HYDROCARBONS

CHEMISTRY

14.	. The gas which is used for the artificial ripening of fruits is:				
	a) C ₂ H ₆	b) C ₂ H ₂	c) C ₂ H ₄	d) Marsh gas	
15.	$CH_3 - C \equiv CH$ reacts with	n HCI to give:			
	a) 2,2-dichloropropane	b) 1,1-dichloropropane	c) 1,2-dichloropropane	d) 1-chloropropene	
16.	$CH_3CH_3 + HNO_3 \xrightarrow{675 K}$?			
	a) CH ₃ CH ₂ NO ₂		b) $CH_3CH_2NO_2 + CH_3N$	02	
	c) 2CH ₃ NO ₂		d) $CH_2 = CH_2$		
17.	Which of the following is	produced when coal is sub	jected to destructive distill	ation?	
	a) Methane	b) Ethane	c) Acetylene	d) Coal gas	
18.	The product of the follow	ing reaction are:			
	$CH_3C \equiv C. CH_2CH_3 \frac{(i)}{(ii) Hyc}$	$\frac{O_3}{\text{rolysis}}$?			
	a) $CH_3COOH + CH_3COCH$	3			
	b) $CH_3COOH + CH_3CH_2C$	00H			
	c) $CH_3CHO + CH_3CH_2CH$	0		X	
19	$(I) CH_3 COUH + CO_2$ Methyl bromide bested w	ith zinc in closed tube pro	duces:		
17.	a) Methane	b) Ethane	c) Ethylene	d) Methanol	
20.	Aqueous solution of an	organic compound, 'A' o	on electrolysis liberates a	cetylene and CO_2 at a	
	node. 'A' is	0 1 /		5 2	
	a) Potassium acetate		b) Potassium succinate		
	c) Potassium citrate		d) Potassium maleate		
21.	The reaction of alkanes w	vith halogen is explosive in	the case of:		
	a) F ₂	b) Cl ₂	c) I ₂	d) Br ₂	
22.	Which of the following is	unsymmetrical alkene?			
	a) 1-butene	b) 2-hexene	c) 1-pentene	d) All of these	
23.	Which of the statement	is wrong for alkanes?			
	a) Most of the alkanes a	ire soluble in water			
	b) Their density is alwa	ys less than water	1		
	c) At room temperatur	e some alkanes are líquic	i, some solid and other al	re gases	
24	u) All alkanes burn	and from which reactiv	-m ²		
24.	B ₂ F		HI		
	a) $CH_3 - CH = CH_2 - \frac{1}{OH}$	\rightarrow	b) $CH_3CH_2CH_2I \xrightarrow{P}$		
	c) $CH_2CH_2CH_2COONa -$	laOH/CaO,∆	d) None of the above		
25.	Nitrating mixture is				
	a) Fuming nitric acid				
	b) Mixture of conc. H ₂ S	O_4 and conc. HNO ₃			
	c) Mixture of nitric acid	and anhydrous zinc chl	oride		
C	d) None of the above				
26.	Cyclohexene on reactio	n with OsO4 followed by	reaction with NaHSO ₃ g	ives	
	a) <i>cis</i> — diol	b) <i>trans</i> – diol	c) Epoxy	d) Alcohol	
27.	Al ₄ C ₃ on hydrolysis yie	lds			
	a) Nitrogen gas	b) Methane gas	c) Hydrogen gas	d) Carbon dioxide	
28.	The compounds P, Q ar	nd S			

where separately subjected to nitration using HNO_3/H_2SO_4 mixture. The major product formed in each case respectively, is

d) $CH_2 = C(CH_3) - COOCH_3$

42. A hydrocarbon X adds on one mole of hydrogen to give another hydrocarbon and decolourised bromine water. X react with KMnO₄ in presence of acid to give two mole of the same carboxylic acid. The structure of X is:

a) $CH_3CH = CHCH_2CH_2CH_3$ b) $CH_3CH_2CH = CHCH_2CH_3$ c) $CH_3CH_2CH_2 - CH = CHCH_3$ d) $CH_2 = CH - CH_2CH_2CH_3$ 43. An anaesthetic narcylene is commercial name of: a) C_2H_4 b) C_2H_2 c) CHCI₃ d) ether 44. By which one of the following compounds both CH_4 and $CH_3 - CH_3$ can be prepared in one step? a) CH₃I b) CH₃OH c) CH_3CH_2I d) C_2H_5OH 45. What volume of methane (NTP) is formed from 8.2 g of sodium acetate by fusion with sodalime? b) 11.2 litre d) 2.24 litre a) 10 litre c) 5.6 litre 46. When methyl iodide is treated with sodium in ethereal solution, it gives a) Methane b) Ethane c) Methyl sodium iodide d) Sodium methoxide 47. 2-methylpentene 2 on ozonolysis will give: a) Only propanal b) Propanal and ethanal c) Propanone-2 and ethanal d) Propanone-2 and propanal 48. The reaction, $2RC \equiv CCu \frac{(CH_3COO)_2Cu}{Pyridine} R - C \equiv C - C \equiv C - R$ a) Eglinton's reaction b) Glaser reaction c) Gomberg-Beckmann's reaction d) Leuckart reaction 49. 2-Hexyne gives *trans*-2-hexene on treatment with: b) Pd/BaSO₄ a) Li/NH₃ c) LiAlH₄ d) Pt/H_2 50. Which of the following will give three mono-bromo derivatives? a) CH₃CH₂CH₂CH(CH₃)CH₃ b) $CH_3CH_2C(CH_3)_2CH_3$ c) CH₃CH₃(CH₃)CH (CH₃)CH₃ d) All the above can give 51. The reagent for the following conversion $Br \longrightarrow Br \rightarrow H \longrightarrow H$ is/are : a) Alc. KOH Alc. KOH followed by c) $\frac{\text{Aqueous KOH followed}}{\text{by NaNH}_2}$ d) $\text{Zn/CH}_3\text{OH}$ b) NaNH₂ 52. In a reaction if half of the double bond is broken and two new bonds are formed, this is a case of: a) Elimination b) Addition c) Displacement d) Rearrangement 53. Which represents a cyclic alkane? a) C_3H_6 b) C_3H_8 CH₃ - CH₂ - CH₂ - CH₃ $\frac{AlCl_3}{HBr}$ Product a) C_3H_6 b) C_3H_8 c) $C_8 H_{10}$ d) $C_8 H_{12}$ Product in the above reaction is $CH_3 - CH - CH_2 - CH_3$ $CH_3 - CH - CH_3$ b) a) CH3 c) $CH_3 - CH_2 - CH_2$ d) All of these

BrBr 55. According to Huckel's rule an aromatic compound must possess a) $(4n + 1)\pi$ -electrons b) $(4n + 2)\pi$ -electrons c) $4n \pi$ -electrons d) $(4n + 3)\pi$ -electrons 56. Acetylene gives: a) White ppt. with $AgNO_3$ and red ppt. with Cu_2Cl_2 b) White ppt. with Cu_2Cl_2 and red ppt. with AgNO₃ c) White ppt. with both d) Red ppt. with both 57. 1,1,2,2-tetrabromoethane on heating with Zn powder in alcohol finally gives: a) Methane b) Ethane c) Ethyne d) Ethene 58. The carbide which reacts with water to form ethyne is a) CaC_2 b) SiC c) Mg_2C_3 d) Al 59. What is the product when 2-butyne is treated with liquid NH₃ in presence of lithium? c) trans-2-butene d) 1-butene a) *n*-butane b) cis-2-butene $Ph-C \equiv C-CH_3 \xrightarrow{Hg^{2+}/H^+}$ 60. $\rightarrow A. A$ is: a) c) H_(61. 1-butyne on reaction with hot alkaline $KMnO_4$ gives: a) CH₃CH₂CH₂COOH b) $CH_3CH_2COOH + CO_2$ c) CH₃CH₂COOH d) CH₃CH₂COOH + HCOOH 62. Which statement is not correct in case of ethane? a) It can be catalytically hydrogenated b) When burnt produces CO_2 and H_2O c) It is homologue of isobutane d) It can be chlorinated with chlorine 63. CH₃COCH₃ can be converted to CH₃CH₂CH₃ by the action of a) HNO3 b) HIO_3 c) H_3PO_3 d) HI 64. When ethyl chloride and alcoholic KOH are heated, the compound obtained is b) C_2H_2 a) C_2H_4 c) C_6H_6 d) C_2H_6 65. Which of the following will react with sodium metal? a) Ethene b) Propyne c) But-2-yne d) Ethane 66. When the boiling point of the first ten normal alkanes are plotted, the graph looks like: 400-400 300-· 300 പ് 300m 200 200 c) d) 100 10 10 10 5 No. of C atoms No. of C atoms No. of C atoms No. of C atoms 67. Which is generally used as reducing agent in organic chemistry? a) Zn+HCl b) $Zn + CH_3COOH$ c) Zn/Hg + HCld) Na + C_2H_5OH 68. Alkynes can be reduced to alkenes by hydrogenation in presence of: a) Ranev Ni b) Anhy. AlCl₃ c) Pd d) Lindlar's catalyst 69. Which reagent distinguishes ethylene from acetylene? a) Aqueous alkaline permanganate b) Chlorine dissolved in carbon tetrachloride

d) Concentrated sulphuric acid 70. By heating tetraethyl ammonium hydroxide, the product formed are: a) C_2H_4 b) $(C_2H_5)_3N$ c) H_20 d) All of these 71. Addition of ICl on propene gives the product: a) CH₃CHClCH₃ b) CH₃CHlCH₂Cl c) CH₃CHClCH₂I d) CH₃CHClCH₂Cl 72. Which of the following alkenes gives on acetaldehyde on ozonolysis? a) Ethene b) Propene c) 1-butene d) 2-butene 73. In the following sequence of reactions, the alkene affords the compound 'B' $CH_3CH = CHCH_3 \xrightarrow{O_3} A \xrightarrow{H_2O} B$ The compound *B* is a) CH₃CH₂CHO d) CH₃CHO b) CH₃COCH₃ c) CH₃CH₂COCH₃ 74. $CH_3CH = CH - CH_3 + CH_2N_2 \rightarrow A; A$ is $\begin{array}{c} \mathrm{CH}_{3}\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{3}\\ \mathrm{I}\\ \mathrm{CH}_{3}\\ \mathrm{N}_{2}\end{array}$ b) a) d) None of these c) Both (a) and (b) 75. Direct fluorination of alkanes is not made because: a) Reaction does not occur b) Alkane fluorides are not formed c) Reaction occurs violently d) None of the above 76. On monochlorination of *n*-pentane, the number of isomers formed is: a) 4 b) 3 c) 2 d) 1 77. Which of the following is the predominant product in the reaction of HOBr with propene? b) 3-bromo-1-propanol a) 2-bromo-1-propanol c) 2 - bromo - 2 - propanold) 1-bromo-2-propanol 78. Acetylene is prepared industrially by passing electric discharge through graphite electrodes in the atmosphere of: b) N_2 a) Air c) H₂ d) CO_2 79. The reaction of an aromatic halogen compound with an alkyl halide in presence of sodium in ether is called a) Sandmeyer's reaction b) Wurtz reaction c) Kolbe reaction d) Wurtz-Fittig reaction 80. How many isomeric forms of pentane exist? a) 3 b) 2 c) 5 d) 6 81. Alkanes mainly show reactions involving: a) Carbonium formation **b**) Ionic elimination c) Ionic formation d) Heat/photochemical substitution 82. Ozonolysis of an organic compound A produces acetone and propionaldehyde in equimolar mixture. Identify A from the following compounds.

c) Ammoniacal cuprous chloride

- a) 2-methyl-1-pentene b) 1-pentene c) 2-pentene
 - d) 2-methyl-2-pentene
- 83. Using anhydrous AlCl₃ as catalyst, which one of the following reactions produce

	ethylbenzene(PhEt)?			
	a) $H_3C - CH_2OH + C_6H_6$	b) $CH_3 - CH = CH_2 + C$	G ₆ H ₆	
	c) $H_2C = CH_2 + C_6H_6$	d) $H_2C - CH_2 + C_6H_6$		
84.	On vigorous oxidation by alkaline permanganate solution $(CH_2)_2 C = CH_2 CHO$ gives:			
	OH OH			
	a)			
	$(CH_3)_2C - C - CH - CH_2CH_3$			
	CH_3 CO+CH ₂ CH ₂ COOH			
	CH ₃			
	CH ₃ chore on on on		$\langle \rangle$	
	c) CH_2 CHOH+CH ₃ CH ₂ CH ₂ OH			
	d) CH2			
	$CO+CH_3CH_2CHO$			
	CH ₃			
85.	The compound that is most reactive towards electro	ophilic nitration is		
	a) toluene b) benzene	c) benzoic acid	d) nitrobenzene	
86.	One mole of a symmetrical alkene on ozonolysis	s gives two moles of an al	dehyde having a	
	molecular mass of 44 u. The alkene is			
	a) Propene b) 1-butene	c) 2-butene	d) Ethene	
87.	The conversion of propene to propanol is typ	e of reaction.		
	a) Hydrogenation b) Hydration	c) hydrolysis	d) Dehydrogenation	
88.	When <i>n</i> -hexane/ <i>n</i> -heptane is passed through Cr_2O_3	supported over alumina a	t 600°C gives:	
	a) Hexane b) Hexyne	c) Benzene, Toluene	d) None of these	
89.	If 20 cm^3 of methane (CH ₄) is burnt using 50 cm^3 of 100 cm^3	oxygen. The volume of the g	gases left after cooling to	
	room temperature will be:			
0.0	a) 60cm ³ b) 70cm ³	c) 30cm ³	d) 50cm ³	
90.	An alkane of mol. weight /2 gives on monochlorinat	cion only one product. Name	e the alkane:	
01	a) 2-methyloutane b) <i>n</i> -pentane	cj 2,2-aimethyipropane	a) None of these	
91.	a) 2 b) 3	c) 4	d) 5	
92	The treatment of R' MgX with $RC = CH$ produces	c) I	uj 5	
2.	a) <i>R</i> H b) <i>R</i> 'H	c) <i>R</i> – <i>R</i>	d) $R - R'$	
93.	Electrolysis of an aqueous solution of sodium ad	cetate. vields	.,	
	a) Ethane b) Ethene	c) Ethvne	d) Propane	
94.	Propyne on passing through red hot copper tub	e forms	() 1 opuno	
	a) benzene b) Toluene	c) Mesitylene	d) None of these	
95.	Among the following, the compound that be most re	adily sulphonated is		
	a) Benzene b) Nitrobenzene	c) toluene	d) chlorobenzene	
96.	Propylene on hydrolysis with sulphuric acid for	ms	,	
	a) <i>n</i> -propyl alcohol b) Isopropyl alcohol	c) Ethvl alcohol	d) Butvl alcohol	
97.	What is the product formed when acetylene rea	icts with hypochlorous ac	cid?	
	a) CH_2COC b) $ClCH_2CHO$	c) Cl ₂ CHCHO	d) ClCH ₂ COOH	
98.	When CaC_2 was hydrolvsed a gas was obtained. It has	ad a garlic odour due to pho	osgene present as impurity.	
	The gas was passed through ammoniacal solution of	f Cu_2Cl_2 , a red ppt. was obta	ained. The gas was:	
	a) Ethylene b) Propyne	c) Acetylene	d) Ethane	
99.	Alkenes undergo			
	a) Addition reactions			
	b) Substitution reactions			
	c) Both (a) and (b)			

d) None of these

100. Aromatic compound among other things should have a π -electron cloud containing $(4n + 2)\pi$ electrons where, *n* cannot be b) 3 c) 2 d) 1 a) $\frac{1}{2}$ 101. Polymer of propyen is: a) Polvethylene b) Polythene c) Benzene d) Mesitylene 102. Which of the following has the least octane number? b) Cetane c) 2,2,4-trimethylpentane d) *n*-heptane a) Octane 103. Name the reaction $C_3H_6 \rightarrow C_3H_8$: c) Hydrogenation a) Alkylation d) Dehydrogenation b) Cracking 104. The tar which is used to make roads is a solid known as: b) Paraffin wax d) None of thes a) Pitch c) Coal 105. Thermal decomposition of alkanes in the absence of air is called a) Cracking b) Oxidation c) Combustion d) Hydrogenation 106. The conditions for aromaticity is a) Molecule must have clouds of delocalised π -electrons b) Molecule must contain $(4n + 2)\pi$ -electrons c) Both (a) and (b) d) None of the above 107. $C_2 - C_3$ bond length in but-1,3-diene is: d) 1.34Å a) 1.46Å b) 1.20Å c) 1.39 108. For synthesis of 1-butene, CH₃Mgl should be treated with c) Allyl chloride b) 2-chloropropene d) Ethyl chloride a) Propene 109. The highest boiling point is expected for a) *n*-butane b) iso-octane c) *n*-octane d) 2,2,3,3-tetramethyl butane 110. When butane-1 is mixed with excess of bromine, the expected reaction product is: a) Hydrogen bromide b) Butylene gas c) 1,2-dibromobutane d) Perbromobutane 111. An alkene having molecular formula C₉H₁₈ on ozonolysis gives 2, 2-dimethyl propanal and 2butanone. The alkene is a) 2,2,2-trimethyl-3-hexene b) 2,2,6-trimethyl-3-hexane c) 2,3,4-trimethyl-2-hexene d) 2,2,4-trimethyl-3-hexene 112. Propene on reaction with diazomethane in presence of UV radiations gives: a) Cyclopropane b) Methyl cyclopropane c) Butane d) Butene 113. Both methane and ethane may be obtained by a suitable one-step reaction from a) CH₂I c) CH₃OH d) C_2H_2OH b) C_2H_5I 114. The product (s) obtained via oxymercuration (HgSO₄ + H_2SO_4) of but-1-yne would be a) CH₃CH₂COCH₃ b) CH₃CH₂CH₂CHO c) $CH_3CH_2CHO + HCHO$ d) CH₃CH₂COOH + HCOOH 115. Alkene-1 on hydroboration followed with action of H_2O_2 gives: Ja) Alkanol-2 b) Alkanol-1 c) Alkanal d) Alkanone $_{\sim}CH_{3}$ 116. on ozonolysis gives СНО COCH₃ d) None of these + HCHO b) a)

117. The compound 'C' in the following reaction is

$C_7H_7 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$		
a) <i>o</i> -bromotoluene	b) <i>m</i> -bromotoluene	
c) <i>p</i> -bromotoluene	d) 3-bromo-2,4,6-trich	lorotoluene
118. Iodination of alkane is made in presence of:		
a) KMnO ₄ b) HgO or HIO ₃	c) $K_2Cr_2O_7$	d) None of these
119. Pick out the wrong statement.		
a) Toluene shows resonance		
+		\sim
b) is non-promotio		
The backwid state of each on in each even around	:?	
c) The hybrid state of carbon in carbonyl group	p is sp^2 .	
d) The hyperconjugative effect is known as no b	bond resonance.	
120. An alkene on vigorous oxidation with $KMnO_4$ g	ives only acetic acid. The	alkene is
a) $CH_3CH_2CH = CH_2$ b) $CH_3CH = CHCH_3$	c) $(CH_3)_2C = CH_2$	d) $CH_3CH = CH_2$
121. A hydrocarbon reacts with hypochlorous acid to giv	ve 2-chloroethanol. The hyd	lrocarbon is:
a) Methane b) Ethylene	c) Acetylene	d) Ethane
122. The angle strain in cyclobutane is		
a) 24°44′ b) 29°16′	c) 19°22′	d) 9°44′
123. During chlorination of methane usually a mixture o	f all the chlorinated produc	cts, <i>i. e.</i> , methyl chloride,
methylene dichloride, chloroform and carbon tetrad	chloride are obtained. Wha	t will happen, if we use
excess of Cl_2 in this reaction?	GS'	
a) Only methyl chloride will be formed	X	
b) Only chloroform will be formed		
c) Only Ul_4 will be formed		
124 Aromatization of <i>n</i> bontane and <i>n</i> octano gives rest	activaly	
a) Toluono athyl bonzono	bechvery.	
h) Fthyl benzene toluene		
c) Toluene henzene		
d) Benzene, ethyl benzene		
125. Which of the following organic compounds exh	ibit acidic character?	
a) $H_2C - C \equiv CH$ b) $H_2C - C \equiv C - CH_2$	c) $H_{2}C = CH_{2}$	d) $H_2 C - C H_2$
126. Sodium formate on heating with soda lime gives:	0) 1120 0112	wy 113 0 0113
a) CH ₄ b) CO ₂	c) H ₂	d) All of these
127. Which of the following can be used for preparation	of propane?	
$1.B_2H_6$	h) CH CH CH CH C	er
a) $CH_3CH = CH_2 \xrightarrow{2.AgNO_3/NaOH}$	$0) \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{CI}_{2.\mathrm{H}_2 \mathrm{O}_2}$	→
c) $CH_{2}CH_{2}CH_{2}L \xrightarrow{HI/\Delta 150^{\circ}C}$	d) CH ₃ CH ₂ CH ₂ COONa –	$\xrightarrow{OH(CuO)}$
128 The marsh gas detector used by miners works on th	e principle of:	Δ
a) Difference in the rates of diffusion of gases	ie principie or.	
b) Avogadro's hypothesis		
c) Gav-Lussac's law of gaseous volumes		
d) Berzelius hypothesis		
129. The compound with highest boiling point.		
a) <i>n</i> -nexane	b) <i>n</i> -pentene	
c) 2.2-dimethyl propane	d) 2-methyl hutane	
130. The most stable conformation of chlorocyclobevane	at room temperature is	
2001 The most studie comormation of emorocyclollexand	at i com temperature is.	

$$a) \qquad (f) \qquad$$

c) Location of double bond/triple bond in carbon chain

d) All are correct
146.
$$CH_{z}=CH-CH=CH_{z} + \bigcup_{k=-COOH}^{CH-COOH} X$$

Product X is obtain by reaction R. X and R are
a) $(-) = (-) =$

a) (C₂H₅)₄ Pb b) Pb(CH₃CC 153. Which of the following form alkynide?

$c = c - \langle - \rangle$		
a)		
H-C=C		
b)		
c) \c=c		Th.
d) $C \equiv C - CH_3$		
		et i
154. Which of the following reagents when heated w	ith ethyl chloride forms	ethylene?
a) Aqueous KOH b) Zn/HCl	c) Alcoholic KOH	d) HI
155. Reduction of 2-methyl-1-bromopropane with metal	and acid gives:	
a) Butyl bromide b) <i>n</i> -butane	c) Isobutene	d) None of these
156. Dehydration of 2-butanol yield		-
a) 1-butene b) 2-butene	c) 2-butyne	d) Both (a) and (b)
157. Which statement is correct?	G Y	
a) Knocking decreases the efficiency of an internal c	ombustion engine	
b) Knocking cannot be eliminated completely by add	ling anti-knock compounds	5
c) The higher the octane number, the better is the ${f q}$	uality of fuel	
d) All of the above		
158. $\begin{bmatrix} 0.03 \\ 0 \end{bmatrix}$	In nroduces	
KMnO ₄ produces	mo ₄ produces	
a) $CH_2COCH_2 + CH_2COOH$	b) CH ₂ COCH ₂ + CH ₂ CHO	
c) $CH_3CHO + CO_2$	d) CH ₃ COCH ₃ only	
159. Which of the following reagents will be able to distin	iguish between 1-butyne a	nd 2-butyne?
a) NaNH ₂ b) HCl	c) 0 ₂	d) Br ₂
160. 2-chloro-3-methylbutane is treated with sodiun	n in etherial solution, the	n it will give
a) 2,4-dimethylhexane	b) 3,5-dimethylhexane	
c) 2,3,4,5-tetramethylhexane	d) 2,6-dimethyloctane	
161. The hydrocarbon which can react with sodium i	n liquid ammonia is	
a) $CH_3CH_2CH_2C \equiv CCH_2CH_2CH_3$	b) $CH_3CH_2C \equiv CH$	
c) $CH_3CH = CHCH_3$	d) $CH_3CH_2C \equiv CCH_2CH$	3
162. Which of the following is incorrect? The members of	the homologous series of a	alkanes?
\checkmark a) Are all straight chain compounds		
b) Have the general formula $C_n H_{2n+2}$		
c) Show a regular gradation in physical properties		
a) Have similar chemical properties	initate with which one of	f the following?
20 CH $-$ C = C $-$ CH	$\frac{1}{2} \frac{1}{2} \frac{1}$	i the following:
a) $CH_3 - C = C - CH_3$	d) CH = CH = CH = CH = CH	I
164. Mustard gas is:	1 1 1 1 1 1 1 1 1 1	13

a) CH₄ b) C_2H_4 c) CH₂Cl— CH₂— S— CH₂-d) None of the above 165. During pyrolysis of alkane, C—C bond rather than C—H bond break because: a) C—C bond is reactive site in alkane b) C—H bond is reactive site in alkane c) Bond energy of C—C is lower than C—H bond d) Energy of activation of C—C bond is very high 166. A mixture of CH₄ and steam on passing over nickel suspension on alumina at 800°C gives: a) CO only c) CO and H_2 d) None of these b) H_2 only 167. A compound $X(C_5H_8)$ reacts with ammoniacalAgNO₃ to give a white precipitate, and on oxidation with hot alkaline KMnO₄ gives the acid, $(CH_3)_2$ CHCOOH. Therefore, X is d) $(CH_3)_2C = C = CH_2$ c) $(CH_3)_2CH - C \equiv CH$ a) $CH_2 = CHCH = CHCH_3$ b) $CH_3(CH_2)_2C \equiv CH$ 168. What are the products obtained by the ozonolysis of $RCH = CR_1R_2$? d) None of these a) $R_1 CH_2 CH_2 R_2$ b) R_2CO c) $R_1 COR_2$ 169. Following compound is treated with NBS -CH₂CH===CH₂ + NBS -Compound formed A is CHCH=CH2 CHCH₂Br a) b) Β̈́r =CH₂ $CH_2CH =$ CH₂CHc) Β̈́r 170. The structural formula of the compound which yields ethylene upon reaction with zinc: b) CHBr₂—CHBr₂ a) $CH_2Br - CH_2Br$ c) CHBr=CHBr d) None of these 171. An alkyne combines with a conjugated diene to give an unconjugated cycloalkadiene. The most likely title of this reaction is a) Schotten-Baumann reaction b) Hofmann-bromamide reaction c) Pinacol-Pinacolone rearrangement d) Deils-Alder reaction 172. The most important method of preparation of hydrocarbons of lower carbon number is: a) Pyrolysis of higher carbon number hydrocarbons b) Electrolysis of salts of fatty acids c) Sabatier-Senderen's reaction d) Direct synthesis 173. The number of carbon atoms in hydrocarbons of kerosene is in the range of: c) $C_1 - C_4$ a) $C_5 - C_7$ b) $C_{12} - C_{16}$ d) $C_{17} - C_{20}$ 174. A mixture of 1-chlorobutane and 2-chlorobutane when treated with alcoholic KOH gives a) 1-butene b) 2-butene c) iso-butylene d) Mixture of 1-butene+2-butene 175. Which of the following react with Cl₂ and Br₂ at room temperature and in the absence of diffused sunlight to produce dihalogen derivatives? a) Cyclobutane b) Cyclopentane c) Cyclohexane d) All of these 176. A compound (X) on ozonolysis followed by reduction gives an aldehyde C₂H₄O and 2-butanone, compound (X) is a) 3-methyl pentene-2 b) 3-methyl pentene-3 c) 3-methyl hexene-3 d) 3-ethyl pentene-3 177. An octane number 100 is given to: a) *n*-hexane b) Iso-octane c) Neopentane d) Neo-octane

d) None of the above			
187. Soda lime is used extensively in decarboxylation re	eaction to obtain alkanes.	Soda lime is:	
a) NaOH b) NaOH and CaO	c) CaO	d) Na ₂ CO ₃	
188. Incomplete combustion of petrol or diesel oil in au	tomobile engines can be b	best detected by testing fuel	
gases for the presence of:			
a) Carbon dioxide and water vapour			
b) Carbon monoxide			
c) Nitrogen oxide			
d) Sulphur dioxide			
189. A compound with molecular formula C_4H_6 may com	itain:		
a) A double bond			
b) Two triple bonds			
c) All single bonds			
a) I wo double bonds or a triple bond			
190. Mustaru gas Is a			
a) Oil gas D) Poisonous gas	c) Fuel gas	d) Life gas	
191. Which of the following is not true?	~	•	
a) Acetylene has a linear structure			
b) Alkynes undergo electrophilic addition, but not	nucleophilic addition read	cuons	
d) There is cn^3 hybridisation in propane			
192 Pure CH, can be obtained by:			
b) $HCOONa + NaOH$		Electrolysis of	
a) $CH_3COONa + BaO$	c) $CH_3COONa + Sodal$	ime d) $HCOONa(aq.)$	
193. Viscosity coefficients of some liquids are given belo	ow,		
Liquid η in	\mathbf{V}'		
millipoise	7		
at 30°C			
CH ₃ (CH ₂) ₃ CH ₃ 2.11			
CH ₃ (CH ₂) ₄ CH ₃ 2.89			
CH ₃ (CH ₂) ₅ CH ₃ 3.68			
The order of viscosity coefficient of the liquids,			
$(A) \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3$			
CH ₃			
(B)CH ₃ -CH ₂ -CH-CH ₂ -CH ₃			
(C) CH_3 -CH-CH-CH ₃			
is			
a) The same b) $(A) > (B) > (C)$	c) (A)<(B)<(C)	d) (A)>(B)=(C)	
194. Action of <i>R</i> Mg <i>X</i> with vinyl chloride gives:			
a) Alkane b) Alkyne	c) Alkene	d) All of these	
195. The following reaction is called	-	-	
a) Michael addition reaction	h) Diels-alder reaction		
c) Wolff-Kishner reaction	d) None of the above		
196. Which branched chain isomer of the hydrocarbon with molecular mass 72u gives only one isomer of mono			

