O_6: 4 \times 1 + 2 \times a - 6 \times 2 = 0$
 $a = +4$
 $H_4P_2O_7: 4 \times 1 + 2 \times a - 7 \times 2 = 0$

240 (c)

$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-.$$

241 **(b)**

Meq. of oxalate = Meq. of KMnO4

$$\frac{w}{88/2} \times 1000 = 90 \times \frac{1}{20}$$

 \therefore *w* oxalate ion = 0.198 g

:. % of oxalate ion =
$$\frac{0.198}{0.3} \times 100 = 66\%$$

242 (a)

$$Meq. of Cl_2 = Meq. of KMnO_4$$

$$\frac{w}{71/2} \times 1000 = \frac{10}{31.6} \times 1000$$

$$w_{Cl_2} = 11.23 \, g$$

∴
$$w_{\text{Cl}_2} = 11.23 \text{ g}$$

∴ $V_{\text{Cl}_2} = \frac{22.4 \times 11.23}{71} = 3.54 \text{ litre}$

$$N = \frac{15.8 \times 1000}{158/5 \times 100} = 5$$

244 **(b)**

$$Mn^{7+}5e \rightarrow Mn^{2+}$$

245 (d)

$$S_2O_3^{2-} \rightarrow S(s)$$

or $4e + S_2^{2+} \rightarrow 2S^0$

246 (a)

Meq. of
$$KMnO_4 = Meq.$$
 of FeC_2O_4
 $Fe^{2+}C_2^{2+}O_4 \longrightarrow Fe^{3+} + 2C^{4+}O_2 + 3e$

$$0.1 \times 5 \times V = \frac{100 \times 10^{-3}}{144/3} \times 1000$$

$$\therefore V = 4.1 \text{ mL}$$

247 **(d)**

It is precipitation reaction.

248 (a)

Meq. of lime stone = Meq. of
$$CaC_2O_4$$

= Meq. of KMnO₄

= Meq. Of CaO

$$\therefore 40 \times 0.250 = \frac{w}{56/2} \times 1000$$

$$\therefore w_{cao} = 0.28$$

$$\therefore$$
 per cent of CaO = $\frac{0.28 \times 100}{0.518}$ = 54%

249 (a)

$$\therefore a = +4$$
; Thus, Sn^{4+} is choice.

250 (c)

Br2 is disproportionated in basic medium as $3Br_2 + 3Na_2CO_3$

$$\rightarrow$$
 5NaBr + NaBrO₃ + 3CO₂

251 **(b)**

Carbon has negative oxidation no.in Mg_3C_2 and positive oxidation number in C_3O_2 ; 0 is more electronegative than C. Mg is more electropositive than C.

252 (d)

It is a complexation reaction involving reduction of I2 and oxidation of KI.

253 (a)

Oxidation state of Cr in Cr₂O₃ is

$$Cr_2O_3$$
,

$$2x + (-2)3 = 0$$

$$2x - 6 = 0$$

$$2x = 6$$

$$x = +3$$

254 (a)

$$2 \times a + 2 \times (-1) = 0$$
$$\therefore a = +1$$

255 **(c)**

N has + 1 ox.no.

256 (a)

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

 $5 \text{ mole FeSO}_4 = 1 \text{ mole KMnO}_4$

$$'X' = \frac{2}{3}$$
 mole

Or
$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$(C^{3+})_2 \rightarrow 2C^{4+} + 2e$$

$$FeC_2O_4 \rightarrow Fe^{3+} + 2C^{4+} + 3e$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

5 mole $FeC_2O_4 = 3$ mole $KMnO_4$ $\therefore 'Y' = \frac{3 \times 2}{5}$

257 **(b)**

 $H_2S + Cl_2 \rightarrow 2HCl + S$

258 **(c)**

Meq. of salt = Meq. Of Na₂SO₃ $50 \times 0.1 \times n = 25 \times 0.1 \times 2$ $\therefore n = 1$ (change in ox. no.)

 $M^{3+} + e \rightarrow M^{2+}$

259 (a)

 ${\rm Cu^{2+}}$ is more stable than ${\rm Cu^{+}}$ although later, has $3d^{10}{\rm configuration}$. In ${\rm Cu^{+}18}$ electron core is not held properly by nuclear charge and thus, ${\rm Cu^{+}}$ is readily converted to ${\rm Cu^{2+}}$.

