CHEMISTRY

Single Correct Answer Type

1.	The percentage of para hy a) Temperature is lowere		ogen increases when:	
	b) Temperature is increas			
	c) Pressure is increased a		ased.	A
	d) None of the above			4
2.	Manufacture of H ₂ is mad	e by:		
	a) Lane's process	b) Bosch process	c) From natural gas	d) All of these
3.	H_2O_2 on treatment with c	hlorine gives:		
	a) H ₂	b) Oxygen	c) Hypochlorous acid	d) ClO ₂
4.	Radioactive isotope of hyd	drogen is		
	a) Tritium	b) Deuterium	c) <i>Para</i> hydrogen	d) <i>Ortho hydrogen</i>
5.	K_a of H_2O_2 is of the order	of		
	a) 10^{-12}	b) ¹⁰⁻¹⁴	c) ¹⁰⁻¹⁶	d) 10^{-10}
6.	The hardness of water is	estimated by		
	a) EDTA method	b) Titrimetic method	c) Conductivity method	d) Distillation method
7.	The $H - 0 - 0$ bond angle	e in H_2O_2 is		
	a) 107.28°	b) 97°	c) 104.5°	d) 109.28°
8.	Hydrogen loses its electro	on to form H ⁺ ion. In this i	respect it resembles to:	
	a) Transition metals	b) Alkali metals	c) Halogens	d) Noble gases
9.	$TiH_{1.73}$ is an example of :			
	a) Ionic hydride	b) Covalent hydride	c) Metallic hydride	d) Polymeric hydride
10.	The decomposition of H ₂ 0	O_2 can be slowed down b	y the addition of small amou	ınt of phosphoric acid which
	acts as:			
	a) Stopper	b) Detainer	c) Inhibitor	d) promoter
11.	The ortho and para hydro			
	a) Same physical properti	ies but different chemical	properties	
	b) Different physical prop		properties	
	c) Same chemical and phy	sical properties		
	d) Different, physical and	chemical properties		
12.	The volume strength of 1.	$5 \text{ N H}_2\text{O}_2$ solution is		
	a) 4.8	b) 8.4	c) 4.2	d) 2.4
13.	Which of the following is			
	a) Water at 4°C having ma		as heavy water	
V	b) It is heavier than water	$f(H_20)$		
	c) It is formed by the com	bination of heavier isoto	pe of hydrogen and oxygen	
	d) None of the above			
14.	Which is not present in cl	ear hard water?		
	a) $Mg(HCO_3)_2$	b) CaCl ₂	c) MgSO ₄	d) MgCO ₃
15.	Which of the following is	not correct regarding the	electrolytic preparation of I	H_2O_2 ?
	a) Lead is used as cathode	ė	b) 50% H ₂ SO ₄ is used	
	c) Hydrogen is liberated a	at anode	d) Sulphuric acid underg	oes oxidation

16.	Electrolysis of <i>X</i> gives <i>Y</i> bonds present in <i>X</i> and <i>Y</i>		tion of Y gives H_2O_2 . The	number of peroxy (0 - 0)
	a) 1.1	b) 1.2	a) 7 aro 1	d) 7oro goro
17	•	•	c) Zero, 1	d) Zero, zero
1/.		ridic ferrous sulphate soluti	OIIS:	
	a) Electrons are gained by			
	b) Electrons are lost by Fe			
	c) There is no loss or gain			
	d) Iron hydroxide precipi			
18.	_	actions produces hydrogen		A1)'
	a) $H_2S_4O_8 + H_2O$	b) BaO + HCl	c) $Mg + H_2O$	d) $Na_2O_2 + 2HCl$
19.	H ₂ O ₂ is formed by which	of the following compound		
	a) Na_2O_2	b) NaOH	c) Na ₂ O	d) KO ₂
20.	Which of the following act	ts as both reducing and oxid	dising agents?	
	a) H_2SO_4	b) H ₂ O ₂	c) KOH	d) KMnO ₄
21.	The sum of protons, electrons	rons and neutrons in the he	aviest isotope of hydrogen	is
	a) 3	b) 5	c) 4	d) 6
22.	On shaking H ₂ O ₂ with acid	dified potassium dichromat	te and ether, ethereal layer	becomes
	a) Green	b) Red	c) Blue	d) Brown
23.	The acidified solution of F	${}^{2}eCl_{3}$ is reduced by passing:		
	a) ordinary H ₂	b) 0 ₂	c) nascent H	d) H ₂
24.	Hydrogen does not combi	ne with		
	a) Helium	b) Bismuth	c) Antimony	d) Sodium
25.	H ₂ acts as an oxidant in its	s reaction with:		
	a) Br ₂	b) Ca	c) N ₂	d) S
26.	Of the two solvents H ₂ O a	nd D ₂ O, NaCl dissolves:		
	a) Equally in both	b) Only in H ₂ O	c) More in D ₂ O	d) More in H ₂ O
27.	What is formed when calc	rium carbide react with hea	vy water?	
	a) C_2D_2	b) CaD ₂	c) CaD ₂ O	d) CD ₂
28.	When different metals like	e Zn, Sn, Fe are added to dil	ute sulphuric acid, same ga	s, which burns explosively
	in air, is evolved. The gas			
	a) 0 ₂	b) N ₂	c) Cl ₂	d) H ₂
29.	Heavy water is represente	ed as		
	a) H ₂ ¹⁸ 0	b) D ₂ O	c) D ₂ ¹⁸ 0	d) H ₂ O at 4°C
30.	Which is not a water softe	ener?		
	a) Calgon	b) Permutit	c) Na ₂ CO ₃	d) Na ₂ SO ₄
31.	The boiling point of heavy	water is:		
	a) 100°C	b) 101.4°C	c) 104°C	d) 102.5°C
32.	The volume of oxygen libe	erated from 15mL of 20 vol	lume H ₂ O ₂ is	
	a) 250mL	b) 300mL	c) 150mL	d) 200mL
33.	Decomposition of H_2O_2 is	prevented by		
4	a) KOH	b) MnO ₂	c) Acetanilide	d) Oxalic acid
34.	The boiling point of water	is high because		
	a) Water molecule is linea	ar		
	b) Water molecule is not l	inear		
	c) Water molecules posse	ss covalent bond between l	H and O	
	d) Water molecules assoc	iate due to H-bonding		
35.	The volume of '10 vol.' of	$\rm H_2O_2$ required to liberate 5	$00 \text{ mL } 0_2 \text{ at NTP is:}$	
	a) 50 mL	b) 25 mL	c) 100 mL	d) 125 mL
36.	Which of the following pa	irs of ions make the water l	nard?	
	a) NH ₄ +,Cl ⁻	b) Ca ⁺ , HCO ₃	c) Ca^{2+} , NO_3^-	d) Na ⁺ , SO ₄ ²⁻

37.	Which of the following gas	s is insoluble in water?		
	a) SO ₂	b) NH ₃	c) H ₂	d) CO ₂
38.	Which will produce hard	water?		
	a) Saturation of water wit	th CaSO₄		
	b) Addition of Na ₂ SO ₄ to v	-		
	c) Saturation of water wit			
	d) Saturation of water wit			
39	=	gas is utilised for the produ	action of hydrogen gas?	
07.	a) Producer gas	b) Water gas	c) Coal gas	d) None of these
40.	,	b) water gas	c) dour gas	d) None of these
10.	a) 203 K	b) 193 K	c) 273 K	d) 373 K
41.		orbitals of oxygen in H ₂ O ₂ is		u) 575 K
ΤΙ.	a) sp^3d	b) sp	c) sp ²	d) sp^3
12			, ·	u) sp
42.	= =	irs will not produce dihydr	= =	d) No Lalgohal
42	a) Cu + HCl (dil.)	b) Fe + H ₂ SO ₄	c) Mg + steam	d) Na + alcohol
43.	Calgon used as water soft		.) N. [N. (DO.)]	D.M Cal
	a) $Na_2[Na_4(PO_3)_6]$	b) $Na_4[Na_2(PO_3)_6]$	c) $Na_2[Na_4(PO_4)_5]$	d) None of these
44.	Permutit is:			
	a) Hydrated sodium alum			
	b) Sodium hexa meta-pho	sphate		
	c) Sodium silicate			
	d) Sodium meta-aluminat			
45.		ced by passing oxygen thro	ough rubber foaming mater	rial. This oxygen is released
	from:			
	a) Nitric oxide	b) Hydrogen peroxide	c) Water	d) CO ₂
46.	Which is the poorest redu	cing agent?	/	
	a) Atomic hydrogen		b) Nascent hydrogen	
	c) Dihydrogen		d) All have same reducing	
47.		rial preparation of hydrogo	en from water gas $(CO + H_2)$	₂) which of the following is
	the correct statement.			
	-	ally separated using differe		
		rption in aqueous Cu ₂ Cl ₂ s	olution	
	c) H ₂ is removed through			
			of a catalyst followed by ab	sorption of CO_2 in alkali
48.	The number of radioactiv			
	a) 1	b) 2	c) 3	d) None of these
49.		oxygen in hydrogen peroxi		
	a) + 1	b) - 1	c) + 2	d) - 2
50.	The normality of 30 volume			
	a) 2.678 N	b) 5.336 N	c) 8.034 N	d) 6.685 N
51.		mic acid on treatment with		
		b) $Cr_2O_2 + H_2O + O_2$		
52.	·		ain two bottles, one contair	= -
			solutions are mixed. The h	ydrogen peroxide.
	a) Is added to dilute the se	-		
	b) Oxidises the dye to give			
	c) Reduces the dye to give			
	d) Acidifies the solution o	<u> </u>		
53.	d) Acidifies the solution o In periodic table tritium is	<u> </u>		

54.		ogen differ in respect of wh	-	
	a) In the molecular weigh		b) In the nature of spin of	=
	c) In the nature of spin of		d) In the number of proto	ns
55.		ent 0—H bond in water is:		
	a) Equal to bond energy of			
	b) Greater than bond ene			
	c) Lesser than bond energ	gy of hydrogen bond		
E 6	d) None of the above Water acts as excellent so	lyant dua ta		
30.	a) Hydrogen bonding	ivent due to:		
	b) Neutral nature			
	c) High dielectric constan	t		
	d) None of the above			A Y
57.	$TiH_{1.73}$ is an example of w	which type of the hydride?		
	a) Metallic	b) Ionic	c) Covalent	d) Polymeric
58.	An aqueous solution of hy	•		
	a) Alkaline	b) Neutral	c) Strongly acidic	d) Weakly acidic
59.	The 0 — 0 bond length in	H ₂ O ₂ is:	10	
	a) 1.54 Å	b) 1.48 Å	c) 1.34 Å	d) 1.01 Å
60.	Moist hydrogen peroxide	cannot be dried over conc.	H ₂ SO ₄ because	
	a) It can catch fire		b) It is reduced by H ₂ SO ₄	
	c) It is oxidised by H ₂ SO ₄		d) It is decomposed by H ₂	$_{2}SO_{4}$
61.		of a solution containing 30.3		
60	a) 10 volume	b) 20 volume	c) 5 volume	d) None of these
62.	Tritium emits:	10.0 41.1		J) NI
62	a) α-particles The ratio of electron proteins	b) β-particles	c) γ-rays	d) Neutrons
63.	a) 1 : 1 : 1	on and neutron in tritium i b) 1 : 1 : 2	s: c) 2 : 1 : 1	d) 1 : 2 : 1
64	Hydrogen directly combined		() 2 : 1 : 1	u) 1 : 2 : 1
04.	a) Cu	b) Au	c) Ca	d) Ni
65.	_	reactions, H_2O_2 is acting as		u) III
00.	a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$		b) $2KI + H_2O_2 \rightarrow 2KOH +$	· [₂
	c) PbS + $4H_2O_2 \rightarrow PbSO_4$		d) $AgO_2 + H_2O_2 \rightarrow 2Ag +$	
66.	Permutit is the technical i	_	, 0 2 2 2 0	<i>L L</i>
	a) Aluminates of calcium	_	b) Hydrated silicate of alu	ıminium and sodium
	c) Silicates of calcium and	l magnesium	d) Silicates of calcium and	l sodium
67.	The best method to test w	hether a clear liquid is wat	er, is to:	
	a) Taste the liquid			
	b) Smell the liquid			
	c) Add litmus paper			
		drous copper sulphate and	-	
68.			ırns an acid solution of KI l	orown and reduces acidified
	KMnO ₄ . The substance is:) mio	D. Pl. (NO.)
60	a) H_2O_2	b) D ₂ O	c) KNO ₃	d) $Pb(NO_3)_2$
69.	Heavy water is qualified a	is neavy decause it is:		
	a) A heavy liquid b) An oxide of a heavier is	rotone of overgon		
	b) An oxide of a heavier isc) An oxide of deuterium	otope of oxygen		
	d) Denser than water			
70	Permanent hardness can	he removed hv adding		
. 5.	a) Cl ₂	b) Na ₂ CO ₃	c) Ca (OCl) Cl	d) K ₂ CO ₃
	, <u>-</u>	ر <u>ب</u>		ال <u>م</u> ر