209. Reactivity of tertiary	H, secondary H and primary	H towards elimination is:	
a) Tert. > sec. > pri.	b) Sec. > tert. > pri	c) Sec. > pri. > tert.	d) Pri. > sec. > tert.
210. 1-butyne on hydrat	ion gives		
a) Butyn-1, 2-diol	b) Butan-1-ol	c) Butan-2-ol	d) Butan-2-one
211. The hydration of prop	pyne in the presence of HgSC	0 ₄ /H ₂ SO ₄ produces	
a) HCHO	b) CH ₃ CHO	c) CH ₃ CH ₂ CHO	d) CH ₃ COCH ₃
212. The most reactive hal	ogen in the halogenation of a	alkanes is:	
a) Cl ₂	b) Br ₂	c) I ₂	d) All are equal
213. A gas decolourised	by KMnO ₄ solution but giv	es no precipitate with am	moniacal cuprous chloride
is			
a) Ethane	b) Methane	c) Ethene	d) Acetylene
214. Indane is:			
a) Commercial propa	ne		
b) Commercial isobut	ene and propane mixture		
c) Methane, propane	mixture		$\langle \mathbf{v} \rangle$
d) Butane, ethane mix	kture	Ć	
215. Which reacts with a	mmoniacal AgNO ₃ ?		
a) Propyne	b) 2-butyne	c) 1,3-butadiene	d) Pentene
216. The conversion			
E	Br		
Can be effected using			
a) Br ₂ /CCl ₄		b) Br_2/H_20	
c) Br ₂ /Fe	· · · · · · · · · · · · · · · · · · ·	d) Br/ benzoyl peroxide	
217. Which of the follow	ing cycloalkane gives oper	n chain compound, when i	reacts with bromine?
217. Which of the follow a) Cyclopropane	ing cycloalkane gives oper b) Cyclopentane	n chain compound, when n c) Cyclohexane	reacts with bromine? d) Cyclooctane
217. Which of the follow a) Cyclopropane 218. The addition of HBr t	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence o	n chain compound, when n c) Cyclohexane of peroxide is the example o	reacts with bromine? d) Cyclooctane f
217. Which of the followa) Cyclopropane218. The addition of HBr ta) Electrophilic addit	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction	n chain compound, when n c) Cyclohexane of peroxide is the example o	reacts with bromine? d) Cyclooctane f
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction	n chain compound, when n c) Cyclohexane of peroxide is the example o	reacts with bromine? d) Cyclooctane f
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical addition 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction on reaction	n chain compound, when n c) Cyclohexane of peroxide is the example o	reacts with bromine? d) Cyclooctane f
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additied) The formation of c 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction on reaction arbocation as an intermediat	te	reacts with bromine? d) Cyclooctane f
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additidition b) nucleophilic additidition c) Free radical addition d) The formation of c 219. On mixing a certain a The ollyana could be added and a second addition 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction on reaction arbocation as an intermediat lkane with chlorine and irrac	n chain compound, when n c) Cyclohexane of peroxide is the example o te diating it with UV light, it for	reacts with bromine? d) Cyclooctane f rm one monochloro alkane.
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additidition b) nucleophilic additidition c) Free radical addition d) The formation of c 219. On mixing a certain a The alkane could be a) Noopontane 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac	n chain compound, when n c) Cyclohexane of peroxide is the example o te diating it with UV light, it for	reacts with bromine? d) Cyclooctane f rm one monochloro alkane.
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additidition b) nucleophilic additidition c) Free radical addition d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the following 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane	n chain compound, when n c) Cyclohexane of peroxide is the example o te diating it with UV light, it for c) Pentane	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the weight 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane g statements is true for etha	n chain compound, when n c) Cyclohexane of peroxide is the example o te diating it with UV light, it for c) Pentane ne, ethene and acetylene?	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additidition b) nucleophilic additidition c) Free radical addition d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followind and Acetylene is the word by Acetylene is the state of the	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane g statements is true for etha eakest acid and has the longe	 chain compound, when a c) Cyclohexane of peroxide is the example of peroxide is the	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the wee b) Acetylene is the strong 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane g statements is true for etha eakest acid and has the longer rongest acid and has the longer	 chain compound, when a c) Cyclohexane of peroxide is the example of the example of peroxide is the example of the example o	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additidition b) nucleophilic additidition c) Free radical addition d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followind a) Acetylene is the words b) Acetylene is the strond c) Ethane is the strond 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane g statements is true for etha eakest acid and has the longest congest acid and has the longest gest acid and has the longest gest acid and has the short	 chain compound, when a c) Cyclohexane of peroxide is the example of the example of the example of peroxide is the example of the example of peroxide is the example of peroxide is the example of peroxide is the example of the exa	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the wee b) Acetylene is the strone c) Ethane is the strone d) Ethene is the strone 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrad b) Propane g statements is true for etha eakest acid and has the longer rongest acid and has the longest gest acid and has the shorter gest acid and has the shorter e get:	 a chain compound, when a c) Cyclohexane b Cyclohexane c Cyclohexane c Pertane a c) Pentane b chene and acetylene? c C – H bond distance 	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
 217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additied d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the web b) Acetylene is the strone c) Ethane is the strone d) Ethene is the strone 	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane g statements is true for ethat eakest acid and has the longest congest acid and has the longest gest acid and has the shortes gest acid and has the shortes gest acid and has the shortes	 a chain compound, when a c) Cyclohexane of peroxide is the example of th	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the wo b) Acetylene is the stron c) Ethane is the stron d) Ethene is the stron 221. On cracking petrol wo a) CH_4 b) C_3H_6	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrad b) Propane g statements is true for ethat eakest acid and has the longer ongest acid and has the longes gest acid and has the shorter gest acid and has the shorter e get:	 a chain compound, when a c) Cyclohexane b Cyclohexane b Cyclohexane b Cyclohexane b Cyclohexane b Cyclohexane c Cyclohexane c C) Pentane c C) Pentane ne, ethene and acetylene? est C – H bond distance c C – H bond distance 	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the we b) Acetylene is the stron d) Ethene is the stron d) Ethene is the stron 221. On cracking petrol we a) $C_{3}H_{6}$ c) Both of the above	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane g statements is true for ethat eakest acid and has the longest congest acid and has the longest gest acid and has the shortes gest acid and has the shortes gest acid and has the shortes	 a chain compound, when a c) Cyclohexane of peroxide is the example of the example	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the wo b) Acetylene is the stron c) Ethane is the stron d) Ethene is the stron d) Ethene is the stron a) CH ₄ b) C_3H_6 c) Both of the above d) CH ₃ + CH ₄ + C ₂ H ₆	 ing cycloalkane gives oper b) Cyclopentane co an alkene in the presence of ion reaction on reaction arbocation as an intermediate lkane with chlorine and irrace b) Propane g statements is true for ethate eakest acid and has the longer rongest acid and has the longer gest acid and has the shorter e get: 	 a chain compound, when a c) Cyclohexane b Cyclohexane b Cyclohexane b Cyclohexane b Cyclohexane b Cyclohexane c Cyclohexane c C) Pentane ne, ethene and acetylene? c C - H bond distance 	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the we b) Acetylene is the stron d) Ethene is the stron d) Ethene is the stron 221. On cracking petrol we a) CH ₄ b) C ₃ H ₆ c) Both of the above d) CH ₃ + CH ₄ + C ₂ H ₆ 222. Methyl bromide is c	 ing cycloalkane gives oper b) Cyclopentane co an alkene in the presence of ion reaction on reaction arbocation as an intermediate lkane with chlorine and irrace b) Propane g statements is true for ethate eakest acid and has the longest congest acid and has the longest gest acid and has the shortes e get: + alcohols converted into ethane by h 	 a chain compound, when a c) Cyclohexane of peroxide is the example of the exam	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane
217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the stron d) Ethene is the stron d) Ethene is the stron c) Ethane is the stron d) Ethene is the stron d) Ethene is the stron c) Both of the above d) CH_4 b) C_3H_6 c) Both of the above d) $CH_3 + CH_4 + C_2H_6$ 222. Methyl bromide is c a) Al	 ing cycloalkane gives oper b) Cyclopentane co an alkene in the presence of ion reaction on reaction arbocation as an intermediate lkane with chlorine and irrace b) Propane g statements is true for ethate eakest acid and has the longest congest acid and has the longest acid and has the longest acid and has the shortest e get: + alcohols converted into ethane by h b) Zn 	 a chain compound, when a c) Cyclohexane of peroxide is the example of the exam	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane with d) Cu
217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the we b) Acetylene is the stron d) Ethene is the stron d) Ethene is the stron 221. On cracking petrol we a) CH ₄ b) C ₃ H ₆ c) Both of the above d) CH ₃ + CH ₄ + C ₂ H ₆ 222. Methyl bromide is c a) Al 223. The addition of oxyge	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrac b) Propane g statements is true for ethat eakest acid and has the longes congest acid and has the longes gest acid and has the shortes e get: + alcohols converted into ethane by h b) Zn en gas to reaction mixture of	a chain compound, when a c) Cyclohexane of peroxide is the example of c) Pentane ne, ethene and acetylene? est C – H bond distance tc – H bond distance tc – H bond distance st C – H bond distance st C – H bond distance of c) Na chlorine and methane (photometric) Na chlorine and methane (photometric) contacts and c	reacts with bromine? d) Cyclooctane f rm one monochloro alkane. d) Isopentane d) Isopentane with d) Cu tochemical chlorination):
217. Which of the follow a) Cyclopropane 218. The addition of HBr t a) Electrophilic additi b) nucleophilic additi c) Free radical additi d) The formation of c 219. On mixing a certain a The alkane could be a) Neopentane 220. Which of the followin a) Acetylene is the wo b) Acetylene is the stron d) Ethene is the stron d) Ethene is the stron 221. On cracking petrol wo a) CH ₄ b) C ₃ H ₆ c) Both of the above d) CH ₃ + CH ₄ + C ₂ H ₆ 222. Methyl bromide is c a) Al 223. The addition of oxyge a) Accelerates the rea	ing cycloalkane gives oper b) Cyclopentane to an alkene in the presence of ion reaction on reaction arbocation as an intermediat lkane with chlorine and irrad b) Propane g statements is true for ethat eakest acid and has the longer rongest acid and has the longer agest acid and has the longer gest acid and has the shorter e get: + alcohols converted into ethane by h b) Zn en gas to reaction mixture of action	a chain compound, when a c) Cyclohexane of peroxide is the example of c) Pentane ne, ethene and acetylene? est C - H bond distance est C - H bond distance for test C - H bond distance st C - H bond distance st C - H bond distance for c) Na chlorine and methane (photometric) Na chlorine and methane (photometric) contact contac	 reacts with bromine? d) Cyclooctane f m one monochloro alkane. d) Isopentane with d) Cu tochemical chlorination):

c) Has no effect on t	he rate of reaction			
d) May accelerate or retard the reaction depending upon the amount of oxygen				
224. Order of reactivity	of C_2H_6 , C_2H_4 and C_2H_2 is	3		
a) $C_2H_6 > C_2H_4 >$	C_2H_2	b) $C_2H_2 > C_2H_6 > C_2$	H ₄	
c) $C_2H_4 > C_2H_2 >$	C_2H_6	d) All are equally rea	ctive	
225. Bacterial decomposi	tion of cellulose material pr	esent in sewage water gives	:	
a) H ₂	b) CH ₄	c) 0 ₂	d) N ₂	
226. The reaction, CH_3Br	+ Na →Product, is called			
a) Perkin reaction	b) Levit reaction	c) Wurtz reaction	d) Aldol condensation	
227. <i>Meso</i> -dibromobut	ane on debromination giv	es		
a) <i>trans</i> -2-butene	b) <i>cis</i> -2-butene	c) 1-butene	d) 1-butyne	
228. CH \equiv CH + HBr \rightarrow	X, product X is			
a) Ethylene bromic	le	b) Vinyl bromide		
c) Bromo ethane		d) Ethyledine bromic	le	
229. Kolbe's synthesis of	sodium salt of butanoic acid	gives:	\mathbf{X}	
a) <i>n</i> -hexane	b) Isobutane	c) Butane-1	d) Ethylene	
230. The compound form	ed when silver powder is he	eated with chloroform:		
a) CH_4	$b J C_2 H_2$	C) L_2H_4	$d \int C_2 H_6$	
231. The reaction of tolue	ene with chlorine in the pres	b) Bonzyl chlorido	predominanciy	
c) Benzovi chloride		d) a and n-chlorotolue	ne	
232. Which of the follow	ving will vield <i>trans</i> prod	uct from butyne?	iic	
252. Which of the follow	h) Na/Lia NH.	c) NaBH	d) Ni catalyst	
233 A hydrocarbon of r	nolocular formula C.H., r	eacts with sodamide and	the same on ozonolysis	
followed by hydror	nonceular formula $c_{6}n_{10}$	ves two molecules of carb	avulic acids one being	
ontically active Th	on the hydrocarbon may	ho	oxylic actus, one being	
a) 1-hovymo	en, the nythotal bon may	h) 3-hovma		
a) 1-nexyne c) 2-mothyl-1-popt		d) 2 3-dimothyl-1-hu	timo	
234 Which of the followi	ng is not correct about the r	a) 5,5-unneuryr-1-bu	tyne	
Na	l(aq)			
$CH_2 = CH_2 + Br_2 - $	\rightarrow ?			
a) The products form	ned are CH ₂ BrCH ₂ Br and CF	12BrCH21		
c) The reaction occu	ws polar mechanism	catalyzed by inorganic balid	05	
d) CH_ICH_I is form	ed only	catalyseu by morganic nanu	65	
235. During ozonolysis of	$f_{CH_2} = CH_2$ if hydrolysis is 1	made in absence of Zn dust t	he products formed are:	
a) HCHO	b) HCOOH	c) CH₃OH	d) CH ₂ OHCH ₂ OH	
236. The formation of but	tane on heating C_2H_5I with N	Na in presence of ether is con	ntaminated with impurities of:	
a) C_2H_4	b) C ₃ H ₆	c) CH ₄	d) None of these	
237. When sodium prop	pionate is heated with sod	a-lime, the product forme	d is	
a) Methane	b) Ethane	c) Ethene	d) Ethyne	
238. Isopropyl bromide	on Wurtz reaction gives			
a) Hexane	_	b) Propane		
c) 2,3-dimethyl bu	tane	d) <i>neo</i> -hexane		
239. Which one of the fo	ollowing has the minimun	n boiling point?		
a) <i>n</i> -butane	b) 1-butyne	c) 1-butene	d) <i>Iso-</i> butene	
240. The substance that y	yould not at all be formed du	uring the reaction of methan	e and chlorine in the presence	
	voula not at an be formed at			
of sunlight is:			1	

255. As compared to melting points of even carbon chain isomers, the melting points of odd carbon chain alkanes are:

- a) Lower
- b) Higher
- c) Same

d) Not depend upon branching 256. Ph – C \equiv C – CH₃ $\xrightarrow{\text{Hg}^{2+}/\text{H}^{+}}$ A, Cŀ a) c) d) 257. In the reactions, $\frac{\text{Lindlar catalyst/H}_2}{\text{H}_2} RC \equiv CR \xrightarrow[\text{H}_2]{\text{Na/NH}_3} A$ B ↔ A and B are geometrical isomers. Then, b) A is trans and B is cis a) *A* is *cis* and *B* is *trans* d) A and B are trans c) A and B are cis 258. Identify '*A*' in the reaction: CH₂Br $Br - CH_2 - C - CH_2Br \xrightarrow{Zn/\Delta}_{A}$ $CH_3 - C = CH_2$ \downarrow $CH = CH_2$ d) $CH_3C \equiv CH = CH_2$ a)

259. Choose the correct statement

- a) Acetylene is more reactive than ethylene to an electrophilic attack
- b) Acetylene and ethylene show similar reactivities towards an electrophilic attack with different rates
- c) The reactivities of acetylene and ethylene towards an electrophilic attack depend on the electrophilic reagent

d) Acetylene is less reactive than ethylene to an electrophilic attack

^{260.} C₆H₅CH₃
$$\xrightarrow{\text{CrO}_2\text{Cl}_2}$$

In the given sequence, Z is a) Benzaldehvde b) Toluic acid c) Phenyl acetic acid d) Benzoic acid 261. 2-hexyne can be converted to trans-2-hexene by the action of: a) $H_2 - Pd/BaSO_4$ b) Li/Liq. NH₃ c) $H_2 - Pt O_2$ d) NaBH₄ 262. In the following reaction, $RCH_2CH = CH_2 + ICI \rightarrow [A]$ Markownikoff's product [A] is $RCH_2CH - CH_2I$ $RCH_2CH - CH_2CI$ a) b) Cl I $RCH_2 - C = CH_2$ d) $RCH = CH - CH_2I$ c)

263. Which of the following will not produce ethane?

a) Reduction of CH ₃ COOH with HI and red P					
b) Reduction of CH ₃ COCH ₃ with HI and red P					
c) Sodalime decarboxylation of sodium probionate	c) Sodalime decarboxylation of sodium probionate				
d) Hydrogenation of ethane in presence of Raney-	Ni				
264. Which will not react with acetylene?					
a) NaOH b) Na	c) HCl	d) Amm. AgNO ₃			
265. Ozonolysis of an organic compounds gives for	maldehyde as one of the	products. This confirms			
the presence of					
a) Two ethylenic double bonds	b) A vinvl group	· · ·			
c) An iso-propyl group	d) An acetylenic triple	hond			
266 Among the paraffins it is generally found that with	a) increase in the molecul	ar weight:			
a) The freezing point decreases	an mercase in the molecul				
h) The hoiling point decreases					
c) The boiling point decreases					
d) The vanour density degrapses					
a) The vapour density decreases					
267. Which of the following reactions can be used to pr	epare methane?				
a) Clemmensen reduction	1	>			
b) wurtz reaction					
c) Reduction of $CH_2 = CH_2$ by $LiAIH_4$					
d) Reduction of methyl iodine by using a zinc-copp	ber couple				
268. Ethylene reacts with dil. H_2SO_4 in presence of HgS	O_4 to give:				
a) Ethanal b) Ethanol	c) Ethane	d) Ethene			
269. Household gas or liquefied petroleum gas (L.P.G.)	mainly contains:				
a) Methane and ethane	$\mathcal{X}\mathcal{Y}$				
b) Liquefied butane and isobutene					
c) Ethylene and CO	Y				
d) C_2H_2 and H_2					
270. Which one of the following gives, on ozonolysi	s, both aldehydes and ke	tones?			
a) $Me_2C = CHMe$	b) $Me_2C = CMe_2$				
c) MeCH ₂ – C(Me) = CMe ₂	d) MeCH(Me) $-$ CH =	СНМе			
271. Which among the following give alkanes on reduct	ion?				
a) Aldehvdes b) Ketones	c) Carboxylic acids	d) All are correct			
272. Lewisite (a war gas) is an compound.	-)				
a) Organosulphur b) Organoarsenic	c) Organoantimony	d) Organophosphorus			
273. In the following reaction	e) erganoanonionj	a) - 19anoprooprootao			
H ₂ O					
$C_2H_2 \xrightarrow{H_gSO_4/H_2SO_4} X \rightleftharpoons CH_3CHO$. What is X?					
a) (H_0, H_0, H_0, H_0) (H ₀ = 0 = (H_0, H_0)	c) ርዘ _ግ ርዘግርዘዐ	d) $CH_{a} = CHOH$			
274 Compound (4) on oxidation with $0s0$. /NaIO, give	s Hevanedinal Structure o	$f_{\text{compound}}(A)$ will be			
274. compound (11) on oxidation with 0304 /waro4 give	is nexalectinal. Ser detare o	CH ₂			
	CH3				
(a) [] b) []	c)	d)			
\rightarrow \sim		CH ₃			
275. Major product of the following reaction is:					
Br					
$CH_3 - C - CH_2 - CH_3 + Alc.KOH \longrightarrow ?$					
a) Butene-1 b) Butene-2	c) Butane	d) Butyne-1			
276. The compound formed as a result of ovidation	of ethyl henzene hv KMr	10. is			
=, or the compound for med as a result of oxidation	or cury benzene by RMI	104 15			

a) Benzophenone	b) Acetophenone	c) Benzoic acid	d) Benzyl alcohol
277. Methane reacts with	conc. HNO ₃ at high temperat	ure to yield:	
a) CO_2 and H_2O	b) HCHO	с) НСООН	d) CH ₃ NO ₂
278. Butyne-1 and butyne	-2 can be distinguished by:		
a) Br ₂ , CCl ₄			
b) H_2 , Lindler catalys	st		
c) Dilute H_2SO_4 , HgS	04		
d) Ammoniacal cupr	ous chloride		
279. An isolated alkadien	e is:		
a) Penta-1,4-diene	b) Penta-1,3-diene	c) Penta-1,2-diene	d) None of these
280. CH C - C CH	Lindlar's catalyst		
$UH_3 - U = U - UH_3 - U = U - U - UH_3 - U = U - U - U - U - U - U - U - U - U$	$\rightarrow A$, the composition A , the composition A	ound A is	d) 1 hutono
a) <i>cis-2-</i> Dutelle	b) <i>ti uits</i> -2-butelle	cj iso-butene	Wurtz reaction?
201. Il a liaiogen compour	b) No		d)
a) Its 202 Deduction of 2 butur	b) NO	c) -	uje
202. Reduction of 2-butyr	h) $T_{rang} 2$ by topo	a) No reaction	d) Cia 2 hutana
a) <i>n</i> -butane	b) Irans-2-butene	c) No reaction	d) <i>cis-2</i> -butene
265. Phenyi magnesium	bromide reacts with meth	anoi to give	
a) A mixture of anis	sol and Mg(OH)Br	b) A mixture of benze	ene and Mg(OMe)Br
c) A mixture of tolu	iene and Mg(OH)Br	d) A mixture of phen	ol and Mg(Me)Br
284. Iso-octane is added t	o petrol:		
a) To precipitate ino	rganic material		
b) To prevent freezir	ng of petrol		
c) To increase the bo	oiling point of petrol	$\langle X \rangle$	
d) To increase octan	e number 🔨 🔨		
285. When cyclohexane is	poured on water, it floats, be	cause:	
a) Cyclohexane is in	'boat' form		
b) Cyclohexane is in	chair' form		
c) Cyclohexane is in	crown' form		
d) Cyclohexane is les	s dense than water		
286. Ethylene reacts with	1% cold alkaline KMnO ₄ (Ba	eyer's reagent) to form:	
a) Oxalic acid	b) Acetic acid	c) Glycerol	d) Glycol
287. The reagent that wo	ald effect the following transf	ormation is:	
$C_6H_5 - CH = CH - N$	$IO_2 \rightarrow C_6H_5CH_2 - CH_2 - NO_2$:	
a) NaBH ₄ in alcohol	b) $[(C_6H_5)_3P]_3RhCl/H_2$	c) LiAlH ₄	d) All of these
288. How many primary a	nd tertiary carbon atoms are	present in	
$CH_3 - CH - CH_3 ?$			
CH ₂			
a) $3n$ 1t	b) 2 <i>n</i> , 2 <i>t</i>	c) 1 <i>n</i> . 3 <i>t</i>	d) None of these
289. Which of these will n	ot react with acetylene?	0) 20,00	
a) NaOH	b) Amm. AgNO ₂	c) Na	d) HCl
290. The catalytic hydrog	enation is more easier in case	of which alkene?	
R_{χ}		P R	P $\langle R$
	b) $(-c)^{n}$	$c) \sim c^{-1}$	
R		R	R
291. Addition of hydrogen	on C=C is called hydrogenat	ion. Addition of halogen of	C = C is called:
a) Halogenation	i on o o io cancu ny ai ogenat	asin maanton of halogen of	
b) Dehalogenation			

