THE P-BLOCK ELEMENTS

CHEMISTRY

Single Correct Answer Type

1.	Nitric oxide is:		
	a) Acidic towards litmus		\frown
	b) Basic towards litmus		
	c) Neutral towards litmus		
	d) Amphoteric		
2.	The last member of inert gas family is:		
	a) Krypton b) Radon	c) Xenon	d) Argon
3.	Helium –oxygen mixture is used by deep by sea dive	ers in preference to nitroge	n oxygen mixture because
	a) Helium is much less soluble in blood than nitroge	en 🖌	\sim
	b) Nitrogen is much less soluble in blood than heliur	n 🔥	X
	c) Due to high pressure deep under the sea nitrogen	and oxygen react to give p	oisonous nitric oxide
	d) Nitrogen is highly soluble in water		
4.	Among the fluorides below, the one which does not	exist is	
	a) CF_4 b) HeF_4	c) XeF4	d) SF ₄
5.	The percentage of nitrogen in air remains almost co	nstant due to:	
	a) The fixation of nitrogen		
	b) The activity of symbiotic bacteria		
	c) The effect of lightening and bacteria		
	d) The nitrogen cycle in nature		
6.	The metal which does not form ammonium nitrate	by reaction with dilute nitr	ric acid is
	a) Al b) Fe	c) Pb	d) Mg
7.	The following acids have been arranged in the order	of decreasing acid strengt	h. Identify the correct order
	ClOH(I) BrOH(II) IOH(III)		
	a) $I > II > III$ b) $II > I > III$	c) III > II > I	d) I > III > II
8.	H ₂ S exhibits:		
	a) Oxidizing properties (b) Reducing properties	c) Basic properties	d) None of these
9.	Liquid oxygen is:		
	a) Colourless b) Pale yellow	c) Pale blue	d) Dark blue
10.	HNO ₃ is manufactured by:		
	a) Birkeland and Eyde's process		
	b) Haber's process		
	c) Contact's process		
	d) Fischer-Tropsch's process		
11.	The decreasing values of bond angles from NH_3 (10)	7°)to SbH $_3$ (91°) down the	group 15 of the periodic
~	table is due to		
5	a) Increasing <i>bp-bp</i> repulsion	b) Increasing <i>p</i> - orbital c	haracter in <i>sp</i> ³
~	c) Decreasing <i>lp-bp</i> repulsion	d) Decreasing electroneg	ativity
12.	Nitrogen is obtained when $NaNO_2$ react with		
	a) NH ₄ Cl b) NH ₄ NO ₃	c) (NH ₄) ₂ CO ₃	d) NH4OH
13.	Which of the following statement is wrong?		
	a) The stability of hydrides increases from NH_3 to B	iH ₃ in group 15 of the peri	odic table
	b) Nitrogen cannot form $d\pi - p\pi$ bond		
	c) Single N—N bond is weaker than the single P—P	bond	
	d) N_2O_4 has two resonance structure		

14.	Which is monoatomic?			
	a) Oxygen	b) Fluorine	c) Neon	d) Nitrogen
15.	Which gas can be collecte	-	,	ý C
	a) NH ₃	b) N ₂	c) SO ₂	d) HCl
16.	In the reaction,			
	$2KI + H_2O_2 + O_3$	\rightarrow 2KOH + 0 ₂ + <i>A</i> , the co	mpound A is:	
	a) KIO ₃	b) I ₂ O ₅	c) HIO ₃	d) I ₂
17.	In the reaction, MnO_4^- +	$I^{-} \xrightarrow{Alkaline \text{ solution}} [X]; [X] i$	S:	
	a) IO ₃	b) IO ₄	c) I ₂	d) IO ⁻
18.		ps present in pyrosulphuri	, -	
	a) 3	b) 4	c) 2	d) 1
19.	Which is not an acid salt?		-	
	a) Na ₄ P ₂ O ₇	b) NaH ₂ PO ₃	c) NaH ₂ PO ₂	d) $Na_3HP_2O_6$
20.	In fisher-Ringe's method	of separation of noble gas r	nixture from air, Is u	sed.
	a) 90% CaC ₂ +10%CaCl ₂		b) Coconut charcoal	\sim
	c) Soda lime +potash solu	ution	d) 90% CaCO ₃ +10% urea	1
21.	The element which evolve	es two gases on reacting wi	th conc. H ₂ SO ₄ is:	
	a) Si	b) C	c) S	d) P
22.		ed to dry KNO ₃ , brown fum		
	a) SO ₂	b) SO ₃	c) $N_2 O$	d) NO ₂
23.		um hydroxide fluorine reac		
	a) NaF and OF ₂	b) NaF + O_3	c) O_2 and O_3	d) NaF + O_2
24.		ion energy is minimum in:		
25	a) F_2	b) Cl ₂	c) Br ₂	d) I ₂
25.		not the characteristic of int	ernalogen compounds?	
	a) They are more reactive		civo	
	c) They are covalent in na	e but none of them is explo	Sive	
	-	points and are highly volati	أما	
26	Which is soluble in water			
20.	a) AgCl	b) AgBr	c) AgI	d) AgF
27.	, ,			lifferent <i>E</i> are in the order :
	a) $B > P = As = Bi$		c) $B < P = As = Bi$	d) B < P < As < Bi
28.		can be discharged by shaki	-	5
	a) H ₂ O ₂	b) Sodium sulphide	c) Sodium thiosulphate	d) Sodium sulphate
29.	Sulphuric acid has great a	ffinity for water because		
	a) It hydrolyses the acid		b) It decomposes the acid	
	c) Acid forms hydrates w		d) Acid decomposes wate	r
30.		very of noble gases is given	to:	
	a) Cavendish	b) Ramsay	c) Rayleigh	d) None of these
31.		umber of lone pairs of Xe is		
	a) 3, 2, 1	b) 1 ,2, 3	c) 2, 3, 1	d) 4, 1, 2
32.	Which of the following ha	s pp-dp bonding?		
	a) NO_3^-			
	b) SO_3^{2-}			
	c) BO_3^{3-}			
 วว	d) CO_3^{2-}	used to by SO		
55.	Acidified iodates are redu a) Iodites	b) Iodide	c) Iodine	d) None of these
34	Anhydrone is:	oj loulue		aj none or mese
54.	miny ui one 13.			

	a) HClO ₄			
	b) HClO ₃			
	c) Anhydrous magnesium			
	d) Anhydrous calcium pe			
35.	In Kipp's apparatus, H ₂ S	= =		
	a) Continuously	b) By FeS + conc. H_2SO_4		d) By Fe + dil. H_2SO_4
36.		and HNO_3 in the ratio 3:1 c		
	a) ClO ₂	b) NOCl	c) NCl ₃	d) N_2O_4
37.	Pure nitrogen can be pre			
	a) NH ₄ OH	b) NH ₄ NO ₂	c) $Ba(NO_3)_2$	d) Ca ₃ N ₂
38.		n HF by passing the mixture	-	
	a) H ₂ O	b) An alkaline solution	c) Conc. H ₂ SO ₄	d) NaF
39.	Fluorine is usually obtain	ned from:		
	a) Fluorspar	b) Fluorapatite	c) Cryolite	d) Tetrafluoromethane
40.	Mark the strongest acid			
	a) HI	b) HBr	c) HCl	d) HF
41.	The most basic hydride i	S	C A	
	a) NH ₃	b) PH ₃	c) AsH ₃	d) SbH ₃
42.	Cl ₂ is used in the extract	ion of:		
	a) Pt	b) Au	c) Both (a) and (b)	d) None of these
43.	A hydride of nitrogen ha	ving lowest oxidation numb	per of N:	
	a) NH ₃	b) N ₃ H	c) N ₂ H ₄	d) N_2H_2
44.	Chlorine acts as a bleach	ing agent only in presence of		
	a) Dry air	b) Moisture	c) Sunlight	d) Pure oxygen
45.		nfected by bubbling throug	h water with a controlled q	
	a) Br_2	b) Cl_2	c) 0_2 enriched air	d) N_2
46.	, ,	nolten antimony breaks upo		
	a) Expansion	b) Exothermic reaction	c) Endothermic reaction	
47.		The unpaired electrons are	-	, ,
	a) Antibonding orbitals		c) <i>p</i> – orbitals	d) <i>f</i> -orbitals
48.	, 0	eaching powder with a solu	, 1	, , , , , , , , , , , , , , , , , , ,
	a) H ₂	b) N ₂	c) $N_2 O_3$	d) $N_2 O_4$
49.	H_3PO_2 has the name and		-) 2 - 3	-) 2 - 4
	a) Phosphorous acid and			
	b) Hypophosphorous aci			
	c) Hypophosphorous aci			
	d) Hypophosphoric acid			
50	The correct order of acid			
00.	a) $Cl_2O_7 > SO_2 > P_4O_{10}$		c) $Na_2 0 > Mg 0 > Al_2 0_3$	d) $K_{a}O > CaO > MgO$
51	The van der Waal's force			
51.	a) Neon	b) Argon	c) Krypton	d) Xenon
52.		with KI solution turns blue	, ,,	uj xenon
52.	a) Iodine liberation	with Ki Solution turns blue	III OZOIIC DECAUSE OI.	
	b) Oxygen liberation			
	c) Alkali formation			
	d) Ozone reacts with lith	auc papar		
52	Which one is correct stat			
JJ.			17	
		H_3PO_3 is 3 and 3 respectivel	-	
		$H_3 PO_3$ is 3 and 3 respectively	-	
		H ₃ PO ₃ is 3 and 2respectively H ₃ PO ₃ is 3 and 2 respective		
	TH BASICITY OF HAPUL AND	IT3 PU3 IS 5 AND Z PESDECTIVE	IV	

54.				
	•	d cleaning agent because it		
	a) Is weakly basic			
	b) Emulsifies grease			
	c) Leaves no residue whe	en wiped out		
	d) All are true			
55.	A clathrate is defined as			
	a) Cage compound	b) Liquid crystal	c) Mixture	d) Solid solution
56.	The acid employed for et			
	a) HCl	b) HClO ₄	c) HF	d) Aqua regia
57.	H ₂ SO ₄ reacts with sugar			
	a) A dehydrating agent	b) An oxidizing agent	c) A sulphonating agent	d) None of these
58.	Ordinary oxygen contain		46 45	
	a) Only O ¹⁶ isotope	b) Only O ¹⁷ isotope	c) A mixture of 0^{16} , 0^{17} a	nd) Only 0 ¹⁸ isotope
59.	Metal halide which is ins			
	a) AgF	b) AgI	c) KBr	d) CaCl ₂
60.	Phosphine is:			X
	a) Basic	b) Acidic	c) Amphoteric	d) Neutral
61.	Antimony dissolves in ac			
	a) SbCl ₃	b) Sb_2O_5	c) SbCl ₅	d) $Sb(NO_3)_3$
62.	Dinitrogen pentoxide a c	olourless solid is prepared		
	a) Heating NH_4NO_2 with		b) Dehydrating HNO ₃ wit	
	c) Dehydrating HNO ₃ wi		d) Heating a mixture of H	NO_2 and $Ca(NO_3)_2$
63.	-	ot used as a fertilizer is:		
	a) $(NH_4)_2SO_4$	4		
	b) $(NH_4)_2CO_3$	4	N N	
	c) NH ₄ NO ₃			
	d) CAN(calcium ammoni		•	
64.		and pressure, among halo	gens, chlorine is a gas, bror	nine is a liquid and iodine is
	a solid. This is because:			
	a) The specific heats are	in the order $Cl_2 > Br_2 > I_2$		
	b) Intermolecular forces		ne are the weakest and thos	se of iodine the strongest
	c) The order of density is	$I_2 > Br_2 > Cl_2$	ne are the weakest and thos	se of iodine the strongest
	c) The order of density isd) The order of stability	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$		
65.	c) The order of density isd) The order of stabilitySulphur forms the chlori	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq		se of iodine the strongest SCl ₂ is 16 g/mol. Therefore,
65.	c) The order of density isd) The order of stabilitySulphur forms the chlorithe equivalent mass of Si	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq alphur in S_2Cl_2 is:	uivalent mass of Sulphur in	SCl_2 is 16 g/mol. Therefore,
	 c) The order of density is d) The order of stability Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq		
	 c) The order of density is d) The order of stability is Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq ulphur in S_2Cl_2 is: b) 16 g/mol	uivalent mass of Sulphur in	SCl_2 is 16 g/mol. Therefore,
	 c) The order of density is d) The order of stability Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq ulphur in S_2Cl_2 is: b) 16 g/mol	uivalent mass of Sulphur in	SCl_2 is 16 g/mol. Therefore,
	 c) The order of density is d) The order of stability is Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq ulphur in S_2Cl_2 is: b) 16 g/mol	uivalent mass of Sulphur in	SCl_2 is 16 g/mol. Therefore,
	 c) The order of density is d) The order of stability Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq ulphur in S_2Cl_2 is: b) 16 g/mol	uivalent mass of Sulphur in	SCl_2 is 16 g/mol. Therefore,
66.	 c) The order of density is d) The order of stability is Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq ulphur in S_2Cl_2 is: b) 16 g/mol	uivalent mass of Sulphur in	SCl_2 is 16 g/mol. Therefore,
	 c) The order of density is d) The order of stability Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The eq alphur in S_2Cl_2 is: b) 16 g/mol aOCl nt	uivalent mass of Sulphur in c) 64 g/mol	SCl ₂ is 16 g/mol. Therefore, d) 8 g/mol
66. 67.	 c) The order of density is d) The order of stability is Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: a) H₃PO₂ 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The equiphur in S_2Cl_2 is: b) 16 g/mol aOCl nt b) H ₃ PO ₃	uivalent mass of Sulphur in	SCl_2 is 16 g/mol. Therefore,
66. 67.	 c) The order of density is d) The order of stability is d) The order of stability is Sulphur forms the chlority the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: a) H₃PO₂ Orthophosphoric acid on 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The equiphur in S_2Cl_2 is: b) 16 g/mol aOCl nt b) H ₃ PO ₃	uivalent mass of Sulphur in c) 64 g/mol	SCl ₂ is 16 g/mol. Therefore, d) 8 g/mol
66. 67.	 c) The order of density is d) The order of stability is Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: a) H₃PO₂ Orthophosphoric acid on a) Phosphine 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The equiphur in S_2Cl_2 is: b) 16 g/mol aOCl nt b) H_3PO_3 heating gives:	uivalent mass of Sulphur in c) 64 g/mol	SCl ₂ is 16 g/mol. Therefore, d) 8 g/mol
66. 67.	 c) The order of density is d) The order of stability is d) The order of stability is Sulphur forms the chlori the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: a) H₃PO₂ Orthophosphoric acid on a) Phosphine b) Phosphorus pentoxide 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The equiphur in S_2Cl_2 is: b) 16 g/mol aOCl nt b) H_3PO_3 heating gives:	uivalent mass of Sulphur in c) 64 g/mol	SCl ₂ is 16 g/mol. Therefore, d) 8 g/mol
66. 67.	 c) The order of density is d) The order of stability is d) The order of stability is Sulphur forms the chloring the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: a) H₃PO₂ Orthophosphoric acid on a) Phosphine b) Phosphorus pentoxide c) Phosphorus acid 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The equiphur in S_2Cl_2 is: b) 16 g/mol aOCl nt b) H_3PO_3 heating gives:	uivalent mass of Sulphur in c) 64 g/mol	SCl ₂ is 16 g/mol. Therefore, d) 8 g/mol
66. 67. 68.	 c) The order of density is d) The order of stability is d) The order of stability is Sulphur forms the chlorify the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: a) H₃PO₂ Orthophosphoric acid on a) Phosphine b) Phosphorus pentoxide c) Phosphorus acid d) Metaphosphoric acid 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The equiphur in S_2Cl_2 is: b) 16 g/mol aOCl nt b) H_3PO_3 heating gives: e	uivalent mass of Sulphur in c) 64 g/mol	SCl ₂ is 16 g/mol. Therefore, d) 8 g/mol
66. 67. 68.	 c) The order of density is d) The order of stability is d) The order of stability is Sulphur forms the chloring the equivalent mass of Si a) 32 g/mol Javelle water is: a) Aqueous solution of N b) Used as bleaching age c) Both (a) and (b) d) None of the above The strongest acid is: a) H₃PO₂ Orthophosphoric acid on a) Phosphine b) Phosphorus pentoxide c) Phosphorus acid 	s $I_2 > Br_2 > Cl_2$ is $I_2 > Br_2 > Cl_2$ des S_2Cl_2 and SCl_2 . The equiphur in S_2Cl_2 is: b) 16 g/mol aOCl nt b) H_3PO_3 heating gives: e	uivalent mass of Sulphur in c) 64 g/mol	SCl ₂ is 16 g/mol. Therefore, d) 8 g/mol

70				
70.	$SO_2 + H_2S \rightarrow \text{product, the}$			
	a) H_2SO_3	b) H_2SO_4	c) $H_2S_2O_3$	d) $H_2 O + S$
71.	Which of the following is n			
	•	b) FeSO ₄	c) KMnO ₄	d) K_2MnO_4
72.	The gas used for inflating t			
	a) H ₂	b) He	c) N ₂	d) Ar
73.	F_2 is formed by the reaction	on of K ₂ MnF ₆ with:		
	a) SbF ₅	b) MnF ₃	c) KrF ₆	d) MnF ₄
74.	Which statement is not con	rrect for nitrogen?		
	a) It has a small size		b) It does not readily reac	_
	c) It is a typical non-metal		d) <i>d</i> -orbitals are available	for bonding
75.	Which is not oxdised by M			
	a) F	b) Cl	c) I ₂	d) I
76.	Passing H ₂ S gas through r	itric acid produces:		
	, ,	b) Monoclinic sulphur	c) Colloidal sulphur	d) Plastic sulphur
77.	Schweitzer's reagent is:			X i
		b) $[Ag(NH_3)_2]Cl$	c) $[Cu(NH_3)_2]Cl$	d) K_4 Fe(CN) ₆
78.	Industrial name of H ₂ S ₂ O ₇	is		
	a) Pyrosulphuric acid	b) Marshall's acid	c) Oleum	d) All of these
79.	Which does not give oxyge		A Y	
	a) HgO	b) KMnO ₄	c) KClO ₃	d) $(NH_4)_2 Cr_2 O_7$
80.	Which of the following pai	_		
	-	b) N_2O and H_2O	c) NO_2 and H_2O	d) NO and NO_2
81.	Which reaction is not feasi	ble?		
	a) $2KI + Br_2 \rightarrow 2KBr + I_2$		b) $2KBr + I_2 \rightarrow 2KI + Br_2$	
	c) $2KBr + Cl_2 \rightarrow 2KCl + B$		d) $2H_2O + 2F_2 \rightarrow 4HF + O$	02
82.	The conjugate base of H_2P			
	a) HPO_4^{2-}	b) P_2O_5	c) H ₃ PO ₄	d) PO ₄ ^{3–}
83.	Reaction of solid KMnO ₄ w			
	a) Solution state	b) Solid state	c) Fine powder	d) None of these
84.	Caro's acid is:			
		b) $H_2S_2O_8$	c) H_2SO_3	d) H_2SO_5
85.	Which of the following is n		. –	
		b) Cl−	c) Br ⁻	d) I ⁻
86.	Which is an ozonide?			
~ -	a) KO ₃	b) NH_4O_3	c) Cr_2O_3	d) Both (a) and (b)
87.	Which statement is false for			
	a) It is obtained by silent e		n	
	b) It is an endothermic cor	•		
	c) It can be obtained by th	-	on oxygen	
00	d) It cannot be regarded as			
88.	Which is true with regard		h) DII haa Gaba amall	
\sim	a) PH_3 is insoluble in wate		b) PH_3 has fishy smell	
00	c) PH_3 is neutral towards		d) PH_3 is not much stable	
89.	Nitric acid is generally ligh			d) N_O
00	a) NH_3 The lightning helts in atmospheric	b) NO	c) NO_2	d) $N_2 O_5$
90.	The lightning bolts in atmo	-		4) H_O
01		b) 0 ₃	c) CO ₂	d) H_2O_2
71.	The structure of IF ₇ is: a) Square pyramid			
	aj square pyrailliu			

	b) Trigonal bipyramid			
	c) Octahedral			
	d) Pentagonal bipyramid			
92.	= =	happen, when phosphine		gas?
	a) PCl ₅ and HCl are forme	ed and the mixture cools do	own	
	b) $PH_3 \cdot Cl_2$ is formed with	h warming up		
	c) The mixture cools dow	/n only		
	d) PH ₃ and HCl are forme	ed and the mixture warms ι	ıp	
93.	$\text{HClO}_4 + \text{P}_2\text{O}_5 \rightarrow (A) \text{and}$	(B) A and B are		· · ·
	a) HClO ₃ , H ₃ PO ₄	b) $Cl_2O_6 + HPO_3$	c) ClO_2 , H_2PO_4	d) Cl ₂ O ₇ , HPO ₃
94.	The formula of zinc phos	phite is:		
	a) ZnHPO ₃	b) $Zn(PO_4)_3$	c) $Zn_2(PO_4)_3$	d) $Zn_3(PO_3)_2$
95.	The bonds present in N ₂ (D ₅ are:		
	a) Only ionic			
	b) Only covalent			
	c) Covalent and coordina	te	A	
	d) Covalent and ionic		Ć	
96.		ally separated by using co	mpounds of the halogen:	
	a) F ₂	b) Cl_2	c) Br ₂	d) I ₂
97.	Which of the following ha	, 1		5 2
	a) I ₄ 0 ₉	b) $I_2 O_5$	c) BrO ₂	d) ClO ₃
98.	, , ,	rove the atmosphere of cro	, <u> </u>	
	a) H ₂	b) 0 ₂	c) 0 ₃	d) N_2O
99.		responsible for depletion of		, <u> </u>
	a) Polyhalogens	b) Ferrocene	c) Fullerenes	d) Freons
100	, , ,	distinguished by the additi		
200	a) Litmus solution	b) FeCl ₃ solution	c) NaHSO ₄ solution	d) Magnesium powder
101	. NaNH ₂ + N ₂ O \rightarrow X + NaC		-)	
	a) NaN ₂	b) Na ₃ N	c) NaN₃	d) None of these
102	. Ripening of fruits can be			
	a) Na_2SO_4	b) NaCl	c) CaC ₂	d) CaCl ₂
103		namically stable allotropic f		
200	a) Red	b) White	c) Black	d) Yellow
104	. F_2 is isolated by:	b) White	ej black	
201	a) Electrolysis of HF			
	b) Electrolysis of KHF ₂			
	c) Electrolysis of Na ₃ AlF ₆			
	d) Electrolysis of NaF/HF	-		
105	. Observe the following sta			
100		ed in the preparation of chl	oroform	
		omposes in the presence of		
		in the preparation of fluori		
5	The correct combination			
~	a) I,II and III are correct		b) Only II is correct	
	c) Only I and III are corre	oct	d) Only I and II are correc	+
106	. Which form of P shows cl		aj omy rana n'arc correc	
100	a) White P	b) Black P	c) Red P	d) None of these
107		y acids of phosphorus is a	,	
107	a) H ₃ PO ₂	b) H ₃ PO ₃	c) H ₃ PO ₄	d) $H_4P_2 O_6$
100	-	adioactivity is used in the t	•	uj 1141 2 06
100	a) Typhoid	b) Cancer	c) Cough and cold	d) Thyroid
	aj iypnolu	by cancer	cy cough and colu	aj myroid

109. Which of the following statement is true?	
a) H_3PO_3 is a stronger acid than H_2SO_3	
b) In aqueous medium HF is a stronger acid than HCl	
c) $HClO_4$ is a weaker acid than $HClO_3$	
d) HNO_3 is a stronger acid than HNO_2	
110. Number of lone pairs of electrons on Xe atoms in XeF_2 , XeF_4 and XeO	² molecule are respectively
a) 3, 2 and 1 b) 4, 3 and 2 c) 2, 3 and 1	d) 3, 2 and 0
111. When a lead storage battery is discharged:	
a) SO_2 is evolved	\frown
b) Lead sulphate is consumed	
c) Lead is formed	
d) H_2SO_4 is consumed	
112. On heating silver nitrate strongly is obtained finally:	
a) NO_2 b) O_2 c) Silver metal	d) All
113. Pure phosphine is not combustible while impure phosphine is com	
the presence of:	buscible, this combusciblinty is due to
a) P_2H_4 b) N_2 c) PH_5	d) $P_2 O_5$
114. In the contact process of H_2SO_4 , SO_3 dissolves in sulphuric acid to gi	
a) Permonosulphuric acid	
b) Thiosulphuric acid	
c) Pyrosulphuric acid	
d) Perdisulphuric acid	
115. When chlorine water is exposed to sunlight, O_2 is liberated. Hence:	
a) Hydrogen has little affinity to O_2	
b) Hydrogen has more affinity to O_2	
c) Hydrogen has more affinity to chlorine	
d) It is a reducing agent 116. The number of electrons in a halogen in its outermost orbit in com	nariaan with approximating pable gas
is:	parison with corresponding hobie gas
a) One electron less b) One electron more c) Two electron	as loss d) Two electrons more
117. The deep blue colour produced on adding excess of ammonia to cop	-
	ber surpriate solution is due to the
presence of: a) Cu^{2+} b) $[Cu(NH_3)_2]^{2+}$ c) $[Cu(NH_3)_4]^2$	$+$ $d) [C_{11}(NUL)]^{12+}$
118. Which of the following oxo-acids of chlorine is formed on shaking ch	norme water with freshly precipitated
yellow oxide of mercury?	
a) $HClO_3$ b) $HClO_2$ c) $HClO$	d) HClO ₄
119. Phosphorus is present in bones as:	d) C., D
a) $Ca_3(PO_4)_2$ b) FePO ₄ c) Ca_3P_2	d) Cu_3P_2
120. Paramagnetic molecule is:	
a) Oxygen b) Nitrogen c) Hydrogen	d) Chlorine
121. Which is a poison?	
a) Hg_2Cl_2 b) As_2O_3 c) NaHCO ₃	d) NaCl
122. Which of the following is a tribasic acid?	
a) H_3PO_4 b) HPO_3 c) $H_4P_2O_7$	d) $H_4p_2O_6$
123. Presence of sulphide ion cannot be confirmed by:	
	oprusside d) Dil. H_2SO_4
124. End product of the hydrolysis of XeF_6 is	
a) XeF_4O b) XeF_2O_2 c) XeO_3	d) XeO_3^-
125. In PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} ion, the formal charge on each oxygen atom and P—O bond of PO_4^{3-} is the formal charge on each oxygen atom and P—O bond of PO_4^{3-} is the formal charge on each oxygen atom and P—O bond of PO_4^{3-} is the formal charge on each oxygen atom and P—O bond of PO_4^{3-} is the formal charge on each oxygen atom and P—O bond of PO_4^{3-} is the formal charge on each oxygen atom atom and P—O bond of PO_4^{3-} is the formal charge on each oxygen atom atom atom atom atom atom atom atom	
a) -0.75, 1.25 b) -3, 1.25 c) -0.75, 1.0	d) -0.75, 0.6

126. The lightest, non-inf	lammable gas is:		
a) H_2	b) He	c) N ₂	d) Ar
	ng chloride is water insoluble		,
a) HCl	b) AgCl	c) Both a and b	d) None of the above
	ring about the highest oxidation		-
a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
129. Excess of PCl ₅ reacts		,	,
a) Chlorosulphonic		b) Thionyl chloride	
c) Sulphuryl chlorid		d) Sulphurous acid	\sim
	es HCl from sodium chloride b		
a) Conc. H_2SO_4 is str			
	eas H_2SO_4 is a liquid		
	re soluble in water than chlor	ides	
	s soluble in water than chlorid		
· ·	ng halogens can replace other		
a) I ₂	b) Br ₂	c) F ₂	d) Cl ₂
	O_2 and O_2 is passed over		
a) Fe + Mo	b) $ZnO + Cr_2O_3$	c) $V_2 O_5$	d) zymase
133. Metal reacts with Su		0) 12 2 3	
a) Sulphide	b) Sulphite	c) Sulphate	d) Thiosulphate
	r than graphite having metalli		u) 1
a) I ₂	b) Si	c) Cl ₂	d) Br ₂
135. Ozone turns benzidi	,		c) <u> </u>
a) Violet	b) Brown	c) Blue	d) Red
	obtained by the interaction o		
	Ca(OHb) Concentrated solution		d) Dry slaked lime
137. Which statement is			
	ch a wet piece of cloth		
-	e removed by hypo solution		
	repared from carnallite		
	ted when iodine is passed thro	ough an acidified KBr solutio	on
138. The bond Br—Cl is:		0	
a) Polar	b) Non-polar	c) True covalent	d) Coordinate
-	extracted commercially by t	-	5
compounds?			
a) Sodium	b) Aluminium	c) Chlorine	d) Bromine
140. CN^- ion and N_2 are	isoelectronic but in contrast to	0 CN^{-} , N ₂ is chemically inert	because of:
a) Low bond energy			
b) Absence of bond			
c) Unsymmetrical el	lectron distribution		
d) Presence of more	number of electrons in bondi	ng orbitals	
141. Which of the followi	ng gases exists more abundan	tly in nature than the others	5?
a) Helium	b) Neon	c) Argon	d) Krypton
	the highest boiling point?		
a) Xe	b) Kr	c) Ar	d) Ne
143. Which characteristic	c is not correct about H_2SO_4 ?		
a) Reducing agent	b) Oxidizing agent	c) Sulphonating agent	d) Highly viscous
	der ordinary atmospheric con		
a) Solid	b) Liquid	c) Gas	d) None of these
145. A gas, that relights g			
a) H ₂	b) 0 ₂	c) N ₂	d) NO ₂

146. The percentage of <i>p</i> -ch	aracter in the orbitals form	ing P-P bond in P ₄ is	
a) 25	b) 33	c) 50	d) 75
147. Fermy's salt is:			
a) HF	b) KHF ₂	c) NaCl	d) KClO ₃
148. Which among the follow	wing factors is the most im	portant in making fluorine	the strongest oxidizing agent?
a) Electron affinity		b) Ionisation enthalpy	
c) Hydration enthalpy		d) Bond dissociation en	ergy
149. Halogens are:			
a) Gases under ordinar	y conditions		
b) Electronegative in n	ature		\sim
c) Fuming liquids			
d) The gases found in a	tmosphere		
150. Hydrogen sulphide rea	icts with lead acetate form	ing a black compound wh	ich reacts with H_2O_2 to form
another compound. Th	e colour of the compound i	S:	
a) Black	b) Yellow	c) White	d) pink
151. KF combines with HF t	o form KHF _{2.} The compound	d contains the species	X
a) K^+ , F^- and H^+	b) K^+ , F^- and HF	c) K^+ and $[HF_2]^-$	d) [KHF] ⁺ and F_2
152. Which compound does			3
a) $(NH_4)_2SO_4$	b) $(NH_4)_2CO_3$	c) NH ₄ NO ₂	d) NH ₄ Cl
153. When conc. H_2SO_4 is di			
a) SO ₂	b) S ₂ O ₄	c) SO ₃	d) S_2O_3
154. Radon was discovered	•		
a) Dorn	b) Ramsay	c) Rayleigh	d) None of these
155. The general formula of	hypophosphorous acid is:		
U			U II
a) H—P—OH	b) н—Р—ОН	с) но-Р-Он	d) HO—P—COOH
 H			
156. Ammonia on catalytic o	OH ovidation gives an ovide fro	OH m which nitric acid is obtai	OH ned. The ovide is:
a) NO	b) NO ₂	c) N_2O_3	d) N_2O_5
157. Which oxide reacts wit		0) 11203	4) 11205
a) CO ₂	b) CaO	c) ZnO	d) N_2O_5
158. O_2 is denser than air ar		•	
a) Spirit	b) H ₂ 0	c) Mercury	d) Kerosene
159. The structural formula		, , , , , , , , , , , , , , , , , , ,	2
o	o O	Q	<u>o</u>
a) P	b) P	c) _P	d) P
Н ОН			
	OH OH		HO OH OH
160. Which compound is provide the second se		iction?	
$\frac{\text{Xe} + 2\text{F}_2}{\text{(1:5 volume ratio)}} \frac{\text{Ni}}{673\text{K}},$	5-6 atm		
		-) V-F	
a) XeF_2	b) XeF ₆	c) XeF_4	d) $XeOF_2$
161. Which one of the follow	b) NO		
a) N20 162. Which ion cannot be pr	,	c) N_2O_3	d) NO ₂
-	b) NO ₃	c) SO ₄ ²⁻	d) All of these
a) Cl [–] 163. The correct order of so	, ,		uj Ali vi ülese
a) Xe > Kr > Ar > Ne \therefore		b) Ar > Ne > He > Kr \therefore	> Xe
c) He > Ne > Ar > Kr		d) Ne > Ar > Kr > He $\stackrel{?}{\sim}$	
164. Ozone acts as:		$u_j = 10 - \pi i -$	
101. 02011C acts as.			

a) An oxidizing agent			
	b) A reducing agent	c) Bleaching agent	d) All of these
165. Correct order of reactivity			
-	b) $Br_2 > I_2 > Cl_2 > F_2$	c) $Cl_2 > Br_2 > I_2 > F_2$	d) $F_2 > Cl_2 > Br_2 > I_2$
166. On boiling an aqueous solu	tion of KClO ₃ with iodine	the product formed is:	
a) KIO ₃	b) KClO ₄	c) KIO ₄	d) KCl
167. When bleaching powder is	treated with carbon diox	ide:	
a) Chlorine is evolved			
b) Calcium chloride is form	led		
c) No reaction occurs			\mathbf{h}
d) It absorbs the gas			
168. Which of the following proj	perties does not correspo	nd to the order?	
HI < HBr < HCl < HF	per les does not correspo		
	b) Reducing power	c) Ionic character	d) Dipole moment
169. ClO_2 is an anhydride of:	b) Reducing power		uj Dipole moment
a) Chlorous acid (HClO ₂)			A Y
· · · · · · · · · · · · · · · · · · ·			\sim
b) Chloric acid (HClO ₃)			X
c) Mixed anhydride of HClC	J_2 and $HClO_3$		
d) None of the above			7
170. Red P can be obtained by w	•		
a) Heating it with a catalyst	=	b) Distilling it in an inert	
c) Dissolving it in CS_2 and c		d) Melting it and pouring	_
171. In the halogen group chlori	ine is a gas, bromine is a	liquid and iodine exists as a	solid crystals. Then the nex
halogen astatine (At) would	d be:		
a) Solid at room temperatu	ire	G, X'	
b) Having higher electrone	gativity	V	
c) Solid with higher IP			
d) Least atomic size			
172. A solution of chlorine in wa	ater contains:		
a) HOCl only			
b) HCl only			
b) HCl only c) HCl and HOCl			
c) HCl and HOCl			
c) HCl and HOCl d) HCl, HOCl and chlorine			
c) HCl and HOCld) HCl, HOCl and chlorine173. Helium gives a characterist	tic spectrum with:	c) Yellow lines	d) Green lines
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 	tic spectrum with: b) Orange lines	c) Yellow lines	d) Green lines
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do 	tic spectrum with: b) Orange lines	energy because a noble gas	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic 	tic spectrum with: b) Orange lines o not posses virbrational e	energy because a noble gas b) Is chemically inert	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled sheet 	tic spectrum with: b) Orange lines o not posses virbrational e ells	energy because a noble gas	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha 	tic spectrum with: b) Orange lines o not posses virbrational e ells n water because:	energy because a noble gas b) Is chemically inert d) Is diamagnetic	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more elements 	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyge	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele 	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyget ectronegative than sulphu	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H₂O has bond angle of more shown and sh	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyget ectronegative than sulphu early 105°	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H₂O has bond angle of no d) Hydrogen is loosely bond 	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyget ectronegative than sulphu early 105° ded with sulphur	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H₂O has bond angle of no d) Hydrogen is loosely bond 	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyget ectronegative than sulphu early 105° ded with sulphur	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H₂O has bond angle of mod d) Hydrogen is loosely bond 	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyget ectronegative than sulphu early 105° ded with sulphur	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H₂O has bond angle of no d) Hydrogen is loosely bond 176. Holme's signals can be give a) CaC₂ + CaCO₃ 	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyget ectronegative than sulphu early 105° ded with sulphur en by using b) CaC ₂ + CaCN ₂	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom ar atom	
c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H_2S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H_2O has bond angle of no d) Hydrogen is loosely bon 176. Holme's signals can be give a) $CaC_2 + CaCO_3$ 177. Atomicity of sulphur in rho	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyget ectronegative than sulphu early 105° ded with sulphur en by using b) CaC ₂ + CaCN ₂	energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom ar atom	
 c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H₂S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H₂O has bond angle of no d) Hydrogen is loosely bond 176. Holme's signals can be give a) CaC₂ + CaCO₃ 177. Atomicity of sulphur in rho a) 8 	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyges ectronegative than sulphu early 105° ded with sulphur en by using b) CaC ₂ + CaCN ₂ ombic sulphur is b) 2	 energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom r atom c) CaC₂ + Ca₃P₂ c) 4 	d) Ca ₃ P ₂ + CaCN ₂ d) 6
c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H ₂ S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H ₂ O has bond angle of no d) Hydrogen is loosely bon 176. Holme's signals can be give a) $CaC_2 + CaCO_3$ 177. Atomicity of sulphur in rho a) 8	tic spectrum with: b) Orange lines o not posses virbrational e ells an water because: ectronegative than oxyges ectronegative than sulphu early 105° ded with sulphur en by using b) CaC ₂ + CaCN ₂ ombic sulphur is b) 2 rough concentrated solut	 energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom atom c) CaC₂ + Ca₃P₂ c) 4 ion of KOH, the compound 	d) $Ca_3P_2 + CaCN_2$ d) 6 formed is
c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H ₂ S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H ₂ O has bond angle of no d) Hydrogen is loosely bon 176. Holme's signals can be give a) $CaC_2 + CaCO_3$ 177. Atomicity of sulphur in rho a) 8 178. When chlorine is passed th a) KClO ₄	tic spectrum with: b) Orange lines o not posses virbrational e ells in water because: ectronegative than oxyges ectronegative than sulphu early 105° ded with sulphur en by using b) CaC ₂ + CaCN ₂ ombic sulphur is b) 2 rough concentrated solut b) KClO ₃	 energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom r atom c) CaC₂ + Ca₃P₂ c) 4 ion of KOH, the compound c) KClO₂ 	d) $Ca_3P_2 + CaCN_2$ d) 6
c) HCl and HOCl d) HCl, HOCl and chlorine 173. Helium gives a characterist a) Orange and red lines 174. Molecules of a noble gas do a) Is monoatomic c) Has completely filled she 175. H ₂ S is far more volatile tha a) Sulphur atom is more ele b) Oxygen atom is more ele c) H ₂ O has bond angle of no d) Hydrogen is loosely bon 176. Holme's signals can be give a) $CaC_2 + CaCO_3$ 177. Atomicity of sulphur in rho a) 8	tic spectrum with: b) Orange lines o not posses virbrational e ells on water because: ectronegative than oxyges ectronegative than sulphu early 105° ded with sulphur en by using b) CaC ₂ + CaCN ₂ ombic sulphur is b) 2 rough concentrated solut b) KClO ₃ is less than NH ₃ because:	 energy because a noble gas b) Is chemically inert d) Is diamagnetic n atom r atom c) CaC₂ + Ca₃P₂ c) 4 ion of KOH, the compound c) KClO₂ 	d) $Ca_3P_2 + CaCN_2$ d) 6 formed is

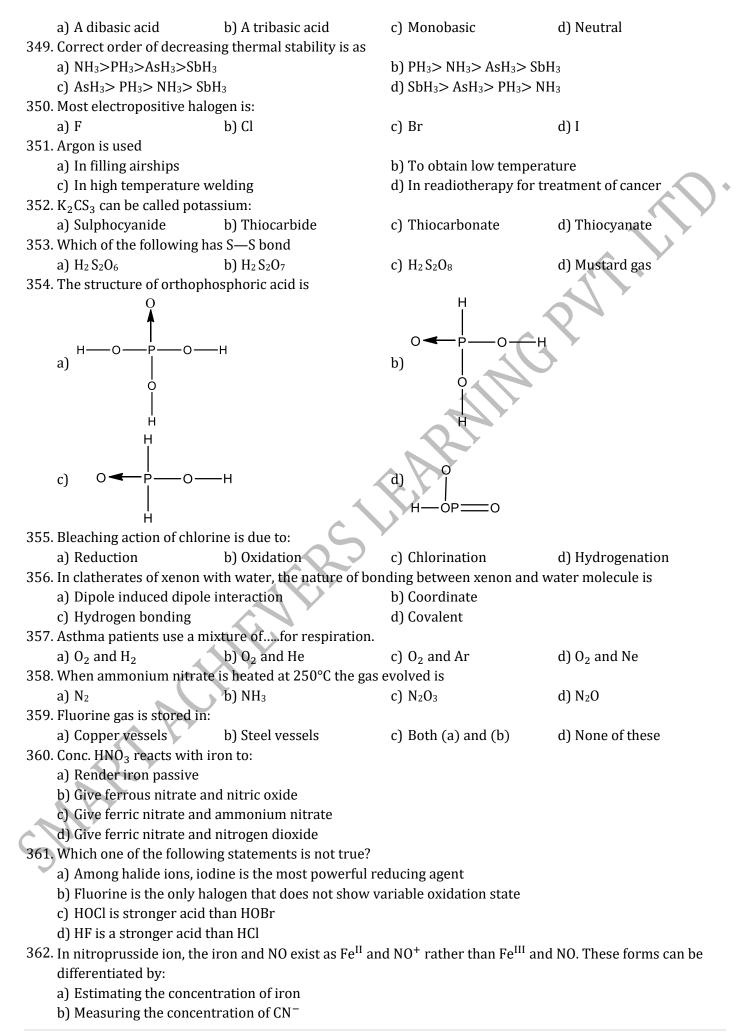
c) The resultant of the b	ond polarity is less		
-	ndividual polarities is oppos	sed by the polarity of lone	pair
180. Which of the following of			
a) NO	b) N ₂ O ₄	c) N_2O_3	d) $N_2 O_5$
181. Aqueous solution of Na ₂			
a) Na ₂ S ₄ O ₆	b) NaHSO ₄	c) NaCl	d) NaOH
182. Halogen molecules are:	5) 1.4110.04	0) 11401	
a) Monoatomic and form	X_2^{2-} jons		
b) Diatomic and form X			\frown
c) Diatomic and form X			\sim
d) Monoatomic and form			
183. Least stable oxide of chl			
a) Cl ₂ O	b) ClO ₂	c) Cl ₂ O ₇	d) ClO ₃
184. Bromine water is decold	-	y	
a) SO_2	b) C_2H_4	c) C ₂ H ₂	d) All of these
185. Fluorine reacts with wa	· - ·	, , , , , , , , , , , , , , , , , , , ,	
a) HF, O_2 and O_3	b) HF and F_2	c) HF and O_2	d) HF and O_3
			nent does not belong to the
same family as others?			U
-	b) [Kr]4 <i>d</i> ¹⁰ , 5 <i>s</i> ²	c) [Ne]3 <i>s</i> ² ,3 <i>p</i> ⁵	d) [Ar] $3d^{10}$, $4s^2$
187. Among the noble gases,			
a) It has highest ionisati		b) It has lowest ionisatio	
c) Its size is largest		d) It is the most readily a	
188. Which of the following i	s most volatile?	GX	5
a) HF	b) HCl	c) HBr	d) HI
189. Which phosphorus reac			
a) White phosphorus	b) Red phosphorus	c) Both a and b	d) None of these
190. In the treatment of leuk	aemia is used.	-	-
a) White phosphorus	b) Red phosphorus	c) Scarlet phosphorus	d) P ³² isotope
191. Argon was discovered b	y:		
a) Cavendish	b) Lavoisier	c) Rayleigh	d) Thomson
192. Among K, Ca, Fe and Zn	, the element which can form	n more than one binary co	mpound with chlorine is
a)Fe 🗸	b) Zn	c) K	d) Ca
193. Red P is used in making			
a) Air freshners)		
b) Red plastics	·		
c) Red dyes for plastics			
d) Safety match-striking	g surface		
194. On heating $(NH_4)_2 Cr_2 O_2$, the gas evolved is 'X'. The	same gas is obtained by he	eating:
a) NH_4NO_2	b) NH ₄ NO ₃	c) $Mg_3N_2 + H_2O$	d) $Na_2O_2 + H_2O$
195. Ozone with KI solution	produces		
a) IO ₃	b) I ₂	c) Cl ₂	d) HI
196. Ammonium nitrate deco	omposes on heating into		
a) Ammonia and nitric a	acid	b) Nitrous oxide and wa	ter
c) Nitrogen, hydrogen a	nd ozone	d) Nitric oxide, nitrogen	dioxide and hydrogen
197. What is a product obtain	ned in the reaction of HgCl ₂	and Hg(CN) ₂ ?	
a) (CN) ₂		b) Hg(CN)Cl	
c) Hg[Hg(CN) ₂ Cl ₂]		d) Addition compound H	$\operatorname{IgCl}_2 \cdot \operatorname{Hg}(\operatorname{CN})_2$
198. In order to prevent the l	hot metal filament from gett	ting burnt, when the electri	ic current is switched on, the
bulb is filled with:			

a) CH ₄	b) An inert gas	c) CO ₂	d) Cl ₂
199. Which of the follow	•		
a) O ₂ is weaker ox	idant thæ) 0 ₂ has larger bond	lengtc) Both O_2 and O_3	, are parad) O_2 is linear and O_3 are is
200. Which of the follow	wing has—0—0—linkage?		
a) $H_2S_2O_6$	b) H ₂ S ₂ O ₈	c) $H_2S_2O_3$	d) $H_2S_4O_6$
201. Which of the follow	wing is a metalloid?		
a) N	b) Bi	c) As	d) p
202. The weakest acid i	,	,	<i>9</i> 1
a) HI	b) HBr	c) HCl	d) HF
203. In the preparation	,		
a) SO ₂ is dissolved			
b) SO ₂ is dissolved			
c) SO ₃ is dissolved			
d) SO_3 is dissolved			
204. Which element is a			
a) Phosphorus	b) Arsenic	c) Antimony	d) Bismuth
	c acid reacts with iodine to give		
a) HI	b) HOI	c) HOIO ₂	d) HOIO ₃
	or a noble gas is approximately	v equal to:	
a) That of halogen	S		
b) Zero			×
c) That of oxygen	family		
d) That of nitroger	n family		
207. Ozonization of wat	ter is carried out to remove:		
a) Bacterial impur	ities		
b) Bad taste		\mathbf{V}'	
c) Excess of chlori	ne present		
d) Calcium and ma	ignesium salt present in it		
-	sium can be done in an atmos	ohere of	
a) Xe		c) Kr	d) Ne
-	s not found in atmosphere?	,	,
a) Rn	b) Kr	c) Ne	d) Ar
	wing is not oxidised by O_3 ?		
a) KI	b) FeSO ₄	c) KMnO4	d) K ₂ MnO ₄
		c_{j} KMIO ₄	uj K2M104
211. The m. p. and b. p.		a) Va	d)
a) He	b) Ne	c) Xe	d) Ar
	e type $2X_2 + S \rightarrow SX_4$, is shown		
a) Fluorine or chlo		b) Chlorine only	
c) Chlorine and br	-	d) F, Cl, Br, all	
	and iodine are placed in the s	eventh group of the per	riodic table because:
a) They are non-m			
b) They are electro	0		
	electrons in the outermost sh	ells of their atoms	
1) ml	ally univalent		
d) They are genera			
	r diluted or concentrated:		
	r diluted or concentrated:		
214. Nitric acid whethe	r diluted or concentrated: to give H_2		
214. Nitric acid whethe a) Reacts with Al t	r diluted or concentrated: to give H_2 to give NO_2		
214. Nitric acid whethe a) Reacts with Al t b) Reacts with Al t	The diluted or concentrated: to give H_2 to give NO_2 to give NH_4NO_3		
214. Nitric acid whethe a) Reacts with Al t b) Reacts with Al t c) Reacts with Al t d) Hardly affects A	The diluted or concentrated: to give H_2 to give NO_2 to give NH_4NO_3		

216 The number of a cleature in burning store is		
216. The number of <i>p</i> -electrons in bromine atom is:	-) 1	4) 10
a) 17 b) 7	c) 15	d) 12
217. Which species has the largest dipole moment?		
a) NH_3 b) PH_3	c) AsH ₃	d) SbH ₃
218. A gas reacts with CaO, but not with NaHCO ₃ . The g		
a) CO_2 b) Cl_2	c) N ₂	d) O ₂
219. Nitrogen can be purified from the impurities of ox	ides of nitrogen and amm	onia by passing through:
a) conc. HCl		
b) Alkaline solution of pyrogallol		
c) A solution of $K_2Cr_2O_7$ acidified with H_2SO_4		
d) A solution of KOH (<i>aq.</i>)		
220. Which statement is correct?		
a) Noble gases are not found in nature		
b) Some compounds of noble gas elements are kn	own	
c) Atmospheric air is free from noble gases		
d) None of the above		
221. Calcium phosphide is:		A Y
a) Ca_3P b) Ca_3P_2	c) Ca ₂ P ₃	d) CaP_2
222. Which of the following inert gas liquefies easily?		
a) He b) Kr	c) Ne	d) Ar
223. Compounds containing coordinate bonds is:		
a) 0_3 b) SO_3	c) H ₂ SO ₄	d) All of these
224. When Cl_2 water is added to an aqueous solution	n of potassium halide in p	presence of chloroform a violet
colour is obtained. On adding more of Cl_2 water,	the violet colour disappe	ars and a colourless solution is
obtained. This test confirms the presence of the fo	ollowing in aqueous soluti	on:
a) Iodide b) Bromide	c) Chloride	d) Iodide and bromide
225. Which forms strong $p\pi - p\pi$ bonds?	<i>v</i>	
a) N b) As	c) P	d) Bi
226. In OF ₂ molecule, the total number of bond pairs a	nd lone pairs of electrons	present respectively are:
a) 2, 6		
b) 2, 8		
c) 2, 10		
d) 2, 9		
227. Nitric acid may be kept in a bottle of:		
a) Ag b) Sn	c) Pb	d) Al
228. The vapour density of NH_4Cl is almost half the exp	pected value because it:	
a) Is salt of a strong acid		
b) Sublimes on heating		
c) Dissociates completely		
d) None of the above		
229. The least stable hydride of 15th group elements is	5	
a) NH_3 b) PH_3	c) AsH ₃	d) BiH ₃
230. Which of the light effective in the formation of chl	orophyll?	
a) Sodium lamp b) Neon lamp	c) Mercury lamp	d) Argon lamp
231. Which of the following is an explosive compound?	2	
a) XeOF ₄ b) XeOF ₂	c) XeF ₂	d) XeO ₃
232. The most abundant element in the earth crust is		
a) 0 b) Si	c) H	d) C
233. Blasting of TNT is done by mixing it with:		
a) NH_4Cl b) NH_4NO_3		
6) 1114103	c) NH ₄ NO ₂	d) $(NH_4)_2SO_4$

234. Man dies, when nitrous oxide i	s inhaled in large quar	ntities because it:	
a) Is poisonous			
b) Causes laughing hysteria			
c) Decomposes haemoglobin			
d) Reacts with organic tissues			
235. The chemical used for cooling	in refrigerator is		
_	IH₄OH	c) liquid NH ₃	d) CO_2
236. SO_2 can act as strong oxidizing	-		_
	asic medium	c) Neutral medium	d) None of these
237. Nitrogen gas is absorbed by:		2	
	alcium carbide	c) Ferrous sulphate	d) Calcium hydroxide
238. The reaction $3ClO^{-}(aq.) \rightarrow Cl$, ,	
a) Oxidation reaction	5		
b) Reduction reaction			
c) Disproportionation reaction	1		
d) Decomposition reaction			
239 liberates oxygen from wate	r.	Ć	>
a) P b) N		c) F_2	d) I ₂
240. The hydroxide of which metal			<i>, , , , , , , , , ,</i>
a) Cr b) C		c) Fe	d) Bi
241. The formation of O_2^+ [PtF6] ⁻ is			
a) O_2 and Xe have comparable			
b) Both O ₂ and Xe are gases			
c) O_2 and Xe have comparable	ionisation energies 🗸		
d) Both a and c		$\mathbf{\nabla}$	
242. In nitrogen family the H $-M$ -	H bond angle in the h	ydrides <i>M</i> H ₃ gradually bec	comes closer to 90° on going
from N to Sb. This shows that g		50 0	6 6
a) The basic strength of the hy			
b) Almost pure <i>p</i> -orbitals are u		5	
c) The bond energies of <i>M</i> —H			
d) The bond pairs of electrons		from the central atom	
243. Sequence of acidic character is			
a) $SO_2 > CO_2 > CO > N_2O_5$	Y		
b) $SO_2 > N_2O_5 > CO > CO_2$	*		
c) $N_2O_5 > SO_2 > CO > CO_2$			
d) $N_2O_5 > SO_2 > CO_2 > CO$			
244. Phosphorus is manufactured b	y heating in a furn	ace.	
a) Bone-ash, sodium chloride a			
b) Bone-ash, silica and coke			
c) Bone-ash, silica and lime			
d) Bone-ash, coke and limestor	ne		
245. Which oxide of nitrogen is colo	oured gas?		
a) N_2O b) N	102	c) N ₂ O ₅	d) NO
246. In KI solution, I_2 readily dissol	ves and forms		
a) I ⁻ b) K	I_2^-	c) KI ₃	d) KI ₂
247. Consider the following compo	unds		
Sulphur dioxide			
Hydrogen peroxide			
Ozone			
Among these compounds iden	tify those that can act	as bleaching agent.	
	and 3	c) 1 and 2	d) 1,2 and 3