260 **(c)**

: In this reaction phosphorus is simultaneously oxidised and reduced.

: It is disproportionation reation.

 $_{0}^{0}$ + 3NaOH + 3H₂O \rightarrow 3NaH₂PO₂ + PH₃

261 **(a)** $S + 2e \rightarrow S^{2-}$.

262 **(d)**

All terms have same meaning.

263 **(b)**

The sum of the oxidation states is always zero in neutral compound.

The oxidation state of X, Y, and Z are +2, +5 and -2 respectively.

5. $\operatorname{In} X_2 Y Z_6$

$$2 \times 2 + 5 + 6(-2) \neq 0$$

6. In XY_2Z_6

$$2 + 5 \times 2 + 6(-2) = 0$$

7. $\operatorname{In} XY_{5}$

$$2+5\times5\neq0$$

8. $\ln X_3 Y Z_4$

$$3 \times 2 + 5 + 4(-2) \neq 0$$

Hence, the formula of the compound is XY_2Z_6 .

264 (c)

F is most electronegative element and thus, has -1 ox.no.

Thus, a + (-2) = 0

 $\therefore a = +2$

265 (a)

$$\begin{array}{l} \operatorname{Mn^{7+}} + 5e \longrightarrow \operatorname{Mn^{2+}} \\ (\operatorname{Cr^{6+}})_2 + 6e \longrightarrow 2\operatorname{Cr^{3+}} \\ \operatorname{Fe^{2+}} \longrightarrow \operatorname{Fe^{3+}} + e \\ \operatorname{Meq.} \qquad \text{of} \qquad \operatorname{Fe^{2+}} = \operatorname{Meq.} \operatorname{of} \operatorname{KMnO_4} = \\ \operatorname{Meq.} \operatorname{of} \operatorname{K_2Cr_2O_7} \\ 1 \times 5 \times V_{\operatorname{KMnO_4}} = 1 \times 6 \times V_{\operatorname{K_2Cr_2O_7}} \\ \therefore V_{\operatorname{KMnO_4}} = \frac{6}{5} V_{\operatorname{K_2Cr_2O_7}} \end{array}$$

266 **(b)**

Meq. of KMnO₄ in 1 mL = Meq. of Fe = $\frac{5 \times 10^{-3}}{56/1} \times 10^{3}$

: Meq. if KMnO₄ in 250 mL = $\frac{5 \times 250}{56/1}$ Thus, $\frac{w}{31.6} \times 1000 = \frac{5 \times 250}{56/1} = 0.7 \text{ g}$

267 **(c)**

Let the oxidation number of Cr in K_2CrO_4 is x.

$$2(+1) + x + 4(-2) = 0$$

2 + x - 8 = 0
x = +6

268 **(b)**

$$2S_2^{2+} \rightarrow S_4^{5/2} + 2e$$

269 (c)

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$E = M/5$$

270 (c)

Let the oxidation number of Cr be x

: For
$$K_2Cr_2O_7$$

+1 × 2 + 2x + 7(-2) = 0
2 + 2x - 14 = 0
2x = 12
 $x = 6$

271 **(b)**

$$Mn^{2+} \rightarrow Mn^{4+} + 2e$$

272 (c)

 $S^{4+} + 4e \rightarrow S^0$; SO_2 is reduced and thus, oxidant.

273 **(b)** $2H^- \rightarrow H_2 + 2e$

274 **(b)**

Let the oxidation number of carbonyl carbon in methanal (HCHO) and methanoic acid (HCOOH) is x and y is respectively.

In HCHO.

$$2(+1) + x + (-2) = 0$$

$$2+x-2=0$$

$$x = 0$$

In HCOOH,

$$2(+1) + y + 2(-2) = 0$$

$$2+y-4=0$$

$$y = 2$$

275 **(c)**

$$I_2^0 \rightarrow 2I^{5+} + 10e$$

$$\therefore E = \frac{M}{10} = \frac{254}{10} = 25.4$$

$$4e + S^{4+} \longrightarrow S^0$$

$$\therefore E_{SO_2} = \frac{64}{4} = 16$$

$$M^{5+} \rightarrow M^{7+} + 2e$$
; M^{5+} is reductant.

$$Li + H_2 \rightarrow 2LiH$$

Oxidation number of hydrogen is decreasing from 0 to -1. So, H_2 is acting as oxidising agent in this reaction.