- c) Elimination of halogen
- d) None of these

292. The synthetic gas is: a) CH₄ b) C_2H_2 c) $CO + 3H_2$ d) NH_3 293. Toluene on treatment with CrO_3 and $(CH_3CO)_2O$ followed by hydrolysis with dil. HCl gives c) Phenol d) Phenylacetaldehyde a) Benzaldehyde b) Benzoic acid 294. Identify the product (*P*) in the reaction: $R_3C \longrightarrow H \xrightarrow{\text{Alk.KMnO}_4} P$ a) No reaction b) $R_3C - CR_3$ c) $R_3C - OH$ d) $R_3C - O - CR_3$ 295. Gem dihalides on treatment with alcoholic KOH give a) Alkyne b) Alkene c) Alkane d) All of these 296. The presence of Ag⁺ ion increases the solubility of alkenes due to the formation of a) $d\pi - d\sigma$ bonding b) $p\sigma - p\pi$ bonding c) $p\pi - d\pi$ bonding d) $p\pi - d\sigma$ bonding 297. Acetylene and HCHO react in presence of copper acetylide catalyst to form a) 1-butyne-1,4-diol b) 2-butyne-1,2-diol c) 2-butyne-1,4-diol d) None of these 298. Decarboxylation of isobutyric acid leads to: a) Isobutene b) Propane c) Butane d) None of these 299. In the addition of HBr to propene in the absence of peroxides the first step involves the addition of: a) H+ b) Br⁻ c) H° d) Br 300. The IUPAC name of $-C \equiv C - CH_3$ group is: b) Prop-2-envl a) Prop-2-ynyl d) None of these c) Prop-1-ynyl 301. Pure methane can be produced by b) Kolbe's electrolytic method a) Wurtz reaction c) Soda lime decarboxylation d) reduction with H₂ 302. What are X and Y respectively, in the following reaction? $Z - \text{product} \xleftarrow{Y} 2 - \text{butyne} \xrightarrow{X} E - \text{product}$ a) Na/NH₃(liq.) and Pd/BaSO₄ + H₂ b) Ni/140°C and Pd/BaSO₄ + H_2 c) Ni/140°C and Na/NH₃(liq.) d) $Pd/BaSO_4 + H_2$ and $Na/NH_3(liq.)$ 303. When a mixture of methane and oxygen is passed through heated molybdenum oxide, the main product formed is b) Ethanal a) Methanoic acid c) Methanol d) Methanal 304. Propyne and propene can be distinguished by b) Br_2 in CCl_4 a) conc. H_2SO_4 c) alk. KMnO₄ d) AgNO₃ in NH_3 305. Conformation in molecules is due to: a) Rotation about a single bond b) Change in direction of light c) Structural changes d) Restricted rotation about a double bond 306. The non-aromatic compound among the following is b) c) Θ 307. Kerosene is a mixture of: c) Alkynes a) Alkenes b) Alkanes d) Arenes 308. Which of the following alkenes is most stable? a) $R_2 C = C R_2$ b) R— CH = CH— Rc) $RCH = CH_2$ d) $CH_2 = CH_2$ 309. What is obtained when chlorine is passed in boiling toluene and product is hydrolysed? b) p-cresol a) o-cresol

c) 2,4-dihydroxytoluene d) Benzyl alcohol 310. It is necessary to use.....in the iodination of alkane. b) Oxidant a) Alcohol c) Benzene d) Reductant 311. Ozonolysis of propyne gives: a) CH₃CHO b) CH₃COCHO c) HCHO d) CHOCHO-312. Reactivity of alkenes towards HX decreases in the order: a) Butene>propene>ethene b) Butene>ethene>propene c) Ethene>propene>butene d) None of the above 313. Propyne on oxidation with SeO_2 gives: c) CH₃COCHO d) CHOCH₂C a) CHOCHO b) CH₃CH₂CHO 314. 2-methylbutane on reacting with bromine in the presence of sunlight gives mainly b) 2-bromo 3-methylbutane a) 1-bromo 3-methylbutane c) 2-bromo 2-methylbutane d) 1-bromo 2-methylbutane 315. The product of following reaction is, CH₃ (i) Hg (CH₃COO)₂;THF CH₃-C-CH=CH₂ (ii) NaBH₄+NaOH CH₃ CH₃ CH₃ CH₂ L a) ^{CH}₃-C -CH-CH₃ -CH₂-CH₂OH -CH₂-CH₂ CH₃OH CH CH-CH₃ 316. Which statement is correct? a) Alkanes are called paraffins because of their little chemical affinity b) Alkanes have only sigma bonds c) Most abundant alkane is CH₄ d) All are correct 317. An activating group a) actinates only ortho and para positions b) Deactivates meta position c) activates ortho and para more than meta d) Deactivates meta more than ortho and para 318. An alkyl bromide, RBrof molecular weight 151 is the exclusive product of bromination of which hydrocarbon? a) Dodecane b) 2, 2-dimethylpropane c) 2, 2-dimethylhexane d) 2, 2, 3-trimethylheptane 319. The conversion of liquid hydrocarbon into a mixture of gaseous compounds by heat alone is known as: a) Hydrolysis b) Reduction c) Oxidation d) Cracking 320. Ethyl benzene cannot be prepared by a) Wurtz reaction b) Wurtz-Fittig reaction c) Friedel-Craft's reaction d) Clemmensen reduction 321. Silver acetylide when heated with HCl gives: \sim a) C₂H₂ b) H_2 c) C_2H_4 d) C_6H_6 322. The addition of HCl to 3, 3, 3-trichloropropene gives d) Cl₂CHCH(Cl)CH₂Cl c) $Cl_2CHCH_2CHCl_2$ a) $Cl_3CCH_2CH_2Cl$ b) Cl₃CCH₂CHCl₂ 323. Sodium ethoxide is specific reagent for: a) Dehydration b) Dehydrohalogenation c) Dehydrogenation d) Dehalogenation

c) 1-bromo-2-butene under thermodynamically controlled conditions

d) 3-bromobutene under kinetically controlled conditions

352. Which of the following compound is aromatic?

379. Poisonous gases are: a) Phosgene b) Lewisite c) Mustard gas d) All of these 380. A chlorohydrocarbon, named chlorodane is used especially as: a) Insecticide b) Anti-worm c) Fungicide d) Anti-termite 381. The highest boiling point is expected for a) iso-octane b) *n*-octane c) 2, 2, 3, 3-tetramethyl butane d) n-butane 382. The addition of tetraethyl lead of petrol: a) Lowers its octane number b) Raises its octane number c) May raise or lower the octane number d) Has no effect on octane number 383. Which of the following reactions will give an alkyne? a) $CH_3CBr_2CHBr_2 \xrightarrow{Zn/alc.}$ b) CH₃CH₂CHBr₂ NaNH₂ d) All of the above c) CH₃CHBrCH₂Br -384. Which one among the following is assigned an octane number of zero? a) Iso-octane b) *n*-heptane c) Isoheptane d) 2-methyloctane 385. The process where straight run gasoline is cracked in order to increase octane number is called: a) Aromatization b) Rearrangement c) Substitution d) Reforming 386. The treatment of aluminum carbide with water or dilute acid produces a) acetylene b) ethene c) methane d) ethane 387. When acetylene is passed through red hot iron tube, compound X is formed. Which one of the following reactions will yield *X* as the major product? Distillation b) $C_6H_5SO_3H$ + NaHCO₃ → a) $C_6H_5OH + Zn$ d) $C_6H_5Cl + H_2O \xrightarrow{\Delta}$ c) $C_6H_{12} + 3H_2$ 388. In the reaction $H \quad \text{Sodalime}$ $\rightarrow B \quad -- C_6H_5CH_3 \xrightarrow{Oxidation} A$ NaOH Identify *C* is a) C_6H_5OH c) C_6H_5COONa d) C_6H_5ONa b) C₆H₆ 389. The major product formed when a 3, 3-dimethyl butan-2-ol is heated with concentrated sulphuric acid, is a) 2,3-dimethyl-2-butene b) 2,3-dimethyl-1-butene c) 3,3-dimethyl-1-butene d) cis and trans isomers of 2,3-dimethyl-1-butene 390. Most of the hydrocarbons from petroleum are obtained by: a) Fractional distillation b) Fractional crystallization c) Vaporisation d) Polymerization 391. Cyclopentadienyl anion is c) Non-planar d) Aliphatic a) Aromatic b) Non-aromatic 392. Ozonolysis of buta-1,3-diene gives: a) HCHO and glyoxal b) CH₃CHO and glyoxal c) CO₂ and glyoxal d) HCHO+glyoxal+CH₃CHO 393. Which is not true in the case of natural gas?

a) It is a fuel

b) It is used in the manufacture of fertilizer

c) It is a mixture of CO_2 and H_2

d) It is a mixture of gaseous hydrocarbons

394. Wurtz reaction using bromoethane yields:

a) 2-bromobutane b) *n*-butane c) Isobutene d) Ethane 395. Which of the following compounds is not aromatic? a) b) c) 396. Which products are formed during the addition of Br₂on ethylene in presence of aqueous NaNO₃solution? a) $CH_2Br. CH_2ONO_2$ b) CH₂Br. CH₂Br c) $CH_2(ONO_2)$. CH_2ONO_2 d) Both (a) and (b) 397. Alkanes containing.....carbon atoms are converted into an aromatic hydrocarbon, when heated in presence of Cr_2O_3 on Al_2O_3 a) 6 to 10 b) 4 to 8 c) 3 to 6 d) 5 to 6 398. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH solution gives a) o-cresol b) p-cresol d) 2,4-dihydroxytoluene c) Benzoic acid 399. Toluene can be converted into benzaldehyde by oxidation with b) CrO_2Cl_2 a) KMnO₄/alkali c) $K_2Cr_2O_7/H_2SO_4$ d) $0_2/V_20_5$ $^{400.}\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}\equiv\mathrm{CH}$ The compound *A* is Ш b) $CH_3 - CH_2 - CH_2 - CHO$ a) $CH_3 - CH_2 - C - CH_3$ c) $CH_3 - CH_2 - CH_2 - COOH$ d) None of the above 401. When acetylene is passed through dil. H_2SO_4 in presence of $HgSO_4$, the compound formed is b) Acetaldehyde c) Acetic acid a) Ether d) Ketone 402. The reagent used for dehydration is: a) Conc. H₂SO₄ c) Al_2O_3 d) All of these b) $P_2 O_5$ 403. A hydrocarbon has the formula C₃H₄. To find out whether it contains two double bonds or triple bonds, the following test is performed: a) Passed through ammoniacal AgNO₃ b) Treated with Baeyer's reagent c) Treated with Fehling's solution d) Treated with Br₂ water 404. The chemicals and the reaction conditions required for the preparation of ethane are a) C_2H_5I , Zn - Cu, C_2H_5OH b) CH_3Cl , Na, H_2O c) KOOC - CH = CH - COOK, electrolysis d) CH_3CO_2Na , NaOH, CaO, Δ 405. Formation of alkane by the action of zinc on alkyl halide is called a) Wurtz reaction b) Kolbe's reaction c) Ulmann's reaction d) Frankland reaction 406. The two carbon atoms marked by asterisk in

 $H_3C - \overset{*}{C} \equiv \overset{*}{C} - CH_3 possess$

	the following type of hybridisation:			
	a) sp^3 b) sp^2	c) <i>sp</i>	d) <i>s</i>	
407.	$CH_3 - C \equiv C - CH_3 \xrightarrow{(i) x} (ii)Zn/H_2O$			
	$\begin{array}{c} CH_3 - C - C - CH_3 \\ \ & \ \\ O & O \end{array}$			
	In the above reaction <i>x</i> is.			
	a) HNO_3 b) O_2	c) 0 ₃	d) KMnO ₄	
408.	Temperature of oxyacetylene flame is:			
	a) 2549°C b) 2400°C	c) 2700°C	d) 3000 to 3500°C	
409.	Benzene can be obtained by heating either b	enzoic acid with X or pher	ol with Y.X and Y are	
	respectively			
	a) Zinc dust and soda lime	b) Soda lime and zinc	dust	
	c) Zinc dust and sodium hydroxide	d) Soda lime and copp	ber	
410.	Hydrocarbon reacts with metal by displacing the	e H-atom is:	X	
	a) CH_4 b) C_2H_6	c) C ₂ H ₄	d) C_2H_2	
411.	Petroleum is a mixture of:		<u> </u>	
	a) Aromatic hydrocarbons with small amounts o	of aliphatic compounds		
	b) Allphatic hydrocarbons with small amounts of allphatic and aron	f aromatic compounds		
	d) Alcohols and fatty acids	natic flyurocar bolis		
412	The reduction of an alkyne to alkene using Lindl	ar catalyst result into		
112.	a) <i>cis</i> addition of hydrogen atoms			
	b) <i>trans</i> addition of hydrogen atoms			
	 A mixture obtained by <i>cis</i> and <i>trans</i> additions of hydrogen atoms which are in equilibrium with each other 			
	d) A mixture obtained by <i>cis</i> and <i>trans</i> addition	s of hydrogen atoms which a	re not in equilibrium with	
413.	Which molecule will undergo radical formation of	oxidation reaction most read	ily?	
	a) CH ₃ CH ₂ CH ₃ b) CH ₃ CH ₂ CH ₂ CH ₃	c) (CH ₃) ₃ CH	d)	
414.	Which of the following is expected to be aromati	c?		
	+	H		
	a) b) b	c)	d) 👢 🚽 +	
415.	Aniline is treated with a mixture of sodium n	utrite and hypophosphoru	s acid, the product formed	
	is	intrite and hypophosphora		
~	a) Aniline diazonium hypophosphate	h) Benzene		
\mathbf{C}	c) Anilinium hynophosphite	d) Aniline diazonium	hynophosphite	
416	Hexachloroethane is also called		nypophosphice	
1201	a) DDT b) TNT	c) Artificial camphor	d) BHC	
417.	In presence of nickel cyanide, acetylene gives	· 1	·	
	a) Benzene b) Cyclooctatetraene	c) Cyclohexatriene	d) Cyclobutadiene	
418.	Conjugated double bonds are present in:			
	a) Propylene b) Isobutylene	c) Butylene	d) 1,3-butadiene	
419.	Normal alkanes can undergo sulphonation if the	y contain:		
	a) 4 carbon atoms			

b) 5 carbon atoms c) At least 6 carbon atoms d) 3 carbon atoms 420. $CH_3C \equiv C - CH_3 \xrightarrow{(I) X} CH_3 - C - C - CH_3$ In the above reaction, *X* is a) HNO_3 b) 0_{2} c) 0_3 d) KMnO₄ 421. The dehydrohalogenation of neopentyl bromide with alcoholic KOH gives mostly: b) 2,2-dimethyl-1-butene c) 2-methyl-2-butene a) 2-methyl-1-butene d) 2-butene 422. What is obtained, when ammoniacal AgNO₃ reacts with acetylene? a) Propanone b) Silver acetylide c) Ethylene d) None of these 423. Which of the following liberates methane on treatment with water? a) Silicon carbide b) Calcium carbide c) Beryllium carbide d) Magnesium carbide 424. Which statement is correct? a) Chloroacetic acid is less acidic than acetic acid because chlorine atom has-/effect b) The greater the branching in a paraffin the lower is its b.p. c) Kjeldahl's method is used for the estimation of chlorine d) All of the above 425. The most stable conformational isomer of cyclohexane is: c) Half chair form a) Chair form b) Boat form d) Twisted form 426. In the following reaction sequences, $Cl - Cl \rightarrow \dot{C}l + \dot{C}l$ (1) Ċl−CH₄→ ĊH₃+HCl (3) $\dot{C}H_3 + \dot{C}I_2 \longrightarrow \dot{C}H_3 + CI + \dot{C}I$ $\dot{C}H_3 + \dot{C}H_3 \longrightarrow CH_3 - CI_3$ the termination step is: a) Reaction 1 b) Reaction 2 c) Reaction 3 d) Reaction 4 427. Which of the following is elimination reaction? a) $CH_3CH_2OH \rightarrow CH_2 = CH_2 + H_2O$ b) $CH_3CH_2Br \rightarrow CH_2 = CH_2 + HBr$ c) Br— CH_2 — CH_2 — $Br \xrightarrow{Zn} CH_2 = CH_2 + ZnBr_2$ d) All of the above are correct 428. CH = CH $\xrightarrow{O_3/NaOH} X \xrightarrow{Zn/CH_3COOH} Y. Y$ is: a) $CH_2OH - CH_2OH$ b) CH₃CH₂OH c) CH₃COOH d) CH₃OH 429. Baeyer's reagent is used in the laboratory for: a) Detection of double b) Detection of glucose d) Oxidation c) Reduction bonds 430. Product formed on electrolysis of potassium salt of fumaric and maleic acid is a) Ethane b) Ethene c) Ethyne d) Methane 431. The product '*X* in the following reaction is CH₃—CH=CH₂ + ____N—Br— Br a) $CH_3Br - CH = CH_2$ b) $CH_3 - C = CH_2$

c) $CH_3CH = CHBr$

432. Observe the following reactions and predict the nature of *A* and *B*.

445. Which does not react with chlorine in dark? d) CH₃CHO a) CH₄ b) C_2H_2 c) C_2H_4 446. The ozonolysis of isobutene gives: a) CH₃CHO b) CH₃COCH₃ and HCHO c) CH₃CH₂OH d) CH_3OH 447. Which compound on reductive ozonolysis forms only glyoxal? b) Ethene c) Ethane d) 1,3-butadiene a) Ethyne 448. The reaction, $-CH_3 \xrightarrow{H_2SO_4} CH_3 -$ CH₃is the example of: d) Decomposition a) Sulphonation b) Dehydration c) Alkylation 449. The catalyst used in the manufacture of polythene by Ziegler method is: a) Titanium tetrachloride and triphenyl aluminium b) Titanium tetrachloride and trimethyl aluminium c) Titanium dioxide d) Titanium isopropoxide CH₃ 450. On reductive ozonolysis yields a) 6-oxoheptanal b) 6-oxoheptanoic acid d) 3-hydroxypentanal c) 6-hydroxyheptanal 451. The treatment of CH_3MgX with $CH_3C \equiv C - H$ produces Н Η a) $CH_3 - CH = CH_2$ b) $CH_3C \equiv C - CH_3$ c) d) CH₄ $CH_3 - C = C - CH_3$ 452. 1,3-butadiene has: a) Only *sp*-hybridised C-atoms b) Only *sp*²-hybridised C-atoms c) sp, sp^2 and sp^3 -hybridised C-atoms d) Sp and sp^2 -hybridised C-atoms 453. Chloroform, on warming with Ag powder gives b) C_2H_6 a) C_2H_6 c) C_2H_4 d) C_2H_2 454. By Wurtz reaction, a mixture of methyl iodide and ethyl iodide gives a) Butane b) Ethane c) Propane d) A mixture of the above three 455. The following reaction is an example of, $C_3H_8 + 2Cl_2 \xrightarrow{\text{Light}} C_3H_6Cl_2 + 2HCl$ a) An addition reaction b) A substitution reaction c) An elimination reaction d) None of the above 456. Acetylene on passing into excess of HOCI solution forms: a) Ethylene chlorohydrin b) Acetaldehyde c) Dichloroacetaldehyde d) Methyl chloride
457. Ethylene forms ethylene chlorohydrin by the action of: a) Dry chlorine gas b) Dry hydrogen chloride gas c) Solution of chlorine gas in water d) Dilute hydrochloric acid 458. Which one of the following has the smallest heat of hydrogenation per mole? b) Trans-but-2-ene c) Cis-but-2-ene a) 1-butene d) Buta-1, 3-diene 459. $\xrightarrow{O_SO_4}_{H_2O_2} A, A \text{ is}$ c) Both (a) and (b) d) None of these a) meso diol b) Racemic diol 460. Which of the following characteristic apply both to ethane and ethyne? a) Explode when mixed with chlorine b) Decolourise Baeyer's reagent giving brown precipitate c) Rapidly absorbed by cold conc. H_2SO_4 d) Form white precipitate with AgNO₃ solution 461. Conjugated double bond is present in: c) 1,3-butadiene a) Propylene b) Isobutylene d) Butylene 462. The reactivities of ethane, ethylene and acetylene are of the order a) Ethane<ethene<ethyne b) Ethane <ethyne<ethene d) Any of the above c) Ethyne = ethene> ethane 463. Which is not linked with methane? c) Producer gas b) Natural gas d) Coal gas a) Marsh gas 464. Acetylene can be obtained by the reaction? a) HCOOK Electrolysis b) $CHI_3 + Ag \xrightarrow{\Delta}$ c) $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}{443 \text{ K}}$ d) Be₂C + H₂O \rightarrow 465. Wet ether is not used as a solvent in Wurtz reaction, because the water present in it a) Hydrolyses RX to ROH b) Reduces RX to RH c) Destroy the Na metal d) Reacts with R - R466. When excess of C₆H₆ reacts with CH₂Cl₂ in presence of anhydrous AlCl₃, the following compound is obtained CHCl₂ b) 467. The product formed during the reaction, $CH \equiv CH + NaOCl \xrightarrow{0^{\circ}C} is:$ a) 1,2-dichloroethane b) 1,2-dichloroethanal c) 1,2-dichloroethene d) 1,2-dichloroethyne 468. Out of the following fractions of petroleum the one having the lowest boiling point is: a) Kerosene b) Diesel oil c) Gasoline d) Heavy oil $\xrightarrow{\text{POCl}_3} A \text{ (major), } A \text{ is}$ 469. CH₃-ÓН

d) None of the above c) $CH_3 - \stackrel{i}{C} - CH - CH_3 \xrightarrow{Zn}{acetone}$ 481. Incorrect name of an alkyne is: a) Propyne b) But-2-yne c) Pent-3-yne d) But-1-yne 482. The alkyne which gives pyruvic acid ($CH_3COCOOH$) on oxidation with alk. $KMnO_4$ is: b) $CH_3C \equiv CH$ c) $CH_3C \equiv C - CH_3$ d) $CH_3 - CH_2 - C \equiv CH$ a) CH \equiv CH 483. A hydrocarbon of formula C₆H₁₀ absorbs only one molecule of H₂upon catalytic hydrogenation. Upon ozonolysis the hydrocarbon yields, | O=C-CH₂-CH₂-CH₂-CH₂-C=O The hydrocarbon is : d) Cyclobutane a) Cyclohexane b) Benzene c) Cyclohexene 484. Alkyl halides react with dialkyl copper reagents to give a) Alkenyl halides b) Alkanes c) Alkyl copper halides d) Alkenes $A \xrightarrow{O_3/Zn, H_2O} (CH_3)_2CO + HCHO + |CHO + CHO|CHO$ 485. Thus, A is a) $(CH_3)_2CHCH = CHCH = CH_2$ b) $(CH_3)_2C = CH - CH = CH_2$ d) none of the above c) $CH_3CH = CH - CH = CH - CH = CH_2$ 486. In the series, $C_2H_5 \xrightarrow{\text{NaNH}_2} X \xrightarrow{\text{CH}_3I} Y \xrightarrow{\text{HgSo}_4} Z$ The compound *Z* is a) $CH_3CH_2CH = CH_2$ b) CH₃COCH c) CH_3CHO d) CH₃CH₂CH₂CHO 487. Paraffin dissolves in: b) Benzene a) Distilled water c) Methanol d) Salt water 488. Which cannot be prepared by Kolbe's electrolytic reaction using single salt? **b**) C_2H_6 c) C₄H₁₀ a) CH₄ d) H_2 489. Which will react with NaBH₄? a) Benzoic acid b) Benzamide c) Cyclohexanone d) Acetic acid 490. When methane is made to react with a halogen (X_2) , halides are formed, the order of reactivity is: a) $F_2 > Cl_2 > Br_2 > I_2$ b) $Cl_2 > F_2 > Br_2 > I_2$ c) $I_2 > Br_2 > Cl_2 > F_2$ d) $Cl_2 > F_2 > I_2 > Br_2$ 491. Which of these does not follow anti – Markownikoff's rule? a) 2-butene b) 1-butene c) 2-pentene d) 2-hexene 492. Acetylene reacts with HCN in the presence of $Ba(CN)_2$ to yield a) 1,1-dicyanoethane b) 1,2-dicyanoethane d) None of these c) Vinyl cyanide 493. An alkyl bromide (X) reacts with Na to form 4, 5-diethyl octane. Compound (X) is: a) $CH_3(CH_2)_3Br$ b) $CH_3(CH_2)_5Br$ c) CH₃(CH₂)₃CHBr. CH₃ d) CH₃(CH₂)₂CHBrCH₂CH₃ 494. To avoid lead pollution, a new anti-knock compound is used. It is: -Mn \overleftarrow{CO}_{CO} a)

b) Cyclopentadienyl manganese carbonyl

c) AK-33-X

d) All of the above

495. Identify *B* and *D* in the following sequence of reactions.

521. A mixture of nitrogen and acetylene, on passing electric spark through it gives:

a) Hydrogen and carbon b) Hydrogen cyanide	c) Nitromethane	d) Nitroethane									
HBr AgCN (H)											
$C_2H_4 \xrightarrow{H_2H_4} X \xrightarrow{H_2H_4} Y \xrightarrow{H_2/Ni} Z,$											
Compound Zis											
a) N-methyl ethanamine	b) N-propylamine										
c) N, N-dimethylamine	d) Ethyl cyanide										
523. Which one of these is not true for benzene?											
a) It forms only one type of monosubstituted pr	oduct.	~```									
b) There are three carbon-carbon single bonds	and three carbon-carbon	double bonds									
c) The heat of hydrogenation of benzene is less than the theoretical value.											
d) The bond angle between the carbon-carbon l	oonds is 120°.										
524. Presence of a nitro group in a benzene ring											
a) Activates the ring towards electrophilic subs	titution										
b) Renders the ring basic											
c) Deactivates the ring towards nucleophilic su	bstitution										
d) Deactivates the ring towards electrophilic su	bstitution										
525. The major product in the reaction of 2-butyne v	with Li/lig. NH ₂ is										
H ₃ C CH ₃	H ₃ C H										
a)	b)										
Н Н	H CH ₃										
c) CH ₃ CH ₂ CH ₂ CH ₃	d) $H_2C = CH - CH_2 - C$	H ₃									
526. Hydrocarbon liquid at STP is:											
a) Ethane b) Propane	c) Butane	d) Pentane									
527. Chlorination of benzene is not possible in the fo	ollowing reaction	4101									
a) $C_6H_6 + Cl_2 \xrightarrow{\text{recl}_3} \text{ b) } C_6H_6 + \text{HOCl} \xrightarrow{\text{n}}$	c) $C_6H_6 + I - CI \xrightarrow{ZIICI_2} \rightarrow$	d) $C_6H_6 + Cl_2 \xrightarrow{AlCl_3} \rightarrow$									
528. In the series, ethane, ethene and ethyne, the C-I	H bond energy is										
a) Same in all the three compounds	b) Greatest in ethane										
c) Greatest in ethene	d) Greatest in ethyne										
529. The shape of 2-butene is:											
a) Linear b) Planar	c) Tetrahedral	d) Pyramidal									
530. The substance used as an anti-knock compound is:	a) I and a satura	J) Etherlandetete									
531 Petroleum refining ic:	c) Leau acetate	d) Ethyl acetate									
a) Obtaining aromatic b) Cracking of netroleum	c) Purification of	d) Distillation of									
compounds from to get gaseous	netroleum	netroleum to get									
aliphatic compounds in hydrocarbons	ponoroum	different fractions									
petroleum											
532. Zinc-copper couple that can be used as a reducing a	gent is obtained by:										
a) Mixing zinc dust and copper gauze											
b) Zinc coated with copper											
c) Copper coated with zinc											
d) Zinc and copper wires welded together											
533. Which of the following hydrocarbons has the lowes C^{H}	t dipole moment?										
a) $C = C$ b) $C = C C H_2$	c) $CH_{2}CH_{2}C = CH$	d) $CH_2 = CH - C = CH$									
H H H H H H H H H H	c) anganza – an										