71.	The ionization energy of hydrogen is:		
	a) Lower than alkali metals		
	b) Lower than halogens		
	c) Closer to alkali metals		
	d) Closer to halogens		
72.	Which one of the following reactions represents the	· · · ·	??
	a) $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_4$		
	b) $2K_3[Fe(CN)_6] + 2KOH + H_2O_2 \rightarrow 2K_4[Fe(CN)_6]$	$+2H_2O+O_2$	
	c) $Pb_2 + H_2O_2 \rightarrow PbO + H_2O + O_2$		
5 0	d) $2KI + H_2SO_4 + H_2O_2 \rightarrow K_2SO_4 + I_2 + 2H_2O$		
73.	Hydrogen peroxide is prepared in the laboratory by		
	a) Passing CO ₂ into BaO ₂	b) Adding MnO ₂ to dil. H ₂	· ·
	c) Adding Na ₂ O ₂ to cold water	d) Adding PbO ₂ into KMn	04
74.	Heavy water is		
	a) Water at 0°C	4	01
	b) Water containing Fe, Cr, Mn		
	c) D ₂ O	4 4	
	d) Water obtained after a number of distillations)"
75.	Ortho and para hydrogen differ in) El	D.D
7.0	a) Nuclear charge b) Nuclear reaction	c) Electron spin	d) Proton spin
/6.	Hydrogen peroxide is manufactured by the auto-oxide		D A . (1)
77	a) 2-ethylanthraquinol b) Anthraquinone	c) Naphthalene	d) Anthracene
//.	What is the product of the reaction of H_2O_2 WITH Cl		1) HCI + H
70	a) O_2 + HOCl b) HCl + O_2	c) H ₂ O + HCl	d) $HCL + H_2$
78.	One mole of calcium phosphide on reaction with exc	ess water gives:	
	a) One mole of phosphene		
	b) Two moles of phosphoric acid		
	c) Two moles of phosphine		
70	d) One mole of phosphorus pentaoxide Hydrogen may be prepared by heating a solution of	cauctic coda with	
7).	a) Mg b) Zn	c) Fe	d) Ag
80	H_2O_2 is manufactured these days	c) ic	u) ng
00.	a) By the action of H ₂ O ₂ on BaO ₂	b) By the action of H ₂ SO ₄	on Na ₂ O ₂
	c) By electrolysis of 50% H ₂ SO ₄	d) By burning hydrogen is	
81	On bubbling CO ₂ through a solution of barium perox	, , , , ,	if exects of oxygen
01.	a) O ₂ is formed b) H ₂ CO ₃ is formed	c) H_2O_2 is formed	d) H ₂ is formed
82.	The most reactive state of hydrogen is:		u, 11 ₂ 10 1011110
	a) Atomic hydrogen b) Heavy hydrogen	c) Molecular hydrogen	d) Nascent hydrogen
83.	The number of protons, electrons and neutrons resp		, ,
	a) 10, 10, 10 b) 8, 10, 11	c) 10, 11, 10	d) 11, 10, 10
84.	Ordinary hydrogen is a mixture at:		
	a) 75% ortho $H_2 + 25\%$ para H_2		
	b) 25% ortho H ₂ + 75% para H ₂		
	c) 50% ortho H ₂ + 50% para H ₂		
	d) 99% para H ₂ + 1%ortho H ₂		
85.	Heavy water freezes at:		
	a) -3.8° C b) 3.8° C	c) 0° C	d) 3.2° C
86.	The electronic configuration of deuterium is:		
	a) $1s^2$ b) $1s^1$, $2s^2$	c) $1s^2$, $2s^1$	d) 1s ¹
87.	Smell of H ₂ O ₂ resembles:		

	a) Alcohol	b) Alkali	c) Nitric acid	d) Chloroform
88.		ntact with substance which	•	
	a) Ortho H ₂	b) Para H ₂	c) Active H	d) Nascent H
89.	H_2O_2 acts as an oxidizing	· -	·,	.,
	a) Neutral medium	· ·		
	b) Acidic medium			
	c) Alkaline medium			
	d) acidic as well as in alka	line medium		
90.	The concentration of H ₂ O	₂ solution of '10 volume' is		
	a) 30%	b) 3%	c) 1%	d) 10%
91.	Water possesses a high di	electric constant, therefore		
	a) It always contains ions		b) It is universal solvent	
	c) Can dissolve covalent of	compounds	d) Can conduct electricity	
92.	Tailing of mercury is a lab	oratory test for:		
	a) 0 ₃	b) Hg	c) Cl ₂	d) 0 ₂
93.	Which method cannot be	used to remove hardness o	f water?	V ·
	a) Clark's method		. (4	Y
	b) By adding washing sod	a		
	c) Calgon process			
	d) Filtration			
94.		uld act as a propellant for r		
	a) Liq. H_2 + Liq. O_2	b) Liq. N_2 + Liq. O_2	c) Liq. H ₂ + Liq. N ₂	d) Liq. O_2 + Liq. Ar
95.	=	passed through an ionic hyd	ride in the molten state,	
	a) Hydrogen is liberated a			
	b) Hydrogen is liberated a			
	c) Hydride ion migrates to			
06	d) No reaction takes place			
90.	Deuterium was discovere	b) Aston	c) Rutherford	d) Chadwick
07	a) UreyThe percentage by weight		c) Kutilerioru	d) Chadwick
<i>J1</i> .	a) 50	b) 25	c) 6.25	d) 5.88
98.	Ortho and para-hydrogen		c) 0.23	u) 3.00
<i>7</i> 0.	a) Number of protons	b) Molecular weight	c) Nature of spins of	d) Nature of spins of
	u) rumber of protons	o) Protecular Weight	protons	electrons
99.	Decomposition of H_2O_2 is	retarded by:	F	
	a) Acetanilide	b) Alcohol	c) H ₃ PO ₄	d) All of these
100.	Heavy water possesses:		<i>y</i> 3 1	
	a) Insoluble impurities lik	ke silica		
	· ·	ntes and bicarbonates of cal	cium and magnesium	
	c) High density and differ	ent physical properties tha	n those of water	
	d) The capacity to expedit	te the rate of nuclear reacti	ons	
101.	Which element forms max	ximum compound in chemi	stry?	
	a) 0	b) H	c) Si	d) C
102.	The bleaching properties	of H_2O_2 are due to its:		
	a) Reducing properties	b) Oxidizing properties	c) Unstable nature	d) Acidic nature
103.		g is called amphoteric solve		
	a) Ammonium hydroxide		b) Chloroform	
	c) Benzene		d) Water	
104.	The colour of hydrogen is			
4 ~ =	a) Yellow	b) Orange	c) Black	d) Colourless
105.	The amount of H_2O_2 pres	ent in 1 L of 1.5 $N H_2 O_2$ sol	ution is:	

a) 2.5 g	b) 25.5 g	c) 3.0 g	d) 8.0 g
$106. H_2 O_2$ is prepared in t			
a) MnO ₂ is added to o			
_	CO ₂ bubbling through cold wa		
	n acidified solution of KMnO	4	
d) Na ₂ O ₂ is added to			
		nate occurs when H ₂ (O ₂ is added to it. This is due to:
a) Oxidation of KMn(
b) Reduction of KMn			~1)
	d reduction of KMnO ₄		(Y
d) None of the above			
108. Which hydride is neu) II 0	D 11 m
a) H ₂ S	b) H ₂ O	c) H ₂ Se	d) H ₂ Te
109. Hydrogen burns with) DI	
a) Smoky flame	b) Yellow flame	c) Blue flame	d) Pale yellow flame
110. Zeolites are extensive			
a) Softening of water catalyst	and b) Preparing heavy wat	ter c) Increasing the of water	hardnessd) Mond's process
111. Deuterium, an isotop	e of hydrogen is:		
a) Radioactive	b) Non-radioactive	c) Heaviest	d) Lightest
112. Which is the lightest	gas?		Y
a) Nitrogen	b) Hydrogen	c) Helium	d) Oxygen
113. Temporary harness i	s caused due to the presence	of:	
a) CaSO ₄	b) CaCl ₂	c) CaCO ₃	d) $Ca(HCO_3)_2$
114. H ₂ O ₂ is:	4		
a) Diamagnetic	b) Paramagnetic	c) Ferromagnetic	d) None of these
115. Commercial 11.2 volu	ume $ m H_2O_2$ solution has a mol	arity of	
a) 1.0	b) 0.5	c) 11.2	d) 1.12
116. The life period of ato	mic hydrogen is:		
a) Only five minute			
b) Only one third of a	second		
c) Only two hour			
d) 10 second			
117. There is a sample of 2	20 volume of hydrogen perox	ride solution. Calculat	te its strength
a) 6.07%	b) 3.035%	c) 2.509%	d) 4.045%
118. When the same amou	int of zinc is treated separate	ly with excess of sulp	phuric acid and excess of sodium
hydroxide, the ratio	of volumes of hydrogen evolv	ed is:	
a) 1 : 1	b) 1 : 2	c) 2 : 1	d) 9 : 4
119. Atomic hydrogen is o	btained by:		
a) Electrolysis of hea	vy water		
b) Reaction of water	with heavy metals		
c) Thermal decompo	sition of water		
d) Passing silent elec	tric discharge through hydro	gen at low pressure	
120. Which loses weight o	n exposure to the atmospher	e?	
a) Concentrated H ₂ S	O_4		
b) Solid NaOH			
c) A saturated solution	on of CO ₂		
d) Anhydrous sodiun	_		
121. Which can adsorb lar	ge volumes of hydrogen gas?	•	
a) Colloidal solution			
b) Finely divided nicl	kel		

	c) Colloidal ferric hydrox	ide		
	d) Finely divided platinur	n		
122.	In the hydrogen peroxide	molecule:		
	a) Two hydrogen atoms a	re connected to one of the	oxygen	
	b) All the four atoms are i	n the same plane		
	c) The four atoms are arr	anged in a non-linear and r	on-planar manner	
	d) 0—H bonds are polar l	out molecule is non-polar	-	
123.	Fluorine reacts with wate	-		
	a) Fluorine water	b) Oxygen	c) Ozone	d) Oxygen, ozone
124.	•	mple containing 0.002 mole	•	
	is expressed as			
	a) 20ppm	b) 200ppm	c) 2000ppm	d) 120ppm
125.	Adsorbed hydrogen by pa	= = =	·) · · · · · · · · · · · · · · · · · ·	
	a) Nascent	b) Atomic	c) Heavy	d) Occluded
126.		is added to acidified potas:	•	
	formation of	To did out to do and and a postuo.		On 15 pt success and to
	a) CrO ₃	b) Cr ₂ O ₃	c) CrO ₅	d) CrO ₄ ²⁻
127	Which is false about H_2O_2		o) dros	a) 61 64
12/.	a) Act as both oxidising an		b) Two OH bonds lie in th	ne same nlane
	c) Pale blue liquid	na readeing agent	d) Can be oxidised by ozo	-
128	The reaction of $H_2S + H_2C$	$0. \rightarrow S \pm 2H_{\bullet}O$ manifects	u) can be oxidised by oze	The state of the s
120.	a) Reducing action of H_2 0		b) Oxidising nature of H ₂	0
	c) Alkaline nature of H ₂ O	=	d) Acidic nature of H_2O_2	O_2
120		² sed to determine hardness		
127.	a) Oxalic acid	sed to determine hardness	of water titilinetrically is	
	b) Sodium thiosulphate		Y	
	c) Sodium citrate			
	d) Disodium salt of EDTA	\sim		
120	=			
130.	Ordinary hydrogen has pr	reponderance or:		
	a) Hydrogen atoms			
	b) Deuterium atoms			
	c) Tritium atoms			
121	d) The above three are in			
131.		0_2 in presence of FeSO ₄ to		D.D
400	a) Phenol	b) Cyclohexane	c) Benzaldehyde	d) Benzoic acid
132.		an example of interstitial h	=	D.W. O
400	a) NH ₃	b) CH ₄	c) ZnH ₂	d) H ₂ O
133.		etime it becomes free from:		
	a) Permanent hardness			
	b) Temporary hardness			
1	c) Suspended matter			
	d) Temporary hardness a	-		
134.	= = =	as water softening agents b	pecause they	
	a) Form soluble complexe	-		
	b) Precipitate anionic spe	cies		
	c) Precipitate cationic spe			
	d) Form soluble complexe	es with cationic species		
135.	When two ice cubes are p	ressed over each other the	y unite to form one cube. V	Which of the following forces
	are responsible to hold th	em together?		
	a) Ionic interaction			