248. Different allotropic			
	forms of sulphur differ in:		
a) Crystalline struc		c) Chemical properties	d) Chemical structure
249. Monoatomic eleme	e e		
a) Bismuth	b) Phosphorus	c) Antimony	d) None of these
250. Which noble gas wa	as first of all detected in solar c	hromosphere?	
a) Helium	b) Neon	c) Argon	d) Krypton
251. The acid used in lea	id storage battery is:		
a) Nitric acid	b) Sulphuric acid	c) Hydrochloric acid	d) Phosphoric acid
252. Halogen used in the	e preparation of insecticides is:	:	
a) I ₂	b) Cl ₂	c) Br ₂	d) F ₂
253. Which halogen acid	l is a liquid?		
a) HF	b) HCl	c) HBr	d) HI
254. Halon-1301 is			
a) $CCl_2F \cdot CClF_2$	b) $C_2F_4Br_2$	c) CCl ₃ F	d) CF ₃ Br
255. Skin turns yellow in	n contact with conc. HNO ₃ , beca	ause:	
a) Proteins are con	verted into xanthoproteins		\mathbf{v}
b) Water is remove	d by the acid	C	
c) Skin gets burnt			
d) Nitrocellulose is	formed		
256. The pair of species	having identical shape for mole	ecules of both species is	
a) XeF_2 , IF_2^-	b) BF_3 , NH_3	c) CF_4 , SF_4	d) PCl ₅ , ICl ₅
	ving pairs are correctly matche		
1.haber process		Manufacture of ammon	ia
2.le-blanc process		Manufacture of sulphur	
3.birkeland -Eyed	process	Manufacture of nitric a	
4. solvay process		Manufacture of sodium	carbonate
Select the correct a	nswer using the codes given be	elow	
a) 2,3 and 4	b) 1,2,3,and 4	c) 1,2and 4	d) 1,3and 4
	es not possess distorted geome	etry?	
a) Cl—F	b) IF ₃	c) IF ₅	d) IF ₇
259. Iodine displaces ch	lorine from which one of the co	ompounds?	
a) KCl	b) CaCl ₂	c) CCl ₄	d) KClO ₃
260. Which member of o	oxygen family has the highest c	atenation ability?	
a) Oxygen	b) Sulphur	c) Selenium	d) Tellurium
261. When heated NH_3 i	c passed over CuO gas evolved	ia	
	s passed over cuo gas evolved	15	
a) N ₂	b) N ₂ O	c) HNO ₃	d) NO ₂
		c) HNO ₃	d) NO ₂
	b) N ₂ O	c) HNO ₃	d) NO2 d) Rn
262. The noble gas used	b) N ₂ O in the preparation of first nob b) He	c) HNO₃ le gas compound was:	-
262. The noble gas used a) Xe	b) N ₂ O in the preparation of first nob b) He ively as a:	c) HNO₃ le gas compound was:	-
262. The noble gas used a) Xe 263. P_2O_5 is used extens	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent	c) HNO3 le gas compound was: c) Cr	d) Rn
262. The noble gas used a) Xe 263. P_2O_5 is used extens a) Dehydrating age	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent	c) HNO3 le gas compound was: c) Cr	d) Rn
262. The noble gas used a) Xe 263. P_2O_5 is used extens a) Dehydrating age 264. Oxygen differs from	b) N ₂ O in the preparation of first nobl b) He vively as a: nt b) Catalytic agent n sulphur in:	c) HNO3 le gas compound was: c) Cr	d) Rn
262. The noble gas used a) Xe 263. P_2O_5 is used extens a) Dehydrating age 264. Oxygen differs from a) Allotropy b) Formation of ior	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent n sulphur in:	c) HNO3 le gas compound was: c) Cr	d) Rn
262. The noble gas used a) Xe 263. P_2O_5 is used extens a) Dehydrating age 264. Oxygen differs from a) Allotropy b) Formation of ior c) Number of electro	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent n sulphur in: ns	c) HNO3 le gas compound was: c) Cr	d) Rn
262. The noble gas used a) Xe 263. P_2O_5 is used extens a) Dehydrating age 264. Oxygen differs from a) Allotropy b) Formation of ion c) Number of electric d) Nature of hydrid	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent n sulphur in: ns rons in the outermost orbit les	 c) HNO₃ le gas compound was: c) Cr c) Reducing agent 	d) Rn d) Preservative
 262. The noble gas used a) Xe 263. P₂O₅ is used extens a) Dehydrating age 264. Oxygen differs from a) Allotropy b) Formation of ion c) Number of electricity d) Nature of hydrid 265. Which of the follow 	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent n sulphur in: ns rons in the outermost orbit les ring salt would give SO ₂ with ho	 c) HNO₃ le gas compound was: c) Cr c) Reducing agent ot and dil.H₂SO₄ and also decomposition 	d) Rn d) Preservative colourises Br2 water?
 262. The noble gas used a) Xe 263. P₂O₅ is used extensional pehydrating age 264. Oxygen differs from a) Allotropy b) Formation of ion c) Number of electrical Nature of hydrid 265. Which of the follow a) Na₂ SO₃ 	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent n sulphur in: ns rons in the outermost orbit les ring salt would give SO ₂ with ho b) NaHSO ₄	 c) HNO₃ le gas compound was: c) Cr c) Reducing agent ot and dil.H₂SO₄ and also dec c) Na₂ SO₄ 	d) Rn d) Preservative
 262. The noble gas used a) Xe 263. P₂O₅ is used extensions a) Dehydrating age 264. Oxygen differs from a) Allotropy b) Formation of ion c) Number of electricity d) Nature of hydrid 265. Which of the follow a) Na₂ SO₃ 266. On heating ammon 	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent n sulphur in: ns rons in the outermost orbit les ring salt would give SO ₂ with ho b) NaHSO ₄ ium dichromate, the gas evolve	 c) HNO₃ le gas compound was: c) Cr c) Reducing agent ot and dil.H₂SO₄ and also dec c) Na₂ SO₄ ed is: 	d) Rn d) Preservative solourises Br ₂ water? d) Na ₂ S
 262. The noble gas used a) Xe 263. P₂O₅ is used extensional pehydrating age 264. Oxygen differs from a) Allotropy b) Formation of ion c) Number of electrical period 265. Which of the follow a) Na₂ SO₃ 266. On heating ammonial Oxygen 	b) N ₂ O in the preparation of first nob b) He ively as a: nt b) Catalytic agent n sulphur in: ns rons in the outermost orbit les ring salt would give SO ₂ with ho b) NaHSO ₄	 c) HNO₃ le gas compound was: c) Cr c) Reducing agent ot and dil.H ₂ SO ₄ and also dec c) Na₂ SO₄ ed is: c) Nitrogen 	d) Rn d) Preservative solourises Br2 water?


b) NH ₂ CONH ₂			
c) $(NH_4)_2SO_4$			
d) Superphosphate			1 .
	ng maximum coordination חעד אס גע		
a) Cl	b) Br	c) F	d) I
	lecule whereas NCl ₃ is pyram		
	pair of electrons but NCl ₃ has ore polar than N—Cl bond	s a folle pair of electrolis	
	smaller than boron atom		\frown
	ore covalent than B—Cl bond		
270. The bond angle in C			
a) 180°	b) 105°	c) 90°	d) 111°
-	tement. Halogens are all color	,	
_	_		e excitation of outer electrons
to higher energy	levels	_	
b) The small F ₂ mol	lecules absorb high energy vio	olet radiation and appear ye	ellow
c) Large I ₂ molecul	e absorb low energy yellow a	nd green radiations and app	bear violet in colour
d) The excitation en	nergy required by the small fl	uorine atoms is smaller tha	n required by the large iodine
atom			•
	be used to prepare phosphor	ric acid?	
a) $P_2O_3 + H_2O \xrightarrow{20^{\circ}C}$	b) $P_2O_3 + H_2O \xrightarrow{80^{\circ}C}$	c) $P_2O_3 + H_2O \xrightarrow{25^{\circ}C}$	d) P + conc. HNO ₃ \rightarrow
273. Which gas is filled i	n electric bulbs/tubes?		
a) 0 ₂	b) N ₂	c) Ar	d) He
274. Iodine is formed wh	nen potassium iodide reacts w		
a) ZnSO4	b) CuSO ₄	c) $(NH_4)_2SO_4$	d) Na_2SO_4
	tances in H ₂ and Cl ₂ molecule	es are 74 and 198 pm respe	ctively. The bond length of HCl
is:			N 2 4 2
a) 272 pm	b) 136 pm	c) 124 pm	d) 248 pm
	dness in an atmosphere of N ₂	-	
	b) H ₂ n of bleaching powder is due	c) N ₂	d) 0 ₂
a) Nascent hydroge		c) Nascent chlorine	d) None of these
, , ,	of O_2 from KClO ₃ , MnO ₂ acts a		uj None or these
a) Activator	b) Catalyst	c) Oxidizing agent	d) Dehydrating agent
	s highest and least polarisabil		a) 2 only aracing agoint
a) He, Xe	b) Ne, Kr	c) Kr, Ne	d) Xe, He
280. Nitrolim, a nitrogen			
a) Ca_3H_2	b) Ca(CN) ₂	c) CaCN ₂	d) $CaCN_2 + C$
281. H ₂ S cannot be dried	l by passing over conc. H_2SO_4	because:	
a) The acid oxidises	; it		
	es with H ₂ S to form a salt		
c) Both form compl			
\mathcal{J} d) It dissolves in the			
282. The chemical name			
a) Calcium chloro h			
b) Calcium hypochl			
c) Calcium chlorate			
d) Calcium perchlor		aroun hudridaa	
	ome statements related to VA y Increases from NH ₃ to BiH ₃	group nyunues	
i. Actualing propert	y mercases nom ivits to DIII3		

II. Tandanguta danata lana nain dagmagaga fuan l			
II. Tendency to donate lone pair decreases from I			
III. Thermal stability of hydrides decreases from NH_3 to BiH_3			
IV. Bond angle of hydrides decreases from NH ₃ to The correct statements are	0 01113		
a) I, II, III and IV b) I, III and IV	c) I, II, IV	d) I and IV	
284. The deficiency of iodine in diet causes	CJ 1, 11, 1V		
a) Rickets b) Night blindness	c) Beri –beri	d) Goitre	
285. The number of $P - O - P$ bonds in cyclic metaph		uj doltre	
a) Zero b) Three	c) Two	d) Four	
286. Which noble gas is more soluble in water?	cj 100		
a) He b) Ar	c) Ne	d) Xe	
287. An important method of fixation of atmospheric			
a) Fischer-Tropsch's process			
b) Haber's process			
c) Frasch's process			
d) Solvay's process			
288. Which statement about noble gases is not correc	t?	C	
a) Xe forms XeF ₆	4	\mathbf{O}	
b) Ar is used in electric bulbs			
c) Kr is obtained during radioactive disintegratio	on	×	
d) He has the lowest b. p. among all the noble gas	ses		
289. Noble gases are group of elements which exhibit	very		
a) High chemical activity	b) Much paramagne	etic properties	
c) Minimum electronegativity	d) Low chemical act	tivity	
290. On passing H_2S through acidified FeCl ₃ solution,	FeCl ₃ is converted into:		
a) FeCl_2 b) $\operatorname{Fe}_2(\operatorname{SO}_4)_3$	c) FeS	d) FeSO ₄	
^{291.} HPO ₃ + H ₂ O $\xrightarrow{\text{Heat}}$? The product is:			
a) $H_4P_2O_7$ b) H_3PO_3	c) H ₃ PO ₄	d) P_2O_5	
292. Ozone reacts with:			
a) C_2H_4 b) C_2H_2	c) C ₆ H ₆	d) All of these	
293. The inert gas abundantly found in atmosphere is	5		
a) Xe b) Kr	c) He	d) Ar	
294. When SO_2 gas is passed through cupric chloride	solution:		
a) The solution becomes colourless			
b) A white precipitate is formed			
c) No change takes place			
d) Solution becomes colourless and a white prec	-		
295. The reaction of chlorine with CO in the presence			
a) $COCl_2$ b) CO_2Cl_2	c) HOCl	d) $H_2Cl_2O_2$	
296. The mixture of noble gases is separated by:			
a) Ramsay-Rayleigh's first method			
b) Ramsay-Rayleigh's second method			
 C) Fischer and Ringe's method Devuer's account shorecal adcountion method 			
d) Dewar's coconut charcoal adsorption method	oaso in molocular woigh	t it is because.	
297. The boiling points of halogens increase with incra) As the size increases molecules undergo association	-		
b) Bond strength increases due to increase in ele		Stability	
c) Van der Waals' forces increase with increase i		er mole	
d) None of the above	in manufer of cicculous pe		
$298. \text{ NCl}_3 \text{ on hydrolysis yields:}$			
- 3 - 9 - 9 9			

a) N_2 and NOCl b) NO and HCl	c) NH_3 and HOCl	d) N_2O and NH_3
299. The strongest oxidizing agent is:	ej mili una no en	
a) H_3PO_4 b) HNO_3	c) H ₃ PO ₃	d) HNO ₂
300. Increasing order of acid strengths of hydrogen hali		, <u>2</u>
a) HF < HCl < HBr < HI		
b) HCl < HI < HBr < HF		
c) HCl < HBr < HI < HF		
d) None of these		
301. Noble gases are sparingly soluble in water due to		
a) Dipole-dipole interaction	b) Dipole-induced dipo	le interaction
c) Induced dipole-induced dipole interaction	d) Hydrogen bonding	
302. Oxidation state exhibited by sulphur		
a) +6 b) +4	c) 0	d) All of these
303. Low volatile nature of H_2SO_4 is due to:		
a) Hydrogen bonding b) Van der Waals' forces		d) None of these
304. When Na_2S is added to sodium nitroprusside solut	ion:	
a) Beautiful violet colour is produced		*
b) A complex $[Fe(CN)_5NOS]^{4-}$ is formed		5
c) The complex Na_4 [Fe(CN) ₅ NOS] is formed		
d) All of the above		
305. The reaction,		
$2SO_2 + O_2 + 2H_2O \longrightarrow 2H_2SO_4$		
is an example of :		
a) Synthesis of H_2SO_4	$\langle \cdot \rangle$	
b) Analysis of H_2SO_4		
c) Displacement reaction d) Double decomposition		
306. The gases absorbed by alkaline pyrogallol and oil o	f turnentine respectively :	270.
a) O_3 , CH_4 b) O_2 , O_3	c) SO_2 , CH_4	d) $N_2 0, 0_3$
307. Ozone turns tetramethyl base paper:	c) 50 ₂ , cm ₄	u) N ₂ 0, 0 ₃
a) Green b) Violet	c) Red	d) Black
308. A student accidently splashes few drops of conc H_2	,	-
blacken and holes appear. This is happened becaus		
a) Dehydrates the cotton with burning	b) Causes the cotton re	act with air
c) Heats up the cotton	•	nts of water from cotton
309. Aquaregia is a mixture of:	-	
a) $3HCl + HNO_3$ b) $3HNO_3 + HCl$	c) $H_3PO_4 + H_2SO_4$	d) HCl + CH ₃ COOH
310. The bond angle in H_2S is:		
a) 109°28' b) 104°51'	c) 120°	d) 92.5°
311. In the manufacture of sulphuric acid by contact pro	cess, tyndall box is used t	0
a) Filter dust particles	b) Remove impurities	
c) Convert SO_2 to SO_3	d) Test the presence of	dust particles
312. The oxide insoluble in water is:		
a) TeO_2 b) SO_2	c) PoO ₂	d) SeO_2
313. Which indicates the common laboratory method fo	r the preparation of chlor	ine?
a) $4HCl + 0_2 \rightarrow 2H_2O + 2Cl_2$		
b) $2\text{NaCl} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2 + \text{Cl}_2$		
c) $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl + 2H_2O$		
d) $2Mg_2OCl_2 + O_2 \rightarrow 4MgO + 2Cl_2$		
314. The geometry of XeF_6 is		

a) Tetrahedral		b) Pentagonal bipyrami	dal
c) Octahedral		d) Square planar	
315. Chlorine acts as a b	leaching agent only is pres	sence of	
a) Dry air	b) Moisture	c) Sunlight	d) Pure oxygen
316. Which one of the fo	llowing pentafluorides car	nnot be formed?	
a) PF5	b) AsF5	c) SbF₅	d) BiF₅
317. SO ₂ oxidises:			
a) Mg	b) $K_2 Cr_2 O_7$	c) KMnO ₄	d) All of these
318. Which of the follow	ing has highest proton affi	inity?	
a) NH ₃	b) PH ₃	c) H ₂ O	d) H ₂ S
319. Nuclear fusion proc	luces:		
a) Argon	b) Deuterium	c) Helium	d) Krypton
320. Concentrated hydro	ochloric acid when kept in	open air sometimes produces a	cloud of white fumes. The
explanation for it is	that		
a) Concentrated hy	drochloric acid emits stroi	ngly smelling HCl gas all the time	e
		as to form a cloud of chlorine ga	
c) Strong affinity of	HCl gas for moisture in ai	r results in forming of droplets o	of liquid solution which
appears like a clo	oudy smoke.		>
d) Due to strong aff	inity for water, concentrat	ed hydrochloric acid pulls moist	ture of air towards itself. This
moisture forms o	lroplets of water and henc	e the cloud.	
321. In the dewar's meth	od of separation of noble	gases, the mixture of noble gase	s is kept in contact with
coconut charcoal at	173 k. Which one of the f	ollowing gaseous mixtures is no	t adsorbed on to the
charcoal?			
a) Ar, Kr	b) Xe, Ar	c) He, Ne	d) Xe, Kr
322. The type of hybrid	orbitals used by chlorine a		
a) <i>sp</i>	b) <i>sp</i> ²	c) sp^3	d) None of these
323. The oxidation state	of N is highest in:		
a) N ₃ H			
b) NH ₃		~	
c) N ₂ H ₄			
d) NH ₂ OH			
324. Formula of rhombio	: Sulphur is:		
a) S ₂	b) S	c) S ₄	d) S ₈
325. The noble gases are	unreactive because they:		
a) Have the same n	umber of electrons		
b) Have an atomicit	y of one		
c) Are gases with lo	w densities		
d) Have stable elect	ronic configuration or clo	sed valency shell	
326. Phosphine reacts w	ith copper sulphate soluti	on to form:	
a) Copper	b) Copper phosphi	de c) Copper phosphate	d) Copper phosphite
327. Desicchlora is			
a) Anhydrous Ba(C	$ 0_4)_2$	b) Anhydrous CaCl ₂	
c) Anhydrous Mg(C	$10_{4})_{2}$	d) Conc H_2SO_4	
328. Who among the foll	owing first prepared a sta	ble compound of noble gas?	
a) Neil Bartlett	b) Reyleigh	c) Ramsay	d) Rutherford
329. On exposure to ligh	t electrical conductivity of	selenium:	
a) Increases			
b) Decreases			
c) Remains same			
d) First decreases t	nen increases		

330. For H₃PO₃ and H₃PO₄ the correct choice is a) H₃PO₃ is dibasic and reducing b) H₃PO₃ is dibasic and non-reducing c) H₃PO₃ is tribasic and reducing d) H₃PO₃ is tribasic and non reducing 331. When chlorine reacts with dil. NaOH under cold conditions, the oxidation state of chlorine changes from zero to a) -1 and +5 b) +1 and +4c) +5 and +3d) -1 and +1 332. Yellow ammonium sulphide is: a) $(NH_4)_2S$ b) $(NH_4)_2 S_x$ c) $(NH_4)_2S_8$ d) $(NH_4)_2S_4$ 333. Sulphuric acid is used: a) In lead storage batteries b) As a dehydrating agent c) In making fertilizers d) All of the above 334. Hydrolysis of NCl₃ gives NH₃ and X which of the following is X? c) HOCl d) HClO₂ a) HClO₄ b) HClO₃ 335. How many lone pairs are associated with xenon atom in XeF_2 , SeF_4 and XeF_6 respectively? d) 4, 3 and 2 a) 1, 2 and 3 b) 2, 3 and 1 c) 3, 2 and 1 336. Nitrous oxide a) Is an acidic oxide b) Is a mixed oxide c) Support the combustion of sulphur d) Highly soluble in hot water 337. The number of unpaired electrons in the *p*-subshell of oxygen atom is c) 3 d) 4 a) 1 b) 2 338. $(NH_4)_2Cr_2O_7$ on heating liberates a gas. The same gas will be obtained by b) Heating NH₄NO₂ a) Heating NH₄NO₃ c) Treating H_2O_2 with NaNO₂ d) Treating Mg_3N_2 with H_2O 339. Fluorapatite is a mineral of: a) F_2 b) Br_2 c) P d) As 340. Least malleable and ductile metal is: a) Au b) Ag c) Ni d) Bi 341. Which of the following is not correct? $3O_2$ Silent electric 2O discharge a) $\Delta H = -284.5 KJ$ b) Ozone undergoes addition reaction with unsaturated carbon compounds c) Sodium thiosulphate reacts with I₂ to form sodium tetrathionate and sodium iodide. d) Ozone oxidises lead sulphide to lead sulphate 342. Laughing gas is prepared by heating a) NH₄Cl c) $NH_4Cl + NaNO_3$ d) $(NH_4)_2SO_4$ b) NH_4NO_3 343. A certain element forms a solid oxide which when dissolved in water forms an acidic solution. The element is: a) Neon b) Sodium c) Phosphorus d) sulphur 344. NO₂ cannot be obtained by heating : a) KNO₃ b) $Pb(NO_3)_2$ c) $Cu(NO_3)_2$ d) AgNO₃ 345. The product obtained by heating $(NH_4)_2SO_4$ and KCNO is a) Ammonia b) Ammonium cyanide c) Urea d) Hydrocyanic acid 346. The silver halide, which is least soluble in NH_4OH , is: a) AgF b) AgCl d) AgI c) AgBr 347. Fermings salt is c) NOCl d) $KClO_3$ a) HF b) KHF₂ 348. H₃PO₃ is

2
.
2
2
Ĵ
ž
Ç
9
ised in
m
y CN⁻

382 CAN nellets are coa	ted with calcium silicate beca	אוונסי	
a) CAN is explosive			d) None of these
383. Yellow phosphorus			· , · · · · · · · · · · · · · · · · · ·
a) Water	b) Ether	c) Alcohol	d) Kerosene
	ll non-metals directly except:	-	
a) N_2	b) P	c) Xe	d) Kr
	llowing has lowest bond diss	ociation energy?	-
a) Cl —Cl	b) F —F	c) Br —Br	d) I —I
386. Ozone reacts with n	noist iodine giving:		
a) HIO ₃	b) I ₄ O ₉	c) IO ₅	d) I ₂ O ₅
387. On heating sodium	as well as sulphur can be me	lted. Molten sodium and molte	en sulphur are used as:
a) Medium for extra	acting metals		
b) Catalysts			
c) Metal refiners			
d) Electrodes in bat	teries		
	by HNO ₃ does not depend of	n:	X
a) Nature of metal	b) Conc. of HNO ₃	c) Temperature	d) Catalyst
=	_	ores, the particles of ore float	because
	not easily wetted by water	b) They are light	
c) They are insolub		d) They bear electrostati	c charge
390. XeF ₆ on complete h			
a) XeO ₃	b) XeO	c) XeO ₂	d) Xe
	nbers are collectively known		
a) Inert gases	b) Rare gases	c) Noble gases	d) All of these
	r of electrons are present on		
a) 1	b) 2	c) 3	d) 4
393. Hypophosphorous			
a) A monobasic acio		c) A Dibasic acid	d) Not acidic at all
=	ntial of X^- ion is equal to:		
a) The electron affin			
b) The electronegat			
c) The ionization po d) None of the abov			
-	rine is most powerful oxidizi	ng agent?	
a) Cl_2O	b) ClO_2	c) Cl_2O_6	d) Cl_2O_7
	of manufacturing of HNO ₃ ca		u) 01 ₂ 0 ₇
a) MO	b) Fe	c) Mn	d) Pt
397. In the reaction,	bjic	ej mi	ujit
$HNO_3 + P_4O_{10} \rightarrow 4$	$HPO_{a} + X$		
the product X is			
a) N_2O_3	b) N ₂ O ₅	c) NO ₂	d) H ₂ O
	, .	n of the above oxoacids results	•
a) H_3PO_2	b) H ₃ PO ₃	c) H ₃ PO ₄	d) $H_4P_2O_7$
	ing is a mixed anhydride?	0, 11, 10,	aj 1141 207
a) NO	b) NO ₂	c) N ₂ O ₅	d) N ₂ O
400. Pure N_2 can be obta	-	-,	·) - · 2 -
	azide b) NH_3 and CuO	c) Both (a) and (b)	d) None of these
		orm a compound X. The hydric	
a) sp^2	b) <i>sp</i> ³	c) <i>sp</i>	d) dsp^2
<i>,</i> ,	, 1		2
402. What happens to th	e colour of litmus naper whe	In a drop of $H_2 SU_4$ is added to	114

403. Which noble gas does not form clathrates	;?	
a) Xe b) Kr	c) He	d) Ar
404. Strongest reducing agent is:	,	,
a) H_2O b) H_2S	c) H ₂ Se	d) H ₂ Te
405. Most abundant element in earth's crust is		, ,
a) O b) Se	c) S	d) Te
406. Which reaction yields the greatest quanti	-	-
a) Warming conc. HCl with MnO_2		5 5
b) Warming conc. HCl with PbO_2		\sim
c) Mixing conc. HCl with $KMnO_4$		\sim
d) Treating bleaching powder with HCl		
407. Superphosphate of lime is		
a) A mixture of normal calcium phosphat	e and gypsum	
b) A mixture of primary calcium phospha		
c) Normal calcium phosphate		
d) Soluble calcium phosphate		
408. In Birkeland and Eyde process, the tempe	erature of the electric arc is abou	it:
a) 1500°C b) 4000°C	c) 3000°C	d) 2000°C
409. Sulphides of which element are not precip		
a) K b) Ca	c) Al	d) All of these
410. Select the correct statement.		-,
a) Sodium metal is stored under kerosen	e	
b) One of the oxides of carbon is a basic o		
c) Metals can form only basic oxides		
d) To prevent combination of white phos	phorus with oxygen it is kept in	kerosene
411. SO ₂ is dried by:		
a) CuO b) HNO_3	c) P ₂ O ₅	d) Anhyd. CaCl ₂
412. When Zn reacts with very dilute nitric aci		
a) NO b) NH_4NO_3	c) NO ₂	d) H ₂
413. The geometry of H_2S and its dipole mome		
a) Angular and non-zero b) Angular and		d) Linear and non-zero
414. Graham's salt is:	-	-
a) Sodium aluminosilicate		
b) Sodium hexametaphosphate		
c) Ferrous ammoniumsulphate		
d) Potassium chromium sulphate		
415. Yellow oils of sulphur is/are		
a) H_2S b) H_2S_1, H_2S_3	c) H ₂ SO ₄	d) CS ₂ , NH ₂ CSNH ₂
416. In the atmosphere N_2 is present as eleme	ent with O_2 because:	
a) N_2 is more reactive		
b) N ₂ is inert		
c) N_2 does not react with O_2		
d) N ₂ is actively participating in the react	ion	
417. Percentage of argon in air is about:		
a) 10 per cent		
b) 0.1 per cent		
c) Much less than 0.1 per cent		
d) 1 per cent		
418. Select the incorrect statement among the	following	
a) O_3 is used as germicide for purification	of air.	
b) In O_3 ,0—0 bond length is identical wi	th that of molecular oxygen	

		c) O_3 molecule is angular i	•		
	110	d) O_3 is an oxidizing agent			
	419.		oured dischared tubes con		
	120	a) He	b) Ne	c) Ar	d) Kr
	420.		used for the preparation o	i the halogen acid?	
		a) $\frac{2KBr + H_2SO_4 \rightarrow K_2SO_4}{Conc.}$	J ₄ + 2ndi		
		b) $\frac{\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{NaHS}}{\text{Conc.}}$	$50_4 + nCl$		\frown
		c) NaHSO ₄ + NaCl \rightarrow Na ₂	SO + HC		
		d) $\begin{array}{c} CaF_2 + H_2SO_4 \rightarrow CaSO\\ Conc. \end{array}$	4 1 2111		
	421.	The principal source of he			
		a) Air	b) Monazite sand	c) Radium	d) All of these
	422.	Heat of vaporisation of NH		-)	
		a) Its basic nature	b) Its polar nature	c) Hydrogen bonding	d) Solubility in water
	423.	•	e element involved in phys		
		a) Fe	b) Ca	c) Na	d) I ₂
	424.	Which coagulates white of	f an egg?		2 2
		a) Orthophosphoric acid	b) Metaphosphoric acid	c) Hypophosphoric acid	d) Pyrophosphoric acid
	425.	The fluoride which does n	ot exist is:		
		a) CF ₄	b) SF ₆	c) HeF4	d) XeF ₄
	426.	The solubility of iodine in	water increases in present	ce of	
		a) Chloroform	b) Alcohol	c) Potassium iodide	d) Sodium hydroxide
	427.	Sal volatile is:	A	Y	
		a) NH ₄ Cl	b) $(NH_4)_2SO_4$	c) (NH ₄) ₂ CO ₃	d) NH ₄ NO ₃
	428.		preparation of aqua regia is		
		a) HF	b) HBr	c) HCl	d) HI
	429.		n an aqueous solution of KI		
	400	a) Dil H_2SO_4	b) I ₂	c) Cl ₂	d) SO_2
	430.			ydrides gradually becomes	closer to 90° on going from
		N to Sb. This shows that g a) The basic strength of th			
			are used for <i>M</i> —H bonding	a.	
		c) The bond energies of <i>M</i>		5	
			r of electrons show lesser r	enulsion due to decreasin	g electronegativity trend
	431	NH ₄ Cl is used to clean me		epuision due to decreasing	g cleen onegativity trend
	101.	a) It dissociates into NH_3			
		b) NH_3 forms a soluble con			
		c) NH ₄ Cl forms a volatile			
		d) None of the above			
(432.	Which reagent can separa	te nitric oxide from nitrous	s oxide?	
		a) Sodium nitroprusside s	solution		
		b) FeSO ₄ Solution			
		c) Nessler's reagent			
		d) Ammoniacal silver nitra	ate solution		
	433.	The shape and hybridisati	on of ICl ₃ is:		
		a) Triangular planar, sp^3			
		b) Pyramidal, $sp^3 d^2$			
		c) Tetrahedral, <i>sp</i> ³			

d) Bent T, $sp^3 d$			
, .	f pyrosulphuric acid is:		
a) SO_2	b) S_2O_3	c) SO ₃	d) S ₂ O ₇
	ongest oxidizing agent?	cj 503	uj 5207
a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₄
436. Which is not an o	· -		4) 110104
a) HClO	b) HClO ₂	c) HClO ₃	d) HClO ₅
,	w coloured gas is liberated on	, ,	<i>y b</i>
a) KBr + HCl	b) KI + HCl	c) MnO_2 + HCl	d) NaCl + H_2SO_4
,	oducts obtained when ammoni		
a) N_2 and NCl_3	b) N ₂ and HCl	c) N_2 and NH_4Cl	d) NCl ₃ and HCl
	noky rings when it comes in co		-
a) It is inflamma			
	ith water vapours		
c) It combines w	_		
d) It contains im	-		
-	anion of oxo-acids of chlorine i	is	
a) ClO ⁻	b) ClO_2^-	c) ClO_3^-	d) Cl0₄
•	, H_2 Se and H_2 Te, the one with		u) 0.04
a) H_2O because of			
b) H_2 Te because	-		
c) H_2 S because c	_		
d) H_2 Se because	_		
442. Non-combustible			
a) PH ₃	b) AsH ₃	c) SbH ₃	d) NH ₃
443. In H_3PO_3 :			
	n atom is attached to oxygen a	tom	
	n atoms are attached to oxyger		
	is attached to oxygen atom		
d) None of the al			
-	erhalogen compounds the max	ximum number of halogen a	toms is:
a) 4	b) 5	c) 7	d) 8
445. Which of the foll	owing is the life saving mixtur	e for an asthma patient?	-
a) Mixture of hel		b) Mixture of neon a	nd oxygen
c) Mixture of xer	non and nitrogen	d) Mixture of argon a	and oxygen
446. Which species is	not known?		
a) XeF ₆	b) XeF ₄	c) XeO ₃	d) KrF ₆
447. The reaction of t	he type $2X_2 + S \longrightarrow SX_{4}$, is show	n by sulphur when X is	
a) Fluorine or ch	lorine	b) Chlorine only	
c) Chlorine and l	promine only	d) F, Cl Br all	
448. Oxygen reacts w	ith each of the following eleme	ents readily, except:	
a) P	b) Na	c) S	d) Cl
449. Cane sugar react	s with concentrated HNO ₃ to g	give:	
a) CO_2 and H_2O	b) Oxalic acid	c) Carbonic acid	d) CO and H ₂ O
450. Phosgene is the	name of:		
a) A phosphorus	compound		
b) A phosphoniu	_		
c) Carbonyl chlo			
d) Phosphorus h	alide		
451. H_2S is not a/an			

a) Reducing agent b) Acidic	c) Oxidising agent	d) None of these
452. The idea which prompted Bartlett to pro	epare first ever compound of noble g	gas was:
a) High bond energy of Xe—F		
b) Low bond energy of F—F in F ₂		
c) Ionization energies of O_2 and xenon v	were almost similar	
d) None of the above		
453. Which of the following statements regar	ding sulphur is incorrect?	
a) SO ₂ molecule is paramagnetic.		
b) The vapour at 200°C consists mostly	of S ₈ rings.	
c) At 600 C the gas mainly consists of S_2	molecules.	
d) The oxidation state of sulphur is neve	er less than +4 in its compounds.	
454. Which of the following is a solid in natur	re?	
a) N_2O_3 b) N_2O	c) NO	d) N ₂ O ₅
455. On heating copper nitrate strongly is	finally obtained.	
a) Copper b) Copper ox	ide c) Copper nitrite	d) Copper nitride
456. Which of the following dissolves in wate	er but does not give any oxyacid solu	tion?
a) SO ₂ b) OF ₂	c) SCl ₄	d) SO ₃
457. The colour of I_2 is violet because it:		S
a) Absorbs violet light		>
b) Does not absorb light		
c) Absorbs yellow and green light		
d) None of the above		
458. Compounds formed when the noble gas	es get entrapped in the cavities of cr	ystal lattices of certain organic
and inorganic compounds are known as		
a) Interstitial compounds		
b) Clathrates		
c) Hydrates	~~ `	
d) Picrates		
459. The mineral clevite on heating gives:		
a) He b) Xe	c) Ar	d) Ra
460. Bromine can be liberated from potassiu	m bromide solution by:	
a) Iodine solution b) Chlorine w	vater c) Sodium chloride	d) Potassium iodide
461. Which element is not considered as 'cha	lcogens'?	
a) Selenium b) Oxygen	c) Sulphur	d) Polonium
462. When lead nitrate is heated it produces		
a) NO ₂ b) NO	c) N_2O_5	d) N ₂ O
463. Which is the most easily liquefiable rare	gas?	
a) Xe b) Kr	c) Ar	d) Ne
464. The outermost electronic configuration	of group 15 or VA elements is:	
a) ns^2np^1 b) ns^2np^2	c) ns^2np^3	d) ns^2np^4
465. The noble gas used in atomic reactor ,is		
a) Krypton b) Oxygen	c) Neon	d) Helium
466. Atom that requires high energy of excita	ation is:	
a) F b) Cl	c) Br	d) I
467. In modern process phosphorus is manu	factured by:	
a) Heating a mixture of phosphorite mir	ıeral with sand and coke in electric f	urnace
b) Heating calcium phosphate with coke	ć	
c) Heating bone-ash with coke		
d) Heating the phosphate mineral with s	sand	
160 Which property is most important in m	ling fluoring the strongest out dising	a halagan?

468. Which property is most important in making fluorine the strongest oxidising halogen?

a) Bond dissociation	n energy		
b) Ionisation enthal			
c) Hydration enthal			
d) Electron affinity	F 5		
-	n vapour pressure or most vol	atile or low b.p.?	
a) HCl	b) HI	c) HF	d) HBr
470. Amphoteric oxide is	5:		2
a) Sb_4O_6	b) N ₂ O ₅	c) Bi ₂ O ₃	d) Na_2O
471. Bone black is polym			
a) Phosphorus	b) Sulphur	c) Carbon	d) Nitrogen
472. In which case, the o	rder of acidic strength is not c	orrect?	
a) HI>HBr>HCl		b) HIO ₄ >HBrO ₄ >HCIO ₄	
c) HCIO ₄ >HCIO ₃ >H	ICIO ₂	d) HF>H ₂ O>NH ₃	
473. Which compound d	oes not has S—S bond?		
a) $Na_2 S_2 O_4$	b) $Na_2 S_4 O_6$	c) $Na_2 S_2 O_3$	d) Na ₂ S ₂ O ₇
474. The chamber acid c	ontains H ₂ SO ₄ .		
a) 10.20%	b) 35.45%	c) 67.80%	d) 82.90%
475. Compound of Sulph	ur used in electrical transform	ier is:	S
a) SO ₂	b) H ₂ S	c) SO_3	d) SF ₆
476. The inert gases pro	ducing maximum number of co	ompounds are	
a) He and Ne	b) Ar and Ne	c) Kr and Ne	d) Ar and Xe
477. The fertilizer name	d 'Nitrolim' is prepared by the	use of :	
a) CaO + N ₂	b) CaC + N_2	c) $CaC_2 + N$	d) $CaC_2 + N_2$
478. When KBr is treated	d with concentrated H ₂ SO ₄ rec	ldish brown gas is evolved.	The gas is
a) Bromine	•	b) HCl	
c) Mixture of bromi	ne and HBr	d) None of the above	
479. Sulphur trioxide car	n be obtained by which of the f	following reaction:	
a) S + H ₂ SO ₄ $\xrightarrow{\Delta}$	b) $H_2SO_4 + PCl_5 \xrightarrow{\Delta}$	c) CaSO ₄ + C $\xrightarrow{\Delta}$	d) $Fe_2(SO_4)_3 \xrightarrow{\Delta}{\rightarrow}$
480. The metallic form o			1 02 (0 0 4)3
a) White P		c) β-black P	d) α-black P
,	of noble gases is obtained by u		
	equivalent weight \times valency	5	
	equivalent weight/valency		
c) Atomic weight =			
	ar weight = atomic weight		
	with metals, nitrogen dioxide		
a) Dilute	b) Very dilute	c) Moderately strong	d) Concentrated
	llowing reaction of xenon com	pounds is not feasible?	
a) $XeO_3 + 6HF \rightarrow X$			
	\rightarrow 2Xe + XeO ₃ + 12HF + 1.5O ₂		
c) $2XeF_2 + 2H_2O - DVR = 0$			
d) $XeF_6 + RbF \rightarrow Rl$			
484. Fixation of nitrogen			
a) Reaction of nitro	• ••	·· 1	
	e atmospheric nitrogen into n	• ·	
, ,	f nitrogeneous compounds to		
-	nitrifying bacteria on nitrogen	-	
	e is reacted with two moles of		i ne products formed are KF,
	blar ratio of KF, H_2O and O_2 results $O_2 = 1 + O_2$		J) 2 . 1 2
a) 1 : 1 : 2	b) 2 : 1 : 0.5	c) 1 : 2 : 1	d) 2 : 1 : 2

-	
c) CaNCN	d) KNO ₃
m air, the nitrogen of the a	ir is finally converted into
c) NaNO ₃ Only	d) NaNO ₂ and NaNO ₃
c) Agriculture	d) metallurgy
	$\langle \cdot \rangle$
c) NH ₄ NO ₃	d) All of these
Ć	>
c) Rhenium	d) Rhodium
ion giving blackish brown	colour is:
	d) NO
	2
c) NO ₂	d) $N_2 O_5$
	5 2 5
c) PH2	d) P_2O_5
	5 2 5
c) SbF=	d) PF ₅
5 0	
-	d) Xe
-	2
	d) 1000
	a) 1000
c) H ₂ PO	d) H_3PO_3
cj 1131 04	
c) Bra	d) I ₂
റിറിം	d) N ₂
promoto is trooted with on	overes of dilute pitric acid?
xide to form a narate which	i can used in in eworks and
a) I. NalO	
, _ ,	d) Cl_2 , Na ClO_3
n is converted into inorgan	ic nitrogen
	_
c) Ammonia ?	d) Elements of nitrogen
	c) Agriculture

a) CNO ⁻ b) <i>R</i> COO ⁻	c) OCN ⁻	d) NNN ⁻
507. Dilute HNO_3 reacts with limestone to yield:		
a) $Ca(OH)_2 \cdot Ca(NO_3)_2$ b) $CaO \cdot Ca(NO_3)_2$	c) 2CaO· Ca $(NO_3)_2$	d) None of the above
508. Sulphur is soluble in:		
a) Water b) Dilute HCl	c) Ether	d) CS ₂
509. Which of the following is formed by xenon?		
a) XeF ₇ b) XeF ₄	c) XeF ₅	d) XeF ₃
510. The oxide which is solid at room temperature is:		
a) $N_2 O$ b) NO	c) N_2O_4	d) N_2O_5
511. Which hydride possesses the maximum complex		
a) NH ₃ b) PH ₃	c) BiH ₃	d) SbH ₃
512. Bad conductor of electricity is:	-)3	
a) H_2F_2 b) HCl	c) HBr	d) HI
513. The van der Waals' forces in halogens decrease in	•	
_		d) $Cl_2 > Br_2 > I_2 > F_2$
a) $F_2 > Cl_2 > Br_2 > I_2$ b) $I_2 > Br_2 > Cl_2 > F_2$ 514. The word argon means:	$_{2}$ C_{1} D_{12} $/$ C_{12} $/$ P_{2} $/$ P_{2}	$u_1 C_1 = D_1 = D_1 = D_2 = D_2 = D_2$
_	c) Strongs	d) Lanu
a) Noble b) Now	c) Strange	d) Lazy
515. SO_2 reacts with chlorine to form:		
a) Sulphur monochloride		
b) Sulphur dichloride		
c) Sulphuryl chloride		
d) Sulphur trichloride		
516. Which hydride does not exist?		
a) SbH ₃ b) AsH ₃	c) PH5	d) N_2H_4
517. Ozone is formed by the interaction of water with		
a) Chloride b) Chlorine	c) Fluorine	d) Fluoride
518. PCl ₅ exists but NCl ₅ does not because:		
a) Nitrogen has no vacant 'd'orbitals		
b) Lower tendency of H-bond formation in P than	n N	
c) Lower electronegativity of P than N		
d) Occurrence of P in solid state while N ₂ in gase	ous state at room temperat	ure
519. Which reaction is not valid?	-	
a) $HCl + F_2 \rightarrow HF + Cl_2$	b) HF + $Cl_2 \rightarrow F_2 + HC$	l
c) $Zn + HCl \rightarrow ZnCl_2 + H_2$	d) Al + HCl \rightarrow AlCl ₃ +	
520. Arrange the acids (I) H_2SO_3 , (II) H_3PO_3 , and (III)	-	
a) $I > III > II$ b) $I > II > III$	c) III > I > II	d) II > III > I
521. With excess of chlorine, ammonia forms:		
a) NCl_3 b) $NOCl_2$	c) N ₂	d) NH₄Cl
522. Oxalic acid when heated with conc H_2SO_4 , gives (uj Mii4ei
		d) Ovalia aulphata
a) CO and CO ₂ b) CO ₂ and H ₂ S	c) H_2O and CO_2	d) Oxalic sulphate
523. The anhydride of hypochlorous acid is:		
a) ClO_3 b) ClO_2	c) Cl_2O_5	d) Cl_2O
524. On bubbling F_2 in 2% solution of NaOH, the prod		
a) OF ₂ b) NaF	c) H ₂ 0	d) All of these
525. I_2 dissolves in KI solution due to the formation of	f	
a) KI_2 and I^- b) K^+ , I^- and I_2	c) I ₃	d) None of these
526. The correct order of boiling points of the hydride	es of nitrogen family is	
a) NH ₃ >PH ₃ >AsH ₃ >SbH ₃	b) PH ₃ <ash<sub>3< NH₃<</ash<sub>	SbH ₃
		hH ₂
c) $NH_3 < PH_3 < SbH_3 < AsH_3$	d) NH ₃ <ph<sub>3<ash<sub>3<s< td=""><td>0113</td></s<></ash<sub></ph<sub>	0113
c) $NH_3 < PH_3 < SbH_3 < AsH_3$ 527. In which process sulphur is not used?	a) $NH_3 < PH_3 < ASH_3 < S$	0113

b) Manufacture of c) Manufacture of			
d) Vulcanization of			
=	clevite is heated, it give off th	e inert gas	
a) Helium	b) Xenon	c) Radon	d) Argon
529. In NH_3 and PH_3 , the second secon	-	0) 1144011	
a) Basic nature	b) Odour	c) Combustibility	d) None of these
530. Oxygen is not read	•	, , , , , , , , , , , , , , , , , , ,	
a) P	b) Cl	c) Na	d) S
	among the following is	,	
a) Cl_2O_5	b) Cl ₂ O	c) Cl ₂ O ₃	d) Cl_2O_7
-	e highest bond energy?	-	
a) 0—0	b) S—S	c) Se—Se	d) Te—Te
533. KMnO ₄ is prepare	d by:		
a) Passing Cl ₂ thre	ough K ₂ MnO ₄ solution		
b) Passing O ₂ thro	ough K ₂ MnO ₄ solution		
c) Reaction of KO	H with KMnO ₄		
d) Fusing KON wit	th MnO ₂		5
534. Bromine is prepar	red in the laboratory by heatir	ng a mixture of:	
a) MgBr + H_2SO_4	b) MgBr ₂ + Cl_2	c) KBr + MnO_2 + H_2S	O_4 d) KBr + HCl
535. I ₂ on rubbing with	n liquor NH ₃ forms with explo	sion:	
a) NH ₄ I	b) N ₂	c) $NH_4I + N_2 + I_2$	d) NI ₃ NH ₂
536. When KBr is treat	ed with concentrated H_2SO_4 re	eddish brown gas evolved, g	as is
a) Mixture of bror	nine and HBr	b) HBr	
c) Bromine		d) None of the above	
537. Which of the follo	wing noble gases is most reac	tive?	
a) He	b) Ne	c) Ar	d) Xe
538. First stable compo	ound of inert gas was prepare	d by:	
a) Rayleigh and R	amsay		
b) Bartlett			
c) Frankland and	Lockyer		
d) Cavendish			
	$e(OH)_3$ in the contact process i		
a) To remove arse		b) To detect colloidal i	
c) To remove moi		d) To remove dust par	ticles
	t for bleaching powder?		
a) Highly soluble i			
b) Light yellow co			
c) Oxidizing agent			
c) Oxidizing agentd) Reacts with dilute	ute acid to release chlorine		
c) Oxidizing agent d) Reacts with dilu 541. Molecule with a th	ute acid to release chlorine rree electron bond is:		
 c) Oxidizing agent d) Reacts with dilutering of the second se	ute acid to release chlorine nree electron bond is: b) NO	c) H ₂ 0	d) Cl ₂ O
 c) Oxidizing agent d) Reacts with dilu 541. Molecule with a th a) Cl₂ 542. Phosphorus pentor 	ute acid to release chlorine nree electron bond is: b) NO oxide cannot be used to dry:		
 c) Oxidizing agent d) Reacts with diluteration 541. Molecule with a the a) Cl₂ 542. Phosphorus penton a) Nitrogen 	ute acid to release chlorine nree electron bond is: b) NO oxide cannot be used to dry: b) Ammonia	c) Hydrogen sulphide	
 c) Oxidizing agent d) Reacts with dilu 541. Molecule with a th a) Cl₂ 542. Phosphorus pento a) Nitrogen 543. Calcium cyanamic 	ute acid to release chlorine nree electron bond is: b) NO oxide cannot be used to dry: b) Ammonia le on treatment with steam pr	c) Hydrogen sulphide roduces	d) Sulphur dioxide
c) Oxidizing agent d) Reacts with dilu 541. Molecule with a th a) Cl_2 542. Phosphorus pento a) Nitrogen 543. Calcium cyanamic a) $NH_3 + CaO$	ute acid to release chlorine nree electron bond is: b) NO oxide cannot be used to dry: b) Ammonia de on treatment with steam pr b) NH ₃ + CaHCO ₃	c) Hydrogen sulphide oduces c) NH ₃ + CaCO ₃	
c) Oxidizing agent d) Reacts with dilu 541. Molecule with a th a) Cl_2 542. Phosphorus pento a) Nitrogen 543. Calcium cyanamic a) $NH_3 + CaO$ 544. Which one of the f	ute acid to release chlorine nree electron bond is: b) NO oxide cannot be used to dry: b) Ammonia le on treatment with steam pr b) NH ₃ + CaHCO ₃ following statements regardin	 c) Hydrogen sulphide oduces c) NH₃ + CaCO₃ g helium is incorrect? 	d) Sulphur dioxide
c) Oxidizing agent d) Reacts with dilu- 541. Molecule with a th a) Cl_2 542. Phosphorus pento a) Nitrogen 543. Calcium cyanamic a) $NH_3 + CaO$ 544. Which one of the f a) It is used to pro-	ute acid to release chlorine nree electron bond is: b) NO oxide cannot be used to dry: b) Ammonia le on treatment with steam pr b) $NH_3 + CaHCO_3$ following statements regardin oduce and sustain powerful su	 c) Hydrogen sulphide oduces c) NH₃ + CaCO₃ g helium is incorrect? 	d) Sulphur dioxide
c) Oxidizing agent d) Reacts with dilu- 541. Molecule with a th a) Cl_2 542. Phosphorus pento a) Nitrogen 543. Calcium cyanamic a) $NH_3 + CaO$ 544. Which one of the f a) It is used to pro- b) It is used in gas	ute acid to release chlorine nree electron bond is: b) NO oxide cannot be used to dry: b) Ammonia le on treatment with steam pr b) NH ₃ + CaHCO ₃ following statements regardin	c) Hydrogen sulphide roduces c) NH ₃ + CaCO ₃ g helium is incorrect? per conducting magnets	d) Sulphur dioxide d) NH ₃ + Ca(OH) ₂

545. Hydrogen bromide is dried by passing the gas thr		
a) Quick lime b) Anhydrous CaCl ₂	c) KOH pellets	d) Conc. H ₂ SO ₄
546. The ion that cannot undergo disproportionation is		
a) ClO_4^- b) ClO_3^-	c) ClO_2^-	d) ClO ⁻
547. Which of the following is the most basic oxide?		
a) Bi_2O_3 b) SeO_2	c) Al_2O_3	d) Sb_2O_3
548. Which one is the anhydride of HClO ₄ ?		
a) ClO_2 b) Cl_2O_7	c) Cl_20	d) Cl_2O_6
549. Phosphine is generally prepared in the laboratory		
a) By heating phosphorus in a current of hydroge		
b) By heating white phosphorus with aqueous sol	ution of caustic potash	
c) By decomposition of P_2H_4 at 110°C		
d) By heating red phosphorus with an aqueous so		
550. In P_4O_6 the number of oxygen atoms bonded to ea	ich P atom is:	
a) 1.5 b) 2	c) 3	d) 4
551. The most abundant inert gas in air is:		
a) He b) Ne	c) Ar	d) Kr
552. When concentrated H_2SO_4 is added to dry KNO_3 ,	brown fumes evolve. Thes	e fumes are of:
a) SO_2 b) SO_3	c) NO ₂	d) NO
553. White phosphorus reacts with caustic soda to give	PH_3 and NaH_2PO_2 . This is	reaction is an example of:
a) Oxidation		
b) Reduction		
c) Neutralisation		
d) Oxidation and reduction	SXY .	
554. The molecular formula of dithionic acid is 🛛 🔌		
a) $H_2S_2O_4$ b) $H_2S_2O_6$	c) H ₂ S ₂ O ₅	d) $H_2S_2O_7$
555. The correct order of pseudohalide ,polyhalide and	l interhalogen are	
a) $BrI_2^ OCN^- IF_5$ b) IF_5 , $BrI_2^- OCN^-$	c) OCN ⁻ ,IF ₅ , BrI ⁻ ₂	d) OCN ⁻ , BrI_2^- , IF_5
556. The substance which is solid at room temperat	ture forms ionic compou	nds and reacts with hydrogen
forming a hydride, the aqueous solution of which	is acidic, could be	
a) Al b) Na	c) Br ₂	d) I ₂
557. When I_2 is passed through KCI,KF and KBr solutio	ns	
a) Cl_2 and Br_2 are evolved	b) Cl ₂ is evolved	
c) Cl_2 , Br_2 and F_2 are evolved	d) None of the above	
558. When I_2 is dissolved in CCl ₄ , the colour that result	-	
a) Colourless b) Brown	c) Bluish green	d) Violet
559. Oxide of nitrogen which is soluble in alcohol is:	, ,	-
a) NO ₂ b) N ₂ O	c) N ₂ O ₃	d) NO
560. The correct order of reducing abilities of hydrides		
a) $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$	b) NH ₃ >PH ₃ >AsH ₃ >S	bH ₃ >BiH ₃
c) NH ₃ <ph<sub>3<ash<sub>3<sbh<sub>3<bih<sub>3</bih<sub></sbh<sub></ash<sub></ph<sub>	d) SbH ₃ > BiH ₃ > AsH ₃ :	
561. Available chlorine is liberated from bleaching pov		
a) Is heated b) Reacts with water	c) Reacts with acid	d) Reacts with alkali
562. A salt of sulphurous acid is called:	-	~
a) Sulphate b) Sulphurate	c) Sulphite	d) Sulphide
563. The sides of safety matches contains	- 1	~ •
a) Red phosphorus + sand powder	b) P ₄ S ₃	
c) $Ca_3(PO)_4 + glass pieces$	d) KClO ₃ , KNO ₃ , sulph	ur +antimony
564. Which compound is prepared by the following rea	<i>,</i> .	5
1 r r		

$Xe + 2F_2$ - (2:1 volume ratio)	$\xrightarrow{\text{Ni}}$: 673K		
a) XeF ₄	b) XeF ₂	c) XeF ₆	d) None of these
565. The most stable hydr	ride is		
a) NH ₃	b) PH ₃	c) AsH ₃	d) SbH₃
566. Thomas slag is:			
a) $Ca_3(PO_4)_2$	b) CaCHNH ₂	c) CaSiO ₃	d) FeSiO ₃
567. The second most ele	ctronegative element in per	riodic table is:	
a) F	b) 0	c) Cl	d) N
568. Among the C— <i>X</i> bor a) C—Cl > C—Br > 0	nd (where $X = Cl, Br, I$) the $C-I$	correct bond energy ord	ler is:
b) C—I > C—Cl > C-	-Br		
c) $C - Br > C - Cl > C$	С—І		
d) C−−I > C−−Br > C-	—Cl		
569. When heated to 800°	C, N ₂ O gives:		
a) NO + 0_2	b) $NO_2 + O_2$	c) $N_2 + O_2$	d) None of these
570. The oxidation number	er of S in S_8 , S_2F_2 and H_2S a	re respectively:	C A Y
a) 0, +1, and -2	b) -2, +1, and -2	c) 0, +1 and +2	d) -2, +1, and +2
571. H ₂ SO ₄ has very corre	osive action on skin becaus	e:	
a) It reacts with prot	eins		
b) It acts as an oxidiz	ing agent		
c) It acts as dehydra	0 0		
d) It acts as dehydra	ting agent and absorption o	f water is highly exother	mic
572. Which oxide do not a	ict as a reducing agent?		
a) N ₂ O ₅	b) N ₂ 0	c) NO	d) NO ₂
573. Fuming sulphuric ac			
a) $H_2SO_4 + SO_3$	b) $H_2SO_4 + SO_2$	c) H ₂ SO ₄	d) $H_2SO_4 + SO_4$
574. The weakest acid is:			
a) H ₂ Se	b) H ₂ Te	c) H ₂ 0	d) H ₂ S
575. HIO ₃ on heating give			
a) I_2	b) 0 ₂	c) $I_2 O_5$	d) HI
576. Halogen used as an a		a) December a	d) I.a.d:a
a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
	t HCl is a strong acid becaus	se:	
a) HF is less ionic tha b) HF attacks glass b			
c) Bond energy of HI	*		
	f fluorine is lower than chlo	orine	
578. The product <i>A</i> in the		, me	
2 KMnO ₄ \rightarrow A + Mn			
a) $K_2Mn_2O_7$	b) K_2 MnO ₄	c) K ₂ 0	d) K ₂ O ₂
	in combined state in <i>Lamin</i>	· -	
a) Bromine	b) Iodine	c) Fluorine	d) Chlorine
	,	,	ning bromide is treated with
a) Carbon dioxide	b) Chlorine	c) Iodine	d) Sulphur dioxide
,	ng equations is not correctly		
	$) \rightarrow 3Cu(NO_3)_2 + 2NO + 4$		
	$y \text{ dil.}) \rightarrow 3\text{Zn}(\text{NO}_3)_2 + 2\text{N}$		
	$l.) \rightarrow 4Sn(NO_3)_2 + NH_4NC$		
d) As + $3HNO_3$ (dil.)			