279 **(d)**

Mohr's salt is
$$FeSO_4$$
. $(NH_4)_2 SO_4$. $6H_2O$

$$Fe^{2+} \rightarrow Fe^{3+} + e \times 6$$

$$6e + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} \times 1$$

280 (a)

1 faraday of electricity involves change of one 296 (d) mole electron.

$$Fe^{2+} + 2e \rightarrow Fe$$

281 (c)

Oxidation of Co and reduction of Cu²⁺ is taking

$$4 \times 1 + a + 6 \times (-2) = -1$$

$$\therefore a = +7$$

$$a + 3 \times (+1) = 0$$

$$\therefore a = -3$$

$$2MnCl_2 + 5PbO_2 + 6HNO_3$$

$$\rightarrow$$
 2HMnO₄ + 2PbCl₂

$$+3Pb(NO_3)_2 + 2H_2O$$

$$4 \times 1 + a + 4 \times (-1) = 0$$

$$a = 0$$

Ox. no. of each species remains same.

$$Mn^{7+} + 2e \rightarrow Mn^{5+}$$
.

$$4 \times 1 + a + 6 \times (-1) = 0$$

$$\therefore a = +2$$

$$2NH_3 + OCl^- \rightarrow N_2H_4 + Cl^- + H_2O$$

$$2 \times 1e^{-}$$
 given
 $H_2S + H_2O_2 \longrightarrow S + 2H_2O$
 $2e^{-}$ lose

H₂S – Oxidation, Reducing agent. H_2O_2 – Reduction, Oxidising agent.

291 (d)

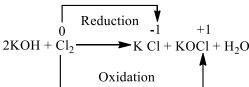
$$S^{4+} \rightarrow S^{6+} + 2e$$
.

$$a+2\times 1-1=0$$

$$\therefore a = -1$$

$$2Cu^{2+} + 2e \rightarrow Cu_2^{1+}$$

$$\therefore E = \frac{M}{1}$$


$$\mathrm{Cr_2^{6+}} + \mathrm{6e} \rightarrow \mathrm{2Cr^{3+}};$$

$$Cr^2O_7^{2-}$$
 is reduced.

$$Sn^0 \rightarrow Sn^{4+} + 4e$$

$$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$$

The reactions, in which the same element is oxidised as well as reduced, are called disproportionation reactions.

In this reaction, the same element, ie., Cl₂ is oxidised as well as reduced, so it is an example of disproportionation reaction.

298 (a)

$$Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$$

 $Cr_2O_7^{2-}$ is reduced to Cr^{3+} .

Thus, final state of Cr is +3. Hence, (a)

299 (d)

NaNO₂ (Sodium nitrite) acts both as oxidising as well as reducing agent because in it N-atom is in +3 oxidation state (intermediate oxidation state).

Oxidising property

$$2\text{NaNO}_2 + 2\text{KI} + 2\text{H}_2\text{SO}_4$$

 $\rightarrow \text{Na}_2\text{SO}_4 + \text{K}_2\text{SO}_4 + 2\text{NO}$
 $+ 2\text{H}_2\text{O} + \text{I}_2$

Reducing property

$$H_2O_2 + NaNO_2 \rightarrow NaNO_3 + H_2O$$

300 (a)

Graphic is uncombined state of carbon.

$$6 \times a + 12 \times 1 + 6 \times (-2) = 0$$

 $\therefore a = 0$

302 **(b)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

$$2 \times 2 + 2 \times a + 7 \times (-2) = 0$$

 $\therefore a = +5$

304 **(c)**

Eq. of $Cl_2 = eq.$ of chloride

$$1 \times 2 = \frac{111}{E + 35.5}$$

$$\therefore E = 40$$

$$\therefore M = 40 \times 2 = 80$$
 (Metal is bivalent.)

305 **(b)**

It is chromium peroxide.