	b) Van der Waals forces			
	c) Covalent interaction			
	d) Hydrogen bond formati	on		
136.	The pH of a solution of H ₂	O_2 is 6.0. Some chloride ga	as is bubbled into this solut	tion. Which of the
	following is correct?			
	a) The pH of resultant solu	ition becomes 8.0		
	b) Hydrogen gas is liberate	ed from resultant solution		
	c) The pH of resultant solu		and oxygen gas is liberate	d
	d) Cl ₂ O is formed in the res		70 0	
	Permanent hardness of wa		ling Calgon (NaPO ₂) _n . This	s is an example of:
		b) Exchange of ion	c) Precipitation	d) None of these
	Hydrogen molecules are:	, 0	, 1	
	a) Monoatomic and form <i>x</i>	ζ_2^{2-} ions		A Y
	b) Diatomic and form X_2^{2-}			
	c) Diatomic and form X^- is			
	d) Monoatomic and form <i>x</i>			
	Hydrogen reacts with			
		b) F ₂	c) I ₂	4) Cl ₂
	1000 g aqueous solution of	_		of the solution is:
		b) 100 ppm	c) 1000 ppm	d) 10000 ppm
	Metal which does not react			а) 10000 ррш
		b) K	c) Pt	d) Fe
	The pair that yields the sar	•		u) re
		b) Ca and CaH ₂	c) Na and Na ₂ O ₂	d) Ba and BaO ₂
	-	-	C) Iva allu Iva ₂ U ₂	u) Da allu DaU ₂
	The heaviest among the fo	_	c) Tritium	d) Herdungan
		b) Helium	, , , , , , , , , , , , , , , , , , , ,	d) Hydrogen
	The molarity of a 100 mL s			J)
		b) 1.5 <i>M</i>	c) 3.0 <i>M</i>	d) 50.0 <i>M</i>
	The metal that does not dis	-		4) C-
	, 0	b) Zn	c) Al	d) Ca
	Deionised water is obtaine	ed by passing hard water th		
	a) Anion exchanger		b) Zeolite	,
	c) Cation exchanger		d) Both anion and cation e	exchanger
	The strength in volumes of			D.M. C.1
		b) 5 V	c) 20 V	d) None of these
	Hydrogen was discovered		2.0	15 75 1 1
		b) Berzelius	c) Cavendish	d) Priestley
	Hard water becomes free f	rom ions when passed	through ion exchange resi	n containing RCOOH
	groups.			
		b) SO ₄ ²⁻	c) H ₃ 0 ⁺	d) Ca ²⁺
_	The sum of number of neu	=		
		b) 4	c) 5	d) 6
	Water contracts on heating	=		
		•	c) To 273 K	d) From 10°C to 20°C
	Hydrogen combines direct			
		b) Cu	c) Zn	d) Fe
	H_2O_2 restores the colour of	f old lead paintings, blacke	ned by the action of H ₂ S ga	as, by:
	a) Converting PbO ₂ to Pb			
	b) Oxidising PbS to PbSO ₄			
	c) Converting PbCO ₂ to Pb	1		

	d) Oxidising PbSO ₃ to PbSO ₄		
154	. 10 volumes of H_2O_2 has a strength of approximatel	y:	
	a) 3% b) 30%	c) 10%	d) 5%
155	. Ammonium persulphate solution on heating under	reduced pressure gives:	
	a) H_2O_2 b) O_2	c) H ₂	d) $(NH_4)_2SO_4$
156	. Which statement about zeolite is false?	, 2	J (1/2 1
	a) They are used as cation exchanger		
	b) They have open structure which enables them to	take up small molecules	
	c) Zeolites are alumino silicates having three dimer	-	
	d) Some of the SiO_4^{4-} units are replaced by AlO_4^{5-} and		
157	. Which of the following metal evolves hydrogen on a		0_{2} ?
10,	a) Fe b) Cu	c) Al	d) Mg
158	. The reaction of water with sodium and potassium i	•	u) ^m g
100	a) Endothermic	b) Reversible	
	c) Exothermic	d) Irreversible and endot	hormic
150	. High boiling point of water is due to:	d) if reversible and endot	Hermic
137	a) Its high specific heat		
	b) Hydrogen bonding	4 4	
	c) High dielectric constant		
1.0	d) Low dissociation constant	o of aroung gives	
100	Ozone reacts with H_2O_2 to give oxygen. One volume	e of ozoffe gives:	
	a) One volume of oxygen		
	b) Half volume of oxygen		
	c) 1.5 volume of oxygen		
1 (1	d) Two volumes of oxygen	-lltiti	
101	. Which of the following statements do not define the	e characteristic property of	water water is a universal
	solvent".?		
	a) It has high liquid range		
	b) It has very low dielectric constant		
	c) It can dissolve maximum number of compounds		
1(2	d) None of the above		
162	. Sodium zeolite is:	a) N. Al C' O	ID M. Al. C'. O
1.00	a) NaAlSi ₂ O ₆ b) Na ₂ Al ₂ Si ₂ O ₃	c) Na ₂ Al ₂ Si ₂ O ₈	d) NaAl ₂ Si ₂ O ₈
163	. Acidified KMnO ₄ is decolourised by:) N'' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	12.34
1.64	a) Oxygen b) Hydrogen	c) Nitric oxide	d) Nascent hydrogen
164	The oxidizing property of H_2O_2 is best explained by	assuming that two oxygen	atoms in its molecule are:
	a) Bonded differently		
	b) Bonded similarly		
	c) Bonded covalently		
	d) Bonded by hydrogen bonds		
165	H_2O_2 is stored in:		
	a) Iron container after addition of stabilizer		
	b) Glass container after addition of stabilizer		
	c) Plastic container after addition of stabilizer		
	d) None of the above		
166	. Hydrogen is not used for:		
	a) Manufacture of vegetable ghee		
	b) Production of high temperature		
	c) As rocket fuel with kerosene		

d) As a reducing agent

	a) Steam distillation		
	b) Fractional distillation		
	c) Freezing in freezing mixture		
	d) Distillation under reduced pressure		
168.	Pure H ₂ is obtained by the action of:		
	a) Al over KOH		
	b) NaH over H ₂ O		
	c) Electrolysis of warm solution of Ba(OH)2 using N	i electrodes	
	d) All of the above		
169.	Heavy water is manufactured in India at:		
	a) Delhi b) Trombay	c) Bhilai	d) None of these
170	What is formed when calcium carbide reacts with he		u) None of those
170.	a) C ₂ D ₂ b) CaD ₂	c) Ca_2D_2O	d) CD ₂
171	The ionization of hydrogen atom gives:	$c_j ca_2 b_2 c$	u) CD ₂
1/1.	a) Hydride ion b) Hydronium ion	c) Proton	d) Hydroxyl ion
172	Which is not true in case of H_2O_2 ?	c) i i totoli	u) Hydroxyrion
1/4.	a) It is more stable in basic solution	4/4	
	b) It acts as strong oxidizing agent in acid and basic:	colutions	,
		Solutions	
	c) It is decomposed by MnO ₂		
172	d) It behaves as reducing agent towards KMnO ₄		
1/3.	Which one of the following is a true peroxide?	a) MO	4) D-O
171	a) SO ₂ b) MnO ₂	c) NO_2	d) BaO ₂
1/4.	What is the volume of "20 volume H_2O_2 " required to		
	a) ²⁵⁰ cm ³ b) ²⁰ cm ³	c) 100 cm ³	d) ^{125 cm³}
175.	The melting points of most of the solid substances in	crease with an increase of	pressure. However, ice
	melts at a temperature lower than its usual melting		
	a) Ice is less denser than water	•	
	b) Pressure generates heat		
	c) The chemical bonds break under pressure		
	d) Ice is not a true solid		
176.	Heavy water was discovered by:		
	a) Nernst b) Haber	c) Urey and Washburn	d) Aston
177.	The maximum possible number of hydrogen bonds a	-	_
	a) 1 b) 2	c) 3	d) 4
178.	H_2O_2 acts as antiseptic due to its:		
	a) Reducing property b) Oxidizing property	c) Bleaching property	d) Acidic property
179.	Hydrogen gas will not reduce:	, 01 1 7	, , , , ,
	a) Heated cupric oxide		
	b) Heated ferric oxide		
1	c) Heated stannic oxide		
	d) Heated aluminium oxide		
180.	Which pair does not show hydrogen isotopes?		
	7 . 8	13.75 1.1	า
	a) Ortho and para hydrogen	b) Protium and deuterium	.1
	a) Ortho and para hydrogenc) Deuterium and tritium	b) Protium and deuteriumd) Tritium and protium	.1
181.	c) Deuterium and tritium	d) Tritium and protium	.1
181.	c) Deuterium and tritium The hardness of water is due to Metal ions.	d) Tritium and protium	
	c) Deuterium and tritium The hardness of water is due to Metal ions. a) Ca ²⁺ and Na ⁺ b) Mg ²⁺ and K ⁺	d) Tritium and protium c) Ca ²⁺ and Mg ²⁺	d) Zn ²⁺ and Ba ²⁺
	c) Deuterium and tritium The hardness of water is due to Metal ions. a) Ca ²⁺ and Na ⁺ b) Mg ²⁺ and K ⁺ Under what conditions of temperature and pressure	d) Tritium and protium c) Ca ²⁺ and Mg ²⁺	d) Zn ²⁺ and Ba ²⁺
	c) Deuterium and tritium The hardness of water is due to Metal ions. a) Ca ²⁺ and Na ⁺ b) Mg ²⁺ and K ⁺	d) Tritium and protium c) Ca ²⁺ and Mg ²⁺	d) Zn ²⁺ and Ba ²⁺

167. H₂O₂ is concentrated by:

	b) Low temperature and low pressure		
	c) High temperature and high pressure		
	d) Low temperature and high pressure		
183.	Heavy hydrogen is used:		
	a) In filling the balloons		
	b) In studying reaction mechanism		
	c) In calculating heat of formation		
	d) Iron hydroxide precipitates		
184.	The reaction, $H_2S + H_2O_2 \rightarrow S + 2H_2O$ manifests:		
	a) Acidic nature of H ₂ O ₂		
	b) Alkaline nature of H ₂ O ₂		
	c) Oxidizing nature of H_2O_2		
	d) Reducing nature of H ₂ O ₂		
185.	Decomposition of H ₂ O ₂ is accompanied by:		
	a) Decrease in free energy		
	b) Increase in free energy		
	c) No change in free energy	. C 4	
	d) Evolution of heat		
186.	Which of the following statements is correct? Dielect	cric constant of H ₂ O ₂	
	a) Increases with dilution	b) Decreases with dilution	
	c) Is unaffected on dilution	d) None of the above	
187.	Heavy water is not used for dinking because:		
	a) It is poisonous		
	b) It is costly	G. X.	
	c) Its physiological action is different from ordinary $% \left(x\right) =\left(x\right) +\left(x\right) $	water	
	d) Its chemical properties are different from ordinar	y water	
188.	Maximum density of heavy water is at:		
	a) 0° C b) 4° C	c) 11.6° C	d) 3.8° C
189.	The catalyst used in Bosch process of manufacture \boldsymbol{o}	f H ₂ is:	
	a) Finely divided Ni b) V ₂ O ₅	c) Pd	d) $Fe_2O_3 + Cr_2O_3$
190.	In which of the following reactions, $\mathrm{H}_2\mathrm{O}_2$ behaves as		
	a) $Na_2SO_3(aq) + H_2O_2(aq) \rightarrow Na_2SO_4(aq) + H_2O(l)$		
	b) $PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$		
	c) $2KI(aq) + H_2O_2(aq) \rightarrow 2KOH(aq) + I_2(s)$		
	d) $KNO_2(aq) + H_2O_2(aq) \rightarrow KNO_3(aq) + H_2O(l)$		
191.	Among CaH ₂ , NH ₃ , NaH and B ₂ H ₆ , which are covalen	t hydride?	
	a) NH ₃ and B ₂ H ₆ b) NaH and CaH ₂	c) NaH and NH ₃	d) CaH ₂ and B ₂ H ₆
192.	In which reaction hydrogen is not formed?		
	a) Copper and hydrochloric acid		
	b) Iron and sulphuric acid		
	c) Magnesium and steam		
	d) Sodium and alcohol		
193.	The adsorption of hydrogen by metals is called		
	a) Adsorption b) Occlusion	c) Hydrogenation	d) Dehydrogenation
194.	A molten ionic hydride on electrolysis gives:		
	a) H ⁺ ion moving towards the cathode		
	b) H ⁺ ion moving towards the anode		
	c) H ₂ is liberated at anode		
	d) H ₂ is liberated at cathode		
195.	Moist hydrogen cannot be dried over concentrated H	I ₂ SO ₄ because:	
	a) It can catch fire		