544. Which among the following are used as catalyst in cracking?

554. Select the reagent for the following reaction,

d) None of the above

565. According to Markownikoff's rule, what will be the major product of reaction

$CH_2 = CH - CH_3 \xrightarrow{HBr} ?$	2		
Br			
a)		b) Br $-$ CH ₂ $-$ CH ₂ $-$ C	H ₃
$CH_3 - CH - CH_3$		d) $CH_{2} = C = CH_{2}$	
566. Carbon black, used in ma	king printing ink is obtaine	ed by the oxidation of:	\sim
a) Acetylene	b) Benzene	c) Methane	d) CCl ₄
567. Ethylbenzene with bro	mine in presence of FeBı	r ₃ , predominantly gives	
Br		CH ₂ CH ₃	
a)		b)	
	3		\mathbf{Q}
		br	
	Br	d) Br	
		ај ві	012013
568. Which reaction produces	s acrylonitrile (CH ₂ = CHCM	N)?	
a) Ethyne HCN	b) A amplia a cid KCN	$_{\rm Cl}$ Ethyne $\xrightarrow{\rm KCN}$	d) Ethuma HOCI
Ba ²⁺	\rightarrow Actylic actu \rightarrow	cy	α) Ethyne \longrightarrow
569. Gasoline is:			
a) C_3H_8 to C_6H_{14}	b) $C_7 H_{16}$ to $C_{10} H_{22}$	c) $C_7 H_{24}$ to $C_{14} H_{34}$	d) $C_{17}H_{36}$ to $C_{21}H_{50}$
$_{2}$ Eq. (gives methane $[CH_4]$ on b) Al O	c) CaC	d) AL C
571. The compound (CH ₂), CF	$H_2 O_3$	$c_1 c_2$	Gollowing alkene:
a) $(CH_2)_2CH - CH = CH$		acconone Korr to give the r	onowing arkene.
b) $CH_3 - CH = C = CH_2$			
c) $CH_3 - CH_2 - CH = CH$	ICH ₃		
d) $(CH_3)_2C = CH - CH_3$	\sim		
572. A hydrocarbon reacts wi	th HI to give (<i>X</i>) which on r	eacting with aqueous KOH	forms (Y). Oxidation of (Y)
gives 3-metnyi-2-butano CH ₂	$CH_2 = CH_2 - CH_3$	$CH_2 - CH_2 - C = CH_2$	
a)	b)	c)	d) $ _{\text{CH}}$
$CH_3CH = C - CH_3$	CH ₃	CH ₃	Сн ₃
a) NH ₂	h) PH ₂	c) AsH ₂	d) H _a S
574. An alkyl halide by form	nation of its Grignard reas	gent and heating with wa	ater vields propane. What
is the original alkyl hal	ide?	0 0	5 1 1
a) Methyl iodide	b) Ethyl iodide	c) Ethyl bromide	d) Propyl bromide
575. 1-propyne on treatment	with dilute H ₂ SO ₄ in presen	nce of HgSO ₄ gives acetone	. The change is due to:
a) Hyperconjugation	b) Resonance	c) Tautomerism	d) None of these
576. O_2 required for complete	e oxidation of 1 litre of etha	ne at NTP is: $c \in OO \alpha$	d) All of those
577. In the following sequence	e the product <i>D</i> is.	c) 5.00 g	u) All of these
$CH = CH \xrightarrow{HBr} A \xrightarrow{HBr} B$	ale. NaNH ₂ D		
a) Ethanol	b) Ethane	c) Ethyne	d) Ethanal
578. Which of the following	compounds react with H	IBr obeying Markowniko	ff's rule?

a)
$$CH_2 = CH_2$$

b) $H_3C - CH_3$
c) $H_4C - H_4$
c) $H_5C - H_4$
d) $H_5C - H_4$
d) $H_5C - H_4$
f) $H_5C - H_5COON_3$
f) H_5ON_3
f) $H_5C - H_5COON_3$
f) H_5ON_3
f) $H_5C - H_5COON_3$
f) $H_5C - H_5COON_3$
f) H_5ON_3
f) $H_5C - H_5COON_3$
f) $H_5C - H_5COOH_3$

604.	Propyne when passed	through a hot iron tube a	t 400°C produces						
	a) Benzene		b) Methyl benzene						
	c) Dimethyl benzene		d) Trimethyl benzene						
605.	Which of the following	is called Marsh gas?	5						
	a) C ₂ H ₄	b) C ₂ H ₆	c) C ₂ H ₂	d) CH ₄					
606.	Which can be easily oxidi	zed?							
	a) Alkene	b) 1-alkyne	c) Alkane	d) Benzene					
607.	<i>n</i> -butane and isobutene, w	which have same number o	f hydrogen and carbon ato	ms in their molecules, boil					
	at different temperatures	because:							
	a) <i>n</i> -butane is much hotte	er							
	b) Their volumes are diffe	erent							
	c) Isobutene is an alkene								
(d) Their atoms are not ha	ving the same carbon chair	1						
608.	Common oxidizing agents	s used in organic chemistry	are:						
(00	a) Fenton's reagent	b) Osmium tetraoxide	c) Acidified KMnO ₄	d) Alkaline KMnO ₄					
609.	Acetylenic hydrocarbons	are acidic because:	· · · · · · · · · · · · · · · · · · ·						
	a) Sigma electron density	of C—H bond in acetylene	is nearer a carbon which h	as 50% s-character					
	b) Acetylene nas only one	e nyurogen atom at each car et number of budrogen ator	roon atom						
	d) Acetylene belongs to th	st number of nyurogen ator							
610	Butene -1 may be convert	red to butane by the reaction	in with:						
010.	a) Zn–Hø	b) Pd-H ₂	c) $Zn-HCI$	d) Sn-HCI					
611.	Number of acidic hydroge	en atom in butvne-1 is:							
	a) 2	b) 3	c) 1	d) 4					
612.	Propene on reaction with	methylene iodide in prese	nce of Zn-Cu couple gives:						
	a) Cyclopropane	b) Cyclopropene	c) Methyl cyclopropane	d) Cyclobutene					
613.	Addition of O_2 on ethylene	e in presence of Ag at 200°(C forms:						
	a) Epoxy ethane	b) Oxiranes	c) Cyclic ethers	d) All of these					
614.	The carbon-carbon bor	nd distance in benzene is							
	a) Longer than a $C - C$ s	single bond	b) Longer than a $C = C$	double bond					
	c) Shorter than a $C = C$	double bond	d) Shorter than a $C \equiv C$	triple bond					
615.	Method of converting hig	h boiling hydrocarbons into	o low boiling hydrocarbons	is called:					
	a) Polymerisation	b) Isomerisation	c) Cracking	d) Condensation					
616.	The mechanism of Wurtz	reaction involves:							
	a) Free radical	b) Carbocation	c) Carbanion	d) None of these					
617.	The most important energy	gy yielding constituent in b	iogas is:						
	a) C ₂ H ₄	b) C ₂ H ₂	c) CH ₄	d) H_2S					
618.	PVC is a polymer of:								
(10	a) $CH_2 = CH_2$	b) $ClCH_2 - CH_2Cl$	c) $CH_2 - CHCl$	d) $Cl - C = C - Cl$					
619.	Cyclohexene on ozonoly	ysis followed by reaction	with zinc dust and wate	r gives compound <i>E</i> .					
\mathbf{C}	Compound <i>E</i> on further	treatment with aqueous	s KOH yields compound <i>I</i>	F. Compound <i>F</i> is					
		\square	\square	СООН					
	а) Сно	b)	с)	d)					
620.	The flash point in India is	fixed at:							
	a) 44°C	b) 35°C	c) 22.8°C	d) 30°C					
621.	Lindlar's catalyst is:								
	a) Pd- CaCO ₃ deactivated	by lead acetate							
	bJ Pd – BaSO ₄								

c) Pd d) None of the above 622. The energy of π -bond in kcal is about : a) 36 b) 50 c) 74 d) 140 623. Ozonolysis $(0_3, H_20)$ of, CH_3 —CH—C \equiv C— CH_3 gives: CH₃ CH₃—CHCOOH + CH₃COOH a) CH₃ CH₃—CHCHO + CH₃CHO b) CH₃ CH_3 —CHCHO + CH_3COOH c) CH₃ d) None of the above 624. What is the end product of the following sequences of operations? $\operatorname{CaC}_2 \xrightarrow{\operatorname{H}_2\operatorname{O}} A \xrightarrow{\operatorname{Dil}.\operatorname{H}_2\operatorname{SO}_4} B \xrightarrow{\operatorname{Ni}} C$ a) Methyl alcohol b) Acetaldehyde c) C_2H_5OH d) C_2H_4 625. The order of relative acidic strengths of water, ethyne and propyne is: a) Water>propyne>ethyne b) Propyne>ethyne>water c) Water>ethyne>propyne d) Ethyne>water>propyne 626. Reaction of *trans*-2-phenyl-1-bromocyclopentane on reaction with alcoholic KOH produces: a) 4-phenylcyclopentene b) 2-phenylcyclopentene c) 1-phenylcyclopentene d) 3-phenylcyclopentene 627. Ethylene reacts with slphur monochloride to give: b) Mustard gas a) Phosgene c) Ethylene chloride d) None of these 628. The dihalogen derivative 'X' of a hydrocarbon with three carbon atoms reacts with alcoholic KOH and produces another hydrocarbon which forms a red precipitate with ammoniacal Cu₂Cl₂. 'X' gives an aldehyde on reaction with aqueous KOH. The compound *'X'* is a) 1,3-dichloropropane b) 1,2-dichloropropane c) 2,2-dichloropropane d) 1,1-dichloropropane 629. Ethylene may be prepared by the dehydration of: a) Ethyl alcohol b) Methyl alcohol c) Acetic acid d) Oxalic acid 630. Petroleum is formed by the chemical changes in: a) Inorganic matter b) Vegetable matter c) Animal matter d) Both (b) and (c) 631. Common dehydrating agents for alkanes are: a) H_2SO_4 b) Al_2O_3 c) $ZnCl_2$ d) All of the above 632. The most stable conformation of butane is: a) Skew b) Staggered c) Gauche d) Eclipsed 633. A cyclic hydrocarbon molecule has all the carbon and hydrogen in a single plane. All the carbon-

carbon bonds are of same length, less than 1.54Å, but more than 1.34Å. The C-c bond angle will be

c)
$$(CH_2)_2 C = CH - CH_3$$
 (d) $CH_3 - CH = C(CH_3) - CH_3$
649. Fischer-Tropsch process is used in the manufacture of:
a) Synthetic petrol b) Ethanol c) Benzene d) Ethanolc acid
650. 2-methylpropene is isomeric with butane-1. They can be distinguished by:
a) Bacyer's reagent b) Annonical AgNO₃ or Br₂ solution d) O₃, Zn/H₂O
651. Acetylene reatts with 42% H₂SO₄ containing 1% HgSO₄ to give:
a) C₂H₈HSO₄ b) CH₃CHO c) HCHO d) CH₂ = CH₂
652. The simplest alkyne is:
a) CII b) CI₂ c) C₂H₂ d) C₂H₄
653. A Friedel-Crafts reaction of benzene with chloroform produces
a) C₆H₆CHCl₂ b) C₆H₃ - C-C₆H₅ c) C₆H₅ d) All of these
a) C₆H₆CHCl₂ b) C₆H₃ - C-C₆H₅ c) C₆H₅ - C₆C₇H₅
a) CH₂CH₂CHCl₁ b) CI₁CI₂CII c) CI₁CI = CICH₂OU d) $\int_{CH}^{CH_2}$
654. An alkene, obtained by the dehydration of an alcohol (A), on ozonolysis gives two molecules of
acetaldehyde for every molecule of alkene. The alcohol (A) is:
a) CH₂CH₂CHCl₁DI b) CH₃CH₂CIII c)II c) CH₃CII = CICH₂OU d) $\int_{CH}^{CH_2}$ CHCl₁S
a) Benzen b) Cyclobutadiene c) Cyclodecapentene d) Cyclooctatetraene
656. The number of possible isomers of alkane with formula C₆H₁S¹S¹.
a) Benzen b) Cyclobutadiene c) Cyclodecapentene d) Cyclooctatetraene
656. The number of possible isomers of alkane with formula C₆H₁S¹S¹.
a) 2 b) 3 (b) C₁A = COURCH₂S₂COUR
c) Alkanes from CH₁ to C₄H₂₀ are colourless gases
b) Alkanes from CH₁ to C₄H₂₀ are colourless dofurless gases
b) Alkanes from CH₁ to C₄H₂₀ are colourless dofurless gases
b) Alkanes from CH₁ to C₄H₂₀ GOUR
c) C₄H₁ different than water
c) Cran₆ (CH₂)₂COUR
c) Cl₁ = CHC(CH₂)₂COUR
c) Cl₂ = CHC(CH₂)₂COUR
c) Cl₂ = CHC(CH₂)₂COUR
c) Cl₂ = CHC(CH₂)₂COUR
c) Cl₁ = CHC(CH

a) 2,2,2-trimethyl pentane b) 2,3,4-trimethyl pentane c) 2,2,3-trimethyl butane d) 2,2,4-trimethyl butane 664. Which of the following statements is incorrect? a) Acetylene is explosive above 2 atm b) It is transported by dissolving in acetone c) It has unpleasant garlic odour d) It is used in the manufacture of Lewisite 665. Formation of ethylene from ethyl bromide is a case of: a) Addition reaction b) Substitution reaction c) Elimination reaction d) Rearrangement reaction 666. The most stable alkene is, a) $R_2 C = C R_2$ b) RCH = CHRc) $CH_2 = CH_2$ d) $RCH = CR_2$ 667. Ethylene can be prepared by electrolysis of an aqueous solution of: a) Sodium acetate b) Sodium succinate c) Sodium fumarate d) Sodium propionate 668. HBr reacts with $CH_2 = CH - OCH_3$ under anhydrous conditions at room temperature to give a) CH₃CHO and CH₃Br b) BrCH₂CHO and CH₃OH d) $H_3C - CHBr - OCH_3$ c) $BrCH_2 - CH_2 - OCH_3$ 669. Identify *Z* in the following series? $\mathrm{CH}_2 = \mathrm{CH}_2 \xrightarrow{\mathrm{HBr}} X \xrightarrow{\mathrm{Hydrolysis}} Y \xrightarrow{\mathrm{Na_2CO_3}}_{\mathrm{I_2 \ excess}} Z$ c) CH₃CHO a) C_2H_5I b) CHI₃ d) C_2H_5OH 670. Reactive species in halogenation of benzene in cold and dark a) Cl• b) Cl⁺ d) None of these c) Cl⁻ 671. An organic alkadiene on reductive ozonolysis produces (i)acetaldehyde (ii)acetone (iii)2-methylpropane-1, 3-dial The formula of alkadiene will be $CH_3C = CHCHCH = CHCH_3$ $CH_3CHCH = CCH = CHCH_3$ b) a) 1.4 CH₃ CH₃ CH3 CH3 $CH_3C = CHCHC = CHCH_3$ $CH_3CH_2CHCH = CHC = CH_2$ c) d) CH₂ CH3 CH₃ CH₃ 672. Synthetic petrol and kerosene can be obtained by passing.....under heat and pressure over coal. a) 0_2 b) H_2 c) N_2 d) CO_2 673. A hydrocarbon containing 2 carbon atoms give Sabatier and Senderen's reaction but does not give precipitate with ammoniacal silver nitrate solution. The hydrocarbon in question is: a) Ethane b) Acetylene c) Ethylene d) None of these 674. Acetylene can be converted to higher alkyne using the following sequence of reactions: a) Na, RX b) *R*Mg *X*, *R X* c) Either of these two d) None of these 675. At low temperature, the slow addition of molecular bromine to $H_2C = CH - CH_2 - C \equiv CH$ gives: a) $CH_2 = CH - CH_2 - CBr = CHBr$ b) $BrCH_2 - CHBr - CH_2 - C \equiv CH$ c) $H_2C = CH - CH_2 - CH_2 - CBr_3$

d) $CH_3 - CBr_2 - CH_2 - C \equiv CH$ 676. Which of the following statement is correct? a) Benzene has a tetrahedral geometry like an alkane b) Benzene is aromatic while naphthalene is not c) Benzene and Cyclohexane are both aromatic d) Benzene behaves more like and alkane than an alkene 677. $\operatorname{CaC}_2 + \operatorname{H}_2 \operatorname{O} \to A \xrightarrow{\operatorname{H}_2 \operatorname{SO}_4 / \operatorname{HgSO}_4} B$ Identify A and B in the given reaction a) C_2H_2 and CH_3CHO b) CH₄ and HCOOH c) C₂H₄ and CH₃COOH d) C₂H₂ and CH₃COOH 678. The correct boiling point order for corresponding hydrocarbons is: a) Alkyne>alkane>alkene b) Alkane>alkene>alkyne c) Alkyne>alkene>alkane d) Alkene>alkyne>alkane $\frac{\mathrm{H}_2}{\mathrm{pd/CaCO}_3,} A \xrightarrow{\mathrm{KMnO}_4} B$ 679. Identify A and B соон CH_2CH_3 , сно 680. Electrolysis of cold concentrated aqueous solution of potassium methyl succinate yields: a) Ethane b) Ethyne c) Propene d) Ethane-1,2-diol 681. An alkene gives two moles of HCHO, one mole of CO₂ and one mole of CH₃COCHO on ozonolysis. What is its structure? CH₃ a) $CH_2 = C = CH - CH_2$ b) $CH_2 = CH - CH - CH = CH_2$ $CH_2 = C = C - CH_3$ CH₃ c) d) $CH_2 = C = C - CH = CH_2$ 682. Alkyl halides get converted to alkenes through: a) Electrophilic b) Nucleophilic addition c) Elimination reaction d) Hydrolysis substitution 683. In the complete combustion of $C_n H_{2n+2}$, the number of oxygen moles required is: a) $\left(\frac{n}{2}\right) 0_2$ b) $\left(\frac{n+1}{2}\right) 0_2$ c) $\left(\frac{3n+1}{2}\right) 0_2$ d) $\left(\frac{n+2}{2}\right) 0_2$ 684. When $CH_3CH_2CHCI_2$ is treated with $NaNH_2$ the product formed is: b) $CH_3 - C \equiv CH$ c) CH_3CH_2CH **d)** Сн₃Сн₂Сн < a) $CH_3CH = CH_2$ 685. Cycloalkanes are isomeric with a) Alkanes b) Alkenes c) Alkynes d) Arenes 686. Which gives only one monosubstitution product on chlorination?

a) <i>n</i> -pentane	b) Neopentane	c) Isopentane	d) <i>n</i> -butane					
687. The products obtained via oxymercuration $(HgSO_4 + H_2SO_4)$ of 1-butyne would be:								
a) CH ₃ CH ₂ COCH ₃								
b) CH ₃ CH ₂ CH ₂ CH	0							
c) $CH_3CH_2CHO +$	НСНО							
d) CH ₃ CH ₂ COOH -	- НСООН							
688. <i>R</i>	R							
>C=0 is not	converted to $> CH_2$ by:							
R	R		· · ·					
a) Wolff-Kishner r	eaction b) Clemmensen reduc	ction c) Red P+HI at 200	°C d) Wurtz reaction					
689. The presence of	the chlorine atom on benzer	ne ring makes the seco	nd substituent enter at a					
position								
a) <i>ortho</i>	b) <i>meta</i>	c) para	d) ortho/para					
690. Two organic con	pounds (A) and (B) both co	ontaining only carbon a	and hydrogen, on quantitative					
analysis gave the	e same percentage composit	ion by weight						
$C = \begin{pmatrix} 12 \\ 12 \end{pmatrix} \times 1000$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} + 1000 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$							
$C = \left(\frac{1}{12}\right) \times 100\%$	$\pi_{0}, H = \left(\frac{1}{13}\right) \times 100\%$							
A decolourises b	romine water but <i>B</i> does no	t. A and B respectively	are					
a) C_2H_2 and C_6H	b) C_6H_6 and C_2H_2	c) C_2H_4 and C_2H_6	d) C_2H_2 and C_2H_6					
691. Which of the follow	wing compounds react with, an	n aqueous solution ofAg($NH_2)_2OH?$					
a) ethane	b) Ethene	c) 1-butyne	d) 2-butyne					
692. Aromatisation of	<i>n</i> -heptane by passing over	$(Al_2O_3 + Cr_2O_3)$ cataly	vst at 773 K gives					
a) Benzene	b) Toluene	c) Mixture of both	d) Heptylene					
693. In a mixture of <i>n</i> -ł	nexadecane and α -methylnaph	thalene the percentage o	f the latter is 10.The value of					
cetane number is:								
a) 110	b) 90	c) 10	d) Zero					
694. Addition of bromi	ne to 1,3-butadiene gives:		, ,					
a) 1,2-addition pr	oduct only							
b) 1,4-addition pr	oduct only							
c) Both 1,2 and 1,4	4-addition products							
d) No reaction								
695. R — COOH \rightarrow RCH	I ₂ OH. This mode of reduction	can be effected only by:						
a) NaBH₄	b) Na + Alcohol	c) LiAlH₄	d) All of these					
696. A Wittig reaction	with an aldehyde gives	y 1	2					
a) Ketone compo	und	b) A long chain fat	tv acid					
c) Olefin compo	ha	d) Enoxide						
697 Ethylene di bron	uide on heating with metalli	c sodium in ether solut	ion vields					
a) Ethono	b) Ethyono	c) 2 hutono	d) 1 butono					
a) Ethenel	b) Ethyene	c) 2-Dutelle	a) I-Dutelle					
opo. when alcoholic so	b) Ethylono	s neateu with granulateu	d) Isobutono					
600 Octano number ici	b) Ethylene	c) butane	u) isobutelle					
a) Number of carb	on atoms in octano							
h) Number of mol	our atoms in octane	clying of 1 0g of gocoling						
c) Number of hyd	rogen atoms in octane	ching of 1.0g of gasonine						
d) Number for ren	resenting standard rating of fi	امر						
700 When an aqueous	solution containing sodium ac	retate and sodium propio	nate is electrolysed we get					
a) Ethane	b) Pronane	c) Butane	d) All of these					
701. Which one of the	following methods is neith	er meant for the synthe	esis nor for separation of					
aminos?	ionowing methods is neith	er meane for the synthe	solo nor for separation of					
annues:								

a) Curtius reaction b) Wurtz reaction c) Hofmann method d) Hinsberg method 702. *Vic*-dihalide on treatment with zinc dust gives: a) Alkane b) Alkene c) Alkyne d) All of these 703. Identify the substitute group, that acts as *ortho* - *para* director, during electrophilic substitution in aromatic compounds. a) $-NH_2$ b) $-NO_2$ c) $-SO_3H$ d) N_2 704. Order of acidity of H₂O, NH₃ and acetylene is: a) $NH_3 > CH \equiv CH > H_2O$ b) $H_2O > NH_3 > CH \equiv CH$ c) $H_2O > CH \equiv CH > NH_3$ d) $NH_3 > H_2O > CH \equiv CH$ ^{705.} $C_2H_5I + C_5H_{11}I + 2Na \xrightarrow{\text{Ether}} C_2H_5 - C_5H_{11} + 2NaI$ MAGR The above equation represents: a) Hofmann's reaction b) Dow's reaction c) Wurtz synthesis d) Reimer-Tiemann's reaction 706. Identify Z in the sequence, $CH_3 - CH_2 - CH = CH_2 \xrightarrow{HBr/H_2O_2} Y \xrightarrow{C_2H_5O^- - N_3}$ CH₃-CH-CH₂-O-CH₂-CH₃ a) CH₃ CH₃—CH₂—CH—O—CH₂—CH₃ | CH₂ b) c) $CH_3 - (CH_2)_3 - 0 - CH_2 - CH_3$ d) $CH_3 - (CH_2)_4 - 0 - CH_3$ 707. Which will give cyclooctyne when treated with base? a) 1,2-dibromocyclobutane b) 1,1-dibromocyclobutane c) 1,1-dibromocyclooctane d) 1,2-dibromocyclopropane 708. The final product in following sequence of reaction is $CH \equiv CH \xrightarrow{NaNH_2} A \xrightarrow{CH_3Br} B$ a) $CH_2 = CH - CH = CH_2$ b) HC \equiv C – CH₃ c) $CH_2 = CH - CH_3$ d) $CH_3 - CH_2 - CH_3$ 709. What are the products obtained upon the ozonolysis of pent-2-ene? a) CH_3CH_2CHO c) CH₃COCH₃ b) CH₃CHO d) Both (a) and (b) 710. Addition of halogen acid occurs at slowest rate in: a) $CH_2 = CHCl$ b) $CH_2 = CH_2$ c) $CH_3 - CH = CH_2$ d) $(CH_3)_2C = CH_2$ 711. Benzyl chloride ($C_6H_5CH_2Cl$) can be prepared from toluene by chlorination with a) SO₂Cl₂ b) SOCl₂ d) NaOCl c) Cl_2 712. The Markownikoff's rule is the best applicable to the reaction between a) $C_2H_4 + HCl$ b) $C_{3}H_{6} + Br_{2}$ c) $C_3H_6 + HBr$ d) $C_{3}H_{8} + Cl_{2}$ 713. Which of the following acid reacts to reverse the Markownioff's rule? b) HBr c) HF d) HI a) HCl 714. The addition of HOCl on alkenes in presence of strong acids to form halohydrins proceeds via formation of: b) Carbocation c) Chloro carbocation d) None of these a) Chloronium ion 715. On treatment with chlorine in presence of sunlight, toluene gives the product

- a) o-chloro toluene
- c) *p*-chloro toluene
- 716. The most oxidized form of hydrocarbon *R*CH₃ is: b) RCHO

a) CO_2

- 717. Ethylene is used for:
 - a) Ripening of food
 - b) Preparing ethylene oxide
 - c) For preparing ethylene chloride
 - d) All are correct