582. P_4O_{10} has short and lo	ng P— O bonds. The number	of short P— O bonds in thi	s compound is:
a) 1	b) 2	c) 3	d) 4
•	g acts as fluoro Lewis acids?	,	-
a) RuF ₅	b) SbF ₅	c) AsF ₅	d) All of these
, ,	X decays to give two inert ga		.,
a) $\frac{238}{92}$ U	b) ²²⁶ ₈₈ Ra	c) ₉₀ Th	d) ₈₉ Ac
	wing can be purified by subli		
a) F_2	b) Cl ₂	c) Br ₂	d) I ₂
586. Noble gases do not oc	-	C_{J} DI_{2}	
0		a) Atmographono	d) Coo watan
a) Nature	b) Ores	c) Atmosphere	d) Sea water
587. Ammonia is:			
a) Polar solvent	b) Non-polar	c) Paramagnetic	d) None of these
588. The treatment of Cu w	-		
a) N ₂ O	b) NO	c) NH ₄ +	d) NO ₂
589. Wrong statement abo	ut HNO ₃ is:		
a) The proteins are co	nverted into xanthoproteins		X
b) HNO ₃ acts as a dehy	ydrating agent	. C.	Y
c) It exists in two cand	onical forms		>
d) HNO ₃ acts as an oxi	dizing agent		
590. Sulphur on boiling wit	h NaOH solution gives		
a) $Na_2SO_3 + H_2S$	b) $Na_2S_2O_3 + Na_2S_3$	c) $Na_2S_2O_3 + NaHSO_3$	d) $Na_2SO_3 + SO_2$
591. Electronegativity of ar			·) · <u>Z</u> · · · <u>Z</u>
a) High	b) Low	c) Negative	d) Zero
592. Good conductor of ele	,	e) negutive	uj lei o
a) Yellow P	b) Red p	c) Violet P	d) Black P
2	in oxide which is gas at room		uj black i
			d) Sulphur
a) Hydrogen	b) Phosphorus	c) Sodium	d) Sulphur
594. Helium was discovere			
a) Frankland and Lock	kyer		
b) Rayleigh			
c) Ramsay			
d) None of these			
595. SO ₂ does not act as			
a) Bleaching agent	b) Oxidising agent	c) Reducing agent	d) Dehydrating agent
596. NaOH + P_4 + $H_2O \rightarrow ?$			
a) $PH_3 + NaH_2PO_2$	b) PH ₃ + Na ₂ PO ₄	c) $PH_3 + Na_2HPO_2$	d) $H_3PO_4 + NaO$
597. Peroxy linkage is pres	ent in:		
a) Caro's acid	b) Pyrosulphuric acid	c) Sulphurous acid	d) Dithionic acid
598. Which requires cataly			-
a) $S + O_2 \rightarrow SO_2$	b) $2SO_2 + O_2 \rightarrow 2SO_3$	c) $C + O_2 \rightarrow CO_2$	d) All of the above
	g is used in very low tempera		
a) He	b) Ne	c) H_2	d) N ₂
	maximum number of compo	, -	uj 112
	-		д) По
a) Xe	b) Ne	c) Ar	d) He
	N_2O_4 , is a mixed anhydride b	ecause it:	
a) Is a mixture of $N_2 O_1$			
b) Decomposes into tw	_		
c) Reacts with water t			
d) Reacts with water t			
602. A depolarizer used in	dry batteries is:		

a) KOH b) NH ₂ OH	c) MnO_2 d) Na_3PO_4
603. Which one of the following statements re	arding helium is incorrect?
a) Is is used to fill gas balloons instead of	ydrogen because it is lighter and non- inflammable
b) It is used as a cryogenic agent for carry	
c) It is used to produce and sustain powe	
d) It is used in gas cooled nuclear reactor	
604. Which of the following is not obtained by	
a) XeO_3 b) XeF_2	c) XeF_6 d) XeF_4
605. White phosphorus is	
a) A monoatomic gas	b) P₄ a tetrahedral solid
c) P ₈ , a crown	d) A linear diatomic molecule
606. Sides of match box have coating of	d) It inical diatonic inolecule
a) Potassium chlorate, red lead	b) Antimony sulphide, red phosphorus
c) Potassium chlorate, antimony sulphide	d) Antimony sulphide, red lead
607. A positive chromyl chloride test is given b	
a) Br ⁻ b) Cl ⁻	c) SO_3^{2-} d) I ⁻
608. Zinc and cold dil. HNO ₃ reacts to produce	
a) NO b) NO ₂	c) NH ₄ NO ₃ d) ZnNO ₃
609. In presence of moisture, SO_2 can	
a) Act as oxidant b) Act as reduc	
610. Which has the highest molar heat of vapo	
a) HBr b) HCl	c) HF d) HI
$611.\text{SO}_2$ can be used as:	
a) Bleaching agent b) Disinfectant	c) Antichlor d) All of these
	ulphuric acid, the sugar is charred. In this process, sugar is:
a) Oxidized b) Dehydrated	c) Reduced d) sulphonated
613. Liquid ammonia is used for refrigeration	ecause
a) It is basic	b) It is a stable compound
c) It has a high dipole moment	d) It has a high heat of vaporisation
614. The smog is essentially caused by the pre	ence of
a) O_2 and N_2	b) O_2 and O_3
c) O_3 and N_2	d) Oxides of sulphur and nitrogen
615. Boiling of dil. HCl acid does not increase	its concentration beyond 20.24 per cent because hydrochloric
acid:	
a) Is very volatile	
b) Is extremely soluble in water	
c) Forms a constant boiling mixture	
d) Forms a saturated solution at this cond	entration
	ot in open air sometimes produces a cloud of white fumes. The
explanation for it is that:	
	air results in forming of droplets of liquid solution which
appears like a cloudy smoke	
	I pulls moisture of air towards itself. The moisture forms
droplets of water and hence the cloud	
c) conc. HCl emits strongly smelling gas a	the time
d) Oxygen in air reacts with the emitted F	
617. Atomicity of phosphorus is:	a gas to form a cloud of emornic gas
a) 1 b) 2	c) 3 d) 4
618. Each of the following is true for white and	
a) Can be oxidised by heating in air	
a) can be oxidised by iteating in an	b) Are both soluble in CS ₂

c) Consists of same kin		d) Can be converted	l into one another	
519. The <i>M</i> —Cl bond energ a) PCl ₅	b) PCl ₃	c) CCl ₄	d) NCl ₃	
520. Most acidic oxide is:	b) I CI ₃	c_{j} $c_{i_{4}}$		
a) As_2O_3	b) P ₂ O ₃	c) Sb_2O_3	d) Bi_2O_3	
521. King of chemicals is:	~) 12 ~ 3	0) 00203	c) 21203	
a) HNO ₃	b) H ₂ SO ₄	c) HCl	d) None of these	
	idising agent because it has	•	2	
a) Highest electron aff		b) Highest E [°] _{red}		
c) Highest E _{oxid}		d) Lowest electron affinity		
523. Which bond has the gi	eatest polarity?	,		
a) H—Cl	b) H—Br	c) H—I	d) H—F	
24. Berthelot's salt is:		-)		
a) KClO ₃	b) KIO ₃	c) KBrO ₃	d) None of these	
	g agent among the followin			
a) Ozone	b) Oxygen	c) Fluorine	d) Chlorine	
26. All the elements of the	, ,,	,		
a) Non-metals	b) Metalloids	c) Radioactive	d) Polymorphic	
	,		orus acid and phosphoric acid	
the acidic strength	5 1 51 1			
a) Increases		b) Decreases		
c) Remains nearly san	ie	d) Remains appropr	riately same	
28. Nitric acid oxidizes su			5	
a) SO_2	b) SO ₃	c) H ₂ SO ₃	d) H ₂ SO ₄	
	HCl and HF are present to			
a) HCl + HF \rightarrow H ₂ Cl ⁺				
b) HCl + HF \rightarrow No re				
c) HCl + HF \rightarrow H ₂ F ⁺	+ Cl ⁻			
d) None of the above				
-	emically unreactive because			
a) It does not contain				
-	tetrahedral P ₄ molecules			
	e in air even upto 400°C			
d) It has a polymeric s	tructure			
31. Which acid is not form	ed by the action of water o	n phosphorus pentoxide	?	
a) HPO ₃	b) $H_4P_2O_7$	c) H ₃ PO ₄	d) H ₃ PO ₃	
32. To make nitrogen diox	tide free from oxygen it is p	assed through U-tube:		
a) Containing FeSO ₄ s	olution	_		
b) Containing NaOH so	olution			
c) Kept in freezing mix				
d) Kept in boiling wate				
	oine with which of the follo	wing halogens to form a	compound?	
a) Cl_2	b) Br ₂	c) I ₂	d) F ₂	
34. If Na_2SO_3 is left open i		-	-	
a) Na_2S	b) Na_2SO_4	c) NaHSO4	d) NaHSO ₃	
			- •	
535. Which is planar molec	ule?			
	ule? b) XeF ₄	c) XeOF4	d) XeO ₂ F ₂	
35. Which is planar molec	b) XeF ₄	c) XeOF ₄	d) XeO ₂ F ₂	
35. Which is planar moleca) XeO₄	b) XeF ₄	c) XeOF ₄ c) NO ₂	d) XeO ₂ F ₂ d) NH ₃	

a) H_3PO_4 b) P_2O_3	c) H ₃ PO ₃	d) $H_4P_2O_7$
638. The acidity of hydrides of O, S, Se, Te varies in the o	order	
a) $H_2O > H_2S > H_2Se > H_2Te$	b) $H_2O < H_2S < H_2Se < H_2Se$	I ₂ Te
c) $H_2S > H_2O > H_2Se > H_2Te$	d) $H_2Se > H_2S > H_2O > H_2$	2Te
639. Which of the following is anhydride of perchloric a	cid?	
a) Cl_2O_7 b) Cl_2O_5	c) Cl ₂ O ₃	d) HCIO
640. When plants and animals decay the organic nitroge		nic nitrogen .The inorganic
nitrogen in the form of	0	6 6
a) Ammonia b) Elements of nitrogen	c) Nitrates	d) Nitrides
641. Minimum bond length will be in:	•)•••••	
a) H_2S b) HF	c) H ₂ 0	d) ICI
642. Which of the following has no action with starch so		
_		d) None of these
a) F_2 and Cl_2 b) Br_2	c) I ₂	d) None of these
643. H_2 S on passing through KMnO ₄ solution gives:		
a) K_2SO_3 b) S	c) K_2MnO_4	d) MnO_2
644. What may be expected to happen when phosphine		gas?
a) PCl_5 and HCl are formed and the mixture cools d	lown	
b) $PH_3 \cdot Cl_2$ is formed with warming up)
c) PCl_3 and HCl are formed and the mixture warms	sup	
d) The mixture only cools down		
645. The compound that gives chorine like smell is:		
a) CHCl ₃ b) CaOCl ₂	c) Chloretone	d) None of these
646. Hyponitrous acid is:		
a) HNO ₂ b) HNO ₄	c) $H_2N_2O_2$	d) CaN ₂
647. P_4 +3NaOH+3H ₂ O \rightarrow A+3NaH ₂ PO ₂ here A is		<u> </u>
a) NH ₃ b) PH ₃	c) H ₃ PO ₄	d) H_3PO_3
648. A gas X is passed through water to form a satura		
AgNO ₃ gives a white precipitate. The saturated aqu	-	
of colourless gas Y. X and Y are respectively:		
a) CO_2 , Cl_2 b) Cl_2 , CO_2	c) Cl ₂ , H ₂	d) H ₂ , Cl ₂
649. In which reaction there is no change in valency and	,	u) 112, 012
	the oxidation state:	
a) $SO_2 + H_2S \rightarrow 2H_2O + 3S$ b) $2Na + O \rightarrow Na_2O$		
c) $Na_2O_2 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O_2$		
d) $4\text{KClO}_3 \rightarrow 3\text{KClO}_4 + \text{KCl}$		
650. Oxygen gas can be prepared from solid $KMnO_4$ by:		
a) Dissolving the solid in dil. HCl		
b) Dissolving the solid in dil. H_2SO_4		
c) Treating the solid with H_2 gas		
d) Strongly heating the solid		
651. In solid state of noble gases, the atoms are held tog	ether by:	
a) Ionic bonds b) Hydrogen bonds	c) Van der Waals' forces	d) Hydrophobic forces
652. Potassium manganate (K_2MnO_4) is formed when:		
a) Chlorine is passed into aqueous K_2MnO_4 solutio	n	
b) Manganese dioxide is fused with potassium hydr		
c) Potassium permanganate reacts with conc. Sulpl		
d) None of the above		
d) None of the above 653 Phosphorus pentovide is widely used as		
653. Phosphorus pentoxide is widely used as	c) Ovidicing agent	d) Reducing agent
-	c) Oxidising agent	d) Reducing agent

a) Reducing agent	b) Oxidising agent	c) Dehydrating agent	d) All of these
655. Which are hydrolysed by			
a) XeF ₂	b) XeF ₄	c) XeF ₆	d) All of these
656. Weldon mud is:			
a) MnO ₂	b) Mn(OH) ₂	c) 2CaO · MnO ₂	d) Mn_2O_3
657. In the manufacture of H_2		the Gay-Lussac's tower is c	hemically:
a) $H_2SO_4 \cdot NO_2$	b) H ₂ SO ₄ · NO	c) $H_2SO_4 \cdot 2NO$	d) HSO ₄ · NO
658. In PCl ₅ , phosphorus und	-		
a) <i>sp</i> ² -hybridisation	b) <i>sp</i> ³ -hybridisation	c) <i>sp³d-</i> hybridisation	d) sp^3d^2 -hybridisation
659. The perhalate ion with n	naximum oxidizing power is	S:	
a) ClO ₄	b) BrO ₄	c) IO ₄	d) ClO-
660. If two litre of air is passe	d repeatedly over heated c	opper and heated Mg till no	further reduction in
volume takes place, the v	volume finally obtained will	l be approximately:	
a) 200 mL	b) 20 mL	c) Zero	d) 10 mL
661. What products are exped	cted from the disproportion	nation reaction of hypochlo	rous acid?
a) HClO ₃ and Cl ₂ O	b) HClO ₂ and HClO ₄	c) HCl and Cl_2O	d) HCl and HClO ₃
662. On exciting Cl ₂ molecule	by UV light, we get	C	
a) Cl'	b) Cl ⁻	c) Cl ⁺	d) All of these
663. Smelling salt is:			
a) (NH ₄) ₂ SO ₄	b) (NH ₄) ₃ PO ₄	c) NH ₄ Cl	d) $(NH_4)_2CO_3$
664. Sulphate ion has geo	metry.		
a) Trigonal	b) Square planar	c) Tetrahedral	d) None of these
665. Sulphur in $+3$ oxidation	<i>,</i>		2
a) Dithionous acid	b) Sulphurous acid	c) Thiosulphuric acid	d) Pyrosulphuric acid
666. Oleum is			
a) Fuming H ₂ SO ₄	b) Oil of vitriol	c) Castor oil	d) Caro's acid
667. A helium atom on losing	-		, ,
a) α -particle			
b) Hydrogen atom			
c) Positively charged hel	lium ion		
d) Negatively charged he			
668. Concentrated nitric acid		give:	
a) O_2 and N_2	b) NO	c) 0 ₂	d) NO ₂ and O ₂
669. Bromine is obtained on a		<i>y</i> 2	, , , , , , , , , , , , , , , , , , , ,
a) Caliche	b) Carnallite	c) Common salt	d) Cryolite
670. The blue coloured gas is	· ·	,	<i>y</i>
a) F_2	b) 0 ₃	c) NO	d) Cl_2
671. The catalyst used in Hab		,	5 2
a) Pt	b) $V_2 O_5$	c) Fe	d) Mo
672. The mixture of conc. HCl	20	,	- , -
a) ClO ₂	b) NOCl	c) NCl ₃	d) $N_2 O_4$
$673. H_2 S$ does not produce m	-	-) 3)2 - 4
a) ZnCl ₂	b) COCl ₂	c) CuCl ₂	d) CdCl ₂
674. Large deposits of sulphu			
a) Flowers of sulphur	b) H_2SO_4	c) H_2SO_3	d) Free sulphur
675. Which of the following d		- J 2 3	·
a) $KrF^{-}[SbF_{6}]^{-}$	b) $[KrF_3]^{-}[SbF_4]^{+}$	c) KrF ⁺ [MoOF ₅]	d) KrF ⁺ [WOF ₅] ⁻
$676. \text{ In XeO}_3, \text{ Xe is:}$	~,[J [~,···· [
a) sp^3 -hybridized	b) <i>sp</i> ² -hybridized	c) <i>sp</i> -hybridized	d) <i>sp</i> ³ d-hybridized
677. When H ₂ S reacts with ha		ej ep nyonandea	a, op a nyonanou

a) Are oxidized	b) Are reduced	c) Form Sulphur halides	d) None of these
2		, ,	is a good conductor. This is
because:	conductor of electricity, w	aqueous solution	
a) H_2O is a good condu	ector of electricity		
	ct electricity, but a liquid can		
, .	•		
	ey Ohm's law, whereas the so	biution does	
d) HCl ionizes in aqueo			
679. Oxygen exhibits positiv			
a) CO	b) F ₂ O	c) NO	d) N ₂ 0
680. The poisson's ratio for		2 4 9 4	
a) 1.40	b) 1.66	c) 1.34	d) None of these
681. The noble gas which is	-		
a) Ne	b) Ar	c) Rn	d) Kr
682. Which is not correct fo			
a) Six P—P sigma bond			\sim
b) Four P—P single bo		A	X
c) Four lone pair of ele			
d) P—P—P angle of 60			5
	I, S, P and C gives respective	-	1.60
a) HIO_3 , H_2SO_4 , H_3PO_4 a		b) HIO_3 , H_2SO_4 , H_3PO_3 and	
c) HIO_2 , H_2SO_4 , H_3PO_4 a		d) I_2O_5 , SO_2 , P_2O and CO_2	
684. Which of the following			
a) He ²⁺	b) He ⁺	c) He	d) He ₂
	ch displaces three halogens f		
a) Br	b) F	c) Cl	d) I
_	phosphorus is most stable?		
a) White	b) Red	c) Black	d) All stable
687. Ozone reacts with dry			
a) IO ₂	b) $I_2 O_3$	c) $I_2 O_4$	d) I ₄ 0 ₉
	ortion of light and appears ye		
a) Yellow	b) Green	c) Violet	d) Red
689. The hybridization and		2 400% 001	
a) sp^2 ,120°	b) <i>sp</i> ³ ,109° 28'	c) <i>sp</i> ² ,109° 28'	d) None of these
690. The substance used in			
	b) Sodium phosphate	c) Calcium fluoride	d) Calcium phosphide
691. Which is cyclic phosph			
a) $Na_5P_3O_{10}$	b) $Na_6P_4O_{13}$	c) $Na_4P_4O_{12}$	d) Na ₇ P ₅ O ₁₆
692. PCl_5 does not react wit			
a) CH_3COOH	b) $C_2H_5NH_2$	c) C ₆ H ₅ OH	d) H_2SO_4
693. Elements O, S, Se and T			d) Chalangara
a) Metals	b) Rare earth metals	c) Coinage metals	d) Chalcogens
694. Phosphine is produced			
a) CaC_2	b) HPO ₃	c) Ca_3P_2	d) P ₄ O ₁₀
695. Which of the following			
a) N_2	b) 0_2	c) Ar	d) He
696. Which of the following	=	-) IL DO	
a) H_3PO_2	b) H_3PO_3	c) H ₃ PO ₄	d) $H_4 P_2 O_7$
697. Which pair gives Cl_2 at	-	a) $NaCl + MacO$	
a) Conc. HCl + KMnO ₄	,	c) NaCl + MnO_2	d) NaCl + Conc. HNO ₃
ספט. which of the following	oxide does not form acidic a	iqueous solution?	

a) N ₂ O ₃	b) NO ₂	c) N ₂ O ₅	d) NO
699. Which one below is a pse			
a) I ₃	b) IF ⁻	c) ICl	d) CN ⁻
700. The Nessler's reagent co			2
a) Hg ₂ ²⁺	b) Hg ²⁺	c) Hg ₂	d) Hg ₄ ²⁻
701. Interhalogen compounds	s are:		
a) Ionic compounds			
b) Coordinate compound			
c) Molecular compounds	5		
d) Covalent compounds			
702. Fluorine does not show p a) It is a most electroneg		cause:	
b) It forms only anions in			
c) It cannot form multipl	=		
	electron pair repulsion due	to small size	
703. Poison for platinum, a ca			\bigcirc
a) S	b) P	c) As	d) Ć
704. The solubility of iodine in	,		
a) Adding an acid	0 7		
b) Boiling the solution			
c) Cooling the solution			
d) Adding potassium iod	ide		
705. The catalyst used in the p	preparation of red P from ye		
a) I ₂	b) Ni	c) ZnO	d) Fe
706. Which one of the followin			_
a) CaCl ₂	b) CaOCl ₂	c) $Ca(OCl)_2$	d) CaO ₂ Cl
707. Nitrogen dioxide			
a) Does not dissolve in wb) Dissolves in water for			
-	form a mixture of nitrous ar	nd nitric acid	
	form nitrous acid and gives		
708. The gas used in gas thern		on oxygen	
a) He	b) 0_2	c) Xe	d) Ne
709. Mixture of O_2 and N_2O is		-)	
	b) Anaesthetic	c) In welding	d) Oxidizing agent
710. Which of the following ac	-		, , , , , , , , , , , , , , , , , , , ,
a) Dilute HNO ₃	b) Dilute HCl	c) Conc. H ₂ SO ₄	d) Aqua regia
711. Number of isotopes of ox	xygen is:		
a) 1	b) 3	c) 2	d) 0
712. The angular shape of ozo		of:	
a) 2 sigma and 2 π -bonds	S		
b) 1 sigma and 1 π -bond			
c) 2 sigma and 1 π -bond			
d) 1 sigma and 2 π -bonds			
713. Bromine vapour turns m		a) Dhua	
a) Brown 714 Nitrie guide is proposed b	b) Red	c) Blue	d) Colourless
714. Nitric oxide is prepared b a) Cu	b) Sn	c) Zn	d) Fe
715. The allotrope of Sulphur	•	CJ 211	uj l't
a) Rhombic sulphur	b) Monoclinic sulphur	c) Plastic sulphur	d) Flowers of sulphur
aj ratomote surpriur	of monochine Sulphur	e, i haone ourpriur	a, nonoro or ourpriur

716. Concentrated H₂SO₄ is not used to prepare HBr from KBr because it:

a) Oxidizes HBr

b) Reduces HBr

c) Causes disproportionation of HBr

d) Reacts too slowly with KBr

717. There is an ozone layer at a height of about 29 kilometres above the surface of the earth. Which of the following statements is true?

a) It is harmful because ozone is dangerous to living organisms

b) It is beneficial because oxidation reactions can proceed faster in the presence of ozone

c) It is beneficial because ozone cuts out the ultraviolet radiation of the sun

- d) It is harmful because ozone cuts out the important radiations of the sun which are vital for photosynthesis
- 718. Cl₂ on passing through Na₂SO₃ solution gives:

/10	$_{12}$ on passing unough N_{12}	$a_2 \circ O_3 $				
	a) Na ₂ S	b) Na ₂ SO ₄	c) NaHSO ₃	d) NaHS		
719	9. SO ₂ reduces:					
	a) Mg	b) H ₂ S	c) KMnO ₄	d) All of these		
720). The brown yellow colour	often shown by nitric acid	can be removed by:			
	a) Bubbling air through t	he warm acid				
	b) Boiling the acid					
	c) Passing ammonia thro	ugh acid				
	d) Adding a little Mg pow	der				
72	L. Which one will liberate B	r2 from KBr?				
	a) I ₂	b) SO ₂	c) HI	d) Cl ₂		
722	2. The halide which does no	t give a precipitate with Ag	NO ₃ is:			
	a) F ⁻	b) Cl ⁻	c) Br [_]	d) I ⁻		
723	3. HF present as impurity in	gaseous F_2 , can be remove	ed by passing over:			
	a) P_2O_5	b) NaF	c) H_2SO_4	d) CaCl ₂		
724	 In pyrophosphoric acid the 	ne number of hydroxy grou	ps present are:			
	a) 4	b) 3	c) 5	d) 7		
72	5. Deep sea divers used to r					
	a) Oxygen and nitrogen	b) Oxygen and argon	c) Oxygen and hydrogen	d) Oxygen and helium		
720	726. Which of the following gives M ³⁺ ion most readily?					
	a) P	b) N	c) Sn	d) Bi		
72	7. Oxygen is more electrone	gative than sulphur, yet $\rm H_2$	S is acidic while H ₂ O is neu	tral. This is because:		
	a) Water is a highly assoc	niated compound				

a) Water is a highly associated compound

b) H—S bond is weaker than H—O bond

c) H_2S is a gas while H_2O is a liquid

d) The molecular weight of H_2S is more than that of H_2O

728. HI reacts with HNO_3 to form:

a) O_2 b) N_2O c) HIO_3 d) $NO_2 + I_2$

729. Phosphate + conc. HNO_3 + $(NH_4)_2$ MoO₄ solution \rightarrow Yellow precipitate.

The composition of yellow precipitate is:

a) (NH₄)₃PO₄ · MoO₃
b) (NH₄)₃PO₄ · 12MoO₃
c) (NH₄)₂PO₄ · 12MoO₃
d) NH₄PO₄ · MoO₃
730. Density of nitrogen gas prepared from air is slightly greater than that of nitrogen prepared by chemical reaction from a compound of nitrogen because aerial nitrogen contains:

a) CO₂

b) Argon

c) Some N_2 molecules analogous to O_2

d) Greater amount of $\mathrm{N_2}$ molecules derived from $\mathrm{N^{15}}$ isotope

731. Antichlor is a compound:

	le vin e		
a) Which absorbs ch b) Which removes C			
	-		
-	l_2 from bleaching powder	יו	
	talyst in the manufacture of C		ainad
	hot and concentrated NaOH t	-	
a) O_2	b) H ₂	c) Na ₂ O	d) Na
733. The geometry of XeC		a) Caucara alaman	d) Ostabadral
a) Tetrahedral 734. Oleum is	b) Square pyramidal	c) Square planar	d) Octahedral
	h) (il of vitrial	a) Eumina II CO	d) Nana of these
a) Castor oil	b) Oil of vitriol	c) Fuming H ₂ SO ₄	d) None of these
= -	with oxygen in the air at ordi		
a) White P	b) Red P	c) N ₂	d) N ₂ 0
	odine in which it is present as		
a) Carnallite		b) Sea weeds	
c) Caliche		d) Iodine never exists	as sodium iodate
	er of the halogens increases, th	ne nalogens:	\sim
	st electrons less readily		
b) Become lighter in			
c) Become less dens			
d) Gain electrons les	-		
38. An interhalogen com			
a) IF ₅	b) I_3^-	c) CN	d) (CN) ₂
39. Phosphine is not coll	ected in air because:		
a) It is poisonous			
b) It absorbs moistu			
c) It catches fire spo	ntaneously in air	\mathbf{V}	
d) It is combustible			
40. Bones glow in the da			
a) They contain a shi			
b) They contain red			
	s changes into red phosphoru		
<i>,</i>	s undergoes slow combustion	with air	
	itive oxidation state with:		
a) F	b) Br	c) Cl	d) I
42. Which gives carbon			
a) Formic acid	b) Ethyl alcohol	c) Oxalic acid	d) Starch
	ize as compared to oxygen is:		
a) Ne	b) F	c) He	d) All of these
44. In the reaction,			
	$\rightarrow Ag_2SO_4 + 2H_2O + SO_2, H_2SO_4 + 2H_2O_4 + 2H_$		
a) Reducing agent	b) Oxidant	c) Catalyst	d) Dehydrating agent
45. Among the phosphat	tic fertilizers, superphosphate	of lime is a mixture of Ca	$(H_2PO_4)_2$ and:
a) CaSO ₄ · 2H ₂ O	b) CaSO ₄ \cdot H ₂ O	c) CaSO ₄ $\cdot \frac{1}{2}$ H ₂ O	d) CaSO ₄
		2 2	
46. What is the oxidising			
a) HCl	b) HCIO ₂	c) HOCI	d) None of these
	ng halogens is solid at room te	-	
a) Iodine	b) Fluorine	c) Chlorine	d) Bromine
	matter in presence of moistur		
a) Oxidation	b) Reduction	c) Sulphonation	d) Unsaturation
49. White phosphorus (1			

	a) Six P – P single bond		b) Four P – P single bond	
	c) Four lone pairs of electrons		d) $P - P - P$ angle of 60°	
750). The anhydride of nitrous	acid is:		
	a) N ₂ O ₃	b) NO	c) N ₂ 0	d) N_2O_4
751	L. XeF ₂ on hydrolysis gives			
	a) XeO ₃	b) XeO	c) Xe	d) XeO ₂
752	2. Coconut charcoal at -180	°C is used to separate a mix	ture of:	
	a) Ar and Kr	b) Ne and Ar	c) He and Kr	d) He and Ne
753	3. Paramagnetic oxide of ch	lorine is:		
	a) ClO ₃	b) Cl_2O_6	c) Cl ₂ 0	d) None of these
754	4. Decreasing order of redu	cing power of hydrogen ha	lides is:	
	a) HI > HBr > HCl > HF			
	b) HF > HI > HBr > HCl			
	c) HI > HF > HBr > HCl			
	d) None of these			
755	5. Nitrogen does not combi	ne directly with:		
	a) Ca	b) Al	c) Ag	d) Mg
756	6. Which of the following is	the strongest oxidising age	nt?	
	a) HOCI	b) HCIO ₂	c) HCIO ₃	d) HCIO4
757	7. In case of halogen family,	which trend occurs as the	atomic number increases?	-
	a) Ionic radius decreases			
	b) Ionization potential de	ecreases		
	c) Covalent character in I	MX_2 decreases (where $M =$	metal and X=halogen)	
	d) None of the above			
758	3. What is the product form	ed when phosphorus trioxi	ide is dissolved in water?	
	a) HPO ₃	b) H ₃ PO ₄	c) H ₃ PO ₃	d) HPO ₂
759	9. Approximately what pero	centage of air by volume ge	ts used in a process of com	bustion?
	a) 20%	b) 10%	c) 35%	d) 55%
760). There is no S — S bond is			
	a) $S_2 O_4^{2-}$	b) $S_2 O_3^{2-}$	c) $S_2 O_5^{2-}$	d) $S_2 O_7^{2-}$
761	l. The acidic nature of HF c	an be increased in presence	e of:	
	a) SbF ₅	b) H ₂ O	c) HClO ₄	d) None of these
762	2. Identify the incorrect sta	tement among the following	g	
	a) Ozone reacts with SO ₂	to give SO_3		
	b) Silicon reacts with Nat	DH(<i>aq</i>) in the presence of a	ir to give Na_2SiO_3 and H_2O	
	c) Cl ₂ reacts with excess	of NH_3 to give N_2 and HCl		
		d strong NaOH solution to g	give NaBr, NaBrO ₄ and H ₂ O	
763	3. S—S bond is not present			
	a) $S_2 O_7^{2-}$	b) $S_4 O_6^{2-}$	c) $S_2 O_4^{2-}$	d) $S_2 O_3^{2-}$
764	4. Which of the following ox	kides are acidic?		
	a) Mn ₂ O ₇	b) CrO ₃	c) Both (a) and (b)	d) None of these
765	5. The pentavalence in phos	sphorus is more stable as co	ompared to that of nitrogen	even though they belong
	to the same group. It is d	ue to		
	a) Inert nature of nitroge	n	b) Reactivity of phosphor	us
	c) Larger size of phospho	orus atom	d) Dissimilar electronic c	onfiguration
766	5. Which of the following is	kept in water?		
	a) White phosphorus	b) Sodium	c) Potassium	d) Calcium
767	7. The formula of iodine ace	etate is:		
	a) I(CH ₃ COO)	b) I(CH ₃ COO) ₃	c) $I_2(CH_3COO)$	d) (CH ₃ COO) ₂ I
768	3. Phosphine is not evolved	when:		

	oiled with a strong solution	of Ba(OH) ₂	
b) Phosphorus acid is hea			
c) Calcium hypophosphit			
d) Metaphosphoric acid i			
769. The last orbit of argon we			N 40
a) 2	b) 6	c) 8	d) 18
770. Xenon directly combines)	
a) Oxygen	b) Rubidium	c) Fluorine	d) Chlorine
771. Structure of XeF_5^+ ion is			
a) Trigonal bipyramidal	b) Square pyramidal	c) Octahedral	d) Pentagonal
772. Thermal stability of hydr		er:	
a) HI > HBr > HCl > HF			
b) $HI > HF > HBr > HCl$			
c) HI > HBr > HF > HCl			
d) $HF > HCl > HBr > HI$			
773. Iodine is fromed when KI		· · · · · · ·	
a) CuSO ₄	b) (NH ₄) ₂ SO ₄	c) ZnSO ₄	d) FeSO4
774. The strongest reducing a			7
a) F ⁻	b) CI ⁻	c) Br ⁻	d) I ⁻
775. In Birkeland Eyde proces			
a) Air	b) NO ₂	c) HNO ₃	d) NH ₃
776. Liquid flow from a higher		he following liquids can cli	mb up the wall of the glass
vessel in which it is place			
a) Alcohol	b) Liquid He	c) Liquid N ₂	d) water
777. Which is not correct for N	-	X	
	s used as anaesthetic agent		
b) It is nitrous oxide			
c) It is not a linear molec			
d) It is least reactive of al			
778. The strongest acidic oxid			
a) SO ₂	b) SO ₃	c) P_2O_5	d) Sb_2O_3
779. Apatite is an ore of			
a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
780. The sulphur molecule (S_8)	3) possesses:		
a) Cubical structure			
b) Spherical structure			
c) Tetrahedral structure			
d) W-shaped ring structu			
781. Copper turnings when he			
a) H_2S	b) SO_2	c) SO ₃	d) 0 ₂
782. PCl_5 is prepared by the a	_		
a) P_2O_3	b) P_2O_5	c) H_3PO_3	d) PCl ₃
783. Chlorine water on cooling		-	
a) $Cl_2 \cdot 2H_2O$	b) $Cl_2 \cdot H_2O$	c) $Cl_2 \cdot 3H_2O$	d) $Cl_2 \cdot 8H_2O$
784. Which inert gas have high) 	
a) Xe	b) Ar	c) Kr	d) He
785. Metaphosphoric acid is:			
a) H_3PO_2	b) HPO ₃	c) H ₃ PO ₃	d) H_3PO_4
786. H_3PO_3 has non ionisal		-) 2	
a) 3	b) 1	c) 2	d) None of these

787. Dry bleach caused b	у		
a) Cl ₂	b) SO ₂	c) H ₂ O ₂	d) 0 ₃
788. Ammonia is dried o			
a) Slaked lime		b) Calcium chloride	
c) Phosphorus pen	toxide	d) Quick lime	
<i>,</i>	on energy of Cl ₂ ,Br ₂ and I ₂ f		
a) $Cl_2 > I_2 > Br_2$	b) $I_2 > Br_2 > Cl_2$	c) $I_2 = CI_2 = Br_2$	d) $Cl_2 > Br_2 > I_2$
790. Which is correct sta			
a) Nitric oxide is iso			\frown
b) Nitric oxide is dia			
	endothermic compound		
	s used as general anaesthet	tic	
	behaves abnormally in lic		
a) Xe	b) Ne	c) He	d) Ar
	,	,	d) Ar
	ing is correct with reference	to protonic acius?	
a) PH_3 is more basic			
b) PH_3 is less basic to PH_3	-		
c) PH_3 is as basic as	-		
d) PH_3 is amphoteri			
793. Amongst the follow	-		
a) Bi_2O_3	b) Sb_2O_3	c) N ₂ O ₅	d) P_2O_5
-	-		y oxidation. The gases are:
a) CO and CO ₂	b) H_2S and Br_2	c) SO_2 and Cl_2	d) NH ₃ and SO ₃
795. Cl_2O_6 is an anhydric			
a) HClO ₃	b) HClO ₂	c) HClO ₄	d) Mixed anhydride of HCl
= =	of the atmosphere ozone is	formed by the:	
a) Combination of o			
	discharge on oxygen mole	cules	
-	let rays on oxygen		
d) None of the abov			
			emperature. However, they
		eratures. It indicates that a	t very low temperature there is a:
	orce between the atoms		
	orce between the atoms		
	force between the atoms		
	force between the atoms		
	is used in smoke screens b	ecause it:	
a) Burns to form so			
b) Gives PH ₃ which			
c) Immediately cate	hes fire in air		
d) Is a gas which bri	ngs tears in eyes		
799. The inert gas obtain	ed from monazite sand is:		
a) He	b) Ne	c) Ar	d) Kr
800. Sulphur does not ex	ist as S2 molecule because		
a) It is less electron	egative	b) It is not able to c	onstitute <i>pπ-pπ</i> bonds
c) It has ability to ex	whibit catenation	d) Of tendency to sl	now variable oxidation states.
801. The oxide of nitroge	n which reacts with NaOH	solution giving both sodiu	m nitrate and sodium nitrite is:
a) NO ₂	b) N ₂ O ₅	c) N ₂ O ₃	d) NO
802. Oxide of nitrogen us	ed as catalyst in lead cham	ber process for the manuf	acture of H ₂ SO ₄ is:
a) NO	b) N_2O	c) $N_2 O_3$	d) $N_2 O_5$
,	<i>,</i> 2	J <u>L</u> J	, <u>1</u> 5

a) PH ₄ I b) AsH ₃	c) SbCl ₂	d) As_2O_3
804. A colourless gas on passing through bromine water de	ecolourises it. The gas is:	
a) HCl b) HBr	c) CO ₂	d) SO ₂
805. When silver chloride dissolves in ammonia, it forms?		
a) $Ag(NH_3)Cl$ b) $Ag(NH_3)_2Cl$	c) $Ag(NH_3)_3Cl$	d) $Ag(NH_3)_4Cl$
806. Which of the following pairs has bleaching property?		
	c) SO_2 and Cl_2	d) Cl_2 and NO_2
807. Which of the following is not a hydride?	,	,
	c) CsH	d) LiH
808. Iron is dropped in dil HNO ₃ it gives	-)	
	b) Ferric nitrate and NO ₂	
-	d) Ferrous nitrate and nitr	ric oxide
809. Pnicogens are the elements of group?	a) i ci i ous inci ace ana inci	
	c) 8	d) Zero
	-	
810. The percentage of available chlorine in a commercial		
	c) 58%	d) 85%
811. Complete fertilizer is that supplies to the soil:		
	c) S, K and P	d) S and N
812. The element which liberates O_2 from water is:		
	c) F	d) N
813. SF_6 exists but OF_6 does not because:		
a) d -orbitals of sulphur are vacant and are vacant and		
b) More bonding electrons can be accommodated in o	orbitals with $n = 3$	
c) Sulphur has larger ionization energy than oxygen	2.2	
d) The difference of electronegativity is less between	oxygen and fluorine	
814. N_2O_4 molecule is completely changed into $2NO_2$ mole	ecules at:	
a) –10°C b) 140 – 150°C	c) 420°C	d) -40°C
815. Out of (i) XeO_3 (ii) $XeOF_4$ and (iii) XeF_6 , the molecule	es having same number of	lone pairs on Xe are:
a) (i) and (ii) only b) (i) and (iii) only	c) (ii) and (iii) only	d) (i), (ii) and (iii)
816. Chlorous acid and its salts (chlorites) are:		
a) Good oxidising agents		
b) Good reducing agents		
c) Good bleaching agents		
d) Good oxidising and bleaching agents		
817. Antimony burns in chlorine to form:		
	c) SbOCl ₂	d) SbCl ₅
818. Bromargyrite is a mineral of:	-)2	
	c) I ₂	d) Br ₂
819. Helium is used in gas balloons instead of hydrogen be		
a) It is lighter than H_2		
b) It is non-combustible		
c) It is more abundant than H_2		
d) Its leakage can be detected easily		
820. Reaction of PCl_3 and $PhMgBr$ would give	h) Chlonohannar -	
-	b) Chlorobenzene	
a) Triphonydphoarhite	d) Dichlorobenzene	
821. Which does not give ammonia with water?		
821. Which does not give ammonia with water?a) Mg₃N₂b) AIN	c) CaCN ₂	d) Ca(CN) ₂
 821. Which does not give ammonia with water? a) Mg₃N₂ b) AIN 822. Bond length is maximum in: 		
 821. Which does not give ammonia with water? a) Mg₃N₂ b) AIN 822. Bond length is maximum in: 	c) HCl	d) HF

a) Single bond	b) Double bond	c) Triple bond	d) Coordinate bond
	to aqueous solution of KI con	itaining some CCl ₄ and the n	nixture is shaken, then:
 a) Upper layer becom 			
b) Lower layer becon			
c) Homogeneous viol	et layer is formed		
d) None of the above			
-	er of bond pair and lone pair		
a) 2, 2	b) 3, 1	c) 1, 3	d) 4, 0
826. Cl_2 is used in the mar			
a) Chloroform	b) CCl ₄	c) Westron	d) All of these
827. Which element shows			
a) 0	b) S	c) Se	d) All of these
828. N_2 0 is formed on rea			
a) Cu	b) Hg	c) Ag	d) Fe
829. The inert gases prese			
a) He and Ne	b) He, Ne and Ar	c) He, Ne, Ar and Kr	d) He, Ne, Ar, Kr and Xe
830. Orthophosphoric acid			
a) 1	b) 2	c) 3	d) 4
	enon with water, the nature o	of bonding between xenon al	nd water molecule is:
a) Covalent			
b) Hydrogen bonding			
c) Coordinate			
d) Dipole-induced dip			
832. Which one is least sol			
a) BaF_2	b) CaF ₂	c) SrF ₂	d) MgF ₂
	lved in NaOH, we get solution	Y	
a) NaNO2 c) Mixture of NaNO2	and NaNO	b) NaNO ₃ d) NaNO ₄	
	F_2 , OCl ₂ and OBr ₂ show the c		
	$F_2, OCl_2 and OBl_2 show the Cb) OF_2 > OB_2 > OCl_2$		d) $OCl_2 > OBr_2 > OF_2$
	as hybridisation and structu		$u_{1} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $
a) sp^3 tetrahedral		r c) $sp^3 d^2$ pyramidal	d) $sn^3 d^3$ octahedral
<i>, , , , , , , , , ,</i>	sphorus is X and the PPP bon		
a) <i>X</i> =4, <i>Y</i> =90°	b) $X=4, Y=60^{\circ}$	c) <i>X</i> =3, <i>Y</i> =120°	d) $X=2, Y=180^{\circ}$
837. Bottle of PCl_5 is kept		$C_{j} X = 5, 1 = 120$	uj <i>x</i> =2,1=100
a) Explodes	b) Get oxidized	c) Is volatilized	d) Reacts with moisture
	urbidity appears while passi	-	-
is because:	arbiarty appears while passi	ing 1125 gas even in the abser	ice of it group radicals. This
	I the mixture as impurity		
	re precipitated as sulphides		
	^T H ₂ S gas by some acid radica	ls	
	re precipitated as hydroxide		
	sulphate ion by iodine gives:	.0	
a) SO_3^{2-}	b) SO_4^{2-}	c) $S_2 O_8^{2-}$	d) $S_4 0_6^{2-}$
y 0	s contains NH_4NO_3 because		y 1 0
oxides of nitrogen an		inglitering in the sky eduses	the units react and produce
a) H ₂	b) NH ₃	c) CO ₂	d) Noble gases
	ules of water needed to conv		
a) 2	b) 3	c) 4	d) 5
	g is the correct order of incr	,	,
		5 ry	

	a) NH ₃ <ph<sub>3<ash<sub>3</ash<sub></ph<sub>	b) AsH ₃ <ph<sub>3<nh<sub>3</nh<sub></ph<sub>	c) PH ₃ <ash<sub>3<nh<sub>3</nh<sub></ash<sub>	d) NH ₃ <ash<sub>3<ph<sub>3</ph<sub></ash<sub>
84	3. Which of the following wa	as previously known as mu	riatic acid?	
	a) Cl ₂	b) Br ₂	c) HCl	d) H_2SO_4
84	4. Which metal forms an am	photeric oxide?		
	a) Cr	b) Fe	c) Cu	d) Zn
84	5. H ₂ SO ₄ is added while pre	paring a standard solution	of Mohr's salt to prevent:	
	a) Hydration	b) Reduction	c) Hydrolysis	d) Complex formation
84	6. The element which catche	es fire in air at 30°C and is s	tored under water is	
	a) Sodium	b) Phosphorus	c) Magnesium	d) Zinc
84	7. Which are solid?			
	a) XeF ₂	b) XeF ₄	c) XeF ₆	d) All of these
84	8. Cl_2O is an anhydride of:			
	a) HClO ₄	b) HOCl	c) Cl_2O_3	d) HClO ₂
84	9. Ammonium dichromate is	s used in some fireworks. T		blown is:
	a) CrO ₃	b) Cr_2O_3	c) Cr	d) $CrO(0_2)$
85	0. An element forms a gaseo	us oxide which on dissolvir	ng in water gives an acid so	lution. The element is:
	a) S	b) Na	c) P	d) H
85	1. PCl ₃ and cold water reacts	,	ollowing?	
	a) H ₃ PO ₃	b) H ₃ PO ₂	c) H ₄ P ₂ O ₇	d) H ₃ PO ₄
85	2. Ammonia on heating with	,	-	- ,
	a) NH ₄ HCO ₃	b) $(NH_4)_2CO_3$	c) NH ₂ COONH ₄	d) $(NH_4)_2CO$
85	3. The acid which forms two		·)····2·····4	
00	a) H ₃ PO ₄	b) H_3PO_3	c) H ₃ BO ₃	d) H_3PO_2
85	4. The structure of white ph		-) -33	
00	a) Square planar	b) Pyramidal	c) Tetrahedral	d) Trigonal planar
85	5. Which of the following is :)	
00	a) I ₂	b) Br ₂	c) Cl ₂	d) F ₂
85	6. It 20% nitrogen is presen			
00	a) 144	b) 70	c) 100	d) 140
85	7. Which sulphide is insolub		,	
00	a) SnS	b) As_2S_3	c) Sb_2S_3	d) Bi_2S_3
85	8. Which one is most basic i		6) 88283	a) <u>27</u> 203
00	a) F ⁻	b) Cl ⁻	c) Br ⁻	d) I ⁻
85	9. Which oxide is alkaline?			
00	a) P_2O_3	b) $B_2 O_3$	c) Bi ₂ O ₃	d) As_2O_3
86	0. Fluorine oxidises HSO ₄ ⁻ to		cj bi203	4)115203
00	a) $S_2 O_3^{2-}$	b) $S_2 O_8^{2-}$	c) $S_4 O_6^{2-}$	d) SO_2
86	1. Oleum is chemically	0) 5208	c) 5406	u) 50 ₂
00	a) H_2SO_3	b) H ₂ SO ₅	c) H ₂ S ₂ O ₇	d) H ₂ S ₂ O ₈
86	2. Among halogens maximu	•	CJ 1125 207	uj 1125 208
00	a) Fluorine	b) Chlorine	c) Bromine	d) Iodine
86	3. Which statement is false?		cj bronnie	u) loume
00	a) Radon is obtained from			
	b) Helium is an inert gas.	i the decay of fadium.		
	, ,	ble gas in the atmosphere is	Чо	
			S ne.	
06	d) Xe is the most reactive4. Freons are used as:	among the house gases.		
00		h) Catalyst	a) Ovidant	d) None of these
07	a) Refrigerant	b) Catalyst	c) Oxidant	d) None of these
00	5. Sulphur molecule exists a		c) S	d) C
	a) S ₂	b) S ₄	c) S ₆	d) S ₈