	b) It is reduced by H ₂ SO ₄			
	c) It is oxidized by H ₂ SO ₄	ł.		
	d) It decomposes H ₂ SO ₄			
196	= = = =	nanent hardness are remov	-	
	a) Ca(OH) ₂	b) Na ₂ CO ₃	c) CaCO ₃	d) CaO
197		f deuterium in heavy water		
	a) 22	b) 11.11	c) 4	d) 20
198		•	of the following processes?	
		arbons of high molecular w	veight	
	b) Electrolysis of water			\wedge
	c) Reaction of salt like hy			
400	d) Reaction of methane w			
199	. Density of water is maxin		2 40 5	
	a) 0°C	b) 100° C	c) 4°C	d) 0 K
200	. The most reactive isotope	e of H is:		
	a) ₁ H ¹			
	b) ₁ H ²		4 (4	Y
	c) ₁ H ³			7
	d) All the same reactivity			
201	. Heavy water is used in at	omic reactor as		
	a) Moderator		b) Coolant	
	c) Both moderator and co		d) Neither coolant nor mo	
202			percolating through it a so	
222	a) Sodium chloride	b) Calcium chloride	0) 1108110010111 0111011010	d) Potassium chloride
203	-		the group of alkali metals	or halogens is:
		mpounds with all other ele	7	
		ter element than the alkali		
		of hydrogen is too high for	group of alkali metals but t	coo low for halogen group
224	d) None of the above			
204	, ,	rs from chlorine molecule i	0 1	
		non-polar but chlorine mol		
	, , ,	polar while chlorine molec	•	
	, , ,		rogen bonds but chlorine m	
005			ate bond formation but chl	orine molecule can
205	. The geometry of water m) (III)	12.72
006	a) CO ₂	b) C ₂ H ₄	c) Chlorine oxide	d) Boron trifluoride
206	. Hydrogen peroxide does			
	a) Liberate iodine from K			
	b) Turn the titanium salt	5		
	c) Give silver peroxide w			
2.5		illine, $KClO_3$ and dil. H_2SO_4		
207			would be by the action of o	
	a) Zn	b) Fe	c) K	d) Al
208		drated sodium aluminium	silicate is treated with hard	water, the sodium ions are
	exchanged with		2.	
	a) H ⁺ ions	b) Mg ²⁺ ion	c) Ca ²⁺ ion	d) both Ca ²⁺ and Mg ²⁺
209	= =	f peroxodisulphuric acid pr	oduces:	
	a) Two moles of sulphuri			
	b) Two moles of peroxom	_	, ,	
	c) One mole of sulphuric	acid and one mole of perox	komonosulphuric acid	

d) One mole of sulphuric acid, one mole of peroxomo	•	nole of hydrogen peroxide
210. During hydrogenation of oil the catalyst commonly t		
a) Pd on CuCl ₂ b) Ni	c) Fe	d) V_2O_5
211. Oxygen and hydrogen react to form water. This disc	overy was made by:	
a) Priestley b) Cavendish	c) Scheele	d) Newton
212. Which one of the following processes will produce h	ard water?	
a) Saturation of water with CaCO ₃	b) Saturation of water wit	th MgCO ₃
c) Saturation of water with CaSO ₄	d) Addition of Na ₂ SO ₄ to	water
213. The oxygen atom of H ₂ O ₂ used for oxidation is boun	d by:	
a) Electrovalent bond b) Co-ordinate bond	c) Covalent bond	d) None of these
214. Which reaction shows oxidizing nature of H_2O_2 ?		
a) $H_2O_2 + 2KI \rightarrow 2KOH + I_2$		
b) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$		A . Y
c) $H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$		
d) NaClO + $H_2O_2 \rightarrow NaCl + H_2O + O_2$		
215. H_2O_2 is manufactured these days		
a) By burning hydrogen in excess of oxygen	<u>^</u>	
b) By the action of H_2O_2 on BaO_2	4 ()	
c) By the action of H ₂ SO ₄ on Na ₂ O ₂		,
d) By electrolysis of 50% H ₂ SO ₄		
216. MnO ₂ liberates oxygen from a solution of H_2O_2 (the	action haing catalytic) only	if the colution is:
a) Basic b) Acidic	c) Neutral	d) None of these
	c) Neutral	u) None of these
217. Ionic hydrides react with water to give	a) Dystona	d) Dagia galutiana
a) Hydride ions b) Acidic solutions	c) Protons	d) Basic solutions
218. Hydrogen is evolved by the action of cold dilute HNC		וא גו
a) Fe b) Mg or Mn	c) Cu	d) Al
219. Hydrogen peroxide for the first time was prepared by		ו איר
a) Priestley b) Thenard	c) Gay-Lussac	d) Bernard
220. Which pair does not show hydrogen isotopes?	13.75	
a) <i>Ortho</i> hydrogen and <i>para</i> hydrogen	b) Protium and deuterium	1
c) Deuterium and tritium	d) Tritium and protium	
221. The strength of 10 volume of H_2O_2 solution is		
a) 10 b) 68	c) 60.70	d) 30.36
222. The conversion of atomic hydrogen into ordinary hy	drogen is:	
a) Exothermic change		
b) Endothermic change		
c) Nuclear change		
d) Photochemical change		
223. Para hydrogen is:		
a) Less stable than ortho hydrogen		
b) More stable than ortho hydrogen		
c) As stable as ortho hydrogen		
d) None of the above		
224. Some statements about heavy water are given below	V :	
(i) Heavy water is used as a moderator in nuclear re	actors	
(ii) Heavy water is more associated than ordinary w		
(iii) Heavy water is more effective solvent than ordin		
Which of the above statements are correct?	•	
a) (i) and (ii) b) (i), (ii) and (iii)	c) (ii) and (iii)	d) (i) and (iii)
225. H_2O_2 acts as a reducing agent in its:		
a) Reaction with a ferrous salt		

- b) Reaction with iodides c) Reaction with lead sulphide d) Reaction with KMnO₄ in acidic medium 226. When hydrolith is treated with water it yields: d) NaH a) H_2 b) H_2O_2 c) N_2 227. Atomic hydrogen produces formaldehyde when it reacts with: b) CO d) C_2H_2 228. K_a for H_2O_2 is of the order of: a) 10^{-12} d) 10^{-10} b) 10^{-14} c) 10^{-16} 229. Which one of the following reaction does not form gaseous product? a) $PbO_2 + H_2O_2 \rightarrow$ b) Acidified KMnO₄ + $H_2O_2 \rightarrow$ c) PbS + $H_2O_2 \rightarrow$ d) $Cl_2 + H_2O_2 \rightarrow$ 230. The structure of H_2O_2 is: c) H = 0 = 0 = H231. Which cannot be oxidised by H_2O_2 ? $d) O_3$ a) Na_2SO_3 b) PbS c) KI 232. A mixture of hydrazine and 40 to 60 per cent of H₂O₂ solution is: b) Rocket fuel d) Insecticide a) Antiseptic 233. Hydrogen peroxide is now generally prepared on industrial scale by the: a) Action of H₂SO₄ on barium peroxide b) Action of H₂SO₄ on sodium peroxide c) Electrolysis of 50% H₂SO₄ d) Burning hydrogen in excess of oxygen 234. The equilibrium molecular structure of hydrogen peroxide is Planar as given below b) Linear c) Tetrahedral d) Non-planar 235. A given solution of H_2O_2 is 30 volume. Its concentration in terms of molarity is: **b)** 2.68 *M* a) 9.1*M* c) 2.5 M d) 26.8 M 236. H₂O₂ turns an acidified solution of to orange red. b) PbO₂ a) BaO₂ c) Na_2O_2 d) TiO_2 237. Tritium is obtained by: a) Nuclear reactions b) Passing steam over heated C c) Action of NaOH on Al d) Action of H₂SO₄ on Zn 238. In the case of H_2O_2 , the angle between the planes containing the hydrogen atom is: c) 109° 28′ a) 100° b) 90° d) 180° 239. In laboratory, H_2O_2 is prepared by a) Cold $H_2SO_4 + BaO_2$
- 240. The formula of heavy water is:

c) conc $H_2SO_4 + Na_2O_2$

b) $HCl + BaO_2$

d) $H_2 + O_2$

	a) H_2O^{18}	b) D ₂ 0	c) T ₂ 0	d) H_2O^{17}
241.	. Hydrogen resembles in m	any of its properties with:		
	a) Alkali metals	b) Halogens	c) Both (a) and (b)	d) None of these
242.	. Hydrogen is not obtained	when zinc reacts with		
	a) Cold water	b) hot NaOH solution	c) dil. H ₂ SO ₄	d) dil. HCl
243.	The H-O-H angle in water	molecule is about		
	a) 105°	b) 102°	c) 180°	d) 90°
244.	. Hydrogen adsorbed on pa	ılladium is known as:		
	a) Atomic H	b) Nascent H	c) Occluded H	d) Heavy H
245.	. Hydrogen molecule differ	s from chlorine molecule in	the following respect	
	a) Hydrogen molecule is r	non-polar but chlorine mole	ecule is polar	
	b) Hydrogen molecule is p	oolar while chlorine molecu	ıle is non-polar	
	c) Hydrogen molecule car	n form intermolecular hydr	ogen bonds but chlorine m	olecule does not
		nnot participate in coordina	ation bond formation but cl	nlorine molecule can
246.	Decomposition of H_2O_2 is			
	a) Traces of acids	b) Finely divided metals	c) Acetanilide	d) Alcohol
247.		g is used for reviving the ex		Y
	a) HCl solution	b) 10% CaCl ₂ solution	c) 10% MgCl ₂ solution	d) 10% NaCl solution
248.	The volume strength of 1.			
	a) 16.8 L	b) 8.4 L	c) 4.2 L	d) 5.2 L
249.	Nascent hydrogen consist			
	a) Hydrogen atoms with 6			
	b) Hydrogen molecules w			
	c) Hydrogen ions in excite	ed state		
	d) Solvated protons			
250.	At absolute zero:			
	a) Only para hydrogen ex			
	b) Only ortho hydrogen ex			
	c) Both para and ortho hy	drogen exist		
251	d) None of the above	Y Y		
251.	Hydrogen peroxide works	s as:		
	a) An oxidant only			
	b) A reductant only	*		
	c) An acid onlyd) An oxidant, a reductant	t and an agid		
252		l and an acid ll not give H ₂ O ₂ on hydroly	reie?	
232.	a) HClO ₄	b) $H_2S_2O_8$	c) H ₂ SO ₅	d) HNO ₄ (pernitric acid)
252	The n/p ratio for $_1$ H ¹ is:	υ) n ₂ ა ₂ υ ₈	C) H ₂ SO ₅	u) IIIVO ₄ (permitric aciu)
۷۵۵.	a) 1	b) 2	c) 3	d) Zero
254	The percentage by weight	,	c) s	uj Zero
234.	a) 5.88	b) 6.25	c) 25	d) 50
255	Exhausted permutit does		C) 23	u) 30
	· ·	Mσ ²⁺	c) ^{Al³⁺}	C ;4+
~	a) Na ⁺	b) ^{Mg2+}	c) Ai	d) ^{Si⁴⁺}
256.	. The molarity of pure wate	er at 4° C is:		
	a) 1 <i>M</i>	b) 2.5 <i>M</i>	c) 5 <i>M</i>	d) 55.5 <i>M</i>
257.	The gas used in the hydro	genation of oils in presence	e of nickel as a catalyst is:	
	a) Methane	b) Ethane	c) ozone	d) Hydrogen
258.	The volume of oxygen libe	erated from $0.68 \mathrm{g}$ of $\mathrm{H}_2\mathrm{O}_2$	is	
	a) 112mL	b) 224mL	c) 56mL	d) 336mL
259.	Which hydride is an ionic	hydride?		

	a) NH ₃	b) H ₂ S	c) TiH _{1.73}	d) NaH
260	$.H_2O_2$ reduces $K_3Fe(CN)$	₆ in:		
	a) Neutral solution	b) Acidic solution	c) Alkaline solution	d) Non-polar medium
261	. Point out the incorrect s	tatement.		
	a) Hardness of water de	pends upon its soap cons	suming power	
	b) Temporary hardness	is due to bicarbonates of	calcium and magnesium	
	c) Permanent hardness	is due to soluble sulphat	es, chlorides and nitrates of	Ca and Mg
		can be removed by boiling		S
262	=	=	_	l in the oxidation state of iron
	is:		_	
	a) $Fe^{2+} \rightarrow Fe^{3+}$	b) Fe \rightarrow Fe ²⁺	c) $Fe^{3+} \rightarrow Fe^{2+}$ iter?	d) $Fe^{2+} \rightarrow Fe^{+}$
263	. Which of the following is	s correct about heavy wa	ter?	
	· ·	naximum density is knov		A Y
	=	-	tope of hydrogen and oxygei	1
	c) It is heavier than water		, , , , , , , , , , , , , , , , , , ,	
	d) None of the above			
264	. Hydrogen is prepared or	n large scale for industria	al use	—
	a) by $Zn + H_2SO_4$	_	c) by Na + C_2H_5OH	d) From water gas
265			silicon and iron with NaOH.	,
	a) Wood process	b) Bosch process		d) Silicol process
266	•		olume of 10 volume H_2O_2 re	•
_00	a) 11.2mL	b) 22.4mL	c) 33.6mL	d) 44.8mL
267	•	•	potassium permanganate ac	
_0,	a) Forms water only		so tassiam per manganace ac	amea wan barpirane acia
	b) Acts as an oxidising a	gent		
	c) Acts as a reducing age	=	\	
	d) Reduces sulphuric act		Y	
268	. Water is oxidised to oxy)	
200	a) ClO ₂	b) KMnO ₄	c) H ₂ O ₂	d) Fluorine
269	. The most abundant elen	,		a) Haorine
20)		b) Oxygen	_	d) Nitrogen
270			cal reaction involving hydro	
2,0	a) Hydrogenation	b) Reduction	c) Dehydrogenation	d) Oxidation
271	. The most abundant isoto		c) benyarogenation	uj Oxidation
_, _	a) Tritium		c) Protium	d) Para-hydrogen
272	. Which statement is not o	· -	•	a) rara nyarogen
,	a) Pure H_2O_2 is fairly sta		omuei	
	b) It sometimes acts as a			
	c) It acts as an oxidizing			
	d) Aqueous solution of H	=		
273	. Which one is correct for			
	a) It is 30% H_2O_2 or 100	= =		
	b) Its molarity is 8.8 <i>M</i>	7 (01.11202		
~	c) It is used as antiseptic	c and germicide		
	d) All of the above	e and germierae		
274	•	y to gain one electron in	order to acquire helium con	figuration. It thus, resembles:
_ /₹	a) Alkali metals	b) Noble gases	c) Halogens	d) Alkaline earth metals
275	. Calgon is an industrial n	, ,	c) maiogens	aj manne car un metals
4 73	a) Normal sodium phos	=		
	b) Sodium meta-alumina			
	b) bourum meta-amimili	acc .		