- b) 2,5-dichloro toluene
- d) Benzyl chloride

c) *R*COOH

d) RCOCOOH

Stitute

HYDROCARBONS

CHEMISTRY

					:	ANS	W	ER K	EY:						
1)	а	2)	С	3)	а	4)	d	169)	b	170)	а	171)	d	172)	а
5)	b	6)	С	7)	d	8)	С	173)	b	174)	d	175)	а	176)	а
9)	d	10)	С	11)	а	12)	а	177)	b	178)	С	179)	d	180)	d
13)	b	14)	b	15)	а	16)	b	181)	b	182)	а	183)	b	184)	b
17)	d	18)	b	19)	b	20)	d	185)	С	186)	b	187)	b	188)	b
21)	а	22)	d	23)	а	24)	а	189)	d	190)	b	191)	b	192)	а
25)	b	26)	а	27)	b	28)	С	193)	b	194)	С	195)	b	196)	а
29)	С	30)	а	31)	С	32)	С	197)	а	198)	С	199)	d	200)	d
33)	а	34)	а	35)	d	36)	d	201)	b	202)	d	203)	а	204)	b
37)	d	38)	d	39)	С	40)	С	205)	С	206)	а	207)	b	208)	b
41)	а	42)	b	43)	b	44)	а	209)	а	210)	d	211)	d	212)	а
45)	d	46)	b	47)	d	48)	а	213)	С	214)	b	215)	а	216)	С
49)	С	50)	b	51)	b	52)	b	217)	a	218)	С	219)	а	220)	b
53)	а	54)	b	55)	b	56)	а	221)	С	222)	С	223)	b	224)	С
57)	С	58)	а	59)	С	60)	а	225)	b	226)	С	227)	b	228)	b
61)	d	62)	а	63)	d	64)	а	229)	a	230)	b	231)	d	232)	b
65)	b	66)	а	67)	f	68)	d	233)	С	234)	а	235)	b	236)	а
69)	С	70)	d	71)	С	72)	d	237)	b	238)	С	239)	d	240)	d
73)	d	74)	b	75)	С	76)	b	241)	а	242)	b	243)	а	244)	С
77)	d	78)	С	79)	d	80)	а	245)	а	246)	d	247)	d	248)	d
81)	d	82)	d	83)	С	84)	b	249)	а	250)	а	251)	d	252)	d
85)	а	86)	С	87)	b	88)	С	253)	С	254)	а	255)	а	256)	а
89)	С	90)	С	91)	b	92)	b	257)	b	258)	b	259)	d	260)	а
93)	а	94)	С	95)	С	96)	b	261)	b	262)	а	263)	b	264)	а
97)	С	98)	С	99)	С	100)	а	265)	b	266)	С	267)	d	268)	b
101)	d	102)	d	103)	С	104)	а	269)	b	270)	а	271)	d	272)	b
105)	а	106)	с	107)	d	108)	С	273)	d	274)	b	275)	b	276)	С
109)	С	110)	C	111)	d	112)	b	277)	d	278)	d	279)	а	280)	b
113)	а	114)	а	115)	b	116)	С	281)	b	282)	b	283)	b	284)	d
117)	b	118)	b	119)	b	120)	b	285)	d	286)	d	287)	b	288)	а
121)	b	122)	d	123)	С	124)	а	289)	а	290)	b	291)	d	292)	С
125)	a	126)	С	127)	С	128)	а	293)	а	294)	С	295)	а	296)	С
129)	a	130)	d	131)	С	132)	d	297)	С	298)	b	299)	а	300)	С
133)	С	134)	b	135)	b	136)	b	301)	С	302)	а	303)	d	304)	d
137)	а	138)	b	139)	b	140)	d	305)	а	306)	а	307)	b	308)	а
141)	b	142)	b	143)	С	144)	а	309)	d	310)	b	311)	b	312)	С
145)	d	146)	а	147)	С	148)	b	313)	С	314)	С	315)	а	316)	d
149)	a	150)	а	151)	b	152)	а	317)	С	318)	b	319)	d	320)	а
153)	b	154)	С	155)	С	156)	d	321)	а	322)	а	323)	b	324)	b
157)	d	158)	a	159)	a	160)	С	325)	а	326)	С	327)	d	328)	b
161)	b	162)	а	163)	С	164)	С	329)	b	330)	d	331)	а	332)	С
165)	С	166)	С	167)	С	168)	С	333)	b	334)	d	335)	b	336)	а

337)	d	338)	b	339)	d	340)	b	541)	d	542)	b	543)	С	544)	d
341)	b	342)	b	343)	а	344)	а	545)	b	546)	b	547)	d	548)	d
345)	d	346)	с	347)	а	348)	а	549)	а	550)	а	551)	С	552)	d
349)	С	350)	а	351)	С	352)	b	553)	b	554)	b	555)	d	556)	d
353)	b	354)	С	355)	a	356)	b	557)	а	558)	a	559)	d	560)	a
357)	С	358)	d	359)	d	360)	С	561)	b	562)	d	563)	С	564)	a
361)	c	362)	b	363)	а	364)	d	565)	a	566)	С	567)	d	568)	a
365)	a	366)	a	367)	c	368)	a	569)	h	570)	d	571)	d	572)	h
369)	h	370)	d	371)	a	372)	d	573)	h	573) 574)	ď	575)	c	576)	d
373)	c	374)	c	375)	c	376)	h	577)	C	578)	d	579)	h	580)	a
377)	a	378)	c	379)	d	380)	d	581)	C	582)	a	583)	b	584)	h
381)	h	382)	h	383)	d	384)	h	585)	c	586)	a	587)	c	588)	c
385)	d	386)	c	387)	a	388)	h	589)	d	590)	h	591)	h	592)	d
389)	a	390)	a	391)	a	392)	a	593)	a	594)	a	595)	č	596)	c
393)	c	394)	h	395)	c	<u>396</u>)	d	597)	ď	598)	a	599)	d	600)	h
397)	a	398)	c	399)	b	400)	a	601)	a	602)	h	603)	d	604)	d
401)	u b	402)	d	403)	a	404)	a	605)	d	606)	ĥ	607)	d	608)	f
405)	d	406)	c	407)	c	408)	d	609)	a	610)	b	611)	c	612)	c
409)	h	410)	d	411)	b	412)	a	613)	d	614)	ĥ	615)	c	616)	a
413)	c	414)	d	415)	b	416)	c	617)	c	618)	°C	619)	a	620)	a
417)	b	418)	d	419)	c	420)	c	621)	a	622)	b	623)	a	624)	c
421)	c	422)	h	423)	c	424)	b	625)		626)	c	627)	h	628)	d
425)	a	426)	d	427)	d	428)	a	629)	a	630)	d	631)	d	632)	h
429)	a	430)	c	431)	a	432)	c	633)	d	634)	c	635)	С	636)	b
433)	b	434)	b	435)	C	436)	a	637)	a	638)	c	639)	c	640)	b
437)	a	438)	C	439)	a	440)	d	641)	a	642)	c	643)	d	644)	a
441)	c	442)	a	443)	d	444)	C	645)	a	646)	c	647)	b	648)	b
445)	а	446)	b	447)	а	448)	b	649)	а	650)	d	651)	b	652)	c
449)	b	450)	a	451)	d	452)	b	653)	С	654)	d	655)	b	656)	d
453)	d	454)	d	455)	b	456)	c	657)	f	658)	С	659)	c	660)	d
457)	с	458)	d	459)	a	460)	b	661)	а	662)	С	663)	С	664)	с
461)	С	462)	а	463)	с	464)	b	665)	С	666)	а	667)	b	668)	d
465)	С	466)	d	467)	d	468)	С	669)	b	670)	b	671)	а	672)	b
469)	b	470)	С	471)	b	472)	С	673)	С	674)	С	675)	b	676)	d
473)	d	474)	С	475)	d	476)	С	677)	а	678)	С	679)	b	680)	С
477)	а	478)	b	479)	а	480)	а	681)	d	682)	С	683)	С	684)	b
481)	С	482)	b	483)	С	484)	b	685)	b	686)	b	687)	а	688)	d
485)	b	486)	b	487)	b	488)	а	689)	d	690)	а	691)	С	692)	b
489)	С	490)	а	491)	а	492)	С	693)	b	694)	С	695)	d	696)	С
493)	d	494)	d	495)	d	496)	а	697)	С	698)	b	699)	d	700)	d
497)	a	498)	b	499)	d	500)	С	701)	b	702)	b	703)	а	704)	С
501)	d	502)	С	503)	b	504)	d	705)	С	706)	С	707)	С	708)	b
505)	b	506)	а	507)	b	508)	b	709)	d	710)	d	711)	С	712)	С
509)	b	510)	С	511)	С	512)	а	713)	b	714)	а	715)	d	716)	С
513)	С	514)	d	515)	b	516)	b	717)	d						
517)	d	518)	d	519)	b	520)	а								
521)	b	522)	а	523)	b	524)	d								
525)	b	526)	d	527)	b	528)	d								
529)	b	530)	а	531)	d	532)	b								
533)	b	534)	а	535)	а	536)	b								
537)	b	538)	С	539)	С	540)	а								

HYDROCARBONS

CHEMISTRY

: HINTS AND SOLUTIONS :

1	(a)		Benzene is obtained by the polymerisation of
	The formation of the alkene in an elimination		acetylene,. Similarly, mesitylene is obtained
	reaction is called Hofmann elimination		by the polymerisation of propyne.
	(Thermal decomposition). Elimination of		CH ₃
	hydrogen occurs from the β -carbon. So,		
			Fe, Δ
	$CH_2N^*Me_3OH^* \longrightarrow CH_2$		3CH3-C=CH
	$+ NMe_3 + H_2O$		Propyne H ₃ C CH ₃
2	(c)		mesitylene
2	Bees wax is myricyl nalmitate <i>i e</i>	10	(c)
	CarHaa COOCaaHaa		$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
3	(a)	11	(a)
-	The knocking order is:		Follow cleavage of two bonds at multiple bonding
	Straight > branched >olefins>arenes.		position during ozonolysis.
	chain alkane chain alkane	12	
4	(d)		$CH_2 = CH_2 + CH_3COCI \xrightarrow{Alcl} CH_3COCH_2CH_2CI.$
	Follow peroxide effect.	13	(b)
5	(b)		It is a Corey House synthesis of alkanes.
	Successive homologous differ by —CH ₂ gp.	14	(b)
6	(c)		C_2H_2 is used for artificial ripening of fruits. C_2H_4
	1, 2-dihalogen (<i>vicinal</i>) derivatives of the		for natural ripening.
	alkanes on reaction with zinc dust and	15	(a)
	methanol produces alkenes by loss of two		Follow Markownikoff's rule for addition.
	halogen atoms (dehalogenation).	16	
	$CH_{a} - CH - CH_{a} + Zn \xrightarrow{Alcohol/\Delta} CH_{a}CH = CH_{a}$		Ethane gives a mixture of nitroethane and
			nitromethane.
	Br Br		$CH_3 - CH_3 + HNO_3$
	12 dibromononon		Ethane
7	(d)		$\xrightarrow{0/3 \text{ K}}$ CH ₃ - CH ₂ - NO ₂ + CH ₃ NO ₂
/	(u) Ethylene is formed by dehydrobalogenation		$-H_20$
	of alkyl halide in presence of alcoholic KOH		(major)
C	Ethylong decolourics alkaling KMnQ due to		(IIIajoi)
	act original by it		During nitration chain fission of aikanes also
			takes place, so CH_3NO_2 is also obtained along
	$CH_3 - CH_2I \xrightarrow{\text{mercent}} CH_2 = CH_2$	4 7	with $CH_3CH_2NO_2$.
	ethylene	17	
8	(c)	10	Loal gives coal gas.
	$(CH_2)_2CH - C \equiv C - CH_2CH_2 \xrightarrow{[0]} (CH_2)_2CH_2COOH$	19	נט) Zn
	+ CH ₃ CH ₂ COOH		Frankland reaction: $2CH_3Br \rightarrow C_2H_6$.
9	(d)	20	(d)
	· ·	1	

CHCOOK CH Electrolysis \rightarrow ||| + 2CO₂ + 2KOH + H₂ CHCOOK CH cathode Potassium maleate acetylene anode 21 (a) F₂ reacts violently even in dark. 22 (d) *e*.g., $CH_3CH_2CH = CH_2$ is unsymmetrical. $CH_3CH = CHCH_3$ is symmetrical. Note the positions of carbon atoms on two sides of double bond. 23 (a) Due to non-polar nature, alkanes are insoluble in water because water is a polar solvent. 24 (a) $(a)CH_3 - CH = CH_2 \xrightarrow{B_2H_6}$ $(CH_3 - CH_2 - CH_2)_3B \xrightarrow{OH^-} CH_3CH_2CH_2OH$ Hydroboration of alkenes followed by hydrolysis in basic medium yield alcohol. (B)CH₃ - CH₂ - CH₂I $\xrightarrow{\text{HI/P}}$ CH₃ - CH₂ - CH₃ propane Reduction of alkyl halides yield alkane. $(c)CH_3CH_2CH_2COONa + NaOH$ 34 $\xrightarrow{\text{CaO}} \text{CH}_3\text{CH}_2\text{CH}_3 + \text{Na}_2\text{CO}_3$ Propane

Decarboxylation of sodium salt of fatty acid yield alkane having one carbon atom less than parent acid salt.

(b)

Nitrating, mixture is conc. HNO₃ + conc. H_2SO_4 .

It produces NO_2^+ electrophile which carried out electrophilic substitution reaction.

26 (a)

 OsO_4 is a valuable oxidising agent. It oxidises alkenes to give *cis* – diols.

27 (b)

 Al_4C_3 on hydrolysis gives methane gas. $Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4$ 29 (c)

Vegetable oils are esters of glycerol or glycerides. 31 (c)

As the conjugation increases, heat of hydrogenation decreases. Thus, alkene (c) with two isolated double bonds has the highest heat of hydrogenation.

$$CH_3CH_2CH_3 \xrightarrow{400-600^{\circ}C} CH_2 = CH_2 + CH_4$$
(X)
(Y)

33 (a)

The position of the double bond in alkene is identified by ozonolysis. Bromine water is used to detect the presence of π -bond whereas ammoniacal silver nitrate AgNO₃ is used to detect the presence of terminal alkynes or - CHO group (a)

While with Na/NH₃ or LiAlH₄, trans alkene is obtained, ie, anti-addition product

35 (d) $H_3C - CH_2C \equiv CH \xrightarrow{AgNO_3} CH_3CH_2C \equiv CAg$ (1-butyne) (silver-1 butynide) $H_3C - C \equiv C - CH_3 \xrightarrow{AgNO_3} No reaction$ 2-butyne 36 (d)

$$\begin{array}{c} \operatorname{CH}_{3}\operatorname{COONA}^{\operatorname{Sodelline}} \operatorname{CH}_{4} & \operatorname{CH}_{3} & \operatorname{CH}_{4} & \operatorname{$$

Soda lime

ogens present in an alkane and (ii) f halogens introduced $\begin{array}{c} & & & & & & \\ \mathbf{C}\mathbf{H}_3 & \frac{\mathbf{B}\mathbf{r}_2}{hv} & & & \mathbf{C}\mathbf{H}_3 - \mathbf{C}\mathbf{H}_2 - \frac{\mathbf{C}}{\mathbf{C}} - \mathbf{C}\mathbf{H}_2\mathbf{B}\mathbf{r} \\ & & & & & \\ \mathbf{h}_3 & & & & & \\ \mathbf{C}\mathbf{H}_3 & & & & \\ \end{array}$ $\begin{array}{cccc} & CH_3 & CH_2Br \\ & & & | \\ H_2 - CH_2 - C - CH_3 + CH_2 - C - CH_3 \\ & & | \\ CH_3 & CH_3 \end{array}$ $\xrightarrow{\text{H alc.}} CH_2 = CHBr \xrightarrow{\text{NaNH}_2} CH \equiv CH$ e loss HBr only by strong base. ula of cycloalkane is $C_n H_{2n}$. is passed over AlCl₃, isomerisation H_2 -CH₃ $\xrightarrow{AICl_3}$ CH₃-CH-CH₃ ine CH₃ iso-butane Huckel's rule, the molecules in $(4n + 2)\pi$ -electrons are white and $CuC \equiv CCu$ is red. $0 \rightarrow C_2 H_2 + Ca(OH)_2$ ethyne $-CH + 2(H) \xrightarrow{\text{Li}}_{\text{liq.NH}_3}$,н CH₃ nce of Lindlar's catalyst (Pd – tyne reacts with hydrogen giving

 $CH_3CH_2C \equiv CH \xrightarrow{[0]} CH_3CH_2COOH + HCOOH$ takes place across the double bond $CH_2N_2 \xrightarrow{UV \text{ light}} :CH_2 + N_2$ 62 (a) $CH_3CH=CH-CH_3+:CH_2 \longrightarrow CH_3-CH-CH_3$ Ethane is already a saturated compound. 63 (d) ĊH₂ HIO₃ and HNO₃ both are oxidizing agent. HI is 75 (c) reducing agent which can reduce CH₃COCH₃ to Fluorination is highly explosive and occurs propane, violently. $CH_3 - COCH_3 + 4HI \rightarrow CH_3CH_2CH_3 + H_2O + 2I_2$ 76 (b) 64 **(a)** CH₃CH₂CH₂CH₂CH₂Cl; CH₃CH₂CH₂CHClCH₃ We know that CH₃CH₂CHClCH₂CH₃ $CH_3CH_2Cl + KOH \rightarrow CH_2 = CH_2 + KCl + H_2O$ 77 (d) Thus, in this reaction ethene (C_2H_4) is $\delta_{-} +$ produced. CH₃CH=CH₂ + HOBr CH₂Br propene 65 **(b)** ÓН This reaction is utilized for the preparation of 1-bromo-2-propanol higher alkynes The addition takes place according to $\mathrm{CH}_3-\mathrm{C}\equiv\mathrm{C}-\mathrm{H}+\mathrm{Na}\xrightarrow{\mathrm{Liq.NH}_3}\mathrm{CH}_3-\mathrm{C}\equiv\mathrm{C}-\mathrm{Na}$ Markownikoff's rule. Propyne 78 (c) $CH_3 - C \equiv C - Na + BrCH_3 \rightarrow CH_3 - C$ Arc $C + H_{2}$ $\rightarrow C_2 H_2$ $\equiv C - CH_3 + NaBr$ 79 (d) But-2-yne Wurtz-Fittig reaction 66 (a) CH₃ CI B.P. increases with increase in mol. wt. 67 (f) $+ CH_3Cl + 2 Na$ Ether These are common reductants. + 2 NaCl 68 (d) $CH \equiv CH \xrightarrow{\text{Lindlar's}} CH_2 = CH_2$ The reaction is used to yield aromatic hydrocarbons. Lindlar's catalyst prevents further reduction of 81 (d) ethane to ethane. Alkanes are non-polar and have almost non-polar 69 (c) bonds C—H and non-polar bond C—C. They show Am. Cu₂Cl₂gives red ppt.with alkyne. only substitution reactions in presence of light. 70 (d) 82 (d) $(C_2H_5)_4$ NOH $\xrightarrow{\Delta}$ $(C_2H_5)_3$ N + C_2H_4 + H_2O Alkene $O_3 / H_2 O / Zn$ C = O + CH₃CH₂CHO 72 (d) Ozonolysis involves the breaking of double bond and insertion of O atoms in place of To identify alkene (from ozonolysis double bond. Therefore, the structure of products)place these products with O-atoms alkene is as face to face. Replace 0-atoms by = (double bond). — СН₃ **–** acetaldehyde $H_3C -$ -СН=СН-СН3 2-butene 74 (b) Alkenes on treatment with diazomethane

 (CH_2N_2) in the presence of UV light give

cyclopropane and its derivatives. This addition

H₃C
CO + OCHCH₂CH₃
H₃C
O-atom face to face
H₃C

$$1 \ 2 \ 3 \ 4 \ 5 \ CHCH2CH3
H3C
 $1 \ 2 \ CHCH2CH3
H3C
 $1 \ 2 \ CHCH2CH3$$$$

83 (c)

By the reaction of benzene with ethylene in presence of anhydrous AlCl₃, ethylbenzene is produced.

- 84 **(b)**
 - Double bond is broken to give ketone and acid.
- 85 **(a)**

Toluene has electron releasing group (CH_3) thus it most reactive towards electrophilic nitration

86 **(c)**

 $C_{n}H_{2n}O = 44$ $C_{n}H_{2n} = 44 - 16 = 28$ $\therefore n = 2$ So, CH₃ - CH = CH - CH₃ is symmetrical alkene. Thus, CH₂ - CH = CH - CH₂ $\xrightarrow{I.0_{3}} 2CH_{2} - CH = 0$

$$CH_3 - CH = CH - CH_3 \xrightarrow[II.Zn/H_20]{} 2CH_3 - CH =$$

2-butene acetaldehyde

87 **(b)**

Conversion of propene to propanol is hydration.

$$\begin{array}{l} CH_3 - CH = CH_2 + H_2O \xrightarrow{H_2SO_4} CH_3 - CH - \\ CH_3 \\ Propene \\ \end{array} propanol-2 \end{array}$$

(c) The process is called aromatization.

89 (c) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_1 + 2O_2 + 2H_2O_2 + 2H_2O_2$

88

 CH_3 $CH_3 - C - CH_3$ is symmetrical alkane and will | CH_3

give only one monosubstituted product. Is symmetrical alkane and will give only one monosubstituted product.

Also $C_n H_{2n+2}$, *i.e.*, 12n + 2n + 2 = 72 $\therefore \qquad n=5$

∴ 91 **(b)**

92

The number of disubstituted products of benzene is three

$$R' MgX + HC \equiv CR \rightarrow R'H + RC \equiv CMgX$$

93 (a)

$$2CH_{3}COONa \xrightarrow{\text{Electrolysis}} 2CH_{3}COO^{-} + 2Na^{+}$$

At anode
$$2CH_{3}COO^{-} \longrightarrow 2CH_{3}COO^{+} + 2e^{-}$$

$$-2CO_2$$

 $2CH_3^{\bullet} \longrightarrow CH_3 \longrightarrow CH_3$ (ethane)

95 **(c)**

Reactivity towards electrophilic substitution increases as the electron density in the benzene ring increases. Since CH_3 is a strong electron donating group thus can be most readily sulphonated

$$\begin{array}{c} |\\ \mathrm{CH}_{2} = \mathrm{CH} - \mathrm{CH}_{3} + \mathrm{H}_{2}\mathrm{O} \xrightarrow{\mathrm{H}_{2}\mathrm{SO}_{4}} \mathrm{CH}_{2} - \mathrm{CH} - \\ \mathrm{CH}_{3} \end{array}$$

Propylene isopropyl alcohol Thus, in this reaction isopropyl alcohol is

formed.

98 **(c)**

 $CaC_{2} + 2H_{2}O \rightarrow Ca(OH)_{2} + C_{2}H_{2}$ $C_{2}H_{2} + Cu_{2}Cl_{2} \rightarrow CuC \equiv CCu$ (Red ppt.)

100 **(a)**

According to Huckel's rule, an aromatic compound should have $(4n + 2)\pi$ -electrons. Where, *n* is an integer, *i. e.*, 0, 1, 3, 4, ... and

OH

possesses unusual stability due to the delocalisation of π -electrons.

102 **(d)**

The octane no. for *n*-heptane is zero.

103 (c)

This is hydrogenation of alkane.

104 (a)

Tar, *i. e.*, pitch contains alkanes from C_{30} to C_{40} chain.

105 **(a)**

Thermal decomposition of alkanes in the absence of air is called cracking or pyrolysis *e*. *g*.,

 $CH_4 \xrightarrow{1000^{\circ}C} C + 2H_2$

106 **(c)**

The following are the necessary conditions for compound to be aromatic.

- 1. Molecule must be planar and cyclic.
- 2. Conjugated double bond must be present.
- 3. It must have $(4n + 2)\pi$ -electrons.

107 **(d)**

 $CH_2 = CH - CH = CH_2; sp^2 - sp^2 (C - C)bond$ length is 1.34 Å 1 2 3 4

108 (c)

$$CH_2 = CH - CH_2Cl + CH_3Mgl$$

allyl chloride

$$CH_2 = CH - CH_2 - CH_3 + Mg < CH_2 - CH_3 - CH_3 + Mg < CH_2 - CH_3 - CH_3$$

109 **(c)**

(i)Among alkanes boiling point increases with increase in molecular mass.

(ii)Among isomeric alkanes the boiling point decreases with branching due to decrease in surface area.

n-octane will have highest boiling point because it has highest number of carbon atoms and does not show branching.

110 **(c)**

$$CH_{3}CH_{2}CH = CH_{2} + Br_{2} \longrightarrow CH_{3}CH_{2}CH - CH_{2}Br$$

$$|$$
Br

determine alkene, place these products with O-atoms face to face and replace O-atoms by =bond.

114 **(a)**

The presence of $dilH_2SO_4$ and mercury salts, alkynes add a molecule of H_2O to form aldehydes or ketones.

$$CH_{3}CH_{2}CH=CH + H_{2}O \xrightarrow{Hg^{2+}, \text{ dil } H_{2}SO_{4}} [CH_{3}-CH_{2}-C=CH_{2}]$$

$$O \\ CH_{3}CH_{2}-C = CH_{3} \xrightarrow{H_{2}-C} CH_{3} \xrightarrow{H_{2}-C} CH_{3} \xrightarrow{H_{2}-C} CH_{3} \xrightarrow{H_{2}-C} CH_{3}$$

115 **(b)**

 $6R - CH = CH_2 \xrightarrow{B_2H_6} 2(RCH_2CH_2)_3 B_2$ $2(RCH_2CH_2)_3B_2 \xrightarrow{6H_2O_2} RCH_2CH_2OH + 2H_3BO_3$ This process always gives alkanol-1 from alkane-1.

117 **(b)**

Side chain hydrogen atoms are substituted in presence of light or heat. Ring hydrogens are substituted in presence of Lewis acid.

118 **(b)**

Direct iodination of alkane is not possible because of reversible nature of HI. It is therefore carried out in presence of HgO or HIO_3 . $CH_4 + I_2 \rightarrow CH_3I + HI$ $HgO + 2HI \rightarrow HgI_2 + H_2O$

119 (b)

is aromatic

is aromatic.

It contains 3 double bonds (6π electrons). According to Huckel rule $(4n + 2)\pi = 6\pi$ electrons where, n = 1

120 **(b)**

Since, the alkene of oxidation gives only acetic acid, therefore, the alkene must be

symmetrical containing two carbon-atoms on either side of the double bond, *ie.*, 2-butene.

 $CH_3CH = CHCH_3 \xrightarrow{KMnO_4} 2CH_3COOH$ 122 (d)

When carbon is bonded to four other atoms, the angle between any pair of bonds =109°, 28' (tetrahedral angle) but the ring of cyclobutane is square with four angles of 90°. So, deviation of the bond angle (angle strain) in cyclobutane

 $= 109^{\circ}28' - 90^{\circ}/2$ $= 19^{\circ}28'/2$ $= 9^{\circ}44'$

123 (c)

Excess of Cl₂ finally converts all products to CCl₄.

124 (a)

n-heptane gives toluene; *n*-octane gives ethyl benzene.

125 (a)

The H-atoms of terminal alkyne (ie., H_3C – $C \equiv CH$) is weakly acidic.

 $CH_3 \equiv CH + NaNH_3 \xrightarrow{Liq.NH_3} H_3C - CH \equiv$ $CNa + NH_3$

126 **(c)**

HCOONa
$$\xrightarrow{\text{NaOH}}$$
 H₂ + Na₂CO₃

Alkyl halides undergo reduction with red phosphorus and hydrogen iodine Pod D/HI CH

$$_{3}CH_{2}CH_{2}I \xrightarrow{\text{Keu 1/III}} CH_{3}CH_{2}CH_{3}$$

128 (a)

CH₄ diffuses rapidly because of low mol. wt. 129 (a)

Boiling point \propto molecualr mass $\propto \frac{1}{\text{branching}}$

(\therefore surface area decreases)

 \therefore *n*-hexane has the highest boiling point among the given.

130 (d)

In this conformer Cl is at equatorial position and is least hindered.

131 (c)

Rest all are industrial uses of C₂H₂.

132 (d)

In *p*-xylene, the four nuclear H-atoms are equivalent and hence, only one on e mononitro derivative is formed. But it gives three dinitro derivatives (2,3;2,6 and 2,5) as shown below

134 (b)

At 60° (low temperature) mononitration occurs and nitrobenzene is obtained but at 100°C, nitrobenzene further undergoes electrophilic substitution and gives mdinitrobenzene (as $-NO_2$ is a meta directing group).

135 (b)

Rest all are aromatic compounds.

136 **(b)**

General formula of alkane is $C_n H_{2n+2}$; 2n + 2 = 10.