Let the oxidation number of Cr is "x".

$$Cr^{x+} + O_2^- + O^{2-} + O_2^- - CrO_5$$

$$x + (-1)2 + (-1)2 + (-2)1 = 0$$

$$x - 6 = 0$$

$$x = +6$$

Hence, the oxidation state of Cr is +6.

306 **(d)**

Haematite is Fe_2O_3 , in which oxidation number of iron is III.

Magnetite is Fe_3O_4 which is infact a mixed oxide (FeO. Fe_2O_3 .), hence iron is present in both II and III oxidation state.

307 **(c)**

$$K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4$$
 (red-orange) (lemon-yellow)

308 (a)

In basic medium

$$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$$

Net reaction is +7

$$MnO_4^- \rightarrow MnO_4^{-2}$$

Change in oxidation number

$$=7-6=+1$$

So, electrons involved = $1e^{-}$

309 (a)

In NH₄⁺, N has ox.no. -3 and in NO₃⁻, N has ox.no. +5.

310 **(c)**

$$a + 6 \times (-1) = -2$$

$$\therefore a = +4$$

$$1+1 \times (-2) + a = 0$$
$$\therefore a = +1$$

312 (a)

$$e + N^{5+} \rightarrow N^{4+}$$
; Thus, HNO_3 is oxidant.

313 (a)

$$H^0 \rightarrow H^{1+} + le$$
.

314 (d)

$$S \xrightarrow{O_2} SO_2 \xrightarrow{Cl_2} SO_4^{2-} \xrightarrow{BaCl_2} BaSO_4One$$
 mole of S will give one mole of BaSO₄. Thus, mole of BaSO₄ formed = mole of S = $\frac{8}{32} = \frac{1}{4}$

315 (d)

$$[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 3$$

 $[Fe^{2+}C_2^{3+} O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e] \times 5$

316 **(c**)

Equal equivalent of species react together.

317 **(a)**

It is a fact.

318 (c)

The balanced disproportionation reaction involving white phosphorus with aq. NaOH is

Oxidation of P^0 to P^{+1} state

$$P_4^0 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$$

Reduction of P^0 to P^{-3} state

319 **(b)**

F can have only –ve ox.no., *i.e.*, $2e + F_2^0 \rightarrow 2F^{1-}$ or F_2 can be reduced only.

320 (a)

$$(N^{0})_{2} + 6e \rightarrow 2(N^{3-})$$

 $3(H^{0})_{2} \rightarrow 2(H^{+1})_{3} + 6e$
 $E_{N_{2}} = \frac{28}{6}; E_{NH_{3}} = \frac{17}{3}$

321 **(a**

$$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H$$
; thus, matter is reduced by liberated hydrogen.

322 **(c)**

$$N_2$$
 undergoes oxidation and reduction as well;
 $N_2^0 \rightarrow 2N^{3+} + 6e$; $N_2^0 + 6e \rightarrow 2N^{3-}$

323 **(b)**

$$M^{3+} \rightarrow M^{6+} + 3e$$
.

324 (a)

$$2H^- \rightarrow H_2 + 2e$$
; Thus, H^- is oxidized.

325 (d)

All these substances can accept electrons and can decrease their oxidation number and hence, all these act as oxidation agent

326 **(b)**

Meq. of
$$I_2 = \text{Meq. of Na}_2 S_2 O_3 = 40 \times 0.11$$

$$\therefore \frac{w}{254/2} \times 1000 = 40 \times 0.11$$

$$w_{I_2} = 0.558 \text{ g}$$

327 (a)

$$5e + Mn^{7+} \rightarrow Mn^{2+}$$

 $S^{4+} \rightarrow S^{6+} + 2e$

328 **(c)**

Meq. of
$$HNO_3 = 1000 \times 2 = 2000$$

$$\therefore \frac{w}{63/3} \times 1000 = 2000$$

$$\therefore w = 42 g$$

329 (c)

The chemical structure of H₂S₂O₈ is as follows

$$+2+2x-12-2=0$$

$$2x = +12$$

$$x = +6$$

330 (a)

 $2e + M^{7+} \rightarrow M^{5+}, M^{7+}is$ oxidation; M^{+5} reductant.