c) Sodium hexa me	eta-phosphate		
d) Hydrated sodiu	m aluminium silicate		
276. For the bleaching of	of hair, the substance used is:		
a) SO ₂	b) Bleaching powder	c) H_2O_2	d) 0 ₃
277. In solid hydrogen,	the intermolecular bonding is:		
a) Ionic	b) Van der Waals'	c) Metallic	d) Covalent
278. The species that do	oes not contains peroxide ions is	:	
a) PbO ₂	b) H ₂ O ₂	c) SrO ₂	d) BaO ₂
279. The critical temper	rature of water is higher than th	at of 0_2 because H_2O n	nolecule has:
a) Fewer electrons	s than oxygen		
b) Two covalent be	onds		
c) V-shape			
d) Dipole moment			
280. Pure H_2O_2 is:			
a) Colourless liqui	d		
b) A gas			
c) Blue syrupy liqu	ıid		
d) Pale blue syrup	y liquid		
281. When silicon is bo	iled with caustic soda solution, t	he gas evolved is:	
a) 0 ₂	b) SiH ₄	c) H ₂	d) None of these
	owing reactions hydrogen pero	xide is a reducing agen	t?
a) $H_2SO_3 + H_2O_2$			
b) $2HI + H_2O_2 \rightarrow 2$			
	$+ H_2O_2 \rightarrow 2FeCl_3 + 2H_2O$	$\langle \lambda, \lambda' \rangle$	
d) $Cl_2 + H_2O_2 \rightarrow 2$	_		
283. Which does not rea		Y	**
a) Mg ₃ N ₂	b) CaC ₂	c) COCl ₂	d) SiC
	oles hydrogen in chemical prope	rties but reacts:	
a) Slower the hydr			
b) Faster than hyd			
c) More vigorously			
d) Just as hydroger	n		
	(
Q_{λ}			
J			

CHEMISTRY

: ANSWER KEY:															
1)	a	2)	d	3)	b	4)		169)	b	170)	a	171)	С	172)	a
-) 5)	a	-) 6)	a	7)	b	8)	b		d	174)	a	175)	a	176)	С
9)	c	10)	c	11)	b	12)	b		d	178)	b	179)	d	180)	a
13)	c	14)	d	15)	c	16)	c	181)	c	182)	a	183)	b	184)	С
17)	b	18)	c	19)	a	20)	b	185)	a	186)	a	187)	c •	188)	С
21)	c	22)	c	23)	c	24)	a	189)	d	190)	b	191)	a	192)	a
25)	b	26)	d	27)	a	28)	d	193)	b	194)	c	195)	C	196)	b
29)	b	30)	d	31)	b	32)	b	197)	d	198)	b	199)	c	200)	a
33)	C	34)	d	35)	a	36)	b	201)	c	202)	a	203)	c	204)	d
37)	C	38)	a	39)	b	40)	c	205)	c	206)	C	207)	c	208)	d
41)	d	42)	a	43)	a	44)	a	209)	c	210)	b	211)	b	212)	c
45)	b	46)	c	47)	d	48)	a	213)	C	214)	a	215)	d	216)	b
49)	b	50)	b	51)	C	52)	b	217)	d	218)	b	219)	b	220)	a
53)	a	54)	b	55)	b	56)	c	221)	d	222)	a	223)	a	224)	a
57)	a	58)	d	59)	b	60)	d	225)	d	226)	a	227)	b	228)	a
61)	a	62)	b	63)	b	64)	C	229)	c	230)	b	231)	d	232)	b
65)	d	66)	b	67)	d	68)	a	233)	С	234)	d	235)	b	236)	d
69)	C	70)	b	71)	d	72)	d	237)	a	238)	b	239)	a	240)	b
73)	a	74)	C	75)	d	76)	c	241)	C	242)	a	243)	a	244)	C
77)	b	78)	C	79)	b	80)	C	245)	d	246)	b	247)	d	248)	b
81)	C	82)	a	83)	a	84)	a	249)	a	250)	a	251)	d	252)	a
85)	b	86)	d	87)	c	88)	d	,	d	254)	a	255)	a	256)	d
89)	d	90)	b	91)	b	92)	a	257)	d	258)	b	259)	d	260)	C
93)	d	94)	a	95)	b	96)	a	,	d	262)	a	263)	b	264)	d
97)	d	98)	C	99)	d	100)	C	265)	d	266)	d	267)	C	268)	d
101)	b	102)	b	103)	d	104)	d	,	С	270)	a	271)	C	272)	d
105)	b	106)	b	107)	b	108)	b	1	d	274)	C	275)	С	276)	С
109)	C	110)	a	111)	b	112)	b		b	278)	a	279)	d	280)	d
113)	d	114)	ā	115)	a	116)		281)	С	282)	d	283)	d	284)	a
117)	a	118)	a	119)	d	120)	C								
121)	a	122)	c	123)	d	124)	b								
125)		126)	C	127)	b	128)	b								
129)	d 1	130)	a	131)	a	132)	С								
133)		134)	d	135)	d	136)	C								
137)	b a	138)	C	139)	b b	140)	d								
141)	d	142)	b a	143)	b	144)	b								
145)	a	146)	d	147)	a b	148)	c								
149)	d b	150)	a	151) 155)	b	152)	a								
153) 157)	b d	154)	a	155)	a h	156)	d a								
157) 161)	d h	158) 162)	C	159) 162)	b d	160)	d								
161)	b	162)	c	163)	d d	164)	a a								
165)	C	166)	С	167)	d	168)	d	I							

CHEMISTRY

: HINTS AND SOLUTIONS :

(a)

It is a fact.

2 (d)

$$3\text{Fe} + 4\text{H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$
 (Lane's process)
 $\text{CO} + \text{H}_2 + \text{H}_2\text{O} \xrightarrow{\text{Fe}_2\text{O}_3} \text{CO}_2 + 2\text{H}_2$ (Bosch process)

$${\rm CH_4 + H_2O} \xrightarrow{\rm Ni-Cr} {\rm CO} + 3{\rm H_2}$$

3

$$Cl_2 + H_2O_2 \longrightarrow 2HCl + O_2$$

4

The radioactive isotope of hydrogen is tritium. Its half-life is 12.16 yr. It shows β –disintegration.

$${}_{1}^{3}\text{H} \rightarrow {}_{2}^{3}\text{He} + {}_{-1}^{0}e(\beta)$$

5 (a)

> H₂O₂ (hydrogen peroxide) is a corrosive volatile liquid. It is slightly acidic in nature. Its pK_a value is approximately 10^{-12} .

6 (a)

Ethylene diaminetetraacetic acid (EDTA) when treated with water, forms stable complex with metal ions and hence, remove hardness of water.

8 (b)

Alkali metals also form H⁺ ion by the loss of their c

9

Transitions metals form metallic hydrides.

10

H₃PO₄ acts as negative catalyst for the decomposit

11

Ortho and para-hydrogen possess same electronic arrangement but different spin of nuclei.

(b)

Volume strength = $5.6 \times \text{normality}$

$$= 5.6 \times 1.5$$

$$= 8.4$$

13

D₂O had deuterium (heavier isotope of H) and O (t

14 **(d)**

MgCO₃ is insoluble in water.

15 **(c)**

H₂O₂ can be prepared by electrolysis of 50% H₂SO₄. In this method, hydrogen is liberated at cathode.

$$H_2SO_4 \rightleftharpoons 2H^+ + 2HSO_4^-$$

At anode:

$$2HSO_4 \rightarrow H_2S_2O_8 + 2e^-$$

$$H_2S_2O_8 + 2H_2O \rightarrow 2H_2SO_4 + H_2O_2$$

At cathode:

$$2H^+ + 2e^- \rightarrow H_2 \uparrow$$

16 **(c)**

A 30% solution of hydrogen peroxide can be obtained by the electrolysis of 50% sulphuric acid followed by vacuum distillation. The first product of electrolysis is perdisulphuric acid $(H_2S_2O_8)$ which reacts with water during distillation to form H_2O_2 .

$$2H_2SO_4 \rightarrow 2H^+ + 2HSO_4^-$$

$$2HSO_4^- \rightarrow H_2S_2O_8 + 2e^-$$
 (At anode)

$$H_2S_2O_8 + 2H_2O \rightarrow 2H_2SO_4 + H_2O_2$$

'X' is H_2SO_4 and 'Y' is $H_2S_2O_8$. So, 'X' and 'Y' contains zero and one peroxy bond respectively.

17

$$2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + \text{H}_2\text{O}_2 \longrightarrow \text{Fe}_2(\text{SO}_4)_3 + 2\text{H}_2\text{O}$$

18

$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$$

19

$$Na_2O_2 + H_2SO_4 \xrightarrow{Ice cold} Na_2SO_4 + H_2O_2$$

 \therefore H₂O₂ is formed by reaction of Na₂O₂ on dil H_2SO_4

20 **(b)**

$$0_2^{1-} + 2e \rightarrow 20^{2-}$$
 (As oxidant)
 $0_2^{1-} \rightarrow 0_2^0 + 2e$ (As reductant)

21

 $_{1}$ H³ has 3 nucleons (1 proton + 2 neutrons) and one electron, so sum of these is 3 + 1 = 4

(c)

$$K_2Cr_2O_7 + H_2SO_4$$

 $\rightarrow K_2SO_4 + H_2Cr_2O_7$
 $4[H_2O_2 \rightarrow H_2O + O]$
 $H_2Cr_2O_7 + 4O \rightarrow 2CrO_5 + H_2O$

$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2$$

 $\rightarrow 2CrO_5 + K_2SO_4 + 5H_2O_3$

Acidified $K_2Cr_2O_7$ is oxidised to blue peroxide of chromium (CrO_5) which is soluble in ether and produces blue coloured solution.

- **(c)** FeCl₃ + [H] \rightarrow FeCl₂ + HCl
- **(a)**Helium is a noble gas and does not combine with hydrogen
- **(b)** $Ca(s) + H_2(g) \rightarrow CaH_2$
- 26 (d)
 D₂O has higher viscosity which is responsible for low solubility of NaCl inspite of high dielectric constant.
- **(a)**Ca: C₂

$$OD: D \xrightarrow{D_2O} C_2D_2 + Ca(OD)_2$$

OD : D

- **(d)** $Zn + dil. H_2SO_4 \rightarrow ZnSO_4 + H_2$ $Fe + dil. H_2SO_4 \rightarrow FeSO_4 + H_2$ $Sn + dil. H_2SO_4 \rightarrow SnSO_4 + H_2$
- **(b)**Heavy water is the oxide of heavy hydrogen (deuterium), hence named heavy water. It is represented by D_2O . It is used in nuclear reactor as moderator.
- **(d)**Calgon, permutit and Na₂CO₃ are used for the remove 44
- **(b)** It is a fact.
- **(b)** Quantity of $H_2O_2 = 15$ mL and volume of $H_2O_2 =$

We know that 20 volume of H_2O_2 means 1 L of this solution will give 20 L of oxygen at NTP.

Since, oxygen liberated from 1000mL (1L) of

 ${
m H_2O_2}=20$ L, therefore, oxygen liberated from $15{
m mL}$ of ${
m H_2O_2}$

$$=\frac{20}{1000} \times 15 = 0.3 L = 300 mL$$

(c)Pure hydrogen peroxide is an unstable liquid and decomposes into water and oxygen either upon standing or heating.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$
; $\Delta H = -196.0 \text{ kJ}$

To prevent decomposition of $\mathrm{H}_2\mathrm{O}_2$, phosphoric acid, acetanilide or glycerol are added. These acts as negative catalyst.