866. Noble gases are adsorbe	d bv		
a) Anhydrous calcium ch		b) Ferric hydroxide	
c) Conc. H ₂ SO ₄		d) Activated coconut char	·coal
867. Phosphorus when expos	ed to air burns spontaneous		
a) The reaction is endoth	_		
b) The reaction is exothe			
c) The activation energy			
d) Air contains some cata	-		
868. There is 0—0 bond is:			
a) S ₂ O ₈ ²⁻	b) $S_4 O_6^{2-}$	c) SO_3^{2-}	d) $S_2 0_7^{2-}$
869. Freons are:			
a) CCl ₂ F ₂	b) CFCl ₃	c) CClF ₃	d) All of these
870. Normality of pure sulphu	uric acid is:		
a) 4 <i>N</i>	b) 12 <i>N</i>	c) 24 <i>N</i>	d) 36 <i>N</i>
871. The number of $S - S$ bon	ds in sulphur trioxide		
a) Three	b) Two	c) One	d) Zero
872. The number of electrons	present in the valency shel	l of P in PCl ₃ is:	
a) 12	b) 10	c) 8	d) 18
873. A hydride of nitrogen wh	nich is acidic is		
a) N ₃ H	b) N ₂ H ₂	c) NH ₃	d) N ₂ H ₄
874. Which of the following co	ompound show sublimation	1?	
a) CaHPO3	b) NH ₄ Cl	c) BaSO ₄	d) CaCO ₃
875. The highest ionization po	otential in a period is shown	n by:	
a) Alkaline earth metals	b) Alkali metals	c) Halogens	d) Noble gases
876. $K_2[HgI_4]$ detects the ion,	/group:	N [°]	
a) NH ₂	b) NO	c) NH ₄ ⁺	d) Cl [_]
877. The percentage of nitrog	en in urea is about:	F	
a) 70	b) 63	c) 47	d) 28
878. Phosphate mineral of ph	osphorus is:		
a) $Fe_3(PO_4)_2H_2O$	b) $Ca_3(PO_4)_2$	c) $3Ca_3(PO_4)_2 \cdot CaF_2$	d) $3Ca_3(PO_4)_2 \cdot CaCl_2$
879. Dithionic acid has the for			
a) $H_2S_2O_6$	b) H ₂ SO ₅	c) $H_2S_2O_8$	d) $H_2S_2O_5$
880. A person working with p			
a) Arthritis	b) Phossay jaw	c) Rickets	d) cancer
881. A salt <i>X</i> gives white prec	pitates with lead acetate so	olution, insoluble in hot wat	ter and nitric acid. The salt X
most probably contains:	2.	2	
a) Cl ⁻	b) Ba ²⁺	c) SO_4^{2-}	d) CO_3^{2-}
882. S – S bond is present in			
a) $\alpha - (SO_3)_n$	b) $\gamma - (S_3 O_9)$	c) $H_2S_2O_3$	d) $H_2S_2O_8$
883. NH ₃ molecule can enter i	into complex formation thr	ough:	
a) Ionic bond			
b) Covalent bond			
C) Coordinate bond			
d) Electron deficient bon			
884. Bromine can be liberated	-		
a) KI	b) NaCl	c) Cl ₂	d) I ₂ soluation
885. The oxidation state of Xe	-		
a) +6, 109°	b) +8, 103°	c) +6, 103°	d) +8, 120°
886. Among the following niti			nmonium nitrate; the one
that decomposes withou	t leaving any solid residue i	S	

a) Ammonium nitra	-	c) Silver nitrate	d) Lead nitrate
	phine resemble each other in:		
a) Solubility in wate			
b) Forming salt with	n aciu		
c) Stability	have		
d) Reducing charact		-inla handing of the type	
a) $p\pi - d\pi$	type PO X_3 , P atoms show mult		
, 1	b) $d\pi - d\pi$	c) pπ – pπ	d) No multiple bonding
889. Tear gas is:			
a) COCl ₂	b) CaOCl ₂	c) NH ₃	d) $CCl_3 \cdot NO_2$
	not correct about (CN) ₂ ?		
a) It is poisonous ga b) It is called pseud			
c) It is named as cy	_		
d) None of the abov	_		
	e hloride is heated with NaOH, a	as is evolved which ha	
a) Pungent odour	b) Smell of rotten eggs	c) Smell of ammonia	
, ,	bubbled through solution of si		-
a) Silver	b) Silver phosphide	c) Silver oxide	d) None of these
	iole of peroxodisulphuric acid		a uj None of these
a) Two moles of sul		produces.	
-	roxomonosulphuric acid		
	huric acid and one mole of per	oxomonosulnhuric acid	
	f sulphuric acid, peroxomonosu		zen nerovide
	e electronic configuration as of		
a) Ag^{3+}	b) Cu ²⁺	c) Pb^{4+}	d) Ti ⁴⁺
895. Glacial phosphoric a	-		u) 11
a) H_3PO_4	b) HPO ₃	c) H ₄ P ₂ O ₇	d) H_3PO_2
	ing pairs is not correctly match		u) 1131 02
	is liquid at room temperature-		
	negative element—fluorine	bronnie	
	e halogen—fluorine		
-	idizing agent—iodine		
897. Nitrous oxide is kno			
	b) Laboratory gas	c) Breathing gas	d) Exercising gas
	rogen atom (s) attached to pho		
a) Zero	b) One	c) Two	d) Three
899. Which of the follow	ing is not correct?	-	-
a) Ammonia is used	l as refrigerant		
b) A mixture of Ca(CN)2 and C is known as nitrolin	1	
c) A mixture of Ca(l	$H_2PO_4)_2$ and $CaSO_4 \cdot 2H_2O$ is known	own as superphosphate o	of lime
d) Hydrolysis of NC	l_3 give NH $_3$ and HOCl		
900. Which halide does r	not hydrolyse?		
a) SbCl ₃	b) AsCl ₃	c) PCl ₃	d) NF ₃
901. The noble gas mixtu	re is cooled in a coconut bulb a	at 173k. the gases that ar	e not absorbed are
a) Ne and Xe	b) He and xe	c) Ar and Kr	d) He and Ne
902. In the reaction H_2S	$+ 0_3 \rightarrow$, the products are:		
a) H_20 , S, 0_2	b) $H_2SO_4 + O_2$	c) $H_2 O + S$	d) $SO_2 + H_2$
	ith sulphuric acid, sulphuryl ch	loride (SO_2Cl_2) is forme	d as the final product .this
shows that sulphur	ic acid		

a) Has two hydroxyl groups in its structure c) Is a dibasic acid		b) Is a derivative of sulphur dioxide d) Has greater affinity for water	
904. Caliche is:			
a) Crude saltpetre	b) Impure nitre	c) Impure carnallite	d) Ashes of sea-weeds
905. The number of paired e			
a) 14	b) 8	c) 16	d) 12
906. The number of sigma bo	onds in P ₄ O ₁₀ is:		
a) 6	b) 16	c) 20	d) 7
907. Bleaching action of SO_2	is due to		× •
a) Reduction	b) Hydrolysis	c) Oxidation	d) Acidic nature
908. Nitrogen is produced w	hen NaNO ₂ is heated with:		
a) NH ₄ Cl	b) NH ₄ NO ₃	c) $(NH_4)_2CO_3$	d) NH ₄ OH
909. The structural formula	of hypophosphorous acid is		
0	0Н	0	O U
a) P	b) P	c) P	
́н́ I ́он) ТН	H OH	он он
H	ÓН	ÓН	ÓH
910. Which of the following o	compounds gives chlorine di	ovide when it reacts with S	Ω_{2} in the presence of acid?
a) Sodium chloride	b) Sodium chlorate	c) Sodium perchlorate	d) Sodium chlorite
911. The hydride of group 16	-		-
	b) H ₂ O		
a) H_2 Te	, 1	c) H ₂ S	d) H ₂ Se
912. The noble gas which for			d) Vanan
a) Helium	b) Argon	c) Neon	d) Xenon
913. Iodine may be liberated			
a) H_2SO_4	b) NaHSO ₃	c) KMnO ₄	d) HCl
914. Which oxide is of differe			
a) MnO ₂	b) PbO ₂	c) TiO ₂	d) Na_2O_2
915. Oxide of nitrogen used a			
		c) $N_2 O_3$	d) N ₂ O ₅
916. When excess of KI is ad		ion:	
a) Cuprous iodide is for	med		
b) I ₂ is liberated			
c) Potassium iodide is o	xidized		
d) All of the above			
917. The spectrum of helium	is similar to:		
a) H	b) Na	c) Li ⁺	d) He ⁺
918. The reaction of P ₄ with	X leads selectively to P_4O_6 the theorem of the selectively of P_4O_6 the selective of the selection o	ne X is	
a) dry O_2		b) A mixture of O_2 and N_2	2
c) Moist O ₂		d) O_2 in the presence of a	queous NaOH
919. PH ₄ I + NaOH forms:			
a) PH ₃	b) NH ₃	c) P ₄ O ₆	d) P ₄ O ₁₀
920. When fluoride is heated	with conc. H ₂ SO ₄ and MnO ₂	$_2$ the gas evolved is:	
a) HF	b) MnF ₂	c) F ₂	d) None of these
921. Which would quickly at	sorb oxygen?		
 a) Alkaline solution of p 	yrogallic acid		
a) Alkaline solution of pb) Concentrated sulphu			
b) Concentrated sulphu	ric acid		

a) CCl_4 b) $COCl_2$	c) CF ₄	d) CF_2Cl_2
923. Phosphine is not obtained by the reaction when:		
a) White P is heated with NaOH		
b) Red P is heated with NaOH		
c) Ca_3P_2 reacts with water		
d) Phosphorus trioxide is boiled with water		
924. Nitrogen forms Oxides.		
a) 3 b) 4	c) 5	d) 6
925. Some of the reasons of reacting NH ₃ with hydrogen	,	
a) The nitrogen atom of NH_3 gains electrons	in childrate given below.	
b) NH_3 can give a pair of electrons		
c) A proton in HCl can accept an electron pair from	NH	
d) The Cl ⁻ ion formed has a stable configuration	1 1113	
926. The compound of Sulphur that can be used as refri	gerant is	
a) S_2Cl_2 b) SO_2	c) SO_3	d) H_2SO_4
927. Oxygen can be obtained from bleaching powder by		uj 11 ₂ 50 ₄
a) Adding dilute acid	^	
b) Passing carbon dioxide		
c) Heating with a cobalt salt		
d) Adding alkalies		
928. The catalyst used in the manufacture of ammonia i	is in the second se	
a) V_2O_5 b) Pt	c) Fe	d) Ni(CO) ₄
929. F_2 is largely used in:		4) 11(00)4
a) Making Freon b) Making Teflon	c) Rocket fuels	d) All of these
930. Substance used in Holme's signal is:		
a) NH ₃ b) PH ₃	c) PH5	d) P ₂ O ₅
931. Which one of the following combines with Fe (II) is	5 0	
a) NO b) N_2O	c) $N_2 O_3$	d) N ₂ O ₅
932. All the three atoms of ozone are used up when it re		
a) H_2O_2 b) PbS	c) KI	d) SO ₂
933. Which can act as an acid in sulphuric acid?	-	
a) HNO_3 b) H_3PO_4	c) HClO ₄	d) H_2O
934. SO ₂ reduces cupric ion to cuprous ion in presence	of:	
a) KOH b) H ₂ O	c) KCNS	d) H_2SO_4
935. On heating a salt with NaOH, smell of $\rm NH_3$ is obtain	ned. The salt contains:	
a) NH_4^+ b) NO_3^-	c) NO ₂	d) CH ₃ COO ⁻
936. The catalyst used in the manufacture of HNO_3 by O	Stwald's process is:	
a) Platinum black b) Finely divided nickel	c) Vanadium pentoxide	d) Platinum gauze
937. Which is used in vulcanisation of rubber?		
a) SF_6 b) SF_4	c) SF ₂	d) S_2Cl_2
938. Superphosphate of lime is obtained from the react	ion of:	
a) Calcium carbonate with phosphoric acid		
b) Calcium phosphate with hydrochloric acid		
c) Calcium phosphate with sulphuric acid		
d) Bones with gypsum		
939. The anhydride of orthophosphoric acid is:		
a) P_4O_{10} b) P_2O_5	c) P_4O_6	d) P_2O_3
940. Which is bad conductor of electricity?		
a) H_2F_2 b) HCl	c) HBr	d) HI
941. Which compound has an incorrect formula?		
a) Thionyl chloride— SOCl ₂		

b) Sulphuryl chloride— S c) Oleum— H ₂ S ₂ O ₆	U ₂ CI ₂		
d) Phosphorus oxychlorid	le— POCl ₂		
942. Chromium dissolves in di	-	. The colour of the ion is:	
a) Blue	b) Green	c) Yellow	d) Orange
943. The oxide that is not redu	•	•	
a) Ag_20	b) Fe_2O_3	c) CuO	d) K ₂ 0
944. Bleaching action of SO ₂ is			
a) Oxidizing property		c) Basic property	d) Reducing property
945. The chloric acid and chlorid		ej basie property	a) neadening property
a) Good oxidizing agents			
b) Bleaching agents			\sim
c) Undergo disproportion	nation on heating		
d) All of the above	lation on neuting		
946. The oxidation number of	xenon in XeOF ₂ is		
a) Zero	b) 2	c) 4	d) 3
947. Which metal liberates H_2	,		
a) Zn	b) Cu	c) Mn	d) Hg
948. When dry chlorine is pas	,		ujng
a) Cl_2O	b) ClO ₂	c) ClO_3	d) ClO ₄
949. FeCl ₃ solution on reaction	-		uj 0104
a) FeCl ₂	b) $Fe_2(SO_4)_3$	c) $Fe_2(SO_3)_3$	d) FeSO4
950. Which of the following is		$c_{1}c_{2}(30_{3})_{3}$	u) 1 0304
a) (NaPO ₃) ₆	b) NaOCl	c) KClO ₃	d) KHF ₂
951. Pb reacts with dilute HN(2	c) Kci0 ₃	
a) NO	b) NH_4NO_3	c) N_2O_5	d) NO ₂
952. The chemical used for co	,		
	b) NH ₄ OH	c) NH ₄ Cl	d) Liquid NH ₃
a) CS ₂ 953. If an allotropic form chan			a) Eiquia Mi
_			d) None of these
954. The percentage of N_2 in a	b) Dynamic allotropy	c) Monotropy	d) None of these
		c) Both (a) and (b)	d) None of these
a) 75% by weight	b) 78.7% by volume	c) boui (a) and (b)	d) None of these
955. Xenon best reacts with:	va clamont		
a) The most electropositib) The most electronegat			
c) The hydrogen halides	ive element		
d) Non-metals			
956. 98% H_2SO_4 is:	h) Olaum	a) Azastusnis miutura	d) Nora of these
a) Pyrosulphuric acid	b) Oleum	c) Azeotropic mixture	d) None of these
957. Excess of KI reacts with C incorrect for this reaction		$_2S_2O_3$ solution is added to	it. Which of the statement is
		a) Na C O is swidiard	d) Cu. L. is formed
a) Evolved I_2 is reduced		c) $Na_2S_2O_3$ is oxidised	d) Cu ₂ I ₂ is formed
958. The gas used in the manu		-) NO	
a) CO_2	b) N_2O	c) NO	d) $N_2 O_3$
959. A white precipitate is obt		ו <u>סית</u> (
a) PCl ₅	b) NCl ₃	c) BiCl ₃	d) AsCl ₃
960. The equation, $2\text{KClO}_3 \rightarrow$		the following, except:	
a) New compounds are fo			
b) The reaction is exother			
c) The law of conservation	n of mass is obeyed		

d) The amount of KClO			
		-	s 49. The volume of chlorine
_	sample is treated with HCl at		
a) 1.5 litre	b) 3.0 litre	c) 15.0 litre	d) 150 litre
962. Which one has the high	nest percentage of nitrogen?		
a) Calcium nitrate		b) Ammonium sulphate	
c) Urea		d) Ammonium nitrate	
963. Which has maximum p	•		
a) NaClO	b) NaClO ₂	c) NaClO ₃	d) NaClO ₄
964. Which of the following			
a) Silica gel	b) P_2O_5	c) Conc. H ₂ SO ₄	d) Hydrated CaCl ₂
965. The compound that att			
a) XeF ₂	b) XeF ₄	c) XeF ₆	d) None of these
966. In the reaction $K + SO_2$			
a) $KO_2 + S$	b) $K_2SO_3 + K_2S_2O_3$	c) K ₂ SO ₄	d) None of these
967. Cl(OH)is:			
a) An oxide	b) A chloride	c) A hydride	d) An acid
968. Which of the following			۲
a) N	b) P	c) As	d) Sb
969. Which one is not an aci			
a) NaH ₂ PO ₂	b) NaH ₂ PO ₃	c) NaH ₂ PO ₄	d) None of these
970. Oxygen is gas but sulph			
	l of discrete molecules while		
	sulphur is much higher than		
	oxidizing agent than sulphu		
	hur is much higher than tha		
971. In contact process imp		-	
a) Al(OH) ₃	b) Fe(OH) ₃	c) $Cr(OH)_3$	d) Fe_2O_3
972. Concentrated sulphuri			
a) Efflorescent	b) Hygroscopic	c) Oxidizing agent	d) Sulphonating agent
973. Which halogen does no			
a) F_2	b) Cl ₂	c) Br ₂	d) I ₂
974. Which hydride is most			
a) H_2O	b) H_2S	c) H ₂ Te	d) H ₂ Se
975. The discovery of isotop			
a) Xe	b) Kr	c) Ar	d) Ne
976. In the oxo-acids of chlo			
a) $d\pi - d\pi$ bonding	b) $p\pi - d\pi$ bonding	c) $p\pi - p\pi$ bonding	d) None of these
977. Arsenic acid is:			
a) H ₃ AsO ₃	b) H ₃ AsO ₄	c) H ₂ AsO ₄	d) HAsO ₄
978. The halogen that is mo	st readily reduced is:		
a) Chlorine			
b) Bromine			
c) Iodine			
d) Fluorine			
979. The bond angle O—S—		_	
a) 119.5 °, <i>sp</i> ³	b) 119.5 °, <i>sp</i> ²	c) 109°28', <i>sp</i> ³	d) None of these
980. Which of the element o		-	
a) N	b) P	c) As	d) Sb
981. Halogens are placed in	the VIIA group or gp. 17 of t	he periodic table, because:	

a) They are non-r	netals		
b) They are very i			
c) They are electr			
	ectrons in outermost orbit		
982. Nitrosyl chloride			
a) NOCl	b) NOCl ₂	c) NO ₂ Cl ₂	d) $N_2 OCl_2$
	wing gives M ^{3–} ion most read		
a) P	b) N	c) Sn	d) As
-	e difference in acid strength in		
	these acids exists in different	,	
	n these acids are not all bound		same number of
b) unprotonated of		to the phosphorus and have	Sume number of
•	highly electronegative elemen	t	
	ides are less basic	t i i i i i i i i i i i i i i i i i i i	
<i>,</i>	ing molecule (i) XeO_3 (ii) Xe)F. (iji)XeF.	
-	e number of lone pairs on Xe		
a) (i) and (iii) onl	-	c) (ii) and (iii) only	d) (i), (ii) and (iii)
	highest percentage of ionic cha		
a) HCl	b) HBr	c) HF	d) HI
,	slowly loses its activity when	-	2
	noisture to liberate O_2		
b) Auto oxidation	_		
c) Loss of $CaCl_2$			
d) Formation of C	a(OH) ₂		
988. Which statement			
a) NH_3 is a Lewis	base		
b) NH ₃ molecule i	s triangular planar		
c) NH_3 does not a	ct as reducing agent		
d) NH ₃ (liquid) is	used as a solvent		
989. The number of hy	drogen atom(s) attached to pl	nosphorus atom in hypophor	us acid is ?
a) Three	b) One	c) Two	d) Zero
990. Which one of the	following cations does not for	n a complex with ammonia?	
a) Ag ⁺	b) Cu ²⁺	c) Cd ²⁺	d) Pb ²⁺
991. In the laboratory	$ m H_2S$ gas is prepared by using b	lack lumps and dil. H ₂ SO ₄ . Th	e black lumps are
a) FeSO4	b) MnO ₂	c) FeS	d) FeSO ₃
992. Nuclear fusion pr	oduces		
a) Argon	b) Deuterium	c) Helium	d) Krypton
993. Which possesses	least stable covalent P—H bor	ld?	
a) PH ₃	b) P ₂ H ₆	c) P ₂ H ₅	d) PH_6^+
	of the thermal stability of hyd		
a) HI>HCI <hf>I</hf>	2	c) HF>HCl>HBr>HI	d) HI>HBr>HCl>HF
995. Noble gases can b			
	hrough some solutions		
b) Electrolysis of			
	l desorption on coconut charc	oal	
d) None of the ab			
	wing statements is not valid for		
-	ntain tetrahedral four coordin		
	ntains atleast one $P = 0$ unit a		
cj Urtnopnospho	ric acid is used in the manufac	ture of triple superphosphate	2

d) Hypophosphorous acid is a diprotic acid

997. Which statement is not true for astatine?

a) It is less electronegative than iodine

b) It exhibits only -1 oxidation state

c) Intermolecular forces between the astatine molecules will be larger than between the iodine molecules

d) It is composed of diatomic molecules

998. The only element in VIA group or group 16 elements, which is definitely a metal, is: a) Tellurium b) Selenium c) Sulphur d) Polonium 999. The increasing order of reactivity of halogens is: a) $I_2 < Br_2 < Cl_2, < F_2$ c) $Cl_2 < Br_2 < I_2 < F_2$ b) $Cl_2 < F_2 < Br_2 < I_2$ d) $I_2 < Cl_2 < Br_2$ 100 Coconut charcoal at - 100°C adsorbs a mixture of: 0. b) Ar, Kr and Xe c) Kr and Xe d) He and Ne a) He and Kr 100 Clathrates are 1. b) Complex compounds a) Non-stoichiometric compounds c) Interstitial compounds d) Ionic compounds 100 Two pungent smelling gases bleach a certain substance. The gases may be 2. b) Cl₂ and NH₃ c) NH₃ and PH₃ d) O_2 and CO_2 a) Cl_2 and SO_2 100 Nitrogen is an essential constituent of all: 3. a) Proteins b) Fats c) Proteins and fats d) None of these 100 Mark the halogen which shows electropositive character: 4. a) F b) Cl c) Br d) I 100 Which of the following is called Berthelot's salt? 5. a) $(NaPO_3)_6$ b) NaOCI c) KClO₃ d) KHF₂ 100 A compound which leaves behind no residue on heating is: 6. b) KNO_3 c) NH_4NO_3 a) $Cu(NO_3)_2$ d) None of these 100 Phosphine on reaction with hydrobromic acid gives: 7. b) PH₄Br c) PBr₅ a) PBr₃ d) P_2H_4 100 Bleaching powder has the molecular formula: 8. b) CaClO a) $CaClO_3$ c) $CaOCl_2$ d) $Ca(OCl)_2$ 100 Six volumes of oxygen, on complete ozonisation, form Volumes of ozone. 9. a) 2 b) 4 c) 6 d) 3 101 Iodine solution stained on clothes can be removed by: 0. a) NaCl b) NaBr d) $Na_2S_4O_6$ c) $Na_2S_2O_3$ 101 The substance which does not liberate oxygen on treatment with ozone is 1. a) PbS b) HCl c) SO₂ d) Hg 101 In the reaction $CaS + H_2S \rightarrow$, the products are: 2. a) $CaS_2 + H_2$ b) $CaS_3 + H_2$ c) $CaS_5 + H_2$ d) Ca + S101 HI cannot be prepared by heating KI with conc. H₂SO₄ because:

a) H₂SO₄ is stronger acid than HI b) HI is stronger acid than H₂SO₄ c) H_2SO_4 is an oxidizing agent d) HI is more volatile than H_2SO_4 101 Lead nitrate on heating gives lead oxide, nitrogen dioxide and oxygen. The reaction is known as: 4. a) Combustion b) Combination c) Displacement d) Decomposition 101 Which hydride is the strongest base? 5. c) PH₃ a) AsH₃ b) NH_3 d) SbH₂ 101 Which forms maximum compounds with xenon? 6. a) F b) Cl c) Br 101 Claude's process is used in the manufacture of: 7. d) NO₂ c) N_20 a) N_2 b) NH₃ 101 Which is a saline oxide? 8. b) BaO_2 c) Na_20 d) Fe_2O_3 a) Na_2O_2 101 Which set of elements has the strong tendency to form anions? 9. a) N, O, F b) P, S, Cl c) As, Se, Br d) Sb, Te, I 102 Light blue colour of nitrous acid is due to dissolved: 0. a) 0_2 b) N_2 c) N_2O d) $N_2 O_3$ 102 Which one of the following pairs of reactants does not form oxygen when they react with each other? 1. a) F₂, NaOH solution (hot, conc.) b) F₂, H₂O d) CaOCl₂, H₂SO₄, (dilute, small amount) c) Cl₂, NaOH solution (cold, dilute) 102 Oxide of a non-metal possesses the following characteristics: (i) It is both a proton donor and proton acceptor. (ii) It is poor conductor of electricity. (iii) It reacts readily with basic and acidic oxides. (iv) It 2. oxidses Fe at boiling point. The oxide is: b) CO_2 c) H_2O_2 d) NO a) H₂O 102 Most unstable hydride is 3. b) PH₃ d) BiH₃ a) NH_3 c) AsH₃ 102 Phosphide ion has the electronic structure similar to that of: a) Nitride ion b) Chloride ion d) Sodium ion c) Fluoride ion 102 The gaseous mixture used by deep sea divers for respiration is: a) $N_2 + O_2$ mixture b) He + 0_2 mixture c) Ar + 0_2 mixture d) Ne + 0_2 mixture 102 A gas that cannot be collected over water is 6. d) PH_3 a) SO_2 b) N_2 c) 0_2 102 Which is used in the manufacture of safe matchsticks? 7. a) Red phosphorus b) Sulphur c) Selenium d) White phosphorus 102 Bond angle in O_3 molecule is: 8.

3.

a) 108° 29' b) 108° 28' c) 116° 90' d) 120° 102 The noble gas which shows abnormal behaviour in liquid state and behave as super fluid is 9. a) Ne b) He c) Ar d) Xe 103 Which of the following is not hydrolysed? 0. a) PF_3 b) SbCl₃ c) AsCl₃ d) NF_3 103 NH₃ has a much higher boiling point than PH₃ because: 1. a) NH₃ has a higher molecular weight b) NH₃ undergoes umbrella inversion c) NH₃ forms hydrogen bond d) NH₃ contains ionic bonds whereas PH₃ contains covalent bonds 103 An element belongs to group 15 and third period of the periodic table. Its electronic configuration will be 2. a) $1s^2 2s^2 2p^3$ b) 1*s*² 2*s*² 2*p*⁴ c) $1s^2 2s^2 2p^6 3s^2 3p^3$ d) 1*s² 2s² 2p⁶ 3s² 3p²* 103 The reagent used for testing ammonia is: 3. b) Nessler's reagent c) Fenton's reagent d) Molisch reagent a) Bayer's reagent 103 Elements of nitrogen family having allotropic forms are: 4. a) N, Sb, Bi b) N, P, As, Sb c) As, Sb, B d) P, As, Bi 103 An example of tetrabasic acid is: 5. a) Orthophosphorus acid b) Orthophosphoric acid c) Metaphosphoric acid d) Pyrophosphoric acid 103 Phosphoric acid is syrupy liquid due to: 6. a) Strong covalent bond b) Van der Waals' forces c) Hydrogen bonding d) None of these 103 Two oxides of nitrogen NO and NO₂ react together at 253°K and form a compound of nitrogen X. X reacts with water to yield another compound of nitrogen *Y*. 7. The shape of the anion of Y molecule is a) Tetrahedral **b**) Triangular planar c) Square planar d) Pyramidal 103 The noble gas which forms maximum number of compounds is 8. d) Xe a) Ar b) He c) Ne 103 When conc. H_2SO_4 is heated with P_2O_5 the acid is converted into 9. a) Sulphure trioxide b) Sulphur dioxide c) Sulphur d) A mixture of sulphur dioxide and sulphur trioxide 104 The most reactive allotropic form of phosphorus is: 0. a) Red phosphorus b) Yellow phosphorus c) Black phosphorus d) Violet phosphorus 104 P_2O_5 when treated with cold water gives: 1. a) Orthophosphoric acid b) Metaphosphoric acid c) Pyrophosphoric acid d) Hypophosphoric acid 104 Sodium pyrophosphate is represented by which of the following formula?

2. a) $Na_2P_2O_4$ b) Na₄ P₂ O₅ c) Na₄ P₂O₇ d) $Na_2 P_2 O_5$ 104 Which of the following(s) when heated give nitrogen gas? 3. d) Both a and b a) $(NH_4)_2Cr_2O_7$ b) Ba $(N_3)_2$ c) NH_4NO_3 104 Ozone is readily dissolved in: 4. a) Water b) Turpentine oil c) Carbon disulphide d) Ammonia 104 When AgNO₃ is heated strongly, the products formed are 5. b) NO_2 and N_2O c) NO and O_2 a) NO and NO_2 d) NO₂ and O_2 104 Agron was discovered by 6. a) Rayleigh b) Ramsay c) Both (a) and (b) d) Frankland and Lockeye 104 Phosphorus compound used as drying agent and desiccating agent is: 7. c) P₄O₁₀ a) PCl₃ b) PCl₅ 104 How many bonding electron pairs are there in white phosphorus? 8. a) 6 b) 12 d) 8 c) 4 104 Which of the following does not react with fluorine? 9. b) Ar a) Kr c) Xe d) All of these 105 Which of the following causes damage to the building containing calcium and responsible for cough and 0. choking in human? a) Sulphur b) Carbon c) Nitrogen dioxide d) Sulphur dioxide 105 CIO⁻ disproportionate into 1. b) CI^{-} and CIO_{3}^{-} d) CI⁻and O⁻ a) CI⁻ and O c) CI and O 105 Hydrofluoric acid is not preserved in glass bottles because: 2. a) It reacts with the visible part of light b) It reacts with the sodium oxide of the glass composition c) It reacts with the aluminium oxide of the glass composition d) It reacts with the silicon dioxide of glass 105 SO₂ acts as temporary bleaching agent but Cl₂ acts as permanent bleaching agent. why? 3. a) Cl₂ bleaches due to reduction but SO₂ due oxidation b) Cl_2 bleaches due to oxidation but SO_2 due to reduction. c) Both of the above d) None of the above 105 Liquid ammonia bottles be opened after cooling them in ice for some time. It is because liquid NH₃: 4. a) Brings tears in the eyes b) Has a high vapour pressure c) Is a corrosive liquid d) Is a mild explosive 105 is the compound which can remove both oxygen and nitrogen of the air when it is passed over it at 5. 1000°C. a) CaC_2 b) CaCl₂ c) CaCN₂ d) $Ca(CN)_2$

105 The crystals of ferrous sulphate on heating give:6.

a) FeO + SO₂ + H₂O b) $Fe_2O_3 + H_2SO_4 + H_2O_4$ c) $Fe_2O_3 + SO_2 + H_2SO_4 + H_2O_4$ d) FeO + SO₃ + $H_2SO_4 + H_2O$ 105 Which one of the following reactions does not occur? 7. a) $F_2 + Cl^- \rightarrow 2F^- + Cl_2$ b) $Cl_2 + 2F^- \rightarrow 2Cl^- + F_2$ c) $Br_2 + 2I^- \rightarrow 2Br^- + I_2$ d) $Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$ 105 By the action of hot conc H_2SO_4 , phosphorus changes to 8. a) Phosphorous acid b) Metaphosphoric acid c) Pyrophosphoric acid d) Orthophosphoric acid 105 Which is an amphoteric oxide? 9. c) ZnO d) Na_20 a) SO_2 b) $B_2 O_3$ 106 Anhydride of nitric acid is: 0. a) NO b) $N_2 O_3$ d) $N_2 O_5$ c) N_20 106 Which of the following attacks glass: 1. a) HCl b) HF c) H d) HBr 106 Which property of white phosphorus is common to red P? 2. a) It is soluble in carbon disulphide b) It shows chemiluminescence c) It reacts with hot caustic soda solution to give phosphine d) It burns when heated in air 106 Which one of the following pairs of substances when mixed, produces chlorine gas at room temperature? 3. b) NaCl and HNO₃ (conc) a) NaCl and MnO₂ c) NaCl and H_2SO_4 (conc) d) HCl (conc) and KMnO₄ 106 Oxygen is divalent, whereas sulphur exhibits valency of 2, 4 and 6 due to: 4. a) S is bigger atom b) Ionization potential of sulphur is more c) S being less electronegative than O d) Presence of *d*-orbitals in S 106 Which of the following elements is good conductor of electricity? 5. b) Sb c) Bi d) All of these a) As 106 Which one is known as oil of vitriol? 6. a) $H_2S_2O_7$ b) H_2SO_3 c) $H_2S_2O_8$ d) H_2SO_4 106 The electrolysis of brine solution to manufacture chlorine is carried out in the: 7. a) Dennis cell b) Gray cell c) Nelson cell d) Solvay cell 106 The correct order of acidic strength is: 8. a) $Al_2O_3 < SiO_2 < P_2O_3 < SO_2$

	b) $SiO_2 < SO_2 < Al_2O_3 <$	P_2O_3						
	c) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$							
	d) $SO_2 < P_2O_3 < SiO_2 < A$	$l_2 0_3$						
106	6 Ozone molecule has geometry.							
9.								
	a) Linear	b) Triangular	c) Tetrahedral	d) None of these				
107	Which is not true for ozor	, ,	,					
0.								
•	a) It oxidizes lead sulphid	e		\frown				
	b) It oxidizes potassium id							
	c) It oxidizes mercury	Sulue						
	d) It cannot act as bleachi	ng agent						
107	The strongest oxidizing ag							
1.	The set ongest oxidizing ag	50110 13.						
1.	a) HNO ₃	b) H_2SO_4	c) H ₂ SO ₃	0246				
107	The oxidation states of ph	· - ·	cj 11 ₂ 50 ₃	d) $H_2S_2O_3$				
2.	The oxidation states of ph	losphorus vary monn.						
۷.	a) -1 to +3	b) -3 to +3	c) -3 to +5	d) –5 to +1				
107		rms a molecule with eight of		uj –5 to +1				
	The following element to	This a molecule with eight (of its own atoms					
3.	-) (;	h) (ם נו				
107	a) Si	b) S	c) Cl	d) P				
	The correct order of acidi	c nature of oxides is in the	order					
4.		NO						
	a) $NO < N_2O < N_2O_3 < NO_2 < N_2O_3 < N_2O_2 < N_2O_3 < N_2O_2 < N_2O_2$		b) $N_20 < N0 < N_20_3 < N0_2$					
107	c) $N_2O_5 < NO_2 < N_2O_3 < NO_2$		d) $N_2O_5 < N_2O_3 < NO_2 < N$	$0 < N_2 0$				
	Bleaching powder is mixe	ed calcium salt of:						
5.								
405	a) HCl and HClO	b) HClO ₂ and HCl	c) HClO and HClO ₂	d) HCl and HClO ₃				
	In compounds of type ECI	₃ , where $E = B$, P, As or Bi	the angles $CI - E - CI$ for c	lifferent E are in the order				
6.								
107		b) $B > P = As = Bi$	c) $B < P = As = Bi$	d) B < P < As < Bi				
	Bleaching properties of bl	leaching powder are due to) Its:					
7.		λ						
	a) Oxidizing properties							
	b) Reducing properties							
	c) Basic properties							
405	d) Disinfecting properties							
	One mole of calcium phos	phide on reaction with exc	ess water gives					
8.								
	a) One mole of phosphoru		b) Two moles of phosphin					
	c) One mole of phosphine		d) Two moles of phospho	ric acid				
	Which noble gas has the l	east tendency to form com	pounds?					
9.								
	a) He	b) Ne	c) Kr	d) Xe				
	Mixture used on tips of m	atchsticks is:						
0.								
	a) S + K	b) Antimony sulphide						
	, ,	eacts with NH ₃ to form a mi		_				
1.		cts with H_2 to give an acid	(Y). (Y) can also be prepar	ed by heating its salt with				
	H_3PO_4 . X and Y are							
	a) Cl ₂ , HCl	b) SO_2 , H_2SO_4	c) Br ₂ , HBr	d) I ₂ , HI				

108 The catalyst used in the manufacture of H₂SO₄ by contact process is 2. a) V_2O_3 b) V_2O_5 c) FeO d) Cu 108 Which one is the strongest reducing agent? 3. a) NH_3 b) AsH_3 c) SbH_3 d) PH_3 108 Which among the following statements are correct? (i)Carbon monoxide is neutral whereas SO₃ is acidic. 4. (ii)Potassium oxide is basic whereas nitrous oxide is acidic. (iii) Aluminium and zinc oxides are amphoteric. (iv) Sulphur trioxide is acidic whereas phosphorus pentoxide is basic. (v) Carbon dioxide is neutal whereas sulphur dioxide is amphoteric d) (ii) and (iv) a) (ii) and (iii) b) (i) and (iv) c) (i) and (iii) 108 Aqua fortis is: 5. a) HNO₃ b) HNO_2 c) H_2NO_2 d) $H_2N_2O_2$ 108 Which among the following is the strongest acid? 6. c) HBr d) HI a) HF b) HCl 108 Which does not liberate O_2 on heating? 7. b) NaNO₃ c) Pb_2 d) KClO₃ a) MgO 108 Late discovery of F₂ is due to its: 8. a) High reactivity b) High ionization potential c) High electronegativity d) High electron affinity 108 Peroxy acids are 9. c) $H_2SO_5, H_2S_2O_8$ d) $H_2S_2O_3$, $H_2S_2O_8$ b) $H_2S_4O_6$, H_2SO_5 a) $H_2S_2O_3$, $H_2S_4O_6$ 109 The pale-yellow coloured gas is 0. d) I_2 a) Cl_2 b) F_2 c) Br_2 109 Which of the following is a pseudohalogen? 1. a) ICl_3 b) $lCl_2^$ c) $(CN)_2$ d) N_3^- 109 Cl_2 reacts with CS_2 in presence of I_2 catalyst to form 2. a) CHCl₃ b) C₂H₅Cl d) C_2H_6 c) CCl₄ 109 HBr and HI reduce sulphuric acid; HCl can reduce KMnO₄ and HF reduces: a) H_2SO_4 b) KMnO₄ c) $K_2 Cr_2 O_7$ d) None of these 109 A substance *X* when heated with sulphuric acid liberates a gas which turns starch paper blue. The substance is: 4. a) NaCl b) NaBr c) Nal d) $NaNO_3$ 109 NO₂ is not obtained on heating 5. a) AgNO₃ b) KNO_3 c) $Cu(NO_3)_2$ d) $Pb(NO_3)_2$ 109 Concentrated H₂SO₄ has great affinity for: 6.

;	a) H ₂ S	b) H ₂ 0	c) CO ₂	d) 0 ₂			
		se nitric oxide in the labora		<i>, , , , , , , , , ,</i>			
7.			-				
;	a) Zinc with cold and	dilute HNO ₃	b) Zinc with concentra	ated HNO ₃			
(c) Copper with cold an	nd dilute HNO3	d) Heating NH ₄ NO ₃				
109	Number of $p\pi - d\pi$ be	onds present in XeO ₄ are					
8.							
;	a) Four	b) Two	c) Three	d) zero			
109	Which acid has P—P l	inkage?					
).				$\langle \langle \rangle$			
	a) Hypophosphoric ac						
	b) Pyrophosphoric aci						
	c) Metaphosphoric ac						
	d) Orthophosphoric a						
	By the action of conce	ntrated hydrochloric acid o	on potassium chlorate we g	et this mixture of gases:			
).							
	a) $CO_2 + Cl_2$	b) $O_2 + ClO_2$	c) $Cl_2 + ClO_2$	d) $0_2 + Cl_2 + Cl0_2$			
	Generally H ₂ O exists a	as a liquid while H ₂ S as a ga	s because:				
•	a) II. O ah ayya hyadwa a	an handing					
	a) H_2O shows hydroge						
	b) Molecular weight of H ₂ S is higher						
	 c) Bond angle in H₂O is larger d) Size of 'O' atom is smaller than 'S' atom 						
	-	oxidized in the soil to nitrite	as hu				
		JAIGUZEU III CHE SOII CO IIICI IC	-5 Uy.				
	a) Denitrifying bacteria						
	b) Nitrifying bacteria						
	c) Ammonifying bacte	eria					
	d) Nitrosifying bacteri						
	Bleaching powder is a						
3.							
i	a) Calcium hypochlori	ite and calcium chloride					
	b) Calcium chlorate ar						
(c) Calcium hypochlori	ite and basic calcium chlori	de				
(d) Calcium chlorate ar	nd calcium hydroxide					
10	When H ₂ S gas is passe	ed through nitric acid, the p	roduct is				
•							
i	a) Rhombic S	b) Amorphous S	c) Prismatic S	d) None of these			
.10	a) Rhombic S The chemical formula	, i i i i i i i i i i i i i i i i i i i	c) Prismatic S	d) None of these			
10 '	The chemical formula	for tartar emetic is:					
10 '		, i i i i i i i i i i i i i i i i i i i	c) Prismatic S c) CH(OH)COOK	d) None of these d) CH(OH)COOSbO			
10 '	The chemical formula a) CH(OH)COOH	for tartar emetic is: b) CH(OH)COONa	c) CH(OH)COOK	d) CH(OH)COOSbO			
10	The chemical formula a) CH(OH)COOH CH(OH)COOK	for tartar emetic is: b) CH(OH)COONa CH(OH)COOK					
10	The chemical formula a) CH(OH)COOH	for tartar emetic is: b) CH(OH)COONa CH(OH)COOK	c) CH(OH)COOK	d) CH(OH)COOSbO			
10	The chemical formula a) CH(OH)COOH CH(OH)COOK Iodine imparts brown	for tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to:	c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK			
	The chemical formula a) CH(OH)COOH CH(OH)COOK Iodine imparts brown a) Water	for tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	c) CH(OH)COOK	d) CH(OH)COOSbO			
	The chemical formula a) CH(OH)COOH CH(OH)COOK Iodine imparts brown	for tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK			
110 5. 110 5.	The chemical formula a) CH(OH)COOH CH(OH)COOK Iodine imparts brown a) Water Neon is extensively us	for tartar emetic is: b) CH(OH)COONa CH(OH)COOK colour to: b) Benzene	c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK			
110 5. 110 5. 110 7.	The chemical formula a) CH(OH)COOH CH(OH)COOK Iodine imparts brown a) Water	for tartar emetic is: b) CH(OH)COONa cH(OH)COOK colour to: b) Benzene sed in:	c) CH(OH)COOK CH(OH)COOK	d) CH(OH)COOSbO CH(OH)COOK			

d) Coloured electric discharge lamps 110 Fluorine exhibits an oxidation state of only -1 because 8. a) It can readily accept an electron b) It is very strongly electronegative c) It is a non metal d) It belongs to halogen family 110 When oxygen is passed through a solution of Na_2SO_3 we get: 9. c) NaHSO₄ d) NaH a) Na_2SO_4 b) Na_2S 111 F_2 on treatment with methane gives: 0. b) CH₃F c) CHF₃ d) All of these a) CH_2F_2 111 Coloured oxide is nitrogen is: 1. a) N_2O b) NO c) $N_2 O_4$ d) NC 111 Oxalic acid on dehydration by conc. H₂SO₄ gives: 2. d) $CO + CO_{2}$ b) CO c) CO_2 a) $C + CO_2$ 111 Which of the following is the life saving mixture for an asthma patient? 3. b) Mixture of neon and oxygen a) Mixture of helium and oxygen d) Mixture of argon and oxygen c) Mixture of xenon and nitrogen 111 SO_2 reacts with Cl_2 to yield: 4. a) Thionyl chloride b) Carbonyl chloride c) Sulphuryl chloride d) Sulphur monochloride 111 Which element is used in the preparation of pesticides? 5. a) Arsenic b) Bismuth c) Antimony d) Nitrogen 111 Which of the following is not a peroxy acid? 6. a) Perphosphoric acid b) Pernitric acid c) Perdisulphuric acid d) Perchloric acid 111 White phosphorus is: 7. b) Mild poison a) Strong poison c) Non-poisonous d) None of these 111 Which on heating with conc. H_2SO_4 gives violet vapours? 8. a) Iodide b) Nitrate c) Sulphate d) Bromide 111 Formation of ozonide is: 9. a) Addition reaction b) Substitution reaction c) Decomposition d) None of these 112 Which blue liquid is obtained on reacting equimolar amounts of two gases at -30° C? 0. b) N_20 c) $N_2 O_3$ d) $N_2 O_5$ a) $N_2 O_4$ 112 Which of the following is oxidised in air? 1. a) CH₄ b) H_20 c) NaCl d) White phosphorus 112 Which statement is not correct? 2.

a) White and red phosphorus react with chlorine at room temperature

b) White phosphorus is metastable, while red phosphorus is stable c) White phosphorus is lighter than red phosphorus d) White phosphorus is highly poisonous, while red phosphorus is not 112 Which element does not form stable diatomic molecules? 3. b) Phosphorus d) Oxygen a) Iodine c) Nitrogen 112 H_2S is a: 4. a) Weak dibasic acid b) Weak monobasic acid c) Strong dibasic acid d) Strong monobasic acid 112 Ozone oxidises moist sulphur to: 5. d) None of these a) SO_2 b) SO_3 c) H_2SO_4 112 Which element reacts with chlorine to give pentachloride? 6. a) P d) All of these b) As c) Sb 112 Xenon hexafluoride reacts with silica to form a xenon compound X. The oxidation state of xenon in X is 7. d) 0 a) +2 b) +4 112 Anomalous behavior of oxygen is due to: 8. a) High electronegativity b) Small atomic size c) Non-availability of *d*-orbitals d) All of the above 112 In oxo-acids of halogen, X = 0 bond is formed as a result of: 9. a) $d\pi - d\pi$ overlapping b) $p \pi - p \pi$ overlapping c) $d\pi - p\pi$ overlapping d) either of these 113 Fuming nitric acid is: 0. b) Conc. $HNO_3 + NO_3$ c) Conc. $HNO_3 + N_2O_3$ a) Conc. HNO₃ + NO₂ d) Conc. $HNO_3 + NO$ 113 When NaCl or KCl is heated with conc. H_2SO_4 and solid $K_2Cr_2O_7$, we get: 1. a) Chromic chloride b) Chromous chloride c) Chromyl chloride (CrO_2Cl_2) d) Chromic sulphate 113 Ozone is used for purifying water because 2. a) It dissociates and release oxygen b) Do not leave any foul smell like chlorine. c) Kills bacteria, cyst, fungi and acts as a biocide. d) All of the above 113 Nitrogen is a relatively inactive element because: 3. a) Its atom has a stable electronic configuration b) It has a low atomic radius c) Its electronegativity is fairly high d) Dissociation energy of its molecule is fairly high

113 The following species will not exhibit disproportionation reaction4.

a) CIO⁻ b) CIO_{2}^{-} c) $CIO_3^$ d) CIO_4^- 113 Which of the following is used to prepare Cl₂ gas at room temperature from concentrated HCl? 5. a) MnO_2 b) H_2S c) KMnO₄ d) Cr_2O_3 113 Arsine is: 6. a) Solid b) Liquid c) Supersaturate liquid d) Gas 113 The arrangement of oxygen atoms around phosphorus atoms in P_4O_{10} is: 7. a) Pyramidal b) Octahedral c) Square planar d) Tetrahedral 113 Most of the elementary gases are obtained by chemical reaction of their compounds. For example, chlorine is obtained by allowing KMnO₄ to react with hydrochloric acid. Fluorine, however, can be obtained only by 8. the electrolysis of a fluoride. This is because: a) Fluorine is a highly reactive gas b) Fluorine is the strongest chemical oxidizing agent c) Fluorine is highly poisonous d) It is easy to electrolyse a fluoride 113 The number of different oxides of chlorine is: 9. b) 4 d) 6 a) 3 c) 5 114 The gas which does not show oxidizing and bleaching properties is: 0. a) Chlorine b) Ozone c) Sulphur dioxide d) Nitrous oxide 114 Ammonia is generally manufactured for fertilizers by the reaction: 1. a) $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2H_2O + 2NH_3$ b) By passing an electric discharge in a mixture of N₂ and H₂ c) By reducing the byproduct nitric acid d) By passing a mixture of N₂ and H₂under high pressure and moderate temperature over a catalyst 114 Which halide of nitrogen is least basic? 2. b) NCl₃ c) NI_3 d) NBr₃ a) NF_3 114 Reagent used to distinguish H_2O_2 and O_3 is: 3. c) KMnO4 d) Bleaching powder a) PbS b) Starch and iodine 114 Which one liberates Br₂ from KBr? 4. b) HI c) Cl_2 d) SO_2 a) I₂ 114 Which chloride is explosive? a) PCl₃ b) $AsCl_3$ c) NCl₃ d) SbCl₃ 114 Extra pure N₂ can be obtained by heating 6. a) NH₃ with CuO b) $NH_4 NO_3$ c) $(NH_4)_2 Cr_2 O_7$ d) Ba $(N_3)_2$ 114 Tincture of iodine is: 7. a) I₂, KI and rectified spirit b) I₂ and rectified spirit c) KI and rectified spirit

d) I_2 and water

114 What are the products formed in the reaction of xenon hexafluoride with silicon dioxide? 8.

a) $XeSiO_4 + HF$ b) $XeF_2 + SiF_4$ c) $XeOF_4 + SiF_4$ d) $XeO_3 + SiF_2$ 114 Mixture of sand and iodine can be separated by: 9. a) Dissolving in water and filtering b) Fractional crystallization c) Sublimation d) Separation is not possible 115 Cl_2 gas is evolved as byproduct in the manufacture of all the following elements except: 0. c) Al d) K a) Mg b) Na 115 Which is more suitable for storing concentrated H_2SO_4 ? 1. d) Glass vessel a) Copper vessel b) Aluminium vessel c) Earthen vessel 115 Sodium nitrate on heating with zinc dust and caustic soda gives: 2. d) N_20 a) NaNO₂ b) NH₃ c) NO_2 115 Which of the following forms vortex ring? 3. a) P_2O_5 b) PH_3 d) P_4O_{10} c) NH₃ 115 When radioactive minerals like clevite, monazite and pitchblende are heated to 1273 k in vacuo the noble gas obtained is c) He a) Rn b) Kr d) Ne 115 Diamagnetic oxide of chlorine is: 5. c) ClO_2 a) ClO_3 b) Cl_2O_6 d) None of these 115 Best absorbent for SO₂ is: 6. b) KOH(aq.) d) CaCl₂ anhyd. a) H_2SO_4 c) Water 115 In which reaction does SO_2 act as oxidizing agent? 7. b) Acidified K₂Cr₂O₇ a) Acidified KMnO₄ c) Acidified C₂H₅OH d) H_2S 115 In one of the following reactions HNO₃ does not behave as an oxidizing agent Identify it 8. a) $I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O_3$ b) $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O_3$ c) $4Zn + 10HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O_3$ d) $2HNO_3 + P_2O_5 \rightarrow 2HPO_3 + N_2O_5$ 115 Bleaching powder is an example of: c) A double salt a) An acidic salt b) A complex salt d) A mixed salt 116 Iron sulphide is heated in air to form A. an oxide of sulphur. A is dissolved in water to give an acid. The basicity of this acid is.... 0. a) 2 b) 3 c) 1 d) zero 116 When ammonia is dissolved in water: 1. a) It loses a proton b) It loses an electron c) It gains a proton from water molecule

110	 d) It gains an electron from water molecule 6 The S - S - S bond angle in S₈ molecule is 						
116 2.	1 ne 5 - 5 - 5 bond angle	In S ₈ molecule is					
2.	a) 109.5°	b) 105°	c) 110°	d) 60°			
116	Which of the following is	,	-) -				
3.		-					
	a) XeF ₂	b) XeO ₂ F ₂	c) XeO ₃ F	d) XeF ₄			
	Which oxide of N is neutr	al?					
4.							
110	a) $N_2 O_3$	b) N ₂ O ₅	c) N_2O_4	d) N ₂ 0			
5.	I_2 can exist in the oxidation	on states:					
5.	a) -1, +1, +3, +5	b) -1, +1, +3	c) +3, +5, +7	d) -1 +1 +3 +5 +7			
116		y carrying silent electric dis		uj 1, 11, 13, 13, 17			
6.		, , , ,	0 0				
	a) Siemens ozonizer						
	b) Brodie's ozonizer		. (4				
	c) Siemens and Halske's o	ozonizer					
110	d) All of the above						
116 7.	Which forms new compo	und in air?					
7.	a) H_2O in air	b) O_2 in air	c) N_2 in air	d) Phosphorus in air			
116	Which statement regarding			a) i nosphoras în an			
8.	5	0					
	a) It is used in gas cooled	nuclear reactor					
			periment at low temperatur	re			
		nd sustain powerful superc					
110			e it is lighter and non-comb	ustible			
9.	Reactivity of NO is due to						
9.	a) Its low molecular weig	ht					
	b) Its gaseous state						
	c) Odd electron						
	d) None of the above						
	Welding of magnesium ca	an be done in an atmospher	e of:				
0.							
117	a) 0_2	b) He	c) N ₂	d) All of these			
117	Colloidal sulphur is obtai	ned by the action of HNO ₃ (on:				
1.	a) H ₂ S	b) HgS	c) CaS ₂	d) CaS_2O_3			
117	Treatment of CS ₂ with ex	, ,		u) 646203			
2.		20					
	a) CCl ₄	b) CHCl ₃	c) Carbon black	d) C ₂ H ₅ Cl			
	The oxygen family is char	racterised by the electronic	configuration:				
3.	> 2 4		. 1 2	N 2 F			
	a) $mathematical mathematical mathematicas mathematicas mathematicas mathematica$	b) $ns^2 np^2$	c) $ns^1 np^3$	d) $ns^2 np^5$			
110	a) $ns^2 np^4$	<i>y</i>	<i>y</i> 1				
	<i>,</i>	ng noble gases is used in mi	<i>y</i> 1				
117 4.	Which one of the following	ng noble gases is used in mi	ner's cap lamps?				
4.	<i>,</i>	ng noble gases is used in mi b) Neon	<i>y</i> 1	d) Krypton			

5.				
01	a) Green	b) Orange	c) Yellow	d) Red
117	Bleaching powder on sta	inding forms mixture of:		-
6.		-		
	a) CaO + Cl_2	b) HOCl + Cl_2	c) $CaCl_2 + Ca(ClO_3)_2$	d) CaO + CaCl ₂
117	Which statement is not o	correct?		
7.				
	a) Xe is the most reactive	e among the rare gases		
	b) He is an inert gas			
	c) Radon is obtained fro	m decay of radium		
	d) The most abundant ra	are gas found in atmosphere	e is He	
117	Which acid can combine	with its own salt again?		
8.				
	a) HF	b) HBr	c) HCl	d) HI
117	Among the following the	e number of compounds tha	at can react with PCl₅ to giv	e POCl ₃ is O_2 , CO ₂ , SO ₂ , H ₂ O,
9.	$H_2 SO_{4,} P_4 O_{10}$			N i
	a) 1	b) 2	c) 3	d) 4
118	When water is added in	conc. H_2SO_4 the reaction is	exothermic because:	>
0.				
	a) H ₂ SO ₄ is viscous			
	b) Hydrates of H ₂ SO ₄ are	e formed		
	c) H ₂ SO ₄ is corrosive			
	d) None of the above			
118	Polyanion formation is n	naximum in	G, Y	
1.		•		
	a) Nitrogen	b) Sulphur	c) Oxygen	d) Boron
118	The solubility of noble g	ases in water shows the orc	ler:	
2.				
	a) He > Ar > Kr > Ne >	· Xe		
	b) He > Ne > Ar > Kr >			
	c) $Xe > Kr > Ar > Ne >$	Не		
	d) None of the above	\sim		
	Solid Cl_2O_6 exists as:	XY		
3.	C			
	a) $ClO_2^+ \cdot ClO_4^-$	b) Covalent species	c) $(ClO_3)_2$	d) None of these
	Which of the element lis	ted below occurs in allotrop	pic forms?	
4.				
	a) Sulphur	b) Copper	c) Iodine	d) Silver
	Concentrated HNO ₃ read	ts with I_2 to gives		
5.				
110	a) HI	b) HOI	c) HIO ₃	d) HOIO ₂
	Noble gases are adsorbe	a by:		
6.	-) ":	Dt		
	a) Finely divided Pd and	Pt		
	b) Colloidal Pd			
	c) Coconut charcoal			
110	d) All of the above			
	In which of the following	g, INH3 IS NOT USEd?		
7.	a) Tallar's respect			
	a) Tollen's reagent			
	b) Nessler's reagent			

c) Group reagent for the analysis of IV group basic radicals d) Group reagent for the analysis of III group basic radicals 118 The element than oxidizes water to oxygen with evolution of heat is: 8. b) Chlorine d) Bromine a) Fluorine c) Iodine 118 Which of the following compounds is not an "interpseudohalogen"? 9. a) Cl_2N_3 b) BrCN c) CICN d) ICN 119 Which is called stranger gas? 0. b) Xe c) He d) Ne a) Kr 119 The ratio of the gases obtained on dehydration of HCOOH and $H_2C_2O_4$ by conc. H_2SO_4 is: 1. b) 2 : 1 c) 1 : 3 a) 1 : 2 d) 3 119 Peroxy compound is: 2. d) $H_2S_2O_3$ a) $H_2S_2O_8$ b) $H_2S_4O_8$ c) $H_2S_2O_6$ 119 During bleaching of chlorine an antichlor is used to: 3. a) Enhance bleaching action b) Eliminate last traces of bleaching agent c) Remove greases from the fibre d) Liberate oxygen 119 T-shaped interhalogen compound is 4. a) ClF_3 b) ICl c) ClF5 d) IF_5 119 The catalyst used in Deacon's process for Cl 5. a) Al_2O_3 b) CuCl₂ c) AlCl₃ d) MnO_2 119 Nitre cake is: 6. b) NaNO₃ d) Na_2SO_4 a) NaHSO₄ c) NaNO₂ 119 Helium is used in balloons in place of hydrogen because it is 7. a) Incobusible b) Lighter than hydrogen c) Radioactive d) More abundant than hydrogen 119 The O—O bond length in ozone is: 8. b) 1.21 Å d) 1.48 Å c) 1.34 Å a) 1.27 Å 119 The reaction in the Kipp's apparatus stops on closing the outlet, because: 9, a) The acid becomes weak b) Gas starts coming out form top c) A protective film is formed on iron sulphide d) The contact between sulphide and the acid is broken by the presence of gas collected in the free surface of the middle chamber 120 Sulphur hepto oxide is an anhydride of 0. a) $H_2S_2O_8$ b) $H_2S_2O_7$ c) H_2SO_4 d) H_2SO_5 120 Hydrolysis of PI₃ yields: 1.

a) Monobasic acid and a salt b) Monobasic acid and dibasic acid c) Dibasic acid and tribasic acid d) Monobasic acid and tribasic acid 120 Which is not poisonous? 2. a) NH₃ b) PH_3 c) AsH₃ d) SbH_3 120 What is the number of sigma (σ) and pi (π) bonds present in sulphuric acid molecule? 3. a) 6σ, 2π b) 6σ , 0π c) 2σ, 4π d) 2σ , 2π 120 In sulphate ion the oxidation state of sulphur is +6 and the hybridization state of sulphur is: 4 c) d^2sp^3 d) sp^3d a) sp^2 b) sp^3 120 The element evolving two different gases on reaction with conc. Sulphuric acid is 5. d) S a) P b) C c) Hg 120 Which statement is correct? 6. a) Ozone is a resonance hybrid of oxygen b) Ozone is an allotropic modification of oxygen c) Ozone is an isomer of oxygen d) Ozone has no relationship with oxygen 120 When sulphur is boiled with Na₂SO₃ solution, the compound formed is 7. c) Sodium sulphide a) Sodium thiosulphate b) Sodium sulphate d) Sodium persulphate 120 Number of valence electrons used in the Lewis structure of SO_4^{2-} are: 8. a) 22 b) 20 c) 18 d) None of these 120 The shape of IF₇ molecule is: 9. a) Octahedral b) Pentagonal bipyramidal c) Tetrahedral d) Trigonal bipyramidal 121 The strongest acid amongst the following is 0. a) HClO c) $HClO_3$ d) HClO₄ b) HClO₂ 121 In ordinary Cl_2 gas Cl^{35} and Cl^{37} are in the ratio: 1. b) 3 : 1 d) 1 : 2 c) 1 : 1 121 Which group is called buffer group of the periodic table? b) VII c) VIII d) Zero a) I 121 Gradual addition of electronic shells in the noble gases causes a decrease in their 3. a) Ionisation energy b) Density c) Boiling point d) Atomic radius 121 Colour of iodine solution is disappeared by shaking it with aqueous solution of 4. b) $Na_2S_2O_3$ d) Na_2SO_4 a) Na_2S c) Na_2S 121 S—S bond is not present in

5.				
5.	a) $H_2 S_2 O_4$	b) $H_2 S_2 O_6$	c) $H_2 S_2 O_8$	d) None of these
121		owing non-metals is liquid		,
6.	C	0		
	a) Bromine	b) Sulphur	c) Phosphorus	d) carbon
121	A radioactive element is:			
7.				
	a) Sulphur	b) Polonium	c) Tellurium	d) Selenium
	Metalloid among the follo	wing is:		× •
8.				
	a) 0	b) S	c) Te	d) Po
	The basic character of hyc	lrides of the V-group eleme	ents decreases in the order	
9.		4 -11		
	a) $NH_3 > SbH_3 > PH_3 > PH_$	-	b) $SbH_3 > AsH_3 > PH_3 >$	
177	c) $NH_3 > PH_3 > AsH_3 > 3$	D is liquid while H ₂ S is a gas	d) $SbH_3 > PH_3 > AsH_3 >$	мн ₃
122 0.	At room temperature, H ₂ (5 is inquite white h ₂ 5 is a gas		
0.	a) Electronegativity of O i	s greater than S		
	, , ,	angles of both the molecule	s	
	•	in H_2O due to H-bonding v		
	d) O and S belong to differ	=		
122	The correct order for deci	reasing acidic strength of or	koacids of gp.15 is:	
1.				
	a) $HNO_3 > H_3SbO_4 > H_3A$			
	b) $H_3PO_4 > H_3AsO_4 > H_3$		Y	
	c) $HNO_3 > H_3PO_4 > H_3A_3$			
400	d) $HNO_3 > H_3AsO_4 > H_3H_3$			
	Chlorine gas can be dried	by passing over:		
2.	a) Quick lime			
	a) Quick lime b) Soda lime	× Y		
	c) Caustic potash sticks			
	d) Concentrated sulphurio	cacid		
122	Which of the following bo			
3.				
	a) N—Cl	b) 0—F	c) N—F	d) N—N
122	The metal which forms an	nide on passing $\rm NH_3$ on it a	t 300°C is:	
4.				
	a) Magnesium	b) Lead	c) Aluminium	d) sodium
	The first noble gas compo	und obtained was:		
5.				
	a) XeF ₂	b) XeF ₄	c) XePtF ₆	d) XeOF ₄
	Sulphurous acid can be us	sed as:		
6.	a) Oxidizing agent	b) Reducing agent	c) Bleaching agent	d) All of these
122	, ,	f noble gases decreases in t	, ,	
7.	The case of figueraction of	and the Bases accreases in t		
	a) He > Ne > Ar > Kr > X	Xe		
	b) Xe > Kr > Ar > Ne > H			
	c) $Kr > Xe > He > Ar > N$			
	d) $Ar > Kr > Xe > He > M$			