331 **(a)**

$$S^{2-} \rightarrow S^0 + 2e$$

$$\therefore E = M/2 = \frac{34}{2} = 17$$

332 **(a)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

333 **(b)**

 $In N_3H$

Oxidation number of $N=-\frac{1}{3}$ In N_2O_4 Oxidation number of N=+4In NH_2OH Oxidation number of N=-1In NH_3 Oxidation number of N=-3Hence, in N_2O_4 the oxidation number of nitrogen is highest.

334 **(b)**

Starch +
$$I_2 \rightarrow$$
 Blue

335 **(d)**

$$[2C_2^{3+} \rightarrow 4C^{4+} + 4e] \times 5$$

$$[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 4$$

336 **(a)** $Fe^{2+} \rightarrow Fe^{3+} + e$.

337 **(d)**

$$3 \times a + (+1) = 0$$
 $\therefore a = -1/3$

338 (a)

Mole of
$$O_2$$
 formed $= \frac{3}{24} = \frac{1}{8}$
 \therefore Mole of $H_2O_2 = \frac{1}{8} \times 2 = \frac{1}{4}$

$$\therefore 100 \times X = \frac{1}{4} \times 1000 \ (m \text{ mole} = M \times V)$$

$$\therefore X = 2.5$$

339 (c) $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$

340 **(d)** +2 and +3

341 **(d)**It is a fact.

342 **(d)**

$$Al \rightarrow Al^{3+} + 3e$$

Thus, 27 g Al forms Al³⁺by losing 3*N* electrons $\therefore 13.5 \text{ g Al will lose } \frac{3N \times 13.5}{27} = \frac{3}{2} \text{ N electrons}$

343 (c) $a + 2 \times 1 + 2 \times (-1) = 0$ a = 0

344 (a)

Mn has +7 oxidation state in KMnO₄.

$$1 + x + 4(-2) = 0$$
$$1 + x - 8 = 0$$
$$x = +7$$

345 (a)

is

Minimum ox.no. = group no. −8. Maximum ox.no. = group no.

346 **(b**)

H possesses negative one value of oxidation number in ionic hydrides.

347 (c)

Due to -ve oxidation number it should be non-metal having six electrons in outer shell.

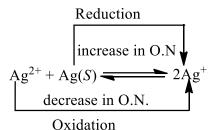
348 (d)

These are characteristics of indicator.

349 **(b)**

The oxidation state of Xe in both XeO_2 and XeF_4 is 4.

$$XeO_2$$
 XeF_4
 $x + 2(-2) = 0$ $x + 4(-1) = 0$
 $x = 4$ $x = 4$


350 (a)

 Na_3AsO_4 is sodium arsenate Or AsO_4^{-3} is arsenate.

Thus,
$$a + 4 \times (-2) = -3$$

$$\therefore a = +5$$

351 (d)

Hence, those reactions in which two or more species undergo oxidation as well as reduction are called comproportionation.

352 **(b)**

$$SO_2 + 2H_2S \rightarrow 2H_2O + 3S$$

353 **(c)**

Glucose is reducing agent.

354 **(b)**

$$a+6\times(-1)=-3$$

$$\therefore a = +3$$

355 **(b)**

It is a fact.

356 **(b)**

- Oxidation state of Mn in $Mn^{2+} = +2$
- 0. Let oxidation state of Mn in $MnO_2 = x$

$$x + (2 \times -2) = 0$$

$$x = +4$$

(iii) Let the oxidation state of Mn in $KMnO_4 = x$

$$\therefore +1 + x + (-2 \times 4) = 0$$

$$\therefore x = +7$$

iv) Let oxidation state of Mn in $K_2MnO_4 = x$

$$(+1 \times 2) + x + (-2 \times 4) = 0$$

$$x = +6$$

: Increasing order of oxidation states is

357 **(b)**

Meq. of
$$MnO_2$$
 = Meq. of oxalic acid
= $0.16 \times 35 = 56$

$$\therefore \frac{w}{87/2} \times 1000 = 5.6$$

$$w_{\rm MnO_2} = 0.24 \, \rm g$$

358 (a)

More is E_{RP}^0 , more is the tendency to get itself reduced or more is oxidising power.