- (a) (a) $10 \text{ vol. } H_2O_2 \text{ means that } 1 \text{ mL } H_2O_2 \text{ gives } 10 \text{ mL } O_2$; thus, $50 \text{ mL } H_2O_2 \text{ will give } 500 \text{ mL } O_2$.
- 38 (a)
 CaSO₄ is soluble in water and provides Ca²⁺
 ions to develop hardness. CaCO₃ and MgCO₃
 are insoluble in water.
- **(b)** $CO + H_2 + H_2O \xrightarrow{Catalyst} CO_2 + 2H_2$ Water gas Steam
 - (c)
 The triple point of any substance is that temperature and pressure at which the material can exist in all three phases (solid, liquid and gas) in equilibrium, specifically the triple point of water is 273. 16 K at 611.2 Pa
- **(d)**It is a fact.

- **(a)** Cu has E_{OP}^0 lesser than H.
- **(a)**Calgon is represented by sodium hexa metaphosphate, (NaPO₃)₆ or Na₂[Na₄(PO₃)₆].
- **(a)**Permutit are complex inorganic salts like sodium alumino silicate (Na₂Al₂SiO₃xH₂O) or zeolite (Na₂Z) where Z is Al₂SiO₃xH₂O.
- **(b)**It is a fact.

46 **(c)**

Because dihydrogen is less reactive

47 **(d)**

CO is oxidised to ${\rm CO_2}$ with steam in the presence of a catalyst followed by absorption of ${\rm CO_2}$ in alkali.

$$CO + H_2 + H_2O \xrightarrow{Steam} CO_2 + 2H_2$$

↓ КОН

 K_2CO_3

48 (a)

Only tritium is radioactive.

49 **(b)**

Oxidisation number of oxygen in hydrogen peroxide is -1.

$$H - 0 - 0 - H$$

1

peroxide linkage

50 **(b)**

Volume strength = $5.6 \times \text{normality}$

$$30 = 5.6 \times N$$

$$\Rightarrow$$

$$N = \frac{30}{5.6} = 5.3$$

51 **(c)**

$$K_2Cr_2O_7 + H_2SO_4 \longrightarrow K_2SO_4 + H_2Cr_2O_7 + H_2Cr_2O_7 + 4H_2O_2 \longrightarrow 2CrO_5 + 5H_2O$$

Chromic acid

CrO₅ is blue peroxide of Cr

52 **(b)**

It is the property of H_2O_2 .

54 **(b)**

The *Ortho* and *Para* hydrogen differ in the nature of spin of protons. In *Ortho* hydrogen, the spin of proton are in the same direction, while in *para* hydrogen the spin of proton are in opposite direction.

55 **(b)**

Covalent bonding is stronger than H-bonding.

58 **(d**

$$H_2O_2 \rightleftharpoons H^+ + HO_2^-$$

59 **(b**)

It is a fact.

60 **(d)**

Moist H_2O_2 cannot be dried over conc. H_2SO_4 because it is decomposed by H_2SO_4 .

61 **(a)**

Strength of
$$H_2O_2$$
 in $g/L = \frac{68}{22.4} \times V$

Given strength of $H_2O_2 = 30.36 \text{ g/L}$

0r

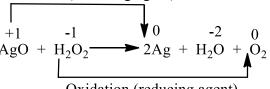
$$V = \frac{30.36 \times 22.4}{68}$$

= 10 volumes

52 **(b)**

$$_{1}H^{3} \rightarrow _{2}He^{3} + _{-1}e^{0}$$

63 **(b**


64 **(c)**

 $\rm H_2$ does not react with Au, Cu or Ni. with Ca, it gives $\rm CaH_2$

65 **(d)**

 H_2O_2 is acting as reducing agent in the reaction that involve increase in the oxidation state of oxygen H_2O_2 (*i.e.*, in which H_2O_2 is being oxidised).

Reduction (oxidising agent)

66 **(b)**

It is
$$Na_2Al_2Si_2O_8$$
. xH_2O

67 **(d**)

$$\begin{array}{c} \text{CuSO}_4 \\ \text{Anhydrous} \\ \text{(White)} \end{array} + \text{H}_2\text{O} \longrightarrow \begin{array}{c} \text{CuSO}_4 . 5\text{H}_2\text{O} \\ \text{Hydrated} \\ \text{(Blue)} \end{array}$$

68 **(a)**

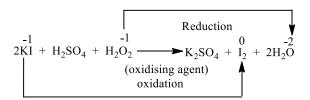
These are the oxidizing and reducing properties of

69 (c)

Its (D₂0) molecular weight is 20 whereas mol. wt.

70 **(b)**

Permanent hardness is removed by precipitating carbonates of Ca²⁺ and Mg²⁺.


$$CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow +2NaCl$$

71 **(d)**

IE of H = -13.6 eV; IE of halogens = 13.0 for Cl; 17.4 for F.

72 **(d)**

The reaction in which $\rm H_2O_2$ is reduced while the other reactant is oxidised, represents the oxidising property of $\rm H_2O_2$.

73 **(a)**

Hydrogen peroxide is prepared by the action of CO_2 on barium peroxide peroxide (BaO_2).

$$BaO_2 + CO_2 + H_2O \rightarrow BaCO_3 + H_2O_2$$

barium barium hydrogen
peroxide carbonate peroxide

76 **(c)**

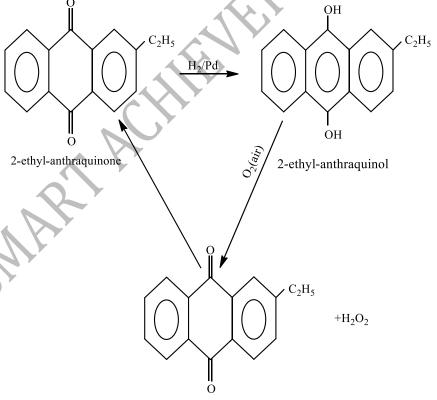
Industrial preparation of H_2O_2 :

(A) By the electrolysis of 50 % H_2SO_4 : 50 % H_2SO_4 solution is electrolyzed at 0°C between Pt electodes. The perdisulphuric acid is formed.

$$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$$

At Anode; $2HSO_4^- \rightarrow H_2S_2O_8 + 2e$

At Cathode; $2H^+ + 2e \rightarrow H_2$


The obtained perdisulphuric acid gives H₂O₂ on hydrolysis.

$$H_2S_2O_8 + 2H_2O \rightleftharpoons H_2O_2 + 2H_2SO_4$$

This H_2O_2 is separated by distillation at reduced pressure and thus, 30 % solution of H_2O_2 is obtained.

(B) By the auto-oxidation of 2-ethyl-anthraquinol (Modern method): Anthraquinol, in a mixture of benzene and n-heptanol on treatment with air gives H_2O_2 and 2-ethyl-anthraquinone. This 2-ethyl-anthraquinone on hydrogenation gives 2-ethyl-anthraquinol in presence of Pd catalyst.

It is a cyclic process and in it only H₂ is consumed, 2-ethyl-anthraquinone is reobtained during reaction.

2-ethyl-anthraquinone

78 **(c)**
$$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$$

79 **(b)**

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$

80 **(c)**

Electrolysis of 50% sulphuric acid is the commercial method for the preparation of hydrogen peroxide.

$$H_2SO_4 = H^+ + HSO_4^-$$

At anode

$$2HSO_4^- \rightarrow H_2S_2O_8 + 2e^-$$

$$H_2S_2O_8 + 2H_2O \rightarrow 2H_2SO_4 + H_2O_2$$

At cathode

$$2H + 2e^- \rightarrow H_2$$

81 **(c)**

 $BaO_2 + CO_2 + H_2O \rightarrow BaCO_3 + H_2O_2$

82 **(a**)

It is a fact.

83 (a)

 $(H^2)_2 O^{16}$ or $D_2 O$.

D has 1*n*, 1p and 1*e*

0 has 8*n*, 8*p* and 8*e*

84 **(a)**

It is a fact.

85 **(b)**

It is a fact.

86 **(d)**

Electronic configuration of $_1H^1$ and $_1H^2$ is same.

87 **(c)**

It is a fact.

89 **(d)**

In acid: $H_2O_2 + 2H^+ + 2e \rightarrow 2H_2O$ (slow)

In alkali

 $H_2O_2 + 2e \rightarrow 2OH^-(fast)$

90 **(b)**

"10 volume ${\rm H_2O_2}$ " means 1mL of its solution on decomposition at NTP, give 10 mL oxygen gas. Volume of oxygen formed from 100 mL of solution at NTP = 1000 ML.

$$2H_{2}O_{2}$$

 \rightarrow 2H₂0 + 0₂

2 moles

1 mole

 $2 \times 34 g$

22400 mL.

 $\because 22400 \text{ mL } O_2$ formed at NTP by decomposition of 68 g $\text{H}_2O_2.$

∴ 1 mL O_2 formed at NTP from $\frac{68}{22400}$ of H_2O_2

∴ 1000 mL O₂ formed at NTP from

$$\frac{68 \times 1000}{22400} \text{ g H}_2\text{O}_2 = 3.035 \text{ g H}_2\text{O}_2$$

So, concentration of "10 volume H₂O₂"

= 3.0% approximately

92 **(a)**

 O_3 reacts with Hg to form Hg_2O which sticks on the walls of glass. This is called tailing of mercury, $O_3 + 2Hg \rightarrow Hg_2O + O_2$. The tailing is removed by the action of H_2O_2 on Hg_2O . $H_2O_2 + Hg_2O \rightarrow 2Hg + H_2O + O_2$

93 **(d)**

The ions responsible for hard water are soluble in water.

94 **(a)**

Liq. H_2 because of low atomic mass and high enthalpy of combustion and liq. O_2 a strong supporter for combustion.

95 **(b)**

$$M^+H^- \rightarrow M^+ + H^-$$

hydride ion

$$H^- \rightarrow \frac{1}{2}H_2 + e^-$$
 (at anode)

96 (a)

It is a fact.

97 **(d)**

 $34 \text{ g H}_2\text{O}_2$ has 2 g H_2 .

99 (d)

Acetanilide, alcohol, H₃PO₄ act as negative catalyst

100 (c)

 D_2O has different properties than H_2O .

101 **(b)**

Hydrogen forms maximum number of compounds in chemistry (not carbon).

102 **(b)**

$$H_2O_2 \to H_2O + [0]$$

103 (d)

Amphoteric solvent dissolves both acids and bases.

- \therefore H₂O₂ is amphoteric solvent because it dissolves both acids and bases.
- 105 **(b)**

Meq. of
$$H_2O_2 = 1000 \times 1.5$$

$$\frac{w}{34/2} \times 1000 = 1000 \times 1.5(E_{\text{H}_2\text{O}_2})$$
$$= M/2)$$

- -M/2
- w = 25.5 g

$$BaO_2 + CO_2 + H_2O \rightarrow H_2O_2 + BaCO_3$$

$$Mn^{7+} + 5e \rightarrow Mn^{2+}$$
.

108 **(b)**

Its pH is 7.

109 (c)

A characteristic of hydrogen.

111 **(b)**

Deuterium ($_1H^2$) has stable nuclei, because the ratio of $\frac{n}{n} = 1$.

113 (d)

Bicarbonates of Ca and Mg are responsible for temporary hardness.

114 (a)

It does not have impaired electrons.

115 (a)

1mL H₂O₂ solution gives 11.2 mL O₂ at NTP

∴ 100 mL
$$H_2O_2$$
 solution gives $O_2 = 100 \times 11.2$

$$= 1120.0 \text{ mL } O_2 \text{ at NTP}$$

H₂O₂ decomposes as

$$2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$$

- ∴ 22400 mL O₂ at NTP is obtained from 68g H₂O₂
- \therefore 1 mL O₂ at NTP is obtined from

$$= \frac{68}{22400} \text{ g H}_2 \text{O}_2$$

∴ 1120 mL O₂ at NTP is obtained from

$$= \frac{68}{22400} \times 1120$$

$$= 34 \, g$$

$$w = \frac{M \times m \times V}{1000}$$

$$M = 1.0$$

116 **(b)**

It is a fact.

117 **(a)**

$$\left[H_2 O_2 \to H_2 O + \frac{1}{2} O_2 \right] \times 2$$

$$2H_2O_2 \rightarrow 2H_2O +$$

$$0_2$$

22.4 L at NTP

 $: 22.4 L O_2$ at NTP is obtained by 68 g of H_2O_2

 \therefore 20 L O₂ at NTP will be obtained by H₂O₂

$$=\frac{68}{22.4} \times 20 = 60.7 \text{ g/L}$$

 \therefore 1000 mL O₂ at NTP is obtained by H₂O₂ = 60.7 g

∴ Percentage strength =
$$\frac{60.7 \times 100}{1000}$$
 = 6.07 g

118 (a)

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$

119 (d

Atomic hydrogen is obtained by passing ordinary hydrogen through an electric arc.

$$H_2 \stackrel{\text{Electric arc,}}{\longrightarrow} 2H; \Delta H = 104.5 \text{ kcal mol}^{-1}$$

120 **(c)**

CO₂ escapes out slowly.