Page | 72

122 The reason why conc H_2SO_4 is used largely to prepare other acids is that conc H_2SO_4 8. a) Is highly ionised b) Is dehydrating agent c) Has high specific gravity and density d) Has a high boiling point 122 A cold, green flame can be made by passing CO₂ over warm: 9. b) White P a) Bronze c) Grey Sn d) Green candles 123 Which one of the following reacts with glass? 0 b) HF a) H_2SO_4 c) HNO₃ d) $K_2Cr_2O_7$ 123 Super halogen is: 1. b) Cl_2 a) F_2 c) Br_2 123 The gas which is supporter of combustion is: 2. b) N_20 c) NO_2 d) N_2O_5 a) NH_3 123 The halide that cannot act as Lewis acid is: 3. c) CCl₄ d) SF₄ a) SiCl₄ b) SnCl₄ 123 Which gives off oxygen on moderate heating? 4. a) Cupric oxide b) Mercuric oxide c) Zinc oxide d) Aluminium oxide 123 Which is the true covalent oxide of iodine? 5. a) $I_2 O_4$ b) $I_2 O_5$ c) $I_2 O_8$ d) $I_4 0_9$ 123 Which element out of He, Ar, Kr and Xe forms least number of compounds? 6. a) Kr b) Xe c) Ar d) He 123 Which one is the anhydride of HCIO₄ 7. b) Cl₂O₇ c) Cl₂O d) Cl_2O_6 a) ClO_2 123 Dry bleaching is done by: 8. b) SO_2 d) H_2O_2 a) Cl_2 c) 0_3 123 Which chemical contains chlorine? 9. a) Fischer salt b) Epsom salt c) Fermy's salt d) Spirit of salt 124 Which reaction represents the oxidizing behaviour of H_2SO_4 ? 0. a) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$ b) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O_4$ c) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$ d) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O_4$ 124 Which statement is wrong? 1. a) Oxygen and Sulphur belong to the same group of periodic table b) Oxygen is a gas while Sulphur is solid c) Both show +2, +4 and +6 oxidation states d) H₂S shows no hydrogen bonding 124 Concentrated sulphuric acid can be reduced by 2.

a) NaCl b) NaF c) NaOH d) NaBr 124 A solution of SO₂ in water reacts with H₂S precipitating sulphur. Here SO₂ acts as: 3. a) An oxidizing agent b) A reducing agent c) An acid d) A catalyst 124 Sulphuric acid has great affinity for water because 4. b) It hydrolyses the acid a) Acid decomposes water d) Acid forms hydrates with water c) It decomposes the acid 124 Correct order of electron affinities of halogens is 5. a) F>Cl>Br>I b) I>Br>Cl>F c) Cl>F>I>Br d) Cl>F>Br>I 124 The correct order of acidity of halogenic acids is 6. b) HI<HBr<HCl<HF a) HF<HCl<HBr<HI c) HI<HCl<HBr<HF d) HF<HBr<HI<HCl 124 Pearl white is: 7. a) BiOCl b) SbOCl c) NOCl AsOCl 124 The nitrate which when heated gives-off a gas or a mixture of gases which cannot relight a glowing splinter is: 8. c) Lead nitrate a) Sodium nitrate b) Ammonium nitrate d) Potassium nitrate 124 H_2SO_4 acts as dehydrating agent in its reaction with: 9. c) KOH a) $Ba(OH)_2$ b) Zn d) $H_2C_2O_4$ 125 Nitric oxide is prepared by the action of cold dil. HNO₃ on : 0. a) Fe b) Cu c) Sn d) Zn 125 Which of the following halogen acids has the lowest melting point? 1. a) HF b) HCl c) HBr d) HI 125 The lone pair present on N family hydrides more easily participates in bond formation in: 2. b) PH₃ a) AsH_3 c) NH₃ d) SbH_3 125 Which does not react with KMnO₄ solution? 3. a) 0_3 c) H_2S d) H_2SO_3 b) H_2O_2 125 Noble gases are prepared by the: 4. a) Condensation of gases of the air b) Fractionation of liquid oxygen c) Removal of nitrogen and oxygen from air d) Fractionation of liquid air 125 When an aqueous solution of hypochlorite is heated: 5. a) Chlorine is evolved b) Chlorite is formed c) Chlorate is formed d) Chlorine peroxide is formed 125 Sodium chromite is: 6. a) Na_2CrO_4 b) $Na_2Cr_2O_4$ c) $Na_2Cr_2O_7$ d) $Cr_2(SO_4)_3$

125 Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild 7. explosive. a) It is a mild explosive b) It generates high vapour pressure c) Both a and b d) It is a lachrymatory 125 Which is the most volatile compound? 8. a) HCl b) HI c) HBr d) HF 125 In halogen's group which elements has highest electron affinity? 9. a) F b) Cl c) Br d) I 126 Which halogens oxidises water to oxygen exothermally? 0. a) Fluorine b) Chlorine c) Bromine d) Iodine 126 Chlorine is mixed with drinking water so that: 1. a) Bacteria are killed b) Dirt is removed c) Water is cleaned d) Suspension is removed 126 In smoke screens calcium phosphide is used, because it: 2. a) Catches fire easily b) Burns and gives soot c) Forms phosphine which gives smoke d) None of the above 126 The non-metallic element whose molecules contain maximum number of its atoms is: 3. b) Si a) 0 c) As d) P 126 Aqua-regia is 4. a) 1:3 conc. HNO₃ and conc. HCl b) 1:2 conc. HNO₃ and conc. HCl c) 3:1 conc. HNO₃ and conc. HCl d) 2:1 conc. HNO₃ and conc. HCl 126 XeO_2F_2 is obtained by partial bydrolysis of 5. a) XeOF₄ c) Both (a) and (b) d) None of these b) XeF₆ 126 Interhalogen compounds are more reactive than the individual halogen because: 6. a) Two halogens are present in place of one b) They are more ionic c) Their bond energy is less than the bond energy of the halogen molecule d) They carry more energy 126 Oxalic acid when heated with conc. H₂SO₄, gives a) H_2O_2 and CO_2 b) CO and CO₂ c) H_2O_2 and CO d) CO₂ and H₂S 126 Which of the following isotopes is present in largest amount? 8. b) 0¹⁷ a) 0¹⁶ c) 0¹⁸ d) All in equal amounts 126 Who observed helium first on the earth? 9. a) Lothar Meyer b) Ramsay c) Sheele d) Rutherford

127 The group 15 or VA group elements are commonly known as: 0. a) Halogens b) Normal elements c) Pnictogens d) None of these 127 In the reduction of HNO_3 to N_2O , the number of mole of electrons involved per mole of HNO_3 is: 1. a) 8 b) 4 c) 3 d) 6 127 Sulphuric acid reacts with PCl₅ to yield: 2. d) Sulphur monochloride a) Thionyl chloride b) Sulphuryl chloride c) Phosphoric acid 127 Which of the following compounds can not be stored in glass vessels? 3. a) XeF₄ b) XeF_6 c) XeO_3 d) XeF 127 Which is tribasic acid? 4. a) H_3PO_2 b) H_3PO_4 c) H₄P₂O₇ d) H₂PO: 127 Which substance chars when warmed with conc. H_2SO_4 ? 5. d) Carbohydrate c) Hydrocarbon a) Protein b) Fat 127 When fluoride is heated with conc. H_2SO_4 and MnO_2 the gas evolved is 6. d) None of these a) HF b) F_2 c) SF 127 The compound of sulphur used as a solvent in rubber industry is 7. a) $SO_2(OH)Cl$ c) SO_3 b) SO_2 d) S_2Cl_2 127 Which one can be used to test for H_2S gas? 8. a) A smell of rotten egg b) A violet colouration with sodium nitroprusside c) Turning lead acetate paper black d) All of the above 127 When H₂S is passed through nitric acid solution, the product formed is: 9. a) Milk of Sulphur b) colloidal Sulphur c) γ – sulphur d) β – sulphur 128 Sulphurous anhydride is: 0. b) SO_3 c) $HSO_3^$ d) SO_3^{2-} a) SO_2 128 The percentage of ozone in ozonized oxygen is about: 1. a) 10% b) 40% c) 80% d) 100% 128 The weakest acid among the following is: 2. al HClO b) HBr c) $HClO_3$ d) HCl 128 White phosphorus may be separated from red phosphorus by: 3. b) Distillation c) Dissolving in CS_2 d) None of these a) Sublimation 128 The correct order of bond angles in H₂S, NH₃, BF₃ and SiH₄ is: 4. a) $H_2S < NH_3 < BF_3 < SiH_4$ b) $NH_3 < H_2S < SiH_4 < BF_3$

c) $H_2S < NH_3 < SiH_4 < BF_3$

100	d) $H_2S < SiH_4 < NH_3 < H_3$	3F ₃		
	Solid PCl ₅ exists as:			
5.	a) PCl ₅	b) PCl ⁺	c) PCl_6^-	d) PCl_4^+ and PCl_6^-
128	, ,	n below which will further		uj i ci ₄ and i ci ₆
6.	Thirding the hubilities given	in below which whi further		
0.	a) NaF	b) CaF ₂	c) SF ₆	d) IF ₅
128	Ammonia is soluble in wa	iter because it is:	2	
7.				
	a) A polar molecule	b) Bronsted base	c) Both (a) and (b)	d) None of these
128	Formula of iodine phosph	nate is:		
8.				
	a) I ₃ PO ₄	b) $I_2(PO_4)_3$	c) IPO ₄	d) I ₂ PO ₄
	The tetrahedral nature of	the three bonds in a chlora	ate ion (ClO_3^-) is due to:	
9.	.) Т І			\sim
	 a) The presence of a lone b) <i>sp</i>³-hybridization 	pair of electrons	<u>^</u>	X
	c) sp^2 -hybridization			
	d) Trigonal bipyramidal s	hane of ion		, ,
129		r long time acquires brown	colour?	
0.				
	a) HF	b) HCl	c) HBr	d) HI
129	Potassium chlorate on he	ating with conc. H ₂ SO ₄ give	es:	
1.		4	G X Y	
	a) Chlorine dioxide	b) HClO ₄	c) KHSO ₄	d) All of these
	In the reaction, $HNO_3 + P_2$	$A_4O_{10} \rightarrow 4HPO_3 + x$, the pro	duct <i>x</i> is	
2.				
120	a) NO_2	b) N_2O_5	c) N_2O_3	d) H_2O
3.	Which has the strongest b	Joilu?		
5.	a) F – Br	b) F – Cl	c) F — F	d) Cl — Br
129	The forces of cohesion in			
4.				
	a) Covalent	b) Ionic	c) Van der Waals'	d) Metallic
129	When molten sulphur is s	uddenly cooled by pouring	into water, it takes the form	m of
5.				
	a) Milk of sulphur	b) Colloidal sulphur	c) Flower of sulphur	d) Plastic sulphur
	Which does not react with	h H ₂ SO ₄ to form H ₂ ?		
6.				
120	a) Al	b) Pb	c) Zn The first turned lime water	d) Mg
7.		-	Γhe first turned lime water queous solution of pH 3 ne	-
7.	in the compound are:	k and the third formed and	iqueous solution of pri 5 ne	any. The elements present
	a) C, S, O	b) C, H, Na	c) C, H, S	d) C, H, Ca
129			ss for the manufacture of Hl	
8.	U U			5
	a) NH ₃	b) NO ₂	c) Air	d) Chile saltpetre
129	Anhydride of sulphuric ac	cid is:		
9.				
	a) SO ₂	b) SO ₃	c) $H_2S_2O_3$	d) H_2SO_3

130 The essential element of nitrogen fixation is: 0. a) Zn b) Cu c) Mo d) B 130 Which one of the following configuration represents a noble gas? 1. a) $1s^2$, $2s^2$ $2p^6$, $3s^2$ b) $1s^2$, $2s^2$ $2p^6$, $3s^1$ c) $1s^2, 2s^2, 2p^6$ d) $1s^2$, $2s^22p^6$, $3s^2$ $3p^6$, $4s^2$ 130 Which halogen do not form polyhalide ion? 2. a) F b) Cl c) Br d) I 130 Oxygen is manufactured by fractional distillation of: 3. d) Liquid air a) H_2O b) H_2O_2 c) Na_2O_2 130 Which is not the property of nitrogen? 4. a) Hydrogen bonding c) Supporter of life b) Catenation d) Low b.p. 130 Which metal loses its meniscus after reaction with ozone? 5. d) Cu a) Ag b) Hg c) Pb 130 The two electrons in helium atom: 6. a) Occupy different shells b) Have different spins c) Have the same spins d) Occupy different subshells of the same subshell 130 Which of the following is not tetrahedral? 7. d) NiCl₄²⁻ a) SCl₄ b) SO_4^{2-} c) Ni(CO)₄ 130 The hydrolysis of PCl₃ produces: 8. a) $H_3PO_3 + HClO$ b) H_3PO_3 + HCl c) $H_3PO_4 + HCl$ d) $PH_3 + HClO$ 130 NaOH can absorb : 9. b) NO d) All of these a) N_2O_5 c) N_20 131 The electron affinity of halogens shows the order: 0. b) Cl > F > Br > Ia) I > Cl > F > Brc) F > Cl > I > Brd) F > I > Cl > Br131 On heating ozone its volumes: 1. a) Decreases to half b) Becomes double c) Increases to 3/2 times d) Remains unchanged 131 Which non-metal does not combine directly with Cl₂, Br₂ and I₂? 2. b) Nitrogen c) Oxygen d) All of these a) Carbon 131 Oleum or fuming H_2SO_4 is: 3. a) A mixture of conc. H₂SO₄ and oil b) Sulphuric acid which gives fumes of sulphur dioxide

d) A mixture of sulphuric acid and nitric acid

131 N_2 forms NCl_3 , whereas P can form both PCl_3 and $PCl_5\,why?$

4.

a) P has low lying 3*d* orbitals which can be used for bonding but N₂ does not have low lying 2*d* orbital

- b) N_2 atom is larger than P in size
- c) P is more reactive towards Cl than $N_{\rm 2}$
- d) None of the above

131 Which of the following is pseudohalogen? 5. d) I_{3}^{-} c) ICl_2 a) IF_7 b) $(CN)_{2}$ 131 The decreasing order of b.p. or m.p. of halogens is: 6. b) $F_2 > Cl_2 > I_2 > Br_2$ c) $Cl_2 > Br_2 > I_2 > F_2$ a) $I_2 > Br_2 > Cl_2 > F_2$ d) F_2 131 Nitrogen (I) oxide is produced by: 7. a) Thermal decomposition of ammonium nitrate b) Disproportionation of N₂O₄ c) Thermal decomposition of ammonium nitrite d) None of the above 131 SO_3 on reacting with conc. HCl gives: 8. a) Chlorosulphonic acid b) $Cl_2 + H_2SO_3$ c) $Cl_2 + H_2SO_4$ d) None of these 131 An inorganic compound producing organic compound on heating is: 9. c) Sodalime b) Ammonium cyanate a) Sodamide d) Potassium cyanide 132 Formula of calcium chlorite is: 0. a) $CaClO_2$ b) $Ca(ClO_2)_2$ c) $Ca(ClO_3)_2$ d) Ca(ClO₄)₂ 132 The gas not absorbed by coconut charcoal is 1. b) Ne a) He c) Ar d) Kr 132 A black sulphide when treated with ozone becomes white. The white compound is: 2. a) $ZnSO_4$ b) CaSO₄ c) BaSO₄ d) $PbSO_4$ 132 Sulphur on oxidation with hot sulphuric acid gives: 3. a) SO₃ c) H_2SO_4 d) None of these b) SO_2 132 Which loses weight on exposure to the atmosphere? a) Conc. H₂SO₄ b) NaOH c) Anhyd. AlCl₃ d) Saturated aqueous solution of CO_2 132 The correct order of heat of formation of halogen acids is? 5. a) HI>HBr>HCl>HF b) HF>HCl>HBr>HI c) HCl>HF>HBr>HI d) HCl>HBr>HF>HI 132 The number of P - O - P bridges in the structure of phosphorus pentoxide and phosphorus trioxide are respectively 6. a) 5, 5 b) 6, 5 c) 5,6 d) 6, 6 132 Rhombic and monoclinic sulphur are:

7. a) Isobars b) Isomers c) Isotopes d) Allotropes 132 Copper turning on heating with conc.H₂SO₄ produce 8. b) 0_2 d) SO_2 a) H_2S c) SO_3 132 Which one of the following represents noble gas configuration? 9. a) 1s²,2s² 2p⁶,3s² 3p⁶ 3d¹⁰, 4s² 4p⁶ 4d¹⁰, 5s²,5p⁶ 5d⁶,6s² b) 1s²,2s² 2p⁶,3s² 3p⁶ 3d¹⁰,4s² 4p⁶ 4d¹⁰ 5s²5p⁶ 5d¹, 6s² c) 1s²,2s²2p⁶,3s²3p⁶3d¹⁰, 4s² 4p⁶4d¹⁰ , 5s²5p⁶ d) 1s²,2s²2p⁶,3s²3p⁶3d¹⁰, 4s² 4p⁶4f¹⁴,5s²5p⁶ 5d¹ 133 Which of the following is more acidic in nature? 0. a) HCIO c) HCIO₃ b) $HCIO_2$ 133 The lattice energy of lithium halides in the following order 1. b) LiI > LiBr > LiCl > LiFa) LiF > LiCl > LiBr > LiIc) LiCl > LiF > LiBr > LiId) LiBr > LiCl > LiF > LiI133 Iodine readily dissolves in potassium iodide solution giving 2. a) I⁻ b) KI⁻ c) KI_{2} d) KI_3 133 Which one of the following is not true at room temperature and pressure? 3. b) SO_2 is a colourless gas a) P_4O_{10} is a white solid c) SO₃ is a colourless gas d) No₂ is brown gas 133 Amongst H_2O , H_2S , H_2Se and H_2Te one having higher b.pt. is 4. a) H₂S because of hydrogen bonding b) H₂Se because of lower molecular weight c) H_2 Te because of higher molecular weight d) H_2O because of hydrogen bonding 133 Which of the following acid posses oxidising, reducing and complex forming properties? 5. a) HCl c) HNO_2 d) HNO₃ b) H_2SO_4 133 The number of π -bonds present in NCl₃ is: 6. d) None of these a) 1 b) 2 c) 3 133 Ammonium chloride is removed from its mixture by: 7. a) Filtration b) Distillation c) Sublimation d) A magnet 133 White smoke is formed when ammonia gas meets with: 8. a) Water b) HCl c) H_2SO_4 d) HNO₃ 133 Pure Cl₂ is prepared on heating: 9. a) NaCl b) $PtCl_4$ c) $CuCl_2$ d) All of these 134 Liquid ammonia is used in refrigeration because of its 0. a) High dipole moment b) High heat of vaporisation

104	c) High basicity	1 .	d) All of the above	
134 1.	The acid used in soft drin	ks is:		
1.	a) H ₃ PO ₄	b) H ₃ PO ₃	c) HPO3	d) H_3PO_2
134		group VA does not show al	, ,	J J L
2.				
	a) N	b) Bi	c) P	d) As
134 3.	In the electrothermal pro	cess, the compound displac	ced by silica from calcium p	hosphate is
5.	a) Calcium phosphide		b) Phosphine	
	c) Phosphorus		d) Phosphorus pentoxide	
134	It is possible to obtain ox	ygen from air by fractional	distillation because:	
4.				
		group of periodic table from	n nitrogen	
	b) Oxygen is more activec) Oxygen has higher boil		4	
	d) Oxygen has lower dens	0. 0	Ć,	
134	NH_3 is an example of:			
5.	-			
	a) Molecular hydride	b) Polymeric hydride	c) Metallic hydride	d) Interstitial hydride
	When SO_2 reacts with nit	rous acid, the compound fo	ormed is:	
6.	a) H ₂ S	b) S	c) SO ₃	d) H_2SO_4
134		one which is oxidized by ni		uj 112504
7.				
	a) Iodine	b) Bromine	<i>c</i>) Fluorine	d) Chlorine
	Which is most basic of the	e following oxides?	v	
8.	a) Na ₂ O	b) BaO	c) As ₂ O ₃	d) Al_2O_3
134	Which is stronger acid?		CJ A3203	uj H ₂ O ₃
9.	0			
	a) H_2SeO_4	b) H ₂ SO ₄	c) H ₂ TeO ₄	d) H ₂ 0
	Ammonia on reaction wit	h hypochlorite anion, can f	form	
0.		ЫМ И	a) NH Cl	9) IINO
135	a) NO Which of the following co	b) N ₂ H ₄ mpounds do not exist?	c) NH ₄ Cl	d) HNO ₂
1.		mpoundo do not chist.		
	a) N ₄ , NCl ₅ , PO ₂	b) N ₂ , NCl ₃ , NO ₂	c) PCl_5 , P_2O_5 , NCl_3	d) PO ₂ , P ₄ , NCl ₃
	Oxidation of ammonia by	CuO yields:		
2.				
125	a) N ₂ For chrome plating the el	b) N_2O_5	c) NO	d) NO ₂
3.	i or chrome platting the el	centory de Datif colltaills:		
	a) HClO ₄ and conc. H_2SO_4	b) Chromic acid and conc	. Ic) $K_2Cr_2O_7$	d) Chromic sulphate
135			ontainer. It is subjeceted to	_
4		-	.what is the volume of ozon	, ,
4.	a) 50	b) 60	c) 30	d) 40
	,	of accurrence (0/ burnstak	t) in air of No Ar and V-?	
135	,	of occurrence (% by weigh	nt) in air of Ne, Ar and Kr?	
	,	of occurrence (% by weighb) Ar>Ne>Kr	nt) in air of Ne, Ar and Kr? c) Ar>Kr>Ne	d) Ne>Kr>Ar

6. a) Decay of radioactive minerals b) The atmospheric air c) The natural gases coming out of the earth d) The decay of rocks 135 Incorrect statement for pyrophosphorus acid H₄ P₂ O₅ is 7. a) It contains p in +5 oxidation state b) It is dibasic acid d) In contains one P—O—P bond c) It is strongly reducing in nature 135 $SO_2 + H_2S \rightarrow$ product. The final product is 8. a) H_2O+S b) H_2SO_4 c) H_2SO_3 d) $H_2S_2O_3$ 135 Pure HBr gas may be obtained by heating sodium bromide with syrupy phosphoric acid and not with concentrated sulphuric acid because concentrated sulphuric acid is: 9. a) More volatile b) Less stable c) A weaker acid d) An oxidizing agent 136 Fertilizer having the highest nitrogen percentage is: 0. a) Calcium cyanamide c) Ammonium nitrate d) Ammonium sulphate b) Urea 136 Which gas is evolved by the treatment of magnesium with very dilute solution on HNO₃? 1. a) N_2 b) NO_2 d) H_2O 136 In colour discharge tubes, which is used? 2. a) Ne b) Ar c) Kr d) He 136 Which of the following hydrogen halides has the highest boiling point? 3. a) HI b) HBr c) HCl d) HF 136 Which of the following statement is not true 4. a) HF is stronger than HCl b) Among halide ions, iodide is the most powerful reducing agent c) Radon is obtained from decay of Radium d) Xe is most reactive gas among the rare gas 136 In which of the following chlorine is not used: 5. a) As germicide b) As oxidant c) As cutting tool d) As disinfectant 136 Solubility of iodine in water may be increased by adding 6. a) Chloroform b) Potassium iodide c) Carbon disulphide d) Sodium thiosulphate 136 Platinum, palladium and iridium are called noble metals because a) Alfred nobel discovered them b) They are found in native state c) They are shining lustrous and pleasing to look at d) They are inert towards many common reagents 136 Bleaching powder is disinfectant for purification of water. When water born germs are killed. But 8. disinfectant activity is destroyed. It is due to disproportion into a) $CaCl_2$ and Cl_2 b) $CaCl_2$ and $Ca(ClO_3)_2$ c) CaO and Cl₂ d) CaO, Cl_2 and $CaCl_2$ 136 Marshall's acid is: 9.

a) $H_2S_2O_5$ b) $H_2S_2O_8$ c) H_2SO_3 d) H_2SO_5 137 The word neon signifies: 0. a) New b) Old c) Strange d) None of these 137 Paramagnetic oxide is: 1. a) NO b) $N_2 O_4$ c) $P_4 O_6$ d) $N_2 O_5$ 137 Fluorosis disease is caused due to the reaction of with excess of fluorine in the body. 2. a) Ca b) Mg c) Fe d) K 137 Among the halogens, the one which is oxidised by nitric acid is 3. a) Fluorine b) Iodine c) Chlorine d) Bromine 137 Which has the lowest boiling point? 4. d) BiH₃ b) PH_3 c) SbH₃ a) NH₃ 137 The elements S, Se, Te can have two positive oxidation states. Which one of the following is correct? 5. a) +4 and +6b) +2 and +4c) +4 and +8d) +2 and +6137 The basicity of orthophosphoric acid is 6. b) 4 d) 5 a) 2 c) 3 137 Which sulphide is used in the manufacture of "strike anywhere" matches? 7. c) Sb₂S₃ a) P_2S_5 b) P_2S_3 d) None of these 137 Euchlorine is a mixture of 8. b) $Cl_2 + Cl_2 O$ c) $Cl_2O_3 + ClO_2$ a) $Cl_2 + ClO_2$ d) $Cl_2 0 + Cl_2 0_3$ 137 Liquid oxygen: 9. a) Is an important constituent of rocket fuels b) Is used for artificial respiration with CO₂ c) Mixed with finely divided carbon is explosive d) All of the above 138 Acetic acid is added while preparing a standard solution of $CuSO_4 \cdot 5H_2O$ to prevent: 0. a) Hydration b) Reduction c) Hydrolysis d) Complex formation 138 XeF₂ molecule is 1. a) Square planar b) Trigonal bipyramidal c) Trigonal planar d) Linear 138 Iodine is placed between two liquids C₆H₆ and water: 2. a) It dissolves more in C_6H_6 b) It dissolves more in water c) It dissolves equally in both d) Does not dissolve in both 138 Which of the following oxide of nitrogen is the anhydride of HNO₃? 3. a) NO b) $N_2 O_3$ c) $N_2 O_5$ d) N_3O_4 138 The most stable allotropic form of sulphur is:

4.						
4.	a) Rhor	nbic sulp	hur	b) Monoclinic sulphur	c) Plastic sulphur	d) Flowers of sulphur
138	2	-		is known as	ej i lastie sulphul	a) i lowers of sulphul
5.						
	a) Mars	shall's aci	d	b) Caro's acid	c) Sulphuric acid	d) None of these
138	The rea	ction bet	ween c	opper and hot conc. H ₂ SO ₄		-
6.						
	a) SO ₃			b) SO ₂	c) Cu(OH) ₂	d) H ₂
	Chlorin	e bleache	es only i	n the:		
7.						
120	-	nce of ac	id	b) Presence of alkali	c) Absence of moisture	d) Presence of moisture
	HNO ₃ o	xidises:				
8.	a) H ₂ O ₂			b) H ₂ S	c) SO ₂	d) All of these
138		-	and ang	le in white phosphorus is	cj 50 ₂	uj An or these
9.	The T	1 1 50	sina ang	ie in white phosphorus is	A	\circ
	a) 60°			b) 90°	c) 120°	d) 109°28′
139	In the is	solation o	of fluori	ne, a number of difficulties	were encountered. Which st	tatement is correct?
0.						
		-	-	ed for the discharge of the f	luoride ions is the lowest	
	-			most glass vessels		
	-	-	-	us HF gives ozonized oxyge	en	
120	-	f the abov		1 11		
139 1.				and select the answer using	g the codes given below:	
1.	Code A	List XeF4	Code 1	List II Distorted		
	11	ACI 4	1	octahedral		
	В	XeF ₆	2	Tetrahedral		
	С	XeO ₃	3	Square		
	D	XeO ₄	4	planar Trigonal		
	2	11004	-	pyramidal		
					c) A-1,B-4,C-2,D-3	d) <i>A</i> -3, <i>B</i> -1, <i>C</i> -4, <i>D</i> -2
	Which o	of the foll	owing e	elements is radioactive?		
2.						
120	a) Oxyg	•		b) Selenium	c) Polonium	d) Tellurium
139 3.	when S	O_2 is pas	sea thr	ough acidified solution of H	1 ₂ 5:	
5.	2) H. S(D_3 is form	ned	b) H_2SO_4 is formed	c) Sulphur sol is formed	d) H_2SO_2 is formed
139		-		ing reactions of Xenon com		a) 112505 15 1011110a
4.						
	a) 3XeF	$F_4 + 6H_2$	$D \rightarrow 2X$	$e + XeO_3 + 12HF + 1.5 O_2$		
C				$e + 4HF + 0_2$		
	c) XeF ₆	+ RbF –	$\rightarrow \text{Rb}[Xe]$	eF ₇]		
	-	3 + 6HF -	0	-		
	Which I	blue liqui	d is obt	ained on reacting equimola	ar amounts of two gases at -3	30°c?
5.						
100	a) N_2O		ا ا ا	b) N_2O_3	c) N ₂ O ₄	d) N ₂ O ₅
139 6.	which o	one is mo	st elect	ronegative?		
0.	a) 0			b) F	c) H	d) Cl
	aj U			0,1	C) 11	4,01

٠

139 NH₃ gas is dried over: 7. a) Anhydrous CaCl₂ b) $P_2 O_5$ c) Quick lime d) Conc. H_2SO_4 139 The largest bond angle exists in: 8. a) H₂Se b) NH_3 c) H_20 d) H_2S 139 Increasing order of strength of oxo-acids of chlorine is: 9. a) $HClO < HClO_2 < HClO_3 < HClO_4$ b) $HClO_4 < HClO_2 < HClO < HClO_3$ c) $HClO < HClO_2 < HClO_3 < HClO_4$ d) None of the above 140 The correct order of bond angles and stability of hydrides given below is: 0. a) $NH_3 > PH_3 > AsH_3 > SbH_3$ b) $NH_3 > AsH_3 > PH_3 > SbH_3$ c) $SbH_3 > AsH_3 > PH_3 > NH_3$ d) $PH_3 > NH_3 > AsH_3 > SbH_3$ 140 The reaction of P₄ with aqueous NaOH gives 1. a) $P(OH)_3$ b) P_2O_5 c) P(OH)₅ d) PH_3 140 $[X] + H_2SO_4 \rightarrow [Y]$ a colourless gas with irritating smell. $[Y] + K_2Cr_2O_7 + H_2SO_4 \rightarrow Green solution [X]$ and 2. [*Y*] are: d) CO_3^{2-}, CO_2 a) SO_3^{2-}, SO_2 c) S b) Cl⁻, HCl 140 The smell of nitrogen dioxide is: 3. a) Pleasant b) Pungent c) Not known d) All are wrong 140 The gas obtained when urea reacts with nitrous acid is: 4. a) N_2 b) NO c) N_20 d) NO_2 140 The species that does not contain peroxide ion is 5. a) PbO_2 c) SeO_2 d) BaO_2 b) H_2O_2 140 Phosphine is prepared by the reaction of 6. a) P and HNO₃ b) P and H_2So_4 c) P and NaOH d) P and H_2S 140 Which of the following does not react with AgCl? 7. a) $Na_2S_2O_3$ b) NH₄OH c) NaNO₃ d) Na_2CO_3 140 The oxidizing property of nitric acid is due to: 8. a) Its concentration b) The positive valency of N c) Its dilution d) The unstability of its molecule and the presence of nitrogen in its highest state of oxidation 140 The reaction showing endothermic nature and reduction of halogen is: 9.

a)
$$F_2 + \frac{1}{2} O_2 \rightarrow F_2 O$$

b) $Cl_2 + O_2 \rightarrow Cl_2 O$

c)
$$F_2 + H_2 O \rightarrow 2HF + \frac{1}{2}O_2$$

d) None of the above

141 Calcium carbide when heated with nitrogen forms:

0.

a) Ca ₃ N ₂	b) Ca(CN) ₂	c) CaCN ₂	d) Ca(CNO) ₂
			R
		1	\mathcal{H}
		20	
		G.A.	
	C		
		9	
	CHI'		
MART	7		
NA			

ACTIVE SITE TUTORIALS

Date : 23-07-2019 Time : 23:30:00 Marks : 5640 TEST ID: 174 CHEMISTRY

7.THE P-BLOCK ELEMENTS

						ANS	N	ER K	EY:						
1)	С	2)	b	3)	a	4)		165)	d	166)	а	167)	a	168)	b
5)	d	6)	с	7)	а	8)	b	169)	С	170)	а	171)	a	172)	d
9)	с	10)	а	11)	d	12)	d	173)	с	174)	а	175)	b	176)	d
13)	а	14)	с	15)	b	16)	d	177)	а	178)	b	179)	d	180)	С
17)	а	18)	С	19)	a	20)	a	181)	b	182)	b	183)	a	184)	d
21)	b	22)	d	23)	a	24)	d	185)	а	186)	c	187)	b	188)	d
25)	d	26)	d	27)	b	28)	С	189)	а	190)	d	191)	С	192)	а
29)	С	30)	b	31)	a	32)	b	193)	d	194)	a	195)	b	196)	b
33)	С	34)	С	35)	С	36)	b	197)	d	198)	b	199)	С	200)	b
37)	b	38)	а	39)	a	40)	a	201)	C	202)	d	203)	С	204)	d
41)	а	42)	С	43)	a	44)	b	,	c	206)	b	207)	а	208)	b
45)	а	46)	а	47)	a	48)	b	209)	а	210)	С	211)	а	212)	а
49)	C	50)	a	51)	d	52)	а		C	214)	d	215)	a	216)	a
53)	d	54)	d	55)	a	56)	С	217)	a	218)	b	219)	d	220)	b
57)	a	58)	С	59)	b	60)		221)	b	222)	b	223)	d	224)	а
61) (5)	C	62)	C	63)	b	64)	b J		a	226)	b h	227)	d J	228) 222)	С
65) 60)	a	66) 70)	C d	67) 71)	c	68) 72)	d h		d h	230) 224)	b b	231) 225)	d	232)	a
69) 72)	a	70) 74)	d d	71) 75)	C C	72) 76)	b	233) 237)	b b	234) 238)	b	235) 239)	C C	236) 240)	C h
73) 77)	a a	74) 78)	u C	75) 79)	a d	80)	с а		d	230J 242)	c d	239J 243)	c d	240) 244)	b d
81)	a b	82)	a	83)	a	84)	a d	-	u b	242) 246)	u C	243) 247)	d	244) 248)	u a
85)	a	86)	d	87)	d	88)	u b	249)	a	250)	a	251)	b	252)	a b
89)	C	90)	a	91)	d	92)	a	253)	a	250) 254)	b	255)	a	256)	a
93)	d	94)	a	95)	c	96)	a	257)	d	258)	d	259)	d	260)	b
97)	a	98)	c	99)	d	100)	b	-	a	<u> 262</u>)	a	263)	a	<u> 264</u>)	d
101)	C	102)	c	103)	с	104)	b	265)	a	266)	c	267)	c	268)	С
105)	d	106)	a	107)	a	108)	b	269)	a	270)	b	271)	d	272)	d
109)	d	110)	a	111)	d	112)	d	273)	с	274)	b	275)	b	276)	а
113)	a	114)	с	115)	с	116)	a	277)	b	278)	b	279)	d	280)	d
117)	С	118)	с	119)	a	120)	a	281)	а	282)	а	283)	а	284)	d
121)	b	122)	а	123)	a	124)	С	285)	b	286)	d	287)	b	288)	С
125)	a	126)	b	127)	b	128)	а	289)	d	290)	а	291)	С	292)	d
129)	С	130)	а	131)	С	132)	С	293)	d	294)	d	295)	а	296)	d
133)	а	134)	а	135)	С	136)	d	297)	С	298)	С	299)	b	300)	а
137)	d	138)	a	139)	С	140)	b	301)	b	302)	d	303)	а	304)	d
141)	С	142)	а	143)	a	144)		305)	а	306)	b	307)	b	308)	d
145)	b	146)	d	147)	b	148)		309)	а	310)	d	311)	d	312)	С
149)	b	150)	С	151)	С	152)		313)	С	314)	b	315)	b	316)	d
153)	С	154)	a	155)	a	156)		317)	а	318)	а	319)	С	320)	b
157)	C	158)	b	159)	a	160)		321)	C	322)	C	323)	а	324)	d
161)	d	162)	b	163)	а	164)	d	325)	d	326)	b	327)	а	328)	а

329)	a	330)	а	331)	d	332)	b	533)	а	534)	С	535)	С	536) c
333)	d	334)	С	335)	С	336)	С	537)	d	538)	b	539)	a	540) a
337)	b	338)	b	339)	С	340)	d	541)	b	542)	b	543)	С	544) c
341)	а	342)	b	343)	С	344)	a	545)	b	546)	а	547)	a	548) b
345)	С	346)	d	347)	b	348)	a	549)	b	550)	С	551)	С	552) c
349)	а	350)	d	351)	С	352)	С	553)	d	554)	b	555)	d	556) d
353)	а	354)	а	355)	b	356)	a	557)	d	558)	d	559)	b	560) a
357)	b	358)	d	359)	С	360)	а	561)	С	562)	С	563)	a	564) b
361)	d	362)	С	363)	b	364)	b	565)	а	566)	а	567)	b	568) a
365)	а	366)	d	367)	С	368)	d	569)	С	570)	а	571)	d	572) a
369)	С	370)	d	371)	а	372)	d	573)	а	574)	С	575)	C	
373)	b	374)	d	375)	b	376)	d	577)	С	578)	b	579)	b	580) b
377)	b	378)	а	379)	a	380)	С	581)	b	582)	d	583)	d	584) b
381)	С	382)	b	383)	a	384)	a	585)	d	586)	d	587)	a	588) a
385)	d	386)	а	387)	d	388)	d	589)	b	590)	b	591)	d	592) d
389)	а	390)	а	391)	d	392)	a	593)	d	594)	а	595)	d	596) a
393)	а	394)	а	395)	a	396)	d	597)	а	598)	b	599)	a	600) a
397)	b	398)	b	399)	b	400)	а	601)	d	602)	С	603)	С	604) a
401)	b	402)	b	403)	С	404)	d	605)	b	606)	b	607)	b	608) c
405)	а	406)	d	407)	b	408)	С	609)	b	610)	d	611)	d	612) b
409)	d	410)	а	411)	С	412)	b	613)	d	614)	d	615)	С	616) c
413)	а	414)	b	415)	b	416)	b	617)	d	618)	b	619)	a	620) b
417)	d	418)	b	419)	b	420)	a	621)	b	622)	С	623)	d	624) a
421)	b	422)	С	423)	d	424)	b	625)	С	626)	d	627)	С	628) d
425)	С	426)	С	427)	С	428)	С	629)	а	630)	d	631)	d	632) c
429)	С	430)	d	431)	а	432)	b	633)	С	634)	b	635)	b	636) d
433)	d	434)	С	435)	a	436)	d	637)	а	638)	b	639)	a	640) a
437)	С	438)	d	439)	d	440)	a	641)	b	642)	а	643)	b	644) a
441)	а	442)	d	443)	b	444)		645)	b	646)	С	647)	b	648) c
445)	а	446)	d	,	a	448)		649)	С	650)	d	651)	С	652) b
449)	b	450)	С		С	452)		653)	b	654)	С	655)	d	656) c
453)	d	454)	d		b	,		657)	d	658)	С	659)	b	660) b
457)	С	458)	b		a	460)		661)	d	662)	а	663)	С	664) c
461)	d	462)	a	463)	а	464)		665)	а	666)	а	667)	С	668) d
465)	d	466)	a		a	468)		669)	b	670)	b	671)	С	672) b
469)	а	470)	а	-	а	472)		673)	b	674)	d	675)	b	676) a
473)	d	474)	C	475)	d	476)		677)	b	678)	d	679)	b	680) b
477)	d	478)	а	479)	d	480)		681)	С	682)	b	683)	a	684) d
481)	d	482)	d	483)	а	484)		685)	b	686)	b	687)	d	688) c
485)	b	486)	С	487)	С	488)		689)	а	690)	d	691)	С	692) b
489)	С	490)	d	491)	d	492)		693)	d	694)	С	695)	С	696) c
493)	d	494)	d	495)	a	496)	а	697)	а	698)	d	699)	d	700) d
497)	b	498)	С	499)	d	500)	d	701)	d	702)	а	703)	С	704) d
501)	b	502)	d	503)	С	504)	b	705)	а	706)	b	707)	С	708) a
505)	С	506)	b	507)	d	508)	d	709)	b	710)	b	711)	b	712) a
509)	b	510)	d	511)	a	512)		713)	С	714)	а	715)	a	716) a
513)	b	514)	d	515)	С	516)	С	717)	С	718)	b	719)	С	720) a
517)	С	518)	а	519)	b	520)		721)	d	722)	а	723)	b	724) a
521)	a	522)	а	523)	d	524)		725)	d	726)	d	727)	b	728) d
525)	С	526)	b	527)	С	528)		729)	b	730)	b	731)	b	732) a
529)	a	530)	b	531)	d	532)	b	733)	b	734)	С	735)	a	736) c
														Page 88

737)	d	738)	а	739)	С	740) d		941)	С	942)	a	943)	d	944)	d
741)	а	742)	d	743)	a	744) b		945)	d	946)	С	947)	С	948)	b
745)	а	746)	С	747)	a	748) b		949)	a	950)	С	951)	a	952)	d
749)	b	750)	а	751)	С	752) d		953)	С	954)	С	955)	b	956)	С
753)	а	754)	а	755)	С	756) d		957)	b	958)	a	959)	С	960)	b
757)	b	758)	С	759)	a	760) d		961)	а	962)	С	963)	a	964)	d
761)	а	762)	d	763)	a	764) c		965)	С	966)	b	967)	d	968)	а
765)	С	766)	а	767)	b	768) d		969)	а	970)	a	971)	b	972)	а
769)	С	770)	С	771)	b	772) d		973)	d	974)	С	975)	d	976)	b
773)	а	774)	d	775)	a	776) b		977)	b	978)	d	979)	b	980)	b
777)	С	778)	b	779)	a	780) d		981)	d	982)	a	983)	b	984)	b
781)	b	782)	d	783)	d	784) a		985)	d	986)	С	987)	b	988)	b
785)	b	786)	b	787)	d	788) d		989)	С	990)	d	991)	C	992)	С
789)	d	790)	С	791)	С	792) b		993)	d	994)	с	995)	C	996)	d
793)	а	794)	С	795)	d	796) c		997)	b	998)	d	999)	a	1000)	
797)	С	798)	b	799)	a	800) b		1001)	а	1002)	a	1003)	a	1004)	d
801)	а	802)	а	803)	С	804) d		1005)		1006)		1007)	b	1008)	С
805)	b	806)	С	807)	a	808) c		1009)		1010)		1011)		1012)	С
809)	а	810)	b	811)	b	812) c		1013)	c	1014)	d	1015)		1016)	а
813)	а	814)	b	,	d			1017)		1018)		1019)		1020)	
817)	а	818)	d		b	820) c		1021)		1022)		1023)		1024)	
821)	d	822)	а	-	С	-		1025)	_	1026)		1027)		1028)	
825)	d	826)	d		d	-		1029)		1030)		1031)		1032)	
829)	d	830)	С		d	,		1033)		1034)		1035)		1036)	
833)	С	834)	С		b	-		1037)		1038)		1039)		1040)	
837)	d	838)	С		d			1041)		1042)		1043)		1044)	
841)	b	842)	С	,	С	844) d		-		1046)		1047)		1048)	
845)	С	846)	b	-	d	848) b		-		1050)		1051)		1052)	
849)	b	850)	а	,	a	852) c		1053)		1054)		1055)		1056)	
853)	b	854)	С		d			1057)		1058)		1059)		1060)	
857)	d	858)	a	859)		-		1061)		1062)		1063)		1064)	
861)	С	862)	b	863)		-		1065)		1066)		1067)		1068)	
865)	d	866)	d		C	-		1069)		1070)		1071)		1072)	
869)	d	870)	d	-	d	-		1073)		1074)		1075)		1076)	
873)	а	874)	b		d	,		1077)		1078)		1079)		1080)	
877)	С	878)	b	-	a	-		1081)		1082)		1083)		1084)	
881)	С	882)	C	,	C	-		1085)		1086)		1087)		1088)	
885)	C	886)		,	b	,		1089)		1090)		1091)		1092)	
889)	d	890)	d		C	-		1093)		1094)		1095)		1096)	
893)	С	894)	d	,	b	,		1097)		1098)		1099)		1100)	
	a	898)	С	,	b	-		1101)		1102)		1103)		1104)	
901)	d	902)	a	,	a	-		1105)		1106)		1107)		1108)	
905)	а	906)	b	,	a	,		1109)		1110)		1111)		1112)	
909) 012)	a L	910) 914)	b	-	b	-		1113)		1114)		1115)		1116)	
913) 017)	b h	914) 010)	d h	,	a	-		1117)		1118)		1119)		1120)	
917) 021)	b	918)	b	,	a	-		1121)		1122)		1123)		1124)	
921) 025)	a	922)	d h		b	,		1125)		1126)		1127)		1128)	
925) 020)	a J	926)	b	-	C	-		1129)		1130)		1131)		1132)	
929) 022)	d	930) 024)	b		a	-		1133)		1134)		1135)		1136)	
933) 027)	C d	934) 029)	C	,	a	-		1137)		1138)		1139)		1140)	
937)	d	938)	С	939)	a	940) a		1141)	u	1142)	d	1143)		1144)	
													r		00

114	l5) c	:	1146)	d	1147)	b	1148)	С	1281)	a	1282)	d	1283) c	1284) c
114	l9) c		1150)	С	1151)	d	1152)	b	1285)	d	1286)	d	1287) c	1288) c
115	53) b)	1154)	С	1155)	b	1156)	b	1289)	b	1290)	d	1291) d	1292) b
	57) d		1158)	d	1159)	d	1160)	a	1293)	С	1294)	С	1295) d	1296) b
116	51) c	:	1162)	b	1163)		1164)	d	1297)	С	1298)	С	1299) b	1300) c
	55) d		1166)		1167)		-		1301)		1302)		1303) d	1304) c
	59) c		1170)		1171)		-		1305)		1306)		1307) a	1308) b
117	73) a	1	1174)	d	1175)	b	1176)	с	1309)	а	1310)	b	1311) c	1312) d
117	7) d	L :	1178)	а	1179)	d	1180)	b	1313)	с	1314)	a	1315) b	1316) a
118	81) b		1182)	С	1183)	а	1184)	a	1317)	а	1318)	a	1319) b	1320) b
118	35) c		1186)	d	1187)	b	-		1321)		1322)	d	1323) b	1324) d
118	89) a	1	1190)	b	1191)	a	1192)	a	1325)	b	1326)	d	1327) d	1328) d
119	93) b)	1194)	а	1195)	b	1196)	a	1329)	с	1330)	d	1331) a	1332) d
119)7) a	L :	1198)	а	1199)	d	1200)	a	1333)	с	1334)	d	1335) c	1336) d
120)1) b		1202)	а	1203)	a	1204)	b	1337)	с	1338)		1339) b	1340) b
120)5) b		1206)	b	1207)	a	1208)	d	1341)	а	1342)	b	1343) d	1344) c
120)9) b		1210)	d	1211)	b	1212)	d	1345)	а	1346)	d	1347) a	1348) a
121	l 3) a	1	1214)	b	1215)	с	1216)	a	1349)	b	1350)		1351) a	1352) a
121			1218)	С	1219)	с	1220)	с	1353)	b	1354)		1355) b	1356) b
122	21) c		1222)	d	1223)	с	1224)	d	1357)	a	1358)	a	1359) d	1360) b
122	25) c		1226)	d	1227)	b	1228)	d	1361)	с	1362)	b	1363) d	1364) a
122	29) b		1230)	b	1231)	a	1232)	b	1365)	с	1366)	b	1367) d	1368) b
123	33) c	:	1234)	b	1235)	b	1236)	d	1369)	b	1370)	a	1371) a	1372) a
123	37) b		1238)	С	1239)	d	1240)	d	1373)	b	1374)	b	1375) a	1376) c
12 4	- 1) c		1242)	d	1243)	a	1244)	d	1377)	С	1378)	а	1379) d	1380) c
12 4	l5) d	L :	1246)	а	1247)	a	1248)	b	1381)	d	1382)	а	1383) c	1384) a
12 4	19) d	l :	1250)	b	1251)	b	1252)	С	1385)	b	1386)	b	1387) d	1388) d
125	53) a	1	1254)	d	1255)	с	1256)	b	1389)	а	1390)	d	1391) d	1392) c
125	57) c		1258)	а	1259)	b	1260)	a	1393)	С	1394)	d	1395) b	1396) b
126	51) a	L .	1262)	С	1263)	d	1264)	a	1397)	с	1398)	b	1399) c	1400) a
126	55) c	: :	1266)	С	1267)				1401)		1402)	а	1403) b	1404) a
126	59) b		1270)	с	1271)	b	1272)	b	1405)	а	1406)	С	1407) c	1408) d
127	73) b)	1274)	b	1275)	d	1276)	a	1409)	a	1410)	С		
127	7) d	L :	1278)	d	1279)	b	1280)	a						
Ċ		R	5											

THE P-BLOCK ELEMENTS

CHEMISTRY

		SO			
1	: HINTS AND	50	Property	NH ₃	PH ₃ AsH ₃
T	N_2O and NO are neutral oxides of nitrogen.		SbH ₃ BiH ₃	1113	- ASII3
2	(b)		$\Delta_{\rm diss} H^{\Theta}(E-H)/{\rm kJmol^{-1}}$	389	322 297
4	Zero group members are		255 -	507	322 257
	$_{2}$ He, $_{10}$ Ne, $_{18}$ Ar, $_{36}$ Kr, $_{54}$ Xe and $_{86}$ Rn.	14	(c)	4	
3	(a)		Noble gases are monoatomic		\sim
	In blood He is much less soluble than nitrogen,	15	(b)	K ·	
	hence $He \rightarrow O_2$ mixture is used by deep sea divers		Rest all are soluble in H_2Q .		
	in preference to $N_2 \rightarrow O_2$ mixture.	16	(d)	4	
4	(b)		$2\text{KI} + \text{H}_2\text{O} + \text{O}_3 \rightarrow 2\text{KOH} +$	$0_2 + I_2$	
	HeF ₄ does not exist	17	(a)		
5	(d)		$2KMnO_4 + KI + H_2O$		
	It is a fact, follow fixation of N ₂ .		\rightarrow 2KOH + 2	$MnO_2 +$	KIO ₃
6	(c)		Oxidant Reductant		
	Al, Fe, Mg all reduce dilute HNO_3 into NH_4NO_3	18	(c)		
	while pb gives NO with dilute nitric acid		Pyrosulphuric acid is $H_2S_2O_7$	or H ₂ S	$O_4 + SO_3$ or
	$3Pb+8HNO_3 \rightarrow 3pb(NO_3)_2+2NO+4H_2O$		$HO - SO_2 - OH + SO_3.$		
	dilute	19	(a)		
7	(a)		$Na_4P_2O_7$ is a salt of strong ac	id and s ⁴	trong base, so
	Acid strength decreases from HClO to HIO as the		it is a neutral salt		
-	electronegativity of halogen decrease	20	(a)		
8	(b)		In Fischer Ringe's method, ai		
9	S in H_2 S has lowest oxidation number.		and CO ₂ is passed over a heat		
9	(c) It is a fact.		(800°C) of 90% CaC ₂ +10% (an iron tube ,
10	(a)		when following reactions tak	e place	
10	It is a fact.		$CaC_2 + N_2 \xrightarrow{800^{\circ}C} CaCN_2 + c$		
11	(d)		2C+0→2C0		
	NH ₃ >PH ₃ >AsH ₃ >SbH ₃		$C+O_2 \rightarrow CO_2$		
	As the electronegativity of central atom decreases		$2CaC_2+3CO_2 \rightarrow 2CaCO_3+5C$		
	bonded electron polarises towards central atom		$CuO+CO\rightarrow Cu+CO_2$		
	more, so, repulsion increases and bond angle		CO_2 gas is now absorbed by k		ition .Thus, a
	increases.	21	mixture inert gases is obtaine	ed.	
12	(d)	21	(b)		
	$NaNO_2 + NH_4OH \rightarrow NH_4NO_2 + NaOH$	22	$C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 - CO_2 - CO_2 + 2SO_2 - CO_2 - CO_2 + 2SO_2 - CO_2 + 2SO_2 - CO_2 - CO_2$	F 2H ₂ U	
C	$NH_4NO_2 \rightarrow N_2 + 2H_2O$	22	(d) $4KNO_3 + 4H_2SO_4$		
	$:: NH_4NO_2$ is unstable, so it is prepared by reaction		$\rightarrow 4 \text{KHSO}_4 + 4 \text{H}_2 \text{SO}_4$. 2H О -	$-4NO \pm O$
	of NaNO ₂ and NH ₄ OH.	23	(a)	21120	$+100_2 + 0_2$
13	(a)	23	F_2 on reaction with NaOH giv	es diffe	ent products
	The stability of hydrides decreases down the gp.,		under different conditions.	es uniei	ent produces
	<i>i.e.</i> , from NH_3 to BiH_3 which can be observed		(i) F_2 + dil, cold NaOH		
	from their bond dissociation enthalpy. The		$2F_2 + 2NaOH(cold)(dil) \rightarrow$	2NaF+	$H_20 + 0F_2$
	correct order is $NH_3 < PH_3 < AsH_3 < SbH_3 < PH_3$				
	BiH ₃ .			oxy	gen diflouride

(ii)F₂+hot,conc.NaOH $4F_2$ +NaOH (hot)(dil) \rightarrow 4NaF+ $2H_2O$ + O_2 24 (d) The bond energies of F_2 , Cl_2 , Br_2 , and I_2 are 159, 243, 193 and 151 J/mol. 46 **(a)** 26 (d) $Sb(l) \rightarrow Sb(s)$. Vol. of Sb(s) > Vol. of Sb(l)AgF is soluble in water and rest all halides of Ag are insoluble. 47 (a) 27 (b) BCl₃ is *sp*²-hybridized (120°). PCl₃, AsCl₃, BiCl₃ 48 are sp^2 -hybridized with one lone pair. The bond 49 angle is contracted down the group. 28 (c) 50 $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$ 29 (c) H₂SO₄ forms hydrate with water. That's why it has 51 (d) great affinity towards water. 30 **(b)** 52 (a) Ramsay discovered many (Kr, Xe, Ne) of these gases. 33 (c) $2\text{KIO}_3 + 5\text{SO}_2 + 4\text{H}_2\text{O} \longrightarrow \text{K}_2\text{SO}_4 + 4\text{H}_2\text{SO}_4 + \text{I}_2$ 53 34 Used as desiccant. 35 (c) It is a fact. FeS + $H_2SO_4 \rightarrow FeSO_4 + H_2S\uparrow$ 36 **(b)** $HNO_3 + 3HCl \rightarrow NOCl + 2H_2O + 2Cl$ 37 **(b)** $NH_4NO_2 \rightarrow N_2 + 2H_2O$ 38 (a) Fluorine reacts with H_2O . 39 (a) Fluorspar is CaF₂. 40 (a) HI is strongest acid because H - I bond is weakest bond 41 (a) NH₃ is a stronger base because lone pair is easily available for donation 54 (d) 42 **(c)** It is used in extractions of metals like Au, Pt, e.g., $\operatorname{PtCl}_4 \xrightarrow{873K} \operatorname{Pt} + 2\operatorname{Cl}_2$ 55 $2\mathrm{AuCl}_3 \xrightarrow{463K} 2\mathrm{Au} + 3\mathrm{Cl}_2$

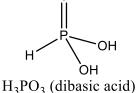
43 (a)

N in NH_3 has -3 oxidation number, the lowest value of oxidation number of N.