359 (a)

Meq. of KMnO₄ = 3750 × 0.85

$$\frac{w}{31.6} \times 1000 = 3750 \times 0.85$$

$$w = 100.7 \, \text{g}$$

360 **(c)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

361 **(a)**

$$Cu^{2+} + 2e \rightarrow Cu$$

362 **(a)**

It is definition of iodimetric titrations.

363 **(b)**

$$M^{n+} + ne \rightarrow M$$

364 **(b**

$$le + Mn^{7+} \rightarrow Mn^{6+}$$

$$\therefore E = M/1$$

365 **(a**

$$1 + a + 3 \times (-2) = 0$$

$$a = +5$$

366 **(d)**

3 ions of F⁻ from 1 molecule of AIF₃

$$\therefore$$
 3 × 10²³ ions of F⁻ from 10²³ molecules AIF₃

367 **(a)**

Calculate ox.no. by taking NO+ in NOCl

368 (d)

Cl ha +7 ox.no. in Cl_2O_7 .

369 (c)

$$\mathrm{Meq.\,of\,KMnO_4} = 4000\,\times\,0.05$$

$$\therefore \frac{w}{31.6} \times 1000 = 4000 \times 0.05$$

$$w = 6.32 \,\mathrm{g}$$

370 **(c)**

$$H_2O_2$$
 oxidises S^{2-} to S^0 .

371 (a)

Following is balanced redox reaction.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+$$

$$\rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

So, coefficients of

 MnO_4^- , $C_2O_4^{2-}$ and H^+ are 2,5, and 16 respectively.

372 **(c)**

$$2 \times a + 1 \times (-2) = 0$$

$$\therefore a = +1$$

373 (d)

Oxidation-reduction takes place simultaneously.

374 **(b**)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$
;

of

$$\therefore \text{ Eq. wt.} = \frac{\text{mol. wt.}}{6}$$

$$S^{4+} \rightarrow S^{6+} + 2e$$

 $10e + 2I^{5+} \rightarrow I_2^0$

 F_2 shows only -1 ox.no.

377 (a)

Reduction (oxidation number decreases)

Oxidation (oxidation number is increases)

The reactions in which the same substance undergoes oxidation as well as reduction, are called disproportionation reactions.

So, the above reaction is an example of disproportionation reaction.

378 **(b)**

It is definition of iodimetric titrations.

379 (d)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$

380 **(b)**

+2 oxidation state due to $1s^2, 2s^2, 2p^2$ configuration having 2 unpaired electrons in 2p –subshell. +4 oxidation state due to $1s^2, 2s^12p^3$ configuration in excited state having four unpaired electrons.

381 (a)

Meq. if
$$SnCl_2 = Meq.$$
 of $HgCl_2$
 $0.5 \times V = 600 \times 0.1$
 $\therefore V = 120 \text{ mL}$

382 (a)

Meq. of FeSO₄ = Meq. of KMnO₄ = 200 × 1

$$\therefore \frac{w}{152/1} \times 1000 = 200$$

$$\therefore w = 30.4 \text{ g}$$

383 (a)

Meq. of Fe = Meq. of
$$K_2Cr_2O_7$$

 $\frac{w}{56/1} \times 1000 = 1 \times 0.1055$

$$w = 5.9 \times 10^{-3} \,\mathrm{g} = 5.9 \,\mathrm{mg}$$

384 (d

$$[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 3$$

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

$$(C^{3+})_2 \rightarrow 2C^{4+} + 2e$$

$$[FeC_2O_4 \rightarrow Fe^{3+} + 2C^{4+} + 3e] \times 5$$

 \therefore 3 mole MnO₄⁻ \equiv 5 mole FeC₂O₄

385 **(c)**

The sum of oxidation number is zero.

386 (c)

Electrons released at anode = Electrons used at cathode.

388 **(c)**

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$

389 **(b)**

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$

 $Fe^{2+} \rightarrow Fe^{3+} + e$

390 (d)

Loss of an electron or increase in oxidation number is oxidation process.

i.e.,
$$H^- \rightarrow H + e^-$$

391 **(c)**

Due to inert pair effect which is more predominant in T1.

392 **(a)**

Fe²⁺
$$\rightarrow$$
 Fe³⁺ + le
6e + Cr₂⁶⁺ \rightarrow 2Cr³⁺

Thus, electrons involved per Cr atom = 3.