137 (a)

 $CH_3 - C \equiv CH + HBr \rightarrow CH_3 - C = CH_2$

$$CH_{3} - CH = CHBr \xrightarrow{HBr} CH_{3} - CH_{2} - CHBr_{2}$$
$$CH \equiv CH \xrightarrow{2HBr} CH_{3}CHBr_{2}$$
$$CH_{3} - CH = CH_{2} \xrightarrow{HBr} CH_{3} - CHBr - CH_{3}$$

138 **(b)**

 $CH_2 = CH_2 + HCI \rightarrow CH_3CH_2Cl$ (addition reaction).

140 **(d)**

Primary alcohols are oxidized to aldehydes and then to acid to decolourise KMnO₄. Also ethylene oxidizes to formic acid.

141 **(b)**

Propyne gives white ppt. with ammoniacal $AgNO_3$.

144 (a)

Homologues of benzene may be prepared by warming an ethereal solution of an alkyl or aryl halide with sodium

150 (a)

The first addition will occur on double bond. Thus, $CH \equiv CH - CH_2 - CH = CH_2 \xrightarrow{HBr} CH \equiv C - CH_2 - CHBr - CH_3$ but in $CH \equiv C - CH = CH_2$, the addition will occur at $CH \equiv C$ because the product formed is conjugated alkadiene, which is more stable.

CH=C-CH=CH₂
$$\xrightarrow{HBr}$$
CH₂ \xrightarrow{C} CH=CH₂
Br
151 (b)
It is alicyclic or aliphatic unsaturated.
152 (a)
(C₂H₅)₄ Pb on addition to gasoline increases its octane no. by about 5 units.
153 (b)
On heating with sodamide(NaNH₂ in liq. NH₃), alkynide is formed
$$154$$
 (c)
Only alcoholic KOH gives dehydrohalogenation reaction. Ethyl chloride

 $\bigcirc + \operatorname{Br}_{2CH_{3}} \xrightarrow{2Na} \bigcirc CH_{2}CH_{3} + 2NaBr$ (62-72%)

145 **(d)**

These are characteristics of ozonolysis.

146 **(a)**

When a conjugated diene (diene) is heated with an unsaturated compound (dienophile) in a sealed tube, an addition product (adduct) is obtain. This reaction is called Diel's Alder reaction

$$CH_2 = CH - CH = CH_2 + \| CH - COOH \\ butadiene \\ (diene) \\ dienophile \\ dienophile \\ cOOH \\ adduct \\ COOH \\ coo$$

148 **(b)**

Unsymmetric alkene and HBr are primary conditions for Kharasch effect.

149 **(a)**

$$H_{2}C = CH_{2} \xrightarrow{HBr} CH_{3}CH_{2}Br$$
(A)
$$\xrightarrow{Alc.KOH} H_{2}C = CH_{2}$$

Hence,
$$A = C_2 H_4$$
; $B = alc. KOH/\Delta$

reacts with alcoholic KOH as н H $-H \longrightarrow CH_2 = CH_2 + H_2O + KCI$ ċι Κ OH 156 (d) $CH_3CH_2CH - CH_3$ OH $\xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} - \mathrm{CH}_{2} - \mathrm{CH} - \mathrm{CH}_{3} \xrightarrow{-\mathrm{H}_{2}\mathrm{O}}$ $H - O^{+} - H$ $(Major)CH_3CH = CHCH_3$ $(Minor)CH_3CH_2CH = CH_2$ 157 (d) It is fact. Follow octane number. 158 (a) $CH_3C = CH_3 \xrightarrow{KMnO_4} CH_3COCH_3 + CH_3COOH$ CH_3 159 (a) 1-Butyne reacts with NaNH₂ to give sodium salt while 2-butyne does not react. Only terminal alkynes are acidic. $CH_3 - CH_2 - C \equiv C - H \xrightarrow{NaNH_2} No reaction$ $NH_3 + CH_3 - CH_2 - C \equiv C^{\Theta}Na^{\oplus}$ 160 (c) When an alkyl halide reacts with sodium in presence of dry ether, an alkane with the double number of carbon atoms than the parent halide, is obtained and this reaction is known as Wurtz reaction. 3 2 4 $CH_3 - CH - CH - CI$ Ľ CH_3 CH_3 2-chloro-3-methyl butane 3 2 $+CH_3 - CH - CH - Cl \frac{Na}{Dry ether}$ CH₃ CH₃ 5 4 3 2 6 1 $CH_3 - CH - CH - CH - CH - CH_3$

$$| | | | |$$

$$CH_3 CH_3 CH_3 CH_3 CH_3$$

$$2,3,4,5-tetramethyl hexane$$

$$2CH_2C \equiv CH \xrightarrow{Na/Liq.NH_3} CH_2CH_3$$

 $CH_3CH_2C \equiv CH \xrightarrow{Ha} \Delta CH_3CH_2C \equiv CNa^+$ Considering the options given it appears correct. Na/liq. NH₃ is known for metal dissolved reduction. Actually it is truth that Na/liq. NH₃ reduces internal triple bond and terminal double bond and do not reduce the terminal alkyne due to such alkylide formation.

162 **(a)**

161 **(b)**

Homologous may or may not be straight chain compounds.

163 **(c)**

Ammoniacal cuprous chloride will give red precipitate with 1-alkynes (terminal alkynes). $CH_3 - C \equiv CH + 2[Cu(NH_3)_2]Cl \rightarrow$ $CH_3 - C \equiv C - Cu + 2NH_4Cl + 2NH_3$ (red ppt.)

165 (c)

C—C bond involves $2sp^3 - 2sp^3(\sigma)$ whereas, C— H bond involves $2sp^3 - 1s(\sigma)$ in alkanes.

166 **(c)**

$$CH_4 + H_2O \xrightarrow{Ni/Al_2O_3} CO + 3H_2$$

167 **(c)**

Terminal alkyne reacts with ammoniacalAgNO₃ solution give a whilteppt, therefore *x* must be a terminal alkyne. Thus, *x* must be(CH₃)₂CHC \equiv CH (CH₃)₂CHC \equiv CH $\xrightarrow{\text{KMnO}_4}$ (CH₃)₂CHCOOH + [HCOOH]

168 (c)

$$RCH = CR_1R_2 + O_3 \xrightarrow{Zn} RCHO + R_1COR_2$$

170 **(a)**

$$CH_2Br - CH_2Br \xrightarrow{Zn} CH_2 = CH_2 + ZnBr_2$$

171 (d)

An alkyne combine with a conjugated diene to give an unconjugated cycloalkadiene. This reaction is known as **Diels-Alder reaction**.

butadiene acetylene cyclohexadiene

172 **(a)**

Now-a-days used in refineries.

173 **(b)**

Kerosene contains alkanes from C_{12} to C_{16} .

174 (d)
On treatment with alcoholic KOH, 1chlorobutane gives 1-butene while 2chlorobutane gives 2-butene (major) +1butene (minor). Therefore, a mixture of 1butene +2-butene is formed.

176 **(a)**

$$X \xrightarrow{(i)0_3} C_2 H_4 O + C H_3 C H_2 - C - C H_3$$

 $\label{eq:hold} \begin{array}{ll} Aldehyde & 2\mbox{-butanone} \\ The aldehyde should be CH_3CHO because the molecular formula is C_2H_4O. \end{array}$

0

177 **(b)**

Octane no. for iso-octane has been arbitrarily assumed to be 100 and for *n*-heptane as zero. 178 (c)

$$CH_{3}CH_{2}CH = CH_{2} \xrightarrow{HBr} CH_{3}CH_{2}CHBrCH_{3}$$

179 **(d)**

In cyclopropane the angle strain is maximum. Hence, it is highly strained molecule and consequently most unstable. The angle strain in cyclobutane is less than cyclopropane. Hence, cyclobutane is more stable. This stability increases up to 6 membered rings then decreases from 7 to 11 membered rings and from the 12 membered rings onwards attains the stability of 6 membered ring. Heat of combustion is a method of measuring chemical stability. Hence, cyclohexane has the lowest heat of combustion.

180 **(d)**

At 70–120°C gasoline, at 150–250°C kerosene; at 250–400°C diesel oil.

190 **(b)**

Mustard gas is β , β -dichlorodethylsulphide which is prepared by the action of sulphur monochloride on ethylene.

181 **(b)**

Triple bond is shifted from centre to corner.

183 **(b)**

Oxymercuration-demercuration is an example of hydration of alkene according to Markownikoff's rule

 $(CH_3)_3CCH=CH_2 \xrightarrow{(CH_3COO)_2Hg}_{THF} (CH_3)_3C-CH-CH_2$ OH HgOOC.CH₃ (Y) $\underbrace{\frac{NaBH_4}{NaOH}}_{OH} (CH_3)_3-C-CH-CH_3$ OH 3,3-dimethyl-butan-2-ol

184 **(b)**

Cetane number of hexadecane is 100 and of methyl naphthalene is zero.

Distillation of acetone with concentrated conc. H_2SO_4 gives mesitylene.

186 **(b)**

See rupture of C=C to convert it to C=O.

187 **(b)**

Soda lime (NaOH + CaO) is used to slow down the decarboxylation otherwise the reaction will occur violently.

188 **(b)**

More is the amount of CO in exhaust fuel, more incomplete is combustion of fuel.

189 **(d)**

It may be $CH_3CH_2C \equiv CH$ or $CH_2 = CH$ — $CH = CH_2$ or $CH_3HC = CH$ — CH_3 .

$$\begin{array}{c} CH_2 & CH_2 \\ \parallel & +S_2Cl_2 + \\ CH_2 & sulphur \\ monochloride \end{array} \xrightarrow{CH_2} CH_2 CH_2 \\ CH_2 & CH_2 \\ mustard gas \\ \textbf{\beta}, \textbf{\beta}' dichlorodiethyl sulphide \end{array}$$

 $CH \equiv CH + CH_3OH \xrightarrow{CH_3ONa} CH_2 = CH.OCH_3$ is nucleophilic addition.

192 (a)

 CH_4 obtained in (c) is contaminated with C_2H_2 , C_2H_4 and H_2 .

193 **(b)**

Larger is surface area, more is viscosity. Surface area decreases with increase in branching.

196 (a)

 $C_{5}H_{12}has molecular mass = 72$ $CH_{3} - C - CH_{3}$ $| CH_{3} - C - CH_{3}$ $| CH_{3}$

will give only one mono substituted product.

197 (a)

(i)Electron rich groups are o, p directing ., -OH, -Br, -CH₃ etc.

(ii)Electron deficient groups having multiple bonds are *m*-directing.

eg., –COOH, –NO₂

198 **(c)**

In the given compounds only acetophenone is prepared by substitution. Other compounds are prepared by addition reactions.

Acetophenone is prepared when benzene reacts with acetyl chloride in presence of anhy. AlCl₃ as

CH₂ = CH - CH₂CH₃
Butene-1

$$\xrightarrow{Pd/H_2}$$
 CH₃ - CH₂ - CH₂ - CH₃
butane
Other reagents are successful with polar
double bonds.

203 (a)

 $Ph - C \equiv C - CH_3 \xrightarrow{Hg^{2+}/H^+} Ph - C = CH - CH_3$ | $Ph - C = CH_2CH_3$ || OH (A)

204 **(b)**

Follow mechanism of Wurtz reaction.

- 205 (c)
 - It is a non-terminal alkyne.
- 207 **(b)**

1, 2-bromo cyclopentane on heating with
$$1^-$$
 in acetone gives cyclopentene.

208 **(b)**

Terminal alkynes react with am. AgNO₃ or $Ag(NH_3)^+_2OH^-$ to give white ppt.

209 (a)

The reactivity order of 1°, 2° and 3° H-atoms has been explained in terms of hyper conjugation.

210 **(d)**

butan-2-one

212 (a) The reactivity order is, $Cl_2 > Br_2 > I_2$.

213 **(c)** Decolourisation of KMnO₄ (unsaturation test)

214 **(b)**

Indane is commercial name of L.P.G.

215 (a)

Terminal alkynes react with ammoniacal $AgNO_3$ to give silver salt as they have acidic hydrogen.

$$CH_3 - C \equiv CH + AgNO_3 + NH_4OH \rightarrow$$

$$CH_3 - C \equiv C.Ag + NH_4NO_3 + H_2O$$

217 **(a)**

Cyclo propane is the most unstable cyclic compound. So, with bromine it gives an open chain compound 1, 3-dibromopropane.

$$CH_2 \underbrace{\bigcirc}_{CH_2}^{CH_2} + Br_2 \xrightarrow{\bigcirc}_{Br}^{CH_2} \xrightarrow{\bigcirc}_{Br}^{CH_2} \xrightarrow{OH_2}_{Br}$$
cyclopropane 1, 3, dibromo propane

218 (c)

Addition of HBr to an alkene in the presence of peroxide is the example of free radical addition reaction

$$R - O - O - R \longrightarrow 2R - O^{\bullet}$$

$$R - O^{\bullet} + HBr \longrightarrow R - OH + Br^{\bullet}$$

$$R - CH = CH_{2} + Br^{\bullet} \longrightarrow CH_{3} - CH - CH_{2}Br$$

$$CH_{3} - CH - CH_{2}Br \xrightarrow{HBr} CH_{3}CH_{2}CH_{2}Br + Br$$

$$Br^{\bullet} + Br^{\bullet} \longrightarrow Br_{2}$$

219 **(a)**

All H-atoms in *neo*-pentane are equivalent thus, it will yield monochloro product

220 **(b)**

Acetylenichydrogens are acidic because sigma electron density of C - H bond in acetylene is nearer to carbon, which has 50% *s*-character

221 **(c)**

Follow text.

222 **(c)**

Wurtz reaction Alkyl halide reacts with sodium in presence of dry ether forms alkane is known as Wurtz reaction. $CH_3Br + 2Na + BrCH_3$

 $\xrightarrow{\text{ther}} \text{CH}_3 - \text{CH}_3 + 2\text{NaBr}$ 223 (b) It is an experimental fact. 224 (c) (i)Unsaturated hydrocarbons are more reactive than saturated hydrocarbons. (ii)Among alkene and alkyne, alkene are more reactive because $C \equiv C$ is quite strong bond. ∴ Correct order of reactivity Alkene>alkyne>alkane $C_2H_4 > C_2H_2 > C_2H_6$ or ethene ethyne ethane 225 (b) $(C_6H_{10}O_5)_n + nH_2O \xrightarrow{\text{Bacteria}} 3nCH_4 + 3nCO_2$ 226 **(c)** It is a common method to prepare alkanes. Methane cannot be prepared by Wurtz reaction. $CH_3Br + 2Na + BrCH_3 \rightarrow C_2H_6 + 2NaBr$ ethane 227 (b) Symmetrical optical isomers are called mesomers. H₃C Debromination meso-dibromobutane cis-2-butene 228 **(b)** $CH \equiv CH + HBr \rightarrow CH_2 = CHBr$ 229 (a) $CH_3CH_2COONa \xrightarrow{Electrolysis} CH_3(CH_2)_4CH_3 + NaOH$

$$2\text{CHCl}_3 + 6\text{Ag} \rightarrow \text{C}_2\text{H}_2 + 6\text{AgCl}$$

 $+ H_{2}$

231 (d)In the presence of ferric chloride, electrophilic substitution at *ortho* and *para* position take place

232 **(b)** Butyne reacts with Na/liq. NH₃ to give *trans*product.

$$CH_{3}-C \equiv C - CH_{3} \xrightarrow{Na / Liq.NH_{3}} \xrightarrow{H_{3}C} C = C + CH_{3}$$

trans-product

٠
Due to more close packing, even carbon atom alkanes have higher value.

258 **(b)**

Product will be spiropentane.

260 **(a)**

Toluene is oxidised to benzaldehyde in presence of chromyl chloride. This reaction is called Etard's reaction.

262 **(a)**

Markownikoff's addition the negative part of the unsymmetrical reagents adds to a less hydrogenated (more substituted) carbon atom of the double bond. In ICl, Cl is more electronegative. So, it will take negative charge, . *e.*, I⁺Cl⁻. So, the product is

263 **(b)**

Reduction of CH₃COCH₃ with HI and red P will give propane

264 **(a)**

Acetylene is acidic and thus reacts with $NaNH_2$. Na. Amm. AgNO₃ reduces itself on reacting with acetylene with HCl it gives addition reactions. However, being weak it does not react with NaOH.

265 **(b)**

Alkenes give carbonyl compounds on ozonolysis

Alkene $\xrightarrow{O_3/Zn/H_2O}$ HCHO + other carbonyl compound

$$\begin{pmatrix} R_1 \\ R_2 \end{pmatrix} CH_2 = 0 \\ B \end{pmatrix}$$

To determine alkene, place carbonyl compounds with their O-atom face to face. Replace O-atom by a double bond

266 **(c)**

An increase in molecular weight results in an increase in van der Waals' forces of attractions which results in an increase in b.p.

$$CH_2 = CH_2 \xrightarrow{H_2O} CH_3. CH_2OH$$
269 **(b)**

LPG is a mixture of lower alkanes mainly isobutene and butane.

- 271 (d) Reducing agent P + HI gives alkane in every case.
- 272 (b) Lewisite is CH=CHAsCl₂ formed by the action of | Cl

 $AsCl_3$ on $CH \equiv CH$

275 **(b)**

Follow Saytzeff's rule for elimination.

276 **(c)**

Any aliphatic carbon with hydrogen attached to it, in combination with benzene ring, will be oxidised to benzoic acid by $KMnO_4/H^+$.

277 **(d)**

 $CH_4 + HNO_3 \xrightarrow{\Delta} CH_3NO_2$; nitration reaction.

Terminal alkynes give red. Ppt. with amm. Cu_2Cl_2 .

279 **(a)**

An isolated alkadiene has double bonds, one at each corner.

281 **(b)**

Na will react with —OH group

283 **(b)**

PhMgBr can be protonated by any of the protic solvent e.g., CH_3OH .

$$PhMgBr + CH_{3}OH \longrightarrow Ph - H + Mg < OCH_{3}$$

Br

Addition of iso-octane to gasoline increases octane number of fuel or decreases knocking.

285 (d)

Because of less density cyclo hexane floats over water.

286 (d)

 $CH_2 = CH_2 + H_2O + [O]$ $\xrightarrow{Baeyer'sreagent} CH_2OH. CH_2OH$

287 **(b)**

The reduction of >C=C< only to >CH—CH< is influenced by H_2 /catalyst.

289 (a)

Except NaOH rest all reacts with C_2H_2 .

290 **(b)**

Catalytic hydrogenation is free radical addition. Also more is heat of hydrogenation ($\Delta H = -ve$) more is reactivity for alkene for hydrogenation.

291 **(d)**

It is simply called addition of halogen.

292 **(c)**

 $CO + 3H_2$, is called synthetic gas.

293 **(a)**

benzaldehyde

Η

294 (c) Alkaline $KMnO_4$ converts an H-atom to -OH gp. 295 (a)

*Gem*dihalides on treatment with alcoholic KOH give alkyne.

$$CH_3 - CH < X \xrightarrow{alc. KOH} HC \equiv CH + 2HX$$

ethyne

296 **(c)**

Ag⁺ ion increases the solubility of alkenes due to the formation of $p\pi - d\pi$ bonding. 297 (c) CH \equiv CH + 2HCHO \rightarrow HOH₂C - C \equiv C -

CH₂OH Acetylene 2, butyne-1, 4-diol

298 **(b)**

 $(CH_3)_2CHCOONa \xrightarrow{NaOH+CaO} (CH_3)_2CH_2 + Na_2CO_3$ 299 (a)

Alkenes show electrophilic addition.

301 (c)

Methane cannot be produced by Wurtz reaction, Kolbe's electrolytic method and reduction with H₂because, it has one carbon atom.

Pure methane can be produced by the decarboxylation of sodium acetate.

 $CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$ Soda lime methane

-)

Hence, reagent X and Y are respectively Na, NH_3 and $Pd/BaSO_4 + H_2$.

303 (d)

When methane is oxidised in presence of molybdenum oxide (MoO), it gives methanal (formaldehyde).

$$CH_4 + 2[O] \xrightarrow{[MoO]} HCHO + H_2O$$

formaldehyde

304 **(d)**

Propyne reacts with $AgNO_3$ in NH_3 to give while ppt. of silver acetylide and propene does not react with it. (Only terminal alkynes react with $AgNO_3$ in NH_3).

 $CH_3 - C \equiv CH + AgNO_3 + NH_3$

Propyne

 $\rightarrow CH_3 - C \equiv C \text{ Ag}$ silver acetylide (white ppt.)

$$CH_3 - CH = CH_2 + AgNO_3 + NH_3 \rightarrow$$

no reaction

305 **(a)**

Rotation of groups or atoms round single bond produces conformation.

306 **(a)**

A compound is said to have aromatic character if ring system is planar (with *p*orbital) and there is complete delocalisation of π -electrons (lone pair may be taken for delocalisation as relay electrons). This is true is conjugated cyclic system.

This pair is used in delocalisation Huckel rule is followed by when electrons used in delocalisation= $(4\pi + 2)$ (including lone-pair)

Where, *n*=0, 1, 2, 3,....

4 (1, 3-cyclopentadiene)

- 4. ring is planar
- 5. ring is not conjugated
- 6. delocalisation of π -electrons is not possible after C₄.
- 7. $(4\pi + 2)\pi$ -electrons=4

Hence, it is not aromatic.

307 **(b)**

Kerosene contains $C_{11} - C_{16}$ atoms alkanes.

308 **(a)**

The stability of alkenes increases with increase in substitution of H attached on doubly bonded carbon by alkyl groups.

309 **(d)**

When chlorine is passed in boiling toluene, substitution in side-chain takes place and benzyl chloride is obtained which on hydrolysis give benzyl alcohol.

310 **(b)**

To oxidize HI formed during the reaction; otherwise the strong reducing nature of HI will reverse the iodination.

312 **(c)**

Reactivity of alkenes decreases with increase in no. of carbon atoms in alkene as well as substitution of H-atom attached to double bond.

313 (c)

 $CH_3C \equiv CH \xrightarrow{SeO_2} CH_3COCHO$ 314 (c)

> 3° (C – H) bond has minimum bond energy hence easily cleaved giving 2 bromo 2-methyl butane

315 (a)

$$(CH_3)_3CCH = CH_2 \xrightarrow{Hg(OOC.CH_3)_2} (CH_3)_3CCHCH_2HgOOCCH_3 \xrightarrow{NaBH_4} (CH_3)_3CCHOHCH_3$$

316 **(d)**

$$\begin{array}{c} \mathsf{CH}_{3} \\ \mathsf{CH}_{3} - \mathsf{C} - \mathsf{CH}_{3} \\ \mathsf{CH}_{3} \\ \mathsf{CH}_{3} \end{array} \xrightarrow{\begin{array}{c} \mathsf{Br}_{2} \\ \mathsf{F}_{2} \\ \mathsf{CH}_{3} \end{array}} \mathsf{CH}_{3} - \mathsf{CH}_{3} \\ \mathsf{CH}_{3} \\ \mathsf{CH}_{3} \end{array} \xrightarrow{\begin{array}{c} \mathsf{CH}_{3} \\ \mathsf{CH}_{3} \\ \mathsf{CH}_{3} \end{array}} \mathsf{CH}_{3} \\ \mathsf{CH}_{3} \end{array}$$

Only primary hydrogen atoms are present here, thus only one product is formed

319 (d)

The phenomenon of decomposition of higher alkanes into lower hydrocarbons on heating in absence of air is called cracking.

320 (a)

Ethyl benzene cannot be prepared by Wurtz reaction. This method is suitable for the preparation of symmetrical alkanes.

321 **(a)**

$$AgC \equiv CAg \xrightarrow{HCI} CH \equiv CH$$

$$Cl_{3} - C - CH = CH_{2} \xrightarrow[anti-Markownikoff rule]{HCl} Cl_{3}$$
$$- C - CH_{2} - CH_{2}Cl$$

323 (b)

KOH alc., $NaNH_2$ and C_2H_5ONa are used for dehydrohalogenation.

324 **(b)**

Octane number represents percentage of isooctane.

325 **(a)**

Cyclopropane is most strained alkane; follow Baeyer's strain theory.

326 **(c)**

If the side chain is larger than a methyl group, the halogenation always at the benzylic carbon

$$\bigcirc^{\mathsf{CH}_3} \xrightarrow{\overset{\bullet}{\mathsf{CH}} \mathsf{-CH}_3} \xrightarrow{\mathsf{CHBr}-\mathsf{CH}_3} \xrightarrow{\mathsf{CHBr}-\mathsf{CH}_3} + \mathsf{E}$$

benzylic free 1-bromo-1-phenylethane radical (major product)

+ Br'

327 (d)

 $\mathrm{C} + \mathrm{H}_2 \xrightarrow{\mathrm{Arc}} \mathrm{C}_2\mathrm{H}_2 + \mathrm{C}_2\mathrm{H}_4 + \mathrm{C}_2\mathrm{H}_6$ Main

328 (b)

Propene undergoes allylic substitution at this temperature instead of addition reaction.

330 (d)

 $C_2H_4(OH)_2$ is anti-freeze; C_2H_5Cl is solvent. C_2H_4O is fumigant.

331 (a)

 C_6H_6 is main product of light oil fraction.

333 (b)

C₂H₂ is commonly used in oxy-acetylene welding. 334 (d)

3-octyne is obtained by the reaction of 1bromobutane and but-1-yne in presence of sodamide.

 $CH_3CH_2C \equiv CH + NaNH_2$

 \rightarrow CH₃CH₂ – C $\equiv \overline{C}$ Na⁺

$$CH_3CH_2C \equiv \overline{C}Na + BrCH_2CH_2CH_2CH_3$$

$$\rightarrow \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{C} \equiv \mathrm{C} - \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}$$

3-octyne

335 (b)

In C₂H₅ each C-atom is *sp*-hybridised which contains 50% s-character. The greater the scharacter of an orbital, the bonding electron pair will be more inclinated towards the nucleus as a result carbon would acquire a negative charge and hydrogen a positive charge. Hence, it is acidic in nature.

 $H - C \equiv C: H$

sp sp

and removal of hydrogen as proton takes place.

336 (a)

Follow mechanism of addition reactions.

337 (d)

 $CH_2 = CH - CH = CH_2$ (1,3-dibutene) is a

conjugate diene because it has alternate carbon-carbon single and double bonds. It reacts with HBr. It also polymerises to form Buna-N rubber etc.

It also polymerises to form SBr.

340 (b)

The product of give reaction will be according to Markownikoff's rule, this is because peroxide effect is applicable only in case of HBr and not effective in case of HI.

$$CH_3 - CH = CH_2 \xrightarrow[peroxide]{HI} CH_3 - CH - CH_3$$

341 (b)

A characteristic reaction of aldehyde with Tollen's reagent. Rest all also attacks C=C.

342 (b)

When calcium carbide reacts with water, ethyne is formed.

$$CaC_2 + 2H_2O \xrightarrow{-Ca(OH)_2} C_2H_2$$

Calcium carbide ethyne

(ii)H₂O/H⁺ HCOOH + HCOOH

Formic Formic acid acid

346 (c)

$$CH_3I \xrightarrow{Wurtz} C_2H_6; CH_3I \xrightarrow{Reduction} CH_4$$

$$CH_3COONa \xrightarrow{Electrolysis} C_2H_6;$$

$$CH_3COONa \xrightarrow{NaOH} CH_4$$

347 (a)

The addition of HBr to an alkene is an example of electrophilic addition reactions. It takes place by following mechanism.