121 **(a)**

Colloidal Pd has larger surface area.

122 **(c)**

It is a fact.

123 (d)

$$2F_2 + 2H_2O \rightarrow 4HF + O_2$$

 $3F_2 + 6H_2O \rightarrow 6HF + 2O_3$

124 **(b)**

The hardness of water sample containing 0.02 mole of MgSO $_4$ dissolved in 1 L of water.

Number of moles = mass/molecular mass

$$0.002 = mass/120$$

$$mass = 0.24 g$$

0.24 g mass of MgSO₄ in 1 L of water.

 $\therefore 10^3$ g of H₂O contains = 0.24 g of MgSO₄

:
$$10^6$$
 g of H₂O contains = $\frac{0.24 \times 10^6}{10^3}$ g of MgSO₄

$$= 0.24 \times 10^{3} \text{ g}$$

= 0.24 g of MgSO₄

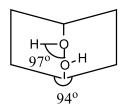
 10^6 g of water contains = 240 g of MgSO₄

$$120 \text{ g MgSO}_4 \equiv 100 \text{ g of CaCO}_3$$

240 g of MgSO₄ =
$$\frac{100 \times 240}{120}$$

= 200 g of CaCO₃

Hence, hardness of $H_2O = 200$ ppm.


126 **(c)**

H₂O₂ oxidises the acidified potassium dichromate solution into blue peroxide of chromium, CrO₅.

$$Cr_2O_7^{2-} + 2H^+ + 4H_2O_2 \rightarrow 2CrO_5 + 5H_2O$$

127 **(b)**

H₂O₂ is pale blue liquid, it can be oxidised by ozone. H₂O₂ acts as both oxidising and reducing agent. The value of dipole moment of H_2O_2 is 2.1 D which suggests it cannot be planar. In fact it has open book like structure.

The two O- H bonds lie in different planes

129 (d)

It forms calcium and magnesium complex with **EDTA** salt

130 (a)

Ordinary hydrogen mainly contains Protium $(_{1}H^{1}).$

132 **(c)**

ZnH₂ is an example of interstitial hydride while NH₃, CH₄ and H₂O are the examples of covalent hydride.

133 **(b)**

It is a fact.

134 **(d)**

sodium | 150 (a) **Polyphosphates** like hexametaphosphates, sodium tripolyphosphate or STPP) form soluble complexes with Ca²⁺, Mg²⁺ present in hard water

136 (c)

$$H_2O_2 + Cl_2 \rightarrow 2HCl + O_2$$

HCl is formed by the reduction of chlorine by H₂O₂, hence pH further decreases.

137 **(b)**

It is a fact.

138 (c)

H₂ is diatomic and forms H⁻ and H⁺ ions.

$$H_2 + F_2 \xrightarrow{Dark} 2HF$$

140 (d)

Hardness is expressed of g $CaCO_3$ present in 10^6 g of H_2O .

141 (d)

$$3\text{Fe}_{\text{Red hot}} + 4\text{H}_2\text{O}(v) \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

$$Ca + 2H2O \rightarrow Ca(OH)2 + H2$$

$$CaH2 + 2H2O \rightarrow Ca(OH)2 + H2$$

143 **(b)**

Atomic mass of helium (2He4) is maximum.

144 (b)

$$M = \frac{5.1 \times 1000}{34 \times 100} = 1.5$$

145 (a)

Hg is placed below H in electrochemical series.

146 (d)

Deionised or demineralised water is obtained by passing hard water through both cation and anion exchangers one after the other

147 (a)

Eq. wt. of
$$H_2O_2 = 17$$

$$N = \frac{30.36}{17} = 1.78 \text{ N}$$

Volume strength = $5.6 \times$ normality

$$= 5.6 \times 1.78 = 10 \text{ V}$$

148 (c)

It is a fact.

149 (d)

Water becomes hard when it contains dissolved salts of calcium, Mg of Fe such as chloride, sulphates, bicarbonates and carbonates.

In tritium, it is three.

151 **(b)**

It is a fact.

152 (a)

Hydrogen reacts with active metals (like alkali and alkaline earth metals) form corresponding hydrides. $Ca(s) + H_2(g) \rightarrow CaH_2$

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$$

Per cent conc. of $H_2O_2 = \frac{17}{56}$ volume conc. of $H_2O_2 = \frac{17}{56} \times 10 = 3\%$ app.

156 (d)

First three choices are characteristics of zeolites.

159 **(b)**

Extra energy is required to break these hydrogen bonds.

160 (d)

$$0_3 + H_2O_2 \rightarrow 2O_2 + H_2O$$

161 **(b)**

Water has high dielectric constant, *ie*, 82, high liquid range and can dissolve maximum number of compounds. That's why it is used as universal solvent

162 **(c)**

Sodium zeolite is used for softening of water having the formula $Na_2Al_2Si_2O_8$.

163 (d)

Nascent hydrogen, (i.e., hydrogen at the moment of generation) is more powerful reducing agent than ordinary H_2 .

164 (a)

It is a fact.

165 (c)

 $\rm H_2O_2$ easily decomposes into water and oxygen and the decomposition speeds up in the presence of metallic impurities, or strong bases and on exposure to light. Hence, it is stored in plastic container after addition of stabilizer.

166 (c)

It is a fact.

167 (d)

It is a method to concentrate H_2O_2 .

168 (d)

$$2Al + 2KOH + 2H2O \rightarrow 2KAlO2 + 3H2$$

(Uyeno's methods)

NaH + $H_2O \rightarrow$ NaOH + H_2 and electrolysis of Ba(OH)₂. These all are methods to prepared pure H_2 .

169 **(b)**

It is a fact.

170 (a)

$$CaC_2 + 2D_2O \rightarrow Ca(OD)_2 + C_2D_2$$

171 **(c)**

$$H \rightarrow H^+ + e$$

172 **(a**)

 $\rm H_2O_2$ is di-basic acid and thus, less stable in basic medium.

174 (a)

'20 volume H_2O_2 ' means that 1mL of this H_2O_2

gives 20mL oxygen on decomposition at STP.

Hence, 5000 cm³ O_2 will be obtained by $=\frac{5000}{20}$

$$= 250 \text{ cm}^3$$

175 (a)

Ice

Water; Also volume of ice >volume of water. Thus, an increase in pressure favours the forward reaction.

176 (c)

D₂O was discovered by Urey and Wash burn.

177 **(d)**

It is a fact.

178 **(b)**

An important property of H₂O₂.

179 **(d)**

Stannic and ferric oxides are reduced to stannous a

180 (a)

Ortho and *para* hydrogens are two forms of hydrogen which differ only in direction of spin of proton.

Protium $\binom{1}{1}H$, deuterium $\binom{2}{1}D$) and tritium $\binom{3}{1}T$) are three isotopes of hydrogen. All of them have one proton and electron each. Protium has no neutron, deuterium has one neutron and tritium has two neutrons.

181 **(c)**

Ca²⁺ and Mg²⁺ forms insoluble salts with soap.

182 (a)

$$H_2 \rightarrow H + H, \Delta H = +ve$$

The reaction is favoured by low pressure and high temperature

184 **(c)**

$$S^{2-} \rightarrow S^0 + 2e$$

186 (a)

Dielectric constant of H_2O_2 increases with dilution. It is 93.7 for pure H_2O_2 , 97 for 90% H_2O_2 and 120 for 65% H_2O_2 .

187 (c)

It is a fact.

188 **(c**)

It is a fact (density of D₂O

$$= 1.1073 \text{ g/mL}$$
 at 284.6 K).

189 **(d)**

It is a fact.

191 (a)

Hydrides are binary compounds of hydrogen.

These can be classified in four groups viz:

- (i) Ionic hydrides e.g., NaH, CaH₂, LiH etc.
- (ii) Covalent hydrides e.g., B₂H₆, NH₃, SbH₃ etc.
- (iii) Polynuclear hydrides e.g., LiAlH₄, NaBH₄ etc.
- (iv) Interstitial hydrides, in which hydrogen is trapped in the interstial spaces of transition metals.
- 194 (c)

Ionic hydride has H⁻ ion.

195 **(c)**

Moist hydrogen cannot be dried over concentrated H_2SO_4 because it is oxidized by H_2SO_4 and catches fire.

$$H_2SO_4 + H_2 \rightarrow 2H_2O + SO_2 \uparrow$$

196 **(b)**

$$Ca(HCO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 + 2Na(HCO_3)$$
Insoluble

 $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$

Ca²⁺ of Mg²⁺ ions are removed as insoluble carbor

197 **(d)**

20 g D₂O has 4 g deuterium.

198 **(b)**

Hydrogen of high purity is obtained by electrolyzing aqueous barium hydroxide in presence of Ni electrodes.

$$2e + 2H_3O^+ \rightarrow 2H_2O + \frac{1}{2}H_2$$

 $2OH^- \rightarrow H_2O + \frac{1}{2}O_2 + 2e$

199 (c)

It is a fact.

200 (a)

Lighter isotopes are more reactive.

201 **(c)**

Heavy water is used as a moderator to slow down the speed of fast moving neutrons and as well as a coolant

202 **(a)**

$$CaZ + 2NaCl \rightarrow CaCl_2 + Na_2Z$$

203 (c)

It is fact.

205 **(c)**

Both are V-shaped.

206 **(c)**

No such reaction exists.

207 (c)

Potassium reacts violently with acids.

209 **(c)**

$$H_2S_2O_8 + H_2O \rightarrow H_2SO_4 + H_2SO_5$$

210 **(b)**

It is a fact.

211 **(b)**

It is a fact.

212 (c)

Alkaline earth metal salts are causing hardness:

Temporary hardness caused by soluble Ca and Mg hydrogen carbonates. Calcium and magnesium soluble sulphates and chlorides cause permanent hardness.

214 (a)

$$2I^- \rightarrow I_2^0 + 2e$$

$$2e + 0^{1-}_2 \rightarrow 20^{2-}$$

215 **(d)**

Electrolysis of 50% sulphuric acid gives per disulphuric acid ($H_2S_2O_8$) which on distillation yields 30% solution of hydrogen peroxide

216 **(b)**

$$MnO_2 + H_2SO_4 + H_2O_2 \rightarrow MnSO_4 + 2H_2O + O_2$$

217 **(d)**

Ionic hydrides give basic solution when reacts with water *e.g.*,

$$LiH + H_2O \rightarrow LiOH + H_2 \uparrow$$

218 **(b)**

Only Mg and Mn react with cold dil. HNO₃ to give H

219 **(b**`

Thenard obtained H_2O_2 for the first time.

220 (a)

Ortho and *para* hydrogen show different spin in a hydrogen molecule, hence, these are not the isotopes

221 (d)

10 volume =1 volume of H_2O_2 gives 10 volume of O_2 at NTP.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

$$2(2+32)=68 g$$

22400 mL at NTP

At NTP

 \therefore 22400 mL of O_2 is obtained from

$$= 68 g H_2 O_2$$

 \therefore 10 mL of O_2 is obtained from

$$= \frac{68 \times 10}{22400} = 0.03035 \,\mathrm{g}\,\mathrm{H}_2\mathrm{O}_2$$

1 mL of H₂O₂ solution contains

$$= 0.03035 \,\mathrm{g}\,\mathrm{H}_2\mathrm{O}_2$$

100 mL of H₂O₂ solution contains

$$= 0.03035 \times 100$$

$$= 3.035 g H_2 O_2$$

∴ Strength of 10 volume H₂O₂

$$= 3.035 \times 10$$

$$= 30.35 \text{ g/L}$$

222 (a)

Bond formation is exothermic.

223 (a)

Ortho-hydrogen is more stable and para form always try to convert in ortho form.

224 (a)

These are facts.

225 (d)

$$5e + Mn^{7+} \rightarrow Mn^{2+}$$

 $0_2^{1-} \rightarrow 0_2^0 + 2e$

226 (a)

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$$

227 **(b)**

$$2H + CO \rightarrow HCHO$$

233 **(c)**

Industrial preparation of H₂O₂:

(A) By the electrolysis of 50 % H_2SO_4 : 50 % H_2SO_4 solution is electrolyzed at 0°C between Pt electodes. The perdisulphuric acid is formed.

$$H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$$

At Anode; $2HSO_4^- \rightarrow H_2S_2O_8 + 2e$

At Cathode; $2H^+ + 2e \rightarrow H_2$

The obtained perdisulphuric acid gives H_2O_2 on hydrolysis.

$$H_2S_2O_8 + 2H_2O \rightleftharpoons H_2O_2 + 2H_2SO_4$$

This H_2O_2 is separated by distillation at reduced pressure and thus, 30 % solution of H_2O_2 is obtained.

(B) By the auto-oxidation of 2-ethyl-anthraquinol (Modern method): Anthraquinol, in a mixture of benzene and n-heptanol on treatment with air gives H_2O_2 and 2-ethyl-anthraquinone. This 2-ethyl-anthraquinone on hydrogenation gives 2-ethyl-anthraquinol in presence of Pd catalyst.