44 **(b)**

 $Cl_2 + H_2O \rightarrow 2HCl + [O]$ nascent oxygen

45 (a)


Cl₂ has disinfectant and antibacterial nature.

Follow molecular orbital diagram for O_2 . **(b)** $3CaOCl_2 + 2NH_3 \rightarrow 3CaCl_2 + N_2 + 3H_2O$ (c) H₃PO₂ is monobasic acid. (a) Acidic character of oxides increases along the period. Due to higher at. weight. $0_3 + 2KI + H_2 0 \rightarrow 2KOH + 0_2 + I_2$ I_2 + Starch \rightarrow Blue (d)

Orthophosphoric acid (H₃PO₄) is a tribasic acid because it has three replaceable hydrogen atoms. Hence the basicity of H₃ PO₃ is 3. Its structure is as 0

H₃PO₄ (tribasic acid)

While phosphorous acid(H₃PO₄) dibasic acid because it has two replaceable hydrogen atoms. Hence the basicity of H₃ PO₃ is 2 .Its structure is as

These are facts.

(a)

Clathrate compounds are formed not by action of valence bonds but by molecules imprisonment. Inert gases do so with metals.

58 (c)

It is a fact.

59 (b)

AgI is a covalent compound so it is insoluble in water

60 (a)

	PH_3 is basic in nature.	81	(b)
61	(c) [°]		I_2 cannot oxidise Br ⁻ to Br ₂
	It is a fact.	82	- (a)
62	(c)		$H_2PO_4^- \xrightarrow{-H^+} HPO_4^{2-}$ Conjugate base
	$4 \text{ HNO}_2 + P_4O_{10} \rightarrow 2N_2O_5 + 4\text{HPO}_3$		$H_2PO_4 \longrightarrow HPO_4^7$ Conjugate base
63	(b)	83	(a)
	It is a fact.		$2KMnO_4 + 2H_2SO_4$
65	(a)		$\rightarrow (MnO_3)_2SO_4 + K_2SO_4 + 2H_2O$
	Eq. of S = Eq. of Cl; $\frac{64}{E} = \frac{71}{35.5}$ $\therefore E = 32$		$(MnO_2)_2SO_4 + H_2O \rightarrow Mn_2O_7 + H_2SO_4$
			$(MnO_3)_2SO_4 + H_2O \rightarrow Mn_2O_7 + H_2SO_4$ Red-brown liquid
66	(c)	84	(d)
	It is a fact.	01	Caro's acid is the name for H_2SO_5 or peroxosulphu
67	(c)	85	(a)
60	Although each possesses nearly same strength.	05	F^- is oxidized only by electrolysis.
68	(d)	86	(d)
	$2H_3PO_4 \longrightarrow 2HPO_3 + 2H_2O$	00	KO_3 and NH_4O_3 are ozonides.
69	(a)	87	(d)
	Al_2O_3 is amphoteric. Rest all are basic oxide.	07	O_3 is an allotrope of O_2 .
70	(d)	88	(b)
	SO_2 acts as an oxidising agent particularly when	00	PH_3 is sparingly soluble in water and has fishy
	treated with stronger reducing agents. SO_2		smell
	oxidises H ₂ S into S	89	(c)
	$SO_2 + 2H_2S \rightarrow 2H_2O + S$	09	NO_2 on dissolution in HNO ₃ imparts yellow
71	(c)	A .	colour.
	Mn in KMnO ₄ has highest oxidation state. It acts	91	(d)
	only as strong oxidant.	91	The structure is pentagonal bipyramid having
72	(b)		$sp^{3}d^{3}$. Hybridization as given below:
	He is lightest (after H_2), non-inflammable gas.		sp u . Hybridization as given below.
73	(a)		га F
	$K_2MnF_6 + 2SbF_5 \rightarrow 2KSbF_6 + MnF_3 + \frac{1}{2}F_2$		¹ e
74	(d)		$F_e \xrightarrow{90} F_e$
74	$N_7 \rightarrow 1s^2 2s^2 2p^3$		
	$n_7 \rightarrow 13$ 23 2p d-orbitals are absent in nitrogen		F_{a} F_{a}
75	(a)		F
75	Fluorine cannot be oxidized because it is the most		F _a
	electronegative element of periodic table.		$F_{ m e}$: Equatorial fluorine
76	(c)		F_a : Apical fluorine
70	H_2S is oxidized to colloidal sulphur or amorphous		$F_{\rm e} - I - F_{\rm e} = 72^{\circ}$ (5 angles);
	H_2 S is oxidized to conordal surplifit of all of phous sulphur by HNO ₃ .		$F_e - I - F_a = 90^{\circ} (10 \text{ angles}).$
77	(a)		$F_{\rm e} - I$ bond length = 1.858 ± 0.004 Å
11	It is a fact.		$F_a - I$ bond length = 1.786 ± 0.007Å.
78		92	(a)
10	(c) H ₂ S ₂ O ₇ (pyrosulphuric acid)is industrially known		$PH_3 + 4Cl_2 \rightarrow PCl_5 + 3HCl; \Delta H = +ve$
	as oleum.	93	(d)
79	(d)		$2\text{HClO}_4 + \text{P}_2\text{O}_5 \rightarrow \text{Cl}_2\text{O}_7 + 2\text{HPO}_3$
17	(u) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + 4H_2O + Cr_2O_3$	94	(a)
80	$(Nn_4)_2 Cr_2 O_7 \rightarrow N_2 + 4n_2 O + Cr_2 O_3$ (a)		Salts of H_3PO_3 are called as phosphite (HPO_3^{2-}).
00		96	(a)
	Ammonium dichromate on heating gives nitrogen, chromic oxide and water.		UF_6 is gas and thus, rate of diffusion of uranium he
	٨		isotopes is different.
	$(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \xrightarrow{\mathrm{d}} \mathrm{N}_2 + \mathrm{Cr}_2\mathrm{O}_3 + 4\mathrm{H}_2\mathrm{O}$	97	(a)

	It is $I(IO_3)_3$, <i>i. e.</i> , iodine iodate.		decomposition of O_3 causing depletion of ozone
98	(c)		layer.
	Ozone readily decomposes to give		$Cl^{\bullet} + O_3 \rightarrow ClO^{\bullet} + O_2$
	O_2 and thus, improves the percentage of O_2 at		$\text{Cl0}^{\bullet} + \text{O}_3 \longrightarrow \text{Cl}^{\bullet} + 2\text{O}_2$
	crowded places.		
99	(d)		
	Chlorofluoro carbon or cfc' on exposure to UV		
	rays in upper strata of atmosphere dissociates to		
	give free chlorine radicals which results in		
100	(b)		
	$FeCl_3$ acts as oxidant whereas H_2SO_3 acts as reduct	ant.	
101	(c)		in XeF_2 , XeF_4 and XeF_6 are 3, 2 and 1 respectively
	$NaNH_2 + N_2O \xrightarrow{190^{\circ}C} NaN_3 + NaOH + NH_3$	111	
102			During discharge of battery H_2SO_4 is used up.
	Calcium carbide is used for ripening of fruits	112	
103			$AgNO_3 \xrightarrow{\Delta} Ag + NO_2 + \frac{1}{2}O_2$
100	Black phosphorous is highest thermodynamic		=
	stable form in red , black , white and yellow	113	
	allotropic forms of phosphorus because its		The spontaneous inflammability of phosphine
	ignition temperature is highest hence it is inert		with smoky rings (vortex rings) at the time of
	and has a layer structure.		preparation is due to the presence of highly
104	-		inflammable P_2H_4 . This property is used in
101	On electrolysis F_2 is collected at anode.		Holme's signal.
105		114	
200	Reaction s of ethyl alcohol with bleaching powder		$H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$ (Pyrosulphuric acid).
	to form chloroform takes place as	115	
	$CH_3CH_2OH+Cl_2\rightarrow CH_3.CHO+2HCl$		$Cl_2 + H_2 0 \rightarrow 2HCl + \frac{1}{2}O_2$
	$CH_3CHO+3Cl_2 \rightarrow CCl_3.CHO+3HCl$	110	<u>L</u>
	$2CCl_3.CHO+Ca(OH)_2 \rightarrow 2CHCl_3+(HCOO)_2Ca$	116	
	Decomposition of bleaching powder is catalysed	117	Halogen ns^2np^5 ;noble gas ns^2np^6 .
	by cobalt chloride.	117	
	$2\text{CaOCl}_2 \xrightarrow{\text{CoCl}_2} 2\text{CaCl}_2 + \text{O}_2$		$CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4; Cu(NH_3)_4^{2+} is$
100		110	blue in colour.
106		118	$HgO + 2Cl_2 + H_2O \longrightarrow HgCl_2 + 2HClO$
	Phosphorus glows in dark due to	110	
107	$P_4 + 5O_2 \longrightarrow P_4O_{10} + \text{light.}$	119	
107		120	Bones contain $Ca_3(PO_4)_2$.
	Hypophosphorus acid (H_3PO_2) is monobasic acid	120	
	which act as reducing agent in this molecule two	121	O_2 has two unpaired electrons.
	P-H bonds are responsible for its reducing	121	
	character and one O-H bond is responsible for its	122	As_2O_3 is poison.
100	monobasic acid character.	122	
108			H ₃ PO ₄ is tribasic acid because it has three
100	Radon is used in cancer therapy.		replaceable hydrogen atoms.
109			0
	Polarity along O —H in HNO ₃ is more in		но Р ОН
	comparison to -0 —H in HNO ₂ .	1	HO
	-		OH
110	-	123	

	(CH ₃ COO) ₂ Pb gives black ppt, sodium	138	(a)
	nitroprusside gives violet colour, dil. H_2SO_4		Both Br and Cl have different electronegativity.
	produces rotten egg smell with S ^{2–} ions.	139	(c)
124			It is a fact.
	The end product of the hydrolysis of XeF ₆ is XeO ₃	140	
		110	CN^{-} is polar and anionic species. N ₂ is non –
	$XeF_{6}\frac{H2O}{-2HF}XeOF_{4}\frac{H2O}{-2HF}XeO_{2}F_{2}\frac{H2O}{-2HF}XeO_{3}$		
125	(a)	1 4 1	polar molecule with high bond energy.
	Formal charge on oxygen = $\frac{\text{Total charge}}{\text{NO. of atoms}} = -\frac{3}{4} =$	141	
			Gas Abundance in
	- 0.75		air by
	Also bond order of each P—0 bond is 1.25.		Volume(ppm)
126			Helium 5.2
	He is lightest (after H_2), non-inflammable gas.		Neon 18.2
127	(b)		Argon93.4Krypton1.1
	AgCl is water insoluble chlorine.		Krypton 1.1 Xenon 0.09
128	(a)	142	
	F [–] possesses smallest size.	172	Boiling points
129	•		
	PCl_5 reacts with conc. H_2SO_4 to give sulphuryl		He Ne Ar Kr Xe Rn -269,-246,-186,-153.6,-108.1,-62
	chloride by replacing its hydroxyl group with	143	
	chlorine atoms.	143	
			S in H_2SO_4 has +6 oxidation no. and thus, H_2SO_4
	$SO_2(OH)_2 + 2PCl_5 \rightarrow SO_2Cl_2 + 2POCl_3 + 2HCl$		can act only as oxidant and not reductant.
	or	144	
	H ₂ SO ₄ sulphuryl chloride	K,	XeF ₄ is solid.
	sulphuric acid	145	(b)
130	(a)	\bigcirc	Since fuels burn faster in the presence of oxygen.
	$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl \uparrow$	7	When a glowing splinter comes in contact with
131	(c)		oxygen, it relights. This is also a test for oxygen.
	I_2 is placed above Cl_2 , Br_2 and F_2 in	146	(d)
	electrochemical series. The non-metal placed		In P_4 , each P is sp^3 hybridised so that the
	below, replaces the other from its salt solution.		percentage of <i>p</i> -character in these orbitals is 75%
132		148	
	1	110	F_2 has the most negative ΔG° value which is
	V_2O_5 is catalyst for the reaction, $SO_2 + \frac{1}{2}O_2$		0
	\rightarrow SO ₃	140	dependent on hydration enthalpy.
133		149	
155	$M + S \rightarrow$ Metal sulphide		All are non
174			- metals. F_2 , $Cl_2(gas)$, $Br_2(liquid)$, $I_2(solid)$.
134		150	(c)
	Iodine develops same metallic nature among		$Pb(CH_3COO)_2 + H_2S \rightarrow PbS + 2CH_3COOH,$
	halogens and forms some compounds like metals,		$PbS + 2H_2O_2 \rightarrow PbSO_4 + 2H_2$
	<i>e</i> .g., iodine phosphate.	151	(c)
135	(c) ¥		$KF+HF \rightarrow KHF_2 \rightleftharpoons K^+ + [HF_2]^-$
	It is a test for ozone.	152	
136	(d)		
	$3Ca(OH)_2 + 2Cl_2$		$\mathrm{NH}_4\mathrm{NO}_2 \xrightarrow{\Delta} \mathrm{N}_2 + 2\mathrm{H}_2\mathrm{O}$
	$\rightarrow Ca(OCl)_2 + CaCl_2 \cdot Ca(OH)_2$	153	
	\cdot H ₂ O + H ₂ O		$P_4O_{10} + 2H_2SO_4 \rightarrow 2SO_3 + 4HPO_3$
137		154	(a)
137			It is a fact.
	I_2 is placed above Br_2 in electrochemical series	155	
	and the halogen placed below replaces the other	-	
	from its salt solution.		Hypophosphorous acid is H_3PO_2 .

		1	
156			Rhombic sulphur occurs in S ₈ molecules giving an
	$4\mathrm{NH}_3 + 5\mathrm{O}_2 \longrightarrow 4\mathrm{NO} + 6\mathrm{H}_2\mathrm{O}$		atomicity of 8
157		178	(b)
	ZnO is amphoteric.		When chlorine is passed into hot concentrated
158			solution of KOH, potassium chlorate is formed.
	It is a fact.		$6KOH+3Cl_2 \rightarrow 5KCl+KCIO_3+3H_2O$
159		180	
	H_3PO_2 is hypophosphorus acid		$2HNO_2 \rightarrow H_2O + N_2O_3$
160	(c)	181	(b)
	Follow methods of preparation of Xe fluorides.		$4\text{Cl}_2 + \text{Na}_2\text{S}_2\text{O}_3 + 5\text{H}_2\text{O} \rightarrow 2\text{NaHSO}_4 + 8\text{HCl}$
161	(d)	182	(b)
	NO_2 is brown reactive gas with pungent odour,		Halogens exist as X_2 and the ion possesses stable
	paramagnetic but dimerise to solid N ₂ O _{4.}		noble gas configuration ns^2np^6 .
162	(b)	183	(a)
	Nitrates of all the metals are water soluble.		The stability of oxides increases with increase in
163	(a)		oxidation state of halogen.
	Xe > Kr > Ar > Ne > He		Oxide oxidation state of halogen
164	(d)		Cl_20 +1
	All are properties of ozone.		ClO_2 +4
165	(d)		$ClO_3 + 6$ $Cl_2O_7 + 7$
	Halogens are very reactive due to high		\therefore Cl ₂ O ₇ +7 \therefore Cl ₂ O is least stable oxide of chlorine.
	electronegativity, high electron affinity and	184	(d)
	comparatively low bond energies. The reactivity	101	The colour of Br_2 water is discharged by an
	of halogen decreases with increase in atomic	S.	unsaturated molecule due to addition of Br_2 on
	number. The correct order of reactivity of		C=C, or by SO ₂ ; SO ₂ + 2H ₂ O + Br ₂ \rightarrow 2HBr +
	halogens is	$\mathbf{\nabla}$	H_2SO_4
	$F_2 > Cl_2 > Br_2 > I_2$	185	
166	(a)		$2F_2 + 2H_2O \rightarrow 4HF + O_2$
	$2\text{KClO}_3 + \text{I}_2 \rightarrow 2\text{KIO}_3 + \text{Cl}_2$		$3F_2 + 3H_2O \rightarrow O_3 + 6HF$
167		186	
	$CaOCl_2 + CO_2 \rightarrow CaCO_3 + Cl_2$		Rest all are transition elements $(n-1)d^{10} ns^2$.
168			Choice (c) represents chlorine.
	Reducing power increase in the order as HF <	187	(b)
	HCl < HBr < HI		Fluorine is the strongest oxidizing agent and Xe
169			has the lowest ionisation energy among the noble
	$2\text{ClO}_2 + \text{H}_2\text{O} \rightarrow \text{HClO}_3 + \text{HClO}_2$		gases and has little tendency to lose electrons
170		188	(d)
	Red p is obtained from white p by heating it with		The bond strength of $H - X$ decreases from HF and
	a catalyst in an inert atmosphere.		HI because the dissociation energy of $H - X$ bond
172			decreases from HF to HI.
	$Cl_2 + H_2O \rightarrow HCl +$		Hydrogen halide :H—F H—Cl H—Br H—I
C	HClO; also some Cl_2 exists in dissolved state.		Dissociation energy : 566 431 366 299
173			$(kJ mol^{-1})$
	This is a fact.		HI is most volatile.
174		189	(a)
	Since, noble gases are monoatomic, these do not		White phosphorous on heating with aqueous
	possess vibrational energy as monoatomic		solution of KOH produce phosphine (PH ₃)gas
	molecules do not vibrate.		$P_4 + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$
175		190	(d)
	This causes H-bonding in H_2O .		P ³² is radioactive.
- 177	(a)		

192 (a) Structure of $H_2S_2O_8$ is given as follows: A binary compounds is that compound which is formed by two different elements. Metals or elements which shows variable oxidation states can form more than one binary compound. In the given compounds Fe shows +2 and +3 oxidation states. So, it can form two binary compounds with 201 (c) chlorine as FeCl₂ and FeCl₃. N, P are non-metals, As, Sb are metalloids or 193 (d) semimetals, Bi is metal in gp. 15 Due to less reactivity. 202 (d) 194 (a) HF is the weakest acid. $(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \xrightarrow{\bigtriangleup} \mathrm{N}_2 + \mathrm{Cr}_2\mathrm{O}_3 + 4\mathrm{H}_2\mathrm{O}$ 203 (c) $NH_4NO_2 \xrightarrow{\triangle} N_2 + 2H_2O$ Follow contact process for H₂SO₄ 204 (d) 195 **(b)** Metallic character increases down the gp. $0_3 \rightarrow 0_2 + [0]$ $2KI + H_2O + [O] \rightarrow 2KOH + I_2$ $2KI + H_2O + O_3 \rightarrow 2KOH + I_2 + O_2$ 205 (c) $10HNO_3 + I_2 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O_3$ 206 **(b)** 197 (d) Noble gases have completely filled electronic $HgCl_2 + Hg(CN)_2 \rightarrow HgCl_2 \cdot Hg(CN)_2$ configuration of outermost shell and thus, have no Mercuric Mercuric Addition compound scope for addition of an electron in them. Chloride cyanide 198 **(b)** These do not support combustion. 199 (c) O_2 is paramagnetic; O_3 is diamagnetic. 200 **(b)** $H_2S_2O_8$ (Marshall's acid)has 0—0 linkage. 207 (a) O_3 is antibacterial in nature and thus, used as sterilizing agent. 208 (b) Welding of Mg is done in the atmosphere of He Because in $KMnO_4$ oxidation state of Mn is +7. due to its inert and non-inflammable nature Hence, it is the highest oxidation state of Mn, so 209 (a) KMnO₄ is not oxidized by ozone. Rn is radioactive. (d) 210 (c) $2K_2MnO_4 + H_2SO_4 + O_3 \longrightarrow 2KOH + 2KMnO_4$ $H_2O + O_3 \longrightarrow 2KOH + O_2 + I_2$ -oxidised- $+ K_2 SO_4 + H_2 O + O_2$ oxidised-(b) $2FeSO_4 + H_2SO_4 + O_3 \longrightarrow Fe_2(SO_4)_3 + H_2O + O_2$ -oxidised (c) KMnO₄+O₃ \rightarrow no reaction

212 (a)	98°C, –195.8°C, –185.7°C respectively. gas in a tube at low pressure, an orange red light
Fluorine and chlorine are more electronegative	is produced which is effective in the formation of
than sulphur, so they can displace it form it salt	chlorophyll and is used in green houses
213 (c)	231 (d)
It is a reason for the given fact.	XeO_3 is an explosive compound when dry and its
214 (d)	explosion power is 22 times more than TNT
Al becomes passive in HNO_3 .	232 (a)
215 (a)	The most abundant element in the earth crust is
It reacts with rest of all reagents.	oxygen.
216 (a)	233 (b)
Br has the configuration.	It is a fact.
$1s^2, 2s^22p^6, 3s^23p^63d^{10}, 4s^24p^5$	234 (b)
217 (a)	It is a fact.
Dipole moment of gp. 15 hydrides decreases	236 (c)
down the gp.	SO_2 acts as reducing agent in aqueous medium, as
218 (b)	acid in basic medium and oxidizing agent in
$2\text{CaO} + 2\text{Cl}_2 \rightarrow \text{CaCl}_2 + \text{Ca(ClO)}_2$	neutral medium.
219 (d)	237 (b)
Oxides of nitrogen are acidic and are dissolved in	$CaC_2 + N_2 \rightarrow CaCN_2 + C$
KOH (alkali).	238 (c)
220 (b)	Cl_2 is oxidised (Cl_2^0
Compounds of Xe, Kr and Rn are known.	\rightarrow Cl ₂ ⁵⁺ + 10 <i>e</i>) and reduced (Cl ₂
221 (b)	
It is a fact.	$\xrightarrow{2e}{\rightarrow}$ 2Cl ⁻)as well.
222 (b)	239 (c)
The maximum temperature at which gas can be	$F_2 + H_2 O \longrightarrow 2HF + \frac{1}{2}O_2$
liquefied is called its critical temperature. The gas	240 (b)
which have high boiling point will change into	Cu hydroxide forms complex with NH_3 .
liquid and so critical temperature of gas will be	241 (d)
more	The first ionisation energy of xenon is quite close
224 (a)	to that of oxygen and the molecular diameter of
$2KI + Cl_2 \rightarrow I_2 + 2KCl$	xenon and oxygen are almost identical.
Excess of	Based on the above facts it is suggested that since
$I_2 + CCl_4 \longrightarrow Violet \xrightarrow{Excess of} Colourless + I_2$	oxygen combines with PtF_{6} , so xenon should also
225 (a)	form similar compounds with PtF_{6} .
Only N ₂ has $1\sigma + 2\pi$ bonds in its molecule.	242 (d)
227 (d)	The bond pair gets farther apart from central
Only Al among these does not react with HNO_3 .	atom due to increasing bond length and thus, lone
228 (c)	pair on central atom causes more contraction in
$NH_4Cl \rightarrow NH_3 + HCl$	bond angles.
	243 (d)
	CO is neutral.
∴ Calculated mol. wt. \propto 1 molecule	244 (d)
Experimental mol. wt. < 2 molecule	$Ca_3(PO_4)_2 + 3SiO_2 \rightarrow 3CaSiO_3 + P_2O_5$
229 (d)	$2P_2O_5 + 10C \rightarrow P_4 + 10CO$
Thermal stability of hydrides of nitrogen family	245 (b) $21_20_5 + 100 \rightarrow 1_4 + 1000$
decreases gradually from NH ₃ to BiH ₃ .	NO_2 is a brown coloured gas
230 (b)	246 (c)
When an electric discharged is passed through Ne	$KI + I_2 \rightarrow KI_3$

$Xe^+[PtF_6]^-$, a red orange crystalline solid. $Xe + PtF_6 \rightarrow Xe^+[PtF_6]^-$ 263 (a)	properties, $2CaOCl_2 + H_2SO_4 \rightarrow CaCl_2 + CaSO_4 + 2HClO$ $HClO \rightarrow HCl + [O]$ 278 (b)
3CaO+2NH ₃ →3Ca+N ₂ +3H ₂ O ∴ N ₂ gas is evolved when CaO reacts with NH _{3.} 262 (a) Bartlett prepared first compound of Xe as	In presence of slight amount of a dil acid, bleaching powder loses oxygen. Due to this nascent oxygen, it shows oxidizing and bleaching
tendency for catenation. The catenation order : C > Si \approx S > P > N > O 261 (a)	$3Mg + N_2 \rightarrow Mg_3N_2$ $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$ 277 (b)
$2\text{KClO}_3 + \text{I}_2 \rightarrow 2\text{KlO}_3 + \text{Cl}_2$ 260 (b) In VIA gp, sulphur possesses the maximum tendome for extension. The extension order of	$\frac{\frac{198}{2}}{276}$ (a)
possesses lone pair of electron which gives rise to distorted geometry.259 (d)	$2CuI_2 \rightarrow 2CuI + I_2$ Cuprous iodide 275 (b) Atomic radius of H ⁺ + atomic radius of Cl = $\frac{74}{2}$ +
 HNO₃, solvay process — Na₂CO₃. 258 (d) In rest all molecules the central non-metal atom 	It is an use of Ar. 274 (b) $CuSO_4 + 2KI \rightarrow CuI_2 + K_2SO_4$
hybridisation with all the three equatorial positions occupied by lone pairs of electrons 257 (d) Haber process —NH ₃ , birkeland –eyde process —	 272 (d) Rest all will give H₃PO₃. 273 (c)
256 (a) Both XeF ₂ and IF ₂ ⁻ are linear species but the central atoms Xe and I undergo sp^3d	271 (d) Excitation energy of F(2 <i>p</i> -electrons) is more than excitation energy of iodine (5 <i>p</i> - electrons).
 F atoms, the third figure 0 represents the no. of Cl atoms and last figure 1 represents the Br atom 255 (a) It is a test for proteins. 	hybridisation with one lone pair of electron. 270 (b) Cl ₂ O has <i>sp</i> ³ -hybridized oxygen atom with two lone pairs.
 HF exists in dimeric (H₂F₂) liquid state. 254 (b) Halon-1301 is CF₃Br. The first figure 1 represents no. of C atoms, the second figure represents no. of 	 thus, forms SF₆ where S shows its maximum coordination number 269 (a) B in BCl₃ is sp²-hybridised; N in NCl₃ has sp³-
 Cl₂ is used in preparation of DDT-an insecticide. (a) Due to H-bonding, 	268 (c) Fluorine due to its very high electronegativity oxidises sulphur to its highest oxidation state and thus forms SE, where S shows its maximum
 251 (b) The electrolyte used in battery is 38% H₂SO₄. 252 (b) 	$(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O$ 267 (c) $(NH_4)_2SO_4 + H_2O \rightarrow NH_4OH + H_2SO_4$
 P exists as P₄, Sb exists as Sb₄. 250 (a) He was detected first in solar atmosphere. 	decolourisation of bromine water 266 (c)
 248 (a) Allotropes have different crystalline nature. 249 (a) 	$Na_2SO_3 + H_2SO_4 \rightarrow Na_2SO_4 + SO_2 + H_2O$ $Br_2 + H_2O \rightarrow 2HBr + [O]$ $SO_2 + [O] \rightarrow SO_3$
 247 (d) SO₂, H₂O ans O₃ all of these act as bleaching agent. 248 (a) 	Na ₂ SO ₃ reacts with hot and dil, H ₂ SO ₄ to give SO ₂ gas which decolourise bromine water Na ₂ SO ₂ + H ₂ SO ₄ \longrightarrow Na ₂ SO ₄ +SO ₂ +H ₂ O

Xe due to largest size more polarisable. He due to $CO + Cl_2 \rightarrow COCl_2$ smallest size least polarisable. 296 (d) 280 (d) This is a method to separate noble gases. 297 (c) Nitrolim is $CaCN_2 + C$. It is a reason for the given fact. 281 (a) $H_2S + H_2SO_4 \rightarrow SO_2 + 2H_2O + S$ 298 (c) 283 (a) $NCl_3 + 3H_2O \rightarrow NH_3 + 3HOCl$ The reducing property of the hydrides of VA 299 (b) group increases from NH₃ to BiH₃ HNO₃ is strongest oxidant among all. NH₃<PH₃<AsH₃<SbH₃<BiH₃ 300 (a) The tendency to donate lone pair or basic Larger is the bond length, easier is its dissociation strength decreases from NH₃ to BiH₃ and more is acidic nature in halogen acids. NH₃>PH₃>AsH₃>SbH₃>BiH₃ 301 (b) Thermal stability of VA group hydrides deceases from NH₃ to BiH₃ NH₃>PH₃>AsH₃>SbH₃>BiH₃ Dipole of water includes dipole in Bond angle of VA group hydrides decreases from noble gases which interact and causes solubility NH₃ to BiH₃. in water NH₃>PH₃>AsH₃>SbH₃>BiH₃ 302 (d) 284 (d) Oxidation state of S is 0 in S₈ The deficiency of iodine in diet causes goitre. Oxidation state of S is +4in SF₄ 285 (b) Oxidation state of S is +6 in H₂SO₄ S shows 0,+4 and +6 oxidation states. In fact S shows 0, -2, +2, +4 and +6 oxidation HO states, 303 (a) 3-OH groups are present hence, it is tribasic H-bonding in H_2SO_4 makes it a viscous liquid. 286 (d) 304 (d) The solubility increases with increase is mol. wt. $Na_2Fe(CN)_5NO + Na_2S \rightarrow [Na_4Fe(CN)_5NOS]$ Violet Complex 287 (b) It is a fact. 305 (a) 288 (c) It is a fact. He is obtained during radioactive decay. 306 (b) 289 (d) Pyrogallol absorbs O₂ Zero group element show less chemical activity Turpentine oil and oil of cinnamon absorbs O_3 . because this group element have 8 electrons in 307 (b) outermost orbit A test for ozone. 290 (a) 308 (d) $2FeCl_3 + H_2S \rightarrow 2FeCl_2 + 2HCl + S$ Concentrated H₂SO₄ has dehydrating property. 291 (c) When cellulose comes in contact with conc H_2SO_4 , $HPO_3 + H_2O \rightarrow H_3PO_4$ it removes water from cotton leaving only black 292 (d) carbon in the form of charred particles O_3 forms ozonides with each molecule having $(C_6H_{12}O_6)_x \to 6C + 6H_2O_6$ \checkmark C=C bond or C=C bond. **Charred** particles 293 (d) 309 (a) Argon is found abundantly in the atmosphere. $3HCl + HNO_3 \rightarrow NOCl + 2H_2O + 2Cl$ 294 (d) 310 (d) $SO_2 + 2CuCl_2 + 2H_2O \xrightarrow{KCNS} Cu_2Cl_2 + H_2SO_4 + White$ H₂S has *sp*³-hybridization with two lone pair, having V-shaped geometry, i.e., 2HCl 295 (a)

311 (d)

Dust is a colloid which shows tyndall effect. Hence,tyndall box is used to test the presence of dust in gaseous mixture , as dust decreases the effectiveness of catalyst.

312 (c)

 PoO_2 is insoluble oxide of gp. 16.

313 **(c)**

This is a laboratory method for preparation of Cl_2 . 314 **(b)**

XeF₆ show sp^3d^3 hybridisation, it will give pentagonal bipyramidal geometry, but due to presence of lone pair of electron, shape will be distorted octahedral

315 **(b)**

Bleaching action of \mbox{Cl}_2 is only in presence of moisture where nascent oxygen is displaced from $\mbox{H}_2\mbox{O}$

 $\begin{array}{l} \text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HCl} + \text{HClO} \\ \text{HClO} \rightarrow \text{HCl} + [\text{O}] \end{array}$

316 **(d)**

The +5 oxidation state of Bi is unstable due to 323 **(a)**

N has $-\frac{1}{3}$, -3, -2, -1 oxidation states in

 N_3H , NH_3 , N_2H_4 and NH_2OH respectively

324 **(d)**

 S_8 has puckered ring structure.

325 (d)

Ti has configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^2$, $4s^2$. Thus, Ti⁴⁺ has configuration $1s^2$, $2s^22p^6$, $3s^23p^6$, *i.e.*, of Ar.

326 **(b)**

 $3CuSO_4 + 2PH_3 \rightarrow Cu_3P_2 + 3H_2SO_4$ Black

327 **(a)**

Anhydrous $Ba(ClO_4)_2$ is an effective drying agent. It is used under the trade name desicchlora

328 **(a)**

Neil Bartlett prepared first noble gas compound, xenon hexafluoride (IV)

330 **(a)**

The structure of H₃PO₃ is given as

inert pair effect. Thus, BiF5cannot be formed.

317 **(a)**

Mg is reductant and thus, can be oxidized.

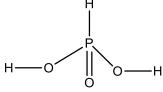
318 **(a)**

NH₃ is stronger base among all these.

319 **(c)**

 $_{1}H^{1} + _{1}H^{2} \rightarrow _{2}He^{3} + energy.$ This is fusion.

320 **(b)**


 $2\text{HCl} + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{Cl}_2$

321 (c)

Only He and Ne are remained unadsorbed on the coconut charcoal at -100° c (173K) as their boiling points are less than -100° c .(He=4K, Ne=27K).

322 (c)

 ClO_2^- has sp^3 hybridisation and two lone pairs on halogen which produces V-shape bent structure

In this structure two —OH group are present, so it is dibasic acid. In it one P—H bond is present, so it provides hydrogen and due to such hydrogen it acts as reducting agent.

331 **(d)**

When chlorine reacts with dilute and cold NaOH sodium chlorine and sodium hypochlorite are formed.

 $2\text{NaOH(cold)} + \text{Cl}_2 \rightarrow \text{NaCl} + \text{NaClO} + \text{H}_2\text{O}$ Sodium hypochloride Let oxidation state of Cl in NaCl is x+ 1 + x =0 X = -1 Let oxidation state of Cl in NaClO is x. NaClO

+1 + x - 2 = 0

348 (a) x - 1 = 0The structure of phosphorous acid H₃PO₃ is as x = +1 \therefore oxidation states of chlorine changes from 0 to -1 follows and +1. 332 (b) -он It is a fact. 333 (d) These are uses of H₂SO₄. As it has two —groups, hence it shows dibasic 334 (c) character Hydrolysis of NCl₃ gives NH₃or NH₄OH and HCIO 349 (a) as The thermal stability of the hydrides of nitrogen $NCl_3+4H_2O \rightarrow NH_4OH+3HOCl$ family or group15 elements decreases on moving 335 (c) downwards in the group. Therefore, NH₃is the Xe in XeF₂, XeF₄, most stable and BiH₃is the least stable. The XeF₆ has sp^3d , sp^3d^2 and sp^3d^3 hybridisation wit stability of the hydride of group 15 elements electrons respectively. decreases in the order. 336 (c) NH₃>PH₃>AsH₃>SbH₃>BiH₃ N₂O is itself non-combustible but supports 350 (d) combustion The electropositive character increases down the $S + 2N_2O \rightarrow SO_2 + 2N_2$ group, eg., I(CH₃COO)₃, IPO₄, etc., are ionic. 338 **(b)** 352 (c) $(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \xrightarrow{\Delta} \mathrm{N}_2 \uparrow +\mathrm{Cr}_2\mathrm{O}_3 + 4\mathrm{H}_2\mathrm{O}$ K_2CS_3 is potassium thiocarbonate. $NH_4NO_2 \rightarrow N_2 \uparrow +2H_2O$ 353 (a) 339 (c) Only H₂S₂O₆contains S—S bond. Its structure is Fluorapatite is $CaF_2 \cdot 3Ca_3(PO_4)_2$. 340 (d) It is a fact. - ŝ --OH 341 (a) The formation of ozone from oxygen is an endothermic reaction not exothermic reaction. 354 (a) $3O_2 \xrightarrow{\text{Electric}} 2O_3;$ $\Delta H = 287 \text{ kJ}$ Orthophosphoric acid (H_3PO_4) is a tribasic acid. So, statement Hence, its structure can be represented as $0 \leftarrow$ $3O_2 \xrightarrow{\text{Silent}}_{\text{discharge}} 2O_3;$ $P(OH)_3$. $\Delta H = -284.5 \text{ kJ}$ 0 Is not correct statement. 342 **(b)** $NH_4NO_3 \rightarrow N_2O + 2H_2O$ 0-(Laughing gas) 343 (c) P₂O₅ is solid acidic oxide. 344 (a) $(lp + \sigma bp = 1 + 3 = 4)$ $\text{KNO}_3 \xrightarrow{\Delta} \text{KNO}_2 + \frac{1}{2}\text{O}_2$ Hence hybridization of p in H₃PO₄ is sp³ and thus it is tetrahedral in shape. 345 (c) $(NH_4)_2SO_4 + KCNO \rightarrow NH_4CNO + K_2SO_4$ 355 (b) $Cl_2 + H_2O \rightarrow 2HCl + [O]$ 356 (a) NH₂CONH₂ Clatherate formation involves dipole induced urea dipole attraction(:: 346 (d) water is polar molecule and Xe is non - polar). AgI is insoluble in NH₄OH.

357 (b)	preparation.
Divers use He + O_2 mixture for respiration in	
place of $N_2 + O_2$. The N_2 was found to dissolve in	$4NH_3+5O_2 \rightarrow 4NO+6H_2O$
blood at high pressure during diving and after it,	$2NO+O_2 \rightarrow 2NO_2$
the N_2 gas comes out from blood causing painful	$4NO_2+O_2+2H_2O\rightarrow 4HNO_3$
nerve bursting. The mixture is also used for	372 (d)
respiration by asthma patients.	Frankland and Lockyer pointed out the new D ₃
358 (d)	line observed in the yellow region of the sun's
Ammonium nitrate on heating at 250° C gives N ₂ O.	spectrum observed by Jonsen in 1868 was due to
359 (c)	a new element which they named Helium. It was
F_2 has low reactivity for Cu and steel.	the first noble gas to be discovered. The two
360 (a)	known line D_1 and D_2 were of sodium
Due to the formation of thin oxide film on iron	373 (b)
surface.	$3Cl_2(g) + 6KOHaq. \xrightarrow{\Delta} KClO_3 + 5KCl$
361 (d)	$3\text{Cl}_2(g) + 6\text{KOH}aq. \rightarrow \text{KCl}_3 + 5\text{KCl}$ $+ 3\text{H}_20$
HF is weaker acid due to H-bonding.	-
362 (c)	(Green yellow (Used in fire-
Fe(II) has four unpaired electrons $(3d^6)$	gas) works and safety
where Fe(III) has five unpaired electrons $(3d^5)$.	match box)
This can be obtained by measuring magnetic	374 (d)
moment of molecule in solid state.	It is a fact.
363 (b)	375 (b)
$NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$	$NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl_3$
364 (b)	376 (d)
Yhe structure of H_3PO_4 is	He, because of its small size can diffuse through
0 0	rubber, glass PVC etc. easily 378 (a)
5	HNO ₂
	Orthophosphate + Amm. Molybdate $\xrightarrow{\Delta}$ yellow
но	ppt
он	
It can loose three H+ ions so its basicity is three.	\downarrow +AgNO ₃
366 (d)	Red ppt
Chlorine, being only a slightly stronger oxidizing	
agent than bromine can not oxidise it to +7	379 (a)
oxidation state as is required for the formation of	$2HNO_2 + H_2SO_4 \longrightarrow 2NO_2 + SO_2 + 2H_2O$
the compound BrCl ₇	380 (c)
367 (c)	CN ⁻ acts as complexing agent and reducing agent.
The true peroxide contains $0^{2-}_2(0-0)^{2-}$ ion.	$CuSO_4 + 2KCN \rightarrow Cu_2(CN)_2 + K_2SO_4$
\therefore Out of given choices only BaO ₂ has O ₂ ²⁻ in its	+ (CN) ₂
structure.	
∴ BaO₂ is true peroxide.	(Reducing agent)
368 (d)	$Cu_2(CN)_2 + 6KCN \rightarrow 2K_3Cu(CN)_4$ (Complexing)
$SO_2 + 2H_2O + Br_2 \rightarrow 2HBr + H_2SO_4$	agent)
369 (c)	381 (c)
Nitrogen does not have <i>d</i> -orbitals	Laminaria-a sea-weed containing iodine as
370 (d)	iodide.
Pernitric acid is HNO ₄ .	382 (b)
371 (a)	It is a fact.
Platinum acts as catalyst in the oxidation of	383 (a)
ammonia to form nitric oxide .This reaction is	Yellow P is readily oxidized in air and thus, kept in
used in the ostwald 's method of nitric acid	water.
	P a g a 102

- 384 (a)
 - N_2 does not combine directly with F_2 .
- 385 **(d)**
- Lowest bond dissociation energy is of I₂. 386 **(a)**
 - $50_3 + I_2 + H_20 \rightarrow 2HIO_3 + 5O_2$
- 387 (d)

This is a use of molten Na and S.

388 **(d)**

Catalyst has no role in oxidation by HNO_3 .

389 **(a)**

In the froth- floatation process, froths are produced by blowing air through water containing pine oil and ore. Ore particles are not wetted by water, hence these being lighter, comes out to the surface with froths and extracted . The impurities are watted by water and becomes heavy .Thus, these settle down.

390 **(a)**

 $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$

391 **(d)**

Zero group members are less abundantly found and thus, called as rare gases; due to their least reactivity they are called inert gases; on account of some compounds formed by Kr, Xe, they are named noble gases.

392 **(a)**

Xe in XeOF₄ has sp^3d^3 -

hybridisation with one lone pair of electron.

393 **(a)**

Hypophosphorous acid is a monobasic acid as it forms one type of salts e.g. sodium hydrogen phophite (NaH₂PO₂)

 $NaOH+ H_3PO_2 \rightarrow NaH_2PO_2+H_2O$

Hydrophosphorus acid has two hydrogen atoms attached to phosphorus and one hydrogen atom attached to oxygen atom(which is ionisable), i.e.,

H P OH
H 394 (a)

$$X + e \rightarrow X^{-}; \quad \Delta H = -A;$$

 $X^{-} \rightarrow X + e; \quad \Delta H = +A.$

0

395 **(a)**

Oxidizing nature of oxides decreases with increasing oxidation number of central atom.

396 **(d)**

Oswald process of manufacturing of HNO_{3}

 $4NH_3+5O_2 \rightarrow 4NO+6H_2O+heat$ $2NO+O_2 \xrightarrow{50^{\circ}C} 2NO_2(g)$ $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$ ∴ Pt is catalyst in Oswald process. 397 (b) $4HNO_3 + P_4O_{10} \rightarrow 4HPO_3 + 2N_2O_5$ Dinitrogen pentoxide The product is dinitrogen pentoxide (N_2O_5) 398 (b) Phosphorus acid (H₃PO₃)is a diprotic acid. It forms two series of salt such as NaH₂ PO₃ and Na₂ HPO₃ but none of the type NaPO₃ with NaOH. Its structure is as 399 (b) +4+5 $2 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3$ mixed acid anhydride 400 (a) $Ba_3N_2 \xrightarrow{\Delta} 3Ba + N_2$ 401 (b) When SO₃ is dissolved in heavy water D₂SO₄ is formed as $SO_3 + D_2O \longrightarrow D_2SO_4$ (X)The hybridization state of S in D₂SO₄ is sp³ 403 (c) He, Ne. Due to its very small size and low molecular weight, these possess weak forces of attraction. 404 (d) The reducing nature of hydrides increases down the group. 405 (a) Most abundant element is oxygen on earth's crust. 406 (d) It is a fact. 407 (b) Superphosphate of lime is a mixture of calcium dihydrogen phosphate and gypsum and is obtained by treating phosphatic rock with conc H_2SO_4 $Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O_4$ \rightarrow Ca(H₂PO₄)₂ · 2H₂O + 2CaSO₄ $\cdot 2H_2O$

	superphosphate	425	(c)
	of lime		Rest all are known.
408	(c)	426	(c)
	$N_2 + O_2 \xrightarrow{3000^{\circ}C} 2NO$; very high temperature is		Iodine has the least affinity for water and is only
	required for dissociation of N_2 .		slightly soluble in it. However, it dissolves in 10%
410			aqueous solution of KI due to the formation of a
110	Some metals form amphoteric oxides, e.g., ZnO;		complex ion <i>ie</i> , I_3^-
	white P is kept in water. Carbon forms neutral		$I_2 + KI \rightleftharpoons KI_3$
	(CO) and acidic oxides (CO ₂).		or $I_2 + I^- \rightleftharpoons I_3^-$
411			(Complex ion)
111	SO_2 is an acidic oxide and can be dried by an	427	(c)
	acidic dehydrating agent.		Commercial ammonium carbonate having
412			$(NH_4)_2CO_3$, NH_4HCO_3 and NH_4OCONH_2 is known
	$4\text{Zn} + 10\text{HNO}_3 \rightarrow 4\text{Zn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3\text{H}_2\text{O}$		as sal volatile.
	(Very dil.)	428	(c)
413			Aqua regia is 1 part HNO_3 and 3 parts HCl.
	H_2S has V-shape geometry (<i>sp</i> ³ -hybridisation	429	(c)
	with two lone pair on S atom).		A more electronegative halogen can displace less
414			electronegative halogen
	Graham's salt is $Na(PO_3)_6$ used as water softener.		$Cl_2 + 2KBr \rightarrow 2KCl + Br_2$
416		430	(d)
	N_2 possesses high bond energy and thus, is inert.		As the electronegativity decreases from N to Sb,
417			the repulsion between bond pair-lone pair
	It is due to heavier gas argon (at. wt. 40) present	Ç,	decreases.
	with N_2 (at. wt. 28) obtained from atmosphere. Ar	431	(a)
	is about 1% in air; the most abundant inert gas in		Basic impurities on surface are removed by HCl,
	atmosphere.	-	Acidic impurities are removed by NH_3 .
418		432	(b)
	In $0_{3,0}$ —0 bond length is identical with that of		$FeSO_4$ solution absorbs NO to give $FeSO_4NO$.
	molecular oxygen. It is found to be intermediate	433	_
	of $0-0$ and $0=0$ bond length.		I in ICl_3 has sp^3d -hybridisation having two lone
	This is due to reasonance.		pair of electrons and thus, shape is bent T inspite
			of trigonal bipyramidal.
		434	
			Pyrosulphuric acid is $H_2S_2O_7$. Both SO_3 and $H_2S_2O_7$.
	In ozone, bond angle of 0—0—0 is 116.8° and	405	+ 6 oxidation state.
	bond length $(0-0)$ is 1.278 Å.	435	
419			The oxidizing power of oxo-acids of chlorine
	For advertisement the coloured discharged tubes		decreases with increase with increase in
	contains Ne.	120	oxidation no. of chlorine.
420		436	
	HBr is strong reducing agent and will be oxidized t	427	Cl can exhibit maximum oxidation state of $+7$.
421	(b)	43/	
	It is a fact.		$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2 \qquad (Green-$
422		120	yellow)
	Heat of vaporization of NH_3 is higher in compariso	438	(a) Ammonia on reaction with excess of chlorine
423			
	Deficiency of I ₂ causes goitre disease which is relat		gives nitrogen trichloride. NH ₃ +3Cl ₂ \rightarrow NCl ₃ +3HCI
424	_		

excess

424 **(b)**

It is a fact.

439 **(d)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

440 **(a)**

The thermal stability of the anions of oxo-acids of chorine increase with increasing oxidation number of halogen

442 (d)

NH₃ is non-combustible gas.

444 (d)

e.g., IF₇; 7 atoms of F and one of I.

445 **(a)**

Mixture of helium and oxygen is the life saving mixture for asthma patient because helium is less soluble in blood than nitrogen.

446 **(d)**

Except Xe fluorides (XeF_2 , XeF_4 , XeF_6), fluorides of Kr and Rn known are KrF_2 , KrF_4 and RnF_2 .

447 (a)

Element/elements having more electronegativity than(sulphur) can react with it to form compound of type SX_4 .

 \therefore Fluorine and chlorine are more electronegative than sulphur.

 \therefore F and Cl can form compound of SX₄ type with S. (d)

448 **(d)**

Reactivity of oxygen with chlorine is minimum because of low electronegativity difference.

449 **(b)**

 $C_{12}H_{22}O_{11} \xrightarrow{[0]} 6H_2C_2O_4$

450 **(c)**

COCl₂ is called phosgene.

451 **(c)**

1. H_2S acts as a reducing agent, because it can reduce PbO into PbS.

```
PbO+H_2S \rightarrow PbS+H_2O
```

(b)it is acidic in nature . In chalcogens, the acidic nature of hydride increases from H_2O to H_2Te .

(c) it is not an oxidizing agent.

452 **(c)**

This was a reason for the given fact.

453 **(d)**

```
Oxidation states of sulphur are \begin{bmatrix} - & i & H_2 \end{bmatrix}
```

	2	n	S
		i	S S ₈
	0	n	
	+ 2	i	$S_2 O_3^2$
	2	n	
		i	SO
	+ 4	n	2
	+	i	SO
	+ 6	n	3
455	(b)		

$$Cu(NO_3)_2 \rightarrow CuO + 2NO_2 + \frac{1}{2}O$$

456 **(b)**

 OF_2 dissolves in water but does not give any oxyacid solution, while SO_2 , SCl_4 and SO_3 give oxyacid solution in water. $SO_2 + H_2O \rightarrow H_2SO_3$

Sulphurous acid
SCl₄ +
$$3H_2O \rightarrow H_2SO_3 + 4HCl$$

Sulphurous acid

 $SO_3 + H_2O \rightarrow H_2SO_4$

Sulphuric acid

Thus, I₂ shows complementary colour.

458 **(b)**

457 (c)

This is a fact or definition of clathrates of inert gases.

459 **(a)**

It is a fact. The radioactive mineral, clevite, monazite, pitchblende, uranite give He either on heating to 1000° C in vacuum or on heating with H₂SO₄.

460 (**b**)

 $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$

461 **(d)**

In group 16 and period VI the oxyge, sulphur, selenium are chalcogens (ore forming) while polonium being radioactive forms a less number of compounds and is not considered as chalcogens.

462 **(a)**

Lead nitrate on ignition furnish lead oxide and nitrogen dioxide with evolution of O_2 gas.

$$2Pb(NO_3)_2 \xrightarrow{300-400^{\circ}C} 2PbO+4NO_2+O_2$$

463 **(a)**

Xe is most easily liquefible rare gas because interatomic interactions increases with increasing atomic number.

464 **(c)**

It is a fact.

465 **(d)**

In atomic reactors, helium gas is used. It is also used in filling lighter air-crafts such as air ships weather balloons etc.

 $\begin{aligned} \text{Ca}_3(\text{PO}_4)_2 + 3\text{SiO}_2 &\longrightarrow 3\text{CaSiO}_3 + \text{P}_2\text{O}_5 \\ 2\text{P}_2\text{O}_5 + 10\text{C} &\longrightarrow \text{P}_4 + 10\text{CO} \end{aligned}$

468 **(c)**

 $\frac{1}{2}$ F₂ + e + aq. \rightarrow F⁻(aq.); $\Delta H = H_d - EA - H_h$ Heat of hydration being exothermic and maximum for fluorine because of its smaller size and thus, more negative value for ΔH is obtained for reduction of F₂. Thus, F₂ is strong oxidant.

469 (a)

The lower is b.p., more is vapour pressure; b.p. order is:

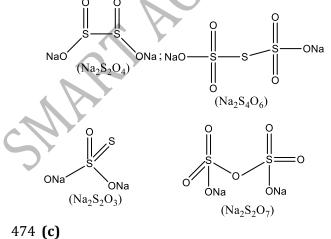
470 **(a)**

Sb is semi-metal and thus, forms amphoteric oxides.

471 (a)

Bone black is polymorphic form of phosphorus. The other forms of phosphorus. The other forms of phosphorus. The other forms of phosphorus and red phosphorus.

472 **(b)**


The acidic strength of oxy acids decreases downwards in a group.

The correct order of acidic strength of oxy – acids of halogen is

HIO₄>HBrO₄>HIO₄

473 **(d)**

The structure of the given compounds are as

It is a fact.

475 (d)

Due to its chemically inert nature.