1,4-addition product. Thus, 1-bromo-2-butene is the major product under given condition. -CC₆H₅ C_6H_5 is aromatic because the compound is cyclic and number of π -electrons is 2, which is in accordance with the Huckel's rule, $(4\pi + 2)\pi$. When n=0, according to this rule, number of π -electrons is $4 \times 0 + 2 = 2$. Ethylene reacts with 1% alkaline KMnO₄ gives ethylene glycol. CH₂OH 1% alkaline $|| + H_2 0$ CH₂OH Wurtz reaction. Friedel-Craft's acylation in this reaction benzene reacts with acetyl chloride or acetic anhydride in presence of anhy. AlCl₃. + CH₃COC1 $\xrightarrow{\text{AlCl}_3}$ product $(CH_3CO)_2O$ The X is 0 R - C - Cl $CS_2 + 2H_2S \xrightarrow{Cu} CH_4 + 3S$ $CH \equiv CH + CH_3OH$ $\xrightarrow[160-200^{\circ}C]{CH_3OK} CH_3O - CH = CH_2$ Ethyl vinyl ether These are facts about addition reaction. Fire damp is name for CH₄.

unsymmetrical reagent.

(ii)*Anti*-Markwonikoff's rule is applied to addition of HBr to unsymmetrical alkene in presence of peroxide. Free radical is the reaction intermediate during this reaction. According to this rule negative part of the reagent adds to carbon atom having more number of hydrogen atoms.

$$CH_3 - CH = CH_2 \xrightarrow[peroxide]{HBr}$$

$$CH_3 - CH_2 - CH_2 - Br$$
365 (a)

Acidic hydration of 2-phenyl propene follows electrophilic reaction mechanism forming an intermediate 3° carbocation (more stable), thereby forming 2-phenyl-2-propanol.

2-phenyl-2-propanol

·CH₃

OH

366 **(a)**

 C_2H_4 is a monomer unit of polythene, *i.e.*, $+CH_2 - CH_2 + n$

367 **(c)**

Halogenation of alkanes is free radical substitution.

368 (a)

Staggered form is more stable.

369 **(b)**

Alkene having all its H attached on double bond does not decolourise Br_2 water due to low reactivity.

370 **(d)**

R of RMg*X* reacts with acidic H to give alkane. 371 (a)

The carbon-carbon bond length in benzene (1.39 Å) in between that of C —

C(1.54 Å) and C = C(1.34 Å) *i.e.*, in between that of C_2H_6 and C_2H_4 .

373 **(c)**

Follow strainless ring theory.

374 **(c)**

Page **| 78**

(X)
Reaction (a) also gives
$$C_6H_6$$
 (or X) as
 $C_6H_5OH + Zn$ $\xrightarrow{\text{Distillation}} C_6H_6 + ZnO$
389 (a)
 CH_3 H_3 $C_6H_6 + ZnO$
389 (a)
 $CH_3 - CH - C - CH_3$
 $H - H$
 $OH - CH_3$ $H - H$
 $CH_3 - CH - C - CH_3$
 $L - H - H$
 $CH_3 - CH - C - CH_3$
 $2,3$ -dimethyl-2-butene
(major product)
390 (a)
Fractional distillation of petroleum gives a large
number of products aliphatic and aromatic.
391 (a)
 $Cyclopenta dienyl anion)$
According to Huckel's rule
Total number of π -electrons inside the ring
 $(4n + 2)\pi$ electrons.
 $= (4 \times 1 + 2) = 6\pi$ electrons
So, it is aromatic.
392 (a)
Follow ozonolysis.
393 (c)
Natural gas is a mixture of 80% CH₄ and 10%
 $C_2H_5Br + 2Na + BrC_2H_5 \rightarrow C_2H_5C_2H_5 or n-butane.
394 (b)
 $C_2H_5Br + 2Na + BrC_2H_5 \rightarrow C_2H_5C_2H_5 or n-butane.
395 (c)
According to Huckel's rule an aromatic
compound has $(4n + 2)\pi$ -electrons, where,
 $n = 0, 1, 2, 3, \dots$ etc.
 \bigoplus
 $(in) Kolk
RCOONE
(iii) Wurt
 $2C_6H_5I$$$$

; 4n + 2 = 6; n = 1; aromatic ; 4n + 2 = 4; n = 0.5; non – aromatic N; 4n + 2 = 6; n = 1; aromatic

Alkanes with six to 10 carbons are converted to aromatic hydrocarbons, *e*.g.,

$$C_{6}H_{14} \xrightarrow{Cr_{2}O_{3}} \bigcirc + 4H_{2}$$

$$C_{7}H_{16} \xrightarrow{Cr_{2}O_{3}} \bigcirc + 4H_{2}$$

With acidic manganese dioxide or chromyl chloride, in CCl₄ solution, toluene and all other homologues of benzene are oxidized to terminal carbon atom giving aldehydes

$$\bigcup_{i=1}^{CH_3} + 2[O] \xrightarrow{CrO_2Cl_2} \bigcup_{i=1}^{CHO} + H_2O$$

benzaldehyde

All are dehydrating agents.

Terminal alkynes give white ppt. with am. AgNO₃ 04 **(a)**

Alkyl halides can be reduced to hydrocarbons by means of Zn - Cu couple in presence of alcohol.

$$C_2H_5I \xrightarrow[C_2H_5OH]{Zn-Cu} C_2H_6 + HI$$

ethane

(i) Wurtz reaction

 $RX + 2Na \xrightarrow{\text{Ether}} R - R$

ii) Kolbe's reaction

RCOONa + H₂O $\xrightarrow{\text{Electrolysis}} R - R$

(iii) **Ulmann's reaction** $2C_6H_5I + 2Cu \rightarrow C_6H_5 - C_6H_5$

biphenyl

(iv) Frankland reaction

 $2RX + \mathrm{Zn} \to R - R$

alkyl halide alkane

406 **(c)**

Both carbon have two sigma bonds on each. 407 **(c)**

$$CH_3 - C \equiv C - CH_3 \xrightarrow{O_3} CH_3 - C \xrightarrow{O_4} CH_3$$

$$\xrightarrow{\text{Zn/H}_2\text{O}} \text{CH}_3 - \text{C} - \text{C} - \text{CH}_3$$
$$|| \qquad || \\0 \qquad 0$$

408 **(d)**

Note this temperature used in oxy-acetylene welding.

409 **(b)**

Benzene can be obtained by heating benzoic acid with sodalime.

Benzene can also be obtained by heating phenol with zinc dust.

benzene

410 (d)

Due to acidic hydrogen.

OH

411 **(b)**

Fractional distillation of petroleum gives a large number of products aliphatic and aromatic.

413 **(c)**

t. radicals are most readily formed.

414 **(d)**

According to the Huckel rule, a compound will be aromatic if compound should have $(4\pi + 2)\pi$ conjugated or delocalized electrons where *n* is a whole number and it may be n = 0, 1, 2, 3, 4, 5, 6, ...

415 **(b)**

$$NH_{2}$$

$$NH_{2}$$

$$N_{2}HPO_{2}$$

$$N_{2} + H_{3}PO_{3} + 0$$

$$H_{2}O$$

$$H_{2}O$$

$$H_{2}O$$

In this reaction H_3PO_2 serves both as an acid as well as a reducing agent.

416 (c) C_2Cl_6 is artificial camphor.

418 (**d**)

1, 3-butadiene is $CH_2 = CH - CH = CH_2$; alternate single and double bonds.

419 **(c)**

Hexane and onwards alkanes are sulphonated. Isobutene is also sulphonated due to 3°H-atom.

422 **(b)**

Acetylene has some acidic character and its hydrogen gets replaced by silver to give silver acetylide.

423 **(c)**

Beryllium carbide gives CH_4 , magnesium carbide (MgC_2) and calcium carbide (CaC_2) give acetylene while silicon carbide being covalent does not undergo hydrolysis

424 **(b)**

The greater the branching, smaller is surface area, lesser is attraction among molecules and so low b.p.

425 (a)

Chair form is more stable.

426 **(d)**

Both free radicals are used in terminating step.

427 **(d)**

It involves removal of a molecule from substrate.

 $CH \equiv CH \xrightarrow{Ozonolysis} CHO. CHO$ $\xrightarrow{\text{Reduction}} \text{CH}_2\text{OH}.\text{CH}_2\text{OH}$

429 (a)

It is a test for unsaturation in molecule.

430 (c)

On electrolysis of potassium salt of fumaric and maleic acid, ethyne gas is obtained. CH

СНСООК

Electrolysis \rightarrow ||| + 2CO₂ + 2KOH + H₂ CHCOOK CH

Potassium maleate ethyne

431 (a)

Column I	Column II
Benzene	$(4n+2)\pi$ -
	electrons
Ethylene	Mustard gas
Acetaldehyde	Silver mirror
Chloroform	Phosgene

Benzene has 6π -electrons, *i.e.*, it follows Huckel rule $(4n + 2)\pi$ -electrons. Ethylene reacts with S₂Cl₂ to give mustard gas (war gas).

433 **(b)**

Follow peroxide effect.

434 **(b)**

 $CH_3CH_2CH_2CH = CH_2 + Br_2$ \rightarrow CH₃CH₂CH₂CH₂CHBrCH₂Br ::70 g C₅H₁₀ requires 160 g Br₂ $\therefore 5 \text{g } \text{C}_5 \text{H}_{10} \text{ requires } \frac{160 \times 5}{70} = 11.43 \text{g } \text{Br}_2$

435 (c)

These are characteristics of C_2H_4 .

436 (a)

All those groups which contain at least one pair of non-bonding electrons on the atom adjacent to the benzene ring, are ortho and para directing. Among the given options, all are ortho and para directing but their capacity of ortho – para direction

follows the order

 $----CH_3 > ---C_2H_5 > ----CI$ Hence, $----NH_2$ is the strongest *ortho* --

437 (a)

 π electrons = 4 + 2 = 6 As it obeys Huckel rule, it is aromatic

438 (c)

An insecticide, gammexane, is formed. It is also called benzene hexa chloride (BHC), though it is wrong. The correct chemical name is syn:hexachloro cyclohexane.

440 (d)

Alkane is $(C_2H_5)_4$

441 (c)

Vinylic bromide is more stable stronger base $(-NH_2^-)$ is required for elimination.

443 **(d)**

An infinite conformers of ethane are possible including staggered, skew and eclipsed forms.

444 (c)

By adding bromine water to a solution, if the colour of bromine water decolourise then the compound is unsaturated. This is a confirmatory test for unsaturation.

445 (a)

Halogenation in alkane follow free radical mechanism. Formation of free radical occurs in presence of light.

448 (b)

Removal of H_2O from a substrate by a dehydrating agent is called dehydration.

449 **(b)**

The catalyst used is called Ziegler's catalyst.

451 (d)

Terminal alkyne has acidic hydrogen which is enough to protonate the Grignard reagent. $CH_3MgX + CH_3C \equiv CH$

$$\rightarrow$$
 CH₄ + CH₃C \equiv CMgX

 $CH_2 = CH - CH = CH_2;$ sp^2 sp^2 sp^2 sp^2 453 (d)

 $HCCl_3 + 6Ag + Cl_3CH \xrightarrow{Heat} HC \equiv CH + 6AgCl$ Chloroform choloroform acetylene Thus, in this reaction acetylene (HC \equiv CH) is produced. 454 (d) Methyl iodide and ethyl iodide, on treatment with sodium in ethereal solution, give a mixture of propane, ethane and butane, as follows $CH_3I + 2Na + I - CH_2CH_3$ $\xrightarrow{\text{Ether}} \text{CH}_3\text{CH}_2\text{CH}_3 + 2\text{NaI}$ Propane $\mathrm{CH}_3\mathrm{I} + 2\mathrm{Na} + \mathrm{I} - \mathrm{CH}_3 \rightarrow \mathrm{CH}_3 - \mathrm{CH}_3 + 2\mathrm{NaI}$ ethane $C_2H_5I + 2Na + I - C_2H_5 \rightarrow C_2H_5C_2H_5 + 2NaI$ butane 455 (b) H is replaced by Cl. 456 (c) $CH \equiv CH + HOCI$ \rightarrow CH(OH)₂— CHCl₂ $\xrightarrow{-H_2O}$ CHOCHCl₂ 457 (c) $\mathrm{CH}_2 = \mathrm{CH}_2 \xrightarrow{\mathrm{HOCl}} \mathrm{CH}_2\mathrm{OH}.\,\mathrm{CH}_2\mathrm{Cl}$ 458 (d) Heat of hydrogenation $\propto \frac{1}{\text{stability}}$ Among the given buta-1,3-diene is resonance stabilized, ie, more stable, thus it has lowest heat of hydrogenation 459 (a) OH H_2O_2 ÓН (A)A is meso diol. 460 (b) Both are unsaturated and give Baeyer's test. 461 (c) Conjugated alkadiene have alternate single and double bond, $e. g., CH_2 = CH - CH = CH_2.$ 463 (c) Natural gas is 80% CH₄, coal gas contains 40% CH₄; Marsh gas is another name for CH₄. 464 **(b)**

reaction to produce acetylene. (A)HCOOK + $H_2O \xrightarrow{\Delta} H_2 + CO_2 + KOH$ $(B)2CHI_3 + 6Ag \xrightarrow{\Delta} CH \equiv CH + 6AgI$ Iodoform silver acetylene (C)CH₃CH₂OH $\xrightarrow{\text{Conc.H}_2\text{SO}_4}_{443\text{K}}$ CH₂ = CH₂ + H₂O Ethylene $(D)Be_2C + H_2O \rightarrow CH_4$ methane 465 (c) In Wurtz reaction alkyl halide reacts with sodium in presence of dry ether to give alkanes e.g., $C_2H_5Cl + 2Na + ClC_2H_5$ $\xrightarrow{\text{(dry ether)}} C_4 H_{10} + 2 \text{NaCl}$ butane In Wurtz reaction wet ether is not used because wet ether destroy the sodium metal. 466 **(d)** When excess of benzene reacts with CH_2Cl_2 in presence of anhy. AlCl₃, diphenylmethane is obtained $+ CH_2Cl_2 + [$ $-CH_2 - \langle \bigcirc \rangle + 2HCl$ diphenylmethane This reaction is an example of Friedel-Crafts' reaction 468 (c) Gasoline among all has lowest b.bt. 469 (b) POCl₃ is a dehydrating agent POCl₃ ► CH₃-CH₃· major product ÓН 470 (c) $CH \equiv CH + HOCl \rightarrow CH(OH)$ $= \operatorname{CHCl} \xrightarrow{\operatorname{HOCl}} \operatorname{CH}(\operatorname{OH})_2 \operatorname{CHCl}_2$ \rightarrow CHCl₂. CHO 471 (b)

Iodoform and Ag undergo dehalogenation

Reaction of 4-octyne and H₂ can be arrested at the alkene stage only by using palladium partially inactivated with trace of quinoline

472 (c)

It is the name of reaction.

473 (d)

$$CH_3 - CH_2 - CH_2 - C \equiv CH + CH_3MgBr$$

Methyl magnesium
bromide
 $\longrightarrow CH_4 + Mg \sqrt{C_{C_{C_{C_{C}}}CH_2CH_2CH_3}}$
Due to the presence of acidic hydrogen
(hydrogen attached to triply bonded carbon
atom) terminal alkyne (d) will react with
methyl magnesium bromide.
474 (c)
Degree of instauration= $\frac{2n_1+2-n_2}{2}$; where, n_1 is the
number of carbon atoms and n_2 the number of
hydrogen atoms.
In compound
Number of carbon atoms =8
Number of hydrogen atoms=12
Degree of unsaturation= $\frac{2x8+2-12}{2} = 3$
477 (a)
 $C_2H_4 + H_2SO_4 \rightarrow C_2H_5HSO_4$; addition of H_2SO_4
on ethane.
478 (b)
Peroxide effect is noticed only in case of HBr. For
HCl follow Markownikoff's rule.
481 (c)
Pent-3-yne is not correct; it is pent-2-yne;
 $CH_3 - C \equiv C - CH_2CH_3$.
482 (b)
 $CH_3C \equiv CH \xrightarrow{[O]} CH_3COCOOH$
484 (b)
It is Corey House synthesis of alkanes.
487 (b)
Reaction of the prepared by Kolbe's electrolysis;
HCOONa gives H_2 and CH_3COONa gives CH_4 .
490 (a)
 F_2 reacts more violently.
491 (a)
Markownikoff's rules are valid for only

asymmetric alkenes. 2-butene is a symmetric

alkene. 492 (c) This is electrophilic addition of HCN molecular across $C \equiv C$ in presence of vinyl cyanide. СН Ш $\mathrm{CH} + \mathrm{HCN} \xrightarrow{\mathrm{Ba}(\mathrm{CN})_2} \mathrm{CH}_2$ CHCN Vinyl cyanide 494 (d) It is a new anti-knocking agent used in place of tetraethyl lead to control lead pollution by gasoline in developed countries. 496 **(a)** Angle strain in cyclopropane is 24°44' $\begin{bmatrix} 180 - \frac{360}{n} \end{bmatrix}$ $\begin{bmatrix} 180 - \frac{360}{3} \end{bmatrix}$ Angle strain $\alpha = \frac{1}{2} [109^{\circ}28' - \theta]$ $=\frac{1}{2}[109^{\circ}28' - 60^{\circ}]$ 497 (a) When propyne reacts with water in presence of $HgSO_4$ and H_2SO_4 acetone is formed. $CH_3C \equiv CH + H. OH \xrightarrow[H_2SO_4]{Hg^{2+}} CH_3 - C = CH_2$ OH

$$\xrightarrow{\text{Ketonisation}} CH_3 - C - CH_2$$

$$||$$

$$0$$

498 **(b)**

If two different alkyl halides $(R_1 - X \text{ and } R_2 - X)$ are used, a mixture of three alkanes is obtained which are difficult to separate

$$CH_{3}CH_{2}CH = CHCH_{3} \xrightarrow{Ozonolysis} CH_{3}CH_{2}CHO + CH_{3}CHO$$

500 **(c)**

Chlorination of CH_4 is free radical mechanism. 501 (d)

Unsaturated molecules decolourise Baeyer's reagent.

502 (c)

An alkene on reductive ozonolysis gives 2molecules of $CH_2(CHO)_2$. Hence, the alkene is 1, 4-cyclohexadiene.

$$\underbrace{(i) O_3}_{(ii) H_2O/Zn} 2 \text{ OHC} CH_2$$

503 **(b)**

 $C_{2}H_{5}I + C_{3}H_{7}I + 2Na$ $\xrightarrow{\text{Ether}} C_{2}H_{5}C_{3}H_{7}; C_{4}H_{10}; C_{6}H_{14}$

504 **(d)**

Friedel-Craft's acylation it involves the treatment of benzene with acetyl chloride or acetic anhydride in presence of anhydrous aluminium chloride.

505 **(b)**

Oxidation of 1-butene first gives a mixture of propionic acid and formic acid. Formic acid, however, gets further oxidised to

 CO_2 and H_2O . Therefore, option (b) is correct.

507 **(b)**

A compound is said to be aromatic if it meets of the following criteria.

- 8. The rings of the compound should be planer.
- 9. The cyclic system must contain $(4\pi + 2)\pi$ -electrons.

Only option (b) contains 6π -electron, so it is aromatic.

508 **(b)**

 $CH_{3}CH = CH_{2} \xrightarrow{B_{2}H_{6}} (CH_{3}CH_{2}CH_{2})_{3}B$ $\xrightarrow{H_{2}O_{2}} CH_{3}CH_{2}CH_{2}OH + H_{3}BO_{3};$ The process is called hydroboration.
509 **(b)**

(i)CH₃ - CH = CH - CH₃
$$\xrightarrow[H_{20}]{2n}$$

CH₃CHO + CH₃CHO + ZnO
2 molecules of ethanal
(ii)C₆H₅CH = CH₂ $\xrightarrow[Z_n]{0_3}{2n}$

H₂0

 $C_6H_5CHO + HCHO + ZnO$ benzaldehvde methanol (iii)CH₃CH = CH₂ $\xrightarrow[\frac{O_3}{H_2O}]{2n}$ CH₃CHO + HCHO Ethanol methanol $(iv)(CH_3)_2C = C(CH_3)_2 \xrightarrow[]{\begin{array}{c}O_3\\\hline\\\hline\\\hline\\H_2O\end{array}} \xrightarrow{O_3}$ $CH_3COCH_3 + CH_3COCH_3 + ZnO$ 2 molecules of acetone 511 (c) Alkynes are not found in free state due to their high reactivity. 512 (a) Least hindered rotation means free rotation, *i.e.*, round a single bond. 513 (c) $H_2C = CH_2$ \rightarrow CH₃ – CH₂Br (X) Na₂CO₃ Aq.KOH $\stackrel{\text{H}}{\rightarrow} \text{CH}_3 - \text{CH}_2\text{OH} \xrightarrow{\text{I}_2 \text{excess}} \text{CHI}_3$ (Y) (Z) iodoform 515 (b) In Wurtz reaction, an ether solution of an alkyl halide is treated with sodium which removes the halogen of alkyl halide and the two alkyl radicals join together to form an alkane 517 (d)

An immiscible and lighter substance with water will float over it.

518 **(d)**

These all are obtained from coal-tar.

519 **(b)**

For transproduct we take Na/liquid NH_3 or Li – NH_3/C_2H_5OH or LiAlH₄ as a reducing agnet (antiaddition)

$$R-C \equiv C-R + H_2 \xrightarrow{\text{Na/liq. NH}_3} \xrightarrow{H} C \equiv C \xrightarrow{R}_H C$$

 $CH_3CH = CH_2 + H\overline{O}Cl^+ \rightarrow CH_3 - CH - CH_2$ Propyene hypochlorous | | acid OH Cl propene chlorohydrin

$$CH \equiv CH + N_2 \rightarrow 2HCN$$

The reaction is as follows

$$CH_{2} = CH_{2} \xrightarrow{HBr} CH_{3} \xrightarrow{CH_{2}Br} \xrightarrow{AgCN} (X)$$

$$CH_{3}CH_{2}NHCH_{3} \xrightarrow{H_{2}/Ni}_{reduction} CH_{3}CH_{2}NC \checkmark$$

$$(Z) \qquad (Y)$$
N-methyl ethanamine

523 **(b)**

The structure of benzene is

Bond order

 $= \frac{\text{number of bonds}}{\text{number of resonating structures}}$ $= \frac{4}{2} = 1.33$

Since, the bond order is in between single and double bond, thus, it contains delocalised π -bonds. Hence, it is not possible to obtain number of single and double bonds in benzene.

(mono substituted product)

524 **(d)**

 $-NO_2$ group withdraw electron from the ring shows -M effect makes ring electron deficient, thus deactivates ring for electrophilic substitution.

525 **(b)**

Reaction of a non-terminal alkyne with a solution of an alkali metal (usually Na or Li or K) in liquid ammonia give a *trans*alkene.

$$CH_{3} - C \equiv C - CH_{3} + 2[H] \xrightarrow{\text{Li/liq.NH}_{3}}$$

$$H_{3}C = C + CH_{3} + 2[H] \xrightarrow{\text{Li/liq.NH}_{3}}$$

$$H = C + CH_{3} + 2[H] \xrightarrow{\text{Li/liq.NH}_{3}}$$

$$H = C + CH_{3} + 2[H] \xrightarrow{\text{Li/liq.NH}_{3}}$$

$$H = C + CH_{3} + 2[H] \xrightarrow{\text{Li/liq.NH}_{3}}$$

B.p. increases with increase in mol. Wt. 527 **(b)**

- Benzene undergoes electrophilic substitution in presence of AlCl₃ or FeCl₃ or ZnCl₂.
- 11. Benzene does not undergo addition

reactions like alkene.

 $\therefore C_6H_6 + HOCl \xrightarrow{H^+} no \text{ product and (b) is}$ correct answer.

528 (d)

C – H bond energy is greatest in ethyne due to the presence of triple bond.

529 **(b)**

 $CH_3 - CH = CH - CH_3$ is planer molecule due to $sp^2 - sp^2$ -hybridised carbon atoms. 530 (a)

TEL increases the octane no. of gasoline.

531 (d) The refining of petroleum is distillation process.532 (b)

It is how Zn-Cu couple is used.

533 **(b)**

 $CH_3 - C \equiv C - CH_3$ is linear and symmetrical and thus, dipole moment is zero.

535 (a)

 $RCOONa \rightarrow R - R + 2CO_2 + 2NaOH + H_2$ 537 (b)

Only terminal alkynes give precipitate with ammoniacal silver nitrate solution.

Among the given, $CH_3 - C \equiv CH - CH_3$ is not a terminal alkyne. Thus, it does not give precipitate with ammoniacal AgNO₃.

539 **(c)**

Benzene vapours mixed with air when passed over V_2O_5 catalyst at 775 K gives maleic anhydride

anhydride

540 (a)
2CH₃CH₂CH₂COONa
$$\rightarrow$$

541 **(d)**

$$8\pi e^-$$
, while has $8 + 1 = 9\pi e^-$, hence all

these species are not aromatic

- 542 (b)
 - It is a mixture of solid hydrocarbons.
- 543 (c)

2,3-diphenyl-

1.3-butadiene

This reaction is an example of Diel's Alder reaction

544 (d)

All of these can be used in cracking.

545 (b)

General formula of a cycloalkane is $C_n H_{2n}$.

546 (b)

Toluene reacts with excess of Cl₂ in presence of sunlight, the last product of this reaction is benzotrichloride which on hydrolysis gives benzoic acid, and it gives sodium benzoate on reaction with NaOH.

octane no. 552 (d)

Follow Markownikoff's rule.

554 (b)

 $Zn - H_2O$ is the reagent for reductive work up of ozonide. $H_2O_2 - CH_3COOH$ would give $HOOC - (CH_2)_4 - COOH.$

555 (d)

The π -bond is unshared in electromeric effect to give +ve and -ve centres on molecule.

$$CH_2 \xrightarrow{A.R.} CH_4 \xrightarrow{H_4} CH_4$$

556 (d)

Tropylium cation is planar and have 6π -electron according to Huckel rule, hence it is aromatic.

Cyclopentadienyl anion is planar and have 6π -electron, hence it is also aromatic compound.

557 (a)

Follow peroxide effect.

558 (a)

In the laboratory, nitrobenzene is prepared by nitration of benzene with the mixture of nitric acid and sulphuric acid at temperature below60°C. In which HNO₃ acts as a base

559 (d)

The reaction is ozonolysis. During the reaction C = C breaks to give carbonyl compounds.

$$CH_{3}CH = CH_{2} \xrightarrow[H_{2}O_{2}]{} CH_{3}CHO + HCHO$$

Acetaldehyde formaldehyde

560 (a)

Petrol or gasoline contains mainly C₆ to C₁₁atoms liquid alkanes.

562 **(d)**

L.P.G. mainly contains butane and isobutane.

564 (a) $CH \equiv CH \xrightarrow{[0]} COOH | ;$ $CH_2 = CH_2 \xrightarrow{[0]} 2HCOOH$

565 **(a)**

According to Markownikoff's rule, the negative part of the reagent gets attached to that double bonded carbon atom which has least number of H-atoms. Thus,

$$CH_3 = CH - CH_3 \xrightarrow{HBr} CH_3 - CH - CH_3$$

$$|$$
Br

Gasoline contains alkanes from C_6 to C_{11} carbon atom.