It is a cyclic process and in it only H₂ is consumed, 2-ethyl-anthraquinone is reobtained

228 (a)

It is a fact.

229 (c)

Hydrogen peroxide oxidise lead sulphide into lead sulphate which is a solid.

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$$

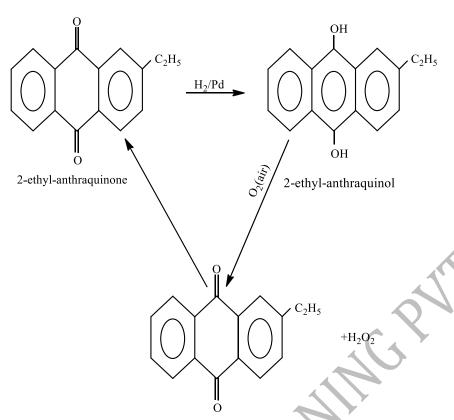
230 **(b)**

H₂O₂ has open book structure.

231 (d)

Na₂SO₃ is oxidised by H₂O₂ to Na₂SO₄

PbS is oxidised by H₂O₂ to PbSO₄


KI is oxidised by H₂O₂ to I₂

 O_3 cannot be oxidised by H_2O_2 but it is reduced to O_2 by H_2O_2

$$H_2O_2 + O_3 \rightarrow H_2O + 2O_2$$

232 **(b)**

It is one of the uses of H_2O_2 .

during reaction.

235 **(b)**

30 mL O₂ is obtained by $\frac{34\times30}{11200}$ g H₂O₂/mL $\therefore M = \frac{34\times30\times100}{11200\times34} = 2.68 M$

236 (d)

 $TiO_2 + H_2O_2 \rightarrow H_2TiO_4$ (orange)

237 **(a**

Tritium $(_1H^3)$ is a heavy isotope of hydrogen which is obtained by nuclear reactions.

238 **(b)**

It is a fact.

239 (a)

 $\mathrm{H_2SO_4} + \mathrm{BaO_2} \rightarrow \mathrm{BaSO_4} + \mathrm{H_2O_2}$

240 **(b)**

The formula of heavy water is D_2O .

241 (c)

It resemble with alkali metals as it forms H⁺ion by losing its outer electron and resemble with halogen as it forms H⁻ion by gaining one electron.

242 (a)

Zinc, does not react with cold water.

$$Zn + H_2O \rightarrow ZnO + H_2O \uparrow$$

steam

 $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2 \uparrow$

 $Zn + 2HCl (dil.) \rightarrow Zn Cl_2 + H_2 \uparrow$

 $Zn + H_2SO_4$ (dil.) $\rightarrow ZnSO_4 + H_2 \uparrow$

2-ethyl-anthraquinone

243 (a)

The H - 0 - H angle in water molecule is about 105° (due to two lone pairs of electrons)

244 (c)

Some transition metals such as Pt, Ni, Pd, Os, Cr, Mn, Fe, etc., adsorb relatively large amount of hydrogen gas, which is called occluded hydrogen.

245 (d)

Chlorine has lone pair which it can donate to form coordinate bond while hydrogen cannot

246 **(b)**

Metals in finely divided state possess larger surface area and are more reactive.

247 (d)

During the softening process the reaction takes place as :

$$Na_2Ze + Ca (HCO_3)_2 \rightarrow CaZe + 2NaHCO_3$$

$$Na_2Ze + Mg(HCO_3)_2 \rightarrow MgZe + 2NaHCO_3$$

After sometime, the zeolite is completely converted into calcium and magnesium zeolites. Eventually, the bed ceases to soften water *i.e.,* it gets exhausted. At this stage, the supply of hard water is stopped and the exhausted zeolite is reclaimed by treating the bed with a 10% NaCl solution (Brine soln.) when the following reaction

takes place

CaZe or Mgze + 2NaCl
$$\rightarrow$$
 Na₂Ze + CaCl₂ or MgCl₂

Reclaimed zeolite

248 **(b)**

Volume strength = $5.6 \times normality$

$$= 5.6 \times 1.5 = 8.4 L$$

249 (a)

Follow reactive nature of nascent hydrogen.

250 **(a)**

It is a fact.

251 **(d)**

These are characteristic properties of H_2O_2 .

252 (a)

 $HClO_4$ does not give H_2O_2 on hydrolysis. Rest all contains O—O bond and gives H_2O_2 on heating.

253 (d)

$$_{1}H^{1}$$
 has no neutron, *i. e.*, $n = 0$, $p = 1$, $\frac{n}{n} = \frac{0}{1} = 0$

254 (a)

34 g H₂O₂ has 2 g H
∴ 100 g H₂O₂ has
$$\frac{2 \times 100}{34}$$
 = 5.88 g H

255 (a)

Permutit or zeolite is the aluminosilicate of sodium. It is used to remove hardness of water. It converts insoluble salts of Ca²⁺ and Mg²⁺ into soluble zeolites. It exchange these ions with Na⁺ and water becomes soft.

Thus, exhausted permutit does not contain Na⁺ ions.

256 (d)

$$M_{\rm H_2O} = \frac{1000}{18\times 1} = 55.6$$

257 (d)

Oil
$$H_2 \xrightarrow{\text{Ni}} \text{Margarine}(\text{Ghee})$$
More

nsaturated

Saturated

258 **(b)**

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

$$2 \times 34 \text{ g}$$

22400mL

 \because 68 g of $\rm H_2O_2$ liberates 22400 mL $\rm O_2$

∴ 0.68 g of
$$H_2O_2$$
 liberates = $\frac{0.68 \times 22400}{68}$
= 224 mL O_2

260 **(c)**

 $\rm H_2O_2$ reduces potassium ferricyanide (alk. Solution) $\rm K_3Fe(CN)_6$ to potassiun ferrocyanide.

261 (d)

Permanent hardness in the name because this type of hardness is not removed by only boiling the water.

262 **(a)**

$$Fe^{2+} \rightarrow Fe^{3+} + e$$

 $O_2^{1-} + 2e \rightarrow 20^{2-}$

263 **(b)**

Heavy water is formed by the combination of heavier isotope ($_1H^2$ or D) with oxygen.

$$2D_2 + O_2 \rightarrow 2D_2O$$

heavy water

264 (d)

Industrially, hydrogen is prepared from water gas which is a mixture of carbon monoxide and hydrogen, by removing carbon monoxide by Bosch process or by liquefaction.

$$CO + H_2O \rightarrow CO_2 + H_2$$

265 (d)

It is a fact.

266 (d)

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$$

from the above equation

: 1 mole of PbS required 4 moles of H₂O₂

0.01 moles of PbS required 0.04 mole of H₂O₂

Weight of 0.04 mole $H_2O_2 = 1.36 \text{ g}$

10 volume of H_2O_2 means,

1 mL of such solution of H_2O_2 on decomposition by heat produces 10 mL of oxygen at NTP.

H₂O₂ decomposes as,

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

Thus 1mL of 10 volume H₂O₂ solution contains

$$= \frac{68}{22400} \times 10 \text{ g of H}_2\text{O}_2$$
$$= 0.030.35 \text{ g of H}_2\text{O}_2$$

 $\because 0.03035 \text{ g of H}_2O_2 \text{ is present in 1 mL of 10}$ volume H_2O_2 .

267 (c)
+7

$$2K MnO_4 + 3H_2SO_4 + 5H_2O_2$$

+2 0
 $\rightarrow 2MnSO_4 + 8H_2O + 5O_2$

In this reaction hydrogen peroxide acts as a reducing agent and it reduces KMnO₄ to Mn²⁺ ions.

268 (d)

Water is oxidised to oxygen by fluorine as

$$2F_2 + 2H_2O \rightarrow O_2 + 4HF$$

269 (c)

Hydrogen forms about 75% of the mass (total amount) of the universe. It has been estimated that more than 90% of all atoms in the universe are H-atoms. While most of the remaining atoms are of He.

The order of abundance of given elements in the universe is

270 **(a)**

It is a fact.

271 **(c)**

Protium is $_1H^1$.

272 (d)

H₂O₂ is weak di-basic acid.

273 (d)

These are characteristics of perhydrol.

274 **(c)**

Both halogen (ns^2np^5) and hydrogen $1s^1$ have one electron short to attain configuration of nearest noble gas.

275 **(c)**

Calgon is sodium hexa meta – phosphate $(NaPO_3)_6$ or $Na_2[Na_4(PO_3)_6]$.

276 (c)

It is one of the uses of H_2O_2 .

277 **(b)**

Covalent molecules occupy solid structure due to increasing van der Waals' forces.

278 (a)

 PbO_2 dose not contain -0-0— bond. It is lead dioxide.

280 (d)

It is a fact.

281 **(c)**

$$Si + 2NaOH + H_2O \rightarrow Na_2SiO_3 + 2H_2$$

282 **(d)**

$$\underbrace{\text{Cl}_2 + \text{H}_2\text{O}_2}_{1 \text{ unit decrease}} \rightarrow 2\text{HCl}_2 + \underbrace{\text{O}_2}_{1 \text{ o}}$$

In this reaction, H₂O₂ works as a reducing agent

283 **(d)**

SiC is a covalent compound.

284 (a)

The reactivity order of isotopes decreases with increase in mass no.

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** NaCl is less soluble in heavy water than in ordinary water.
- **Statement 2:** Dielectric constant of ordinary water is more than that of heavy water.

2

- **Statement 1:** Hard water is more suitable than soft water
- **Statement 2:** Hard water can be used in steam boilers.

3

- **Statement 1:** Water has high boiling point.
- **Statement 2:** Water shows hydrogen bonding.

4

- **Statement 1:** Temporary hardness can be removed by boiling.
- **Statement 2:** One boiling the soluble bicarbonates change to carbonates which being insoluble get precipitated.

5

- **Statement 1:** Hydrogen shows resemblance with alkali metals as well as halogens.
- **Statement 2:** Hydrogen exists in atomic form only at high temperature.

6

- **Statement 1:** Hydrogen ahs only two isotopes namely protium and deuterium.
- **Statement 2:** Protium is radio active in nature.

7

Statement 1: Saline hydrides are nonvolatiles noe conducting and crystalline solids.

SWARI ACHIEVERS LEARNING BYILLIFE

							HEMISTI SWER			
1) 5)	a	2)	d	3)	a	4)	a	MLI.		
3)	b	6)	d	7)	С		l			
									G	
							<i>(</i> .	R		
					.4	R				
			ć							
	<	5	N							
5	NA									

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (a)

NaCl is less soluble in heavy water than in ordinary water because dielectric constant of ordinary water (*i.e.*, 81) is more than that of heavy water (*i.e.*, 80).

2 **(d)**

Hard water is unsuitable for laundary washing and dying. By using hard water over a period of time, the inner surface of the boiler gets crusted with so called boiler scale. It reduces the efficiency of boiler and also damages it.

3 **(a**

The high boiling point of H_2O is due to H-boiling which holds the water the water molecules together rather than leaving them free.

4 (a)

Temporary hardness is due to presence of bicarbonates of Ca and Mg.

$$M(HCO_3)_2 \rightleftharpoons MCO_3 \downarrow +CO_2 + H_2O$$

$$(M = Ca. Mg^{\circ})$$

5 **(b)**

Hydrogen can gain an electron form H⁻ ion with

the stable noble gas configuration of helium. It can also lose its electron to give H⁺ ion. Hydrogen therefore has resemblance to the halogens as well as to the alkali metals which gain or lose an electron respectively to form univalent negative and positive ions with noble gas configuration.

6 **(d)**

Hydrogen has three isotopes namely protium $(_1H^1)$ deuterium $(_1H^2$ or D) and tritium $(_1H^3$ or T). Tritium is radioactive and emits low energy β particles.

7 **(c)**

Saline or ionic hydrides are compounds of hydrogen with most of the *s*-block metals hydrogen forms molecular or covalent hydrides.

CHEMISTRY

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (B, Q, P, S) in **columns II**.

1. Match List I with List II. Choose the correct matching codes from the choices given.

Column- II Column-I **(A)** BeH₂ (1) Complex **(B)** AsH₃ (2) Lewis acid Interstitial (C) B_2H_6 (4) Covalent **(D)** LaH₃ Intermediate (E) LiAlH₄ (5) (6) Ionic **CODES:** В D E A 5 2 a) 6 1

3

3

3

3

2

2

b)

c)

d)

6

6

6


1

1

1

1

CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

1 **(d)**

Complex compounds which do not give all their constituent ions when dissolved in water, individual identity of ions are lost, *e.g.*, $-[Cu (NH_3)_4] SO_4$, Li AlH₄.

Lewis acid electrons deficient species which gain electrons while forming a bond with Lewis bases. E.g., B_2H_6 .

Interstitial metal hydrides f —block hydrides are non-stoichiometric e.g., LaH_n etc, where chemical composition is variable e.g., —LaH_{2.87}, $X_bH_{2.5}$ etc.

Intermediate hydride polymeric in nature e.g., BeH₂.

Covalent hydride bond forms by sharing of electron. *e.g.*, AsH₃.