476 **(d)**

The inert gases producing maximum number of compounds are Ar(argon) and Xe(xenon) due to their low ionisation energy.

their low ionisation energy.
477 (d)

$$CaC_2 + N_2 \rightarrow CaCN_2 + C$$

478 (a)
 $2KBr + 3H_2SO_4 + MnO_2$
 $\rightarrow 2KHSO_4 + MnSO_4 + 2H_2O$
 $+ Br_2$
479 (d)
Fe₂(SO₄)₃ on heating gives SO₃Fe₂(SO₄)₃ \rightarrow Fe₂C
 $+ 3SO_3$
480 (d)
It is a fact.
482 (d)
It is a fact.
483 (a)
 XeF_6 has much tendency to hydrolyse. The reverse
reaction is more spontaneous.
 $XeF_6 + 3 H_2O \rightarrow XeO_3 + 6HF$
484 (b)
It is a fact.
485 (b)
 $2F_2 + 4KOH \rightarrow 4KF + O_2 + 2H_2O$
486 (c)
Slow acting nitrogenous fertilizer is one which
decomposes slowly. out of given choices CaNCN
(or CaCN₂ or calcium cyanamide)decomposes
very slowly.
CaNCN+2H₂O $\rightarrow CaCO_3 + NH_2CONH_2$
 $Urea$
 $NH_2CONH_2 + H_2O \rightarrow CaCO_3 + NH_2CONH_2$
 $Urea$
 NH_3
 NH_3

492		512	
	Rn is the symbol for radon.	- 10	H_2F_2 is weakly ionized due to H-bonding.
493		513	
	$FeSO_4 \cdot NO$ is formed.		Larger is size and mol. wt. more are van der
494			Waals' forces among molecule.
	$2HNO_3 + P_2O_5 \longrightarrow N_2O_5 + 2HPO_3$	515	
495			$SO_2 + Cl_2 \rightarrow SO_2Cl_2$
	The phenomenon of phosphorescence shown by	516	
	white phosphorus is called cold fire		PH ₅ is not known.
496		517	
	Xe forms XeF_2 , XeF_4 or XeF_6 compounds with fluor.		$3H_2O + 3F_2 \rightarrow 6HF + O_3$
497		518	
	To provide inert atmosphere.		Nitrogen does not possess 2 <i>d</i> -subshell and thus,
498			cannot excite its $2s$ paired electron to get
	ppm of F = $\frac{\text{Wt. of F}}{\text{Wt. of paste}} \times 10^6 = \frac{0.2}{500} \times 10^6 = 400$		unpaired whereas phosphorus does so on account
499			of availability of 3 <i>d</i> -subshell.
177	$3H_2O + PCI_3 \rightarrow H_3PO_3 + 3HCI$	519	(b)
500			A more electronegative halogen displaces less
300			electronegative halogen from its halide. Fluorine
F01	I_2 itself imparts violet colour.		is more electronegative than chlorine hence, it ca
501			displace Cl from HCl while chlorine cannot
502	Xe is meant stranger		displace fluorine from HF. Therefore, the
502			following reaction is not valid.
- 02	These are characteristics of noble gases.	K,	$HF + Cl_2 \rightarrow F_2 + HCl$
503		520	(c)
F 04	$2Cr_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$	V'	More is the electronegativity of central atom (of
504		7	non-metal) more is acidic nature of oxo-acid.
	A halate will be formed from halogen and the	521	(a)
	greenish yellow gas is Cl_2 . The halate which is		$2NH_3 + 3Cl_2 \rightarrow 2NCl_3 + 3HCl$
	used in fireworks and safety matches is $KClO_3$	522	(a)
	$3Cl_2 + 6KOH \rightarrow KClO_3 + 5HCl + 3H_2O$		СООН
505			$ \qquad \xrightarrow{\text{Conc } H_2 SO_4} H_2 O + CO + CO_2$
	The inorganic nitrogen exists in the form of		СООН
	ammonia, which may be lost as gas to the	522	
	atmosphere, may be acted upon by nitrifying	523	
	bacteria or may be taken up directly by plants	E24	Cl_2O and HClO both have Cl in + 1 oxidation states (d)
506		524	
	Pseudohalides are uninegative groups which	FOF	$2F_2 + 2NaOH \rightarrow 2NaF + OF_2 + H_2O$
	show certain characteristics of halide ions, e.g.,	525	
	CN^- , Se CN^- , S CN^- , N_3^- , O CN^- , N CO^-		I_2 forms complex ion I_3^- in KI solution due to
507	(d)		which it dissolves in it.
1	$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2$		
508	(d)	526	
\checkmark	It is a fact.		The boiling point of NH_3 is higher due to the
509	(b)		presence of hydrogen bonding .the order of
	XeF_2 , XeF_4 , XeF_6 are formed by xenone		boiling point of hydrides of nitrogen family is as
510			Hydride: PH ₃ <ash<sub>3< NH₃<sbh<sub>3</sbh<sub></ash<sub>
	N_2O_5 is white crystalline solid which melts at 30°C		B.P. :185 218 239.6 256.
511		527	(c)
	Lone pair density is maximum in NH ₃ due to its		Rest all are uses of H_2SO_4 .
	· · · · · · · · · · · · · · · · · · ·	528	

	Clevite is uranium mineral, on heating it gives He		Helium is twice as heavy as hydrogen, its lifting
529	<u>.</u>		power is 92% of that of hydrogen. Helium has the
	$ m NH_3$ and $ m PH_3$ both are basic because of the		lowest melting point of any element which makes
	presence of lone pair of electrons		liquid helium an ideal coolant for many extremely
530			low temperature application such as crystals, a
	Both O and Cl is electronegative elements so O		sophisticated measuring instrument based on
	does not readily react with Cl		super conducting magnet and cryogenic research
531			where, temperature close to absolute zero are
	In case of Cl_2O_7 , Cl has +7 oxidation		needed
	state(oxidation state) and also have highest	545	(D) Rest all react with HBr.
	oxygen content . So it is most acidic.	546	
532		540	Cl in ClO_4^- has highest oxidation number and can be
	Sulphur possesses maximum bond energy for		ci in cio ₄ has highest oxidation number and can b
	catenation in VI gp. members.	547	(1)
533	$2K_2MnO_4 + Cl_2 \rightarrow 2KCl + 2KMnO_4$	547	Bi_2O_3 is most basic; SeO_2 , Al_2O_3 and Sb_2O_3 are am
		548	
535	On rubbing liquor NH ₃ with I_2 flakes, a dark	540	$2\text{HClO}_4 \rightarrow \text{H}_2\text{O} + \text{Cl}_2\text{O}_7$
	brown ppt. of ammoniated nitrogen iodide, $NH_3 \cdot I$	549	
	NI_3 is obtained, which decomposes quickly on		$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$
	drying into $NH_4I + I_2 + N_2$.	550	
	$8NI_3 \cdot NH_3 \rightarrow 5N_2 + 9I_2 + 6NH_4I$	550	Each P in P_4O_6 has 3P— O bonds;
536			O - P - O
	<u>^</u>		
	$2KBr + 2H_2SO_4 + MnO_2 \rightarrow 2KHSO_{4-}$	X	P-/O-P
	$+MnSO_4+2H_2O+Br_2$		O $ O $ $ O $
537		551	(c)
	Lower is the ionization potential of an element		It is due to heavier gas argon (at. wt. 40) present
	more would be its reducing power and also		with N_2 (at. wt. 28) obtained from atmosphere. Ar
	reactivity.		is about 1% in air; the most abundant inert gas in
	As we move down the group, the reactivity of		atmosphere.
	noble gases increase due to the decrease	552	•
	ionization energy. Hence, xenon is most reactive.		$4\text{KNO}_3 + 4\text{H}_2\text{SO}_4$
538			$\rightarrow 4\text{KHSO}_4 + 4\text{NO}_2 + 2\text{H}_2\text{O} + \text{O}_2$
	Bartlett prepared first compound of Xe as $Xe^{+}[PtF_{6}]^{-}$, a red orange crystalline solid.	553	(d)
			$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$
539	$Xe + PtF_6 \rightarrow Xe^+ [PtF_6]^-$		P is oxidised (zero to + 1 oxidation state
	The function of Fe(OH) ₃ in the contact process is		$inNaH_2PO_2$) as well as reduced (zero to - 3)
	to remove arsenic impurity. Fe $(OH)_3$ is a positive		oxidation state in PH_3).
	sol, hence it removes arsenic impurity which is a	554	(b)
	negative sol.		H ₂ S ₂ O ₄ —dithionous acid
540			H ₂ S ₂ O ₆ —dithionic acid
_	A clear solution in water is not formed because of (H ₂ S ₂ O ₅ —disulphurous acid
542			H ₂ S ₂ O ₇ — disulphuric acid
	P_2O_5 reacts with NH ₃ in presence of moisture.	555	(d)
543			Pseudohalide they are comination of more than
	Calcium cyanamide on treatment with steam		one electronegative atoms which one unit
	produces NH_3 and $CaCO_3$.		negative charge, e.g. OCN^- , CN^- .
	$CaNCN+3H_2O \rightarrow 2NH_3+CaCO_3$		Polyhalide ions the complex ions which are
544			fromed by reaction of halogens among themselves
			are called polyhalide ions e.g., I_3^- , Br I_2^- .

Interhalogens they are the compounds which are formed halogen react among themselves. one of the halogens behave as cation and other acts as aninon e. g. IF_5 , ICl_5 , BrF_3 .

556 (d)

Iodine also forms ionic compounds in +3 state.

557 (d)

Upper halogen can replace lower halogen from their compounds solution because a more electronegation halogen displaces less electronegative halogen from its halide.

558 **(d)**

 $CCl_4 + I_2 \rightarrow Violet colour$

559 **(b)**

It is a fact.

560 (a)

The reducing character of the hydrides of group v elements depends upon the stability of hydrides. With progressive decrease in stability the reducing character of hydrides increases as we move down the group. Thus ammonia being stable has least reducing ability. The order of reducing abilities of V group hydrides is NH₃<PH₃<AsH₃<SbH₃<BiH₃

561 (c)

 $CaOCl_2 + 2CH_3COOH$

 \rightarrow (CH₃COO)₂Ca +

 $+ H_{2}O$

562 **(c)**

Salts of H_2SO_3 or SO_3^{2-} are called sulphite.

563 **(a)**

The head of match stick contains KCIO₃,KNO₃ ,sulphur and antimony

The sides of match box contains red phosphorus and sand powder.

 P_4S_3 is used in strike any where matches.

564 **(b)**

Follow methods of preparation of Xe fluorides. 565 **(a)**

Thermal stability of the hydrides decrease gradually from NH_3 to BiH_3 . This is due to the reason that atomic size of the element increases down the group and N—H bond strength decreases.

566 **(a)**

 $Ca_3(PO_4)_2$ is called Thomas slag.

The electronegativity order is F > 0 > N > Cl.

568 **(a)**

The atomic size increases from Cl to I.

569 (c)

$$N_2 O \xrightarrow{\Delta} N_2 + \frac{1}{2} O_2$$

570 (a)

Find out oxidation no. in each.

- 571 **(d)**
 - It is a reason for the given fact.

572 **(a)**

 N_2O_5 is an anhydride of HNO_3 2 $HNO_3 \rightarrow N_2O_5 + H_2O$

Therefore, it can act only as oxidising agent

573 **(a)**

Oleum is fuming sulphuric acid. H₂ SO₄+SO₃ \rightarrow H₂S₂O₇

oleum or pyrosulphuric acid

574 **(c)**

The basic character of hydrides decreases down the group or acidic character increases down the group. Also H_2O is neutral.

$$2\text{HIO}_3 \rightarrow \text{I}_2\text{O}_5 + \text{H}_2\text{O}$$
76 (d)

I₂ possesses antiseptic nature.

578 **(b)**

Cl₂ Available

chlorine

$$2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$$

579 **(b)**

It is a fact.

580 **(b)**

 Cl_2 being a stronger oxidizing agent, oxidises bromide present in the mother liquor to Br_2 . $2Br^- + Cl_2 \longrightarrow Br_2 + 2Cl^$ from mother liquor bromide

581 **(b)**

 $4\text{Zn} + 10\text{HNO}_3 \rightarrow 4\text{Zn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3\text{H}_2\text{O}$ V. dil.

582 (d)

 P_4O_{10} has 4P=0 bonds in it which are shorter than P—O single bonds; each P atom has 3P=0and 1P=0 bonds, *i.e.*, total 4P=0 linkages.

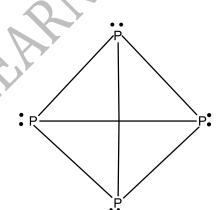
583 **(d)**

Fluorides react with these fluoro Lewis acids to form adducts. For example, XeF_2 gives complexes of the type $XeF_2 \cdot 2MF_5$ and $XeF_2 \cdot MF_5$

584 **(b)**

 ${}_{88}\text{Ra}^{226} \rightarrow {}_{86}\text{Rn}^{222} + {}_{2}\text{He}^{4}$ 585 (d)

In the sublimation the solid substance converts


into vapours directly. Iodine is found in solid state while F_2 and Cl_2 are found in gaseous state and Br_2 is found in liquid state. so, iodine can be purified by sublimation. 587 (a) NH₃ is a polar molecule. 588 (a) $4Cu+10 HNO_3 \rightarrow 4Cu(NO_3)_2+5H_2O+N_2O$ 589 **(b)** Rest all are characteristics of HNO₃. 590 (b) $3S + 4NaOH \xrightarrow{Boiling} Na_2S_2O_3 + Na_2S$ 605 591 (d) These do not possess the tendency to react. 592 (d) Black P is metallic form of P. 593 (d) SO_2 is gas. 594 (a) It Is a fact. 595 (d) SO₂ acts as a reducing agent, oxidising agent and as a bleaching agent. It does not act as dehydrating agent. 596 (a) $3NaOH+3H_2O \rightarrow$ P_4 PH_3 3NaH₂PO₂ phosphine sod. white phosphorus hypophosphate 598 (b) Plantinished asbestos or vanadium pentaoxide $(V_2 O_5)$ is used as catalyst in the preparation of sulphur trioxide from SO₂ and oxygen. $2SO_2 + O_2 \xrightarrow{Pt, asbestos} 2SO_3 + Heat$ 599 (a) Liquid helium us used in very low temperature thermometer 600 **(a)** Xenon forms maximum number of chemical compounds because it has lowest ionization potential among noble gases. (i.e., among the He, Ne, Kr and Xe). 601 (d) $N_2O_4 + H_2O \rightarrow HNO_2 + HNO_3$ 602 (c) MnO₂ is used as depolariser in Lechlanche cell. 603 (c) Helium is not used to produce and sustain

powerful superconducting magnets. All others are the uses of helium.

604 **(a)**

XeF₂, XeF₄ and XeF₆ can be directly prepared
Xe + F₂ +
$$\frac{\text{Ni tube}}{673 \text{ K}}$$
 XeF₂;
Xe + 2F₂ $\frac{673 \text{ K}}{6 \text{ atm}}$ XeF₄
Xe + 3F₂ $\frac{523-573 \text{ K}}{50-60 \text{ atm}}$ XeF₆
XeO₃ is obtained by the hydrolysis of XeF₆
XeF₆ + 3H₂O \rightarrow XeO₃ + 6HF
5 (b)
Phosphorus exists in several allotropic forms. out
of them red and white are most common or red
phosphorus is most stable form of
phosphorus.white phosphorus or yellow

phosphorus is the most reactive and poisonous allotrope of phosphorus . it is solid at room temperature it catches fire in air hence kept in water it has tetrahedral structure.

White phosphorus (tetrahedral solid)

606 **(b)**

Red phosphorus and antimony sulphide are used for coating of sides of match box

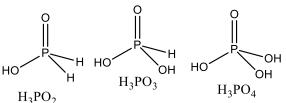
607 **(b)**

Chromyl chloride test is for Cl⁻.

608 **(c)**

 $Zn + 10 HNO_3 \rightarrow 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$ Ammonium

nitrate


 \therefore Zn reacts with cold dil HNO₃to produce NH₄NO₃ With dil. HNO₃ it produces —N₂O(nitrous oxide) With conc. HNO₃it produces —NO₂(nitrous oxide)

609 **(b)**

In presence of moisture , SO_2 acts as a reducing agent as it gives nascent hydrogen . It reduces hydrogen peroxide into water.

 $H_2O_2+2H\rightarrow 2H_2O$ 610 (d) Due to large size of iodine, in HI strong van der Waals' forces are present, Hence, it has highest molar heat of vaporization 611 (d) SO₂ has all these properties. 613 (d) Liquid ammonia is used in refrigeration because it has high heat of vaporisation 615 (c) 20.24% HCl + H_20 mixture is azeotropic mixture boils at 110°(628 (d) 616 (c) It is a fact. 6 617 (d) P exists as P₄. 618 (b) 630 (d) White phosphorus is soluble in $\ensuremath{\mathsf{CS}}_2$ whereas red phosphorus is insoluble in it 619 (a) In PCl₅ two P—Cl bonds are axially located and three are equatorial. Thus, two P—Cl bonds are 632 (c) weaker than other three. 620 **(b)** The acidic character of oxides decreases down the group. 634 (b) 621 **(b)** King of chemicals is H_2SO_4 . The economy of a country is measured in terms of consumption of H_2SO_4 . 622 (c) Fluorine has Highest $\tilde{E_{red}}$ (equal to + 2.9 V) due 636 (d) to which it can easily accept an electron and hence it is the best oxidising agent. 637 (a) 623 (d) F is most electronegative halogen. 624 (a) It is a fact. 625 (c) The strongest oxidizing agent among all elements i 626 (d) All the elements of gp. 16 show polymorphism or allotropy. 627 (c) 639 (a)

 $SO_2+2H_2O \rightarrow H_2SO_4+2H$

Although thre number of -OH groups is increasing in H_3PO_2 (1 OH group), H_3PO_3 (2 OH group) and H_3PO_4 (3 OH group), yet acidity does not increase much. This is due to the fact that the number of unprotonated oxygen, responsible for enhancement of acidity due to inductive effect, remains the same, as a result dissociation constant also remains nearly same.

$$HNO_3 + S \rightarrow H_2SO_4 + 6NO_2 + 2H_2O_3$$

In liquid state, HF shows proton donor tendency and HCl acts as proton acceptor.

It is a reason for the given fact.

631 (d)

Rest all acids have +5 oxidation state as in P_2O_5 . In H_3PO_3 oxidation state of P is +3.

NO₂ is converted into liquid state.

633 (c)

Rest all halogens react with Sulphur.

$$Na_2SO_3 \xrightarrow{[0]} Na_2SO_4$$

635 (b)

Xe in XeF₄ has sp^3d^2 -hybridisation with two lone pair of electrons giving rise to square planar geometry.

It is a fact. Follow fixation of N₂.

$$P_4 + 20HNO_3 \longrightarrow 4H_3PO_4 + 20NO_2 + 4H_2O_3$$

638 (b)

Theacidic nature increases from H₂O to H₂Te. The increase in acidic character of hydrides on moving down the group may be explained in terms of bond length of H—M bond, larger is bond length lesser is bond energy and thus easier is ionization of H—M bond or easier is proton donor nature. Hence,

 $H_2O < H_2S < H_2Se < H_2Te$

Chlorine heptaoxide (Cl_2O_7) is the anhydride of perchloric acid.

$\text{HCOOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CO} + \text{H}_2\text{O}$
655 (d)
All these are hydrolysed in presence of water.
656 (c)
2CaO · MnO ₂ is called weldon mud.
657 (d)
It is a fact $(2H_2SO_4 + 2NO + O_2)$ $\rightarrow 2NO \cdot HSO_4 + 2H_2O)$
658 (c)
P in PCl ₅ has sp^3d -hybridization.
659 (b)
Perhalates are strong oxidants and their oxidizing
nature order is: $BrO_4^- > ClO_4^- > IO_4^-$
660 (b)
About 1/100th part of air is mixture of inert
gases.
661 (d)
$3HOCI \rightarrow 2HCl + HClO_3$
663 (c)
NH ₄ Cl sublimes and decomposes partially to
smell NH ₃ .
664 (c)
S in SO ₄ ²⁻ is sp^3 -hybridized.
665 (a)
Dithionous acid $(H_2S_2O_4)$ has sulphur in + 3
oxidation state
666 (a)
Oleum is $H_2S_2O_7$ which is obtained by dissolving
SO_3 in H_2SO_4 and is also called as fuming
sulphuric acid 667 (c)
$He \rightarrow He^+$
668 (d)
$HNO_3 \rightarrow 4NO_2 + 2H_2O + O_2$
669 (b)
Carnallite is K, Mg chloride and bromide.
670 (b)
O_3 is a blue coloured gas.
671 (c)
$N_2 + 3H_2 \xrightarrow{Fe}{\rightarrow} 2NH_3$ (Mo is promoter).
672 (b) $2UCI + UNO \rightarrow NOCI + 2U + CI$
$3HCl + HNO_3 \rightarrow NOCl + 2H_2O + Cl_2$ 673 (b)
Phosgene does not contain any metal in it. Therefore, it will not produce metal sulphide with
H_2O . All others give corresponding metal
sulphides such as Cds, Zns and CuS
674 (d)
Sulphur occurs in native form in the volcanic

675 (b)	0
KrF_2 is a F ⁻ donor and form complexes with F ⁻	
acceptors where, only cationic species or Kr will	
be present	
676 (a)	120°
XeO_3 has sp^3 -hybrization with trigonal pyramid	
geometry.	690 (d)
677 (b)	$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$
$Cl_2 + H_2S \rightarrow 2HCl + S; S^{2-} \rightarrow S^0 + 2e.$	PH_3 contain P_2H_4 an as impurity which on
678 (d)	burning gives P_2O_5 and white smoke
It is a reason for the given fact.	691 (c)
679 (b)	It is a fact.
In F_2 0 the oxidation state of 0 is + 2 <i>ie</i> , positive	692 (b)
whereas, in other compounds such as	An important reaction of PCl_5 is to replace OH gp.
CO, NO, N_2O it is -2	by Cl.
680 (b)	693 (d)
	Chalcogens are ore forming elements.
Poisson's ratio $\gamma = \frac{c_p}{c_v} = 1.66$, because inert gases	694 (c)
are monoatomic.	$Ca_{3}P_{2} + 6H_{2}O \rightarrow 3Ca(OH)_{2} + 2PH_{3}$
681 (c)	695 (c)
Noble gases are present in atmosphere in minute	Ar is more soluble in water than O_2 and N_2 and
quantities except Rn, which is radioactive and is	also He
formed by decay of Ra.	696 (c)
682 (b)	0
P ₄ has six P— P bonds, four lone pair of electrons a	
683 (a)	HO - P - OH
$I_2 + 10 \text{ HNO}_3 \xrightarrow{\Delta} 2 \text{HIO}_3 + 10 \text{NO}_2 + 4 \text{H}_2 \text{O}$	
$S+6 HNO_3 \rightarrow H_2SO_4+6NO_2+2H_2O$	ОН
P ₄ +20 HNO ₃ →4 H ₃ PO ₄ +20NO ₂ +4H ₂ O	it ionizes in three steps because three – OH groups
$C+4 HNO_3 \xrightarrow{\Delta} CO_2 + 4NO_2 + 2H_2O$	are present 697 (a)
684 (d)	$2KMnO_4 + 16HCl$
The bond order for $He_2 = 0$ and thus molecules is	$\rightarrow 2\text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O} + 5\text{Cl}_2$
non-existent.	698 (d)
685 (b)	All other oxides of nitrogen except N ₂ O and NO
$F_2 + 2Cl^- \rightarrow Cl_2 + 2F^-$	are acidic nature.
$F_{2} + 2CI^{-} \rightarrow CI_{2} + 2F^{-}$ $F_{2} + 2Br^{-} \rightarrow Br_{2} + 2F^{-}$ $F_{2} + 2I^{-} \rightarrow I_{2} + 2F^{-}$ $F_{2} + 2I^{-} \rightarrow I_{2} + 2F^{-}$	699 (d)
$F_2 + 2I^- \rightarrow I_2 + 2F^-$	Pseudohalide ion and pseudohalognes There are
686 (b)	certain monovalent negative ions made up of two
Due to the less reactivity, red phosphorus is most	or more electronegative atoms which exhibit
stable	properties similar to these of halide ions. Such
687 (d)	ions are known as pseudohalide ions. Just as
$90_3 + 2I_2 \rightarrow I_40_9 + 90_2$	halide ions, pseudohalide ions have also
688 (c)	corresponding dimeric molecules these are called
Yellow colour is complementary colour to violet.	pseudohalogens and show properties similar to
689 (a)	those of halogens, eg , Cl^- and CN^-
SO_3 has sp^2 -hybridization on S atom having	700 (d)
geometry.	Nessler's reagent is K_2 HgI ₄ .
	701 (d) Due to smaller electronegativity differences in
	Bue to smaller electronegativity uniterences in

708 (a) between two halogens. It is a use of He. 702 (a) 709 (b) It is a reason for the given fact. 703 (c) N₂O has anaesthetic nature used in dental As acts as poison for Pt in contact process. surgery. 710 (b) 704 (d) $I_2 + 2KI \rightarrow 2KI_3$ (Water soluble). Rest all acids act as oxidant and oxidise Cu and Ag. 705 (a) Note Cu and Ag are placed below H in Traces of iodine accelerate the transformation of electrochemical series and do not liberate H₂ white P into red P at relatively lower temperature. from acids. 711 (b) 707 (c) 0¹⁶, 0¹⁷, and 0¹⁸ $2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$ 712 (a) O_3 is a resonance hybrid of HBr is reducing agent, H_2SO_4 is oxidizing agent. 713 (c) $2KI + Br_2 \rightarrow 2KBr + I_2$ 717 (c) Starch $+I_2 \rightarrow$ Blue colour. It is a fact. 718 **(b)** 714 (a) $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO_3$ $Na_2SO_3 + Cl_2 + H_2O \rightarrow Na_2SO_4 + 2HCl$ 715 (a) $S_R \xrightarrow{95.6^{\circ}C} S_M$ 716 (a) 719 (c) Mn in $KMnO_4$ can be reduced; because only $KMnO_4$ is oxidant. Due to inert pair effect. 720 (a) NO_2 is given out during the process which is 727 (b) responsible for yellow colour of HNO₃. It is a reason for the given fact. 721 (d) 728 (d) Chlorine can replace bromine from KBr solution. $2HI + 2HNO_3 \rightarrow I_2 + 2NO_2 + 2H_2O_3$ as it is placed above bromine in VIIA group in 729 (b) periodic table. $H_3PO_4 + 21HNO_3 + 12(NH_4)_2MoO_3$ $Cl_2+2KBr \rightarrow 2KCl + Br_2$ \rightarrow (NH₄)₃[PMo₁₂O₄₀] 722 (a) $+ 21 \text{NH}_4 \text{NO}_3 + 12 \text{H}_2 \text{O}$ AgF is water soluble. 730 (b) Air contains 1% argon which is heavier than N_2 . 723 **(b)** $NaF + HF \rightarrow NaHF_2$ 731 (b) 725 (d) It is the nature and use of antichlor. An oxygen-helium mixture is used for artificial 732 (a) respiration in deep sea diving instead of air F₂ on reaction with hot and conc. Alkali gives because nitrogen present in air dissolves in blood sodium fluoride and oxygen. under high pressure when sea diver goes into $2F_2+4NaOH \rightarrow 4NaF+O_2+2H_2O$ 733 (b) deep sea. When he comes to the surface, nitrogen XeOF₄ gives sp^3d^3 hybridisation. Due to presence bubbles out of the blood due to decrease in pressure, causing pains. This disease is called of one lone pair it gives square pyramidal bends geometry 726 (d) 734 (c)

Oleum is obtained by dissolving sulphur trioxide in $H_2 \mbox{SO}_4$

 $SO_3 + H_2SO_4$ (conc.) $\rightarrow H_2S_2O_7$

oleum

Oleum is also called fuming sulphuric acid because it fumes in moist air due to sulphur trioxide.

735 (a)

It is a characteristic of white phosphorus.

736 (c)

Caliche is crude chile salt petre $(NaNO_3)$ which contains about 0.02% iodine as sodium iodate $(NaIO_3)$, from which iodine is extracted

737 (d)

The electron affinity of halogens decreases down the group.

738 (a)

Interhalogen compounds are made up of two halogen atoms.

739 **(c)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

740 (d)

 $P + O_2 \rightarrow phosphorus oxide + light, the phenomenon is called chemiluminescence,$ *i. e.*, the phenomenon of emitting light as a result of chemical change.

741 **(a)**

F₂O is formed. F is more electronegative than oxygen.

Oxygen is second most electronegative element. 742 (d)

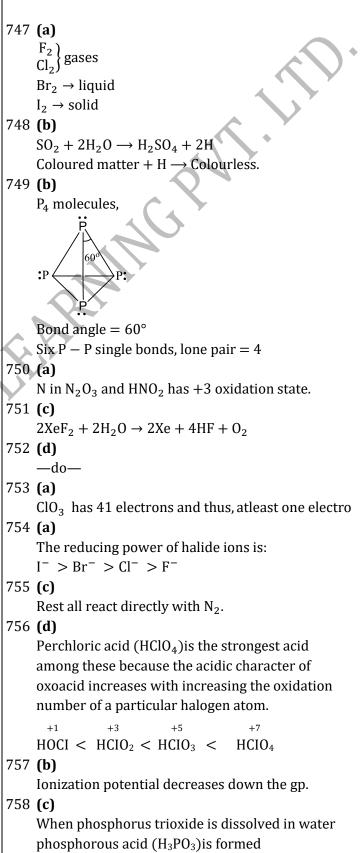
$$(C_6H_{12}O_5)_n \xrightarrow{H_2SO_4} C + H_2O$$

743 (a) Ne has van der Waals' radius, whereas in O_2 , covalent radius is reported.

```
744 (b)
```

```
Ag \rightarrow Ag^+ + e
```

(a)


$$Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O$$

 $\rightarrow Ca(H_2PO_4)_2 \cdot H_2O + 2CaSO_4$
 $\cdot 2H_2O$

746 **(c)**

Chlorine acts as oxidising and bleaching agent in the presence of moisture. Chlorine reacts with water forming HCl and HCIOz. HCIO further decomposes to give nascent oxygen which is responsible for oxidising and bleaching properties of chlorine. Thus in chlorine water, oxidising agent is HOCI.

$$\frac{\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HCl} + \text{HCIO}}{\text{HCIO} \rightarrow \text{HCl} + \text{O}}$$

$$\frac{\text{Cl}_2 + \text{H}_2\text{O} \rightarrow 2\text{HCl} + \text{O}}{\text{Cl}_2 + \text{H}_2\text{O} \rightarrow 2\text{HCl} + \text{O}}$$

 $P_4O_6 + 6H_2O \longrightarrow 4H_3PO_3$

759 (a)

It is a fact. Air contains $20\% O_2$ and supports in combustion.

760

760 (d)

$$\begin{array}{c}
0 & 0 \\
\| & \| \\
(a)S_2O_4^{2^-} & -0 - S - S - 0^- \\
S \\
\| \\
(b)S_2O_3^{2^-} & -0 - S - 0^- \\
\| \\
0 \\
S \\
\| \\
(c)S_2O_2^{2^-} & -0 - S - 0^- \\
\| \\
\| \\
0 \\
(d)S_2O_7^{2^-} & -0 - S - 0 - S - 0^- \\
\| \\
\| \\
0 \\
0 \\
761 (a) \\
SbF_5 is a strong electron pair acceptor. \\
H_2F_2 + SbF_5 \\
= [H_2F]^+ [SbF_6]^- \\
Lewis acid Lewis base \\
762 (d) \\
Br_2 reacts with hot and strong NaOH solution to give NaBr, NaBrO_3 and H_2O. \\
764 (c) \\
Mn_2O_7 gives HMnO_4 and CrO_3 gives H_2CrO_4 with \\
765 (c) \\
Pentavalency in phosphorus is more stable than that of nitrogen due to the larger size of \\
\end{array}$$

of phosphorus atom

766 (a)

: White phosphorus is most reactive and most important allotrope of phosphorus. It is insoluble in water. .: It is kept in water to prevent it from catching fire.

767 **(b)**

 $I(CH_3COO)_3$ is an ionic compound.

768 (d)

Rest all give PH₃.

769 (c)

 $Ar_{18} \rightarrow 2, 8, 8$ 770 (c)

Xe reacts directly with fluorine to form fluorides. 771 (b)

In XeF_5^+ , Xe atom has only seven electrons, *ie*, $5s^2$ $5p^5$. Here, two 5p electrons are promoted

to 5d sub level. Then 5s, three 5p and two 5dorbitals hybridize to give six sp^3d^2 hybrid orbitals in an octahedral geometry. Out of these, five orbitals are singly occupied which form sigma bonds with five F atoms. The sixth hybrid orbital is occupied by a lone pair in *trans* position giving a square pyramidal structure

772 (d)

It is an experimental fact.

773 (a)

Iodine I⁻ being a strong redcing agent reduces Cu²⁺ ions to Cu⁺ ions and itself gets oxidized to iodine.

 $2 \text{ CuSO}_4 + 4 \text{KI} \rightarrow \text{Cu}_2 \text{I}_2 + \text{I}_2 + 2 \text{K}_2 \text{SO}_4$

774 (d)

The reducing power of halide ions decreases in the order

 $I^- > Br^- > CI^- > F$

Hence, I⁻ is the strongest reducing agent.

776 **(b)**

Liquid He is a unique liquid as it exists in two forms, He(I) and He(II). He(I) is a normal liquid with normal properties. On cooling to 2.19 K and 38 mm pressure it changes to He(II) with abrupt changes in many physical properties such as density, dielectric constant and specific heat. He(II) is super fluid or quantum mechanical liquid. It has very high heat of conductance (600 times of Cu), low viscosity (1/100 of H₂ gas) and flat meniscus (a low surface tension).

777 (c)

 $_2$ CrO₄ with H

N₂O is linear molecule.

778 (b)

The acidic character of oxides increases with increase in non-metallic nature and oxidation number of central atom.

779 (a)

Apatite is $CaF_2.3Ca_3$ (PO₄)₂. It is an ore of fluorine with calcium.

780 (d)

S₈ has puckered ring structure.

```
Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2
782 (d)
```

```
PCl_3 + Cl_2 \rightarrow PCl_5
```

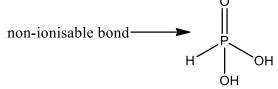
```
783 (d)
```

781 (b)

```
It is a fact.
```

```
784 (a)
```

The boiling point of inert gases increases with increases in molecular weight due to increase in van der Waal's forces.


- : Xe has largest size, among inert gases.
- ∴ Xe has highest boiling point.

785 **(b)**

 HPO_3 is called metaphosphoric acid.

786 **(b)**

Structure of H₃PO₃ is

788 (d)

Quick lime CaO is used to dry ammonia as with other given dehydrating agents ammonia reacts. $4NH_3+CaCl_2 \rightarrow CaCl_2. 4NH_3$

 $4NH_3+2P_2O_5 \rightarrow 4NH_4PO_3$

 $Ca(OH)_2$ is never used as dehydrating agent.

789 **(d)**

The bond dissociation energy of Cl_2 , Br_2 , and I_2 is as Molecule : $Cl_2 > Br_2 > I_2$ Dissociation :242.6 192.8 151.1 Enthalpy (kJ mol⁻¹)

790 (c)

$$N_2 + O_2 \xrightarrow{Arc} 2NO; \Delta H = +ve$$

791 **(c)**

Liquid He is a unique liquid as it exists in two forms, He(I) and He(II). He(I) is a normal liquid with normal properties. On cooling to 2.19 K and 38 mm pressure it changes to He(II) with abrupt changes in many physical properties such as density, dielectric constant and specific heat. He(II) is super fluid or quantum mechanical liquid. It has very high heat of conductance (600 times of Cu), low viscosity (1/100 of H₂ gas) and flat maniscus (a low surface tension).

792 **(b)**

The basic character of hydrides decreases down the gp.

793 (a)

Lower electronegativity and lower oxidation state of the central atom favours the formation of more basic oxide of element. Therefore, Bi_2O_3 is most basic oxide

794 (c)

 SO_2 bleaches by reduction, Cl_2 by oxidation. 795 (d)

 $Cl_2O_6 + H_2O \rightarrow HClO_3 + HClO_4$

```
796 (c)
30_2 \xrightarrow{\text{UV}} 20_3
```

798 **(b)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

 $Ca_3P_2 + H_2O \rightarrow 3Ca(OH)_2 + PH$ P₂H₄ is also produced.

799 **(a)**

It is a fact.

800 (b) Sulphur does not form *pπ* – pπ bond due to its larger size, hence does not exist as S₂ molecules.
801 (a)

2NaOH + 2NO₂ \rightarrow NaNO₂ + NaNO₃ + H₂O

802 **(a)**

$$2SO_2 + O_2 \rightarrow 2SO_2$$

804 (d)
SO₂ + Br₂ + H₂O
$$\rightarrow$$
 SO₃ + 2HBr

805 **(b)**

$$AgCl + 2NH_3 \rightarrow Ag(NH_3)_2Cl$$

806 **(c)**

The pair of SO_2 and Cl_2 has bleaching property. In presence of moisture, SO_2 acts as a bleaching agent.

 $SO_2+2H_2O \rightarrow H_2SO_4+2[H]$

The nascent hydrogen bleaches the colour of the substance, thus SO_2 bleaches by reduction while Cl_2 bleaches by oxidation.

 $H_2O + Cl_2 \rightarrow HCl + HClO$

 $HClO \rightarrow HCl + [0]$

[0] + coloured substance \rightarrow colourless substances

807 **(a)**

HCl is better called chloride.

```
808 (c)
```

Iron is oxidized to ferrous nitrate and nitric acid is changed to ammonium nitrate.

 $4Fe+10 HNO_3 \rightarrow 4Fe(NO_3)_2 + NH_4NO_3 + 3H_2O$

dil.

809 **(a)**

Members of group 15 or VA of periodic table are called pnicogens .they include N, P, As, Sb and Bi. 810 **(b)**

It is a fact.

812 (c)

$$F_2 + H_2 0 \rightarrow 2HF + \frac{1}{2}O_2$$

813 (a) It is a reason for given fact. 814 (b) It is a fact. 815 (d) Each has one lone pair on Xe atom. 816 (d) HClO \rightarrow HCl + [O]. Thus, oxidizing and bleaching agents. 817 (a) $2Sb + 3Cl_2 \rightarrow 2SbCl_3$

818 (d)

Bromargyrite is a mineral of bromine.

- 819 **(b)**
 - He is lightest (after H_2), non-inflammable gas.
- 820 **(c)**

When phosphorus trichloride reacts with phenyl magnesium bromide (Grignard's reagent), all the three chlorine atoms of PCl_3 are replaced by phenyl group of phenyl magnesium bromide and triphenyl phosphine is obtained

,CI

PCl₃ + 3PhMgBr → P(Ph)₃ + 3Mg triphenyl phosphine Br

821 **(d)**

Rest all reacts with water to give NH₃A

822 **(a)**

Bond length increases with size of the atom involved in bonding.

823 **(c)**

N≡N. This possesses high bond energy.

824 **(b)**

 $\begin{array}{ll} 2\text{KI} + \text{Cl}_2 \longrightarrow 2\text{KCl} + \text{I}_2; & \text{I}_2 + \text{CCl}_4 \\ & \longrightarrow \text{Violet colour} \end{array}$

(lower layer because CCl_4 is heavier than water). 826 (d)

 Cl_2 reacts with C_2H_2 to give westron and westroso 827 (d)

- Each member of gp. 16 show polymorphism. 828 (d)
 - $4Fe + 10HNO_3 \rightarrow 4Fe(NO_3)_2 + N_2O + 5H_2O$ dil.

829 **(d)**

The abundance ratio is: Ar (0.93%); Ne (0.0018%); He (0.0005%); Kr (0.0001%); Xe (0.00001%); Rn much less.

830 (c)

 $H_3PO_4 \rightleftharpoons H^+ + H_2PO_4^-$

 $H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$ $HPO_4^{2-} \rightleftharpoons H^+ + PO_4^{3-}$

832 (a)

The solubility of alkaline earth metal fluorides decreases down the group.

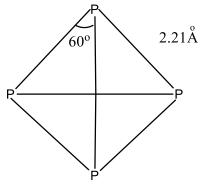
833 (c)

Nitrogen dioxide (NO_2) exists as a dimer N_2O_4 . When it is dissolved in sodium hydroxide or any other alkali, a mixture of nitrate and nitrite is obtained.

2NO₂+2NaOH→NaNO₂+NaNO₃+H₂O Sodium Sodium nitrate nitrate

834 (c)

O atom in each has sp^3 -hybridisation. Due to increase in electronegativity of halogen from Br to F, the lone pair-bond pair repulsion causes decrease in bond angle.


835 **(b)**

 XeF_4 has sp^3d^2 -

hybridization of Xe atom having two positions occu electrons.

836 **(b)**

White phosphate has the molecular formula p₄ both in solid and vapour state at moderate temperature. The four atoms present in the molecule are arranged at the corners of tetrahedron so the ppp bond angle is 60°. At higher temperature(above 700°C)it dissociates to give diatomic molecules as

837 (d)

 $4P + 5O_2 \rightarrow P_4O_{10} + \text{light. This phenomenon is}$ called chemiluminescence

838 **(c)**

Oxidising agent such as NO_3^- , SO_3^{2-} oxidise H_2S to give turbidity of S (colloidal) in water.

839 **(d)**

$$2S_2O_3^{2-} + I_2 \to S_4O_6^{2-} + 2I^-$$

It is a fact.

841 (b) $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$	hydrolysis of FeSO ₄ . 846 (b)
842 (c)	Because of very low ignition temperature (303 K)
Order of increasing enthalpy of vaporisation is	of phosphorus it is always kept under water
$PH_3 < AsH_3 < NH_3$	848 (b)
The enthalpy of NH_3 is higher due to the H-	$Cl_2O + H_2O \rightarrow 2HClO; Cl has +$
bonding.	1 oxidation state in Cl_2O and HOCl.
843 (c)	849 (b)
Lavoisier named it as muriatic acid. Cl_2 was named as oxymuriatic gas or acid.	$(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O$ (Green)
844 (d)	
ZnO is amphoteric.	
845 (c)	
$FeSO_4 + 2H_2O \rightarrow Fe(OH)_2 + H_2SO_4$; addition	
H ₂ SO ₄ to this solution reverses back t	he
850 (a)	
SO_2 is a gas anhydride of H_2SO_3 ; P_2O_3 and P_2O_5 a	ire solids.
851 (a)	862 (b)
PCl ₃ and cold water reacts to produce <i>ortho</i>	Chlorine forms maximum (six) oxides.
phosphorus acid (phosphorus acid)H ₃ PO ₃	863 (c)
PCl $_3+3HOH \rightarrow H_3PO_3+3HCI$	Ar is most abundant noble gas in air.
	_
853 (b)	864 (a)
H_3PO_3 is dibasic acid forming NaH_2PO_3 and Na_2	
854 (c)	865 (d)
It is a fact.	S exists as octa-atomic in nature.
855 (d)	866 (d)
Fluorine is the stronger oxidizing agent. It will	Noble gases are adsorbed by coconut charcoal. the
oxidise other halide ions to halogens in solution	
or even dry	different temperatures, hence charcoal is used to
$F_2 + 2X^- \rightarrow 2F^- + X_2$	separate these gases.
856 (b)	Helium is not adsorbed by charcoal (as it is very
If 20 g N then wt. is 100.	difficulty liquefiable gas).
If 14 g N then wt. is $\frac{100 \times 14}{20} = 70$	867 (c)
Atleast one N atom in one molecule should be	It is a reason for the given fact.
present to give minimum mol. wt.	869 (d)
	Chloro-fluoro carbons are called freons.
857 (d)	870 (d)
Sulphides of As, Sb, Sn are soluble in yellow	Analytical reagent grade H_2SO_4 has normality =
ammonium sulphide.	36 <i>N</i> .
858 (a)	
Stronger is acid, weaker is its conjugate base. Th	e^{872} (c)
acidic character (on the basis of bond length) of	5 of P and 3 of $Cl \cdot = 8$.
halogen acids is:	873 (a)
HF < HCl < HBr < HI.	N ₃ H is hydrazoic acid. It easily gives a proton. Its
859 (c)	salts are called azides (N_3^-) .
	875 (d)
$\underbrace{\frac{P_2O_3}{Acidic \text{ oxides}}}_{Acidic \text{ oxides}} \underbrace{\frac{Bi_2O_3}{Alkaline}}_{Alkaline}$	Ionisation energy increases along the period.
Acidic oxides Alkaline 860 (b)	876 (c)
$F_2 + 2HSO_4^- \longrightarrow S_2O_8^{2-} + 2HF$	K_2 HgI ₄ gives brown ppt. with NH ₄ ⁺ .
$F_2 + ZHSU_4 \longrightarrow S_2U_5 + ZHF$	$K_2 H gives brown ppt. with NH_4.$ 877 (c)
861 (c)	

Phosphate mineral is phosphorite, $Ca_3(PO_4)_2$. 892 (b) 879 (a) 893 (c) S forms two thionic acids. Dithionic acid $H_2S_2O_6$ and polythionic acid $H_2S_nO_6$ (n=3, 4, 5, 6). 880 **(b)** 894 (d) The disease caused by the constant touch with white phosphorus is called phossy jaw 881 (c) PbSO₄ is insoluble in water and acids. 895 (b) 882 (c) It is a fact. $H_2S_2O_3$ 896 (d) n Strongest oxidant is F₂. 898 (c) ||HO - S - S - OH883 (c) N atom on NH₃ has one lone pair of electrons on it for coordination. 884 (c) $2KBr+Cl_2 \rightarrow 2KCl+Br_2$ 899 (b) Hence, by the action of chlorine with KBr, bromine gas can be produced. 885 (c) The oxidation state of Xe in XeO₃ can be calculated $CaC_2 + N_2 \xrightarrow{1100^{\circ}C} CaCN_2 + C$ as nitrolim $XeO_{3}x + (-2 \times 3) = 0$ 900 (d) X = +6XeO₃ has Sp³ hybridisation with bond angle *d*-orbitals. $=103^{\circ}$. 901 (d) 886 (a) $\mathrm{NH}_4\mathrm{NO}_3(s) \xrightarrow{\Delta} 2\mathrm{H}_2\mathrm{O} \uparrow +\mathrm{N}_2\mathrm{O} \uparrow$ $NaNO_{3}(s) \xrightarrow{\Delta} NaNO_{2} + O_{2} \uparrow$ $2AgNO_{3}(s) \xrightarrow{\Delta} 2Ag(s) + 2NO_{2}(g) + O_{2}(g)$ adsorbed. 902 (a) Lunar caustic $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 \uparrow + O_2 \uparrow$ 903 (a) 887 (b) $\rm NH_3 + HCl \rightarrow \rm NH_4Cl$ $PH_3 + HCl \rightarrow PH_4Cl$ 888 (a) POX_3 has sp^3 -hybridized, P having vacant dorbitals. p-of O atom and *d*- of P undergoes $p\pi - d\pi$ bonding. 889 (d) 904 (a) Nitrochloroform $CCl_3 \cdot NO_2$ is called tear gas. 890 (d) 905 (a) All are the characteristics of $(CN)_2$. 891 (c) Ammonium salts on heating with NaOH, give ammonia gas which has characteristic smell. $NH_4Cl+NaOH \rightarrow NH_3\uparrow +H_2O+NaCl$ paired

 $3AgNO_3 + PH_3 \rightarrow Ag_3P + 3HNO_3$ $H_2S_2O_6 + H_2O \rightarrow H_2SO_4 + H_2SO_5$ Ti has configuration $1s^2$, $2s^22p^6$, $3s^23p^63d^2$, $4s^2$. Thus, Ti⁴⁺ has configuration $1s^2$, $2s^22p^6$, $3s^23p^6$, *i.e.*, of Ar. Pyrophosphorous acid is H₄P₂O A mixture of calcium cyanmide CaCN₂ and coke (C) is called nitrolim. It is used as fertilizer and can be prepared by passing nitrogen on CaC₂. NF₃ is not hydrolysed because neither N nor F has When the mixture of noble gas is cooled in a coconut bulb at 173 k then Ar, Kr and Xe are adsorbed on charcoal while He and Ne are not $H_2S + O_3 \rightarrow H_2O + O_2 + S$ $PCl_{5} + HO - S - OH \longrightarrow Cl - S - Cl + POCl_{3} + H_{2}O$ PCl₅ attacks —OH group and replace it by —Cl group. Hence, reaction of PCl₅ with H₂SO₄ shows the presence of two -OH group in H_2SO_4 .

Caliche is $NaNO_3 + NaIO_3(0.2\%)$.

O₂ molecule has total number of 16 electrons out of which two electrons are unpaired giving a paramagnetic nature while 14 electrons are

906 **(b)**

Follow text.

907 (a)

 $2H_2O + SO_2 \rightarrow H_2SO_4 + 2[H]$ [nascent hydrogen] Coloured flower + 2[H] \rightarrow Colourless flower

908 (a)

 $NaNO_2 + NH_4Cl \xrightarrow{\Delta} NaCl + N_2 + 2H_2O$

909 **(a)**

The formula of hypophosphorus acid is H₃PO₂.

910 **(b)**

Commercially chlorine dioxide is prepared by passing SO_2 gas into a mixture of sodium chloride and H_2SO_4 having NaCl in traces.

 $\begin{array}{rl} 2\text{NaClO}_3 & + & \text{SO}_2 + \text{H}_2\text{SO}_4 & \xrightarrow[\text{NaCl}]{}\\ & & & 2\text{ClO}_2 + & 2\text{NaHSO}_4\\ & & & \text{chlorine}\\ & & & \text{dioxide} \end{array}$

911 **(b)**

Oxygen due to its smaller size has more electron density in H_2O and thus, has more tendency to donate its lone pair for complex formation

912 **(a)**

Only He forms interstitial compounds since, the atomic size of He is smallest and matches the size of the interstices available is the lattice of most of the heavy metals

913 **(b)**

 $2NaIO_3 + 5NaHSO_3 \longrightarrow 2Na_2SO_4 + 3NaHSO_4 + I_2$

914 **(d)**

Na₂O₂ is peroxide.

915 (a)

$$2SO_2 + O_2 \xrightarrow{NO} 2SO_3$$
916 (d)

$$2\mathrm{Cu}^{2+} + 2\mathrm{I}^{-} \rightarrow \mathrm{Cu}_{2}^{2+} + \mathrm{I}_{2}$$

917 (b)

Both He and Na give yellow lines but of different wavelengths.

918 **(b)**

White phosphorus on reaction with limited supply of oxygen gives lower oxide P_4O_6 . Therefore, air $(O_2 + N_2)$ is a good source for controlled supply of oxygen and the best choice for controlled oxidation of white phosphorus into lower oxide P₄O_{6.}

919 **(a)**

 $PH_4I + NaOH \rightarrow NaI + PH_3 + H_2O$

920 (d)

HF is formed which is liquid.

921 **(a)**

A characteristic of alkaline pyrogallol is to absorb (

922 (d)

Freons (chlorofluoro carbons) are used as refrigerant.

923 **(b)**

Red P does not react with NaOH.

924 **(c)**

 N_2O , NO, N_2O_3 , N_2O_4 and N_2O_5 .

925 **(a)**

 $NH_3 + HCl \rightarrow NH_4^+ + Cl^-$ 926 (b)

In household refrigeration, SO_2 is used as refrigerant. It is condensed by compression and cooling is caused when liquid SO_2 is allowed to evaporate.

927 **(c)**

$$2\text{CaOCl}_2 \xrightarrow{\text{CoCl}_2} 2\text{CaCl}_2 + \text{O}_2$$

928 **(c)**

When nitrogen and hydrogen in the ratio of 1:3 are mixed at high temperature(750 K) at 200-250 atm pressure and in the presence of Fe and Mo, ammonia is obtained . This process is called Haber's process.

$$N_2(g) + 3H_2(g) \xrightarrow{Fe.Mo} 2NH_3(g)$$

200-250 atm

In this process finely divided iron (Fe) acts as catalyst and molybdenum (Mo) acts as catalyst promoter.

929 **(d)**

These are uses of F₂.

930 **(b)**

The spontaneous inflammability of phosphine with smoky rings (vortex rings) at the time of preparation is due to the presence of highly inflammable P_2H_4 . This property is used in Holme's signal.

931 **(a)**

 $FeSO_4 + NO \rightarrow FeSO_4 \cdot NO$ (brown)

932 **(d)**

 $3SO_2 + O_3$

 \rightarrow 3SO₃. In rest all cases O₂ is given out.