570 **(d)**

We know that,

 $Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4$ Thus, in this reaction methane (CH₄) is produced.

571 **(d)**

Follow Saytzeff rule of elimination.

573 **(b)**

Impurities of PH_3 give garlic smell to C_2H_2

574 **(d)**

In the formation of an alkane from Grignard reagent, alkyl group always comes from Grignard reagent. Hence, the number of carbon atoms in the Grignard reagent and alkane formed Grignard reagent will be identical. So, the original alkyl halide is propyl bromide.

575 **(c)**

CH=C CH₃
$$\xrightarrow{H_2O}_{Hg^{2+}/H_2SO_4}$$

CH₂ = C(OH)CH₃ \Rightarrow CH₃COCH₃;
The mechanism involves tautomerism.
576 (d)
C₂H₆ + $\frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$
577 (c)
CH \equiv CH $\xrightarrow{\text{HBr}}$ CHBr = CH₂ $\xrightarrow{\text{HBr}}$
CHBr₂-- CH₃ $\xrightarrow{\text{KOH(alc.)}}$ CHBr = CH₂ $\xrightarrow{\text{NaNH}_2}$ CH \equiv CH
578 (d)
According to Markownikoff's rule the

addition of a reagent (HX) to an unsymmetrical alkene takes place in such a way that the negative part of the reagent will be attached to that carbon atom which contains lesser number of H-atom. Br $CH_3 - C = CH_2 + HBr \rightarrow CH_3 - C - CH_4$ CH3 CH₃ 2-methylpropene 579 (b) Follow text. 580 (a) Br₂solution is decolourized by alkene or alkyne or molecules having unsaturation. 581 (c) Eqs. (i) and (ii) drawings are Sawhorse and Newman projections respectively for staggered forms. 582 (a) C_2H_2 gives white ppt. with amm. AgNO₃. 583 (b) $C_6H_5CH_3 \xrightarrow{\text{Oxidation}} C_6H_5.COOH \xrightarrow{\text{NaOH}}$ $C_6H_5COONa \xrightarrow{(NaOH+CaO)} C_6H_6 + CO_2 ↑$ *(B)* 585 (c) Cyclobutadiene have (4π) conjugated or delocalized electrons, thus it is anti-aromatic 586 (a) $CH \equiv CH \xrightarrow{HOCl} Cl_2 CHCHO$ 587 (c) Thioalcohol (mercaptons) have unpleasant odour; C₂H₅SH is commonly used. 588 (c) Octane no. of triptane or 2, 3, 3-trimethylbutane =124; octane no. of *n*-nonane=-45. 589 (d) C_4H_6 may contains either two double bond or triple bond $CH_2 = CH - CH = CH_2$ or $CH_3 - CH_2 - C \equiv CH$ 590 (b) Due to acidic—H-atom propyne forms $CH_3 - C \equiv$ CNa with Na.

591 **(b)** More is b.p. lesser is volatile nature. 592 (d)

These all are used to increase octane number of fuel.

594 (a)

 $CH_2 = C = CH_2;$

 sp^2 sp sp^2

600 **(b)**

Benzene undergoes electrophilic substitution reaction. It is nitrated by HNO_3 .

602 **(b)**

Markownikoff's rule is for addition of

unsymmetrical additive on unsymmetrical alkene. 603 (d)

Paraffin wax are solid hydrocarbons from $C_{\rm 20}$ to $C_{\rm 30}$ atoms.

605 **(d)**

Methane is called marsh gas because it is found in swamps or marshy places and can be obtained by bacterial decomposition of fossils of plants and animals.

606 **(b)**

Among hydrocarbons, alkynes are easily oxidised.

607 **(d)**

B.P. change with branching.

608 **(f)**

These are few oxidants.

609 **(a)**

The acidic character of H is,

 $F-H > 0-H \ge C-H > N-H$; H-atom

attached on F, O, N and triply bonded carbon is acidic.

610 **(b)**

 $CH_{3}CH_{2}CH = CH_{2} \xrightarrow{H_{2}/Pd} CH_{3}CH_{2}CH_{2}CH_{3}.$ 611 (c)

Except acetylene, all terminal alkynes have only one acidic H-atom.

613 **(d)**

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ CH_2 = CH_2 + \frac{1}{2}O_2 \xrightarrow{Ag} CH_2 - CH_2; \end{array} \end{array}$

These compounds are known as epoxy ethane or oxirane or cyclic ethers.

614 **(b)**

According to X-ray analysis all carbon-carbon bond distance (1.397Å) are equal in benzene.

The bond order of carbon-carbon bond is 1.5 in benzene.

Hence, carbon-carbon bond distance (1.397\AA) is less than C – C single bond (1.54\AA) and more than C = C double bond (1.33\AA) .

615 **(c)**

Cracking involves decomposition of higher alkanes to lower one on heating.

616 **(a)**

Follow mechanism of Wurtz reaction.

617 **(c)**

CH₄ is a constituent of bio-gas.

620 **(a)**

The lowest temperature at which an oil gives sufficient vapours to form an explosive mixture with air is referred as flash point. It is 44°C, 35°C, 22.8°C in India, France and England, respectively.

621 **(a)**

Lindlar's catalyst is $Pd - CaCO_3$ deactivated by lead acetate. Cram *et. al* gave a better catalyst for this purpose as $Pd - BaSO_4$ poisoned by quinolene. This too is sometimes referred as Lindlar's catalyst.

622 **(b)**

Remember this value.

623 **(a)**

The aldehydes formed are oxidized by H_2O_2 formed during hydrolysis.

625 **(c)**

The acidic nature is $H_2O > C_2H_2 > NH_3$; thus, conjugate base order will be $OH^- > C_2H^- > NH_2^-$. 628 (d)

'X' is a three carbon compound with two halogen atom, so its molecular formula is $C_3H_6Cl_2$. Only terminal alkynes give red ppt. with ammoniacal Cu_2Cl_2 , so the hydrocarbon produced by the reaction of 'X' with alc. KOH, must be a terminal alkyne (*i.e.*, $CH_3C \equiv CH$). $C_3H_6Cl_2 \xrightarrow{Alc.KOH} CH_3C \equiv CH \xrightarrow{Amm.Cu_2Cl_2} CH_3C \equiv$ $CCu \downarrow$

red

ppt.

Compound (*X*) gives an aldehyde when reacts with aqueous KOH. This suggests that both the halogens are present on same terminal carbon atom. Thus, the formula of compound (*X*) is

CH₃—CH₂—CH<CI (1, 1-dichloropropane) and the reactions are as follows $CH_3CH_2CH < CI \xrightarrow{CI} Alc.KOH$ $CH_{3}C \equiv CH \xrightarrow{Ammoniacal}_{Cu_{2}Cl_{2}} CH_{3}C \equiv CCu \downarrow$ red ppt. CH₃CH₂CH (X)1, 1-dichloropropane $\begin{array}{c} CH_{3}CH_{2}CH \swarrow OH \xrightarrow{OH} - H_{2}O \\ \text{unstable} \end{array} \xrightarrow{OH} CH_{3}CH_{2}CHO \\ propanal \end{array}$ 629 (a) $CH_3CH_2OH \xrightarrow{H_2SO_4} CH_2 = CH_2;$ Removal of H_2O is called dehydration. 630 (d) Both vegetable and animal matter are origin of petroleum. 631 (d) All are used in drying alkanes. 632 (b) The stability order is: Staggered>skew>eclipsed 633 (d) Cyclic hydrocarbon, with carbon-carbon bond length between 1.34Å and 1.54Å, is benzene in which due to resonance, C - C, bond length is 1.39Å (*ie.*,between 1.34Å – 1.54Å). Benzene is a hexagonal molecule with bond-angle equal to120°. 634 (c) The reaction proceeds via carbocation mechanism. $C_6H_5 - C = CH_2 \xrightarrow{+H^+} C_6H_5 - \overset{+}{C} - CH_3 \xrightarrow{H_2O}$ CH₃ $C_{6}H_{5} \xrightarrow{C} C_{6}H_{5} \xrightarrow{C} C_{6}H_{5} \xrightarrow{C} C_{6}H_{5} \xrightarrow{C} C_{6}H_{5} \xrightarrow{C} C_{6}H_{5}$

passing to alkynes in the ammoniacal solution of cuprous chloride and silver nitrate respectively. These reactions are used for detecting the presence of acetylenic hydrogen atom.

HC CH +
$$Cu_2Cl_2 + 2NH_4OH$$

acetylene
acetylene
ammoniacal
cuprous chloride
 $Cu.C$ C.cu + $2NH_4Cl + 2$
copper acetylide
(red ppt.)

So, alkanes and alkenes remain unaffected. 636 **(b)**

Benzene reacts with chlorine in presence of sunlight to give gammexane or benzene hexa chloride.

$$C_6H_6 + 3Cl_2 \xrightarrow{\text{Sunlight}} C_6H_6Cl_6$$

637 **(a)**

Hydrogenation in presence of Pd and $BaSO_4$ as *syn* addition and with Na and liquid NH_3 at 200 K is anti addition (*trans* compounds are formed.)

$$H_3C$$
 — $C \equiv C$ — $CH_3 \xrightarrow{pd/BaSO_4} H_3C$ — CH_3
2-butyne H_{cis} 2-butene

638 **(c)**

In benzene all the six carbon atoms are sp^2 hybridised. Out of these three sp^2 hybrid orbitals of each C-atom, two orbitals overlap with sp^2 hybrid orbitals of adjacent C-atoms to form six C – C single bonds. The remaining sp^2 orbital of each C-atom overlaps with *s*-orbitals of each H-atom to form six C – H single sigma bonds. Each C-atom is now left with one unhybridised *p*-orbital perpendicular to the plane of the ring.

640 **(b)**

Benzophenone (diphenyl ketone) can be prepared by the Friedel-Crafts' condensation between benzoyl chloride and benzene $C_6H_6 + C_6H_5COCl \xrightarrow{AlCl_3} C_6H_5COC_6H_5 + HCl(80\%)$

641 **(a)**

Aromatic compounds have delocalised π -electrons.

Out of given choices cyclohexane, CH_4 , C_2H_6 and benzene, only benzene is aromatic

635 **(c)**

Copper and silver alkylides are obtained by

compound. Benzene has six delocalised π -electrons.

642 **(c)**

Trivial name is allyl.

643 (d)

These are all facts.

644 **(a)**

The reactivity order for sulphonation of H-atom in alkane :

 $3^{\circ}>2^{\circ}>1^{\circ}.$

645 **(a)**

As the – CH₃ group increases boiling point decrease

647 **(b)**

Alcoholic KOH is a dehydrohalogenating reagent, so when *n*-propyl bromide is treated with alcoholic KOH, propene is obtained. $CH_3CH_2CH_2Br + alc KOH$ *n*-propyl bromide $\rightarrow CH_2CH = CH_2 + HBr$

prop

OH

648 **(b)** 654 **(d)**

Alkene is $CH_3CH = CHCH_3$, a symmetrical alkene and therefore alcohol is, $CH_3CH_2CHCH_3$ which will give alkene-2 as major product.

+ NaCl + NaBr

655 **(b)**

Cyclodecapentaene and Cyclooctatetraene both are nonaromatic. Cyclobutadiene is antiaromatic while benzene having 6π -electrons is aromatic

656 **(d)**

CH₃CH₂CH₂CH₂CH₂CH₃; (CH₃)₂CHCH₂CH₂CH₂CH₃; CH₃CH₂CH(CH₃)CH₂CH₃; (CH₃)₃CCH₂CH₃; (CH₃)₂CHCH(CH₃)₂

657 **(f)**

These are facts about alkanes.

658 **(c)**

Due to resonance, benzene is quite stable and inspite of three double bonds does not decolourise Br_2 water.

659 (c)

Follow peroxide effect.

660 **(d)**

Br

The reaction is Wurtz's type reaction.

+ 2 Na Ether

661 **(a)**

Alkynes give different products with different reducing agents *e.g.*, with Lindlar's catalyst (Pd/BaSO₄) or Ni *cis*-alkene is formed but with Na in liquid NH₃ (Birch reduction) *trans* alkene is formed.

662 **(c)**

(i)Alkene and alkynes both react with $\rm KMnO_4$ and decolourise it.

(ii)Only alkynes react with AgNO₃ to give white precipitate.

$$CH_2 = CH - C = CH - CH_3 \xrightarrow{O_3} Zn/CH_3COOH$$

$$H H H CH_3 - C = 0 + 0 = C - H + CH_3 COCHO$$

649 (a)

A method used during II world war.

650 **(d)** Ozonolysis of these two produces different products.

652 **(c)**

For simplest alkyne n=2; thus, alkyne is C_nH_{2n-2} or C_2H_2 .

 \therefore C₂H₄ (an alkene) reacts with KMnO₄ and decolourises it and does not react with AgNO₃, C₂H₆ and CH₄ are alkane they do not react with KMnO₄ and NaOH.

It has maximum octane no.

664 (c) Pure C₂H₂has ethereal odour.
666 (a)

Alkylated alkenes are more stable. More the alkylation of alkene, more will be its stability.

 \therefore Order of stability of alkenes is

 $R_2C = CR_2 > R_2C = CHR > R_2C = CH_2$ > $RCH = CH_2 > CH_2 = CH_2$

∴ Tetra alkylated alkene is most stable.

668 **(d)**

 $\begin{array}{l} \mathrm{CH}_2 = \mathrm{CH} - \mathrm{O} - \mathrm{CH}_3 \\ \xrightarrow{\mathrm{HBr}} \mathrm{CH}_3 - \mathrm{CH} - \mathrm{O} - \mathrm{CH}_3 \end{array}$

First protonation occurs, two possible intermediates are

$$CH_2 \rightarrow CH \rightarrow OCH_3$$

(-*I* effect destabilizes carbocation)

$$CH_3 \xrightarrow{+} CH \xrightarrow{-} OCH_3$$

(II)

(+*M* effect stabilizes carbocation)

II, is more favourable. Hence, \mbox{Br}^- attacks, and product is

 $\rm CH_3-CH-O-CH_3$

and

670 **(b)**

Halogenation of benzene in cold and dark is carried by electrophilic substitution. In this reaction, Cl⁺ electrophile takes part in the reaction.

$$\bigcirc + Cl_2 \xrightarrow{AlCl_3} \bigcirc + HCl$$

$$AlCl_3 + Cl - Cl \rightarrow Cl^+ + AlCl_4^-$$

$$electrophile$$

671 (a)

Since the alkadiene on reductive ozonolysis gives acetaldehyde (CH_3CHO), acetone (CH_3COCH_3) and 2-methylpropane-1, 3-dial [$OHCCH(CH_3)CHO$], the structure of alkadiene will be obtained as

2,4-dimethylhepta-2, 5-diene (alkadiene)

672 **(b)**

These are Fischer-Tropsch and Berzius method for synthesis of petrol.

673 **(c)**

It is an unsaturated two carbon atom molecule (gives catalytic hydrogenation) but not acetylene (does not give white ppt. with amm. AgNO₃). Thus, it is ethylene.

674 **(c)**

$$CH \equiv CH + Na \rightarrow CH \equiv CNa \xrightarrow{RX} CH \equiv CR$$

$$CH = CH + RMgX \rightarrow CH = CMgX \xrightarrow{RX} CH = CR$$

675 **(b)**

Addition of HBr first takes place round double bond.

 $\begin{array}{c} \text{CaC}_{2} + 2\text{H}_{2}\text{O} \rightarrow \text{C}_{2}\text{H}_{2} + \text{Ca(OH)}_{2} \\ \overset{\text{CH}}{\parallel} \underbrace{\text{Dil. H}_{2}\text{SO}_{4}/\text{HgSO}_{4}}_{\text{CH}} \overset{\text{CH}_{2}}{\parallel} \xrightarrow{\text{CH}_{3}\text{CHO}} \underset{\text{acetaldehyde}}{\overset{(A)}{}} \overset{\text{vinyl alcohol}}{\overset{(B)}{}} \end{array}$

678 **(c)**

An alkyne has higher b.p. than corresponding

alkene and an alkene has higher b.p. than corresponding alkane.

681 (d)

On ozonolysis, CH_3 | $CH_2 = C = C - CH = CH_2$ gives two moles of HCHO, one mole of CO_2 one mole of CH_3COCHO . CH_3 | $CH_2 = C = C - CH = CH_2 \frac{O_3/H_2O}{Zn}$

$$2CH_2O + CO_2 + CH_3COCHO$$

682 **(c)**

$$CH_3CH_2Cl \xrightarrow{KOH alc.} CH_2 = CH_2$$

683 **(c)**

$$C_n H_{2n+2} + \left(\frac{3n+1}{2}\right) O_2 \to nCO_2 + (n+1)H_2O$$

685 **(b)**

Cycloalkanes are isomeric with alkenes because they have same general formula C_nH_{2n} (*i. e.*, same molecular formula) but possessing different structures. They show ring chain isomerism.

686 **(b)**

 $CH_{3} \xrightarrow[]{CH_{3}} CH_{3} \xrightarrow[]{CH_{3}} CH_{3}$

is symmetrical alkane and will give only one monochloro substitution.

688 **(d)**

Rest all are used to convert>CO gp. to CH₂. 689 (d)

The presence of the chlorine atom on benzene ring makes the second substituent enter at *ortho* or *para* position because the chlorine atom is *ortho* – *para* directing.

690 **(a)**

Given,
$$C = {\binom{12}{13}} \times 100\%$$
, $H = {\binom{1}{13}} \times 100\%$
 $\therefore \quad C = 92.3\% \text{ H} = 7.69\%$
 $C = {\frac{92.3}{12}} = 7.69 = {\frac{7.69}{7.69}} = 1$
 $H = {\frac{7.69}{1}} = 7.69 = {\frac{7.69}{7.69}} = 1$
 \therefore Empirical formula of hydrocarbon is $C_1H_1 = CH$

∴ A has empirical formula CH and decolourises bromine water.
∴ It is alkyne which is C₂H₂.
∴ B has empirical formula CH and does not decolourise bromine water.
∴ It is benzene C₆H₆.

691 **(c)**

Due to acidic nature of the hydrogen atoms attached to a triple bond, acetylenes and terminal alkynes from metal acetylides $CH_3CH_2C \equiv CH + AgNO_3 + NH_4OH \rightarrow CH_3CH_2C$ $\equiv CAg + NH_4NO_3 + H_2O$

silver

butynide

693 **(b)**

Cetane no. represent percentage of *n*-hexadecane in mixture.

694 **(c)**

Conjugated alkadienes show 1 : 2 and 1 : 4 addition.

695 **(d)**

 Na/C_2H_5OH , LiAlH₄ or NaBH₄ are used for this purpose.

696 **(c)**

This is also a mean of preparing alkene where the position of the double bond is definite. In Wittig reaction, aldehyde (-CHO) and ketone (> C = 0) react with methylene tryphenyl phosphine [$(C_6H_5)_3P = CH_2$] to give alkene. CH₃CHO + $(C_6H_5)_3P = CH_2$

$$\rightarrow \mathrm{CH}_3 - \mathrm{CH} = \mathrm{CH}_2 + (\mathrm{C}_6\mathrm{H}_5)_3\mathrm{P} = \mathrm{O}$$

Propane triphenyl phosphine oxide

$$\overset{H_3C}{\longrightarrow} C \longrightarrow O + (C_6H_5)_3P \longrightarrow CH_2 \longrightarrow CH_2$$

$$\underset{H_2C}{\overset{H_3C}{\longrightarrow}} C = CH_2 + (C_6H_5)_3P = O$$

697 (c)

$$CH_{3}CH \overset{Br}{\underset{Br}{\longleftarrow}} + 4 Na \overset{Br}{\underset{Br}{\longrightarrow}} CH \overset{CH}{\underset{A}{\longrightarrow}} CH \overset{CH}{\underset{A}{\longrightarrow}} CH_{3} - CH = CH - CH_{3} + 4NaBn$$

699 **(d)**

Octane number is a measure of quality of fuel. 700 **(d)**

All possible products are obtained; C_2H_6 by

 CH_3COO^- ; C_4H_{10} by $CH_3CH_2COO^-$ and 713 (b) CH₃CH₂CH₃ by CH₃COO⁻ and CH₃CH₂COO⁻. The addition of propene to HBr opposes the 701 (b) Markownikoff's rule in presence of organic Wurtz reaction is used to prepare alkanes peroxide. $CH_{3}CH = CH_{2} + HBr \xrightarrow[peroxide]{Organic} CH_{3}CH_{2}CH_{2}Br$ from alkyl halides. $2R - X + 2\text{Na} \xrightarrow{\text{Dry ether}} R - R + 2\text{Na}X$ *n*-propyl bromide 702 **(b)** It is also called the Kharash effect or anti- $CH_2Br \longrightarrow CH_2Br \xrightarrow{Zn \text{ dust}} CH_2 = CH_2$ Markownikoff's rule. 703 (a) 715 (d) A group that causes attack to occur chiefly at In presence of sunlight toluene undergoes positions ortho and para to it, is called an aliphatic substitution with chlorine and give *ortho* – *para* director, *e*. *g*., NH₂, OH, Cl etc. benzyl chloride, benzal chloride and benzo 704 (c) trichloride. NH₃ is base, *i. e.*, least acidic. CH₃ CH₂CI CHCl₂ 705 (c) This is Wurtz reaction. 706 (c) HC1 $\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}=\mathrm{CH}_2\xrightarrow{\mathrm{HBr}}\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{Br}$ benzal benzyl $\xrightarrow{C_2H_5ONa} CH_3CH_2CH_2CH_2OCH_2CH_3$ dichloride chloride CCl₃ 707 (c) 1,1-dibromocyclooctane possess lesser strain. 710 (d) ___do___ benzo 712 (c) trichloride According to Markownikoff's rule, the 716 (c) addition of a unsymmetrical reagent (HX) to $RCH_3 \xrightarrow{[0]} RCOOH$ an unsymmetric alkene takes place in such a 717 (d) way that the negative part of the reagent will Uses of ethene. be attached to the carbon atom which containing lesser number of H-atom. Hence, it is best applicable to the reaction between C_3H_6 and HBr. $CH_3CH = CH_2 + HBr \rightarrow CH_3 - CH - CH_3$ Br

CHEMISTRY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** Acetylene is converted into formic acid with cold and alkaline KMnO₄
- Statement 2: Acetylene is converted into formic acid with a rupture of triple bond at high temperature

2

- Statement 1: Oxidation of toluene with chromyl chloride to get benzaldehyde is carried out in presence of acetic anhydride.
- **Statement 2:** Presence of CH₃ group in toluene activates benzene ring.

3

- **Statement 1:** Acetylene forms acetylide but ethylene does not.
- **Statement 2:** Acetylene is lighter than air.

4

- **Statement 1:** Acetylene is more reactive then ethylene
- **Statement 2:** The acetylene, there is greater strain and hence is reactive. The strain disappears when addition occurs
- Statement 1:
 The replacement of hydrogen atom by sulphonic acid group (-SO₃H) is known as sulphonation

 Statement 2:
 Sulphonation follows for an disclarate discussion
 - **Statement 2:** Sulphonation follows free radical mechanism

6

5

- **Statement 1:** 2,3-dimethyl but 2 ene is more stable than but 2 ene.
- **Statement 2:** Tweleve hyper conjugation structure can be written for 2,3 dimethyl but 2ene while but 2 ene has only six.

- **Statement 1:** Cycloalkanes decolourise the purple colour of dilute and cold KMnO₄ or red colour of bromine in carbon tetrachloride
- **Statement 2:** Cycloalkenes undergo the electrophilic addition reactions which are characteristic of alkenes

8

SMA

- **Statement 1:** The degree of unsaturation of Cyclohexane is 1
- **Statement 2:** The number of degree of unsaturation in a hydrocarbon is given by $\frac{2n_1+2-n_2}{2}$; where $n_1 =$ number of carbon atoms, n_2 =number of hydrogen atoms

STE

7

CHEMISTRY

						: ANS	SWEF	R KEY :
1)	d	2)	b	3)	b	4)	а	
5)	b	6)	а	7)	а	8)	b	
						^		
						5	С́С	
				$\langle \rangle$				
			Ć	X				
		Â.						
	4							
	V							
5								
$\mathbf{\mathbf{\mathcal{I}}}$								

CHEMISTRY

: HINTS AND SOLUTIONS :

1 (d)

Acetylene is converted into formic acid with acidified $\ensuremath{\mathsf{KMnO}_4}$

 $\begin{array}{l} \mathsf{CH} \\ ||| \\ \mathsf{CH} \end{array} + 3[O] + H_2O \xrightarrow[(\text{acidic})]{KMnO_4} \rightarrow 2\text{HCOOH} \\ \text{formic acid} \end{array}$

Acetylene is converted into oxalic acid with cold, dilute alkaline \mbox{KMnO}_4

$$\begin{array}{c} \mathsf{CH} \\ ||| \\ \mathsf{CH} \end{array}^{+} 4[\mathrm{O}] + \mathrm{H}_{2}\mathrm{O} \xrightarrow{\mathrm{Alk. \ KMnO_{4}}} \xrightarrow{\mathsf{COOH}} \\ | \\ \mathsf{COOH} \\ \mathrm{oxalic \ acid} \end{array}$$

2 **(b)**

Oxidation of toluene with chromyl chloride gives benzaldehyde which react with acetic anhydride to give benzylidene acetate and thus, further oxidation of benzaldehyde to benzoic acid is checked by acetic anhydride. The benzylidene acetate on treatment with HCl regenerates benzaldehyde.

3 **(b)**

Acetylene reacts with ammonical $AgNO_3$ solution or ammonical Cu_2Cl_2 or sodamide to from an acetylide because it contains acidic hydrogens.

4 **(a)**

When carbon atoms are linked by double bond, the valency bonds undergo bending and are

distorted from their normal directions. This bending produces strain in themolecule with the result is becomes unstable and hence more reactive

(b)

5

8

Lower alkenes donotundegosulphonation but higher members are sulphonated slowly when treated with fuming sulphuric acid at about 400°C

$$R - H + HOSO_3H \xrightarrow{SO_3}_{\text{prolonged heating}} R - SO_3H + H_2O$$

(b)

The number of pairs of hydrogen atoms that a molecular formula lacks to be an alkane (C_nH_{2n+2}) is called degree of unsaturation

CHEMISTRY

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in **columns I** have to be matched with Statements (p, q, r, s) in **columns II**.

1. Match the following lists

Column-I

- (A) Benzene
- (B) Ethylene
- (C) Acetaldehyde
- (D) Chloroform

CODES:

SMARI

	Α	В	С	D
a)	4	3	2	1
b)	3	2	1	4
c)	2	4	5	3
d)	5	1	4	3
	<u>~</u>	PC.		

- (1) Phosgene
- (2) Silver mirror
- (3) Mustard gas
- (4) $(4n+2)\pi$ electrons

Column-II

(5) Carbylamine

CHEMISTRY

CHEMISTRY

: HINTS AND SOLUTIONS :

1	(a)

Column I	Column II
Benzene	$(4n + 2)\pi$ -electrons
Ethylene	Mustard gas
Acetaldehyde	Silver mirror
Chloroform	Phosgene

HUBBO Benzene has 6π -electrons, *i.e.*, it follows Huckel rule $(4n + 2)\pi$ -electrons. Ethylene reacts with S₂Cl₂ to give mustard gas (war gas).

SMARIACE