393 (a)

Let oxidation state of Cr in $K_2Cr_2O_7 = x$

$$(+1 \times 2) + 2x + (-2 \times 7) = 0$$

or $+2 + 2x - 14 = 0$

$$x = +6$$

Let oxidation state of Cr in $K_2CrO_4 = x$

$$+1 \times 2 + x + (-2 \times 4) = 0$$

$$2+x-8=0$$

$$x = \epsilon$$

 \div Change in oxidation state of Cr is zero when it changes from

394 **(b)**

In HNO_2 , the oxidation number of N is + 3 which is less than the maximum possible, oxidation number ie, + 5 and more than the minimum possible oxidation number ie, -3, therefore, it can act both as an oxidizing as well as reducing agent

395 (a)

Ox. No. of N in N_3H , NH_2OH , N_2H_4 , NH_3 are $-\frac{1}{3}$, -1, -2, -3 respectively.

396 (a)

$$Mn^{6+} \rightarrow Mn^{7+} + Ie$$

 $Mn^{6+} + 2e \rightarrow Mn^{4+}$
 $3MnO_4^{2-} \rightarrow 2MnO_4^{-} + Mn^{4+}$

397 **(b)**

FeCl₃ cannot be oxidised because Fe has highest oxidation state.

398 (d)

Meq. of KMnO₄ = Meq. Of Cl₂

$$1 \times 5 \times 1000 = \frac{w}{(71/2)} \times 1000$$

$$\therefore w = 177.5 \,\mathrm{g}$$

∴ V_{Cl_2} = 56 litre at NTP

399 (d)

$$Fe^{2+} \rightarrow Fe^{3+} + e$$
; $O_2^{1-} + 2e \rightarrow 2O^{2-}$; H_2O_2 acts as oxidant.

400 **(b)**

Let oxidation state of I in $IPO_4 = 'x'$.

$$x + (-3) = 0$$

 $(PO_4^{3-}$ ion has charge equal to -3)

x = +3

401 (a)

In alkaline medium

$$KMnO_4 + OH^- \rightarrow K_2MnO_4$$

Change in oxidation number

$$=7-6$$

= 1

Hence, moles of KI = moles of $KMnO_4$.

402 **(c)**

5 mole I⁻ gives 3 mole I₂

403 (c)

$$2 \times 1 + 2 \times a + 7 \times (-2) = 0$$

$$\therefore a = +6$$

404 (c)

The concentration of standard solution is known.

405 (a)

 \therefore H₂S is oxidised in this reaction.

406 **(b)**

$$HP_2O_7^{-2}$$

$$+1+2x-2\times 7=-1$$

$$x = +6$$

407 **(b)**

Iron usually shows zero, +2, +3 oxidation state.

408 (a)

Calculate ox.no. of Cl in $NOCIO_4$ by assuming CIO_4^- and NO^+ .

409 **(b)**

$$2e + \mathrm{H}_2^0 \longrightarrow 2\mathrm{H}^{1-}$$

$$Li \rightarrow Li^{1+} + e$$

H₂ is reduced and thus, oxidant.

410 **(b)**

$$S^{4+} \rightarrow S^{6+} + 2e$$

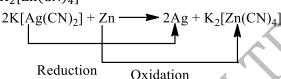
411 (a)

$$a + 2 \times (-2) = 0$$

$$\therefore a = +4$$

412 **(d)**

Ox.no. Fe in Mohr's salt, $[FeSO_4.(NH_4)_2SO_4.6H_2O]$ is +2.


413 (a)

$$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$$
; $Fe^{2+} \rightarrow Fe^{3+} + e$

414 **(d)**

$$2K[Ag(CN)_2] + Zn \rightarrow 2Ag +$$

 $K_2[Zn(CN)_4]$

415 **(b)**

$$Meq. of K_2Cr_2O_7 = Meq. of H_2S$$

$$2 \times V = \frac{0.81}{34/2} \times 1000$$

$$\therefore V = 23.8 \text{ mL}$$

416 **(a)**

$$3 \times 1 + a + 4 \times (-2) = 0$$

$$a = +5$$

417 **(b)**

$$3Fe^0 \rightarrow Fe_3^{+(8/3)} + 8e$$

$$E = \frac{M}{8/3} = \frac{56 \times 3}{8} = 21$$

418 (d)