933 **(c)**

HClO ₄ is strong acid: HClO ₄ + H ₂ SO ₄ \rightarrow ClO ₄ ⁻ + H ₃ SO ₄ ⁺	$2FeCl_3 + SO_2 + 2H_2O \rightarrow 2FeCl_2 + H_2SO_4 + 2HCl$ 950 (c)
934 (c)	KClO ₃ is known as Berthelot's salt
$SO_2 + 2CuCl_2 + 2H_2O \xrightarrow{KCNS} Cu_2Cl_2 + H_2SO_4$	951 (a)
$30_2 + 2000_2 + 20_2 00_2 00_2$	Pb reacts with dilute HNO ₃ to produce NO
White	$3Pb+8 HNO_3 \rightarrow 3Pb(NO_3)_2+2NO+4H_2O$
935 (a)	dil.
All ammonium salts on heating with any alkali	952 (d)
give NH ₃ .	Liquid NH_3 ; due to high heat of evaporation.
936 (d)	953 (c) (i)enantiotropy when two forms of a solid
$4\text{NH}_3 + 50_2 \xrightarrow{\text{Pt gauze}} 4\text{NO} + 6\text{H}_2\text{O}$	substance exist together in equilibrium with each
937 (d)	other at a particular temperature under normal
S_2Cl_2 is used in vulcanisation of rubber and as chlo	pressure e,g,
938 (c)	S _R ⇒S _M
$Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O_4$	(ii)dynamic allotropy if different allotropic forms
$\rightarrow Ca(H_2PO_4)_2 \cdot H_2O + 2CaSO_4$	exist in equilibrium over a range of temperature.
$\cdot 2H_2O$	(iii)monotropy if an allotropic form change slowly
939 (a) P_4O_{10} and H_3PO_4 both have	to a stable form e.g.,
+ 5 oxidation state for P.	$0_3 \rightarrow 0_2$
940 (a)	∴ Monotropy is correct answer.
H_2F_2 being weak acid is slightly ionized.	954 (c) These are facts.
941 (c)	955 (b)
Oleum is $H_2S_2O_7$.	Xe reacts with P and O, the most electronegative
942 (a)	elements.
$Cr + H_2SO_4[Cr(H_2O)_6^{2+}]SO_4; Cr(H_2O)_6^{2+}$ is blue.	956 (c)
Dil.	Azeotropic mixture of H ₂ SO ₄
944 (d)	+ H_2O contains 98.3% H_2SO_4 .
SO_2 acts as bleaching agent due to its reducing	957 (b)
property. SO ₂ +2H ₂ O \rightarrow H ₂ SO ₄ +2H	$2\text{CuSO}_4 + 4\text{KI} \rightarrow \text{Cu}_2\text{I}_2 + 2\text{K}_2\text{SO}_4 + \text{I}_2$
Coloured matter + [H] \rightarrow colourless matter.	$I_2 + 3Na_2S_2O_3 \rightarrow 2Na_2S_4O_6 + 2NaI$
945 (d)	958 (a) As a refrigerant.
$HClO_3$ and ClO_3^- both possess these properties.	959 (c)
$ClO_3^- \rightarrow Cl^-$	BiOCl is formed.
$+\frac{3}{2}$ 0 ₂ } oxidation and bleaching properties	961 (a)
	10 g bleaching powder will produce 4.9 g
$Cl^{5+} \longrightarrow Cl^{7} + 2e$ $6e + Cl^{5+} \longrightarrow Cl^{-}$ Disproportionation	$Cl_2 = \frac{4.9 \times 22.4}{71}$ litre Cl_2 .
$6e + Cl^{5+} \longrightarrow Cl^{-}$	962 (c)
946 (c)	In Ca(NO ₃) ₂ ; % of N = $\frac{20}{164} \times 100 = 17.07\%$
Suppose the oxidation state of Xe in XeOF ₂ is x	104
$\sum_{x+(-2)+2(-1)=0}^{1}$;	In (NH ₄) ₂ SO ₄ ; % of N = $\frac{28}{132} \times 100 = 21.21\%$
x-2-2=0	In NH ₂ CONH ₂ ; % of N = $\frac{28}{60} \times 100 = 46.66\%$
$\Rightarrow x = +4$	In NH ₄ NO ₃ ; % of N = $\frac{28}{80} \times 100 = 35.00\%$
947 (c)	963 (a)
Only Mg and Mn liberate H_2 from dil. HNO ₃ .	NaClO + $H_2O \rightarrow$ NaOH + HClO; the HClO is
948 (b)	weakest acid among halogen oxo-acids and thus,
948 (b) $2AgClO_3 + Cl_2 \rightarrow 2AgCl + ClO_2 + O_2$ 949 (a)	

Anhydrous $CaCl_2$ can be used as dehydrating	
agent.	It is an acid. $HClO \rightarrow ClO^- + H^+$.
965 (c)	968 (a)
It is a characteristic of XeF ₆ :	Nitrogen gas is major component of air.
$2XeF_6 + SiO_2 \rightarrow 2XeOF_4 + SiF_4;$	969 (a)
$2XeOF_4 + SiO_2 \rightarrow 2XeO_2F_2 + SiF_4;$	H_3PO_2 is monobasic acid and only one H is
$2XeO_2F_2 + SiO_2 \rightarrow 2XeO_3 + SiF_4.$	replaceable.
966 (b)	970 (a)
$4\mathrm{K} + 3\mathrm{SO}_2 \longrightarrow \mathrm{K}_2\mathrm{SO}_3 + \mathrm{K}_2\mathrm{S}_2\mathrm{O}_3$	It is a reason for the given fact.
971 (b)	
Arsenic purifier chamber in contact process posses	sses $Fe(OH)_3$ which reacts with As_2SO_3 .
972 (a)	983 (b)
H_2SO_4 is hygroscopic agent.	N is most electronegative among N-family.
973 (d)	984 (b)
Rest all react with water.	This is a reason for the given fact.
974 (c)	986 (c)
The basic character of hydrides down the group.	F has more electronegativity than other halogens.
975 (d)	987 (b)
It is a fact.	On long standing it undergoes auto-oxidation as
976 (b)	, $6CaOCl_2 \rightarrow Ca(ClO_3)_2 + 5CaCl_2$.
Cl is sp^3 -hybridized having electrons in <i>d</i> -orbitals	
and <i>p</i> -electrons of oxygen, gives rise to $p\pi$ - $d\pi$	
bonding to Cl—O bond.	989 (c)
977 (b)	Hypophosphorus acid($H_3 PO_2$) is amonobasic
	acid and has only one ionisable H two Hatoms are
Arsenic acid is H_3AsO_4 .	
978 (d) F + $e \rightarrow F^-$	directly attached to phosphorus thus the correct
	statement is (c).
E_{RP}^0 is maximum for fluorine.	
979 (b)	
SO_2 has sp^2 -hybridization with one lone pair on S	
atom having geometry.	
⟨ ^S ⟩	990 (d)
119.50	Rest all form complex with
	$NH_{3}, e. g. , Ag(NH_{3})_{2}^{2}; Cu(NH_{3})_{4}^{2+}; Cd(NH_{3})_{4}^{2+}.$
980 (b)	991 (c)
Phosphorus, element of nitrogen family(V group),	In laboratory H_2S is prepared by treating ferrous
produces maximum number of oxy acids.	sulphide(black lumps) with dil H_2SO_4
e.g.,	$FeS+ H_2SO_4 \rightarrow FeSO_4 + H_2S$
H_3PO_2 , HPO_2 , H_3PO_3 , $H_4P_2O_5$, HPO_3 , H_3PO_4 , $H_4P_2O_5$	992 (c)
981 (d)	$_1\text{H}^2 + _1\text{H}^2 \rightarrow _2\text{He}^4$
Each member of gp. 17 possesses	
ns^2np^5 configuration.	
982 (a)	
NOCl is nitrosyl chloride.	
993 (d)	
PH ₆ ⁺ is not known.	
994 (c)	$HF(g)\Delta G = -273.20 \text{ kJ mol}^{-1}1$
In a group, $\Delta G f^{\circ}(HX)$ changes from negative to	$HF(g)\Delta G = +1.72 \text{ kJ mol}^{-1}$
positive downwards.	Thus HF is thermally stable and HI not.
-	· ·

	Thus,s HF>HCI>HBr>HI.	0	$2\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3 + \mathrm{I}_2 \longrightarrow \mathrm{Na}_2\mathrm{S}_4\mathrm{O}_6 + 2\mathrm{NaI}$
995		101	
	Coconut charcoal possesses characteristic	1	$3SO_2 + O_3 \rightarrow 2SO_3$
	property for adsorbing different noble gases at		$2Hg + O_3 \longrightarrow Hg_2O + O_3$
006	different temperatures.		$2HCl+O_3 \rightarrow Cl_2+O_2+H_2O$
996	Hypophosphorus acid is monoprotic acid as only o	101	$PbS + 4O_3 \longrightarrow PbSO_4 + 4O_2$
	Attached on O are ionisable.	2	$CaS + 4H_2S \longrightarrow CaS_5 + 4H_2$
	Ω	2	$\begin{array}{c} \text{Cas}_{+} + 4\Pi_{2} \text{S} \rightarrow \\ \text{Polysulphide} \end{array}$
		101	
	H—Ë–OH	3	H_2SO_4 is oxidant and HI is strong reductant.
	 H	101	
997		4	Decomposition involves breaking up of a molecule
,,,,	It also exhibits +1 oxidation states like Cl, Br and	1	into its fragments.
	I.		1
998			$Pb(NO_3)_2 \rightarrow PbO + NO_2 + \frac{1}{2}O_2$
,,,,	Metallic character increases down the group.	101	(b) -
999		5	Basic character of hydrides decreases down the
	The reactivity of halogens decreases down the gp.		gp.
100		101	(a)
0	It is a fact.	6	Fluorine forms Xe fluorides.
100		101	(a)
1	Clathrates are non-stoichiometic compounds	7	It is a fact.
	where the ratio of guest and host molecules does	101	(c)
	not correspond to ideal chemical formula	8	Alkali metal oxides are saline oxides.
100		101	(a)
2	Both possess pungent odour and act as bleaching	9	All are non-metals and possess strong
	agents.		electronegative nature.
100	(a)	102	(d)
3	It is a fact.	0	N_2O_3 is blue coloured.
100	(d)	102	
4	The metallic character is developed to a	1	$Cl_2+2NaOH \rightarrow NaCl+NaClO+H_2O$
	considerable extent in I_2 . It is violet crystalline,		Cold,dil.
	lustrous solid having the tendency to form I^{3+}		Chlorine reacts with cold and dilute NaOH to give
	cation.		sodium hypochlorite.
100	(c)	102	
5	Potassium chlorate (KCLO ₃) is known as	2	These are characteristics of H_2O .
	Berthelot's salt. It is the salt of chlorine acid,	102	
	HCIO ₃ .	3	In VA group the thermal stability of hydrides
100	(c)		decreases from NH ₃ to BiH ₃ hence, BiH ₃ is the
6	$\mathrm{NH}_4\mathrm{NO}_3 \xrightarrow{\Delta} \mathrm{N}_2\mathrm{O}(\mathrm{g}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{g})$		most unstable hydride.
100		100	$NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$
	$PH_3 + HBr \rightarrow PH_4Br$	102	
100		4	Both P^{3-} and Cl^- has $1s^2, 2s^22p^6, 3s^23p^6$
8	Simple representation of bleaching powder is	102	configuration.
	CaOCl ₂ . It is a mixture of Ca(OCl) ₂ + CaCl ₂ \cdot	102 5	
	$Ca(OH)_2 \cdot H_2O, i.e.$, calcium chlorohypochlorite.	Э	Divers use He + O_2 mixture for respiration in place of N + O
100			mixture for respiration in place of $N_2 + O_2$. The N-was found to dissolve in blood at high
9	$60_2 \rightarrow 40_3$		The N_2 was found to dissolve in blood at high pressure during diving and after it, the N_2 gas
101	(c)		comes out from blood causing painful nerve
			comes out nom blood causing painful her ve

bursting. The mixture is also used for respiration by asthma patients.

102 (a)

6 SO₂ is soluble in water H₂O + SO₂ \rightarrow H₂SO₃

sulphurous acid

102 (a)

- 7 Due to less reactivity of red phosphorus, it is used in the manufactures of safe matchsticks
- 102 (c)
- 8 It is a fact.
- 103 **(d)**
- 103 (c)
- 1 It is a reason for the given fact.

103 (c)

2 General valence shell electronic configuration of 15 th group elements is $ns^2 np^3$ where *n*=period number.

103 **(b)**

 $3 K_2 HgI_4$ gives brown ppt. with NH_3 .

103 **(b)**

- 4 Except Bi, rest all VA members show allotropy.
- 103 **(d)**
- 5 Pyrophosphoric acid is $H_4P_2O_7$ having 4H attached on 4 oxygen atoms.

103 **(c)**

6 H_3PO_4 is syrupy liquid due to more sites available for H-bonding.

103 **(b)**

7

 $NO+NO_{2} \xrightarrow{253^{\circ}C} N_{2}O_{3}$ (X) $N_{2}O_{3}+H_{2}O \rightarrow 2HNO_{2}$

(X) (Y) \therefore Anion of y is NO_2^-

Its shape is triangular planar.

sulphur trioxide

103 **(d)**

8 $XeF_2, XeOF_2, XeF_4, XeOF_4, XeF_6, XeO_3$

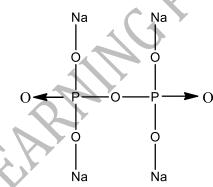
103 **(a)**

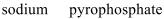
9 When conc. H_2SO_4 is heated with P_2O_5 , the acid is converted into sulphur trioxide. $2 H_2SO_4+2 P_2O_5 \rightarrow 2SO_3 + 4HPO_3$

```
104 (b)
```

- 0 The reactivity of yellow or white phosphorus is maximum.
- 104 **(b)**

Metaphosphoric acid is HPO₃; P₂O₅ + H₂O \rightarrow 2HPO₃


104 **(c)**


1

2

Sodium pyrophosphate is represented by $Na_4P_2O_7$. It is sodium salt of pyrophosphoric acid $(H_4P_2O_7)$. Which may be considered to be made up by two molecules of *ortho* phosphoric acid eliminating one molecule of H_2O .

$$2 \text{ H}_3\text{PO}_4 \xrightarrow{-H_2o} \text{H}_4\text{P}_2\text{O}_7$$

104 (d)

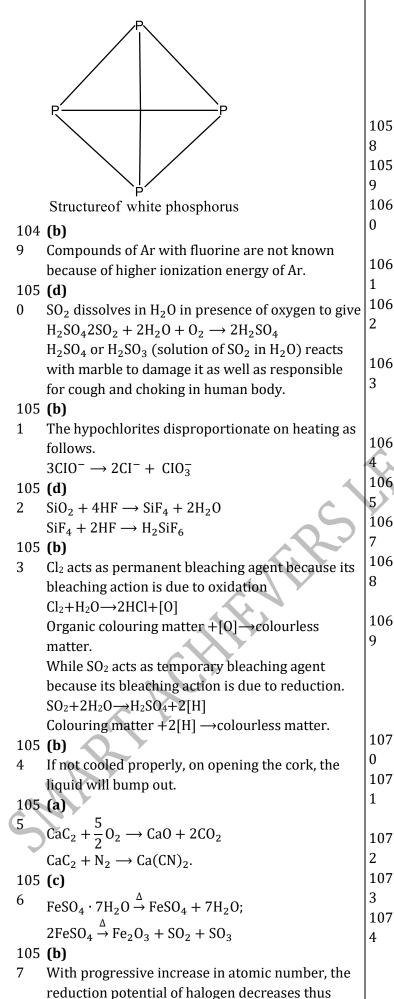
3

```
(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} N_2 + Cr_2 O_3 + 4H_2 O
Ba(N_3)<sub>2</sub> \xrightarrow{\Delta} 3N_2 + Ba
NH<sub>4</sub>NO<sub>3</sub> \xrightarrow{\Delta} N_2 O + 2H_2 O
```

104 **(b)**

- 4 It is a fact.
- 104 **(d)**

5


$$2\text{AgNO}_3 \rightarrow 2\text{AgNO}_2 + \text{O}_2$$

$$2Ag + 2NO_2$$

104 (c)

7 P_4O_{10} is a dehydrating agent.

8 \therefore Bondings electrons in white phosphorus = 6

oxidizing power also decreases. Hence a halogen with lower atomic number will oxidise the halide ion of higher atomic number and therefore will liberate them from their salt solution. $Cl_2 + 2F^- \rightarrow 2CI^- + F_2$ is not possible. 105 (d) $P_4 + 6H_2SO_4 \rightarrow 4H_3PO_4 + 6SO_2$ 105 (c) ZnO reacts with acids and alkalies both. 106 (d) Nitrogen in both N₂O₅ and HNO₃ possesses + 5oxidation state. 106 **(b)** $SiO_2 + 6HF \rightarrow [SiF_6]^{2-} + 2H^+ + 2H_2O$ 106 (d) Rest all three properties are shown by white phosphorus. 106 **(d)** $2KMnO_4 + 3H_2SO_4 + 10HCl$ \rightarrow K₂SO₄ + 2MnSO₄ + 8H₂O $+ 5Cl_{2}$ 106 (d) 4 This is a reason for the given fact. 106 (c) 5 Bi is metal. 106 (c) It is a method to get Cl_2 . 106 (a) Acidic character of oxides increases along the period. 106 (b) 0_3 has no unpaired electron in its structure. 116.80 Ò 107 (d) 0_3 is used as dry bleaching agent. 107 (a) The oxidizing power of HNO₃ is maximum among all. 107 (c) -3 in PH₃ and +5 in PCl₅. 107 (b) Sulphur exists as S₈. 107 (b) The acidic character of oxides increases with increase in the oxidation number of element.

107	$\underbrace{\stackrel{+1}{N_2O, NO}}_{\text{Neutral}} \underbrace{\stackrel{+3}{N_2O_3, NO_2} \stackrel{+4}{N_2O_3, NO_2} \stackrel{+5}{N_2O_5}}_{\text{Acidic character}} \underbrace{\text{Increases}}$	108	
5	Bleaching powder is $CaOCl_2$ having Ca^{2+} , Cl^- and (7 108	Rest all gives O_2 on heating .
107		8	This was a reason for late discovery of F_2 .
6	B > P > As > Bi	108	
	As we go down the group, bond angle decreases,	9	H_2SO_5 (Caro's acid) and $H_2S_2O_8$ (Marshall's acid)
	since the repulsion between the bonded pairs of		contain one peroxyacids – 0 – 0 – linkage
107	electrons decrease	109	(b)
7	$CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + HOCl + HCl$	0	F_2 is pale-yellow; Cl_2 is green-yellow; Br_2 is dark
,	$HOCI \rightarrow HCI + [0]$		yellow-brown; I ₂ is violet .
107		109	
8	$Ca_3P_2 + 3H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$	1	$(CN)_2$ is called pseudohalogen.
107	(a)	109 2	
9	Due to highest IP, electrons are more tightly held	2	$CS_2 + 3Cl_2 \xrightarrow{I_2} CCl_4 + S_2Cl_2$
	with nucleus.	109	
108		4	$2\text{NaI} + 2\text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{SO}_2 + \text{H}_2\text{O} + \text{I}_2$
0	It is a fact.	109 r	
108		5	$\operatorname{KNO}_3 \xrightarrow{\Delta} \operatorname{KNO}_2 + \frac{1}{2} \operatorname{O}_2$
1	$X = I_2, Y = HI$	109	(b)
	$3I_2 + 2NH_3 \rightarrow NH_3 \cdot NI_3$ (explosive)		H ₂ SO ₄ is a very good hygroscopic agent.
	$8NI_3 \cdot NH_3 \rightarrow 5N_2 + I_2 + 6NH_4I$	109	
	$I_2 + H_2 \rightarrow 2HI$	7	NO (Nitric oxide) is synthesized in lab by copper
	(Y)		with cold and dilute HNO ₃ .
	$3NaI + H_3PO_4 \xrightarrow{\Delta} Na_3PO_4 + 3HI$		$3Cu+8 HNO_3 \rightarrow 3Cu(NO_3)_2+2NO+4H_2O$
108		109	dil. Nitric oxide
2	V_2O_5 (vanadium pentaoxide) is used as a catalyst	8	XeO ₄ is formed by promoting one 5s and there
_	in the manufacture of H_2SO_4 by contact process	U	5p-electrons of Xe to higher energy. $5d$ orbitals
	since, it is not easily poisoned.		giving eight unpaired orbitals hybridize to give
108	(c)		sp^3 hybridisation which form sigma bonds with
4	(i) carbon monoxide is neutral and SO_3 is acidic.		four O atoms. The four unhybridised singly
	(ii)aluminium and zinc oxides are amphoteric , so		occupied 5 <i>d</i> orbitals form four $p\pi - d\pi$ bonds
	aluminium and zinc oxides react with both as acid		with oxygen atoms
	and base.	110	
	Al ₂ O ₃ + 6HCl \rightarrow 2AlCl ₃ + 3H ₂ O(with acid)	0	$2\text{KClO}_3 + 4\text{HCl} \rightarrow 2\text{KCl} + \text{Cl}_2 + 2\text{ClO}_2 + 2\text{H}_2\text{O}$
	Al ₂ O ₃ +2NaOH +3H ₂ O \rightarrow 2NaAl(OH) ₄ (with base)	110	
~	$ZnO + H^+ \rightarrow Zn^{2+} + H_2O(in acid)$ $ZnO + 2OH^- + H_2O \rightarrow [Zn(OH)_4]^{2-}(in base)$	1	H-bonding in H_2O develops abnormal properties.
5	Hence, (i) and (iii) are correct.	110 2	It is a fact.
108		2 110	
5	It is a fact.	3	It is a mixture of $Ca(OCl)_2 \cdot 4H_2O$
108		-	+ $CaCl_2Ca(OH)_2 \cdot H_2O$
6	Among halides of hydrogen intermolecular H-	110	
	bonding is present. So when we go top to bottom	4	$H_2S + 2HNO_3 \rightarrow 2NO_2 + S + 2H_2O$
	in halogen group, size of I^- ion increases and the		(colloidal sulphur)
	intermolecular H- bonding becomes weak and	110	(d)
	easily gives H ⁺ in aqueous solution. So, it works as		

5	It is a fact.		$2 XeF_6 + SiO_2 \longrightarrow XeOF_4 + SiF_4$
110	(c)		The oxidations state of xenon in $XeOF_4$ is
6	Alcoholic solution of I_2 is brown.		calculated as
110	(d)		x -2-1
7	It is a use of Ne.		XeOF ₄
110	(b)		$x + (-2) + 4 \times (-1) = 0$
8	Fluorine exhibits an oxidation state of only -1		x-2-4=0
	because it is very strongly electronegative		<i>x</i> =+6
	element (maximum electronegativity in the	112	
	periodic table)	8	These are reasons for the given fact.
110		112	
9	$2Na_2SO_3 + O_2 \rightarrow 2Na_2SO_4$	9	Halogen's <i>d</i> -orbital forms π -bonds with <i>p</i> -orbital
) 111			of oxygen.
~		112	
0	F_2 reacts with CH_4 even in dark to show substitution		
111		0	It is a fact.
1	NO_2 is brown gas and N_2O_3 is blue-coloured		
	liquid.	1	2NaCl + K ₂ Cr ₂ O ₇ + 4H ₂ SO ₄
111			\rightarrow Na ₂ SO ₄ + 2KHSO ₄ + CrO ₂ Cl ₂
2	$H_2C_2O_4 \xrightarrow{H_2SO_4} H_2O + CO + CO_2$		+ H ₂ O
111	(c)	113	
4	$SO_2 + Cl_2 \rightarrow SO_2Cl_2$	2	Ozone is used for purifying water because ozone
111	(d)		kills bacteria, cysts, mold ,parasites ,viruses,
6	Perchloric acid is not a peroxy acid while		contaminates etc. It is one of the effective way of
	perphosphoric acid, pernitric acid and	Kà	eliminating microorganism in the water. Ozone is
	perdisulphuric acid are the example of peroxy		most effective oxidant. It inactivates and oxidises
	acid.		organic matter, contaminates, pesticides, viruses
111			and bacteria faster than chlorine. Ozone do not
8	$2\text{NaI} + 2\text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{I}_2 + \text{SO}_2 + 2\text{H}_2\text{O}$		form TMH which have unpleasant odour and also
111			carcinogenic. Ozone is very good biocide, ozone
9	Ozone undergoes addition reactions at C—C		also absorts UV radiation.
,	unsaturation.	113	(d)
112		3	Due to N≡N bond.
	$NO(g) + NO_2(g) \rightarrow N_2O_3(l)$	113	(d)
		4	In disproportionation reaction, compounds are
112			simultaneously formed that contain a given
1	$P_4 + 5O_2 \rightarrow P_4O_{10}$; white phosphorus gets easily		element in a more oxidised and more reduced
110	oxidised because it is highly reactive		state than the intial one. CIO_{4}^{-} In oxidation
112			number of Cl is $+7$ and it cannot increases it
2	Red phosphorus is less reactive.		further so CIO_{4}^{-} will not get oxidized and so will
	(b)		not undergo disproportionation reaction.
	P forms tetra-atomic molecule.	113	
	(a)	5	$2MnO_4^- + 16H^+ + 10Cl^-$
	$H_2S \rightleftharpoons H^+ + HS^-$		$\rightarrow 2\text{Mn}^{2+} + 5\text{Cl}_2 + 8\text{H}_2\text{O}$
	$\mathrm{HS}^- \rightleftharpoons \mathrm{H}^+ + \mathrm{S}^{2-}$	112	
112		113	
5	$\mathrm{S} + \mathrm{H}_2\mathrm{O} + 3\mathrm{O}_3 \longrightarrow \mathrm{H}_2\mathrm{SO}_4 + 3\mathrm{O}_2$	6 112	AsH ₃ is gas.
112	(d)	113	
6	All show +5 covalency.	7	P_4O_{10} is tetrahedral in nature.
112	(c)	113	
7	Xenon hexafluoride reacts with silica to form	8	It is a reason for the given fact.
	XeOF ₄ as	113	(d)
			Cl_2O , ClO , ClO_2 , Cl_2O_6 , Cl_2O_7 , ClO_4 are oxides of ch

9 114 (d) N_2O has neither oxidant nor reductant nature. 0 114 (d) By Haber's process. 1 114 (a) 2 The basic character of halides of N is: $NF_3 < NCl_3 < NBr_3 < NI_3$ 114 (c) 3 H_2O_2 decolourises KMnO₄ but O_3 not. 114 (c) 4 $Cl_2 + 2KBr \rightarrow Br_2 + 2KCl$ 114 (c) 5 It is a fact. 114 (d) Ba $(N_3)_2 \rightarrow Ba(s) + 3N_2(g)$ 6 Azide salt of barium can be obtained in purest form as well as the decomposition product contain solid Ba as by product alongwith gaseous nitrogen hence to additional step of separation is required. Other reaction are $NH_4 NO_3 \xrightarrow{Heat} N_2O + 2H_2O$ $2 \text{ NH}_3 + 3\text{CuO} \xrightarrow{\text{Heat}} 3\text{Cu} + 3\text{H}_2\text{O} + \text{N}_2$ $(NH_4)_2Cr_2O_7 \xrightarrow{\text{Heat}} Cr_2O_3 + 4H_2O + N_2$ 114 **(b)** I_2 +alcohol is tincture of iodine used as antiseptic. 7 114 (c) $2XeF_6 + SiO_2 \rightarrow SiF_4 + 2XeOF_4$ 8 114 (c) I₂ possesses sublimation nature 9 115 (c) Electrolysis 0 of MgCl₂, NaCl, KCl in fused state gives Cl₂ as byproduct. Electrolysis of Al_2O_3 in fused state gives O_2 as byproduct. 115 (d) Rest all reacts with H₂SO₄. 1 115 **(b)** $NaNO_3 + 8H \rightarrow NaOH + 2H_2O + NH_3$ 2 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + 2H$ 115 **(b)** Phosphine forms vortex rings of P_2O_5 when it 3 comes in contact of air . These rings are in the form of white smoke .They are used in making smoke screen in warfare. 115 (c)

4 These radioactive minerals have entrapped He atoms, produced from particle, which they give on

115 (b) Rest all $(ClO_3 = 41 \text{ electrons}, ClO_2)$ =electrons) have unpaired electrons. 115 **(b)** SO₂ is acidic and KOH is basic. 115 (d) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S; S^{2-}$ changes to S^0 . 115 (d) In the reaction, $2HNO_3 + P_2O_5 \rightarrow 2HPO_3 + N_2O_5$ HNO₃ does not behave as an oxidising agent because in this reaction P₂O₅ shows dehydrating property. It removes water molecule from HNO3 115 (d) A mixed salt is one which gives more than one type of cations or anions, *e*. g., $Ca^{2+} + OCl^{-} + Cl^{-}$ 116 (a) $4\text{FeS} + 70_2 \rightarrow 2\text{Fe}_20_3 + 4\text{SO}_2$ $SO_2 + H_2O \rightarrow H_2SO_3$ H₂SO₃ is dibasic acid. 116 (c) $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ 116 (d) In the formation of XeF₄, sp^3d^2 hybridisation occurs which gives the molecule an octahedral structure. The xenon and four fluorine atoms are coplanar while the two equitorial positions are occupied by the two lone pairs of electron 116 (d) N₂O and NO are neutral oxides of N. 116 (d) -1 due to most electronegative nature and +3, +5,

heating in Vacuo.

5

6

7

8

9

0

1

3

+7 due to excitation of *p*-electrons to *d*-orbitals; +1 also with less electronegative elements.

```
116 (c)
```

4

5

First two are simply methods of preparation of 6 O_3 . Manufacture is done by (c) only.

116 (d)

7

 $P_4 + O_2 \rightarrow P_4 O_{10} \text{ or } P_4 O_6$

116 **(d)**

Rest all are uses of He. He is heavier than H₂. 8

116 (c)

```
9
     It is a fact.
```

```
117 (b)
0
```

In N₂ and O₂, Mg will react on heating with them

and welding is not possible. 117 (a) 1 HNO₃ oxidizes H₂S to colloidal sulphur. $H_2S + 2HNO_3 \rightarrow 2NO_2 + 2H_2O + S$ 117 (a) $CS_2 + 2Cl_2 \rightarrow CCl_4 + 2S$ 2 117 (a) Each member of gp. 16 or VIA has ns^2np^4 3 configuration with two unpaired *p*-electrons. 117 (d) Krypton is used in miner's cap lamps. 4 117 **(b)** Solution of Br₂ in CS₂ is orange in colour. 5 117 (c) On long standing it undergoes auto-oxidation as, 6 $6CaOCl_2 \rightarrow Ca(ClO_3)_2 + 5CaCl_2$. 117 (d) 7 Ar is most abundant inert gas in air. 117 (a) $KF + HF \rightarrow KHF_2$ 8 117 (d) PCl₅ produces POCl₃ with the following reagents 9 $PCl_5 + SO_2 \rightarrow POCl_3 + SOCl_2$ $PCl_5+H_2O \rightarrow POCl_3+2HCl$ $6PCl_5 + P_4O_{10} \rightarrow 10POCl_3$ 118 **(b)** 0 On hydration, energy is given out. 118 **(b)** Polyanion formation is maximum in sulphur. this 1 is due to the fact that sulphur shows maximum catenation in the group. 118 (c) The solubility of noble gases increases with 2 increase in mol. wt. due to increase in van der Waals' forces. However, these are sparingly soluble. 118 (a) It is a fact. 3 118 (a) Sulphur is found in following allotropic forms : 4 (a)monoclinic (b)rhombic (c)plastic 118 (c) $I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O_3$ 118 (d) All these adsorb inert gases. 6 118 **(b)** Potassium tetraiodo mercurate (II) ie 7 K₂[HgI₄]dissolve in KOH solution to give Nessler's reagent. Nessler's reagent is used to test

NH⁺₄ions.

interpseudohalogen. 119 (a) HCOOH $\xrightarrow{H_2SO_4} H_2O + CO$ 1 $H_2C_2O_4 \xrightarrow{H_2SO_4} H_2O + CO + CO_2$ 119 (a) 2 $H_2S_2O_8$ has O-O bond in it. 0 -0--0-S-OH Ö 119 (a) ClF_3 , where Cl is sp^3d hybridised, has a T-shape 4 structure due to presence of two lone pairs of electrons on Cl atom 119 **(b)** 4HCl + $0_2 \xrightarrow{CuCl_2} 2H_2O + 2Cl_2(Deacon's process).$ 5 119 **(a)** 6 Nitre cake is NaHSO₄. 119 (a) 7 Helium(He) is a non-flammable(incombustible) gas and its lifting power is 93% as compared to flammable hydrogen gas, due to these reasons it is used in filling balloons and other lighter air crafts. 119 (a) 8 It is a fact. 119 (d) 9 It is a reason for the given fact. 120 (a) 0 $S_2O_7 + H_2O \rightarrow H_2S_2O_8$ 120 (b) $PI_3 + 3H_2O \rightarrow + H_3PO_3 + 3HI_{(Dibasic)} + 3HI_{(Monobasic)}$ 1 120 (a) 2 Rest all are poisonous hydrides. 120 **(b)** S in SO₄²⁻ is sp^3 -hybridized. 4 120 (b) 5 Only carbon reacts with conc. H₂SO₄ to give two different gases $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$ While other elements react with conc. H₂SO₄ with the evolution of only one type of gas.

 $F_2 + H_2 O \rightarrow 2HF + \frac{1}{2}O_2; \quad \Delta H = -ve.$

Pseudohalide ions combine together to form

interpseudohalogen compounds. Cl₂N₃ is not an

118 (a)

118 (a)

8

120	(b)	121	(a)
6	O_3 is an allotrope of O_2 .	6	Bromine is a liquid at room temperature
120	(a)	121	(b)
7	$Na_2SO_3 + S \rightarrow Na_2S_2O_3$	7	$_{84}$ Po is the only radioactive element of gp 16.
120		121	
8	Each O and S has six valence electrons in it.	8	Oxygen and Sulphur are non-metals; Te is
120		101	metalloid, Po is metal.
9	I atom in IF ₇ possesses sp^3d^3 -hybridisation to develop pentagonal bipyramidal shape.	121 9	$NH_3 > PH_3 > AsH_3 > SbH_3$
121		,	On moving down the group atomic size increases
0	+7 +5 +3 +1		and availability of lone pair decreases hence basic
	$HClO_4 > HClO_3 > HClO_2 > HClO$		character decreases
	As the oxidation number of halogen increases,	122	(c)
	acidic character increases	0	${\rm H_2O}$ contain hydrogen bond while no hydrogen
121			bonding is present in H ₂ S
1	The 3 : 1 ratio of Cl^{35} : Cl^{37} gives average at. wt. of		
101	35.5 to chlorine.	1	The acidic character decreases down the gp.
121		122 2	Rest all reacts with Cl_2 .
2	Zero group is called as buffer group because it lies between highly electronegative halogens and	122	_
	highly electropositive alkali metal elements.	3	Greater is electronegativity difference more is
121			polarity. Electronegativities of N, Cl, O, F are 3.0,
3	As the number of shells increases, size increases		3.0, 3.5 and 4.0 respectively.
	and the effective nuclear charge on the outermost	122	(d)
	electron decreases. Thus, IE decreases	4	$Na + NH_3 \rightarrow NaNH_2 + \frac{1}{2}H_2$
121		122	
4	$2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$	5	Bartlett prepared first compound of Xe as
121 5			$Xe^{+}[PtF_{6}]^{-}$, a red orange crystalline solid.
5			$Xe + PtF_6 \longrightarrow Xe^+ [PtF_6]^-$
	н—о—s —s—о—н	122	
	H ₂ S ₂ O ₄	6	Oxidation number of S in H_2SO_3 is +4 which lies
	hyposulphurous acid		between minimum (-2) and maximum (+6) values and can thus increase or decrease.
	0 ^(a) 0	122	
		7	The ease of liquefaction decreases with decrease
	Н—О— Š — Š — О— Н		in critical temperature. Also, critical temperature
			of a gas is lowered with increase in mol. mass.
	H ₂ S ₂ O ₆	122	
	(b)	8	Concentrated H_2SO_4 is less volatile, <i>ie</i> , it has high bailing point
~	dithionic acid	122	boiling point
6	0 0	9	$4P + 5CO_2 \longrightarrow 2P_2O_5 + 5C$
\sim		123	
	H—O—S—O—O—S—O—H	0	Silica(SiO ₂) is present in the glass. This silica
			reacts with hydrofluoric acid.
	$H_2S_2O_8$		$SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$
	(c)		$SiF_4 + 2HF \rightarrow H_2SiF_6$
	Marshall's acid		fluorosilicic acid
	Marshall's acid does not have s-s bond		Note: HF is used for the etching of glass.

		1	has a low value of algebrand officity in
	(a) The most reactive nature of E beings it the name		has a low value of electrons affinity in
1	The most reactive nature of F_2 brings it the name		comparison to chlorine because the incoming
100	super halogen.		electon experience greater repulsion . Thus, the
123		104	order of electron affaffinity is as Cl>F>Br>I.
2	N_2O does not burn itself but supports combustion		
123		6	The correct order of acidity strength of halogen
3	Carbon cannot expand its octet due to absence of		acids is HF <hcl<hbr<hi< td=""></hcl<hbr<hi<>
400	<i>d</i> -orbitals.		This is due to the reason that as the size of
123			halogen increases H—X bond becomes weaker
4	$HgO \rightarrow Hg + \frac{1}{2}O_2$		and thus, H — X easily donate proton. Hence, HI is
123		104	the strongest acid and HF is the weakest acid.
5	I_2 forms I_2O , I_2O_3 , I_2O_5 and I_2O_7 oxides.	124	
123		7	It is a fact.
6	Due to (i) Small atomic size (ii) High ionization	124	
0	energy (iii) Absence of <i>d</i> -orbital, helium does not	8	$NH_4NO_3 \rightarrow N_2O + 2H_2O; N_2O$ does not burn and
	form any compound		thus, does not supporter of combustion. Rest all
123		104	nitrates give O_2 which is supporter of combustion.
7	$2HCIO_4 \rightarrow Cl_2O_7 + H_2O$	124	
/	Hence, Cl_2O_7 is the anhydride of HCIO ₄	9	$H_2C_2O_4 \xrightarrow{H_2SO_4} CO + CO_2 + H_2O$ (b)
123	-	125	(b)
8	It is a fact.	0	$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$
123		125	(b)
9	Spirit of salt is a solution of HCl.	1	M.p.order : HCl < HBr < HF < HI.
, 124	-	\sim	158 186 190 222K
0	$2I^- \rightarrow I_2 + 2e$	125	(c)
Ū	$2e + S^{6+} \rightarrow S^{4+}$	2	Basic character (the tendency to donate lone pair)
124			is maximum in NH ₃ .
1	Oxygen shows only -2, -1 and +2	125	
	(in F ₂ 0) oxidation states.	3	O_3 has no action with KMnO ₄ .
124		125	
		4	It is a method to obtain noble gases.
2	Concentrated surprising actu, being a strong actu,		_
2	Concentrated sulphuric acid, being a strong acid, oxidises bromides and iodides but not chlorides	125	(c)
2			(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$
2	oxidises bromides and iodides but not chlorides	125 5	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate
2	oxidises bromides and iodides but not chlorides and fluorides since, the later are more	125 5 125	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b)
2	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by	125 5 125 6	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$
2	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options.	125 5 125 6 125	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c)
2	oxidises bromides and iodides but not chloridesand fluorides since, the later are moreelectronegative. Hence it can be reduced only byNaBr among the given options. $+6$ -1 $+6$ -1	125 5 125 6	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after
2	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 $+6$ $-1H_2 SO_4 + NaBr \rightarrow NaHSO_4 + HBr$	125 5 125 6 125	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it
2	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 $+6$ $-1H_2 SO_4 + NaBr \rightarrow NaHSO_4 + HBr-1$ $+6$ 0 $+42HBr + H_2SO_4 \rightarrow 2H_2O + Br_2 + SO_2$	125 5 125 6 125 7	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive.
	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction	125 5 125 6 125 7 125	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a)
124	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 $+6$ $-1H_2 SO_4 + NaBr \rightarrow NaHSO_4 + HBr-1$ $+6$ 0 $+42HBr +H_2SO_4 \rightarrow 2H_2O + Br_2 + SO_2reduction(a)$	125 5 125 6 125 7	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI
124	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction (a) S ⁴⁺ + 4e \rightarrow S;	125 5 125 6 125 7 125	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238
124 3	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction (a) S ⁴⁺ + 4e \rightarrow S; S ²⁻ \rightarrow S + 2e	125 5 125 6 125 7 125	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more
124 3 124	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction (a) S ⁴⁺ + 4e \rightarrow S; S ²⁻ \rightarrow S + 2e (d)	125 5 125 6 125 7 125 8	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more volatile
124 3	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction (a) S ⁴⁺ + 4e \rightarrow S; S ²⁻ \rightarrow S + 2e (d) The great affinity of H ₂ SO ₄ for water is because it	125 5 125 6 125 7 125 8	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more volatile (b)
124 3 124 4	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction (a) S ⁴⁺ + 4e \rightarrow S; S ²⁻ \rightarrow S + 2e (d) The great affinity of H ₂ SO ₄ for water is because it forms hydrates with water	125 5 125 6 125 7 125 8	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more volatile (b) The energy liberated when an electron is added to
124 3 124 4 124	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction (a) S ⁴⁺ + 4e \rightarrow S; S ²⁻ \rightarrow S + 2e (d) The great affinity of H ₂ SO ₄ for water is because it forms hydrates with water (d)	125 5 125 6 125 7 125 8	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more volatile (b) The energy liberated when an electron is added to an isolated gaseous atom is called electron
124 3 124 4	oxidises bromides and iodides but not chlorides and fluorides since, the later are more electronegative. Hence it can be reduced only by NaBr among the given options. +6 -1 +6 -1 H ₂ SO ₄ + NaBr \rightarrow NaHSO ₄ + HBr -1 +6 0 +4 2HBr + H ₂ SO ₄ \rightarrow 2H ₂ O + Br ₂ + SO ₂ reduction (a) S ⁴⁺ + 4e \rightarrow S; S ²⁻ \rightarrow S + 2e (d) The great affinity of H ₂ SO ₄ for water is because it forms hydrates with water	125 5 125 6 125 7 125 8	(c) $3NaOCl \rightarrow NaClO_3 + 2NaCl$ Hypochlorite Chlorate (b) Chromite ion is $Cr_2O_4^{2-}$ (c) Liquor ammonia bottles are opened only after cooling because it has high vapour pressure and it is mild explosive. (a) Hydride HF HCl HBr HI B.pt(in K) 293 189 206 238 Because of having low boiling point HCl is more volatile (b) The energy liberated when an electron is added to

	the electron affinity of Cl is higher than the	126	
	electron affinity of F although F has smaller size.	9	Ramsay found it during decay of radio isotopes.
	This is because the imcoming electron, in case of F	127	
	experience a greater force of repulsion from the	0	Group 15 members are called pnictogens, a
	outer electrons of F. Thus to overcome the	100	collective name for this family.
	repulsion some relased energy is utilized . Hence	127	
	lesser energy is released. Thus the electron	1	$8e + 2N^{5+} \rightarrow N_2^+$
	affinity is highest for Cl.	127	
126		2	$HO - SO_2 - OH + 2PCl_5 \rightarrow Cl - SO_2 - $
0	Fluorine reacts with water liberating O_2		Cl+2POCl ₃ +2HCl
	exothermally	127	
	$2F_2 + 2H_2O \rightarrow 4HF + O_2$	3	XeF ₆ cannot be stored in glass vessels because it
126			reacts with SiO_2 of the glass to give highly
2	$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$		explosive XeO ₃
126	(d)		$2XeF_6 + 3SiO_2 \rightarrow 2XeO_3 + 3SiF_4$
3	P exists as P_4 .	127	(b)
126	(a)	4	H_3PO_4 is tribasic acid.
4	Aqua-regia is the mixture of 3 part conc. HCl and $1 \label{eq:constraint}$		
	part conc. HNO_3 . It is a very strong acid which can		
	dissolve noble metals.		, P
126	(c)		но Он
5	$XeOF_4 + H_2O \rightarrow XeO_2F_2 + 2HF$		ÓH
	$XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$	127	(d)
126	(c)	5	$C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12C + 11H_2O;$
6	It is a reason for the given fact.		The process is called charring.
126	(b)	127	
7	$COOH + Conc.H_2SO_4 \rightarrow CO + CO_2 + H_2O$	6	In case of fluorides and chlorides, HF and HCl
		Ũ	gases are given out on heating with conc.
	СООН		H_2SO_4 and MnO_2 . In bromides and iodides
	Oxalic acid		Br_2 and I_2 are given out.
	Concentrated H_2SO_4 is a strong dehydrating agent.	127	
126	(a)	8	All these tests are used to detect
8	O ¹⁶ is the most abundant isotope of oxygen.	Ŭ	the presence of H_2S .
127		I	
9	On passing H ₂ S through an oxidant, colloidal Sulph	ur is	formed.
128		6	$IF_5 + F_2 \longrightarrow IF_7$
0	SO_2 is anhydride of H_2SO_3 .	128	
128		7	NH_3 is polar as well as base and thus, soluble in
1	It is a fact.		water.
128		128	
	It is a fact.	8	IPO ₄ is an ionic compound ($I^{3+}PO_4^{3-}$).
128		128	
	White phosphorus is soluble in CS ₂ but red P is	9	ClO_3^- has sp^3 -hybridization.
	not.	129	5
128		0	HI being least stable decomposes with time to
4	The bond angles are 92°, 106°51′, 109°28′ and 120°	Ũ	yield $H_2 + I_2$. The I_2 is dissolved in HI to develop
128	_		brown colour in solution.
5	In solid state PCl_5 is ionic having PCl_4^+ and PCl_6^-	129	
0	ions.	125	(**)
128		1	
120		I	

	$3KClO_3 + 3H_2SO_4$	2	
	\rightarrow 3KHSO ₄ + HClO ₄ + 2ClO ₂	131	(c)
	$+ H_2 0$	3	Oleum is $H_2S_2O_4 + SO_3$.
	The reaction occurs with explosion.	131	
129	_	4	N ₂ forms NCl ₃ , while P can form both PCl ₃ and PCl ₅
2	$4HNO_3 + P_4O_{10} \rightarrow 4HPO_3 + 2N_2O_5$	-	nitrogen does not give a pentahalide due to the
- 129			non availability of $2d$ -orbital ,whereas p has low
3	F – F more strong bond compare to F – Cl, F –		lying $3d$ -orbital which can be used for bonding.
5	Br and Cl – Br bond	131	
129		5	(CN) ₂ is known as pseudohalogen
5	When molten sulphur is suddenly cooled by	3 131	
5			
120	pouring into water it converts into plastic form	6	B.p. and m.p. decrease with decrease in mol . wt.
129		131	
6	Rest all react with H_2SO_4 to give H_2 .	7	$\mathrm{NH}_4\mathrm{NO}_3 \longrightarrow \mathrm{N}_2\mathrm{O} + 2\mathrm{H}_2\mathrm{O}$
129		131	
7	The oxides are CO_2 , H_2O and SO_2 respectively.	8	$SO_3 + HCl \rightarrow SO_2(OH)Cl$ Chlorosulphonic acid
129			unit obupitane dela
8	$\mathrm{N_2}$ and $\mathrm{O_2}$ present in air are allowed to react to	131	(h)
	form NO and then NO_2 .	9	-H+
129		ĺ	$NH_4CNO \rightarrow NH_2CONH_2$
9	Both SO_3 and H_2SO_4 have Sulphur in	132	(b)
	+ 6 oxidation state.		Salts of $HClO_2(ClO_2^-)$ is chlorite) are called chlorite.
130	(c)		(a)
0	It is a fact.	1	He gas is not adsorbed by coconut charcoal.
130		132	
1	$1s^2 2s^2 2p^6 \rightarrow \text{Neon}$	2	PbS is black which is oxidized to PbSO ₄ by ozone.
	It is noble gas	- 132	
130	(a)	3	$S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
2	F does not have d-orbital in 2nd shell.	132	
130	(d)	4	CO_2 gets evaporated slowly.
3	A commercial method to prepare O_2 .	132	
130	(c)	5	The order of bond dissociation energy of
4	N ₂ is not supporter of life.		hydrogen halide (or halogen acid) is as
130	(b)		Hydrogen halide dissociation HF >HCl >HBr
5	Hg reacts with O_3 to form HgO which sticks on		>HI
	walls.		Bond dissociation
130	(b)		Energy KJ mol ⁻¹ 566 431 366 299
6	He has $1, 1s^2$ configuration.		Bond dissociation energy \propto heat of formation
130	(a)		As bond dissociation energy decreases the heat of a_{1}
7	SCl_4 has sp^3d –hybridization and possesses see-		formation of halogen acids also decreases. Hence,
	saw structure.		_
130	(b)		the order of heat of formation of halogen acids is $UE > UC > UBr > UL$
8	$PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$	122	HF > HCl > HBr > HI
130		132	
9	N_2O_5 is acidic. NaOH an alkali, can absorb acidic ox	6	P_2O_5, ie, P_4O_{10}
131			Ĕ
0	Notice that electron affinity of Cl is more than F.		
131	-		$ O \Rightarrow Six P - O - P bridges$
1	$20_3 \rightarrow 30_2$		
131	• -		
	None of these react directly with halogens (Cl ₂ , Br ₂		P_2O_3 <i>ie</i> , P_4O_6
		I	Page 135
			r a g e 135

solution giving Kh.
kH +L=-MK(
$$\alpha_{2}$$
, Kh(α_{2} , K

134 (d)

(

the gp. In electrothermal process silica is heated with 3 135 **(b)** calcium phosphate when phosphorus pentoxide is $3NH_3 + OCl^- \rightarrow NH_2 - NH_2 + NH_4Cl + OH^-$ 0 obtained .It is then reduced by coke in electric 135 **(a)**

		_	
1	PO ₂ and NCl ₅ cannot exist	135	(d)
135	(a)	9	HBr is strong reducing agent and will be oxidized t
2	$3CuO + 2NH_3 \rightarrow 3Cu + N_2 + 3H_2O$	136	(b)
135		0	About 46% N is present in urea.
3	It is a fact.	136	-
135		1	Magnesium and dilute HNO ₃ reacts to produce H_2
4	$30_2 \rightarrow 20_3$	1	gas.
т	$3v_2 = 2v_3$ $3v_1 = 2v_2 = 2v_1 = 0_3$		-
		120	$Mg+2 HNO_3 \rightarrow Mg(NO_3)_2+H_2\uparrow$
	$x \operatorname{vol} O_2 = \frac{2}{3} x \operatorname{vol} O_3$	136	
	$x + \frac{2}{3}x = 100L$	3	In HF, the molecules aggregate because of
	-		intermolecular hydrogen bonding. Hence, it has
	$\frac{5}{3}x = 100 \text{ or } x = 60L O_2$		highest boiling point
	Volume of $O_3 = \frac{2}{3} \times 60 = 40L$	136	
125	-	4	HF is a weak acid due to intermolecular hydrogen
135			bonding
5	The correct order of occurrence in air is	136	(c)
	Ar>Ne>Kr	5	Rest all are uses of chlorine.
135		136	
6	Most of the noble gases are obtained from air.	6	The solubility of I_2 in water increase by the
135	(a)	Ũ	addition of KI due to formation of polyhalide ion,
7	In pyrophosphorous acid p is in +3 oxidation		i.e. $I_{\overline{3}}$.
	state.		$KI + I_2 \rightarrow KI_3$
		136	
	0 0	130	
			Platinum, palladium and iridium are not attacked
			by strong acids. So these are called noble metals.
		136	
	он но	8	$CaCl(OCl) \rightarrow Ca(ClO_3)_2 + CaCl_2$
	(Dibasic acid)		
135	(a)		
8	In the reaction SO_2 and H_2S , SO_2 acts as oxidizing		
U	agent and H_2S acts as reducing agent.		
	$SO_2+2H_2S \rightarrow 2H_2O+3sI$		
136			
		. .	a acid
9	Marshall's acid is the name for $H_2S_2O_8$ or perdisult		
137		137	
0	Neon is Greek language signifies 'new'.	5	S, Se and Te are typically tetravalent in their
137			compounds with oxygen. They show +6 oxidation
1	Due to one unpaired electron in it.		state in fluorides.
137	(a)	137	(c)
2	$Ca + F_2$	7	It is a fact.
C	\rightarrow CaF ₂ (an insoluble compound responsible for fl	137	(d)
137	(b)	9	These are the uses of liquid oxygen.
3	Nitric acid oxidises iodine into iodic $acid(HIO_3)$.	138	
	$10HNO_3+I_2 \rightarrow 3HIO_3+10NO_2+4H_2O$	0	$CuSO_4 + 2H_2O \rightarrow Cu(OH)_2 + H_2SO_4;$
	Iodic acid		Addition of CH ₃ COOH reverses the hydrolysis of
137			$CuSO_4$.
4	B.p. of molecules increases with increase in mol.	138	-
1	wt. NH_3 however shows H-bonding and has high	130	XeF ₂ has sp^3d hybridization with linear shape
		T	Act 2 has sp u hybridization with initial shape
	b.p.		

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** Helium and beryllium have similar outer electronic configuration of the type *ns*²
- Statement 2: Helium and beryllium both are chemically inert

2

- **Statement 1:** PCl₅ and PbCl₄ are thermally unstable
- Statement 2: They produce same gas on thermal decomposition

3

- **Statement 1:** Among chalcogens, tendency of catenation is maximum for sulphur.
- **Statement 2:** S-S bond dissociation energy is higher then 0-0 bond dissociation energy.

4

Statement 1:Oxygen is more electronegative than sulphur, yet H_2S is acidic, while H_2O is neutralStatement 2:H - S bond is weaker than O - H bond

5

- **Statement 1:** Liquid NH₃ is used for refrigeration.
- **Statement 2:** Liquid NH₃ does not vaporize quickly.
- 6
- **Statement 1:** White phosphorus is more reactive than red phosphorus.
- **Statement 2:** red phosphorus consists of P₄ tetrahedral units linked to one another to form linear chains.

	Statement 1:	All the noble gases have ns^2np^6 electronic configuration in their outermost shell
	Statement 2:	In noble gases all the energy levels which are occupied are completely filled
8		
	Statement 1:	Helium is the only substance that can't be solidified at atmospheric pressure
	Statement 2:	The zero point energy of helium is very high
9		
	Statement 1:	OF ₂ is named as oxygen difluoride.
	Statement 2:	OF_2 is oxygen is less electronegative than fluorine.
10		
	Statement 1:	The van der Waals' forces are directly proportional to the ionisation potentials
	Statement 2:	Van der Waals' forces increases as the size and diffuseness of the electron clouds increases
11		
	Statement 1:	The aqueous solution of XeF ₂ is powerful oxidizing agent
10	Statement 2:	The hydrolysis of XeF_2 is show in dilute acid but rapid in basic solution
12		
	Statement 1:	Red phosphorus is less volatile than white phosphorus
	Statement 2:	Red phosphorus has a discrete tetrahedral structure
13		
	Statement 1:	The ionization energy of gallium remains nearly same as that of aluminium.
	Statement 2:	This is due to shielding of outer shell electrons form the nucleus by the d electrons of
14		gallium.
	Statement 1:	Ozone is a powerful oxidizing agent in comparison to O_2
	Statement 2:	Ozone is diamagnetic but O_2 is paramagnetic
15		
15	Ctatomant 1	DCL is covalent in gaseous and liquid states but ionis in colid state
C	Statement 1:	PCl ₅ is covalent in gaseous and liquid states but ionic in solid state

Statement 2: PCl_5 in solid state consists of tetrahedral PCl_5^+ cation and octahedral PCl_6^- anion

CHEMISTRY

						: ANS	WER	KEY	:			
1) 5)	c a	2) 6)	b b	3) 7)	a d	4) 8)	a a					
ə) 13)	a a	10) 14)	d b	11) 15)	b b	12)	С					$\langle \langle \rangle$
												*
									1	\mathcal{L}		
								~	7			
						C						
				S								
		,	\mathcal{A}									
		8	Y	2								
	~	5)	P									
5		21										

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (c)

Helium is a noble gas but beryllium is a member of alkaline earth metal. Thus, beryllium is chemically active and helium is inactive

2 **(b)**

 $PCl_5 \xrightarrow{\Delta} PCl_3 + Cl_2$

 PCl_5 decomposes into PCl_3 and Cl_2 as in its structure two P - Cl axial bonds are longer than other three P - Cl equatorial bonds

3 **(a)**

Catenation means the tendency of an element to from chains of identical atoms which is pronounced in sulphur among chalcogens.

4 **(a)**

H - S bond is weaker than H - O bond hence, H_2S is more acidic than H_2O

5 **(a)**

Liquid ammonia has a large heat of vaporization (0.327 cal/g). It is therefore used in ice plants.

6 **(b)**

White P exists as discrete P_4 tetrahedral molecule having P-P-P bound angle 60°.Hence, molecule is under strain and more reactive while red P exits as P_4 tetrahedral joined together through covalent bounds giving polymeric structure.

7 **(d)**

All the noble gases except He, have ns^2np^6 electronic configuration in their outermost shell

8 **(a)**

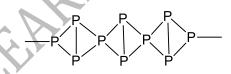
Zero point energy of helium is so high that it outweighs the weak interatomic forces which are not strong enough to bind the helium atoms into the crystalline state

9 **(a)**

The compound of oxygen and fluorine is more electronegative than oxygen fluorides as fluorine

is more electronegative than oxygen

10 **(d)**


Van der Waals' forces or London forces are inversely proportional to the ionisation potential of the atoms

11 **(b)**

 XeF_2 oxidise HCl to Cl_2 and Ce(III) to Ce (IV). Its oxidation potentials is +2.64 V

12 **(c)**

Red phosphorus is less volatile than white phosphorus because it exists in linked tetrahedral structures.

13 **(a)**

In Ga, 10-d electrons in penultimate shell shiled the nucleus change less effectively, the outer electrons is held frimly by the nucleus. As result, the ionisation energy remains nearly the same as that of aluminium in spite of the fact that atomic size increase.

14 **(b)**

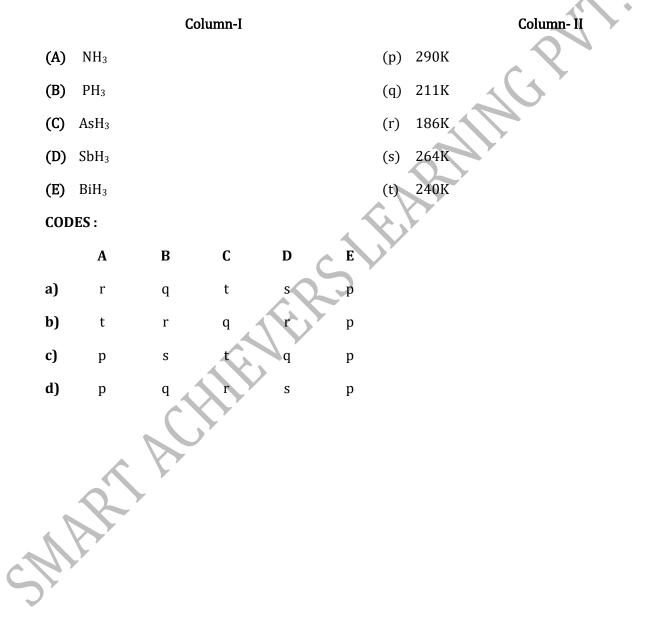
Due to the ease with which it can liberate nascent oxygen, O_3 acts as a powerful oxidising agent.

 $0_3 \rightarrow 0_2 + 0$

 $O_2 \rightarrow$ Paramagnetic due to presence of two unpaired electrons

 $0_3 \rightarrow \text{Diamagnetic molecules}$

15 **(b)**


 PCl_5 is trigonal bipyramidal containing sp^3d hybridised P atom in liquid and gaseous state. Whereas, in solid state it consists of tetrahedral PCl_4^+ cation and octahedral PCl_6^- anions

CHEMISTRY

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

1. Match list I (Molecules) with list II (Boiling points) and select the correct answer

CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

(b) 1

SMARIAC

Except ammonia the boiling point generally increases down, the group due to increase inn magnitude of van der waals' forces. Ammonia shows intermolecular hydrogen bonding hence its boiling point is higher than AsH₃, but lower than SbH_{3.} Stitute

EVER