Permonosulphuric acid (H₂SO₅) has two oxygen atoms in peroxide linkage, hence,

$$2(+1) + x + 2(-1) + 3(-2) = 0$$

$$2 + x - 2 - 6 = 0$$

$$x = +6$$

419 (c)

The reaction, in which two or more species undergo reduction as well as oxidation to give a single species are called comproportionation reaction. This is reverse of disproportionation reaction.

$$Ag^{2+}(aq) + Ag(s) \rightleftharpoons 2Ag^{+}(aq)$$

420 **(d)**

HCl is also oxidised along with oxalic acid by $KMnO_4$.

 $2KMnO_4 + 16HCl$

$$\begin{array}{c} \longrightarrow 2 \text{KCl} + 2 \text{MnCl}_2 + 5 \text{Cl}_2 + 8 \text{H}_2 \text{O} \\ 2 \text{KMnO}_4 + 3 \text{H}_2 \text{SO}_4 + 5 \text{H}_2 \text{C}_2 \text{O}_4 \\ \longrightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 8 \text{H}_2 \text{O} \\ + 10 \text{CO}_2 \end{array}$$

421 (a)

No change in oxidation no.in any of the species.

422 **(d)**

S in H_2SO_3 is in +4 oxidation state. It lies in between its maximum and minimum oxidation state, i.e. +6 and -2 and thus, S can increase or

SMARI ACHIEFIERS LEIRENTE SMARING RATE. I.

REDOX REACTIONS

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** Change in colour of acidic solution of potassium dichromate by breath is used to test drunk drivers.
- **Statement 2:** Change in colour is due to the complexation of alcohol with potassium dichromate.

2

- **Statement 1:** $Mg(s)+F_2(s) \rightarrow MgF_2(s)$: Magnesium loses electrons and acts as a reducing agnet.
- **Statement 2:** Reduction in general means acceptance of electrons by a reactant.

3

- **Statement 1:** Bromide ion is serving as a reducing agent in a reaction.
- **Statement 2:** Oxidation number of Br increases from -1 to5.

4

- **Statement 1:** Nitrous acid may acts as an oxidizing agent as well as reducing agnet.
- **Statement 2:** The oxidation number of nitrogen remains same in all the compounds.

5

- **Statement 1:** Both oxygen atom in O_2 or O_3 has an oxidation number of -2.
- **Statement 2:** Oxygen is assigned an oxidation number -2 in almost all their compounds.

6

- **Statement 1:** Oxidation number of Ni in is zero.
- **Statement 2:** Nickel is bonded to neutral ligand carbonyl.

REDOX REACTIONS

CHEMISTRY

						. A NI	SWER	IZEV -				
1) 5)	c d	2) 6)	a a	3)	a	4)	c	MEI -				
										4	01	
									1	10		
							<i>^</i>	R		7		
1	Vr	7										

REDOX REACTIONS

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (c)

Potassium dichromate react with alcohol and the reduction of potassium dichromate takes place and dichromate (orange red) changes to Cr³⁺ (green).

2 **(a)**

In general, oxidation is the loss of electrons and the reactant like, magnesium that loses electrons acts as a reductant or reducing agent.

3 **(a)**

+7

 $2 \text{ MnO}_{4}^{-}(aq) + \text{Br}^{-}(aq) + \text{H}_{2}\text{O}(I) \rightarrow$

+ 4 + 5

$$MnO_2(aq) + BrO_3^-(aq) + 2OH^-(aq)$$

Oxidation number is changes as -1 to + 5 (so loss of $6e^-$).

4 **(c)**

Oxidation number of N is changed according to compounds

(-1 to +5) N has five types of oxides as

 NO_2 , NO, N_2O_3 , N_2O_4 and N_2O_5 . All have different oxidation states in different compounds.

(d)

Each atom in an elemental from is assigned an oxidation number of zero. For example, hydrogen atom in H_2 and oxygen atom in O_2 or O_3 , carbon in diamond and graphite, all have oxidation number equal to zero.

6 **(a)**

Oxidation number of N CO=0 (zero) as it a neutral ligand.

Oxidation number of Ni in $[Ni(CO)_4]$ is also zero.